WorldWideScience

Sample records for acids influence metabolic

  1. Influence of organic acids and organochlorinated insecticides on metabolism of Saccharomyces cerevisiae

    Pejin Dušanka J.

    2005-01-01

    Full Text Available Saccharomyces cerevisiae is exposed to different stress factors during the production: osmotic, temperature, oxidative. The response to these stresses is the adaptive mechanism of cells. The raw materials Saccharomyces cerevisiae is produced from, contain metabolism products of present microorganisms and protective agents used during the growth of sugar beet for example the influence of acetic and butyric acid and organochlorinated insecticides, lindan and heptachlor, on the metabolism of Saccharomyces cerevisiae was investigated and presented in this work. The mentioned compounds affect negatively the specific growth rate, yield, content of proteins, phosphorus, total ribonucleic acids. These compounds influence the increase of trechalose and glycogen content in the Saccharomyces cerevisiae cells.

  2. The influence of lactate and dipyridamole on myocardial fatty acid metabolism in man, traced with 123I-17-iodoheptadecanoic acid

    Changes in myocardial metabolism can be detected externally by registration of time-activity curves after administration of radioiodinated fatty acids. In this scintigraphic study the influence of lactate on fatty acid metabolism was investigated in the normal human myocardium, traced with 123I-17-iodoheptadecanoic acid (123I-17-HDA). In patients (paired, n=7) lactate loading decreased the uptake of 123I-17-HDA significantly from 27 (control:22-36) to 20 counts/min/pixel (16-31; p 123I-17-HDA scintigraphy of the heart. (orig.)

  3. Amino acid metabolism in tennis and its possible influence on the neuroendocrine system.

    Strüder, H K; Hollmann, W; Duperly, J; Weber, K

    1995-01-01

    To investigate amino acid metabolism during endurance exercise as well as its influence on plasma prolactin (PRL) we subjected eight nationally ranked tennis players (mean(s.d.) age 25.6(2.8) years, mean(s.d.) weight 83.9(5.7) kg, mean(s.d.) height 184.4(4.6) cm) to 4h of continuous tournament tennis. Venous and capillary blood samples were taken before and after the exercise. Amino acids were measured by HPLC-fluorescence detection as o-phthalaldehyde derivatives; nonesterified fatty acids (...

  4. Conjugated linoleic acids influence fatty acid metabolism in ovine ruminal epithelial cells.

    Masur, F; Benesch, F; Pfannkuche, H; Fuhrmann, H; Gäbel, G

    2016-04-01

    Conjugated linoleic acids (CLA), particularly cis-9,trans-11 (c9t11) and trans-10,cis-12 (t10c12), are used as feed additives to adapt to constantly increasing demands on the performance of lactating cows. Under these feeding conditions, the rumen wall, and the rumen epithelial cells (REC) in particular, are directly exposed to high amounts of CLA. This study determined the effect of CLA on the fatty acid (FA) metabolism of REC and expression of genes known to be modulated by FA. Cultured REC were incubated with c9t11, t10c12, and the structurally similar FA linoleic acid (LA), oleic acid (OA), and trans-vaccenic acid (TVA) for 48 h at a concentration of 100µM. Cellular FA levels were determined by gas chromatography. Messenger RNA expression levels of stearoyl-CoA desaturase (SCD) and monocarboxylate transporter (MCT) 1 and 4 were quantified by reverse transcription-quantitative PCR. Fatty acid evaluation revealed significant effects of CLA, LA, OA, and TVA on the amount of FA metabolites of β-oxidation and elongation and of metabolites related to desaturation by SCD. The observed changes in FA content point (among others) to the ability of REC to synthesize c9t11 from TVA endogenously. The mRNA expression levels of SCD identified a decrease after CLA, LA, OA, or TVA treatment. In line with the changes in mRNA expression, we found reduced amounts of C16:1n-7 cis-9 and C18:1n-9 cis-9, the main products of SCD. The expression of MCT1 mRNA increased after c9t11 and t10c12 treatment, and CLA c9t11 induced an upregulation of MCT4. Application of peroxisome proliferator-activated receptor (PPAR) α antagonist suggested that activation of PPARα is involved in the changes of MCT1, MCT4, and SCD mRNA expression induced by c9t11. Participation of PPARγ in the changes of MCT1 and SCD mRNA expression was shown by the application of the respective antagonist. The study demonstrates that exposure to CLA affects both FA metabolism and regulatory pathways within REC. PMID

  5. Influence of Amino Acid Metabolism on Embryonic Stem Cell Function and Differentiation.

    Kilberg, Michael S; Terada, Naohiro; Shan, Jixiu

    2016-07-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have promise in regenerative medicine because of their ability to differentiate into all 3 primary germ layers. This review describes recent advances in the understanding of the link between the metabolism of ESCs/iPSCs and their maintenance/differentiation in the cell culture setting, with particular emphasis on amino acid (AA) metabolism. ESCs are endowed with unique metabolic features with regard to energy consumption, metabolite flux through particular pathways, and macromolecular synthesis. Therefore, nutrient availability has a strong influence on stem cell growth, self-renewal, and lineage specification, both in vivo and in vitro. Evidence from several laboratories has documented that self-renewal and differentiation of mouse ESCs are critically dependent on proline metabolism, with downstream metabolites possibly serving as signal molecules. Likewise, catabolism of either threonine (mouse) or methionine (human) is required for growth and differentiation of ESCs because these AAs serve as precursors for donor molecules used in histone methylation and acetylation. Epigenetic mechanisms are recognized as critical steps in differentiation, and AA metabolism in ESCs appears to modulate these epigenetic processes. Recent reports also document that, in vitro, the nutrient composition of the culture medium in which ESCs are differentiated into embryoid bodies can influence lineage specification, leading to enrichment of a specific cell type. Although research designed to direct tissue specification of differentiating embryoid bodies in culture is still in its infancy, early results indicate that manipulation of the nutrient milieu can promote or suppress the formation of specific cell lineages. PMID:27422515

  6. Influence of trans fatty acids on linoleic acid metabolism in the rat

    J.L. Zevenbergen

    1988-01-01

    textabstractAt the start of the work described in this thesis, most reviewers on trans fatty acids agreed that these isomeric fatty acids did not induce undesirable effects, provided sufficient linoleic acid was present in the diet (Beare-Rogers, 1983; Emken, 1983; Gottenbos, 1983; Gurr, 1983). Howe

  7. Supplemental N-3 polyunsaturated fatty acids in diet: their influence on lipid metabolism in the rat

    Rauchová, Hana; Pavelka, Stanislav; Vokurková, Martina; Tribulová, N.; Soukup, Tomáš

    Bratislava: Slovak University of Technology, 2013, s. 140-145. ISBN 978-80-227-3959-7. [Industrial Toxicology 2013 /33./. Svit, Vysoké Tatry (SK), 19.06.2013-21.06.2013] R&D Projects: GA MŠk(CZ) 7AMB12SK158 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : lipid metabolism * n-3 polyunsaturated fatty acids * thyroid hormones Subject RIV: ED - Physiology

  8. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.

    Dongdong Li

    Full Text Available A comprehensive investigation of abscisic acid (ABA biosynthesis and its influence on other important phytochemicals is critical for understanding the versatile roles that ABA plays during strawberry fruit ripening. Using RNA-seq technology, we sampled strawberry fruit in response to ABA or nordihydroguaiaretic acid (NDGA; an ABA biosynthesis blocker treatment during ripening and assessed the expression changes of genes involved in the metabolism of pigments, ascorbic acid (AsA and folic acid in the receptacles. The transcriptome analysis identified a lot of genes differentially expressed in response to ABA or NDGA treatment. In particular, genes in the anthocyanin biosynthesis pathway were actively regulated by ABA, with the exception of the gene encoding cinnamate 4-hydroxylase. Chlorophyll degradation was accelerated by ABA mainly owing to the higher expression of gene encoding pheide a oxygenase. The decrease of β-carotene content was accelerated by ABA treatment and delayed by NDGA. A high negative correlation rate was found between ABA and β-carotene content, indicating the importance of the requirement for ABA synthesis during fruit ripening. In addition, evaluation on the folate biosynthetic pathway indicate that ABA might have minor function in this nutrient's biosynthesis process, however, it might be involved in its homeostasis. Surprisingly, though AsA content accumulated during fruit ripening, expressions of genes involved in its biosynthesis in the receptacles were significantly lower in ABA-treated fruits. This transcriptome analysis expands our understanding of ABA's role in phytochemical metabolism during strawberry fruit ripening and the regulatory mechanisms of ABA on these pathways were discussed. Our study provides a wealth of genetic information in the metabolism pathways and may be helpful for molecular manipulation in the future.

  9. Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum: influence on amino acid pools and production.

    Rehm, Nadine; Burkovski, Andreas

    2011-01-01

    Nitrogen is one of the macronutrients necessary for living cells, and consequently, assimilation of nitrogen is a crucial step for metabolism. To satisfy their nitrogen demand and to ensure a sufficient nitrogen supply even in situations of nitrogen limitation, microorganisms have evolved sophisticated uptake and assimilation mechanisms for different nitrogen sources. This mini-review focuses on nitrogen metabolism and its control in the biotechnology workhorse Corynebacterium glutamicum, which is used for the industrial production of more than 2 million tons of L: -amino acids annually. Ammonium assimilation and connected control mechanisms on activity and transcription level are summarized, and the influence of mutations on amino acid pools and production is described with emphasis on L: -glutamate, L: -glutamine, and L: -lysine. PMID:20922371

  10. Acinetobacter baumannii phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis.

    Bhuiyan, Md Saruar; Ellett, Felix; Murray, Gerald L; Kostoulias, Xenia; Cerqueira, Gustavo M; Schulze, Keith E; Mahamad Maifiah, Mohd Hafidz; Li, Jian; Creek, Darren J; Lieschke, Graham J; Peleg, Anton Y

    2016-08-23

    Innate cellular immune responses are a critical first-line defense against invading bacterial pathogens. Leukocyte migration from the bloodstream to a site of infection is mediated by chemotactic factors that are often host-derived. More recently, there has been a greater appreciation of the importance of bacterial factors driving neutrophil movement during infection. Here, we describe the development of a zebrafish infection model to study Acinetobacter baumannii pathogenesis. By using isogenic A. baumannii mutants lacking expression of virulence effector proteins, we demonstrated that bacterial drivers of disease severity are conserved between zebrafish and mammals. By using transgenic zebrafish with fluorescent phagocytes, we showed that a mutation of an established A. baumannii global virulence regulator led to marked changes in neutrophil behavior involving rapid neutrophil influx to a localized site of infection, followed by prolonged neutrophil dwelling. This neutrophilic response augmented bacterial clearance and was secondary to an impaired A. baumannii phenylacetic acid catabolism pathway, which led to accumulation of phenylacetate. Purified phenylacetate was confirmed to be a neutrophil chemoattractant. These data identify a previously unknown mechanism of bacterial-guided neutrophil chemotaxis in vivo, providing insight into the role of bacterial metabolism in host innate immune evasion. Furthermore, the work provides a potentially new therapeutic paradigm of targeting a bacterial metabolic pathway to augment host innate immune responses and attenuate disease. PMID:27506797

  11. Influence of β-adrenoceptor stimulation on the metabolism of C 18 unsaturated fatty acids in isolated heart of rat

    The influence of stimulating β receptors on the metabolism of 18:1 n-9, 18:2 n-6 and 18:3 n-3 acids in an isolated perfused heart of a rat was studied. Experiments were carried out in two stages. In the first stage, each fatty acid was entered solely in Krebs liquid labelled with C14 and complexed with albumin. In the second stage, isoproterenol (10-4M) was added to the previous mixture in order to stimulate the cardiac β-receptors. It appeared that the heart extracts each of 18:1 and 18:3 in a rate that exceeds the rate of extracting 18:2 and that the oxidation rate of 18:1 was the highest among the three studied acids which were alike in their esterification so they were all entered mainly in the triglycerid group (65-66%) and to less extend in the phospholipids (16-18%). While, the diglycerid and the free fatty acids did only form secondary compounds that would soon convert to the other groups that are more stable the reactions of double bond breakage for the 18:1 acid that converts to triple bond derivatives and 18:3 that converts to tetra, penta and hexa derivatives in the triglycerid were noticed. The 18:3 acid was the least influenced by the stimulation of β. The uptake rate of 18:2 acid was increased slightly while the 18:1 was decreased would indicate a competition between this acid ant the stored one in the cell. Also, the oxidation rate of 18:1 acid as well as the rate of entering it in the triglycerid and the phospholipids increased. In the same way, the oxidation rate of 18:2 acid increased, but its esterification turned in a way that the rate of entering it among the phospholipids increased, while the rate of entering it in the triglycerid decreased. According to what has been mentioned above, it can be said that the 18:1 plays an essential role in the production of direct power besides its role as a component of phospholipids that are deposited in the cellular membranes, while the metabolism of 18:2 acid turns-largely towards the phospholipids

  12. Quantum dots increased fat storage in intestine of Caenorhabditis elegans by influencing molecular basis for fatty acid metabolism.

    Wu, Qiuli; Zhi, Lingtong; Qu, Yangyang; Wang, Dayong

    2016-07-01

    Caenorhabditis elegans is a useful model animal for fat storage study. In nematodes, CdTe quantum dots (QDs) induced an increase in fat storage in intestine that is partially due to prolonged defecation cycle length, and not attributed to altered feeding or cadmium ion released from CdTe QDs. Moreover, CdTe QDs altered the molecular basis of both synthesis and degradation of fatty acid; however, CdTe QDs did not influence that of degradation of phospholipids. CdTe QDs increased expression of fasn-1 and pod-2 genes encoding enzymes required for fatty acid synthesis, and decreased expression of acs-2 and ech-1 genes encoding enzymes required for fatty acid β-oxidation. The altered molecular basis of fatty acid synthesis or degradation by CdTe QDs acted in intestine to regulate fat storage. Our study highlights the potential of CdTe QDs in influencing lipid metabolism in certain organs or tissues in animals. PMID:26956412

  13. Fatty acid metabolism: target for metabolic syndrome

    Wakil, Salih J.; Abu-Elheiga, Lutfi A.

    2009-01-01

    Fatty acids are a major energy source and important constituents of membrane lipids, and they serve as cellular signaling molecules that play an important role in the etiology of the metabolic syndrome. Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2) catalyze the synthesis of malonyl-CoA, the substrate for fatty acid synthesis and the regulator of fatty acid oxidation. They are highly regulated and play important roles in the energy metabolism of fatty acids in animals, including humans. They...

  14. Kinetics of iodomethylated hexadecanoic acid metabolism in the rat myocardium: influence of the number and the position of methyl radicals

    Fagret, D.; Bontemps, L.; Apparu, M.; Keriel, C.; Mathieu, J.P.; Pernin, C.; Vidal, M.; Comet, M.; Cuchet, P.

    1985-01-01

    The methyl-branched fatty acids, if radioiodine labelled in alpha position, are potentially adapted to a selective study of FA myocardial uptake. To determine the position and the number of methyl radicals that are necessary to obtain a maximal uptake and a minimal degradation, we measured time-activity evolution of isolated and perfused rat hearts after an injection of iodinated fatty acids which are mono- or dimethylated in alpha or beta position. Except for dimethyl fatty acid, the uptake is similar for all fatty acids studied to that of the straight chain analogue; beta mono- or dimethyl fatty acids seem best adapted to a study of the uptake because alpha monomethyl fatty acids undergo a metabolic degradation and alpha mono- and dimethyl fatty acids induce ventricular fibrillations.

  15. Influence of sodium fluoride and malonate on the respiration and metabolism of di- and tricarboxylic acids in chicory leaves

    Mazurova, T.A.; Tenchurina, N.S.

    1975-01-01

    Fluoride has a weak inhibitory effect on leaf respiration and the production of pyruvic acid. During 24 h the accumulation of citric and malic acids without effect on the tartaric acid was demonstrated. The inhibitory effect of fluoride was increased by pyruvate. The pyruvic acid stimulates both CO/sub 2/-output and O/sub 2/-consumption. The accumulation of citric and malic acids is influenced by pyruvic acid, but the tartaric acid content decreases. The malonate has a strong inhibitory effect on leaf respiration and induces the accumulation of succinic acid, the strong decrease of citric and malic acids but the decrease of the content of tartaric acid. The inhibitory effect of malonate was eliminated by succinate. Glucolysis is probably not the main pathway in the production of pyruvate in the chicory leaves.

  16. Growth Stimulation, Metabolic Activities and Fruit Yield of Tomato as Influenced by Fulvic Acid

    1M. Z. Khan

    2014-09-01

    Full Text Available A pot experiment was conducted at Land Resources Research Institute, National Agricultural Research Centre (NARC, Islamabad during spring 2012 to study the effect of foliar applied fulvic acid (FA on tomato grown under greenhouse conditions. Six kg sandy loam soil (Nabipur series mixed hyperthermic Udic Ustochrept filled in plastic pot and grown with tomato plants (Riogrande. Basal dose of N, P, K, along with Zn, Fe, and B were applied @ 200, 150, 200, 10, 2 and 1 mg/kg soil FA was applied as foliar @ 0, 150, 300, 450 and 600 mg/l respectively. Results showed a significant increase in fruit yield, harvest index and other agronomic parameters with FA application. Besides macronutrients plant micronutrient concentration also increased with FA application which could be ascribed to stimulating effect of FA on enhanced biomass. Protein and chlorophyll contents of leaves also significantly changed with applied FA. Based on the results of the study it could be concluded that FA spray at 150 and 300 mg/ l were appropriate dose for maximum nutrient uptake by plant for optimum growth and maximize yield.

  17. The Influence of Tallow on Rumen Metabolism, Microbial Biomass Synthesis and Fatty Acid Composition of Bacteria and Protozoa

    Weisbjerg, Martin Riis; Børsting, Christian Friis; Hvelplund, Torben

    1992-01-01

    Rumen metabolism, microbial biomass synthesis and microbial long chain fatty acid composition were studied in lactating cows fed at two levels of dry matter intake (L, 8.6 kg DM and H, 12.6 kg DM) with 0, 4 and 6% added tallow at the low feed level (L0, L4 and L6) and 0, 2, 4 and 6% at the high f...

  18. Influence of the intake and composition of elemental diets on bile acid metabolism and hepatic lipids in the rat.

    Nelson, L M; Russell, R I

    1986-01-01

    The effects of the elemental diets Vivonex (V) and Flexical (F) on bile acid metabolism and hepatic lipids in the rat has been investigated both with ad libitum feeding and when calorie intake was limited to that of control rats (C) fed a standard diet (Oxoid 41B). Ad libitum feeding of V and F for 9 weeks resulted in a weight gain in excess of that for the control diet. After 9 weeks of isocaloric feeding the V-fed rats were significantly lighter than those fed F and C. Fecal bile acid excretion (FBA) and the fractional turnover rates for cholic acid (CA) and chenodeoxycholic acid (CDC) were measured. The elemental diets significantly reduced FBA when fed both ad libitum and isocalorically compared with the control diet, the reduction with V being significantly greater than for F. In the isocaloric feeding study both elemental diets significantly increased the half life of CA and CDC. The increase for CA was significantly greater for V than F but for CDC the effect of the two diets was the same. Thus the percentage of CDC-derived 6 substituted bile acids was greater with V than F feeding. There was a strong negative correlation between bile acid half-life and fecal excretion of metabolites for the three dietary groups indicating that bile acid pool size was unchanged by the elemental diets. A gross increase in liver lipid both histologically and chemically was found for the ad libitum fed V rats with a marked but lesser increase for F.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3755773

  19. Is human colon adenocarcinoma (HT-29) proliferating activity influenced by arachidonic acid modulated metabolism in vitro after photodynamic therapy?

    Photodynamic therapy induces photo-oxidative changes of phospholipids followed by phospholipase A2 and phospholipase C activation which accelerates phospholipids degradation with polyunsaturated fatty acids eg. arachidonic acids releasing. Arachidonic acid has important role in the tumour therapy mainly as a precursor of lipids mediators - eicosanoids. The combination of indomethacin (5-100 μM) and hypericin (4 · 10-8 M) did not influence the survival of HT-29 in comparison to indomethacin and hypericin alone. On the other hand, inhibitors of lipoxygenase - NDGA (5-100 μM), MK-886 (2,5-15 μM) added 24 or 48 hours before hypericin activation showed significant antiproliferative effect in comparison to NDGA, MK-886 or hypericin alone. (authors)

  20. Combined influence of γ-irradiation and nitrocompounds on the activity of the main ferments of the glutamic acid metabolism

    Activity of aspartate aminotransferase, glutamate dehydrogenase in the liver of rats in 1, 7 and 15 days after γ-irradiation effect of the dose of 0.5 Gy on the background of consumption by animals of sodium nitrate, sodium nitrite and nitrosodiethylamine was studied. The combined influence of chemical agents and γ-irradiation modified the effects of nitrocompounds-xenobiotics on the processes of synthesis and dissociation of the glutamic acid as well as the intensity of transamination of reamination by aspartate aminotransferase

  1. Influence of methionine/valine-depleted enteral nutrition on nucleic acid and protein metabolism in tumor-bearing rats

    Yin-Cheng He; Jun Cao; Ji-Wei Chen; Ding-Yu Pan; Ya-Kui Zhou

    2003-01-01

    AIM: To investigate the effects of methionine/valine-depleted enteral nutrition (EN) on RNA, DNA and protein metabolism in tumor-bearing (TB) rats.METHODS: Sprague-Dawlley (SD) rats underwent jejunostomy for nutritional support. A suspension of Walker256 carcinosarcoma cells was subcutaneously inoculated.48 TB rats were randomly divided in 4 groups: A, B, C and D. The TB rats had respectively received jejunal feedings supplemented with balanced amino acids, methioninedepleted, balanced amino acids and valine-depleted for 6days before injection of 740 KBq 3H- methionine/valine via jejunum. The 3H incorporation rate of the radioactivity into RNA, DNA and proteins in tumor tissues at 0.5, 1, 2, 4 h postinjection of tracers was assessed with liquid scintillation counter.RESULTS: Incorporation of 3H into proteins in groups B and D was (0.500±0.020) % to (3.670±0.110) % and (0.708±0.019) % to (3.813±0.076) % respectively, lower than in groups A [(0.659±0.055) % to (4.492±0.108) %]and C r(0.805±0.098) % to (4.180±0.018) %]. Incorporation of 3H into RNA, DNA in group B was (0.237±0.075) %and (0.231±0.052) % respectively, lower than in group A (P<0.01). There was no significant difference in uptake of 3H by RNA and DNA between group C and D (P>0.05).CONCLUSION: Protein synthesis was inhibited by methionine/valine starvation in TB rats and nucleic acid synthesis was reduced after methionine depletion, thus resulting in suppression of tumor growth.

  2. Has a mixture of amino acids and micronutrients influence on glucose metabolism and dietary fatty acid pattern in chronic psychosocially stressed persons? A pilot study.

    Bitterlich, Norman; Chaborski, Katrin; Parsi, Elke; Rösler, Daniela; Metzner, Christine

    2016-01-01

    Brain food, e.g. L-tryptophan, antioxidative substances, B vitamins and magnesium are thought to be beneficial for obesity, inflammation and insulin resistance. In the present pilot study we hypothesised that a specific amino acid mixture with micronutrients improves the cardiometabolic situation of chronically stressed persons. Cardiovascular and metabolic parameters were analysed as per protocol in 32 patients. Chronic stress disorders in the same patients were assessed by a psychological neurological questionnaire (PNF). After dietary intervention a reduction of the fasting serum insulin concentrations occurred in the treatment group. An association was found between PNF values, insulin concentrations at baseline and an insulin reduction after 12 weeks. The results support the use of our specific dietary supplement for improved stress management and a decrease in metabolic dysfunction. PMID:26878772

  3. The influence of straw meal on the crude protein and amino acid metabolism and the digestibility of crude nutrients in broiler breeding hens. 1

    The metabolization of the straw N and the influence of the straw on N excretion in urine were studied in 2 experiments with colostomized broiler hens and with 15N-labelled wheat straw as well as 15N-labelled wheat. In experiment 1 the test animals divided up into 4 groups received 0 g, 20 g, 30 g and 40 g straw meal per animal and day in addition to 120 g mixed feed. The daily 15N excess (15N') intake from the straw was 18.4 mg, 27.5 mg and 36.7 mg. The amount of 15N' daily consumed with the labelled wheat in experiment 2 was 119.7 mg. 40 g straw meal resulted in a significantly increased amount of urine (p 15N' of the labelled wheat was not influenced by the straw meal supplement. The productive 15N' of the straw increased from 3.8 mg/animal and day (20 g straw) to 13.4 mg/animal and day (40 g straw). In contrast to 15N wheat, straw as a 15N source resulted in a lower labelling of uric acid N in comparison with urine N. It can be assumed that the changed metabolization of the straw N is influenced by microbial processes in the intestines. (author)

  4. Essential fatty acids influence metabolic rate and tolerance of hypoxia in Dover sole ( Solea solea ) larvae and juveniles

    McKenzie, David; Lund, Ivar; Pedersen, Per Bovbjerg

    2008-01-01

    ), and their metabolic rate and tolerance to hypoxia measured prior to and following metamorphosis and settlement. Four dietary Artemia preparations were compared: (1) un-enriched; (2) enriched with a commercial EFA mixture (Easy DHA SELCO Emulsion); (3) enriched with a marine fish oil combination (VEVODAR and Incromega...... DHA) to provide a high ratio of ARA to DHA, and (4) enriched with these fish oils to provide a low ratio of ARA to DHA. Sole fed un-enriched Artemia were significantly less tolerant to hypoxia than the other dietary groups. Larvae from this group had significantly higher routine metabolic rate (RMR......) in normoxia, and significantly higher O-2 partial pressure (PO2) thresholds in progressive hypoxia for their regulation of RMR (P-crit) and for the onset of agitation, respiratory distress and loss of equilibrium. Metamorphosis was associated with an overall decline in RMR and increase in P...

  5. The gut microbiota modulates host amino acid and glutathione metabolism in mice

    Mardinoglu, Adil; Shoaie, Saeed; Bergentall, Mattias;

    2015-01-01

    , liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To....... Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice....

  6. In Ovo Administration of Silver Nanoparticles and/or Amino Acids Influence Metabolism and Immune Gene Expression in Chicken Embryos

    Subrat K. Bhanja

    2015-04-01

    Full Text Available Due to their physicochemical and biological properties, silver nanoparticles (NanoAg have a wide range of applications. In the present study, their roles as a carrier of nutrients and an immunomodulator were tested in chicken embryos. Cysteine (Cys+NanoAg injected embryos had smaller livers but heavier breasts on the 19th day of embryogenesis. Cys injected embryos had lower oxygen consumption compared to threonine (Thr or NanoAg injected embryos. The energy expenditure in Thr+NanoAg, or NanoAg injected embryos was higher than Cys or Cys+NanoAg but was not different from uninjected control embryos. Relative expression of the hepatic insulin-like growth factor-I (IGF-I gene was higher in Cys or NanoAg injected embryos after lipopolysaccharide (LPS induction. The gene expression of hepatic tumour necrosis factor-alpha (TNF-α and interleukin-6 (IL-6 did not differ among amino acids, NanoAg and uninjected controls in the non-LPS groups, but increased by many folds in the LPS treated NanoAg, Cys and Cys+NanoAg groups. In LPS treated spleens, TNF-α expression was also up-regulated by NanoAg, amino acids and their combinations, but interleukin-10 (IL-10 expression was down-regulated in Thr, Cys or Thr+NanoAg injected embryos. Toll like receptor-2 (TLR2 expression did not differ in NanoAg or amino acids injected embryos; however, toll like receptor-4 (TLR4 expression was higher in all treated embryos, except for Cys+NanoAg, than in uninjected control embryos. We concluded that NanoAg either alone or in combination with amino acids did not affect embryonic growth but improved immunocompetence, indicating that NanoAg and amino acid complexes can act as potential agents for the enhancement of innate and adaptive immunity in chicken.

  7. In Ovo Administration of Silver Nanoparticles and/or Amino Acids Influence Metabolism and Immune Gene Expression in Chicken Embryos.

    Bhanja, Subrat K; Hotowy, Anna; Mehra, Manish; Sawosz, Ewa; Pineda, Lane; Vadalasetty, Krishna Prasad; Kurantowicz, Natalia; Chwalibog, André

    2015-01-01

    Due to their physicochemical and biological properties, silver nanoparticles (NanoAg) have a wide range of applications. In the present study, their roles as a carrier of nutrients and an immunomodulator were tested in chicken embryos. Cysteine (Cys)+NanoAg injected embryos had smaller livers but heavier breasts on the 19th day of embryogenesis. Cys injected embryos had lower oxygen consumption compared to threonine (Thr) or NanoAg injected embryos. The energy expenditure in Thr+NanoAg, or NanoAg injected embryos was higher than Cys or Cys+NanoAg but was not different from uninjected control embryos. Relative expression of the hepatic insulin-like growth factor-I (IGF-I) gene was higher in Cys or NanoAg injected embryos after lipopolysaccharide (LPS) induction. The gene expression of hepatic tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) did not differ among amino acids, NanoAg and uninjected controls in the non-LPS groups, but increased by many folds in the LPS treated NanoAg, Cys and Cys+NanoAg groups. In LPS treated spleens, TNF-α expression was also up-regulated by NanoAg, amino acids and their combinations, but interleukin-10 (IL-10) expression was down-regulated in Thr, Cys or Thr+NanoAg injected embryos. Toll like receptor-2 (TLR2) expression did not differ in NanoAg or amino acids injected embryos; however, toll like receptor-4 (TLR4) expression was higher in all treated embryos, except for Cys+NanoAg, than in uninjected control embryos. We concluded that NanoAg either alone or in combination with amino acids did not affect embryonic growth but improved immunocompetence, indicating that NanoAg and amino acid complexes can act as potential agents for the enhancement of innate and adaptive immunity in chicken. PMID:25923079

  8. Regional myocardial free fatty acid metabolism

    Experimental evidence to date has confirmed the potential value of radioactive labelled free fatty acid (FFA) and their analogs for the assessment of regional myocardial FFA metabolism despite a number of current limitations. It is emphasized that with these agents only one specific aspect of myocardial metabolism, that of FFA, can be tested and that with these compounds information on the overall metabolic state cannot always be obtained. (WU)

  9. 2-Hydroxy Acids in Plant Metabolism

    Maurino, Veronica G.; Engqvist, Martin K. M.

    2015-01-01

    Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in pla...

  10. Alterations of the Ceramide Metabolism in the Peri-Infarct Cortex Are Independent of the Sphingomyelinase Pathway and Not Influenced by the Acid Sphingomyelinase Inhibitor Fluoxetine

    Brunkhorst, R.; Friedlaender, F.; Ferreirós, N.; Schwalm, S.; Koch, A.; Grammatikos, G.; Toennes, S.; Foerch, C; Pfeilschifter, J.; Pfeilschifter, W.

    2015-01-01

    Ceramides induce important intracellular signaling pathways, modulating proliferation, migration, apoptosis, and inflammation. However, the relevance of the ceramide metabolism in the reconvalescence phase after stroke is unclear. Besides its well-known property as a selective serotonin reuptake inhibitor, fluoxetine has been reported to inhibit the acid sphingomyelinase (ASM), a key regulator of ceramide levels which derives ceramide from sphingomyelin. Furthermore, fluoxetine has shown ther...

  11. Bile acid metabolism in tupaias (lemurs)

    The goal of this work is to study biliary elimination and the metabolism of the most important primary bile acids, cholic acid and chenodesoxycholic acid, and the toxic secondary bile acid, lithocholic acid, which is formed in the intestine as a result of chenodesoxycholate therapy for the dissolving of gall stones. This work herewith offers a contribution to the answering of the question whether tupaias are a relevant animal model for the study of gall stone formation and their medicamentous dissolution by means of bile acids. (orig./MG)

  12. 2-Hydroxy Acids in Plant Metabolism

    Maurino, Veronica G.; Engqvist, Martin K. M.

    2015-01-01

    Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis. PMID:26380567

  13. The Role of Diet1 in Bile Acid Metabolism

    Lee, Jessica Mei-Ping

    2013-01-01

    Elevated cholesterol levels are associated with increased risk for atherosclerosis, heart disease and stroke. Variations in plasma cholesterol levels among individuals are determined by the interaction of environmental and genetic factors, many of which remain to be identified. This dissertation presents the initial characterization of a novel gene Diet1, the product of which influences plasma cholesterol levels through its effects on bile acid metabolism. Bile acids are synthesized from c...

  14. Cytokines: muscle protein and amino acid metabolism

    van Hall, Gerrit

    2012-01-01

    raises TNF-α and IL-6 to moderate levels, has only identified IL-6 as a potent cytokine, decreasing systemic amino acid levels and muscle protein metabolism. The marked decrease in circulatory and muscle amino acid concentrations was observed with a concomitant reduction in both the rates of muscle...... IL-6 on the regulation of muscle protein metabolism but indirectly via IL-6 reducing amino acid availability. SUMMARY: Recent studies suggest that the best described cytokines TNF-α and IL-6 are unlikely to be the major direct mediators of muscle protein loss in inflammatory diseases. However, these...

  15. Renal transport and metabolism of nicotinic acid

    Renal metabolism and brush-border transport of nicotinic acid were studied in renal cortical slices and brush-border membrane vesicles exposed to a physiological concentration of vitamin (2.2-3.5 microM). Vesicle transport of [3H]nicotinic acid was found to be Na+ dependent and concentrative. The presence of a Na+ gradient resulted in a fivefold increase in the rate of nicotinic acid uptake over that observed with mannitol and caused a transient nicotinic acid accumulation two- to fourfold above the equilibrium value. The effects of membrane potential, pH, and elimination of Na+-H+ exchange were also studied. Cortical slices and isolated tubules exposed to 2.2 microM [14C]nicotinic acid took up vitamin and rapidly metabolized most of it to intermediates in the Preiss-Handler pathway for NAD biosynthesis; little free nicotinic acid was detectable intracellularly. The replacement of Na+ with Li+ in the bathing medium reduced total accumulation of 14C label primarily as a result of reduced nicotinic acid uptake. Cortical tissue concentrated free nicotinic acid only when the involved metabolic pathways were saturated by levels of nicotinic acid far in excess of what occurs in vivo

  16. Dietary n-3:n-6 fatty acid ratios differentially influence hormonal signature in a rodent model of metabolic syndrome relative to healthy controls

    Koch Lauren G

    2010-06-01

    Full Text Available Abstract Dietary ratios of omega-3 (n-3 to omega-6 (n-6 polyunsaturated fatty acids (PUFAs have been implicated in controlling markers of the metabolic syndrome, including insulin sensitivity, inflammation, lipid profiles and adiposity. However, the role of dietary PUFAs in regulating energy systems in healthy relative to metabolic diseased backgrounds has not been systematically addressed. We used dietary manipulation of n-3 to n-6 PUFA ratios in an animal model of metabolic syndrome and a related healthy line to assay feeding behavior and endocrine markers of feeding drive and energy regulation. Two related lines of rodents with a healthy and a metabolic syndrome phenotype were fed one of two isocaloric diets, comprised of either a 1:1 or a 1:30 n-3 to n-6 ratio, for 30 days. Food intake and weight gain were monitored; and leptin, ghrelin, adiponectin and a suite of hypothalamic neuropeptides involved in energy regulation were assayed following the dietary manipulation period. There was no difference in caloric intake or weight gain between diet groups, however there was a significant interaction between diet and phenotypic line on central and peripheral markers of energy homeostasis. Thus serum levels of leptin, acylated-ghrelin and adiponectin, and mRNA levels of the anorexigenic hypothalamic neuropeptide, cocaine-amphetamine related transcript (CART, showed differential, dietary responses with HCR rats showing an increase in anorexigenic signals in response to unbalanced n-3:6 ratios, while LCR did not. These data are the first to demonstrate that a rodent line with a metabolic syndrome-like phenotype responds differentially to dietary manipulation of n-3 and n-6 fatty acids relative to a related healthy line with regard to endocrine markers of energy homeostasis. The dietary n-3:n-6 ratios used in this experiment represent extreme points of natural human diets, however the data suggest that optimal recommendations regarding omega-3 and

  17. Metabolism of sinapic acid and related compounds in the rat.

    Griffiths, L A

    1969-07-01

    1. Administration of sinapic acid to the rat results in the excretion of 3-hydroxy-5-methoxyphenylpropionic acid, dihydrosinapic acid, 3-hydroxy-5-methoxycinnamic acid and unchanged sinapic acid in the urine. The sinapic acid conjugate sinalbin is also catabolized to free sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid in the rat. 2. 3,4,5-Trimethoxycinnamic acid is metabolized in part to sinapic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 3. 3,5-Dimethoxycinnamic acid is metabolized to 3-hydroxy-5-methoxycinnamic acid and 3-hydroxy-5-methoxyphenylpropionic acid. 4. The metabolic interrelationships of these compounds were studied by the administration of intermediates and a metabolic pathway is proposed. 5. The metabolism of the corresponding benzoic acids was studied, but these compounds and their metabolites were shown not to be intermediates or products of the metabolism of the related cinnamic acids. PMID:5386182

  18. The influence of straw meal on the crude protein and amino acid metabolism and the digestibility of crude nutrients in broiler hens. 3

    In two experiments with colostomized broiler hens the influence of a straw meal supplement on the apparent digestibility of the amino acids of the ration and the 15N-labelled basic amino acids in wheat was studied. In experiment 1 the animals received 120 g mixed feed plus 0, 20, 30 and 40 g straw meal per animal and day. The digestibility of the amino acids decreased on average from 86% to 83%, 80% and 79% with the growing straw intake. In contrast to the control variant, 20 g straw meal intake resulted in a singificant decrease of digestibility for lysine, histidine, glycine, tyrosine, phenylanaline, cystine and methionine. 30 and 40 g straw meal reduced significantly the digestibility of all amino acids with the exception of arginine. The amino acid composition of the crude protein in feces changed only very slightly due to the straw supplement. In experiment 2 15N-labelled wheat was a component of the ration. Of the 15N-labelled amino acids lysine, histidine and arginine, 88, 90 and 95% were apparently digested. The adaptation of the animals to straw meal intake did not change the digestibility of the amino acids. (author)

  19. Omeprazole induces altered bile acid metabolism

    Shindo, K; Machida, M.; Fukumura, M; Koide, K.; Yamazaki, R.

    1998-01-01

    Background—It has been reported that the acidity of gastric contents could be an important factor in regulating jejunal flora. 
Aims—To investigate the effects of omeprazole induced changes in gastric pH on jejunal flora and bile acid metabolism. 
Methods—Twenty one patients with gastric ulcer and 19 healthy volunteers were studied. Deconjugation of bile acids was detected using a bile acid breath test. Jejunal fluid was aspirated using a double lumen tube with a rubber cover o...

  20. Glucokinase regulatory proten genetic variant interacts with omega-3 PUFA to influence insulin resistance and inflammation in metabolic syndrome

    Glucokinase Regulatory Protein (GCKR) plays a central role regulating both hepatic triglyceride and glucose metabolism. Fatty acids are key metabolic regulators, which interact with genetic factors and influence glucose metabolism and other metabolic traits. Omega-3 polyunsaturated fatty acids (n-3...

  1. Regulation of uric acid metabolism and excretion.

    Maiuolo, Jessica; Oppedisano, Francesca; Gratteri, Santo; Muscoli, Carolina; Mollace, Vincenzo

    2016-06-15

    Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation. PMID:26316329

  2. Impact of dietary conjugated linoleic acid (CLA) on fatty acid metabolism and endocannabinoid biosynthesis

    Piras, Antonio

    2014-01-01

    Background: Conjugated linoleic acid (CLA) refers to a group of positional and geometric isomers of linoleic acid (LA) mainly found in the meat and dairy products of ruminants. CLA has been shown to possess different biological activities such as anticarcinogenic and anti-atherogenic properties, and also to influence body weight, energy and lipid metabolism, immune response, and inflammation. The endocannabinoid system (ECS) is involved in a variety of physiological processes, ...

  3. Metabolic annotation of 2-ethylhydracrylic acid.

    Ryan, Robert O

    2015-08-25

    Increased levels of the organic acid, 2-ethylhydracrylic acid (2-EHA) occur in urine of subjects with impaired L(+)-isoleucine metabolism. Chiral intermediates formed during isoleucine degradation are (S) enantiomers. Blockage of (S) pathway flux drives racemization of (2S, 3S) L(+)-isoleucine and its (2S, 3R) stereoisomer, L(+)-alloisoleucine. This non-protein amino acid is metabolized to (R)-2-methylbutyryl CoA via enzymes common to branched chain amino acid degradation. Subsequently, (R) intermediates serve as alternate substrates for three valine metabolic enzymes, generating 2-EHA. Once formed, 2-EHA accumulates because it is poorly recognized by distal valine pathway enzymes. Thus, urinary 2-EHA represents a biomarker of isoleucine pathway defects. 2-EHA levels are also increased in rats exposed to the industrial solvent, ethylene glycol monomethyl ether or the neurotoxin precursor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In these cases, a block in (S) pathway isoleucine catabolism occurs at the level of (S)-2-methylbutyryl CoA conversion to tiglyl CoA via inhibition of electron transferring flavoprotein/ubiquinone oxidoreductase dependent reactions. Elevated urinary 2-EHA in propionyl CoA carboxylase deficiency and methylmalonic aciduria results from a buildup of distal intermediates in the (S) pathway of isoleucine degradation. In Barth syndrome and dilated cardiomyopathy with ataxia syndrome, 2-EHA is a byproduct of impeded propionyl CoA entry into the Krebs cycle. PMID:26115894

  4. Linking uric acid metabolism to diabetic complications

    Akifumi; Kushiyama; Kentaro; Tanaka; Shigeko; Hara; Shoji; Kawazu

    2014-01-01

    Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase(XDH/XO) is rate-limiting enzyme of uric acid generation, and allopurinol was developed as a uric acid(UA) generation inhibitor in the 1950 s and has been routinely used for gout prevention since then. Serum UA levels are an important risk factor of disease progression for various diseases, including those related to lifestyle. Recently, other UA generation inhibitors such as febuxostat and topiroxostat were launched. The emergence of these novel medications has promoted new research in the field. Lifestyle-related diseases, such as metabolic syndrome or type 2 diabetes mellitus, often have a common pathological foundation. As such, hyperuricemia is often present among these patients. Many in vitro and animal studies have implicated inflammation and oxidative stress in UA metabolism and vascular injury because XDH/XO act as one of the major source of reactive oxygen species Many studies on UA levels and associated diseases implicate involvement of UA generation in disease onset and/or progression. Interventional studies for UA generation, not UA excretion revealed XDH/XO can be the therapeutic target forvascular injury and renal dysfunction. In this review, the relationship between UA metabolism and diabetic complications is highlighted.

  5. Linking uric acid metabolism to diabetic complications.

    Kushiyama, Akifumi; Tanaka, Kentaro; Hara, Shigeko; Kawazu, Shoji

    2014-12-15

    Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase (XDH/XO) is rate-limiting enzyme of uric acid generation, and allopurinol was developed as a uric acid (UA) generation inhibitor in the 1950s and has been routinely used for gout prevention since then. Serum UA levels are an important risk factor of disease progression for various diseases, including those related to lifestyle. Recently, other UA generation inhibitors such as febuxostat and topiroxostat were launched. The emergence of these novel medications has promoted new research in the field. Lifestyle-related diseases, such as metabolic syndrome or type 2 diabetes mellitus, often have a common pathological foundation. As such, hyperuricemia is often present among these patients. Many in vitro and animal studies have implicated inflammation and oxidative stress in UA metabolism and vascular injury because XDH/XO act as one of the major source of reactive oxygen species Many studies on UA levels and associated diseases implicate involvement of UA generation in disease onset and/or progression. Interventional studies for UA generation, not UA excretion revealed XDH/XO can be the therapeutic target for vascular injury and renal dysfunction. In this review, the relationship between UA metabolism and diabetic complications is highlighted. PMID:25512781

  6. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism.

    Ceusters, Johan; Borland, Anne M; Taybi, Tahar; Frans, Mario; Godts, Christof; De Proft, Maurice P

    2014-07-01

    Temporal compartmentation of carboxylation processes is a defining feature of crassulacean acid metabolism and involves circadian control of key metabolic and transport steps that regulate the supply and demand for carbon over a 24h cycle. Recent insights on the molecular workings of the circadian clock and its connection with environmental inputs raise new questions on the importance of light quality and, by analogy, certain photoreceptors for synchronizing the metabolic components of CAM. The present work tested the hypothesis that optimal coupling of stomatal conductance, net CO2 uptake, and the reciprocal turnover of carbohydrates and organic acids over the diel CAM cycle requires both blue and red light input signals. Contrasting monochromatic wavelengths of blue, green, and red light (i.e. 475, 530, 630nm) with low fluence rates (10 μmol m(-2) s(-1)) were administered for 16 hours each diel cycle for a total treatment time of 48 hours to the obligate CAM bromeliad, Aechmea 'Maya'. Of the light treatments imposed, low-fluence blue light was a key determinant in regulating stomatal responses, organic acid mobilization from the vacuole, and daytime decarboxylation. However, the reciprocal relationship between starch and organic acid turnover that is typical for CAM was uncoupled under low-fluence blue light. Under low-fluence red or green light, the diel turnover of storage carbohydrates was orchestrated in line with the requirements of CAM, but a consistent delay in acid consumption at dawn compared with plants under white or low-fluence blue light was noted. Consistent with the acknowledged influences of both red and blue light as input signals for the circadian clock, the data stress the importance of both red and blue-light signalling pathways for synchronizing the metabolic and physiological components of CAM over the day/night cycle. PMID:24803500

  7. Metabolic mechanism of phenyllactic acid naturally occurring in Chinese pickles.

    Li, Xingfeng; Ning, Yawei; Liu, Dou; Yan, Aihong; Wang, Zhixin; Wang, Shijie; Miao, Ming; Zhu, Hong; Jia, Yingmin

    2015-11-01

    Phenyllactic acid, a phenolic acid phytochemical with the antimicrobial activity, was rarely reported in food besides honey and sourdough. This study evidenced a new food source of phenyllactic acid and elucidated its metabolic mechanism. Phenyllactic acid naturally occurred in Chinese pickles with concentrations ranged from 0.02 to 0.30 mM in 23 pickle samples including homemade and commercial ones. Then, lactic acid bacteria capable of metabolizing phenyllactic acid were screened from each homemade pickle and a promising strain was characterized as Lactobacillus plantarum. Moreover, the investigation of the metabolic mechanism of phenyllactic acid in pickles suggested that the yield of phenyllactic acid was positively related to the content of phenylalanine in food, and the addition of phenylalanine as precursor substance could significantly promote the production of phenyllactic acid. This investigation could provide some insights into the accumulation of phenyllactic acid in pickle for long storage life. PMID:25976820

  8. Gut microbiota may have influence on glucose and lipid metabolism

    Mikkelsen, Kristian Hallundbæk; Nielsen, Morten Frost; Tvede, Michael;

    2013-01-01

    prebiotics, antibiotics or faecal transplantation can alter glucose and lipid metabolism. This paper summarizes the latest research regarding the association between gut microbiota, diabetes and obesity and some of the mechanisms by which gut bacteria may influence host metabolism....

  9. Increased brain fatty acid uptake in metabolic syndrome

    Karmi, Anna; Iozzo, Patricia; Viljanen, Antti;

    2010-01-01

    To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it.......To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it....

  10. Genetic and metabolic influences on LDL subclasses

    Krauss, R.M. [Lawrence Berkeley Lab., CA (United States); Rotter, J.I.; Lusis, A.J. [Univ. of California, Los Angeles, CA (United States)

    1994-09-01

    Genetic and environmental factors influence LDL particle size and density, and expression of an atherogenic lipoprotein phenotype (ALP) characterized by predominance of small, dense LDL particles. Linkage of ALP the LDL receptor locus has been reported previously. Quantitative sib-pair relative-pair linkage methodologies were used to test for linkage of LDL particle size to candidate loci in 25 large pedigrees with familial coronary artery disease. Linkage to the LDL receptor gene locus was confirmed (p=0.008). Evidence was also obtained for linkage to the genes for apoCIII, cholesteryl ester transfer protein, and manganese superoxide dismutase. The results suggest multiple genetic determinants of LDL particle size that may involve different metabolic mechanisms giving rise to small, dense LDL and increased atherosclerosis risk.

  11. The Role of Microbial Amino Acid Metabolism in Host Metabolism

    Evelien P. J. G. Neis

    2015-04-01

    Full Text Available Disruptions in gut microbiota composition and function are increasingly implicated in the pathogenesis of obesity, insulin resistance, and type 2 diabetes mellitus. The functional output of the gut microbiota, including short-chain fatty acids and amino acids, are thought to be important modulators underlying the development of these disorders. Gut bacteria can alter the bioavailability of amino acids by utilization of several amino acids originating from both alimentary and endogenous proteins. In turn, gut bacteria also provide amino acids to the host. This could have significant implications in the context of insulin resistance and type 2 diabetes mellitus, conditions associated with elevated systemic concentrations of certain amino acids, in particular the aromatic and branched-chain amino acids. Moreover, several amino acids released by gut bacteria can serve as precursors for the synthesis of short-chain fatty acids, which also play a role in the development of obesity. In this review, we aim to compile the available evidence on the contribution of microbial amino acids to host amino acid homeostasis, and to assess the role of the gut microbiota as a determinant of amino acid and short-chain fatty acid perturbations in human obesity and type 2 diabetes mellitus.

  12. In Ovo administration of silver nanoparticles and/or amino acids influence metabolism and immune gene expression in chicken embryos

    Bhanja, Subrat K.; Hotowy, Anna Malgorzata; Mehra, Manish;

    2015-01-01

    heavier breasts on the 19th day of embryogenesis. Cys injected embryos had lower oxygen consumption compared to threonine (Thr) or NanoAg injected embryos. The energy expenditure in Thr+NanoAg, or NanoAg injected embryos was higher than Cys or Cys+NanoAg but was not different from uninjected control...... embryos. Relative expression of the hepatic insulin-like growth factor-I (IGF-I) gene was higher in Cys or NanoAg injected embryos after lipopolysaccharide (LPS) induction. The gene expression of hepatic tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) did not differ among amino acids, Nano......, Cys or Thr+NanoAg injected embryos. Toll like receptor-2 (TLR2) expression did not differ in NanoAg or amino acids injected embryos; however, toll like receptor-4 (TLR4) expression was higher in all treated embryos, except for Cys+NanoAg, than in uninjected control embryos. We concluded that Nano...

  13. Modeling dietary influences on offspring metabolic programming in Drosophila melanogaster.

    Brookheart, Rita T; Duncan, Jennifer G

    2016-09-01

    The influence of nutrition on offspring metabolism has become a hot topic in recent years owing to the growing prevalence of maternal and childhood obesity. Studies in mammals have identified several factors correlating with parental and early offspring dietary influences on progeny health; however, the molecular mechanisms that underlie these factors remain undiscovered. Mammalian metabolic tissues and pathways are heavily conserved in Drosophila melanogaster, making the fly an invaluable genetic model organism for studying metabolism. In this review, we discuss the metabolic similarities between mammals and Drosophila and present evidence supporting its use as an emerging model of metabolic programming. PMID:27450801

  14. Metabolism of amino acid amides in Pseudomonas putida ATCC 12633

    Hermes, H.F.M.; Croes, L.M.; Peeters, W.P.H.; Peters, P.J.H.; Dijkhuizen, L.

    1993-01-01

    The metabolism of the natural amino acid L-valine, the unnatural amino acids D-valine, and D-, L-phenylglycine (D-, L-PG), and the unnatural amino acid amides D-, L-phenylglycine amide (D, L-PG-NH2) and L-valine amide (L-Val-NH2) was studied in Pseudomonas putida ATCC 12633. The organism possessed c

  15. [The metabolic syndrome: can nutrition influence rebellious organs?].

    Levy, Emile

    2009-06-01

    Insulin resistance, which is closely tied to obesity and cardiovascular disease (CVD), leads to a wide range of clinical and biochemical disorders, including hyperinsulinemia, hypertension, abnormal carbohydrate metabolism, blood coagulation and fibrinolysis, non alcoholic hepatic steatosis and dyslipidemia, the latter being characterized by high triglyceride levels, low high-density lipoprotein cholesterol levels, and an increased number of small dense particles of low-density lipoprotein. Pathophysiological studies underscore the direct role of postprandial hyperlipidemia in the formation of atheroma plaque. Diet, interacting with genetic factors, may also have a significant influence on the development of obesity, type 2 diabetes and CVD. In this review, we examine the potential of omega-3 fatty acids : to correct postprandial lipid disorders (by reducing chylomicron secretion and altering the expression of genes involved in intestinal lipid metabolism); to control hepatic lipid metabolism and to reduce the risk of non alcoholic hepatic steatosis; and to provide a genetic substrate and environment during fetal development that will help prevent vascular disorders later in life. PMID:20120158

  16. Metabolic strategies of beer spoilage lactic acid bacteria in beer.

    Geissler, Andreas J; Behr, Jürgen; von Kamp, Kristina; Vogel, Rudi F

    2016-01-01

    Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis. PMID:26398285

  17. Uric acid as a modulator of glucose and lipid metabolism.

    Lima, William Gustavo; Martins-Santos, Maria Emília Soares; Chaves, Valéria Ernestânia

    2015-09-01

    In humans, uric acid is the final oxidation product of purine catabolism. The serum uric acid level is based on the balance between the absorption, production and excretion of purine. Uric acid is similarly produced in the liver, adipose tissue and muscle and is primarily excreted through the urinary tract. Several factors, including a high-fructose diet and the use of xenobiotics and alcohol, contribute to hyperuricaemia. Hyperuricaemia belongs to a cluster of metabolic and haemodynamic abnormalities, called metabolic syndrome, characterised by abdominal obesity, glucose intolerance, insulin resistance, dyslipidaemia and hypertension. Hyperuricaemia reduction in the Pound mouse or fructose-fed rats, as well as hyperuricaemia induction by uricase inhibition in rodents and studies using cell culture have suggested that uric acid plays an important role in the development of metabolic syndrome. These studies have shown that high uric acid levels regulate the oxidative stress, inflammation and enzymes associated with glucose and lipid metabolism, suggesting a mechanism for the impairment of metabolic homeostasis. Humans lacking uricase, the enzyme responsible for uric acid degradation, are susceptible to these effects. In this review, we summarise the current knowledge of the effects of uric acid on the regulation of metabolism, primarily focusing on liver, adipose tissue and skeletal muscle. PMID:26133655

  18. Light quality modulates metabolic synchronization over the diel phases of crassulacean acid metabolism

    Ceusters, Johan; Borland, Anne M; Taybi, Tahar; Frans, Mario; Godts, Christof; De Proft, Maurice P

    2014-01-01

    Temporal compartmentation of carboxylation processes is a defining feature of crassulacean acid metabolism and involves circadian control of key metabolic and transport steps that regulate the supply and demand for carbon over a 24h cycle. Recent insights on the molecular workings of the circadian clock and its connection with environmental inputs raise new questions on the importance of light quality and, by analogy, certain photoreceptors for synchronizing the metabolic components of CAM. T...

  19. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    Marko Kreft; Bak, Lasse K.; Waagepetersen, Helle S.; Arne Schousboe

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.

  20. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    Marko Kreft

    2012-04-01

    Full Text Available Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation.

  1. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S;

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pat......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation....

  2. Absorption and metabolism of benzoic acid in growing pigs

    Kristensen, N B; Nørgaard, J V; Wamberg, S; Engbæk, M; Fernández, J A; Zacho, H D; Poulsen, H D

    2009-01-01

    Dietary benzoic acid (BA) supplementation causes a pronounced reduction in urinary pH but only small changes in blood pH. The present study aimed to investigate the portal absorption profile, hepatic metabolism of BA, and renal excretion of hippuric acid (HA) underlying the relatively small impact...

  3. Specific fatty acids as metabolic modulators in the dairy cow

    J.A.A. Pires

    2008-07-01

    Full Text Available This review summarizes recent developments on the utilization of specific fatty acids to modulate bovine energy metabolism, with emphasis on the periparturient dairy cow. A number of experiments have assessed the effects of polyunsaturated fatty acids on bovine hepatic energy metabolism using in vitro and in vivo models. Treatment of hepatocytes with specific fatty acids altered energy metabolism in vitro. For example, linolenic acid seemed to decrease hepatocyte triacylglycerol accumulation. This effect was confirmed in vivo, using parenteral infusions of emulsions derived from different fat sources to feed-restricted non-lactating cows. Additionally, polyunsaturated fatty acids can increase whole body response to insulin, potentially enhancing antilipolytic effects of insulin and muscle protein anabolism in the bovine. There is limited literature on the effects of feeding fat sources rich in omega-3 polyunsaturated fatty acids, such as fish oil and linseed oil, on metabolism of periparturient dairy cows. Available research has yielded conflicting results which need further clarification. On the other hand, specific isomers of conjugated linoleic acid consistently induce milk fat depression and are able to decrease energy export in milk by periparturient dairy cows. Nonetheless, research is still needed to assess whether these effects will ultimately benefit productivity and health status of periparturient dairy cows. Limitations of available methods to protect fatty acids from ruminal biohydrogenation are also addressed.

  4. Metabolic Response of Pakchoi Leaves to Amino Acid Nitrogen

    WANG Xiao-li; YU Wen-juan; ZHOU Qian; HAN Rui-feng; HUANG Dan-feng

    2014-01-01

    Different nitrogen (N) forms may cause changes in the metabolic profiles of plants. However, few studies have been conducted on the effects of amino acid-N on plant metabolic proifles. The main objective of this study was to identify primary metabolites associated with amino acid-N (Gly, Gln and Ala) through metabolic proifle analysis using gas chromatography-mass spectrometry (GC-MS). Plants of pakchoi (Brassica campestris L. ssp. chinensis L.), Huawang and Wuyueman cultivars, were grown with different nitrogen forms (i.e., Gly, Gln, Ala, NO3--N, and N starvation) applied under sterile hydroponic conditions. The fresh weight and plant N accumulation of Huawang were greater than those of Wuyueman, which indicates that the former exhibited better N-use efficiency than the latter. The physiological performances of the applied N forms were generally in the order of NO3--N>Gln>Gly>Ala. The metabolic analysis of leaf polar extracts revealed 30 amino acid N-responsive metabolites in the two pakchoi cultivars, mainly consisting of sugars, amino acids, and organic acids. Changes in the carbon metabolism of pakchoi leaves under amino acid treatments occurred via the accumulation of fructose, glucose, xylose, and arabinose. Disruption of amino acid metabolism resulted in accumulation of endogenous Gly in Gly treatment, Pro in Ala treatment, and Asn in three amino acid (Gly, Gln and Ala) treatments. By contrast, the levels of endogenous Gln and Leu decreased. However, this reduction varied among cultivars and amino acid types. Amino acid-N supply also affected the citric acid cycle, namely, the second stage of respiration, where leaves in Gly, Gln and Ala treatments contained low levels of malic, citric and succinic acids compared with leaves in NO3--N treatments. No signiifcant difference in the metabolic responses was observed between the two cultivars which differed in their capability to use N. The response of primary metabolites in pakchoi leaves to amino acid-N supply

  5. Fetal metabolic influences of neonatal anthropometry and adiposity.

    Donnelly, Jean M

    2015-01-01

    Large for gestational age infants have an increased risk of obesity, cardiovascular and metabolic complications during life. Knowledge of the key predictive factors of neonatal adiposity is required to devise targeted antenatal interventions. Our objective was to determine the fetal metabolic factors that influence regional neonatal adiposity in a cohort of women with previous large for gestational age offspring.

  6. Biobased organic acids production by metabolically engineered microorganisms

    Chen, Yun; Nielsen, Jens

    2016-01-01

    expanded as organic acids constitute a key group among top building block chemicals that can be produced from renewable resources. Here we review the current status for production of citric acid and lactic acid, and we highlight the use of modern metabolic engineering technologies to develop high......Bio-based production of organic acids via microbial fermentation has been traditionally used in food industry. With the recent desire to develop more sustainable bioprocesses for production of fuels, chemicals and materials, the market for microbial production of organic acids has been further...

  7. Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome

    Liaset, Bjørn; Hao, Qin; Jørgensen, Henry;

    2011-01-01

    Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from dietinduced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated by ex...

  8. Linking uric acid metabolism to diabetic complications

    Kushiyama, Akifumi; Tanaka, Kentaro; Hara, Shigeko; Kawazu, Shoji

    2014-01-01

    Hyperuricemia have been thought to be caused by the ingestion of large amounts of purines, and prevention or treatment of hyperuricemia has intended to prevent gout. Xanthine dehydrogenase/xanthine oxidase (XDH/XO) is rate-limiting enzyme of uric acid generation, and allopurinol was developed as a uric acid (UA) generation inhibitor in the 1950s and has been routinely used for gout prevention since then. Serum UA levels are an important risk factor of disease progression for various diseases,...

  9. Metabolism

    ... also influenced by body composition — people with more muscle and less fat generally have higher BMRs. previous continue Things That Can Go Wrong With Metabolism Most of the time your metabolism works effectively ...

  10. Fatty acids from diet and microbiota regulate energy metabolism

    Joe Alcock; Lin, Henry C.

    2015-01-01

    A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly ...

  11. Role of brain glutamic acid metabolism changes in neurodegenerative pathologies

    Nina Pavlovna Kanunnikova

    2012-01-01

    Glutamic acid is an essential participant of brain metabolism. It is known that the glutamate is a neurotransmitter in a numerous part of the brain synapses and acts through various ionotropic or metabotropic receptors. Multiple alterations of the brain glutamate system are observed in both acute and chronic brain injures. Glutamate metabolism changes take place in many neurodegenerative pathologies, such as brain ischemia, Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, amyot...

  12. Nucleotide Metabolism and its Control in Lactic Acid Bacteria

    Kilstrup, Mogens; Hammer, Karin; Jensen, Peter Ruhdal;

    2005-01-01

    Most metabolic reactions are connected through either their utilization of nucleotides or their utilization of nucleotides or their regulation by these metabolites. In this review the biosynthetic pathways for pyrimidine and purine metabolism in lactic acid bacteria are described including the...... interconversion pathways, the formation of deoxyribonucleotides and the salvage pathways for use of exogenous precursors. The data for the enzymatic and the genetic regulation of these pathways are reviewed, as well as the gene organizations in different lactic acid bacteria. Mutant phenotypes and methods for...... manipulation of nucleotide pools are also discussed. Our aim is to provide an overview of the physiology and genetics of nucleotide metabolism and its regulation that will facilitate the interpretation of data arising from genetics, metabolomics, proteomics, and transcriptomics in lactic acid bacteria....

  13. Comparative functional genomics of amino acid metabolism of lactic acid bacteria

    Pastink, M.I.

    2009-01-01

    The amino acid metabolism of lactic acid bacteria used as starters in industrial fermentations has profound effects on the quality of the fermented foods. The work described in this PhD thesis was initiated to use genomics technologies and a comparative approach to link the gene content of some well-known lactic acid bacteria to flavor formation and to increase our general knowledge in the area of amino acid metabolism. The three well-known lactic acid bacteria that were used in these studies...

  14. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  15. Bifidobacterium breve with α-linolenic acid and linoleic acid alters fatty acid metabolism in the maternal separation model of irritable bowel syndrome.

    Eoin Barrett

    Full Text Available The aim of this study was to compare the impact of dietary supplementation with a Bifidobacterium breve strain together with linoleic acid & α-linolenic acid, for 7 weeks, on colonic sensitivity and fatty acid metabolism in rats. Maternally separated and non-maternally separated Sprague Dawley rats (n = 15 were orally gavaged with either B. breve DPC6330 (10(9 microorganisms/day alone or in combination with 0.5% (w/w linoleic acid & 0.5% (w/w α-linolenic acid, daily for 7 weeks and compared with trehalose and bovine serum albumin. Tissue fatty acid composition was assessed by gas-liquid chromatography and visceral hypersensitivity was assessed by colorectal distension. Significant differences in the fatty acid profiles of the non-separated controls and maternally separated controls were observed for α-linolenic acid and arachidonic acid in the liver, oleic acid and eicosenoic acid (c11 in adipose tissue, and for palmitoleic acid and docosahexaenoic acid in serum (p<0.05. Administration of B. breve DPC6330 to MS rats significantly increased palmitoleic acid, arachidonic acid and docosahexaenoic acid in the liver, eicosenoic acid (c11 in adipose tissue and palmitoleic acid in the prefrontal cortex (p<0.05, whereas feeding B. breve DPC6330 to non separated rats significantly increased eicosapentaenoic acid and docosapentaenoic acid in serum (p<0.05 compared with the NS un-supplemented controls. Administration of B. breve DPC6330 in combination with linoleic acid and α-linolenic acid to maternally separated rats significantly increased docosapentaenoic acid in the serum (p<0.01 and α-linolenic acid in adipose tissue (p<0.001, whereas feeding B. breve DPC6330 with fatty acid supplementation to non-separated rats significantly increased liver and serum docosapentaenoic acid (p<0.05, and α-linolenic acid in adipose tissue (p<0.001. B. breve DPC6330 influenced host fatty acid metabolism. Administration of B. breve DPC6330 to maternally separated

  16. Cattle temperament influences metabolism: metabolic response to glucose tolerance and insulin sensitivity tests in beef steers.

    Burdick Sanchez, N C; Carroll, J A; Broadway, P R; Hughes, H D; Roberts, S L; Richeson, J T; Schmidt, T B; Vann, R C

    2016-07-01

    Cattle temperament, defined as the reactivity of cattle to humans or novel environments, can greatly influence several physiological systems in the body, including immunity, stress, and most recently discovered, metabolism. Greater circulating concentrations of nonesterified fatty acids (NEFAs) found in temperamental cattle suggest that temperamental cattle are metabolically different than calm cattle. Further, elevated NEFA concentrations have been reported to influence insulin sensitivity. Therefore, the objective of this study was to determine whether cattle temperament would influence the metabolic response to a glucose tolerance test (GTT) and insulin sensitivity test (IST). Angus-cross steers (16 calm and 15 temperamental; 216 ± 6 kg BW) were selected based on temperament score measured at weaning. On day 1, steers were moved into indoor stanchions to allow measurement of individual ad libitum feed intake. On day 6, steers were fitted with indwelling rectal temperature probes and jugular catheters. At 9 AM on day 7, steers received the GTT (0.5-mL/kg BW of a 50% dextrose solution), and at 2 PM on day 7, steers received the IST (2.5 IU bovine insulin/kg BW). Blood samples were collected and serum isolated at -60, -45, -30, -15, 0, 10, 20, 30, 45, 60, 90, 120, and 150 min relative to each challenge. Serum was stored at -80°C until analyzed for cortisol, glucose, NEFA, and blood urea nitrogen concentrations. All variables changed over time (P < 0.01). For the duration of the study, temperamental steers maintained greater (P < 0.01) serum NEFA and less (P ≤ 0.01) serum blood urea nitrogen and insulin sensitivity (calculated using Revised Quantitative Insulin Sensitivity Check Index) compared with calm steers. During the GTT, temperamental steers had greater (P < 0.01) serum glucose, yet decreased (P = 0.03) serum insulin and (P < 0.01) serum insulin: serum glucose compared to calm cattle. During the IST, temperamental steers had greater (P < 0.01) serum

  17. Metabolism of hydroxycinnamic acids and their tartaric acid esters by Brettanomyces and Pediococcus in red wines.

    Caffeic, p-coumaric, and ferulic acids and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric, respectively) are found in wines in varying concentrations. While Brettanomyces and Pediococcus can utilize the free acids, it is not known whether they can metabolize the correspon...

  18. Effect of plant proteins and crystalline amino acid supplementation on postprandial plasma amino acid profiles and metabolic response in rainbow trout (Oncorhynchus mykiss)

    Rolland, Marine; Larsen, Bodil Katrine; Holm, Jørgen;

    2015-01-01

    The use of aquafeeds formulated with plant protein sources supplemented with crystalline amino acids (CAAs) is believed to influence amino acid (AA) uptake patterns and AA metabolic fate. Oxygen consumption and ammonia excretion rates were measured in rainbow trout (468.5 +/- A 86.5 g) force fed 0...

  19. N-13 labeled amino acids: biodistribution, metabolism and dosimetric considerations

    With the growing interest in metabolic imaging and with the increasing number of cyclotron/PET facilities, more studies are being performed in animal and humans using short-lived positron-emitting radionuclides. Amino acids labeled either with N-13 or C-11 are one group of compounds being used to study in vivo regional organ (i.e., brain and heart) or tumor metabolism. Of the studies previously reported using C-11 or N-13 labeled amino acids (methionine, alanine, valine, glutamate, glutamine and tryptophan), imaging was restricted mainly to the organ or tissue of interest with little information obtained about the whole-bode distribution of the label. Such data are important for studying interorgan transport of amino acids and for determining accurate dosimetric measurements after intravenous injection of labeled amino acids. The goals of the authors study were to compare the distribution of several N-13 L-amino acids and N-13 ammonia in tumor-bearing mice and to determine the metabolic fate of the label in vivo. The following amino acids were enzymatically labeled using N-13 ammonia: glutamine, glutamate, methionine, α-aminobutyric acid, valine and leucine. 30 references, 2 figures, 14 tables

  20. Biosynthesis and metabolic pathways of pivalic acid

    Řezanka, Tomáš; Kolouchová, I.; Čejková, A.; Sigler, Karel

    2012-01-01

    Roč. 95, č. 6 (2012), s. 1371-1376. ISSN 0175-7598 R&D Projects: GA ČR(CZ) GAP503/11/0215 Institutional support: RVO:61388971 Keywords : Pivalic acid * Isooctane * Biosynthesis Subject RIV: EE - Microbiology, Virology Impact factor: 3.689, year: 2012

  1. Arachidonic acid and calcium metabolism in rnelittin stimulated neutrophils

    Nielsen, Ole H.; Bouchelouche, Pierre N.; Dag Berild

    1992-01-01

    Melittin, the predominant fraction of bee venom proteins, was studied in an experimental model of human neutrophil granulocytes to reveal its influence on eicosanoid release, metabolism and receptor function in relation to intracellular calcium metabolism. Melittin (2 μmol/l) was as potent as the calcium ionophore A23187 (10 μmol/l) for activation of 5-lipoxygenase, releasing arachidonate only from phosphatidyl-choline and phosphatidyl-ethanolamine of cellular membranes, as judged from the de...

  2. Fatty acids from diet and microbiota regulate energy metabolism [version 1; referees: 2 approved

    Joe Alcock

    2015-09-01

    Full Text Available A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system.

  3. Radioiodinated PHIPA's; metabolically trapped fatty acids

    Radioiodinated PHIPA 3-10 [13-(4'-iodophenyl)-3-(p-phenylene)tridecanoic acid] has been developed for nuclear-cardiological investigation of coronary artery disease or cardiomyopathies of various origin. The compound features a phenylene group located within the backbone of a long-chain fatty acid. In spite of its bulky structure [123I]PHIPA 3-10 is extracted by the myocardium in a manner similar to that for the unmodified fatty acid analogue, [123I]IPPA. The retention of PHIPA 3-10 in heart muscle results from the presence of the p-phenylene group which prevents more than one β-oxidation cycle. Only one single, rapidly formed metabolite was found in rat-heart extracts. According to comparative HPLC with synthetic metabolites and mass spectrometric analysis this metabolite was identified as [123I]PHIPA 1-10, a by two methylene groups shortened PHIPA derivative. Formation of this metabolite could be suppressed by Etomoxir, a carnitine palmitoyl fransferase I inhibitor, indicating β-oxidation of [123I]PHIPA 3-10 in mitochondria. Final evidence for the involvement of mitochondria in the degradation of [123I]PHIPA 3-10 was obtained performing density-gradient centrifugation with homogenized rat heart tissue. Labeled free PHIPA 3-10 and free metabolite peaked with the fraction containing mitochondria. With respect to its biochemical characteristics, [123I]PHIPA 3-10 may be considered as a useful tool for nuclear cardiological investigations. (orig.)

  4. Metabolically engineered cells for the production of polyunsaturated fatty acids

    2005-01-01

    improvement of the PUFA content in the host organism through fermentation optimization, e.g. decreasing the temperature and/or designing an optimal medium, or through improving the flux towards fatty acids by metabolic engineering, e.g. through over-expression of fatty acid synthases, over-expression of other...... enzymes involved in biosynthesis of the precursor for PUFAs, or codon optimization of the heterologous genes, or expression of heterologous enzymes involved in the biosynthesis of the precursor for PUFAs....

  5. Rumen microbial communities influence metabolic phenotypes in lambs

    Diego P. Morgavi

    2015-10-01

    Full Text Available The rumen microbiota is an essential part of ruminants forging their nutrition and health. Despite its importance, it is not fully understood how various groups of rumen microbes affect host-microbe relationships and functions. The aim of the study was to simultaneously explore the rumen microbiota and the metabolic phenotype of lambs for identifying host-microbe associations and potential biomarkers of digestive functions. Twin lambs, separated in two groups after birth were exposed to practices (isolation and gavage with rumen fluid with protozoa or protozoa-depleted that differentially restricted the acquisition of microbes. Rumen microbiota, fermentation parameters, digestibility and growth were monitored for up to 31 weeks of age. Microbiota assembled in isolation from other ruminants lacked protozoa and had low bacterial and archaeal diversity whereas digestibility was not affected. Exposure to adult sheep microbiota increased bacterial and archaeal diversity independently of protozoa presence. For archaea, Methanomassiliicoccales displaced Methanosphaera. Notwithstanding, protozoa induced differences in functional traits such as digestibility and significantly shaped bacterial community structure, notably Ruminococcaceae and Lachnospiraceae lower up to 6 folds, Prevotellaceae lower by ~40%, and Clostridiaceae and Veillonellaceae higher up to 10 folds compared to microbiota without protozoa. An orthogonal partial least squares-discriminant analysis of urinary metabolome matched differences in microbiota structure. Discriminant metabolites were mainly involved in amino acids and protein metabolic pathways while a negative interaction was observed between methylotrophic methanogens Methanomassiliicoccales and trimethylamine N-oxide. These results stress the influence of gut microbes on animal phenotype and show the potential of metabolomics for monitoring rumen microbial functions.

  6. Rumen microbial communities influence metabolic phenotypes in lambs.

    Morgavi, Diego P; Rathahao-Paris, Estelle; Popova, Milka; Boccard, Julien; Nielsen, Kristian F; Boudra, Hamid

    2015-01-01

    The rumen microbiota is an essential part of ruminants shaping their nutrition and health. Despite its importance, it is not fully understood how various groups of rumen microbes affect host-microbe relationships and functions. The aim of the study was to simultaneously explore the rumen microbiota and the metabolic phenotype of lambs for identifying host-microbe associations and potential biomarkers of digestive functions. Twin lambs, separated in two groups after birth were exposed to practices (isolation and gavage with rumen fluid with protozoa or protozoa-depleted) that differentially restricted the acquisition of microbes. Rumen microbiota, fermentation parameters, digestibility and growth were monitored for up to 31 weeks of age. Microbiota assembled in isolation from other ruminants lacked protozoa and had low bacterial and archaeal diversity whereas digestibility was not affected. Exposure to adult sheep microbiota increased bacterial and archaeal diversity independently of protozoa presence. For archaea, Methanomassiliicoccales displaced Methanosphaera. Notwithstanding, protozoa induced differences in functional traits such as digestibility and significantly shaped bacterial community structure, notably Ruminococcaceae and Lachnospiraceae lower up to 6 folds, Prevotellaceae lower by ~40%, and Clostridiaceae and Veillonellaceae higher up to 10 folds compared to microbiota without protozoa. An orthogonal partial least squares-discriminant analysis of urinary metabolome matched differences in microbiota structure. Discriminant metabolites were mainly involved in amino acids and protein metabolic pathways while a negative interaction was observed between methylotrophic methanogens Methanomassiliicoccales and trimethylamine N-oxide. These results stress the influence of gut microbes on animal phenotype and show the potential of metabolomics for monitoring rumen microbial functions. PMID:26528248

  7. A Review of the Metabolic Origins of Milk Fatty Acids

    Anamaria COZMA

    2013-08-01

    Full Text Available Milk fat and its fatty acid profile are important determinants of the technological, sensorial, and nutritional properties of milk and dairy products. The two major processes contributing to the presence of fatty acids in ruminant milk are the mammary lipogenesis and the lipid metabolism in the rumen. Among fatty acids, 4:0 to 12:0, almost all 14:0 and about a half of 16:0 in milk fat derive from de novo synthesis within the mammary gland. De novo synthesis utilizes as precursors acetate and butyrate produced through carbohydrates ruminal fermentation and involves acetyl-CoA carboxylase and fatty acid synthetase as key enzymes. The rest of 16:0 and all of the long-chain fatty acids derive from mammary uptake of circulating lipoproteins and nonesterified fatty acids that originate from digestive absorption of lipids and body fat mobilization. Further, long-chain fatty acids as well as medium-chain fatty acids entering the mammary gland can be desaturated via Δ-9 desaturase, an enzyme that acts by adding a cis-9-double bond on the fatty acid chain. Moreover, ruminal biohydrogenation of dietary unsaturated fatty acids results in the formation of numerous fatty acids available for incorporation into milk fat. Ruminal biohydrogenation is performed by rumen microbial population as a means of protection against the toxic effects of polyunsaturated fatty acids. Within the rumen microorganisms, bacteria are principally responsible for ruminal biohydrogenation when compared to protozoa and anaerobic fungi.

  8. Arachidonic acid metabolism in cultured mouse keratinocytes

    The authors attempted to characterize the general features of arachidonate metabolism in cultured mouse keratinocytes. The cells labeled with [3H]arachidonate were stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA), ionophore A23187, and fetal bovine serum (FBS). Common to the three substances, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylcholine almost equally served as sources of arachidonate liberated by the action of phospholipase A2. The stimulation of phospholipase A2 action was observed in the order of A23187 greater than FBS greater than TPA. When stimulated by TPA or A23187, the radioactivity released into the extracellular medium was mostly found in prostaglandin (PG) E2. Formation of other PGs and hydroxyeicosatetraenoate (HETE) was extremely limited. In the case of stimulation by FBS, however, the released radioactivity was mainly associated with non-converted arachidonate. FBS also inhibited the TPA- and A23187-induced conversion of arachidonate to PGE2. Phospholipid degradation induced by the three stimulators was similarly dependent on extracellular Ca2+. The stimulation by FBS and A23187 was suppressed by calmodulin antagonists, though the effect of A23187 was much more sensitive to the antagonists when compared to that of FBS. The authors observed more than additive effects of the three stimulators when tested together

  9. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury.

    Matsubara, Tsutomu; Tanaka, Naoki; Sato, Misako; Kang, Dong Wook; Krausz, Kristopher W; Flanders, Kathleen C; Ikeda, Kazuo; Luecke, Hans; Wakefield, Lalage M; Gonzalez, Frank J

    2012-12-01

    Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohistochemistry revealed higher TGFβ expression around the portal vein after LCA exposure and diminished SMAD3 phosphorylation in hepatocytes from Smad3-null mice. Serum metabolomics indicated increased bile acids and decreased lysophosphatidylcholine (LPC) after LCA exposure. Interestingly, in Smad3-null mice, the metabolic alteration was attenuated. LCA-induced lysophosphatidylcholine acyltransferase 4 (LPCAT4) and organic solute transporter β (OSTβ) expression were markedly decreased in Smad3-null mice, whereas TGFβ induced LPCAT4 and OSTβ expression in primary mouse hepatocytes. In addition, introduction of SMAD3 enhanced the TGFβ-induced LPCAT4 and OSTβ expression in the human hepatocellular carcinoma cell line HepG2. In conclusion, considering that Smad3-null mice showed attenuated serum ALP activity, a diagnostic indicator of cholangiocyte injury, these results strongly support the view that TGFβ-SMAD3 signaling mediates an alteration in phospholipid and bile acid metabolism following hepatic inflammation with the biliary injury. PMID:23034213

  10. Is hepatic lipid metabolism of beef cattle influenced by breed and dietary silage level?

    2014-01-01

    Background In ruminants, unsaturated dietary fatty acids are biohydrogenated in the rumen and are further metabolised in various tissues, including liver, which has an important role in lipid and lipoprotein metabolism. Therefore, manipulation of muscle fatty acid composition should take into account liver metabolism. In the present study, the influence of breed and diet on liver lipid composition and gene expression was investigated in order to clarify the role of this organ in the lipid metabolism of ruminants. Forty purebred young bulls from two phylogenetically distant autochthonous cattle breeds, Alentejana and Barrosã, were assigned to two different diets (low vs. high silage) and slaughtered at 18 months of age. Liver fatty acid composition, mRNA levels of enzymes and transcription factors involved in lipid metabolism, as well as the plasma lipid profile, were assessed. Results In spite of similar plasma non-esterified fatty acids levels, liver triacylglycerols content was higher in Barrosã than in Alentejana bulls. Moreover, the fatty acid composition of liver was clearly distinct from the remaining tissues involved in fatty acid metabolism of ruminants, as shown by Principal Components Analysis. The hepatic tissue is particularly rich in α-linolenic acid and their products of desaturation and elongation. Results indicate that DGAT1, ELOVL2, FADS1 and FADS2 genes influence the fatty acid composition of the liver the most. Moreover, genes such as DGAT1 and ELOVL2 appear to be more sensitive to genetic background than to dietary manipulation, whereas genes encoding for desaturases, such as FADS1, appear to be modulated by dietary silage level. Conclusions Our results indicate that liver plays an important role in the biosynthesis of n-3 LC-PUFA. It is also suggested that dietary silage level influences the hepatic fatty acid metabolism in a breed-dependent manner, through changes in the expression of genes encoding for enzymes associated with the

  11. Metabolism of lithocholic and chenodeoxycholic acids in the squirrel monkey

    Metabolism of lithocholic acid (LCA) and chenodeoxycholic acid (CDCA) was studied in the squirrel monkey to clarify the mechanism of the lack of toxicity of CDCA in this animal. Radioactive LCA was administered to squirrel monkeys with biliary fistula. Most radioactivity was excreted in the bile in the form of unsulfated lithocholyltaurine. The squirrel monkey thus differs from humans and chimpanzees, which efficiently sulfate LCA, and is similar to the rhesus monkey and baboon in that LCA is poorly sulfated. When labeled CDCA was orally administered to squirrel monkeys, less than 20% of the dosed radioactivity was recovered as LCA and its further metabolites in feces over 3 days, indicating that bacterial metabolism of CDCA into LCA is strikingly less than in other animals and in humans. It therefore appears that LCA, known as a hepatotoxic secondary bile acid, is not accumulated in the squirrel monkey, not because of its rapid turnover through sulfation, but because of the low order of its production

  12. Metabolism of lithocholic and chenodeoxycholic acids in the squirrel monkey

    Suzuki, H.; Hamada, M.; Kato, F.

    1985-09-01

    Metabolism of lithocholic acid (LCA) and chenodeoxycholic acid (CDCA) was studied in the squirrel monkey to clarify the mechanism of the lack of toxicity of CDCA in this animal. Radioactive LCA was administered to squirrel monkeys with biliary fistula. Most radioactivity was excreted in the bile in the form of unsulfated lithocholyltaurine. The squirrel monkey thus differs from humans and chimpanzees, which efficiently sulfate LCA, and is similar to the rhesus monkey and baboon in that LCA is poorly sulfated. When labeled CDCA was orally administered to squirrel monkeys, less than 20% of the dosed radioactivity was recovered as LCA and its further metabolites in feces over 3 days, indicating that bacterial metabolism of CDCA into LCA is strikingly less than in other animals and in humans. It therefore appears that LCA, known as a hepatotoxic secondary bile acid, is not accumulated in the squirrel monkey, not because of its rapid turnover through sulfation, but because of the low order of its production.

  13. Taurocholic acid metabolism by gut microbes and colon cancer.

    Ridlon, Jason M; Wolf, Patricia G; Gaskins, H Rex

    2016-05-01

    Colorectal cancer (CRC) is one of the most frequent causes of cancer death worldwide and is associated with adoption of a diet high in animal protein and saturated fat. Saturated fat induces increased bile secretion into the intestine. Increased bile secretion selects for populations of gut microbes capable of altering the bile acid pool, generating tumor-promoting secondary bile acids such as deoxycholic acid and lithocholic acid. Epidemiological evidence suggests CRC is associated with increased levels of DCA in serum, bile, and stool. Mechanisms by which secondary bile acids promote CRC are explored. Furthermore, in humans bile acid conjugation can vary by diet. Vegetarian diets favor glycine conjugation while diets high in animal protein favor taurine conjugation. Metabolism of taurine conjugated bile acids by gut microbes generates hydrogen sulfide, a genotoxic compound. Thus, taurocholic acid has the potential to stimulate intestinal bacteria capable of converting taurine and cholic acid to hydrogen sulfide and deoxycholic acid, a genotoxin and tumor-promoter, respectively. PMID:27003186

  14. Metabolic engineering of Yarrowia lipolytica for itaconic acid production.

    Blazeck, John; Hill, Andrew; Jamoussi, Mariam; Pan, Anny; Miller, Jarrett; Alper, Hal S

    2015-11-01

    Itaconic acid is a naturally produced organic acid with diverse applications as a replacement for petroleum derived products. However, its industrial viability as a bio-replacement has been restricted due to limitations with native producers. In this light, Yarrowia lipolytica is an excellent potential candidate for itaconic acid production due to its innate capacity to accumulate citric acid cycle intermediates and tolerance to lower pH. Here, we demonstrate the capacity to produce itaconic acid in Y. lipolytica through heterologous expression of the itaconic acid synthesis enzyme, resulting in an initial titer of 33 mg/L. Further optimizations of this strain via metabolic pathway engineering, enzyme localization, and media optimization strategies enabled 4.6g/L of itaconic acid to be produced in bioreactors, representing a 140-fold improvement over initial titer. Moreover, these fermentation conditions did not require additional nutrient supplementation and utilized a low pH condition that enabled the acid form of itaconic acid to be produced. Overall yields (0.058 g/g yield from glucose) and maximum productivity of 0.045 g/L/h still provide areas for future strain improvement. Nevertheless, this work demonstrates that Y. lipolytica has the potential to serve as an industrially relevant platform for itaconic acid production. PMID:26384571

  15. TGF-β-SMAD3 signaling mediates hepatic bile acid and phospholipid metabolism following lithocholic acid-induced liver injury[S

    Matsubara, Tsutomu; Tanaka, Naoki; Sato, Misako; Kang, Dong Wook; Krausz, Kristopher W.; Flanders, Kathleen C.; Ikeda, Kazuo; Luecke, Hans; Wakefield, Lalage M.; Frank J. Gonzalez

    2012-01-01

    Transforming growth factor-β (TGFβ) is activated as a result of liver injury, such as cholestasis. However, its influence on endogenous metabolism is not known. This study demonstrated that TGFβ regulates hepatic phospholipid and bile acid homeostasis through MAD homolog 3 (SMAD3) activation as revealed by lithocholic acid-induced experimental intrahepatic cholestasis. Lithocholic acid (LCA) induced expression of TGFB1 and the receptors TGFBR1 and TGFBR2 in the liver. In addition, immunohisto...

  16. Metabolism and metabolic inhibition of gamboglc acid in rat liver microsomes

    Yi-tong LIU; Kun HAO; Xiao-quan LIU; Guang-Ji WANG

    2006-01-01

    Aim: To study the metabolism of gambogic acid (GA) and the effects of selective cytochrome P-450 (CYP450) inhibitors on the metabolism of GA in rat liver microsomes in vitro. Methods: Rat liver micrp,so,rn,e$ were used to perform metabolism studies. Various selective CYP450 inhibitors were used to investigate their effects on the metabolism of GA and the principal CYP450 isoform involved in the formation of major metabolite M1 in rat liver microsomes. Types of inhibition in an enzyme kinetics model were used to model the interaction. Results: GA was rapidly metabolized to two phase Ⅰ metabolites,, M1 and M2, in rat liver microsomes. M1 and M2 were tentatively presumed to be the hydration metabolite and epoxide metabolite of GA, respectively. α-Naphthoflavone uncompetitively inhibited the formation of M1 while ketoconazole, sulfophenazole, diethyl dithiocarbamate and quinidine had little or no inhibitory effects on the formation of M1. Conclusion: GA is rapidly metabolized in rat liver microsomes and M1 is crucial for the elimination of GA. Cytochrome P-450 1A2 is the major rat CYP involved in the metabolism of GA.

  17. Role of CCN2 in Amino Acid Metabolism of Chondrocytes.

    Murase, Yurika; Hattori, Takako; Aoyama, Eriko; Nishida, Takashi; Maeda-Uematsu, Aya; Kawaki, Harumi; Lyons, Karen M; Sasaki, Akira; Takigawa, Masaharu; Kubota, Satoshi

    2016-04-01

    CCN2/connective tissue growth factor (CTGF) is a multi-functional molecule that promotes harmonized development and regeneration of cartilage through its matricellular interaction with a variety of extracellular biomolecules. Thus, deficiency in CCN2 supply profoundly affects a variety of cellular activities including basic metabolism. A previous study showed that the expression of a number of ribosomal protein genes was markedly enhanced in Ccn2-null chondrocytes. Therefore, in this study, we analyzed the impact of CCN2 on amino acid and protein metabolism in chondrocytes. Comparative metabolome analysis of the amino acids in Ccn2-null and wild-type mouse chondrocytes revealed stable decreases in the cellular levels of all of the essential amino acids. Unexpectedly, uptake of such amino acids was rather enhanced in Ccn2-null chondrocytes, and the addition of exogenous CCN2 to human chondrocytic cells resulted in decreased amino acid uptake. However, as expected, amino acid consumption by protein synthesis was also accelerated in Ccn2-null chondrocytes. Furthermore, we newly found that expression of two genes encoding two glycolytic enzymes, as well as the previously reported Eno1 gene, was repressed in those cells. Considering the impaired glycolysis and retained mitochondrial membrane potential in Ccn2-null chondrocytes, these findings suggest that Ccn2 deficiency induces amino acid shortage in chondrocytes by accelerated amino acid consumption through protein synthesis and acquisition of aerobic energy. Interestingly, CCN2 was found to capture such free amino acids in vitro. Under physiological conditions, CCN2 may be regulating the levels of free amino acids in the extracellular matrix of cartilage. J. Cell. Biochem. 117: 927-937, 2016. © 2015 Wiley Periodicals, Inc. PMID:26364758

  18. Structurally modified fatty acids - clinical potential as tracers of metabolism

    Dudczak, R.; Schmoliner, R.; Angelberger, P.; Knapp, F.F.; Goodman, M.M.

    1985-01-01

    Recently 15-p-iodophenyl-betamethyl-pentadecanoic acid (BMPPA) was proposed for myocardial scintigraphy, as possible probe of metabolic processes other than ..beta..-oxidation. In 19 patients myocardial scintigraphy was done after i.v. BMPPA (2 to 4 mCi). Data were collected (LAO 45/sup 0//14; anterior/5) for 100 minutes in the fasted patients. From heart (H) and liver (L) organ to background (BG) ratios were calculated, and the elimination (E) behavior was analyzed from BG (V. cava region) corrected time activity curves. In 10 patients plasma and urine were examined. By CHCl/sub 3//MeOH extraction of plasma samples (90 min. pi) both in water and in organic medium soluble catabolites were found. TLC fractionation showed that those were co-migrating, compared to standards, with benzoic acid, BMPPA and triglycerides. In urine (0 to 2h pi: 4.1% dose) hippuric acid was found. It is concluded that BMPPA is a useful agent for myocardial scintigraphy. Its longer retention in the heart compared to unbranched radioiodinated fatty acids may facilitate SPECT studies. Rate of elimination and plasma analysis indicate the metabolic breakdown of BMPPA. Yet, the complexity of the supposed mechanism may impede curve interpretation in terms of specific metabolic pathways. 19 refs., 5 tabs.

  19. Metabolically Engineered Fungal Cells With Increased Content Of Polyunsaturated Fatty Acids

    2008-01-01

    This invention relates to the production of fatty acids and particularly to the production of the polyunsaturated fatty acids (PUFAs) arachidonic acid (ARA) and eicosapentaenoic acid (EPA) in genetically engineered fungal cells, in particular, to metabolically engineered Saccharomyces cerevisiae...

  20. Dynamics of lipid metabolism under the physical activity influence

    Evdokimov E.I.

    2010-07-01

    Full Text Available The results of influence of the physical loading are considered on the state of lipid exchange for practically healthy people and patients with a general metabolic syndrome. In research 38 sportsmen in age 22 - 27 years and 20 patients (women and men took part by age of 35-47лет. Influence of physical exercises was estimated on the indexes of biochemical composition of blood, anthropometry, arteriotony. The complex of physical exercises was used in common with a dietotherapy during 4 months. It is set that a complex causes regression of pathological displays. Physical activity has an unidirectional effect on lipid metabolism both in athletes and persons suffering from metabolic disorders.

  1. Influence of metabolic cage on Wistar rat physiological state

    Judita Zymantiene

    2016-03-01

    Full Text Available The aim of this study was to investigate the influence of metabolic cage housing on the Wistar rat physiological state and to analyze the correlation between the minerals in blood and urine. Thirty male rats were used in the experiment. Fifteen rats (control group were housed individually in standard polycarbonate cages and fifteen rats (experimental group in metabolic cages (Techniplast, Italy for two weeks. Body weight, respiration rate, water and food consumptions were recorded for each animal at the beginning of the experiment. The same parameters, as well as blood and urine parameters of control and experimental animals were recorded during the experiment after 72 h, 168 h and 336 h of housing in standard cages and metabolic cages. Urine collection was measured only in the experimental group. Rats weight decreased from 3.84 % to 18.59 % (P<0.05, respiration rate from 18.65 % to 24.59 % (P<0.05 when rats were housed in metabolic cages. Consumption of food and water by the rat depended on how long the animal was kept in metabolic cage. Glucose concentration increased on average by 15.37 %, WBC count decreased by 5.83 % in the blood of rats housed in metabolic cages compared to the animals housed in standard cages. We did not observe significant changes of triglycerides concentration, red blood cells count and total protein between all rats. The positive moderate correlation of rat housing in a metabolic cage was between K blood and K urine, P blood and P urine, Na blood and K blood, between Na urine and P urine and significant negative moderate correlation was determined between K urine and P urine. These present study findings indicate that metabolism cage housing significantly affects rat’s physiological parameters and potentially may influence animal health and well being.

  2. Arachidonic Acid-metabolizing Cytochrome P450 Enzymes Are Targets of ω-3 Fatty Acids*

    Arnold, Cosima; Markovic, Marija; Blossey, Katrin; Wallukat, Gerd; Fischer, Robert; Dechend, Ralf; Konkel, Anne; von Schacky, Clemens; Luft, Friedrich C.; Muller, Dominik N.; Rothe, Michael; Schunck, Wolf-Hagen

    2010-01-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) protect against cardiovascular disease by largely unknown mechanisms. We tested the hypothesis that EPA and DHA may compete with arachidonic acid (AA) for the conversion by cytochrome P450 (CYP) enzymes, resulting in the formation of alternative, physiologically active, metabolites. Renal and hepatic microsomes, as well as various CYP isoforms, displayed equal or elevated activities when metabolizing EPA or DHA instead of AA. CYP2C/2J...

  3. Bile Acids, FXR, and Metabolic Effects of Bariatric Surgery

    Noel, Olivier F.; Still, Christopher D.; Argyropoulos, George; Edwards, Michael; Gerhard, Glenn S.

    2016-01-01

    Overweight and obesity represent major risk factors for diabetes and related metabolic diseases. Obesity is associated with a chronic and progressive inflammatory response leading to the development of insulin resistance and type 2 diabetes (T2D) mellitus, although the precise mechanism mediating this inflammatory process remains poorly understood. The most effective intervention for the treatment of obesity, bariatric surgery, leads to glucose normalization and remission of T2D. Recent work in both clinical studies and animal models supports bile acids (BAs) as key mediators of these effects. BAs are involved in lipid and glucose homeostasis primarily via the farnesoid X receptor (FXR) transcription factor. BAs are also involved in regulating genes involved in inflammation, obesity, and lipid metabolism. Here, we review the novel role of BAs in bariatric surgery and the intersection between BAs and immune, obesity, weight loss, and lipid metabolism genes. PMID:27006824

  4. Modern Techniques for Studying the Metabolism and Utilization of Nitrogenous Compounds, Especially Amino Acids

    Several techniques have been developed in recent years which make it possible to gain considerable insight into the manner in which compounds are utilized by animals, and to elucidate the role-of various substances in the synthetic processes that animals carry out. By utilizing these techniques it has become possible to determine the over-all metabolic fate of specific compounds in the animal; to establish how rapidly individual compounds are metabolized; and to identify various factors that influence the rate and extent of utilization of compounds by animals. Knowledge of this type is of great interest and is very important for better understanding metabolic processes and their regulation in animals. It seems likely that this type of information will provide the basis for influencing the metabolic fate of compounds in the animal and for ensuring more efficient utilization of substances for the desirable biosynthetic processes that animals carry out. Various techniques are discussed here that are being used to assess die metabolism and utilization of compounds in the intact animal and will give special attention to the role of the amino acids in lactating ruminants. Analysis of the respiratory patterns provides one method for evaluating the specific rate and extent of oxidation of 14C-labelled compounds after these are administered to animals. The rate of appearance of 14C in respired CO2, the time of maximum specific activity, and the subsequent decrease in specific activity, with time, reflect the role of individual compounds as sources of metabolic energy for the animal. The rate of disappearance of 14C-labelled compounds from the blood, with time, can be used to calculate turnover rates, pool sizes, and fluxes of metabolites through these pools. These parameters reflect the magnitude of the metabolic processes associated with utilization of specific compounds and they provide a basis for calculating the quantitative significance of the compound in the animal

  5. Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition.

    Mitchell, W Kyle; Wilkinson, Daniel J; Phillips, Bethan E; Lund, Jonathan N; Smith, Kenneth; Atherton, Philip J

    2016-07-01

    Healthy individuals maintain remarkably constant skeletal muscle mass across much of adult life, suggesting the existence of robust homeostatic mechanisms. Muscle exists in dynamic equilibrium whereby the influx of amino acids (AAs) and the resulting increases in muscle protein synthesis (MPS) associated with the intake of dietary proteins cancel out the efflux of AAs from muscle protein breakdown that occurs between meals. Dysregulated proteostasis is evident with aging, especially beyond the sixth decade of life. Women and men aged 75 y lose muscle mass at a rate of ∼0.7% and 1%/y, respectively (sarcopenia), and lose strength 2- to 5-fold faster (dynapenia) as muscle "quality" decreases. Factors contributing to the disruption of an otherwise robust proteostatic system represent targets for potential therapies that promote healthy aging. Understanding age-related impairments in anabolic responses to AAs and identifying strategies to mitigate these factors constitute major areas of interest. Numerous studies have aimed to identify 1) the influence of distinct protein sources on absorption kinetics and muscle anabolism, 2) the latency and time course of MPS responses to protein/AAs, 3) the impacts of protein/AA intake on muscle microvascular recruitment, and 4) the role of certain AAs (e.g., leucine) as signaling molecules, which are able to trigger anabolic pathways in tissues. This review aims to discuss these 4 issues listed, to provide historical and modern perspectives of AAs as modulators of human skeletal muscle protein metabolism, to describe how advances in stable isotope/mass spectrometric approaches and instrumentation have underpinned these advances, and to highlight relevant differences between young adults and older individuals. Whenever possible, observations are based on human studies, with additional consideration of relevant nonhuman studies. PMID:27422520

  6. 山东沿海女性居民血尿酸影响因素及与代谢综合征防治切点的研究%Influencing factors of serum uric acid and the critical concentration of serum uric acid to prevent and treat metabolic syndrome in female inhabitants from coastal area of Shandong province

    王颜刚; 赵世华; 陈新焰; 许凤; 宋娓; 李长贵; 闫胜利

    2006-01-01

    、轻体力活动为女性高尿酸血症独立的危险因子,高密度脂蛋白胆固醇为保护因素.结论:山东沿海女性代谢综合征患病率随血尿酸值的升高而升高,血尿酸超过280 μmol/L应作为代谢综合征防治切点.控制代谢综合征,减少贝类等含高嘌呤海产品的摄入是预防高尿酸血症的发生的措施之一.临床医师应警惕高尿酸血症致病作用.%BACKGROUND: What are the influencing factors of serum uric acid of inhabitants from coastal area? What is the critical concentration of serum uric acid to prevent and treat metabolic syndrome?OBJECTIVE: To probe into the relationship between serum uric acid and metabolic syndrome in female inhabitants aged more than 20 years from coastal area of Shandong province.DESIGN: A clusting stratified random sampling survey.SETTING: Department of Endocrinology, Affiliated Hospital of Medical College of Qingdao University.PARTICIPANTS: The survey was carried out in the female inhabitants of five cities from coastal area of Shandong province (Qingdao, Rizhao, Yantai, Weihai and Dongying) between May and October 2004. The inhabitants, aged 20 to 80 years, lived there for 5 or more than 5 years, and they were natural crowd taking family as unit.METHODS: Investigations in the manner of entering every family and being on the spot were combined. Questionnaires were filled in on the first day, and fasting blood was taken to perform serum uric acid examination on the morning of the second day. For those with serum uric acid higher than normal, they were given rechecking on the third day, and education about prevention and treatment of gout and hyperuricemia was conducted at the same time.MAIN OUTCOME MEASURES: ① Investigation on general condition:Including health status, diet, physical activity, labour intensity and economics. ② Investigation on nutrition: Consists of food intake frequency and dietary. ③ Body height, body mass, waistline, hip circum, blood pressure

  7. Fatty Acids in Energy Metabolism of the Central Nervous System

    Alexander Panov

    2014-01-01

    Full Text Available In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain’s energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups.

  8. Influencing the carbromal metabolism by means of alcohol

    The influence of alcohol on the distribution and metabolism of carbromal was investigated on rats using 14-C-labelled Carbromal. Over a period of 2 hours, the carbromal levels reached in the various organs were compared. The time span chosen was equal to the interval in which alcohol is resorbed, metabolized, and eliminated in rats. In all organs of the alcohol groups, the carbromal levels 30-90 minutes after the application of carbromal were higher by 30-60% than in the control groups. In a discussion, an increased intestinal resorption or a blocked decomposition of carbromal by alcohol were named as possible reasons. To control the carbromal metabolism while applying alcohol, a thin-layer chromotographic separation and detection of the 14-C-labelled substance by means of thin-layer-scanning was carried out after having gone through the biological material and extracted the pharmaceutical. An influence of alcohol on the carbromal metabolism was not detected; there were no significant differences in the metabolism with and without alcohol. It was not found out if the extraction method used has to be regarded as the cause of this finding. (orig./MG)

  9. Transport and metabolism of glycolic acid by Chlamydomonas reinhardtii

    In order to understand the excretion of glycolate from Chlamydomonas reinhardtii, the conditions affecting glycolate synthesis and metabolism were investigated. Although glycolate is synthesized only in the light, the metabolism occurs in the light and dark with greater metabolism in the light due to refixation of photorespiratory CO2. The amount of internal glycolate will affect the metabolism of externally added glycolate. When glycolate synthesis exceeds the metabolic capacity, glycolate is excreted from the cell. The transport of glycolate into the cells occurs very rapidly. Equilibrium is achieved at 40C within the time cells are pelleted by the silicone oil centrifugation technique through a layer of [14C] glycolate. Glycolate uptake does not show the same time, temperature and pH dependencies as diffusion of benzoate. Uptake can be inhibited by treatment of cells with N-ethylmaleimide and stimulated in the presence of valino-mycin/KCl. Acetate and lactate are taken up as quickly as glycolate. The hypothesis was made that glycolate is transported by a protein carrier that transports monocarboxylic acids. The equilibrium concentration of glycolate is dependent on the cell density, implying that there may be a large number of transporter sites and that uptake is limited by substrate availability

  10. Effects of sex and site on amino acid metabolism enzyme gene expression and activity in rat white adipose tissue.

    Arriarán, Sofía; Agnelli, Silvia; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2015-01-01

    Background and Objectives. White adipose tissue (WAT) shows marked sex- and diet-dependent differences. However, our metabolic knowledge of WAT, especially on amino acid metabolism, is considerably limited. In the present study, we compared the influence of sex on the amino acid metabolism profile of the four main WAT sites, focused on the paths related to ammonium handling and the urea cycle, as a way to estimate the extent of WAT implication on body amino-nitrogen metabolism. Experimental Design. Adult female and male rats were maintained, undisturbed, under standard conditions for one month. After killing them under isoflurane anesthesia. WAT sites were dissected and weighed. Subcutaneous, perigonadal, retroperitoneal and mesenteric WAT were analyzed for amino acid metabolism gene expression and enzyme activities. Results. There was a considerable stability of the urea cycle activities and expressions, irrespective of sex, and with only limited influence of site. Urea cycle was more resilient to change than other site-specialized metabolic pathways. The control of WAT urea cycle was probably related to the provision of arginine/citrulline, as deduced from the enzyme activity profiles. These data support a generalized role of WAT in overall amino-N handling. In contrast, sex markedly affected WAT ammonium-centered amino acid metabolism in a site-related way, with relatively higher emphasis in males' subcutaneous WAT. Conclusions. We found that WAT has an active amino acid metabolism. Its gene expressions were lower than those of glucose-lipid interactions, but the differences were quantitatively less important than usually reported. The effects of sex on urea cycle enzymes expression and activity were limited, in contrast with the wider variations observed in other metabolic pathways. The results agree with a centralized control of urea cycle operation affecting the adipose organ as a whole. PMID:26587356

  11. Influence of Cobalamin on Arsenic Metabolism in Bangladesh

    Hall, Megan N.; Liu, Xinhua; Slavkovich, Vesna; Ilievski, Vesna; Mi, Zhongyuan; Alam, Shafiul; Factor-Litvak, Pam; Ahsan, Habibul; Graziano, Joseph H.; Gamble, Mary V.

    2009-01-01

    Background Arsenic is a carcinogen to which 35 million people in Bangladesh are chronically exposed. The enzymatic transfer of methyl groups to inorganic As (iAs) generates monomethylarsonic (MMA) and dimethylarsinic acids (DMA) and facilitates urinary As (uAs) elimination. This process is dependent on one-carbon metabolism, a pathway in which folate and cobalamin have essential roles in the recruitment and transfer of methyl groups. Although DMAV is the least toxic metabolite, increasing evi...

  12. Altered myocardial metabolic adaptation to increased fatty acid availability in cardiomyocyte-specific CLOCK mutant mice.

    Peliciari-Garcia, Rodrigo A; Goel, Mehak; Aristorenas, Jonathan A; Shah, Krishna; He, Lan; Yang, Qinglin; Shalev, Anath; Bailey, Shannon M; Prabhu, Sumanth D; Chatham, John C; Gamble, Karen L; Young, Martin E

    2016-10-01

    A mismatch between fatty acid availability and utilization leads to cellular/organ dysfunction during cardiometabolic disease states (e.g., obesity, diabetes mellitus). This can precipitate cardiac dysfunction. The heart adapts to increased fatty acid availability at transcriptional, translational, post-translational and metabolic levels, thereby attenuating cardiomyopathy development. We have previously reported that the cardiomyocyte circadian clock regulates transcriptional responsiveness of the heart to acute increases in fatty acid availability (e.g., short-term fasting). The purpose of the present study was to investigate whether the cardiomyocyte circadian clock plays a role in adaptation of the heart to chronic elevations in fatty acid availability. Fatty acid availability was increased in cardiomyocyte-specific CLOCK mutant (CCM) and wild-type (WT) littermate mice for 9weeks in time-of-day-independent (streptozotocin (STZ) induced diabetes) and dependent (high fat diet meal feeding) manners. Indices of myocardial metabolic adaptation (e.g., substrate reliance perturbations) to STZ-induced diabetes and high fat meal feeding were found to be dependent on genotype. Various transcriptional and post-translational mechanisms were investigated, revealing that Cte1 mRNA induction in the heart during STZ-induced diabetes is attenuated in CCM hearts. At the functional level, time-of-day-dependent high fat meal feeding tended to influence cardiac function to a greater extent in WT versus CCM mice. Collectively, these data suggest that CLOCK (a circadian clock component) is important for metabolic adaption of the heart to prolonged elevations in fatty acid availability. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26721420

  13. Semisynthetic bile acid FXR and TGR5 agonists: physicochemical properties, pharmacokinetics, and metabolism in the rat.

    Roda, Aldo; Pellicciari, Roberto; Gioiello, Antimo; Neri, Flavia; Camborata, Cecilia; Passeri, Daniela; De Franco, Francesca; Spinozzi, Silvia; Colliva, Carolina; Adorini, Luciano; Montagnani, Marco; Aldini, Rita

    2014-07-01

    We report on the relationship between the structure-pharmacokinetics, metabolism, and therapeutic activity of semisynthetic bile acid analogs, including 6α-ethyl-3α,7α-dihydroxy-5β-cholan-24-oic acid (a selective farnesoid X receptor [FXR] receptor agonist), 6α-ethyl-23(S)-methyl-3α,7α,12α-trihydroxy-5β-cholan-24-oic acid (a specific Takeda G protein-coupled receptor 5 [TGR5] receptor agonist), and 6α-ethyl-3α,7α-dihydroxy-24-nor-5β-cholan-23-sulfate (a dual FXR/TGR5 agonist). We measured the main physicochemical properties of these molecules, including ionization constants, water solubility, lipophilicity, detergency, and protein binding. Biliary secretion and metabolism and plasma and hepatic concentrations were evaluated by high-pressure liquid chromatography-electrospray-mass spectrometry/mass spectrometry in bile fistula rat and compared with natural analogs chenodeoxycholic, cholic acid, and taurochenodexycholic acid and intestinal bacteria metabolism was evaluated in terms of 7α-dehydroxylase substrate-specificity in anaerobic human stool culture. The semisynthetic derivatives detergency, measured in terms of their critical micellar concentration, was quite similar to the natural analogs. They were slightly more lipophilic than the corresponding natural analogs, evaluated by their 1-octanol water partition coefficient (log P), because of the ethyl group in 6 position, which makes these molecules very stable toward bacterial 7-dehydroxylation. The hepatic metabolism and biliary secretion were different: 6α-ethyl-3α,7α-dihydroxy-5β-cholan-24-oic acid, as chenodeoxycholic acid, was efficiently conjugated with taurine in the liver and, only in this form, promptly and efficiently secreted in bile. 6α-Ethyl-23(S)-methyl-3α,7α,12α-trihydroxy-5β-cholan-24-oic acid was poorly conjugated with taurine because of the steric hindrance of the methyl at C23(S) position metabolized to the C23(R) isomer and partly conjugated with taurine. Conversely, 6

  14. Abscisic acid as a factor in regulation of photosynthetic carbon metabolism of pea seedlings

    Maria Faltynowicz

    2014-02-01

    Full Text Available The influence of abscisic acid (ABA on carbon metabolism and the activity of ribulosebisphosphate (RuBP and phosphoenolpyruvate (PEP carboxylases in 8-day-old pea seedlings was investigated. It was endeavoured to correlate the changes observed in metabolic processes with the endogenous ABA level. In plants treated with ABA incorporation of labeled carbon into sucrose, glucose, fructose and sugar phosphates was depressed, while 14C incorporation into starch, ribulose and malic acid was enhanced. The activity of RuBP carboxylase was considerably lowered, whereas that of PEP carboxylase was slightly increased. It is considered that inhibition of photosynthesis due to the action of ABA is caused to a great extent by the obstruction of the C-3 pathway and reduced activity of RuBP carboxylase, whereas (β-carboxylation was not blocked.

  15. Possible role for abscisic acid in regulation of photosynthetic and photorespiratory carbon metabolism in barley leaves

    The influence of abscisic acid (ABA) on carbon metabolism, rate of photorespiration, and the activity of the photorespiratory enzymes ribulose bisphosphate oxygenase and glycolate oxidase in 7-day-old barley seedlings (Hordeum vulgare L. var. Alfa) was investigated. Plants treated with ABA had enhanced incorporation of labeled carbon from 14CO2 into glycolic acid, glycine, and serine, while 14C incorporation into 3-phosphoglyceric acid and sugarphosphate esters was depressed. Parallel with this effect, treated plants showed a rise in activity of RuBP oxygenase and glycolic acid oxidase. The rate of photorespiration was increased twofold by ABA treatment at IO-6 molar while the CO2-compensation point increased 46% and stomatal resistance increased more than twofold over control plants

  16. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    Mourtzakis, Marina; Saltin, B.; Graham, T.;

    2006-01-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... activity (P < 0.05) and increased PDH kinase 4 mRNA (P < 0.05) during exercise and recovery. At 1 h of exercise, pyruvate production was greatest and was closely linked to glutamate, which was the predominant amino acid taken up during exercise and recovery. Alanine and glutamine were also associated with...... pyruvate metabolism, and they comprised 68% of total amino-acid release during exercise and recovery. Thus reduced pyruvate production was primarily associated with reduced carbohydrate oxidation, whereas the greatest production of pyruvate was related to glutamate, glutamine, and alanine metabolism in...

  17. Dynamics of lipid metabolism under the physical activity influence

    Evdokimov E.I.; Elnikova M.V.

    2010-01-01

    The results of influence of the physical loading are considered on the state of lipid exchange for practically healthy people and patients with a general metabolic syndrome. In research 38 sportsmen in age 22 - 27 years and 20 patients (women and men) took part by age of 35-47лет. Influence of physical exercises was estimated on the indexes of biochemical composition of blood, anthropometry, arteriotony. The complex of physical exercises was used in common with a dietotherapy during 4 months....

  18. Fatty-acid metabolism is involved in stress-resistance mechanisms of Caenorhabditis elegans

    Horikawa, Makoto; Sakamoto, Kazuichi

    2009-01-01

    Fatty acids are the major components of the phospholipid bilayer and are involved in several functions of cell membrane. We previously reported that fatty-acid metabolism is involved in the regulation of DAF-2/insulin signal in Caenorhabditis elegans. In this study, we investigate the role of fatty-acid metabolism in stress resistance with respect to daf-16 in nematode. We found that fatty-acid metabolism regulates heat, osmotic, and oxidative-stress resistance in C. elegans. RNA interference...

  19. Hepatic arachidonic acid metabolism is disrupted after hexachlorobenzene treatment

    Hexaclorobenzene (HCB), one of the most persistent environmental pollutants, can cause a wide range of toxic effects including cancer in animals, and hepatotoxicity and porphyria both in humans and animals. In the present study, liver microsomal cytochrome P450 (CYP)-dependent arachidonic acid (AA) metabolism, hepatic PGE production, and cytosolic phospholipase A2 (cPLA2) activity were investigated in an experimental model of porphyria cutanea tarda induced by HCB. Female Wistar rats were treated with a single daily dose of HCB (100 mg kg-1 body weight) for 5 days and were sacrificed 3, 10, 17, and 52 days after the last dose. HCB treatment induced the accumulation of hepatic porhyrins from day 17 and increased the activities of liver ethoxyresorufin O-deethylase (EROD), methoxyresorufin O-demethylase (MROD), and aminopyrine N-demethylase (APND) from day 3 after the last dose. Liver microsomes from control and HCB-treated rats generated, in the presence of NADPH, hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs), 11,12-Di HETE, and ω-OH/ω-1-OH AA. HCB treatment caused an increase in total NADPH CYP-dependent AA metabolism, with a higher response at 3 days after the last HCB dose than at the other time points studied. In addition, HCB treatment markedly enhanced PGE production and release in liver slices. This HCB effect was time dependent and reached its highest level after 10 days. At this time cPLA2 activity was shown to be increased. Unexpectedly, HCB produced a significant decrease in cPLA2 activity on the 17th and 52nd day. Our results demonstrated for the first time that HCB induces both the cyclooxygenase and CYP-dependent AA metabolism. The effects of HCB on AA metabolism were previous to the onset of a marked porphyria and might contribute to different aspects of HCB-induced liver toxicity such as alterations of membrane fluidity and membrane-bound protein function. Observations also suggested that a possible role of cPLA2 in the

  20. Effect of acute acid loading on acid-base and calcium metabolism

    Osther, Palle J

    2006-01-01

    OBJECTIVE: To investigate the acid-base and calcium metabolic responses to acute non-carbonic acid loading in idiopathic calcium stone-formers and healthy males using a quantitative organ physiological approach. MATERIAL AND METHODS: Five-h ammonium chloride loading studies were performed in 12...... male recurrent idiopathic calcium stone-formers and 12 matched healthy men using a randomized, placebo-controlled, cross-over design. Arterialized capillary blood, serum and urine were collected hourly for measurement of electrolytes, ionized calcium, magnesium, phosphate, parathyroid hormone and acid-base...... status. Concentrations of non-metabolizable base (NB) and acid (NA) were calculated from measured concentrations of non-metabolizable ions. RESULTS: The extracellular acid-base status in the stone-formers during basal conditions and acid loading was comparable to the levels in the healthy controls...

  1. Metabolic engineering of lactic acid bacteria for the production of nutraceuticals

    Hugenholtz, J.; Sybesma, W.; Groot, M.N.; Wisselink, W.; Ladero, V.; Burgess, K.; Sinderen, van D.; Piard, J.C.; Eggink, G.; Smid, E.J.; Savoy, G.; Sesma, F.; Jansen, T.; Hols, P.; Kleerebezem, M.

    2002-01-01

    Lactic acid bacteria display a relatively simple and well-described metabolism where the sugar source is converted mainly to lactic acid. Here we will shortly describe metabolic engineering strategies on the level of sugar metabolism, that lead to either the efficient re-routing of the lactococcal s

  2. Influence of gamma radiation on secondary metabolism in lichens Cladonia substellata and Cladonia verticillaris

    Lichens are organisms formed from a symbiotic relationship between a fungus and an alga. These when submitted to different doses and types of radiation are encouraged to produce their substances in quantities different from those that would produce without the intervention of radiation. The objective of this research was to determine the influence of gamma rays on the production of usnic acid from Cladonia substellata and on the production of fumarprocetraric acid from Cladonia verticillaris. Lichens samples were submitted to gamma irradiation Co-60 source, receiving different doses (0, 5, 10, 50 and 100 Gy) of gamma irradiator. After six months samples were collected and submitted to the extraction of its phenols. The extracts were subjected to thin-layer chromatography, and read from Biochrom Libra S22 spectrophotometer. The qualitative assessment of the chemical composition of lichens stalks irradiated or not, revealed by thin layer chromatography production of usnic acid and fumarprocetraric throughout the experiment. Regarding the quantification of fumarprocetraric acid was observed a production significantly higher in extracts obtained from irradiated lichens, the largest production obtained by the dose of 50 Gy. As for the production of usnic acid, the highlight was the dose of 10 Gy. Thus we can conclude that the lichens Cladonia verticillaris and Cladonia substellata when submitted to gamma radiation in the laboratory, produce fumarprocetraric acid and usnic acid , respectively, but the radiation dose influences the metabolism and its subsequent biosynthesis. (author)

  3. Influence of gamma radiation on secondary metabolism in lichens Cladonia substellata and Cladonia verticillaris

    Silva, Helena P.B.; Melo, Patryk; Primo, Dario; Vicalvi, Maria Claudia V. [Federal University of Pernambuco (CTG/DEN/UFPE), Recife, PE (Brazil). Graduate Program in Energy Technologies and Nuclear; Maciel, Leonardo N.Q. [First Space Seed, Recife, PE (Brazil); Pereira, Eugenia, E-mail: Eugenia.pereira@cnpq.pq.com.b [Federal University of Pernambuco (CFCH/UFPE), Recife, PE (Brazil). Dept. of Geographic Sciences; Silva, Nicacio [Federal University of Pernambuco (CCB/UFPE), Recife, PE (Brazil). Dept. of Biochemistry; Colaco, Waldeciro, E-mail: wcolaco@ufpe.com.b [Federal University of Pernambuco (CTG/DEN/UFPE), Recife, PE (Brazil). Dept. Nuclear Energy

    2011-07-01

    Lichens are organisms formed from a symbiotic relationship between a fungus and an alga. These when submitted to different doses and types of radiation are encouraged to produce their substances in quantities different from those that would produce without the intervention of radiation. The objective of this research was to determine the influence of gamma rays on the production of usnic acid from Cladonia substellata and on the production of fumarprocetraric acid from Cladonia verticillaris. Lichens samples were submitted to gamma irradiation Co-60 source, receiving different doses (0, 5, 10, 50 and 100 Gy) of gamma irradiator. After six months samples were collected and submitted to the extraction of its phenols. The extracts were subjected to thin-layer chromatography, and read from Biochrom Libra S22 spectrophotometer. The qualitative assessment of the chemical composition of lichens stalks irradiated or not, revealed by thin layer chromatography production of usnic acid and fumarprocetraric throughout the experiment. Regarding the quantification of fumarprocetraric acid was observed a production significantly higher in extracts obtained from irradiated lichens, the largest production obtained by the dose of 50 Gy. As for the production of usnic acid, the highlight was the dose of 10 Gy. Thus we can conclude that the lichens Cladonia verticillaris and Cladonia substellata when submitted to gamma radiation in the laboratory, produce fumarprocetraric acid and usnic acid , respectively, but the radiation dose influences the metabolism and its subsequent biosynthesis. (author)

  4. Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders.

    Fiorucci, Stefano; Distrutti, Eleonora

    2015-11-01

    The composition of the bile acid pool is a function of the microbial metabolism of bile acids in the intestine. Perturbations of the microbiota shape the bile acid pool and modulate the activity of bile acid-activated receptors (BARs) even beyond the gastrointestinal tract, triggering various metabolic axes and altering host metabolism. Bile acids, in turn, can also regulate the composition of the gut microbiome at the highest taxonomic levels. Primary bile acids from the host are preferential ligands for the farnesoid X receptor (FXR), while secondary bile acids from the microbiota are ligands for G-protein-coupled bile acid receptor 1 (GPBAR1). In this review, we examine the role of bile acid signaling in the regulation of intestinal microbiota and how changes in bile acid composition affect human metabolism. Bile acids may offer novel therapeutic modalities in inflammation, obesity, and diabetes. PMID:26481828

  5. Metabolic Interactions between Vitamin A and Conjugated Linoleic Acid

    Gianfranca Carta

    2014-03-01

    Full Text Available Lipid-soluble molecules share several aspects of their physiology due to their common adaptations to a hydrophilic environment, and may interact to regulate their action in a tissue-specific manner. Dietary conjugated linoleic acid (CLA is a fatty acid with a conjugated diene structure that is found in low concentrations in ruminant products and available as a nutritional supplement. CLA has been shown to increase tissue levels of retinol (vitamin A alcohol and its sole specific circulating carrier protein retinol-binding protein (RBP or RBP4. However, the precise mechanism of this action has not been elucidated yet. Here, we provide a summary of the current knowledge in this specific area of research and speculate that retinol and CLA may compete for catabolic pathways modulated by the activity of PPAR-α and RXR heterodimer. We also present preliminary data that may position PPAR-α at the crossroads between the metabolism of lipids and vitamin A.

  6. Influences of soil volume and an elevated CO[sub 2] level on growth and CO[sub 2] exchange for the crassulacean acid metabolism plant Opuntia ficus-indica

    Nobel, P.S.; Cui, M.; Miller, P.M.; Luo, Y. (UCLA-DOE Lab., Univ. of California, Los Angeles, CA (United States))

    1994-01-01

    Effects of the current (38 Pa) and an elevated (74 Pa) CO[sub 2] partial pressure on root and shoot areas, biomass accumulation and daily net CO[sub 2] exchange were determined for opuntia ficus-indica (L.) Miller, a highly productive Crassulacean acid metabolism species cultivated worldwide. Plants were grown in environmentally controlled rooms for 18 weeks in pots of three soil volumes (2600, 6500 and 26000 cm[sup 3]), the smallest of which was intended to restrict root growth. For plants in the medium-sized soil volume, basal cladodes tended to be thicker and areas of main and lateral roots tended to be greater as the CO[sub 2] level was doubled. Daughter cladodes tended to be initiated sooner at the current compared with the elevated CO[sub 2] level but total areas were similar by 10 weeks. At 10 weeks, daily net CO[sub 2] uptake for the three soil volumes averaged 24% higher for plants growing under elevated compared with current CO-2 levels, but at 18 weeks only 3% enhancement in uptake occurred. Dry weight gain was enhanced 24% by elevated CO[sub 2] during the first 10 weeks but only 8% over 18 weeks. Increasing the soil volume 10-fold led to a greater stimulation of daily net CO[sub 2] uptake and biomass production than did doubling the CO[sub 2] level. At 18 weeks, root biomass doubled and shoot biomass nearly doubled as the soil volume was increased 10-fold; the effects of soil volume tended to be greater for elevated CO[sub 2]. The amount of cladode nitrogen per unit dry weight decreased as the CO[sub 2] level was raised and increased as soil volume increased, the latter suggesting that the effects of soil volume could be due to nitrogen limitations. (au) (30 refs.)

  7. Metabolism of Flavone-8-acetic Acid in Mice.

    Pham, Minh Hien; Auzeil, Nicolas; Regazzetti, Anne; Scherman, Daniel; Seguin, Johanne; Mignet, Nathalie; Dauzonne, Daniel; Chabot, Guy G

    2016-08-01

    Flavone-8-acetic acid (FAA) is a potent antivascular agent in mice but not in humans. Assuming that FAA was bioactivated in mice, we previously demonstrated that 6-OH-FAA was formed from FAA by mouse microsomes but not by human microsomes; its antivascular activity was 2.1- to 15.9-fold stronger than that of FAA, and its antivascular activity was mediated through the Ras homolog gene family (Rho) protein kinase A (RhoA) pathway. The present work aimed to study FAA metabolism in order to verify if 6-OH-FAA is formed in mice. Using synthesized standards and high-performance liquid chromatography (HPLC) coupled with ultraviolet (UV) detection and mass spectrometry (MS) analysis, we herein demonstrated, for the first time, that in vitro FAA and its monohydroxylated derivatives could directly undergo phase II metabolism forming glucuronides, and two FAA epoxides were mostly scavenged by NAC and GSH forming corresponding adducts. FAA was metabolized in mice. Several metabolites were formed, in particular 6-OHFAA. The antitumor activity of 6-OH-FAA in vivo is worthy of investigation. PMID:27466491

  8. A Systems Model for Ursodeoxycholic Acid Metabolism in Healthy and Patients With Primary Biliary Cirrhosis

    Dobbins, RL; O'Connor‐Semmes, RL; Young, MA

    2016-01-01

    A systems model was developed to describe the metabolism and disposition of ursodeoxycholic acid (UDCA) and its conjugates in healthy subjects based on pharmacokinetic (PK) data from published studies in order to study the distribution of oral UDCA and potential interactions influencing therapeutic effects upon interruption of its enterohepatic recirculation. The base model was empirically adapted to patients with primary biliary cirrhosis (PBC) based on current understanding of disease pathophysiology and clinical measurements. Simulations were performed for patients with PBC under two competing hypotheses: one for inhibition of ileal absorption of both UDCA and conjugates and the other only of conjugates. The simulations predicted distinctly different bile acid distribution patterns in plasma and bile. The UDCA model adapted to patients with PBC provides a platform to investigate a complex therapeutic drug interaction among UDCA, UDCA conjugates, and inhibition of ileal bile acid transport in this rare disease population. PMID:27537780

  9. Dietary trans-fatty acids and metabolic syndrome

    Zdzisław Kochan

    2010-12-01

    Full Text Available Trans-fatty acids (TFAs, products of partial hydrogenation of vegetable oils, have become more prevalent in our diet since the 1960s, when they replaced animal fats. TFAs also occur naturally in meat and dairy products from ruminants. There is growing evidence that dietary trans-fatty acids may increase the risk of metabolic syndrome. Several studies have demonstrated adverse effects of TFAs on plasma lipids and lipoproteins. In dietary trials, trans-fatty acids have been shown to raise the total cholesterol/HDL cholesterol ratio and Lp(a levels in blood. Moreover, a high intake of TFAs has been associated with an increased risk of coronary heart disease. Prospective cohort studies have shown that dietary trans-fatty acids promote abdominal obesity and weight gain. In addition, it appears that TFA consumption may be associated with the development of insulin resistance and type 2 diabetes. The documented adverse health effects of TFAs emphasise the importance of efforts to reduce the content of partially hydrogenated vegetable oils in foods.

  10. Patterns of amino acid metabolism by proliferating human mesenchymal stem cells

    Higuera, G.A.; Schop, D.; Spitters, T.W.; Dijkhuizen, R.; Bracke, M.; Bruijn, J.D.; Martens, D.E.; Karperien, M.; Boxtel, van A.J.B.; Blitterswijk, van C.A.

    2012-01-01

    The nutritional requirements of stem cells have not been determined; in particular, the amino acid metabolism of stem cells is largely unknown. In this study, we investigated the amino acid metabolism of human mesenchymal stem cells (hMSCs), with focus on two questions: Which amino acids are consume

  11. Arachidonic acid and calcium metabolism in rnelittin stimulated neutrophils

    Ole H. Nielsen

    1992-01-01

    Full Text Available Melittin, the predominant fraction of bee venom proteins, was studied in an experimental model of human neutrophil granulocytes to reveal its influence on eicosanoid release, metabolism and receptor function in relation to intracellular calcium metabolism. Melittin (2 μmol/l was as potent as the calcium ionophore A23187 (10 μmol/l for activation of 5-lipoxygenase, releasing arachidonate only from phosphatidyl-choline and phosphatidyl-ethanolamine of cellular membranes, as judged from the decreases in radioactivity by 15.4% and 30.5%, respectively. The mechanism responsible for the release of arachidonate from cellular membranes is closely coupled to cellular calcium metabolism, and melittin was found to promote calcium entry through receptor gated calcium channels, probably due to an activation of phospholipase A2. Furthermore, a down-regulation of leukotriene B4 receptors was seen. The maximal number of binding sites per cell was reduced from a median of 1520 to 950 with melittin (1 μmol/l. The study has revealed some factors important for the inflammatory mechanisms mediated by melittin.

  12. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork

    Samman S

    2014-06-01

    Full Text Available Samir Samman,1 Ben Crossett,2 Miles Somers,1 Kirstine J Bell,1 Nicole T Lai,1,3 David R Sullivan,3 Peter Petocz4 1Discipline of Nutrition and Metabolism, 2Discipline of Proteomics and Biotechnology, School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia; 3Department of Clinical Biochemistry, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 4Department of Statistics, Macquarie University, Sydney, NSW, Australia Abstract: Amino acid (AA status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM or chicken (CM, and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014, with consistently higher changes observed after 60 minutes (P<0.001. Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the

  13. Influence of diet and nutritional status on drug metabolism.

    Walter-Sack, I; Klotz, U

    1996-07-01

    Genetic and environmental factors contribute to a wide inter- and intraindividual variability in drug metabolism. Among the environmental factors that may influence drug metabolism, the diet and nutritional status of the individuals are important determinants. As altered drug-metabolising enzyme activities can influence the intensity and duration of drug action, such factors should be considered in pharmacotherapy. For this reason the effects of dietary energy, protein deficiency, nutritional ingredients, special diet forms and nutrition regimens and malnutritional states must be differentiated. In various pharmacokinetic studies different model drugs metabolised either by oxidative phase I pathways [e.g. phenazone (antipyrine), aminopyrine, phenacetin, theophylline, propranolol, nifedipine] or phase II conjugation reactions [e.g. paracetamol (acetaminophen), oxazepam] were used and from the calculated pharmacokinetic data some information on the involved and affected drug-metabolising enzymes [e.g. cytochrome P450 (CYP) subspecies, glucuronosyltransferases] can be generated. It is well known that smoking, charcoal broiled food or cruciferous vegetables induce the metabolism of many xenobiotics, whereas grapefruit juice increases the oral bioavailability of the high clearance drugs nifedipine, nitrendipine or felodipine by inhibiting their presystemic (intestinal) elimination. Energy deficiency, and especially a low intake of protein, will cause a decrease of about 20 to 40% in phenazone and theophylline clearance and elimination of those drugs can be accelerated by a protein-rich diet. In the same way, protein deficiency induced by either vegetarian food or undernourishment will have the opposite pharmacokinetic consequences. On the basis of some more examples from the literature it is emphasised that the variable influence of the above factors should be taken into account in study participant selection and study design when the pharmacokinetics of a drug must be

  14. Influence of neonatal hypothyroidism on hepatic gene expression and lipid metabolism in adulthood

    Santana-Farré, Ruymán; Mirecki-Garrido, Mercedes; Bocos, Carlos;

    2012-01-01

    , and triglycerides showed no significant differences. In contrast, CH rats showed significant changes in the expression of hepatic genes involved in lipid metabolism, including an increased transcription of PPARa and a reduced expression of genes involved in fatty acid and cholesterol uptake, cellular...... sterol efflux, triglyceride assembly, bile acid synthesis, and lipogenesis. These changes were associated with a decrease of intrahepatic lipids. Finally, CH rats responded to the onset of hypothyroidism in adulthood with a reduction of serum fatty acids and hepatic cholesteryl esters and to T3...... replacement with an enhanced activation of malic enzyme. In summary, we provide in vivo evidence that neonatal hypothyroidism influences the hepatic transcriptional program and tissue sensitivity to hormone treatment in adulthood. This highlights the critical role that a euthyroid state during development...

  15. Influence of Vitamin B Auxotrophy on Nitrogen Metabolism in Eukaryotic Phytoplankton

    Erin M Bertrand

    2012-10-01

    Full Text Available While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B12 and thiamine (B1 auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B12 and 20% requiring B1. The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review evaluates the potential for interactive effects of nitrogen and vitamin B12 and B1 starvation in eukaryotic phytoplankton. B12 plays essential roles in amino acid and one-carbon metabolism, while B1 is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1 B12, B1, and N starvation impacts on osmolyte and antioxidant production, (2 B12 and B1 starvation impacts on polyamine biosynthesis, and (3 influence of B12 and B1 starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B12 and B1 deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful algal bloom formation.

  16. Myocardial metabolism of pantothenic acid in chronically diabetic rats.

    Beinlich, C J; Naumovitz, R D; Song, W O; Neely, J R

    1990-03-01

    Transport and metabolism of [3H]pantothenic acid ([3H]Pa) was investigated in hearts from control and streptozotocin-induced diabetic rats. In isolated perfused hearts from control animals, the transport of [3H]Pa was linear over 3 h of perfusion when 11 mM glucose was the only exogenous substrate. The in vitro transport of [3H]Pa by hearts from 48-h diabetic rats was reduced by 65% compared to controls and was linear over 2 h of perfusion with no further accumulation of Pa during the third hour. The defect in transport observed in vitro could be corrected by in vivo treatment with 4 U Lente insulin/day for 2 days. In vitro addition of insulin in the presence of 11 mM glucose or 11 mM glucose plus 1.2 mM palmitate had no effect on [3H]Pa transport in hearts from 48-h diabetic rats during 3 h of perfusion. Accumulation of [3H]Pa was not inhibited by inclusion of 0.7 mM amino acids, 1 mM carnitine, 50 microM mersalic acid or 1 mM panthenol, pantoyllactone or pantoyltaurine. Uptake was inhibited by 1 mM nonanoic, octanoic or heptanoic acid, 0.1 mM biotin or 0.25 mM probenecid, suggesting a requirement for the terminal carboxyl group for transport. Transport of pantothenic acid was reduced in hearts from diabetic rats within 24 h of injection of streptozotocin. In vitro accumulation of [3H]Pa decreased to 10% of control 1 week after streptozotocin injection and then remained at 30% of the control value over 10 weeks.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2141362

  17. Retinoic acid metabolism blocking agents (RAMBAs): a new paradigm in the treatment of hyperkeratotic disorders.

    Verfaille, Christel J; Borgers, Marcel; van Steensel, Maurice A M

    2008-05-01

    Synthetic vitamin A derivatives, retinoids,have long been the mainstay of treatment for several disorders of keratinization, notably the ichthyoses and severe acne. Some forms of psoriasis also respond well. Their considerable power comes at a price. They have dose-limiting side effects and can be highly teratogenic, limiting their use in women of childbearing age.Thus, retinoids are used less often than their potential would warrant. However, the recent development of compounds that block the catabolism of endogenous vitamin A, called Retinioic Acid Metabolism Blocking Agents or RAMBAs, offers new possibilities. With these drugs, retinoid effects with less side effects and a reduction of the post-treatment teratogenicity period due to their favourable pharmacokinetic profile might be expected. In this review, we discuss how retinoids work, how they are metabolized and how RAMBAs influence this process. We also review the presently available data from clinical trials with RAMBAs. PMID:17941881

  18. Metabolism of hydroxycinnamic acids and esters by Brettanomyces in different red wines

    Depending on the cultivars and other factors, differing concentrations of hydroxycinnamic acids (caffeic, p-coumaric, and ferulic acids) and their corresponding tartaric acid esters (caftaric, coutaric, and fertaric acid, respectively) are found in red wines. Hydroxycinnamic acids are metabolized by...

  19. Metabolomic analysis of amino acid and energy metabolism in rats supplemented with chlorogenic acid

    Ruan, Zheng; Yang, Yuhui; Zhou, Yan; Wen, Yanmei; Ding, Sheng; Liu, Gang; Wu, Xin; Deng, Zeyuan; Assaad, Houssein; Wu, Guoyao

    2016-01-01

    This study was conducted to investigate effects of chlorogenic acid (CGA) supplementation on serum and hepatic metabolomes in rats. Rats received daily intragastric administration of either CGA (60 mg/kg body weight) or distilled water (control) for 4 weeks. Growth performance, serum biochemical profiles, and hepatic morphology were measured. Additionally, serum and liver tissue extracts were analyzed for metabolomes by high-resolution 1H nuclear magnetic resonance-based metabolomics and multivariate statistics. CGA did not affect rat growth performance, serum biochemical profiles, or hepatic morphology. However, supplementation with CGA decreased serum concentrations of lactate, pyruvate, succinate, citrate, β-hydroxybutyrate and acetoacetate, while increasing serum concentrations of glycine and hepatic concentrations of glutathione. These results suggest that CGA supplementation results in perturbation of energy and amino acid metabolism in rats. We suggest that glycine and glutathione in serum may be useful biomarkers for biological properties of CGA on nitrogen metabolism in vivo. PMID:24927697

  20. Influence of gamma radiation on carbohydrates metabolism of ripening papaya (Carica papaya L. cv. Solo)

    Food irradiation is one of the most promising treatments that can be utilized for fruits disinfestation and extension of shelf life. The authors studied the influence of 0,5 kGy of Gamma irradiation on the soluble carbohydrates composition of papaya (Carica papaya L. cv. Solo) fruit, and on sucrose metabolizing enzymes: sucrose synthase (SS), sucrose-phosphate synthase, acid and neutral invertases activities, during ripening. The results demonstrated that ethylene production, total soluble sugars, sucrose content, and sucrose-phosphate synthase and invertases activities were affected by irradiation, but not respiration, glucose and fructose content, and SS activity. (author)

  1. Engineering crassulacean acid metabolism to improve water-use efficiency.

    Borland, Anne M; Hartwell, James; Weston, David J; Schlauch, Karen A; Tschaplinski, Timothy J; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2014-05-01

    Climatic extremes threaten agricultural sustainability worldwide. One approach to increase plant water-use efficiency (WUE) is to introduce crassulacean acid metabolism (CAM) into C3 crops. Such a task requires comprehensive systems-level understanding of the enzymatic and regulatory pathways underpinning this temporal CO2 pump. Here we review the progress that has been made in achieving this goal. Given that CAM arose through multiple independent evolutionary origins, comparative transcriptomics and genomics of taxonomically diverse CAM species are being used to define the genetic 'parts list' required to operate the core CAM functional modules of nocturnal carboxylation, diurnal decarboxylation, and inverse stomatal regulation. Engineered CAM offers the potential to sustain plant productivity for food, feed, fiber, and biofuel production in hotter and drier climates. PMID:24559590

  2. Metabolic Profiling of Human Peripheral Blood Mononuclear Cells: Influence of Vitamin D Status and Gender

    Magdalena Stepien

    2014-04-01

    Full Text Available Metabolic profiling of peripheral blood mononuclear cells (PBMC could serve as a less invasive and more direct alternative to tissue biopsies or serum in metabolomic research. We conducted two exploratory independent studies in order to characterise PBMC’s metabolomic profile following short-term vitamin D3 supplementation and to determine gender effects. In the first study, eight healthy males and females aged 40–65 y were randomly selected for profiling of PBMCs after receiving either 15 µg of vitamin D3 or placebo for four weeks. In the second study, twenty younger healthy males and females were studied. Cell metabolites were extracted and deproteinised using methanol/chloroform/water method and analysed by GC-MS. Higher vitamin D status had no effect on the fatty acid profile of PBMCs, but inflammatory biomarkers and adipokines correlated positively with stearic acid levels. In the second study, no gender-specific metabolites were identified. Valine, leucine and aspartic acid were identified as potential BMI-sensitive amino acids. Larger studies are needed to confirm the influence of BMI on these parameters. This work clearly demonstrates the utility of metabolomics profiling of PBMCs and paves the way for future applications of metabolomics in identifying metabolic profiles of blood cells as a measure for dietary intakes or physiological status.

  3. Biology, Genetics, and Environment: Underlying Factors Influencing Alcohol Metabolism.

    Wall, Tamara L; Luczak, Susan E; Hiller-Sturmhöfel, Susanne

    2016-01-01

    Gene variants encoding several of the alcohol-metabolizing enzymes, alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH), are among the largest genetic associations with risk for alcohol dependence. Certain genetic variants (i.e., alleles)--particularly the ADH1B*2, ADH1B*3, ADH1C*1, and ALDH2*2 alleles--have been associated with lower rates of alcohol dependence. These alleles may lead to an accumulation of acetaldehyde during alcohol metabolism, which can result in heightened subjective and objective effects. The prevalence of these alleles differs among ethnic groups; ADH1B*2 is found frequently in northeast Asians and occasionally Caucasians, ADH1B*3 is found predominantly in people of African ancestry, ADH1C*1 varies substantially across populations, and ALDH2*2 is found almost exclusively in northeast Asians. Differences in the prevalence of these alleles may account at least in part for ethnic differences in alcohol consumption and alcohol use disorder (AUD). However, these alleles do not act in isolation to influence the risk of AUD. For example, the gene effects of ALDH2*2 and ADH1B*2 seem to interact. Moreover, other factors have been found to influence the extent to which these alleles affect a person's alcohol involvement, including developmental stage, individual characteristics (e.g., ethnicity, antisocial behavior, and behavioral undercontrol), and environmental factors (e.g., culture, religion, family environment, and childhood adversity). PMID:27163368

  4. Protein and amino acid metabolism in skeletal muscle

    Wu, Guoyao.

    1989-01-01

    Isolated chick extensor digitorum communis (EDC) muscles and, in some experiments, rat skeletal muscles were used to study a number of aspects of protein and amino acid metabolism. (1) Chick EDC muscles synthesize and release large amounts of alanine and glutamine, which indirectly obtain their amino groups from branched-chain amino acids (BCAA). (2) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) decrease (P < 0.01) alanine synthesis and BCAA transamination in EDC muscles from 24-h fasted chicks by decreasing (P < 0.01) intracellular concentrations of pyruvate due to inhibition of glycolysis. (3) Glutamine is extensively degraded in skeletal muscles from both chicks and rats, thus challenging the traditional view that glutamine oxidation is negligible in skeletal muscle. The cytosolic glutamine aminotransferases L and K in the rat and the mitochondrial phosphate-activated glutaminase in the chick play important roles in the conversion of glutamine to {alpha}-ketoglutarate for further oxidation. (4) Although methionine has been reported to be extensively transaminated in rat skeletal muscle preparations in the absence of other amino acids, transamination of methionine is absent or negligible in chick and rat skeletal muscles in the presence of physiological concentrations of amino acids. (5) Glutamine at 1.0-15 mM increases (P < 0.01) protein synthesis ({sup 3}H-phenylalanine incorporation), and at 10.0-15.0 mM decreases (P < 0.05) protein degradation ({sup 3}H-phenylalanine release from prelabelled protein in vivo) in EDC muscles from fed chicks as compared to muscles incubated in the absence of glutamine. (6) Acetoacetate or DL-{beta}-hydroxybutyrate (4 mM) has a small but significant inhibitory effect (P < 0.05) on the rate of protein synthesis, but has no effect (P > 0.05) on the rate of protein degradation in EDC muscles from fed chicks.

  5. Dynamics of human whole body amino acid metabolism

    The mechanism of regulation of the nitrogen metabolism in humans under various nutritional and physiological states was examined using stable isotopes. In the simultaneous continuous infusion of 1- [13] - leucine and α- [15N]- lysine, their fluxed decreased when individuals received lower protein intake. The rates of oxidation and incorporation into body proteins of leucine changed in parallel with the protein intake. Such effects of diet on whole body leucine kinetics were modified by the energy state and dietary energy level. The nitrogen balance was also improved by an excess level of dietary energy. When the intake of dietary protein was lowered below the maintenance level, the whole body flux and de novo synthesis of glycine were lowered, but alanine synthesis was clearly increased. The intravenous infusion of glucose at 4 mg/kg.min, which causes increase in excess blood sugar and plasma insulin, increased the alanine flux, but had no effect on the glycine flux. The rate of albumin synthesis, determined by giving 15N-glycine orally every 3 hr, decreased with the lowered intake of dietary protein in young men, but not in elderly men. This explains why the serum albumin synthesis increases with the increase in the intake of dietary protein in young men, but not in elderly men. The rate of whole body protein synthesis in young men receiving the L-amino acid diets providing with the required intake of specific amino acid was much lower than that in the men receiving the diets providing with generous intake of specific amino acid. Thus the control mechanism to maintain the homeostasis of body nitrogen and amino acids is related in some unknown way to the nutritional requirement of the hosts. (Kaihara, S.)

  6. Metabolism of food phenolic acids by Lactobacillus plantarum CECT 748T

    Rodríguez, Héctor; Landete, José María; Rivas, Blanca de las; Muñoz, Rosario

    2008-01-01

    Phenolic acids account for almost one third of the dietary phenols and are associated with organoleptic, nutritional and antioxidant properties of foods. This study was undertaken to assess the ability of Lactobacillus plantarum CECT 748T to metabolize 19 food phenolic acids. Among the hydroxycinnamic acids studied, only p-coumaric, caffeic, ferulic and m-coumaric acids were metabolized by L. plantarum. Cultures of L. plantarum produced ethyl and vinyl derivatives from p-coumaric and...

  7. Obesity and Cancer Progression: Is There a Role of Fatty Acid Metabolism?

    Seher Balaban

    2015-01-01

    Full Text Available Currently, there is renewed interest in elucidating the metabolic characteristics of cancer and how these characteristics may be exploited as therapeutic targets. Much attention has centered on glucose, glutamine and de novo lipogenesis, yet the metabolism of fatty acids that arise from extracellular, as well as intracellular, stores as triacylglycerol has received much less attention. This review focuses on the key pathways of fatty acid metabolism, including uptake, esterification, lipolysis, and mitochondrial oxidation, and how the regulators of these pathways are altered in cancer. Additionally, we discuss the potential link that fatty acid metabolism may serve between obesity and changes in cancer progression.

  8. Metabolism of nonesterified and esterified hydroxycinnamic acids in red wines by Brettanomyces bruxellensis

    While Brettanomyces can metabolize non–esterified hydroxycinnamic acids found in grape musts/wines (caffeic, p–coumaric, and ferulic acids), it was not known whether this yeast could utilize the corresponding tartaric acid esters (caftaric, p–coutaric, and fertaric acids, respectively). Red wines fr...

  9. Cytosolic fatty acid-binding proteins: subjects and tools in metabolic research

    Fatty acid-binding proteins (FABPs) are major targets for specific binding of fatty acids in vivo. They constitute a widely expressed family of genetically related, small cytosolic proteins which very likely mediate intracellular transport of free long chain fatty acids. Genetic inhibition of FABP expression in vivo should therefore provide a useful tool to investigate and engineer fatty acid metabolism. (orig.)

  10. Retrobiosynthetic nuclear magnetic resonance analysis of amino acid biosynthesis and intermediary metabolism. Metabolic flux in developing maize kernels.

    Glawischnig, E; Gierl, A; Tomas, A; Bacher, A; Eisenreich, W

    2001-03-01

    Information on metabolic networks could provide the basis for the design of targets for metabolic engineering. To study metabolic flux in cereals, developing maize (Zea mays) kernels were grown in sterile culture on medium containing [U-(13)C(6)]glucose or [1,2-(13)C(2)]acetate. After growth, amino acids, lipids, and sitosterol were isolated from kernels as well as from the cobs, and their (13)C isotopomer compositions were determined by quantitative nuclear magnetic resonance spectroscopy. The highly specific labeling patterns were used to analyze the metabolic pathways leading to amino acids and the triterpene on a quantitative basis. The data show that serine is generated from phosphoglycerate, as well as from glycine. Lysine is formed entirely via the diaminopimelate pathway and sitosterol is synthesized entirely via the mevalonate route. The labeling data of amino acids and sitosterol were used to reconstruct the labeling patterns of key metabolic intermediates (e.g. acetyl-coenzyme A, pyruvate, phosphoenolpyruvate, erythrose 4-phosphate, and Rib 5-phosphate) that revealed quantitative information about carbon flux in the intermediary metabolism of developing maize kernels. Exogenous acetate served as an efficient precursor of sitosterol, as well as of amino acids of the aspartate and glutamate family; in comparison, metabolites formed in the plastidic compartments showed low acetate incorporation. PMID:11244098

  11. Influence of metabolism on endocrine activities of bisphenol S.

    Skledar, Darja Gramec; Schmidt, Jan; Fic, Anja; Klopčič, Ivana; Trontelj, Jurij; Dolenc, Marija Sollner; Finel, Moshe; Mašič, Lucija Peterlin

    2016-08-01

    Bisphenol S (BPS; bis[4-hydroxyphenyl]sulfone) is commonly used as a replacement for bisphenol A in numerous consumer products. The main goal of this study was to examine the influence of different metabolic reactions that BPS undergoes on the endocrine activity. We demonstrate that hydroxylation of the aromatic ring of BPS, catalyzed mainly by the cytochrome P450 enzymes CYP3A4 and CYP2C9, is its major in-vitro phase I biotransformation. Nevertheless, coupled oxidative-conjugative reactions analyses revealed that glucuronidation and formation of BPS glucuronide is the predominant BPS metabolic pathway. BPS reactive metabolites that can be tracked as glutathione conjugates were not detected in the present study. Two in-vitro systems were used to evaluate the endocrine activity of BPS and its two main metabolites, BPS glucuronide and hydroxylated BPS 4-(4-hydroxy-benzenesulfonyl)-benzene-1,2-diol (BPSM1). In addition, we have tested two structural analogs of BPS, bis[4-(2-hydroxyetoxy)phenyl]sulfone (BHEPS) and 4,4-sulfonylbis(2-methylphenol) (dBPS). The test systems were yeast cells, for evaluating estrogenic and androgenic activities, and the GH3.TRE-Luc reporter cell line for measuring thyroid hormone activity. BPS and BPSM1 were weak agonists of the estrogen receptor, EC50 values of 8.4 × 10(-5) M and 6.7 × 10(-4) M, respectively. Additionally, BPSM1 exhibited weak antagonistic activity toward the thyroid hormone receptor, with an IC50 of 4.3 × 10(-5) M. In contrast to BPSM1, BPS glucuronide was inactive in these assays, inhibiting neither the estrogen nor the thyroid hormone receptors. Hence, glucuronidation appears to be the most important pathway for both BPS metabolism and detoxification. PMID:27213244

  12. Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes.

    Ow, Yin-Yin; Stupans, Ieva

    2003-06-01

    Gallic acid and its structurally related compounds are found widely distributed in fruits and plants. Gallic acid, and its catechin derivatives are also present as one of the main phenolic components of both black and green tea. Esters of gallic acid have a diverse range of industrial uses, as antioxidants in food, in cosmetics and in the pharmaceutical industry. In addition, gallic acid is employed as a source material for inks, paints and colour developers. Studies utilising these compounds have found them to possess many potential therapeutic properties including anti-cancer and antimicrobial properties. In this review, studies of the effects of gallic acid, its esters, and gallic acid catechin derivatives on Phase I and Phase II enzymes are examined. Many published reports of the effects of the in vitro effects of gallic acid and its derivatives on drug metabolising enzymes concern effects directly on substrate (generally drug or mutagen) metabolism or indirectly through observed effects in Ames tests. In the case of the Ames test an antimutagenic effect may be observed through inhibition of CYP activation of indirectly acting mutagens and/or by scavenging of metabolically generated mutagenic electrophiles. There has been considerable interest in the in vivo effects of the gallate esters because of their incorporation into foodstuffs as antioxidants and in the catechin gallates with their potential role as chemoprotective agents. Principally an induction of Phase II enzymes has been observed however more recent studies using HepG2 cells and primary cultures of human hepatocytes provide evidence for the overall complexity of actions of individual components versus complex mixtures, such as those in food. Further systematic studies of mechanisms of induction and inhibition of drug metabolising enzymes by this group of compounds are warranted in the light of their distribution and consequent ingestion, current uses and suggested therapeutic potential. However, it

  13. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism.

    Wahlström, Annika; Sayin, Sama I; Marschall, Hanns-Ulrich; Bäckhed, Fredrik

    2016-07-12

    The gut microbiota is considered a metabolic "organ" that not only facilitates harvesting of nutrients and energy from the ingested food but also produces numerous metabolites that signal through their cognate receptors to regulate host metabolism. One such class of metabolites, bile acids, is produced in the liver from cholesterol and metabolized in the intestine by the gut microbiota. These bioconversions modulate the signaling properties of bile acids via the nuclear farnesoid X receptor and the G protein-coupled membrane receptor 5, which regulate numerous metabolic pathways in the host. Conversely, bile acids can modulate gut microbial composition both directly and indirectly through activation of innate immune genes in the small intestine. Thus, host metabolism can be affected through microbial modifications of bile acids, which lead to altered signaling via bile acid receptors, but also by altered microbiota composition. PMID:27320064

  14. Eating beyond metabolic need: how environmental cues influence feeding behavior.

    Johnson, Alexander W

    2013-02-01

    Animals use current, past, and projected future states of the organism and the world in a finely tuned system to control ingestion. They must not only deal effectively with current nutrient deficiencies, but also manage energy resources to meet future needs, all within the constraints of the mechanisms of metabolism. Many recent approaches to understanding the control of ingestive behavior distinguish between homeostatic mechanisms concerned with energy balance, and hedonic and incentive processes based on palatability and reward characteristics of food. In this review, I consider how learning about environmental cues influences homeostatic and hedonic brain signals, which may lead to increases in the affective taste properties of food and desire to over consume. Understanding these mechanisms may be critical for elucidating the etiology of the obesity epidemic. PMID:23333343

  15. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature

    Norambuena, Fernando; Morais, Sofia; Emery, James A.; Turchini, Giovanni M.

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  16. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants). Final report

    Loewus, F.A. [Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry; Seib, P.A. [Kansas State Univ., Manhattan, KS (United States). Dept. of Grain Science and Industry

    1991-12-31

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  17. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants)

    Loewus, F.A. (Washington State Univ., Pullman, WA (United States). Inst. of Biological Chemistry); Seib, P.A. (Kansas State Univ., Manhattan, KS (United States). Dept. of Grain Science and Industry)

    1991-01-01

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  18. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.

    Yu, Jian; Si, Yingtao

    2004-01-01

    Short chain fatty acids such as acetic, propionic, and butyric acids can be synthesized into polyhydroxyalkanoates (PHAs) by Ralstonia eutropha. Metabolic carbon fluxes of the acids in living cells have significant effect on the yield, composition, and thermomechanical properties of PHA bioplastics. Based on the general knowledge of central metabolism pathways and the unusual metabolic pathways in R. eutropha, a metabolic network of 41 bioreactions is constructed to analyze the carbon fluxes on utilization of the short chain fatty acids. In fed-batch cultures with constant feeding of acid media, carbon metabolism and distribution in R. eutropha were measured involving CO2, PHA biopolymers, and residual cell mass. As the cells underwent unsteady state metabolism and PHA biosynthesis under nitrogen-limited conditions, accumulative carbon balance was applied for pseudo-steady-state analysis of the metabolic carbon fluxes. Cofactor NADP/NADPH balanced between PHA synthesis and the C3/C4 pathway provided an independent constraint for solution of the underdetermined metabolic network. A major portion of propionyl-CoA was directed to pyruvate via the 2-methylcitrate cycle and further decarboxylated to acetyl-CoA. Only a small amount of propionate carbon (acetic acid in the medium. Malate is the node of the C3/C4 pathway and TCA cycle and its decarboxylation to dehydrogenation ranges from 0.33 to 1.28 in response to the demands on NADPH and oxaloacetate for short chain fatty acids utilization. PMID:15296425

  19. Influence of acidified acidity to uranium bioleaching

    The relationship between the acidified acidity and the acid consumption and uranium leaching rate in the process of uranium bioleaching is investigated. Results indicate that higher uranium leaching rate is obtained when the relatively high acidity was applied at beginning. For different minerals, although the original acidity should be different, lower original acidity was not better for shortening leaching period and improving uranium leaching rate. It confirms 30-40 g/L sulfuric acid as the original acidity was more suitable and more than 30 g/ L should be applied if the mineral particle sizes were larger. (authors)

  20. Metabolic syndrome, alcohol consumption and genetic factors are associated with serum uric acid concentration.

    Blanka Stibůrková

    Full Text Available OBJECTIVE: Uric acid is the end product of purine metabolism in humans, and increased serum uric acid concentrations lead to gout. The objective of the current study was to identify factors that are independently associated with serum uric acid concentrations in a cohort of Czech control individuals. METHODS: The cohort consisted of 589 healthy subjects aged 18-65 years. We studied the associations between the serum uric acid concentration and the following: (i demographic, anthropometric and other variables previously reported to be associated with serum uric acid concentrations; (ii the presence of metabolic syndrome and the levels of metabolic syndrome components; and (iii selected genetic variants of the MTHFR (c.665C>T, c.1286A>C, SLC2A9 (c.844G>A, c.881G>A and ABCG2 genes (c.421C>A. A backward model selection procedure was used to build two multiple linear regression models; in the second model, the number of metabolic syndrome criteria that were met replaced the metabolic syndrome-related variables. RESULTS: The models had coefficients of determination of 0.59 and 0.53. The serum uric acid concentration strongly correlated with conventional determinants including male sex, and with metabolic syndrome-related variables. In the simplified second model, the serum uric acid concentration positively correlated with the number of metabolic syndrome criteria that were met, and this model retained the explanatory power of the first model. Moderate wine drinking did not increase serum uric acid concentrations, and the urate transporter ABCG2, unlike MTHFR, was a genetic determinant of serum uric acid concentrations. CONCLUSION: Metabolic syndrome, moderate wine drinking and the c.421C>A variant in the ABCG gene are independently associated with the serum uric acid concentration. Our model indicates that uric acid should be clinically monitored in persons with metabolic syndrome.

  1. Acid Stress-Mediated Metabolic Shift in Lactobacillus sanfranciscensis LSCE1 ▿

    Serrazanetti, Diana I.; Ndagijimana, Maurice; Sado-Kamdem, Sylvain L.; Corsetti, Aldo; Vogel, Rudi F.; Ehrmann, Matthias; Guerzoni, M. Elisabetta

    2011-01-01

    Lactobacillus sanfranciscensis LSCE1 was selected as a target organism originating from recurrently refreshed sourdough to study the metabolic rerouting associated with the acid stress exposure during sourdough fermentation. In particular, the acid stress induced a metabolic shift toward overproduction of 3-methylbutanoic and 2-methylbutanoic acids accompanied by reduced sugar consumption and primary carbohydrate metabolite production. The fate of labeled leucine, the role of different nutrie...

  2. Understanding fatty acid metabolism through an active learning approach.

    Fardilha, M; Schrader, M; da Cruz E Silva, O A B; da Cruz E Silva, E F

    2010-03-01

    A multi-method active learning approach (MALA) was implemented in the Medical Biochemistry teaching unit of the Biomedical Sciences degree at the University of Aveiro, using problem-based learning as the main learning approach. In this type of learning strategy, students are involved beyond the mere exercise of being taught by listening. Less emphasis is placed on transmitting information and the focus is shifted toward developing higher order thinking (analysis, synthesis, and evaluation). However, MALA should always involve clearly identified objectives and well-defined targets. Understanding fatty acid metabolism was one of the proposed goals of the Medical Biochemistry unit. To this end, students were challenged with a variety of learning strategies to develop skills associated with group conflict resolution, critical thinking, information access, and retrieval, as well as oral and written communication skills. Overall, students and learning facilitators were highly motivated by the diversity of learning activities, particularly due to the emphasis on correlating theoretical knowledge with human health and disease. As a quality control exercise, the students were asked to answer a questionnaire on their evaluation of the whole teaching/learning experience. Our initial analysis of the learning outcomes permits us to conclude that the approach undertaken yields results that surpass the traditional teaching methods. PMID:21567798

  3. Effects of Butter and Phytanic acid intake on metabolic parameters and T-cell polarization

    Drachmann, Tue

    The still growing obesity epidemic is a major risk for our society, as it is associated with the development of the so called metabolic syndrome, which is a clinical diagnosis correlated to development of metabolic disorders. Lack of physical activity, excess energy intake, and nutritional factors...... disorders. Dairy fat is the most complex type of fat occurring in the nature, with more than 400 identified fatty acids. Several of these fatty acids that occur in low amounts have been suggested to have beneficial properties with regard to metabolic disorders. The concentrations of certain of these minor...... e.g. fatty acid composition of the diet, are important factors with regard to development of metabolic syndrome. There is a controversy between the fact that several studies has shown that intake of saturated fatty acids are strongly correlated to the development of metabolic related diseases...

  4. PPAR/RXR Regulation of Fatty Acid Metabolism and Fatty Acid -Hydroxylase (CYP4 Isozymes: Implications for Prevention of Lipotoxicity in Fatty Liver Disease

    James P. Hardwick

    2009-01-01

    Full Text Available Fatty liver disease is a common lipid metabolism disorder influenced by the combination of individual genetic makeup, drug exposure, and life-style choices that are frequently associated with metabolic syndrome, which encompasses obesity, dyslipidemia, hypertension, hypertriglyceridemia, and insulin resistant diabetes. Common to obesity related dyslipidemia is the excessive storage of hepatic fatty acids (steatosis, due to a decrease in mitochondria -oxidation with an increase in both peroxisomal -oxidation, and microsomal -oxidation of fatty acids through peroxisome proliferator activated receptors (PPARs. How steatosis increases PPAR activated gene expression of fatty acid transport proteins, peroxisomal and mitochondrial fatty acid -oxidation and -oxidation of fatty acids genes regardless of whether dietary fatty acids are polyunsaturated (PUFA, monounsaturated (MUFA, or saturated (SFA may be determined by the interplay of PPARs and HNF4 with the fatty acid transport proteins L-FABP and ACBP. In hepatic steatosis and steatohepatitis, the -oxidation cytochrome P450 CYP4A gene expression is increased even with reduced hepatic levels of PPAR. Although numerous studies have suggested the role ethanol-inducible CYP2E1 in contributing to increased oxidative stress, Cyp2e1-null mice still develop steatohepatitis with a dramatic increase in CYP4A gene expression. This strongly implies that CYP4A fatty acid -hydroxylase P450s may play an important role in the development of steatohepatitis. In this review and tutorial, we briefly describe how fatty acids are partitioned by fatty acid transport proteins to either anabolic or catabolic pathways regulated by PPARs, and we explore how medium-chain fatty acid (MCFA CYP4A and long-chain fatty acid (LCFA CYP4F -hydroxylase genes are regulated in fatty liver. We finally propose a hypothesis that increased CYP4A expression with a decrease in CYP4F genes may promote the progression of steatosis to

  5. Upregulated expression of brain enzymatic markers of arachidonic and docosahexaenoic acid metabolism in a rat model of the metabolic syndrome

    Taha Ameer Y

    2012-10-01

    Full Text Available Abstract Background In animal models, the metabolic syndrome elicits a cerebral response characterized by altered phospholipid and unesterified fatty acid concentrations and increases in pro-apoptotic inflammatory mediators that may cause synaptic loss and cognitive impairment. We hypothesized that these changes are associated with phospholipase (PLA2 enzymes that regulate arachidonic (AA, 20:4n-6 and docosahexaenoic (DHA, 22:6n-6 acid metabolism, major polyunsaturated fatty acids in brain. Male Wistar rats were fed a control or high-sucrose diet for 8 weeks. Brains were assayed for markers of AA metabolism (calcium-dependent cytosolic cPLA2 IVA and cyclooxygenases, DHA metabolism (calcium-independent iPLA2 VIA and lipoxygenases, brain-derived neurotrophic factor (BDNF, and synaptic integrity (drebrin and synaptophysin. Lipid concentrations were measured in brains subjected to high-energy microwave fixation. Results The high-sucrose compared with control diet induced insulin resistance, and increased phosphorylated-cPLA2 protein, cPLA2 and iPLA2 activity and 12-lipoxygenase mRNA, but decreased BDNF mRNA and protein, and drebrin mRNA. The concentration of several n-6 fatty acids in ethanolamine glycerophospholipids and lysophosphatidylcholine was increased, as was unesterified AA concentration. Eicosanoid concentrations (prostaglandin E2, thromboxane B2 and leukotriene B4 did not change. Conclusion These findings show upregulated brain AA and DHA metabolism and reduced BDNF and drebrin, but no changes in eicosanoids, in an animal model of the metabolic syndrome. These changes might contribute to altered synaptic plasticity and cognitive impairment in rats and humans with the metabolic syndrome.

  6. Influence of host seed on metabolic activity by Enterobacter cloacae in the spermosphere

    Little is known regarding the influences of nutrients released from plants on the metabolic activity of colonizing microbes. To gain a better understanding of these influences, we used bioluminescence- and oxygen consumption-based methods to compare bacterial metabolic activity expressed during col...

  7. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments

    Li, Dong

    2015-09-24

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction–modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants. © 2015, Springer Science+Business Media New York.

  8. Photoperiodism and Crassulacean acid metabolism : II. Relations between leaf aging and photoperiod in Crassulacean acid metabolism induction.

    Brulfert, J; Guerrier, D; Queiroz, O

    1982-05-01

    Measurements of net CO2 exchange, malate accumulation, properties and capacity of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in leaves of different ages of two short-day dependent Crassulacean acid metabolism (CAM) plants (Kalanchoe blossfeldiana v. Poelln. Tom thumb and K. velutina Welw.) show that, in both species: a) young leaves from plants grown under long days display a CO2 exchange pattern typical of C3 plants; b) leaf aging promotes CAM under long-day conditions; c) short-day treatment induces CAM in young leaves to a higher degree than aging under long days; d) at least in K. blossfeldiana, the PEPC form developed with leaf aging under long days and the enzyme form synthetized de novo in young leaves grown under short days were shown to have similar properties. Short days also promote CAM in older leaves though at a lesser extent than in young leaves: The result is that this photoperiodic treatment increases the general level of CAM performance by the whole plant. The physiological meaning of the control of PEPC capacity by photoperiodism could be to afford a precisely timed seasonal increase in CAM potentiality, enabling the plant to immediately optimize its response to the onset of drought periods. PMID:24276160

  9. Allopurinol and 5-aminosalicylic acid influence thiopurine-induced hepatotoxicity in vitro

    Broekman, Mark M. T. J.; Roelofs, Hennie M. J.; Wong, Dennis R.; Kerstholt, Mariska; Leijten, Alex; Hoentjen, Frank; Peters, Wilbert H. M.; Geert J A Wanten; de Jong, Dirk J.

    2015-01-01

    Introduction The use of thiopurines is frequently accompanied by hepatotoxicity. Studies on hepatocyte cultures showed a time- and dose-dependent increase of thiopurine toxicity. 5-Aminosalicylic acid (5-ASA) and allopurinol can influence thiopurine metabolism; however, it is unknown whether this affects in vitro cytotoxicity. Methods Human hepatoma cells (Huh7, HepG2 and HepaRG) were incubated with increasing concentrations of thiopurines, 5-ASA or allopurinol. Water-soluble tetrazolium salt...

  10. Protein and folic acid content in the maternal diet determine lipid metabolism and response to high-fat feeding in rat progeny in an age-dependent manner

    Chmurzynska, Agata; Stachowiak, Monika; Gawecki, Jan; Pruszynska-Oszmalek, Ewa; Tubacka, Małgorzata

    2011-01-01

    Maternal diet during gestation can exert a long-term effect on the progeny’s health by programming their developmental scheme and metabolism. The aim of this study is to analyze the influence of maternal diet on lipid metabolism in 10- and 16-week-old rats. Pregnant dams were fed one of four diets: a normal protein and normal folic acid diet (NP-NF), a protein-restricted and normal folic acid diet (PR-NF), a protein-restricted and folic-acid-supplemented diet (PR-FS), or a normal protein and ...

  11. Metabolism of α-linolenic acid during incubations with strained bovine rumen contents: products and mechanisms.

    Honkanen, Anne M; Leskinen, Heidi; Toivonen, Vesa; McKain, Nest; Wallace, R John; Shingfield, Kevin J

    2016-06-01

    Description of α-linolenic acid (cis-9,cis-12,cis-15-18 : 3, ALA) metabolism in the rumen is incomplete. Ruminal digesta samples were incubated with ALA and buffer containing water or deuterium oxide to investigate the products and mechanisms of ALA biohydrogenation. Geometric Δ9,11,15-18 : 3 isomers were the main intermediates formed from ALA. An increase in the n+1 isotopomers of Δ9,11,15-18 : 3 was due to 2H labelling at C-13. Isomers of Δ9,11,13-18 : 3, cis-7,cis-12,cis-15-18 : 3 and cis-8,cis-12,cis-15-18 : 3 were also formed. No increase in n+1 isotopomers of Δ7,12,15-18 : 3 or Δ8,12,15-18 : 3 was detected. Enrichment in n+2 isotopomers of 18 : 2 products indicated that ALA metabolism continued via the reduction of 18 : 3 intermediates. Isomers of Δ9,11,15-18 : 3 were reduced to Δ11,15-18 : 2 labelled at C-9 and C-13. ALA resulted in the formation of Δ11,13-18 : 2 and Δ12,14-18 : 2 containing multiple 2H labels. Enrichment of the n+3 isotopomer of Δ12,15-18 : 2 was also detected. Metabolism of ALA during incubations with rumen contents occurs by one of three distinct pathways. Formation of Δ9,11,15-18 : 3 appears to be initiated by H abstraction on C-13. Octadecatrienoic intermediates containing cis-12 and cis-15 double bonds are formed without an apparent H exchange with water. Labelling of Δ9,11,13-18 : 3 was inconclusive, suggesting formation by an alternative mechanism. These findings explain the appearance of several bioactive fatty acids in muscle and milk that influence the nutritional value of ruminant-derived foods. PMID:27087357

  12. Crassulacean acid metabolism-cycling in Euphorbia milii.

    Herrera, Ana

    2013-01-01

    Crassulacean acid metabolism (CAM) occurs in many Euphorbiaceae, particularly Euphorbia, a genus with C3 and C4 species as well. With the aim of contributing to our knowledge of the evolution of CAM in this genus, this study examined the possible occurrence of CAM in Euphorbia milii, a species with leaf succulence and drought tolerance suggestive of this carbon fixation pathway. Leaf anatomy consisted of a palisade parenchyma, a spongy parenchyma and a bundle sheath with chloroplasts, which indicates the possible functioning of C2 photosynthesis. No evidence of nocturnal CO2 fixation was found in plants of E. milii either watered or under drought; watered plants had a low nocturnal respiration rate (R). After 12 days without watering, the photosynthetic rate (P N) decreased 85 % and nocturnal R was nearly zero. Nocturnal H(+) accumulation (ΔH(+)) in watered plants was 18 ± 2 (corresponding to malate) and 18 ± 4 (citrate) μmol H(+) (g fresh mass)(-1). Respiratory CO2 recycling through acid synthesis contributed to a night-time water saving of 2 and 86 % in watered plants and plants under drought, respectively. Carbon isotopic composition (δ(13)C) was -25.2 ± 0.7 ‰ in leaves and -24.7 ± 0.1 ‰ in stems. Evidence was found for the operation of weak CAM in E. milii, with statistically significant ΔH(+), no nocturnal CO2 uptake and values of δ(13)C intermediate between C3 and constitutive CAM plants; ΔH(+) was apparently attributable to both malate and citrate. The results suggest that daily malate accumulation results from recycling of part of the nocturnal respiratory CO2, which helps explain the occurrence of an intermediate value of leaf δ(13)C. Euphorbia milii can be considered as a CAM-cycling species. The significance of the operation of CAM-cycling in E. milii lies in water conservation, rather than carbon acquisition. The possible occurrence of C2 photosynthesis merits research. PMID:23596548

  13. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  14. Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish.

    Semova, Ivana; Carten, Juliana D; Stombaugh, Jesse; Mackey, Lantz C; Knight, Rob; Farber, Steven A; Rawls, John F

    2012-09-13

    Regulation of intestinal dietary fat absorption is critical to maintaining energy balance. While intestinal microbiota clearly impact the host's energy balance, their role in intestinal absorption and extraintestinal metabolism of dietary fat is less clear. Using in vivo imaging of fluorescent fatty acid (FA) analogs delivered to gnotobiotic zebrafish hosts, we reveal that microbiota stimulate FA uptake and lipid droplet (LD) formation in the intestinal epithelium and liver. Microbiota increase epithelial LD number in a diet-dependent manner. The presence of food led to the intestinal enrichment of bacteria from the phylum Firmicutes. Diet-enriched Firmicutes and their products were sufficient to increase epithelial LD number, whereas LD size was increased by other bacterial types. Thus, different members of the intestinal microbiota promote FA absorption via distinct mechanisms. Diet-induced alterations in microbiota composition might influence fat absorption, providing mechanistic insight into how microbiota-diet interactions regulate host energy balance. PMID:22980325

  15. Effect of Dietary Fatty Acids on Human Lipoprotein Metabolism: A Comprehensive Update

    Esther M.M. Ooi

    2015-06-01

    Full Text Available Dyslipidemia is a major risk factor for cardiovascular disease (CVD. Dietary fatty-acid composition regulates lipids and lipoprotein metabolism and may confer CVD benefit. This review updates understanding of the effect of dietary fatty-acids on human lipoprotein metabolism. In elderly participants with hyperlipidemia, high n-3 polyunsaturated fatty-acids (PUFA consumption diminished hepatic triglyceride-rich lipoprotein (TRL secretion and enhanced TRL to low-density lipoprotein (LDL conversion. n-3 PUFA also decreased TRL-apoB-48 concentration by decreasing TRL-apoB-48 secretion. High n-6 PUFA intake decreased very low-density lipoprotein (VLDL cholesterol and triglyceride concentrations by up-regulating VLDL lipolysis and uptake. In a study of healthy subjects, the intake of saturated fatty-acids with increased palmitic acid at the sn-2 position was associated with decreased postprandial lipemia. Low medium-chain triglyceride may not appreciably alter TRL metabolism. Replacing carbohydrate with monounsaturated fatty-acids increased TRL catabolism. Trans-fatty-acid decreased LDL and enhanced high-density lipoprotein catabolism. Interactions between APOE genotype and n-3 PUFA in regulating lipid responses were also described. The major advances in understanding the effect of dietary fatty-acids on lipoprotein metabolism has centered on n-3 PUFA. This knowledge emphasizes the importance of regulating lipoprotein metabolism as a mode to improve plasma lipids and potentially CVD risk. Additional studies are required to better characterize the cardiometabolic effects of other dietary fatty-acids.

  16. Effect of dietary Fatty acids on human lipoprotein metabolism: a comprehensive update.

    Ooi, Esther M M; Watts, Gerald F; Ng, Theodore W K; Barrett, P Hugh R

    2015-06-01

    Dyslipidemia is a major risk factor for cardiovascular disease (CVD). Dietary fatty-acid composition regulates lipids and lipoprotein metabolism and may confer CVD benefit. This review updates understanding of the effect of dietary fatty-acids on human lipoprotein metabolism. In elderly participants with hyperlipidemia, high n-3 polyunsaturated fatty-acids (PUFA) consumption diminished hepatic triglyceride-rich lipoprotein (TRL) secretion and enhanced TRL to low-density lipoprotein (LDL) conversion. n-3 PUFA also decreased TRL-apoB-48 concentration by decreasing TRL-apoB-48 secretion. High n-6 PUFA intake decreased very low-density lipoprotein (VLDL) cholesterol and triglyceride concentrations by up-regulating VLDL lipolysis and uptake. In a study of healthy subjects, the intake of saturated fatty-acids with increased palmitic acid at the sn-2 position was associated with decreased postprandial lipemia. Low medium-chain triglyceride may not appreciably alter TRL metabolism. Replacing carbohydrate with monounsaturated fatty-acids increased TRL catabolism. Trans-fatty-acid decreased LDL and enhanced high-density lipoprotein catabolism. Interactions between APOE genotype and n-3 PUFA in regulating lipid responses were also described. The major advances in understanding the effect of dietary fatty-acids on lipoprotein metabolism has centered on n-3 PUFA. This knowledge emphasizes the importance of regulating lipoprotein metabolism as a mode to improve plasma lipids and potentially CVD risk. Additional studies are required to better characterize the cardiometabolic effects of other dietary fatty-acids. PMID:26043038

  17. Coordinations between gene modules control the operation of plant amino acid metabolic networks

    Galili Gad

    2009-01-01

    Full Text Available Abstract Background Being sessile organisms, plants should adjust their metabolism to dynamic changes in their environment. Such adjustments need particular coordination in branched metabolic networks in which a given metabolite can be converted into multiple other metabolites via different enzymatic chains. In the present report, we developed a novel "Gene Coordination" bioinformatics approach and use it to elucidate adjustable transcriptional interactions of two branched amino acid metabolic networks in plants in response to environmental stresses, using publicly available microarray results. Results Using our "Gene Coordination" approach, we have identified in Arabidopsis plants two oppositely regulated groups of "highly coordinated" genes within the branched Asp-family network of Arabidopsis plants, which metabolizes the amino acids Lys, Met, Thr, Ile and Gly, as well as a single group of "highly coordinated" genes within the branched aromatic amino acid metabolic network, which metabolizes the amino acids Trp, Phe and Tyr. These genes possess highly coordinated adjustable negative and positive expression responses to various stress cues, which apparently regulate adjustable metabolic shifts between competing branches of these networks. We also provide evidence implying that these highly coordinated genes are central to impose intra- and inter-network interactions between the Asp-family and aromatic amino acid metabolic networks as well as differential system interactions with other growth promoting and stress-associated genome-wide genes. Conclusion Our novel Gene Coordination elucidates that branched amino acid metabolic networks in plants are regulated by specific groups of highly coordinated genes that possess adjustable intra-network, inter-network and genome-wide transcriptional interactions. We also hypothesize that such transcriptional interactions enable regulatory metabolic adjustments needed for adaptation to the stresses.

  18. Interpreting expression data with metabolic flux models: predicting Mycobacterium tuberculosis mycolic acid production.

    Caroline Colijn

    2009-08-01

    Full Text Available Metabolism is central to cell physiology, and metabolic disturbances play a role in numerous disease states. Despite its importance, the ability to study metabolism at a global scale using genomic technologies is limited. In principle, complete genome sequences describe the range of metabolic reactions that are possible for an organism, but cannot quantitatively describe the behaviour of these reactions. We present a novel method for modeling metabolic states using whole cell measurements of gene expression. Our method, which we call E-Flux (as a combination of flux and expression, extends the technique of Flux Balance Analysis by modeling maximum flux constraints as a function of measured gene expression. In contrast to previous methods for metabolically interpreting gene expression data, E-Flux utilizes a model of the underlying metabolic network to directly predict changes in metabolic flux capacity. We applied E-Flux to Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB. Key components of mycobacterial cell walls are mycolic acids which are targets for several first-line TB drugs. We used E-Flux to predict the impact of 75 different drugs, drug combinations, and nutrient conditions on mycolic acid biosynthesis capacity in M. tuberculosis, using a public compendium of over 400 expression arrays. We tested our method using a model of mycolic acid biosynthesis as well as on a genome-scale model of M. tuberculosis metabolism. Our method correctly predicts seven of the eight known fatty acid inhibitors in this compendium and makes accurate predictions regarding the specificity of these compounds for fatty acid biosynthesis. Our method also predicts a number of additional potential modulators of TB mycolic acid biosynthesis. E-Flux thus provides a promising new approach for algorithmically predicting metabolic state from gene expression data.

  19. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-22

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  20. Arachidonic acid metabolism in polymorphonuclear leukocytes from patients with chronic granulomatous disease.

    Smith, D. M.; Walsh, C E; DeChatelet, L R; Waite, M.

    1983-01-01

    The effect of the calcium ionophore A23187 on the release and metabolism of [3H]arachidonic acid was examined in normal polymorphonuclear leukocytes and those obtained from patients with chronic granulomatous disease. The ionophore A23187 which stimulates oxidative metabolism in normal polymorphonuclear leukocytes was ineffective in increasing oxidative metabolism (chemiluminescence) in polymorphonuclear leukocytes from patients with chronic granulomatous disease. However, the ionophore A2318...

  1. Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish

    Carten, Juliana Debrito; Bradford, Mary Katherine; Farber, Steven Arthur

    2011-01-01

    Lipids are essential for cellular function as sources of fuel, critical signaling molecules and membrane components. Deficiencies in lipid processing and transport underlie many metabolic diseases. To better understand metabolic function as it relates to disease etiology, a whole animal approach is advantageous, one in which multiple organs and cell types can be assessed simultaneously in vivo. Towards this end, we have developed an assay to visualize fatty acid (FA) metabolism in larval zebr...

  2. Fatty Acid Desaturase Gene Polymorphisms and Metabolic Measures in Schizophrenia and Bipolar Patients Taking Antipsychotics

    Burghardt, Kyle J.; Kristen N. Gardner; Johnson, Joshua W.; Ellingrod, Vicki L.

    2013-01-01

    Atypical antipsychotics have become a common therapeutic option in both schizophrenia and bipolar disorder. However, these medications come with a high risk of metabolic side effects, particularly dyslipidemia and insulin resistance. Therefore, identification of patients who are at increased risk for metabolic side effects is of great importance. The genetics of fatty acid metabolism is one area of research that may help identify such patients. Therefore, in this present study, we aimed to de...

  3. BIOCONCENTRATION AND METABOLISM OF ALL-TRANS RETINOIC ACID BY RANA SYLVATICA AND RANA CLAMITANS TADPOLES

    Retinoids, which are Vitamin A derivatives, are important signaling molecules that regulate processes critical for development in all vertebrates. The objective of our study was to examine uptake and metabolism of all-trans retinoic acid...

  4. Study of Stationary Phase Metabolism Via Isotopomer Analysis of Amino Acids from an Isolated Protein

    Shaikh, AfshanS.; Tang, YinjieJ.; Mukhopadhyay, Aindrila; Martin, Hector Garcia; Gin, Jennifer; Benke, Peter; Keasling, Jay D.

    2009-09-14

    Microbial production of many commercially important secondary metabolites occurs during stationary phase, and methods to measure metabolic flux during this growth phase would be valuable. Metabolic flux analysis is often based on isotopomer information from proteinogenic amino acids. As such, flux analysis primarily reflects the metabolism pertinent to the growth phase during which most proteins are synthesized. To investigate central metabolism and amino acids synthesis activity during stationary phase, addition of fully 13C-labeled glucose followed by induction of green fluorescent protein (GFP) expression during stationary phase was used. Our results indicate that Escherichia coli was able to produce new proteins (i.e., GFP) in the stationary phase, and the amino acids in GFP were mostly from degraded proteins synthesized during the exponential growth phase. Among amino acid biosynthetic pathways, only those for serine, alanine, glutamate/glutamine, and aspartate/asparagine had significant activity during the stationary phase.

  5. Identification and transcriptional profiling of Pseudomonas putida genes involved in furoic acid metabolism

    Furfural (2-furaldehyde) is a furan formed by dehydration of pentose sugars. Pseudomonas putida Fu1 metabolizes furfural through a pathway involving conversion to 2-oxoglutarate, via 2-furoic acid and Coenzyme A intermediates. To identify genes involved in furan metabolism, two P. putida transposo...

  6. Systems biology and metabolic engineering of lactic acid bacteria for improved fermented foods

    Flahaut, N.A.L.; Vos, de W.M.

    2014-01-01

    Lactic acid bacteria have long been used in industrial dairy and other food fermentations that make use of their metabolic activities leading to products with specific organoleptic properties. Metabolic engineering is a rational approach to steer fermentations toward the production of desired compou

  7. Genome-wide association studies for fatty acid metabolic traits in five divergent pig populations

    Zhang, Wanchang; Bin Yang; Zhang, Junjie; Cui, Leilei; Ma, Junwu; Chen, Congying; Ai, Huashui; Xiao, Shijun; Ren, Jun; Huang, Lusheng

    2016-01-01

    Fatty acid composition profiles are important indicators of meat quality and tasting flavor. Metabolic indices of fatty acids are more authentic to reflect meat nutrition and public acceptance. To investigate the genetic mechanism of fatty acid metabolic indices in pork, we conducted genome-wide association studies (GWAS) for 33 fatty acid metabolic traits in five pig populations. We identified a total of 865 single nucleotide polymorphisms (SNPs), corresponding to 11 genome-wide significant loci on nine chromosomes and 12 suggestive loci on nine chromosomes. Our findings not only confirmed seven previously reported QTL with stronger association strength, but also revealed four novel population-specific loci, showing that investigations on intermediate phenotypes like the metabolic traits of fatty acids can increase the statistical power of GWAS for end-point phenotypes. We proposed a list of candidate genes at the identified loci, including three novel genes (FADS2, SREBF1 and PLA2G7). Further, we constructed the functional networks involving these candidate genes and deduced the potential fatty acid metabolic pathway. These findings advance our understanding of the genetic basis of fatty acid composition in pigs. The results from European hybrid commercial pigs can be immediately transited into breeding practice for beneficial fatty acid composition. PMID:27097669

  8. Engineering Escherichia Coli Fatty Acid Metabolism for the Production of Biofuel Precursors

    Ford, Tyler John

    2015-01-01

    Medium chain fatty acids (MCFAs, 6-12 carbons) are potential precursors to biofuels with properties similar to gasoline and diesel fuel but are not native products of Escherichia coli fatty acid synthesis. Herein we engineer E. coli to produce, metabolize, and activate MCFAs for their future reduction into alcohols and alkanes (potential biofuels). We develop an E. coli strain with an octanoate (8-carbon MCFA) producing enzyme (a thioesterase), metabolic knockouts, and the capa...

  9. Regulation of Fatty Acid Metabolism by Cell Autonomous Circadian Clocks: Time to Fatten up on Information?*

    Bray, Molly S; Young, Martin E.

    2011-01-01

    Molecular, cellular, and animal-based studies have recently exposed circadian clocks as critical regulators of energy balance. Invariably, mouse models of genetically manipulated circadian clock components display features indicative of altered lipid/fatty acid metabolism, including differential adiposity and circulating lipids. The purpose of this minireview is to provide a comprehensive summary of current knowledge regarding the regulation of fatty acid metabolism by distinct cell autonomou...

  10. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy

    Lee, Ting-I; Kao, Yu-Hsun; Tsai, Wen-Chin; Chung, Cheng-Chih; Chen, Yao-Chang; Chen, Yi-Jen

    2016-01-01

    Peroxisome proliferator-activated receptors (PPARs) regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC) inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM) cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used...

  11. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise

    Catoire, Milène; Alex, Sheril; Paraskevopulos, Nicolas; Mattijssen, Frits; Evers-van Gogh, Inkie; Schaart, Gert; Jeppesen, Jacob; Kneppers, Anita; Mensink, Marco; Voshol, Peter J.; Olivecrona, Gunilla; Tan, Nguan Soon; Hesselink, Matthijs K. C.; Berbée, Jimmy F.; Rensen, Patrick C N

    2014-01-01

    Physical exercise causes profound changes in energy metabolism in humans. In this study we show that resting skeletal muscle has a crucial role in the metabolic response to acute exercise. During endurance exercise, selective induction of the protein angiopoietin-like 4 (ANGPTL4) in nonexercising muscle reduces local fatty acid uptake, presumably to prevent fat overload, while directing fatty acids to the active skeletal muscle as fuel. Our data thus suggest that nonexercising muscle has a ke...

  12. Studies on amino acid metabolism in Lathyrus sativus Biosynthesis of homoserine and O-oxalylhomoserine

    J. Przybylska

    2015-05-01

    Full Text Available Examination of free amino acid pool in Lathyrus sativus showed a rapid increase of homoserine and O-oxalylhomoserine during germination. Isotopic experiments indicated that aspartic acid was an effective precursor of homoserine in Lathyrus sativus and suggested oxalic acid to be incorporated into O-oxalylhomiaserine as an intact moiety. Similar trends of amino acid metabolism of Lathyrus sativus and of Pisum sativum have been discussed.

  13. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle.

    Wataru Mizunoya

    Full Text Available Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA-rich, fish oil (n-3 PUFA-rich, or lard (low in PUFAs were administered to the rats for 4 weeks. Myosin heavy chain (MyHC isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.

  14. Mechanism of long chain monoenoic fatty acids acting on the energy metabolism of heart

    The oxidation of 1-14C-erucic (Csub(22:1)) and 1-14C-nervonic (Csub(24:1)) acid was studied compared to 1-14C-palmitic and -oleic acid in isolated rat and pig heart mitochondria. After mitochondrial incubation with the albumin-bound fatty acids only small amounts of 14CO2 developed from the oxidation of the long chain monoenoic acids as compared to palmitic or oleic acid. The slow down of the oxidation rate was more pronounced in rat than in pig heart mitochondria. The oxidation of palmitic or oleic acid was not found to be inhibited by the C20-C24-monoeneic acids, whereas palmitic or oleic acid inhibited the oxidation of erucic acid competitively. From present findings an idea may be developed of the interference on fatty acid metabolism in heart muscle by erucic and other long chain monenoic acids. (orig.)

  15. Zonation of glucose and fatty acid metabolism in the liver : Mechanism and metabolic consequences

    Hijmans, Brenda S.; Greffiorst, Aldo; Oosterveer, Maaike H.; Groen, Albert K.

    2014-01-01

    The liver is generally considered as a relatively homogeneous organ containing four different cell types. It is however well-known that the liver is not homogeneous and consists of clearly demarcated metabolic zones. Hepatocytes from different zones show phenotypical heterogeneity in metabolic featu

  16. Particle properties of sugar maple hemicellulose hydrolysate and its influence on growth and metabolic behavior of Pichia stipitis.

    Sun, Zhijie; Shupe, Alan; Liu, Tingjun; Hu, Ruofei; Amidon, Thomas E; Liu, Shijie

    2011-01-01

    In this study the influence of the insoluble solids in nano-filtrated sugar maple hemicellulosic hydrolysate on the metabolic behavior of Pichia stiptis was investigated. The particle properties of hemicellulosic hydrolysate were analyzed. Phosphoric acid and ammonium (PA) were applied to remove the particles. The metabolic behavior and growth property of P. stipitis in particle--removed hydrolysate was measured. Results demonstrated that the average particle size and zeta potential of the untreated hydrolysate were 2266.9±78.2 nm and -6.09±0.49 mV. Xylose consumption and ethanol production rate were significantly decreased when particle content is greater than 1.63 g/L. Because the majority of particles (34 g/L) were removed from hydrolysates by phosphoric acid and ammonium treatment, the fermentability of the hydrolysate was significantly improved. These results indicated particles play an important role in hydrolysate inhibition effect. PMID:20855196

  17. Fatty Acid Biosynthesis Revisited: Structure Elucidation and Metabolic Engineering

    Beld, Joris; Lee, D. John; Burkart, Michael D.

    2014-01-01

    Fatty acids are primary metabolites synthesized by complex, elegant, and essential biosynthetic machinery. Fatty acid synthases resemble an iterative assembly line, with an acyl carrier protein conveying the growing fatty acid to necessary enzymatic domains for modification. Each catalytic domain is a unique enzyme spanning a wide range of folds and structures. Although they harbor the same enzymatic activities, two different types of fatty acid synthase architectures are observed in nature. ...

  18. Metabollic Engineering of Saccharomyces Cereviae a,omi acid metabolism for production of products of industrial interest

    Chen, Xiao

    -based processes. This study has focused on metabolic engineering of the amino acid metabolism in S. cerevisiae for production of two types of chemicals of industrial interest. The first chemical is δ-(L-α-aminoadipyl)–L-cysteinyl–D-valine (LLD-ACV). ACV belongs to non-ribosomal peptides (NRPs), which are...... synthesized by specific peptide synthetases and have a broad range of biological and pharmacological properties. Due to the scarcity of the production of NRPs in nature and the difficulties in their chemical synthesis, it was initiated here to develop S. cerevisiae as a platform for microbial production of...

  19. Genomic and Metabolic Disposition of Non-Obese Type 2 Diabetic Rats to Increased Myocardial Fatty Acid Metabolism

    Devanathan, Sriram; Nemanich, Samuel T.; Kovacs, Attila; Fettig, Nicole; Gropler, Robert J.; Shoghi, Kooresh I.

    2013-01-01

    Lipotoxicity of the heart has been implicated as a leading cause of morbidity in Type 2 Diabetes Mellitus (T2DM). While numerous reports have demonstrated increased myocardial fatty acid (FA) utilization in obese T2DM animal models, this diabetic phenotype has yet to be demonstrated in non-obese animal models of T2DM. Therefore, the present study investigates functional, metabolic, and genomic differences in myocardial FA metabolism in non-obese type 2 diabetic rats. The study utilized Goto-K...

  20. Hyaluronic acid metabolism is increased in unstable plaques

    P.T. Bot; G. Pasterkamp; M.J. Goumans; C. Strijder; F.L. Moll; J.P. de Vries; S.T. Pals; D.P. de Kleijn; J.J. Piek; I.E. Hoefer

    2010-01-01

    P>Background Hyaluronic acid is expressed in atherosclerotic lesions, but its exact role in atherosclerotic disease remains unknown. As degradation of hyaluronic acid by hyaluronidase into low molecular weight hyaluronic acid (LMW-HA) is associated with inflammation and Matrix Metalloproteinase (MMP

  1. Occurrence and metabolism of 7-hydroxy-2-indolinone-3-acetic acid in Zea mays

    Lewer, P.; Bandurski, R. S.

    1987-01-01

    7-Hydroxy-2-indolinone-3-acetic acid was identified as a catabolite of indole-3-acetic acid in germinating kernels of Zea mays and found to be present in amounts of ca 3.1 nmol/kernel. 7-Hydroxy-2-indolinone-3-acetic acid was shown to be a biosynthetic intermediate between 2-indolinone-3-acetic acid and 7-hydroxy-2-indolinone-3-acetic acid-7'-O-glucoside in both kernels and roots of Zea mays. Further metabolism of 7-hydroxy-2-[5-3H]-indolinone-3-acetic acid-7'-O-glucoside occurred to yield tritiated water plus, as yet, uncharacterized products.

  2. Soybean Aphid Infestation Induces Changes in Fatty Acid Metabolism in Soybean.

    Charles Kanobe

    Full Text Available The soybean aphid (Aphis glycines Matsumura is one of the most important insect pests of soybeans in the North-central region of the US. It has been hypothesized that aphids avoid effective defenses by inhibition of jasmonate-regulated plant responses. Given the role fatty acids play in jasmonate-induced plant defenses, we analyzed the fatty acid profile of soybean leaves and seeds from aphid-infested plants. Aphid infestation reduced levels of polyunsaturated fatty acids in leaves with a concomitant increase in palmitic acid. In seeds, a reduction in polyunsaturated fatty acids was associated with an increase in stearic acid and oleic acid. Soybean plants challenged with the brown stem rot fungus or with soybean cyst nematodes did not present changes in fatty acid levels in leaves or seeds, indicating that the changes induced by aphids are not a general response to pests. One of the polyunsaturated fatty acids, linolenic acid, is the precursor of jasmonate; thus, these changes in fatty acid metabolism may be examples of "metabolic hijacking" by the aphid to avoid the induction of effective defenses. Based on the changes in fatty acid levels observed in seeds and leaves, we hypothesize that aphids potentially induce interference in the fatty acid desaturation pathway, likely reducing FAD2 and FAD6 activity that leads to a reduction in polyunsaturated fatty acids. Our data support the idea that aphids block jasmonate-dependent defenses by reduction of the hormone precursor.

  3. Interactions between prebiotics, probiotics, polyunsaturated fatty acids and polyphenols: diet or supplementation for metabolic syndrome prevention?

    Peluso, Ilaria; Romanelli, Luca; Palmery, Maura

    2014-05-01

    The metabolic syndrome can be prevented by the Mediterranean diet, characterized by fiber, omega-3 polyunsaturated fatty acids and polyphenols. However, the composition of the Mediterranean diet, which can be viewed as a natural multiple supplement, is poorly controlled, and its beneficial effects poorly predictable. The metabolic syndrome is associated with intestinal dysbiosis and the gut microbioma seems to be the main target and player in the interactions occurring between probiotics, prebiotics, omega 3 polyunsaturated fatty acids, and polyphenols. From the reviewed evidence, it is reasonable to manage growth and metabolism of gut microflora with specific prebiotics and polyphenols. Even though the healthy properties of functional foods and nutraceuticals still need to be fully elucidated, available data suggest that well-designed supplements, containing the better ratio of omega-3 polyunsaturated fatty acids and antioxidants, specific probiotic strains, and selected polyphenols and prebiotics, could be useful in metabolic syndrome prevention and treatment. PMID:24467635

  4. Dissolution kinetics of nickel laterite ore using different secondary metabolic acids

    S. Sahu

    2011-06-01

    Full Text Available The dissolution kinetics of nickel laterite ore in aqueous acid solutions of three metabolic acids, i.e., citric acid, oxalic acid and acetic acid were investigated in a batch reactor individually. It was determined that experimental data comply with a shrinking core model. The diffusion coefficients for citric acid, oxalic acid and acetic acid were found to be 1.99×10-9 cm²/s, 2.59×10-8 cm²/s and 1.92×10-10 cm²/s respectively. The leaching ability of each acid was observed and it was found that oxalic acid was better than the other two.

  5. Metabolic fate of poly-(lactic-co-glycolic acid-based curcumin nanoparticles following oral administration

    Harigae T

    2016-06-01

    Full Text Available Takahiro Harigae,1 Kiyotaka Nakagawa,1 Taiki Miyazawa,2 Nao Inoue,3 Fumiko Kimura,1 Ikuo Ikeda,3 Teruo Miyazawa4,5 1Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan; 2Vascular Biology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA; 3Laboratory of Food and Biomolecular Science, Graduate School of Agricultural Science, 4Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center, 5Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan Purpose: Curcumin (CUR, the main polyphenol in turmeric, is poorly absorbed and rapidly metabolized following oral administration, which severely curtails its bioavailability. Poly-(lactic-co-glycolic acid-based CUR nanoparticles (CUR-NP have recently been suggested to improve CUR bioavailability, but this has not been fully verified. Specifically, no data are available about curcumin glucuronide (CURG, the major metabolite of CUR found in the plasma following oral administration of CUR-NP. Herein, we investigated the absorption and metabolism of CUR-NP and evaluated whether CUR-NP improves CUR bioavailability.Methods: Following oral administration of CUR-NP in rats, we analyzed the plasma and organ distribution of CUR and its metabolites using high-performance liquid chromatography-tandem mass spectrometry. To elucidate the mechanism of increased intestinal absorption of CUR-NP, we prepared mixed micelles comprised of phosphatidylcholine and bile salts and examined the micellar solubility of CUR-NP. Additionally, we investigated the cellular incorporation of the resultant micelles into differentiated Caco-2 human intestinal cells.Results: Following in vivo administration of CUR-NP, CUR was effectively absorbed and present mainly as CURG in the plasma which contained significant amounts of the metabolite compared with

  6. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism

    Rui Zhang

    2015-06-01

    Full Text Available Retinoic acid (RA, an active metabolite of vitamin A (VA, is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs and retinoid X receptors (RXRs. RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism.

  7. Oral retinoic acid metabolism blocking agent Rambazole for plaque psoriasis: an immunohistochemical study.

    Bovenschen, H.J.; Kooijmans-Otero, M.E.; Langewouters, A.M.G.; Vlijmen-Willems, I.M.J.J. van; Rens, D.W.A. van; Seyger, M.M.B.; Kerkhof, P.C.M. van de

    2007-01-01

    BACKGROUND: The novel systemic all-trans retinoic acid metabolism blocking agent (RAMBA) R115866 (Rambazole(TM); Barrier Therapeutics, Geel, Belgium; further referred to as rambazole) increases intracellular levels of endogenous all-trans retinoic acid (RA). Well-known effects of RA are normalizatio

  8. No indications for altered essential fatty acid metabolism in two murine models for cystic fibrosis

    Werner, A; Bongers, MEJ; Bijvelds, MJ; de Jonge, HR; Verkade, HJ

    2004-01-01

    A deficiency of essential fatty acids (EFA) is frequently described in cystic fibrosis (CF), but whether this is a primary consequence of altered EFA metabolism or a secondary phenomenon is unclear. It was suggested that defective long-chain polyunsaturated fatty acid (LCPUFA) synthesis contributes

  9. Bile acids modulate glucocorticoid metabolism and the hypothalamic-pituitary-adrenal axis in obstructive jaundice

    McNeilly, Alison D; Macfarlane, David P; O'Flaherty, Emmett;

    2010-01-01

    Suppression of the hypothalamic-pituitary-adrenal axis occurs in cirrhosis and cholestasis and is associated with increased concentrations of bile acids. We investigated whether this was mediated through bile acids acting to impair steroid clearance by inhibiting glucocorticoid metabolism by 5bet...

  10. Branched chain amino acids requirements and metabolism in pigs

    Assadi Soumeh, Elham

    2015-01-01

    investigation. A non-targeted metabolomics study was thereafter conducted in order to screen the bio-fluids of pigs for discriminating metabolites and identify biomarkers of BCAA, when the pigs were fed the optimum level of BCAA for the highest growth performance. The results of the Ile dose-response study...... requirements at 0.93. Metabolomics, one of the last “-omics”, is a global analysis and interpretation of metabolome in specific health or nutritional status. Non-targeted metabolomics is used for screening the metabolic profile, and the metabolic signature could be used for hypothesis generation. The results...... of a non-targeted LC-MS metabolomics approach in the current study provided novel knowledge of the metabolic response of pigs to increasing dietary BCAA and enabled us to identify the biomarkers of BCAA in plasma and urine of pigs when fed the optimum dietary Ile, Val, and Leu for the highest growth...

  11. Topographical body fat distribution links to amino acid and lipid metabolism in healthy obese women [corrected].

    Francois-Pierre J Martin

    Full Text Available Visceral adiposity is increasingly recognized as a key condition for the development of obesity related disorders, with the ratio between visceral adipose tissue (VAT and subcutaneous adipose tissue (SAT reported as the best correlate of cardiometabolic risk. In this study, using a cohort of 40 obese females (age: 25-45 y, BMI: 28-40 kg/m(2 under healthy clinical conditions and monitored over a 2 weeks period we examined the relationships between different body composition parameters, estimates of visceral adiposity and blood/urine metabolic profiles. Metabonomics and lipidomics analysis of blood plasma and urine were employed in combination with in vivo quantitation of body composition and abdominal fat distribution using iDXA and computerized tomography. Of the various visceral fat estimates, VAT/SAT and VAT/total abdominal fat ratios exhibited significant associations with regio-specific body lean and fat composition. The integration of these visceral fat estimates with metabolic profiles of blood and urine described a distinct amino acid, diacyl and ether phospholipid phenotype in women with higher visceral fat. Metabolites important in predicting visceral fat adiposity as assessed by Random forest analysis highlighted 7 most robust markers, including tyrosine, glutamine, PC-O 44∶6, PC-O 44∶4, PC-O 42∶4, PC-O 40∶4, and PC-O 40∶3 lipid species. Unexpectedly, the visceral fat associated inflammatory profiles were shown to be highly influenced by inter-days and between-subject variations. Nevertheless, the visceral fat associated amino acid and lipid signature is proposed to be further validated for future patient stratification and cardiometabolic health diagnostics.

  12. Influence of p53-regulated energy metabolism in radiation effects

    p53 is a hot spot in the studies of tumor etiology and radiobiology, but the function of p53-regulated energy metabolism in radiation biological effects still remains many uncertainties. The in-depth study of p53-regulated energy metabolism is of great significance to investigate the tumor radiotherapy efficacy, radiation damage, carcinogenesis and even molecular epidemiology. The current research progress at this point was stated in this article. (authors)

  13. Docosahexaenoic Acid Levels in Blood and Metabolic Syndrome in Obese Children: Is There a Link?

    Carlotta Lassandro

    2015-08-01

    Full Text Available Prevalence of metabolic syndrome is increasing in the pediatric population. Considering the different existing criteria to define metabolic syndrome, the use of the International Diabetes Federation (IDF criteria has been suggested in children. Docosahexaenoic acid (DHA has been associated with beneficial effects on health. The evidence about the relationship of DHA status in blood and components of the metabolic syndrome is unclear. This review discusses the possible association between DHA content in plasma and erythrocytes and components of the metabolic syndrome included in the IDF criteria (obesity, alteration of glucose metabolism, blood lipid profile, and blood pressure and non-alcoholic fatty liver disease in obese children. The current evidence is inconsistent and no definitive conclusion can be drawn in the pediatric population. Well-designed longitudinal and powered trials need to clarify the possible association between blood DHA status and metabolic syndrome.

  14. Metabolism of fatty acids in rat brain in microsomal membranes

    Using a technique in which substrate fatty acids are incorporated into microsomal membranes followd by comparison of their rates of desaturation or elongation with those of exogenous added fatty acids it has been found that the desaturation rate is more rapid for the membrane-bound substrate than for the added fatty acid. Moreover, the product of the membrane-bound substrate is incorporated into membrane phospholipid whereas the product of the exogenous substrate is found in di- and triacyl glycerols and in free fatty acids as well. These and other findings point to a normal sequence of reaction of membrane liqids with membrane-bound substrates involving transfer of fatty acid from phospholipid to the coupled enzyme systems without ready equilibration with the free fatty acid pool

  15. Polymorphisms in fatty acid metabolism-related genes are associated with colorectal cancer risk

    Hoeft, B.; Linseisen, J.; Beckmann, L.; Muller-Decker, K.; Canzian, F.; Husing, A.; Kaaks, R.; Vogel, Ulla Birgitte; Jakobsen, M.U.; Overvad, K.; Hansen, R.D.; Knuppel, S.; Boeing, H.; Trichopoulou, A.; Koumantaki, Y.; Trichopoulos, D.; Berrino, F.; Palli, D.; Panico, S.; Tumino, R.; Bueno-de-Mesquita, H.B.; van Duijnhoven, F.J.B.; van Gils, C.H.; Peeters, P.H.; Dumeaux, V.; Lund, E.; Castano, J.M.H.; Munoz, X.; Rodriguez, L.; Barricarte, A.; Manjer, J.; Jirstrom, K.; Van Guelpen, B.; Hallmans, G.; Spencer, E.A.; Crowe, F.L.; Khaw, K.T.; Wareham, N.; Morois, S.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Chajes, V.; Jenab, M.; Boffetta, P.; Vineis, P.; Mouw, T.; Norat, T.; Riboli, E.; Nieters, A.

    2010-01-01

    as contributing factor to colon carcinogenesis. We examined the association between genetic variability in 43 fatty acid metabolism-related genes and colorectal risk in 1225 CRC cases and 2032 controls participating in the European Prospective Investigation into Cancer and Nutrition study. Three......Colorectal cancer (CRC) is the third most common malignant tumor and the fourth leading cause of cancer death worldwide. The crucial role of fatty acids for a number of important biological processes suggests a more in-depth analysis of inter-individual differences in fatty acid metabolizing genes...

  16. Iodomethylated fatty acid metabolism in mice and dogs

    Fagret, D.; Wolf, J.E.; Pilichowski, P.; Mathieu, J.P.; Pernin, C.; Apparu, M.; Arvieux, C.; Cuchet, P.; Vidal, M.; Comet, M.

    1988-12-01

    The myocardial uptake of fatty acids labeled with radioactive iodine and injected i.v. can only be evaluated with SPECT if their oxidation kinetics is slow enough. For this reason, we evaluated different iodomethylated fatty acids in mice and dogs to determine which of them shows the highest myocardial uptake and the slowest oxidation. The most suitable was found to be 16-iodo-3-methyl hexadecanoic acid (mono ..beta..) since its myocardial fixation was the same as that of the reference, i.e. 16-iodo-9-hexadecenoic acid (IHA), whereas it was degraded more slowly. Thirty min after injection of mono ..beta.. into dogs, the decrease in myocardial activity with respect to the maximum was two fold less than after IHA injection. The myocardial uptake of the two dimethylated fatty acids studied, i.e. 16-iodo-2,2-methyl hexadecanoic acid and 16-iodo-3,3-methyl hexadecanoic acid, was less than that of IHA in mice and dogs. In the latter, the myocardial uptake was so small that we were unable to study the time course of its activity. Consequently, these dimethylated fatty acids are not suitable for the study of the myocardial uptake of fatty acids in man.

  17. Iodomethylated fatty acid metabolism in mice and dogs

    The myocardial uptake of fatty acids labeled with radioactive iodine and injected i.v. can only be evaluated with SPECT if their oxidation kinetics is slow enough. For this reason, we evaluated different iodomethylated fatty acids in mice and dogs to determine which of them shows the highest myocardial uptake and the slowest oxidation. The most suitable was found to be 16-iodo-3-methyl hexadecanoic acid (mono β) since its myocardial fixation was the same as that of the reference, i.e. 16-iodo-9-hexadecenoic acid (IHA), whereas it was degraded more slowly. Thirty min after injection of mono β into dogs, the decrease in myocardial activity with respect to the maximum was two fold less than after IHA injection. The myocardial uptake of the two dimethylated fatty acids studied, i.e. 16-iodo-2,2-methyl hexadecanoic acid and 16-iodo-3,3-methyl hexadecanoic acid, was less than that of IHA in mice and dogs. In the latter, the myocardial uptake was so small that we were unable to study the time course of its activity. Consequently, these dimethylated fatty acids are not suitable for the study of the myocardial uptake of fatty acids in man. (orig.)

  18. Influence of tacrolimus on glucose metabolism before and after renal transplantation : a prospective study

    Duijnhoven, E M; Boots, J M; Christiaans, M H; Wolffenbuttel, B H; Van Hooff, J P

    2001-01-01

    Most studies concerning the influence of tacrolimus on glucose metabolism have been performed either in animals or after organ transplantation. These clinical studies have largely been transversal with patients who were using steroids. Therefore, this prospective, longitudinal study investigated the

  19. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder.

    McNamara, Robert K; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Stanford, Kevin E; Hahn, Chang-Gyu; Richtand, Neil M

    2008-09-30

    Previous antemortem and postmortem tissue fatty acid composition studies have observed significant deficits in the omega-3 fatty acid docosahexaenoic acid (DHA, 22:6n-3) in red blood cell (RBC) and postmortem cortical membranes of patients with unipolar depression. In the present study, we determined the fatty acid composition of postmortem orbitofrontal cortex (OFC, Brodmann area 10) of patients with bipolar disorder (n=18) and age-matched normal controls (n=19) by gas chromatography. After correction for multiple comparisons, DHA (-24%), arachidonic acid (-14%), and stearic acid (C18:0) (-4.5%) compositions were significantly lower, and cis-vaccenic acid (18:1n-7) (+12.5%) composition significantly higher, in the OFC of bipolar patients relative to normal controls. Based on metabolite:precursor ratios, significant elevations in arachidonic acid, stearic acid, and palmitic acid conversion/metabolism were observed in the OFC of bipolar patients, and were inversely correlated with DHA composition. Deficits in OFC DHA and arachidonic acid composition, and elevations in arachidonic acid metabolism, were numerically (but not significantly) greater in drug-free bipolar patients relative to patients treated with mood-stabilizer or antipsychotic medications. OFC DHA and arachidonic acid deficits were greater in patients plus normal controls with high vs. low alcohol abuse severity. These results add to a growing body of evidence implicating omega-3 fatty acid deficiency as well as the OFC in the pathoaetiology of bipolar disorder. PMID:18715653

  20. Phytic acid and raffinose series oligosaccharides metabolism in developing chickpea seeds

    Zhawar, Vikramjit Kaur; Kaur, Narinder; Gupta, Anil Kumar

    2011-01-01

    Phytic acid and raffinose series oligosaccharides (RFOs) have anti-nutritional properties where phytic acid chelates minerals and reduces their bioavailability to humans and other animals, and RFOs cause flatulence. Both phytic acid and RFOs cannot be digested by monogastric animals and are released as pollutant-wastes. Efforts are being made to reduce the contents of these factors without affecting the viability of seeds. This will require a thorough understanding of their metabolism in diff...

  1. Nitrogen and amino acid metabolism in dairy cows

    Tamminga, S.

    1981-01-01

    For the process of milk production, the dairy cow requires nutrients of which energy supplying nutrients and protein or amino acid supplying nutrients are the most important. Amino acid supplying nutrients have to be absorbed from the small intestine and the research reported in this thesis mainly c

  2. INFLUENCE OF THE COMBINED ANTIHYPERTENSIVE THERAPY ON METABOLIC PROFILE AND CEREBRAL BLOOD FLOW IN PATIENTS WITH METABOLIC SYNDROME

    E. M. Idrisova; T. P. Kalashnikova; I. Yu. Efimova

    2016-01-01

    Aim. To study influence of the combined antihypertensive therapy on blood pressure (BP), glucose and lipid metabolism as well as cerebral blood flow in patients with metabolic syndrome (МS)Material and methods. 60 patients with MS aged of 35-65 y.o. were included in the study. 29 patients of the 1st group received verapamil SR (240 mg once daily) and indapamide retard (1,5 mg once daily). 31 patients of the 2nd group received verapamil SR (240 mg once daily) and enalapril (12,2±5,9 mg BID). A...

  3. Iodine 125-phenylpentadecanoic acid and its beta-methyl substitute metabolism in cultured mouse embryonal myocytes

    Iodine-labelled fatty acids have been proposed as new tracers of cardiac metabolisms. However, it is not clear how these tracers would reflect the intracellular metabolism. Therefore, we measured the uptake and release of iodine 125-labelled phenylpentadecanoic acid (IPPA), its β-methyl substitute (BMIPP) and 201Tl in cultured myocytes of mouse embryos, and compared these values to intracellular adenosine triphosphate (ATP) content after metabolic inhibitions of oxidative phosphorylation by sodium cyanide (CN), glycolysis by 2-deoxyglucose (2-DG) or fatty acid β-oxidation by lactate. The uptake and release of BMIPP was not changed by any inhibitors suggesting BMIPP would not be metabolized in the myocytes. The uptake of IPPA was significantly reduced by 2DG and 60-80% of IPPA was metabolized to hydrophilic catabolites. The correlation of BMIPP and IPPA uptake to intracellular ATP content were high (r=0.89, p201Tl to ATP values (r=0.53, n.s.). These results suggested that iodine-labelled fatty acids could be used as better tracers of myocardial metabolism than 201Tl. (author)

  4. Metabolism of Aromatic Amino Acids during the Growth Cycle of Batch Suspension Cultures of Catharanthus roseus

    Nagaoka, Noriko; ASHIHARA, Hiroshi

    1988-01-01

    Profiles of the levels and metabolism of aromatic compounds in suspension-cultured cells of Catharanthus roseus during the growth cycle were determined. The level of total protein-amino acids, i.e., sum of the amounts of amino acids in hydrolyzates of proteins, and the level of total phenolic acids increased after transfer of the cells in the stationary phase to fresh Murashige-Skoog medium. The maximum levels of the proteinamino acids and those of the phenolic acids were observed on days 3-5...

  5. Effect of salicylic acid on the growth photosynthesis and carbohydrate metabolism in salt stressed maize plants

    Aqueous solutions of salicylic acid as a spray to Na CI-treated corn (Zea mays L,) significantly increased the growth of shoots and roots as measured after seven days of treatment. Spraying of salicylic acid caused significant increases in the activity of both ribulose 1,5 bisphosphate carboxylase (rubisco) enzyme and photosynthetic pigments. Moreover, salicylic acid treatment induced high values of soluble carbohydrate fractions in salt stressed plants as compared with salicylic acid treated samples. These data suggest that salicylic acid might improve the growth pattern of NaCl-treated maize plants via increasing the rate of photosynthesis and carbohydrate metabolism

  6. Transport and metabolism of fumaric acid in Saccharomyces cerevisiae in aerobic glucose-limited chemostat culture.

    Shah, Mihir V; van Mastrigt, Oscar; Heijnen, Joseph J; van Gulik, Walter M

    2016-04-01

    Currently, research is being focused on the industrial-scale production of fumaric acid and other relevant organic acids from renewable feedstocks via fermentation, preferably at low pH for better product recovery. However, at low pH a large fraction of the extracellular acid is present in the undissociated form, which is lipophilic and can diffuse into the cell. There have been no studies done on the impact of high extracellular concentrations of fumaric acid under aerobic conditions in S. cerevisiae, which is a relevant issue to study for industrial-scale production. In this work we studied the uptake and metabolism of fumaric acid in S. cerevisiae in glucose-limited chemostat cultures at a cultivation pH of 3.0 (pH exporting fumaric acid. We observed that fumaric acid entered the cells most likely via passive diffusion of the undissociated form. Approximately two-thirds of the fumaric acid in the feed was metabolized together with glucose. From metabolic flux analysis, an increased ATP dissipation was observed only at high intracellular concentrations of fumarate, possibly due to the export of fumarate via an ABC transporter. The implications of our results for the industrial-scale production of fumaric acid are discussed. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26683700

  7. The role of free fatty acids in the inflammatory and cardiometabolic profile in adolescents with metabolic syndrome engaged in interdisciplinary therapy.

    Masquio, Deborah Cristina Landi; de Piano-Ganen, Aline; Oyama, Lila Missae; Campos, Raquel Munhoz da Silveira; Santamarina, Aline Boveto; de Souza, Gabriel Inácio de Morais Honorato; Gomes, Aline Dal'Olio; Moreira, Renata Guimarães; Corgosinho, Flávia Campos; do Nascimento, Claudia Maria Oller; Tock, Lian; Tufik, Sergio; de Mello, Marco Túlio; Dâmaso, Ana R

    2016-07-01

    The purpose of the present study was to evaluate if interdisciplinary therapy can influence the cardiometabolic and serum free fatty acid profile. The second aim was to evaluate if there is an association between serum free fatty acids, inflammation and cardiometabolic biomarkers in obese adolescents with and without metabolic syndrome submitted to a long-term interdisciplinary therapy. The study involved 108 postpuberty obese adolescents, who were divided according to metabolic syndrome (MetS) diagnosis: MetS (n=32) and Non-MetS (n=76). The interdisciplinary therapy consisted of a 1-year period of nutrition, psychology, physical exercise and clinical support. After therapy, both groups improved metabolic, inflammatory (leptin, adiponectin, leptin/adiponectin ratio, adiponectin/leptin ratio and C-reactive protein) and cardiometabolic profile (PAI-1 and ICAM). Metabolic syndrome prevalence reduced from 28.70% to 12.96%. Both groups reduced myristic acid (C14:0) and increased docosahexaenoic acid (DHA, C22:6n3), heneicosapentaenoic acid (HPA, C21:5n3) and arachidonic acid (C20:4n6). After adjustment for metabolic syndrome and the number of metabolic syndrome parameters, multiple regression analysis showed that changes in VCAM and PAI-1 were negatively associated with changes in cis-linoleic acid (C18:2n6c). Additionally, changes in trans-linoleic acid (C18:2n6t) were also positively associated with these biomarkers. Moreover, leptin and leptin/adiponectin ratio were negatively associated with changes in docosapentaenoic acid (DPA, C22:5n3) and stearidonic acid (SDA, C18:4n3). Adiponectin/leptin ratio was positively associated with docosapentaenoic acid (DPA, C22:5n3). Changes in adiponectin were positively correlated with changes in omega 3, such as heneicosapentaenoic acid (HPA, C21:5n3) and docosapentaenoic acid (DPA, C22:5n3). Results support that interdisciplinary therapy can control inflammatory and cardiometabolic profile in obese adolescents. Moreover, serum

  8. Influence of anaesthesia on energy metabolism in surgery

    Prigorodov М.V.

    2013-03-01

    Full Text Available The purpose of the article is to establish adequacy of protection of energy metabolism in a patient under anaes-thesiology in cholecystectomy from mini-access. Material et methods: 122 patients subjected to cholecystectomy from mini access have been surveyed. Among them 92 patients have got intravenous general anaesthesia with AVL, 30 patients have got prolonged epidural anaesthesia on spontaneous breath with insufflations of oxygen through an obverse mask with sedatations. Monitoring of energy-plastic metabolism has been carried out in all patients. Results: Groups of patients have been compared by anthropometrical data, traumatic interventions. In both groups of patients loss of energy to traumatic to an operation stage has insignificantly increased, but after the anaesthesia termination in the group of patients with intravenous anaesthesia loss of energy continued to rise, and in the group of patients with prolonged epidural blockade it has returned to the initial level. After the anaesthesia termination the energy metabolism became essential higher in the first group of patients in comparison with the second one (p <0,01. The energy-plastic metabolism increased in the first group of patients and decreased in the second. PEA during cholecystectomy from mini access provided a stable condition of energy and energy-plastic metabolism. The conclusion: The inspection of 122 patients subjected to cholecystectomy from mini access has established the following data: PEA on spontaneous breath with insufflations of oxygen through an obverse mask in comparison with intravenous general anaesthesia and AVL allows keeping on an optimum level of energy and energy-plastic metabolism.

  9. Three Conazoles Increase Hepatic Microsomal Retinoic Acid Metabolism and Decrease Mouse Hepatic Retinoic Acid Levels In Vivo

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with...

  10. Metabolic engineering of folate production in lactic acid bacteria

    Sybesma, W.F.H.

    2003-01-01

    Folate is an essential compound in the human diet. Folate deficiency occurs frequently among certain population groups even in highly developed countries and may increase the risks for several diseases like neural tube defects, cardiovascular diseases and certain forms of cancer. The dairy starter bacterium Lactococcus lactis is able to synthesize this vitamin. The use of metabolic engineering has enabled the generation of a L. lactis strain with a more than 50-fold increased folate productio...

  11. Reconstruction of Pathways Associated with Amino Acid Metabolism in Human Mitochondria

    Purnima; Guda; Chittibabu; Guda; Shankar; Subramaniam

    2007-01-01

    We have used a bioinformatics approach for the identification and reconstruction of metabolic pathways associated with amino acid metabolism in human mitochon- dria. Human mitochondrial proteins determined by experimental and computa- tional methods have been superposed on the reference pathways from the KEGG database to identify mitochondrial pathways. Enzymes at the entry and exit points for each reconstructed pathway were identified, and mitochondrial solute carrier proteins were determined where applicable. Intermediate enzymes in the mito- chondrial pathways were identified based on the annotations available from public databases, evidence in current literature, or our MITOPRED program, which pre- dicts the mitochondrial localization of proteins. Through integration of the data derived from experimental, bibliographical, and computational sources, we recon- structed the amino acid metabolic pathways in human mitochondria, which could help better understand the mitochondrial metabolism and its role in human health.

  12. Anti-Inflammation Effects and Potential Mechanism of Saikosaponins by Regulating Nicotinate and Nicotinamide Metabolism and Arachidonic Acid Metabolism.

    Ma, Yu; Bao, Yongrui; Wang, Shuai; Li, Tianjiao; Chang, Xin; Yang, Guanlin; Meng, Xiansheng

    2016-08-01

    Inflammation is an important immune response; however, excessive inflammation causes severe tissue damages and secondary inflammatory injuries. The long-term and ongoing uses of routinely used drugs such as non-steroidal anti-inflammatory drugs (NSAIDS) are associated with serious adverse reactions, and not all patients have a well response to them. Consequently, therapeutic products with more safer and less adverse reaction are constantly being sought. Radix Bupleuri, a well-known traditional Chinese medicine (TCM), has been reported to have anti-inflammatory effects. However, saikosaponins (SS) as the main pharmacodynamic active ingredient, their pharmacological effects and action mechanism in anti-inflammation have not been reported frequently. This study aimed to explore the anti-inflammatory activity of SS and clarify the potential mechanism in acute inflammatory mice induced by subcutaneous injection of formalin in hind paws. Paw edema was detected as an index to evaluate the anti-inflammatory efficacy of SS. Then, a metabolomic method was used to investigate the changed metabolites and potential mechanism of SS. Metabolite profiling was performed by high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). The detection and identification of the changed metabolites were systematically analyzed by multivariate data and pathway analysis. As a result, 12 different potential biomarkers associated with SS in anti-inflammation were identified, including nicotinate, niacinamide, arachidonic acid (AA), and 20-carboxy-leukotriene B4, which are associated with nicotinate and nicotinamide metabolism and arachidonic acid metabolism. The expression levels of biomarkers were effectively modulated towards the normal range by SS. It indicated that SS show their effective anti-inflammatory effects through regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism. PMID:27251379

  13. Metabolic fate of poly-(lactic-co-glycolic acid)-based curcumin nanoparticles following oral administration

    Harigae, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Taiki; Inoue, Nao; Kimura, Fumiko; Ikeda, Ikuo; Miyazawa, Teruo

    2016-01-01

    Purpose Curcumin (CUR), the main polyphenol in turmeric, is poorly absorbed and rapidly metabolized following oral administration, which severely curtails its bioavailability. Poly-(lactic-co-glycolic acid)-based CUR nanoparticles (CUR-NP) have recently been suggested to improve CUR bioavailability, but this has not been fully verified. Specifically, no data are available about curcumin glucuronide (CURG), the major metabolite of CUR found in the plasma following oral administration of CUR-NP. Herein, we investigated the absorption and metabolism of CUR-NP and evaluated whether CUR-NP improves CUR bioavailability. Methods Following oral administration of CUR-NP in rats, we analyzed the plasma and organ distribution of CUR and its metabolites using high-performance liquid chromatography-tandem mass spectrometry. To elucidate the mechanism of increased intestinal absorption of CUR-NP, we prepared mixed micelles comprised of phosphatidylcholine and bile salts and examined the micellar solubility of CUR-NP. Additionally, we investigated the cellular incorporation of the resultant micelles into differentiated Caco-2 human intestinal cells. Results Following in vivo administration of CUR-NP, CUR was effectively absorbed and present mainly as CURG in the plasma which contained significant amounts of the metabolite compared with other organs. Thus, CUR-NP increased intestinal absorption of CUR rather than decreasing metabolic degradation and conversion to other metabolites. In vitro, CUR encapsulated in CUR-NP was solubilized in mixed micelles; however, whether the micelles contained CUR or CUR-NP had little influence on cellular uptake efficiency. Therefore, we suggest that the high solubilization capacity of CUR-NP in mixed micelles, rather than cellular uptake efficiency, explains the high intestinal absorption of CUR-NP in vivo. Conclusion These findings provide a better understanding of the bioavailability of CUR and CUR-NP following oral administration. To improve

  14. Synthesis and Metabolism of Carbonyl-C14 Pyruvic andHydroxypyruvic Acids in Algae

    Milhaud, Gerhard; Benson, Andrew A.; Calvin, M.

    1955-03-30

    1. Pyruvic and hydroxypyruvic acids a r e metabolized by Scenedesmus. 2. The products of metabolism of pyruvic -2 -C{sup 14} and hydroxypyruvic-2 -C{sup 14} acids a r e essentially identical to those of C{sup 14}-O fixations. 3. Lipids a r e rapidly formed i n the light from both substrates. In the dark the major products a r e intermediates of the tricarboxylic acid cycle. 4. Zt does not appear likely that f r e e hydroxypyruvic acid is a photosynthetic intermediate, 5 . Tricarboxylic acid cycle intermediates a r e formed from exogenous pyruvate a s fast in the light a s in the dark.

  15. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Albert Mas; Jose Manuel Guillamon; Maria Jesus Torija; Gemma Beltran; Cerezo, Ana B; Troncoso, Ana M.; M. Carmen Garcia-Parrilla

    2014-01-01

    Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being und...

  16. Functional Analysis of Free Fatty Acid Receptor GPR120 in Human Eosinophils: Implications in Metabolic Homeostasis

    Yasunori Konno; Shigeharu Ueki; Masahide Takeda; Yoshiki Kobayashi; Mami Tamaki; Yuki Moritoki; Hajime Oyamada; Masamichi Itoga; Hiroyuki Kayaba; Ayumi Omokawa; Makoto Hirokawa

    2015-01-01

    Recent evidence has shown that eosinophils play an important role in metabolic homeostasis through Th2 cytokine production. GPR120 (FFA4) is a G protein-coupled receptor (GPCR) for long-chain fatty acids that functions as a regulator of physiological energy metabolism. In the present study, we aimed to investigate whether human eosinophils express GPR120 and, if present, whether it possesses a functional capacity on eosinophils. Eosinophils isolated from peripheral venous blood expressed GPR1...

  17. Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis

    Shriver, Leah P.; Manchester, Marianne

    2011-01-01

    Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system and a leading cause of neurological disability. The complex immunopathology and variable disease course of multiple sclerosis have limited effective treatment of all patients. Altering the metabolism of immune cells may be an attractive strategy to modify their function during autoimmunity. We examined the effect of inhibiting fatty acid metabolism in experimental autoimmune encephalomyelitis (EAE), a mo...

  18. Energy Metabolism Regulates Retinoic Acid Synthesis and Homeostasis in Physiological Contexts

    Obrochta, Kristin Marie

    2014-01-01

    Mounting evidence supports a regulated and reciprocal relationship between retinoid homeostasis and energy metabolism, with a physiologically relevant consequence of disrupted energy balance. This research was motivated by an observation that all-trans-retinoic acid (atRA), and biosynthetic precursors, were responsive to acute shifts in energy status, in wild type animals with normal body weight and glucose tolerance, i.e. not consequent to metabolic syndrome. My dissertation was designed to ...

  19. The tacrolimus metabolism rate influences renal function after kidney transplantation.

    Gerold Thölking

    Full Text Available The effective calcineurin inhibitor (CNI tacrolimus (Tac is an integral part of the standard immunosuppressive regimen after renal transplantation (RTx. However, as a potent CNI it has nephrotoxic potential leading to impaired renal function in some cases. Therefore, it is of high clinical impact to identify factors which can predict who is endangered to develop CNI toxicity. We hypothesized that the Tac metabolism rate expressed as the blood concentration normalized by the dose (C/D ratio is such a simple predictor. Therefore, we analyzed the impact of the C/D ratio on kidney function after RTx. Renal function was analyzed 1, 2, 3, 6, 12 and 24 months after RTx in 248 patients with an immunosuppressive regimen including basiliximab, tacrolimus, mycophenolate mofetil and prednisolone. According to keep the approach simple, patients were split into three C/D groups: fast, intermediate and slow metabolizers. Notably, compared with slow metabolizers fast metabolizers of Tac showed significantly lower estimated glomerular filtration rate (eGFR values at all the time points analyzed. Moreover, fast metabolizers underwent more indication renal biopsies (p = 0.006 which revealed a higher incidence of CNI nephrotoxicity (p = 0.015 and BK nephropathy (p = 0.024 in this group. We herein identified the C/D ratio as an easy calculable risk factor for the development of CNI nephrotoxicity and BK nephropathy after RTx. We propose that the simple C/D ratio should be taken into account early in patient's risk management strategies.

  20. The tacrolimus metabolism rate influences renal function after kidney transplantation.

    Thölking, Gerold; Fortmann, Christian; Koch, Raphael; Gerth, Hans Ulrich; Pabst, Dirk; Pavenstädt, Hermann; Kabar, Iyad; Hüsing, Anna; Wolters, Heiner; Reuter, Stefan; Suwelack, Barbara

    2014-01-01

    The effective calcineurin inhibitor (CNI) tacrolimus (Tac) is an integral part of the standard immunosuppressive regimen after renal transplantation (RTx). However, as a potent CNI it has nephrotoxic potential leading to impaired renal function in some cases. Therefore, it is of high clinical impact to identify factors which can predict who is endangered to develop CNI toxicity. We hypothesized that the Tac metabolism rate expressed as the blood concentration normalized by the dose (C/D ratio) is such a simple predictor. Therefore, we analyzed the impact of the C/D ratio on kidney function after RTx. Renal function was analyzed 1, 2, 3, 6, 12 and 24 months after RTx in 248 patients with an immunosuppressive regimen including basiliximab, tacrolimus, mycophenolate mofetil and prednisolone. According to keep the approach simple, patients were split into three C/D groups: fast, intermediate and slow metabolizers. Notably, compared with slow metabolizers fast metabolizers of Tac showed significantly lower estimated glomerular filtration rate (eGFR) values at all the time points analyzed. Moreover, fast metabolizers underwent more indication renal biopsies (p = 0.006) which revealed a higher incidence of CNI nephrotoxicity (p = 0.015) and BK nephropathy (p = 0.024) in this group. We herein identified the C/D ratio as an easy calculable risk factor for the development of CNI nephrotoxicity and BK nephropathy after RTx. We propose that the simple C/D ratio should be taken into account early in patient's risk management strategies. PMID:25340655

  1. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity

    Vrieze, Anne; Out, Carolien; Fuentes, Susana;

    2014-01-01

    BACKGROUND & AIMS: Obesity has been associated with changes in the composition and function of the intestinal microbiota. Modulation of the microbiota by antibiotics also alters bile acid and glucose metabolism in mice. Hence, we hypothesized that short term administration of oral antibiotics in...... humans would affect fecal microbiota composition and subsequently bile acid and glucose metabolism. METHODS: In this single blinded randomized controlled trial, 20 male obese subjects with metabolic syndrome were randomized to 7 days of amoxicillin 500 mg t.i.d. or 7 days of vancomycin 500 mg t.i.d. At...... baseline and after 1 week of therapy, fecal microbiota composition (Human Intestinal Tract Chip phylogenetic microarray), fecal and plasma bile acid concentrations as well as insulin sensitivity (hyperinsulinemic euglycemic clamp using [6,6-(2)H2]-glucose tracer) were measured. RESULTS: Vancomycin reduced...

  2. Dietary Acid Load and Metabolic Acidosis in Renal Transplant Recipients

    Berg, van den Else; Engberink, M.F.; Brink, E.J.; Baak, van M.A.; Joosten, M.M.; Gans, R.O.B.; Navis, G.; Bakker, S.J.L.

    2012-01-01

    Background and objectives Acidosis is prevalent among renal transplant recipients (RTRs) and adversely affects cardiometabolic processes. Factors contributing to acidosis are graft dysfunction and immunosuppressive drugs. Little is known about the potential influence of diet on acidosis in RTRs. Thi

  3. Influence of the chain length on the biological behaviour of /sup 131/I fatty acids

    Riche, F.; Mathieu, J.P.; Comet, M.; Vidal, M.; Pernin, C.; Marti-Batlle, D.; Busquet, G. (Universite de Grenoble, 38 (France)); Bardy, A. (C.E.A.-ORIS, 91 - Gif-sur-Yvette (France))

    1983-01-01

    Saturated and acetylenic fatty acids labeled with /sup 131/I in ..omega.. position, differing by their chain length (C8 to C20) and the number odd or even of their carbon atoms are injected in mice. The evolution of the activity in myocardium, blood, liver and kidney is measured until 10 minutes after injection. The myocardial activity increases with chain length from C8 to C16 then decreases for C18 and C20. The odd or even number of carbon atoms does not influence myocardial activity but in the liver, activity is inferior with the odd fatty acids. The presence of a triple bond accelerates the output of activity from the myocardium and these fatty acids are not well suited for the study of myocardial metabolism.

  4. Influence of the chain length on the biological behaviour of 131I fatty acids

    Saturated and acetylenic fatty acids labeled with 131I in ω position, differing by their chain length (C8 to C20) and the number odd or even of their carbon atoms are injected in mice. The evolution of the activity in myocardium, blood, liver and kidney is measured until 10 minutes after injection. The myocardial activity increases with chain length from C8 to C16 then decreases for C18 and C20. The odd or even number of carbon atoms does not influence myocardial activity but in the liver, activity is inferior with the odd fatty acids. The presence of a triple bond accelerates the output of activity from the myocardium and these fatty acids are not well suited for the study of myocardial metabolism

  5. Diet, nutrition intake, and metabolism in populations at high and low risk for colon cancer. Metabolism of bile acids.

    Turjman, N; Goodman, G T; Jaeger, B; Nair, P P

    1984-10-01

    High levels of fecal bile acids have been associated with populations at high risk for developing colon cancer. In this study, 168 subjects were drawn from populations that show low and high mortality from colon cancer [pure vegetarians, lacto-ovo vegetarians, and nonvegetarians Seventh-day Adventists (SDA) and demographically comparable group from the general population]. Lyophilized aliquots of 3-day stool samples were examined for levels of primary (cholic and chenodeoxycholic acids) and secondary (deoxycholic and lithocholic acids) bile acids. Total bile acids (mg/g lyophilized stools) were statistically different among dietary groups: SDA pure vegetarians 2.16 +/- 0.32, SDA lacto-ovo vegetarians 3.66 +/- 0.41, SDA nonvegetarians 4.39 +/- 0.44, general population nonvegetarians 6.04 +/- 0.75; but were similar when stool weights, body weights, and fat intake were taken into account. The most striking difference was evident in the ratio of secondary to primary bile acids: when compared to SDA pure vegetarians, both SDA lacto-ovo vegetarians and SDA nonvegetarians had twice the ratio while values for general population nonvegetarians were five to six times. The data indicate that these differences in excretion patterns among dietary groups reveal distinctly characteristic metabolic features associated with diet and lifestyle. PMID:6486102

  6. Metabolic engineering of Escherichia coli for biotechnological production of high-value organic acids and alcohols

    Yu, Chao; Cao, Yujin; Zou, Huibin; Xian, Mo [Chinese Academy of Sciences, Qingdao (China). Key Lab. of Biofuels

    2011-02-15

    Confronted with the gradual and inescapable exhaustion of the earth's fossil energy resources, the bio-based process to produce platform chemicals from renewable carbohydrates is attracting growing interest. Escherichia coli has been chosen as a workhouse for the production of many valuable chemicals due to its clear genetic background, convenient to be genetically modified and good growth properties with low nutrient requirements. Rational strain development of E. coli achieved by metabolic engineering strategies has provided new processes for efficiently biotechnological production of various high-value chemical building blocks. Compared to previous reviews, this review focuses on recent advances in metabolic engineering of the industrial model bacteria E. coli that lead to efficient recombinant biocatalysts for the production of high-value organic acids like succinic acid, lactic acid, 3-hydroxypropanoic acid and glucaric acid as well as alcohols like 1,3-propanediol, xylitol, mannitol, and glycerol with the discussion of the future research in this area. Besides, this review also discusses several platform chemicals, including fumaric acid, aspartic acid, glutamic acid, sorbitol, itaconic acid, and 2,5-furan dicarboxylic acid, which have not been produced by E. coli until now. (orig.)

  7. Influence of vegetation on phenolic acid contents in soil

    Malá, J.; Cvikrová, M.; Hrubcová, M. (Marie); Máchová, P.

    2013-01-01

    The study described in this paper was undertaken in order to assess the impact of different woody plants on the dynamics of phenolic acids in soil. The influence of plant litter on the amount of phenolic compounds occurring in soils beneath several deciduous and coniferous tree species was examined in pot experiments. The contents of endogenous methanol soluble free and conjugated phenolic acids in Norway spruce, larch, rowan and two species of willow were determined. We focused on the dynami...

  8. Factors influencing the metabolism of inorganic arsenic in humans

    Lindberg, Anna-Lena

    2007-01-01

    p>Inorganic arsenic (iAs), a naturally occurring drinking water contaminant, is a potent human carcinogen and toxicant. It is believed that in humans, as well as in most mammals, inorganic arsenic is biotransformed via reduction and methylation using one-carbon metabolism with S-adenosyl methionine (SAM) as methyl donor, and is excreted mainly in urine as dimethylarsinate (DMA) and methylarsonate (MA) as well as some unmethylated iAs (arsenate (As(V)) and arsenite (As(III))....

  9. Rumen microbial communities influence metabolic phenotypes in lambs

    Morgavi, Diego P.; Rathahao-Paris, Estelle; Popova, Milka; Boccard, Julien; Nielsen, Kristian F; Boudra, Hamid

    2015-01-01

    The rumen microbiota is an essential part of ruminants forging their nutrition and health. Despite its importance, it is not fully understood how various groups of rumen microbes affect host-microbe relationships and functions. The aim of the study was to simultaneously explore the rumen microbiota and the metabolic phenotype of lambs for identifying host-microbe associations and potential biomarkers of digestive functions. Twin lambs, separated in two groups after birth were exposed to pract...

  10. Designer, acidic biochar influences calcareous soil characteristics.

    Ippolito, J A; Ducey, T F; Cantrell, K B; Novak, J M; Lentz, R D

    2016-01-01

    In a proof-of-concept study, an acidic (pH 5.8) biochar was created using a low pyrolysis temperature (350 °C) and steam activation (800 °C) to potentially improve the soil physicochemical status of an eroded calcareous soil. Biochar was added at 0%, 1%, 2%, and 10% (by wt.) and soils were destructively sampled at 1, 2, 3, 4, 5, and 6 month intervals. Soil was analyzed for gravimetric water content, pH, NO3-N, plant-available Fe, Zn, Mn, Cu, and P, organic C, CO2 respiration, and microbial enumeration via extractable DNA and 16S rRNA gene copies. Gravimetric soil water content increased with biochar application regardless of rate, as compared to the control. Soil pH decreased between 0.2 and 0.4 units, while plant-available Zn, Mn, and P increased with increasing biochar application rate. Micronutrient availability decreased over time likely due to insoluble mineral species precipitation. Increasing biochar application raised the soil organic C content and remained elevated over time. Increasing biochar application rate also increased respired CO2, yet the CO2 released decreased over time. Soil NO3-N concentrations significantly decreased with increasing biochar application rate likely due to microbial immobilization or denitrification. Depending on application rate, biochar produced a 1.4 to 2.1-fold increase in soil DNA extracted and 1.4- to 2.4-fold increase in 16S rRNA gene abundance over control soils, suggesting microbial stimulation and a subsequent burst of activity upon biochar addition. Our results showed that there is promise in designing a biochar to improve the quality and water relations of eroded calcareous soils. PMID:26077798

  11. The Sinorhizobium meliloti RNA chaperone Hfq influences central carbon metabolism and the symbiotic interaction with alfalfa

    Jiménez-Zurdo José I

    2010-03-01

    Full Text Available Abstract Background The bacterial Hfq protein is able to interact with diverse RNA molecules, including regulatory small non-coding RNAs (sRNAs, and thus it is recognized as a global post-transcriptional regulator of gene expression. Loss of Hfq has an extensive impact in bacterial physiology which in several animal pathogens influences virulence. Sinorhizobium meliloti is a model soil bacterium known for its ability to establish a beneficial nitrogen-fixing intracellular symbiosis with alfalfa. Despite the predicted general involvement of Hfq in the establishment of successful bacteria-eukaryote interactions, its function in S. meliloti has remained unexplored. Results Two independent S. meliloti mutants, 2011-3.4 and 1021Δhfq, were obtained by disruption and deletion of the hfq gene in the wild-type strains 2011 and 1021, respectively, both exhibiting similar growth defects as free-living bacteria. Transcriptomic profiling of 1021Δhfq revealed a general down-regulation of genes of sugar transporters and some enzymes of the central carbon metabolism, whereas transcripts specifying the uptake and metabolism of nitrogen sources (mainly amino acids were more abundant than in the wild-type strain. Proteomic analysis of the 2011-3.4 mutant independently confirmed these observations. Symbiotic tests showed that lack of Hfq led to a delayed nodulation, severely compromised bacterial competitiveness on alfalfa roots and impaired normal plant growth. Furthermore, a large proportion of nodules (55%-64% elicited by the 1021Δhfq mutant were non-fixing, with scarce content in bacteroids and signs of premature senescence of endosymbiotic bacteria. RT-PCR experiments on RNA from bacteria grown under aerobic and microoxic conditions revealed that Hfq contributes to regulation of nifA and fixK1/K2, the genes controlling nitrogen fixation, although the Hfq-mediated regulation of fixK is only aerobiosis dependent. Finally, we found that some of the recently

  12. INFLUENCE OF CHITOSAN ON CARBOHYDRATE METABOLISM IN EXERCISING MICE

    石磊; 黄伟

    2004-01-01

    Objective To study the mechanism of chitosan on carbohydrate metabolism disorder in exercising mice. Methods The animal model of carbohydrate metabolism disorder was established through swimming trainings and the content of blood glucose, muscle glycogen and liver glycogen in mice were all surveyed. Results When quiet, liver glycogen, muscle glycogen and blood glucose of drug-taking group were much higher than those of control group(P<0.05). Compared with control group, the liver glycogen and muscle glycogen of instant drug-taking group after exercises level to a higher degree (P<0.05). The renewing level of liver glycogen, muscle glycogen and blood glucose in drug-taking group after spending 24 hours on recovery was evidently higher than that of control-group (P<0.05). The exhaustive swimming time of drug-taking group was longer than that of exercise-control group by 33.99%. Conclusion Chitosan takes good effect on improving carbohydrate metabolism disorder resulting from exercises.

  13. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production

    Xiaoling Tang

    2015-12-01

    Full Text Available Fatty acid-derived fuels and chemicals have attracted a great deal of attention in recent decades, due to their following properties of high compatibility to gasoline-based fuels and existing infrastructure for their direct utilization, storage and distribution. The yeast Saccharomyces cerevisiae is the ideal biofuel producing candidate, based on the wealth of available genetic information and versatile tools designed to manipulate its metabolic pathways. Engineering the fatty acid metabolic pathways in S. cerevisiae is an effective strategy to increase its fatty acid biosynthesis and provide more pathway precursors for production of targeted products. This review summarizes the recent progress in metabolic engineering of yeast cells for fatty acids and fatty acid derivatives production, including the regulation of acetyl-CoA biosynthesis, NADPH production, fatty acid elongation, and the accumulation of activated precursors of fatty acids for converting enzymes. By introducing specific enzymes in the engineered strains, a powerful platform with a scalable, controllable and economic route for advanced biofuel production has been established.

  14. Studies of citric acid metabolism in heart muscle

    Meduski, J.W.

    1950-01-01

    1. The pentabromoacetone method for the determination of citric acid was studied; a modification of the procedure of Natelson, Lugovoy and Pincus was used. 2. Two tissue preparations were obtained. The first by washing with water, the second by washing with water and then with 0.5% sodium bicarbo

  15. Investigations into selective metabolic aspects of bifidobacteria: carbohydrate metabolism, fatty acid biosynthesis and plasmid biology

    O'Connell, Kerry Joan

    2014-01-01

    The gastrointestinal tract (GIT) is a diverse ecosystem, and is colonised by a diverse array of bacteria, of which bifidobacteria are a significant component. Bifidobacteria are Gram-positive, saccharolytic, non-motile, non-sporulating, anaerobic, Y-shaped bacteria, which possess a high GC genome content. Certain bifidobacteria possess the ability to produce conjugated linoleic acid (CLA) from linoleic acid (LA) by a biochemical pathway that is hypothesised to be achieved via a linoleic isome...

  16. Hydroxyoctadecadienoic acids: Oxidised derivatives of linoleic acid and their role in inflammation associated with metabolic syndrome and cancer.

    Vangaveti, Venkat N; Jansen, Holger; Kennedy, Richard Lee; Malabu, Usman H

    2016-08-15

    Linoleic acid (LA) is a major constituent of low-density lipoproteins. An essential fatty acid, LA is a polyunsaturated fatty acid, which is oxidised by endogenous enzymes and reactive oxygen species in the circulation. Increased levels of low-density lipoproteins coupled with oxidative stress and lack of antioxidants drive the oxidative processes. This results in synthesis of a range of oxidised derivatives, which play a vital role in regulation of inflammatory processes. The derivatives of LA include, hydroxyoctadecadienoic acids, oxo-​octadecadienoic acids, epoxy octadecadecenoic acid and epoxy-keto-octadecenoic acids. In this review, we examine the role of LA derivatives and their actions on regulation of inflammation relevant to metabolic processes associated with atherogenesis and cancer. The processes affected by LA derivatives include, alteration of airway smooth muscles and vascular wall, affecting sensitivity to pain, and regulating endogenous steroid hormones associated with metabolic syndrome. LA derivatives alter cell adhesion molecules, this initial step, is pivotal in regulating inflammatory processes involving transcription factor peroxisome proliferator-activated receptor pathways, thus, leading to alteration of metabolic processes. The derivatives are known to elicit pleiotropic effects that are either beneficial or detrimental in nature hence making it difficult to determine the exact role of these derivatives in the progress of an assumed target disorder. The key may lie in understanding the role of these derivatives at various stages of development of a disorder. Novel pharmacological approaches in altering the synthesis or introduction of synthesised LA derivatives could possibly help drive processes that could regulate inflammation in a beneficial manner. Chemical Compounds: Linoleic acid (PubChem CID: 5280450), 9- hydroxyoctadecadienoic acid (PubChem CID: 5312830), 13- hydroxyoctadecadienoic acid (PubChem CID: 6443013), 9-oxo

  17. Metabolic engineering of yeast to produce fatty acid-derived biofuels: bottlenecks and solutions.

    Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles. PMID:26106371

  18. PGC-1α-mediated branched-chain amino acid metabolism in the skeletal muscle.

    Yukino Hatazawa

    Full Text Available Peroxisome proliferator-activated receptor (PPAR γ coactivator 1α (PGC-1α is a coactivator of various nuclear receptors and other transcription factors, which is involved in the regulation of energy metabolism, thermogenesis, and other biological processes that control phenotypic characteristics of various organ systems including skeletal muscle. PGC-1α in skeletal muscle is considered to be involved in contractile protein function, mitochondrial function, metabolic regulation, intracellular signaling, and transcriptional responses. Branched-chain amino acid (BCAA metabolism mainly occurs in skeletal muscle mitochondria, and enzymes related to BCAA metabolism are increased by exercise. Using murine skeletal muscle overexpressing PGC-1α and cultured cells, we investigated whether PGC-1α stimulates BCAA metabolism by increasing the expression of enzymes involved in BCAA metabolism. Transgenic mice overexpressing PGC-1α specifically in the skeletal muscle had increased the expression of branched-chain aminotransferase (BCAT 2, branched-chain α-keto acid dehydrogenase (BCKDH, which catabolize BCAA. The expression of BCKDH kinase (BCKDK, which phosphorylates BCKDH and suppresses its enzymatic activity, was unchanged. The amount of BCAA in the skeletal muscle was significantly decreased in the transgenic mice compared with that in the wild-type mice. The amount of glutamic acid, a metabolite of BCAA catabolism, was increased in the transgenic mice, suggesting the activation of muscle BCAA metabolism by PGC-1α. In C2C12 cells, the overexpression of PGC-1α significantly increased the expression of BCAT2 and BCKDH but not BCKDK. Thus, PGC-1α in the skeletal muscle is considered to significantly contribute to BCAA metabolism.

  19. Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth

    Bhawna Saxena; Mayavan Subramaniyan; Karan Malhotra; Neel Sarovar Bhavesh; Shobha Devi Potlakayala; Shashi Kumar

    2014-03-01

    Chloroplasts offer high-level transgene expression and transgene containment due to maternal inheritance, and are ideal hosts for biopharmaceutical biosynthesis via multigene engineering. To exploit these advantages, we have expressed 12 enzymes in chloroplasts for the biosynthesis of artemisinic acid (precursor of artemisinin, antimalarial drug) in an alternative plant system. Integration of transgenes into the tobacco chloroplast genome via homologous recombination was confirmed by molecular analysis, and biosynthesis of artemisinic acid in plant leaf tissues was detected with the help of 13C NMR and ESI-mass spectrometry. The excess metabolic flux of isopentenyl pyrophosphate generated by an engineered mevalonate pathway was diverted for the biosynthesis of artemisinic acid. However, expression of megatransgenes impacted the growth of the transplastomic plantlets. By combining two exogenous pathways, artemisinic acid was produced in transplastomic plants, which can be improved further using better metabolic engineering strategies for commercially viable yield of desirable isoprenoid products.

  20. Metabolism of nonparticulate phosphorus in an acid bog lake

    In North Gate Lake, an acid bog lake located on the northern Michigan-Wisconsin border, U.S.A., the algal nutrient inorganic phosphate (FRP) is not detectable by chemical means. Organic phosphorus (FUP) represents 100% of the detectable filterable phosphorus. The availability and cycling of this organic fraction are of considerable interest in regard to the primary productivity of this system. To clarify these relationships, the cycling of nonparticulate forms of phosphorus found in the epilimnion of this lake was studied

  1. Skinny on Fat Metabolism: Lipolysis and Fatty Acid Utilization

    Ahmadian, Maryam; Duncan, Robin E.; Sul, Hei Sook

    2009-01-01

    Lipolysis for the provision of fatty acids (FA) for other organs during times of energy demand occurs uniquely in white adipose tissue (WAT). Recent findings have identified a bona fide TAG hydrolase as well as the major adipose phospholipase A2, AdPLA. By controlling PGE2 levels, AdPLA dominantly regulates lipolysis in an autocrine/paracrine manner. Moreover, recent findings demonstrate that, surprisingly, increasing lipolysis in adipose tissue does not necessarily increase serum FA levels, ...

  2. Metabolism of nonparticulate phosphorus in an acid bog lake

    Koenings, J. P.

    1977-01-01

    In North Gate Lake, an acid bog lake located on the northern Michigan-Wisconsin border, U.S.A., the algal nutrient inorganic phosphate (FRP) is not detectable by chemical means. Organic phosphorus (FUP) represents 100% of the detectable filterable phosphorus. The availability and cycling of this organic fraction are of considerable interest in regard to the primary productivity of this system. To clarify these relationships, the cycling of nonparticulate forms of phosphorus found in the epilimnion of this lake was studied.

  3. Metabolic regulation of amino acid uptake in marine waters

    Kirchman, D.L.; Hodson, R.E.

    1986-03-01

    To determine the relationships among the processes of uptake, intracellular pool formation, and incorporation of amino acids into protein, the authors measured the uptake of dipeptides and free amino acids by bacterial assemblages in estuarine and coastal waters of the southeast US. The dipeptide phenylalanyl-phenylalanine (phe-phe) lowered V/sub max/ of phenylalanine uptake when the turnover rate of phenylalanine was relatively high. When the turnover rate was relatively low, phe-phe either had no effect or increased V/sub max/ of phenylalanine uptake. An analytical model was developed and tested to measure the turnover time of the intracellular pool of phenylalanine. The results suggested that the size of the intracellular pool is regulated, which precludes high assimilation rates of both phenylalanine and phe-phe. In waters with relatively low phenylalanine turnover rates, bacterial assemblages appear to have a greater capacity to assimilate phenylalanine and phe-phe simultaneously. Marine bacterial assemblages do not substantially increase the apparent respiration of amino acids when concentrations increase. The authors conclude that sustained increases in uptake rates and mineralization by marine bacterial assemblages in response to an increase in the concentrations of dissolved organic nitrogen is determined by the rate of protein synthesis.

  4. TRANSLATIONAL STUDIES ON REGULATION OF BRAIN DOCOSAHEXAENOIC ACID (DHA) METABOLISM IN VIVO

    Rapoport, Stanley I.

    2012-01-01

    One goal in the field of brain polyunsaturated fatty acid (PUFA) metabolism is to translate the many studies that have been conducted in vitro and in animal models to the clinical setting. Doing so should elucidate the role of PUFAs in the human brain, and effects of diet, drugs, disease and genetics. This review briefly discusses new in vivo radiotracer kinetic and neuroimaging techniques that allow us to do this, with a focus on docosahexaenoic acid (DHA). We illustrate how brain PUFA metab...

  5. Anti-inflammatory potential of 2-styrylchromones regarding their interference with arachidonic acid metabolic pathways

    Gomes, Ana; Fernandes, Eduarda; Silva, Artur; Santos, Clementina M.M.; Pinto, Diana; Cavaleiro, José; Lima, José Costa

    2009-01-01

    Abstract Cyclooxygenases (COXs) are the key enzymes in the biosynthesis of prostanoids. COX-1 is a constitutive enzyme while the expression of COX-2 is highly stimulated in the event of inflammatory processes, leading to the production of large amounts of prostaglandins (PGs), in particular PGE2 and PGI2, which are pro-inflammatory mediators. Lipoxygenases (LOXs) are enzymes that produce hydroxy acids and leukotrienes (LTs). 5-LOX metabolizes arachidonic acid to yield, a...

  6. Studies on cholesterol and bile acid metabolism in relation to plasma lipoproteins

    Sjöberg, Beatrice

    2016-01-01

    The metabolism of cholesterol and bile acids is tightly controlled but only partially characterized. The liver is responsible for most of the clearance and catabolism of plasma cholesterol, and the hepatocyte expression of LDL receptors is central in this process. The major pathways for net excretion of cholesterol from the body are through biliary excretion as free cholesterol or after conversion to bile acids. Through activation of the nuclear receptor FXR and the G protein-coupled receptor...

  7. Abnormal Unsaturated Fatty Acid Metabolism in Cystic Fibrosis: Biochemical Mechanisms and Clinical Implications

    Seegmiller, Adam C.

    2014-01-01

    Cystic fibrosis is an inherited multi-organ disorder caused by mutations in the CFTR gene. Patients with this disease exhibit characteristic abnormalities in the levels of unsaturated fatty acids in blood and tissue. Recent studies have uncovered an underlying biochemical mechanism for some of these changes, namely increased expression and activity of fatty acid desaturases. Among other effects, this drives metabolism of linoeate to arachidonate. Increased desaturase expression appears to be ...

  8. Characterization of bile acid metabolism in man using bile acids labeled with stable isotopes. [/sup 13/C

    Hofmann, A.F. Klein, P.D.

    1977-01-01

    Bile acids labeled with stable isotopes in the steroid moiety can be used to characterize bile acid metabolism in man. Isotope dilution studies give information on pool size and input. Biotransformations are easily characterized. Stable isotopically labeled bile acids offer the advantage of freedom from radiation hazard, and also offer the possibility of monitoring all pools simultaneously, since all bile acids are separated by gas chromatography before isotope measurements are made. Further, since the proportion of the pool labeled with stable isotopes is greater than that achieved when radioactive isotopes are used, stable isotopes may permit isotope dilution studies to be done on serum samples in which the absolute concentration of bile acids is very low. A major disadvantage is the complex technology required for stable isotope measurement which often makes remote processing necessary. Bile acid labeled with /sup 13/C in the amino acid moiety, e.g. cholylglycine-1-/sup 13/C can be used for detection of increased bile acid deconjugation by intestinal bacteria, since the glycine-/sup 13/C, when liberated, is rapidly converted to /sup 13/CO/sub 2/, which is expired in breath. Bile acids labeled with stable isotopes may also be used for quantitation by inverse isotope dilution, but the technique is still in the development stage and seems unlikely to compete successfully with radioimmunoassay.

  9. Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis

    May, R.C.; Hara, Y.; Kelly, R.A.; Block, K.P.; Buse, M.G.; Mitch, W.E.

    1987-06-01

    Branched-chain amino acid (BCAA) metabolism is frequently abnormal in pathological conditions accompanied by chronic metabolic acidosis. To study how metabolic acidosis affects BCAA metabolism in muscle, rats were gavage fed a 14% protein diet with or without 4 mmol NH/sub 4/Cl x 100 g body wt/sup -1/ x day/sup -1/. Epitrochlearis muscles were incubated with L-(1-/sup 14/C)-valine and L-(1-/sup 14/C)leucine, and rates of decarboxylation, net transamination, and incorporation into muscle protein were measured. Plasma and muscle BCAA levels were lower in acidotic rats. Rates of valine and leucine decarboxylation and net transamination were higher in muscles from acidotic rats; these differences were associated with a 79% increase in the total activity of branched-chain ..cap alpha..-keto acid dehydrogenase and a 146% increase in the activated form of the enzyme. They conclude that acidosis affects the regulation of BCAA metabolism by enhancing flux through the transaminase and by directly stimulating oxidative catabolism through activation of branched-chain ..cap alpha..-keto acid dehydrogenase.

  10. New experimental model for studies of drug actions on myocardial metabolism. Applications to a study of the influence of POCA

    Bontemps, Laurence; Demaison, Luc; Cuchet, Pierre; Dubois, Francis; Pernin, Claudie; Mathieu, Jean-Paul; Comet, Michel; Vidal, Michel

    1987-01-01

    In order to study myocardial metabolism by external detection, quantitative information on the metabolism of a gamma-emitting iodinated fatty acid (IHA) was obtained from time-activity curves of radioactivity in different compartments. A 4-compartment mathematical model was then developed; compartments 0, 1, 2, and 3 correspond respectively to vascular IHA, intracellular IHA, esterified forms, and iodide resulting from mitochondrial oxidation of IHA. We applied this model to a study of the influence of an inhibitor of fatty acid oxidation, POCA (2-(5(4 chlorophenyl) pentyl)-oxirane-2-carboxylate). Isolated rat hearts were perfused for 20 min with Krebs liquid containing increasing concentrations of POCA. IHA was then injected as a bolus at the entrance of the coronary network. The level of cardiac radioactivity was recorded for 30 min and the division into the 4 compartments was simulated at different concentrations of POCA. The drug appeared to increase the myocardial retention of IHA and slow down the speed of degradation and storage; the variations were dose-dependent. These results correspond to those obtained by intracellular analysis. The proposed method, which is reliable and sensitive, is an interesting experiment for pharmacological studies of cardiac metabolism.

  11. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice.

    Roager, Henrik M; Sulek, Karolina; Skov, Kasper; Frandsen, Henrik L; Smedsgaard, Jørn; Wilcks, Andrea; Skov, Thomas H; Villas-Boas, Silas G; Licht, Tine R

    2014-01-01

    Monocolonization of germ-free (GF) mice enables the study of specific bacterial species in vivo. Lactobacillus acidophilus NCFM(TM) (NCFM) is a probiotic strain; however, many of the mechanisms behind its health-promoting effect remain unknown. Here, we studied the effects of NCFM on the metabolome of jejunum, cecum, and colon of NCFM monocolonized (MC) and GF mice using liquid chromatography coupled to mass-spectrometry (LC-MS). The study adds to existing evidence that NCFM in vivo affects the bile acid signature of mice, in particular by deconjugation. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine as especially the digestion of oligosaccharides (penta- and tetrasaccharides) was increased in MC mice. Additionally, levels of α-tocopherol acetate (vitamin E acetate) were higher in the intestine of GF mice than in MC mice, suggesting that NCFM affects the vitamin E acetate metabolism. NCFM did not digest vitamin E acetate in vitro, suggesting that direct bacterial metabolism was not the cause of the altered metabolome in vivo. Taken together, our results suggest that NCFM affects intestinal carbohydrate metabolism, bile acid metabolism and vitamin E metabolism, although it remains to be investigated whether this effect is unique to NCFM. PMID:24717228

  12. Uptake and metabolism of dissolved amino acids by larvae and embryos of three gastropod species

    Dissolved organic matter is a potential nutritional resource for soft-bodied marine invertebrates. Experiments were done with developmental stages of three gastropod species to examine uptake kinetics and metabolism of dissolved amino acids. Free-swimming larvae of Crepidula fornicata and Thais-haemastoma were fed before experiments or starved for 48 hours before experiments to see whether nutritional state affected uptake of 14C-glycine of 14C-alanine. Time course of amino acid uptake was linear from 0-100 minutes for fed and starved larvae of both species. Uptake rates of starved T. haemastoma larvae were similar to or greater than rates for fed larvae, while uptake rates of starved C. fornicata larvae are similar to or less than rates for fed larvae. Starvation may enhance uptake by T. haemastoma larvae. 14CO2 was detected 10 minutes after larval exposure to labeled amino acids began, indicating rapid catabolism of amino acids. Label was found in protein extracted from larvae, indicating that absorbed glycine and alanine can be used for protein synthesis. A greater percent of glycine and alanine was converted to CO2 by starved larvae of both species. Encapsulated embryos of Nucella lapillus were used to study uptake and metabolism of amino acids because encapsulated embryos are in a bacteria-free environment. Uptake by embryos was linear from 10-90 minutes. Because capsules were bacteria-free embryos were the agents responsible for uptake and metabolism of labeled amino acids

  13. Effects of the oestrous cycle on the metabolism of arachidonic acid in rat isolated lung.

    Bakhle, Y S; Zakrzewski, J T

    1982-01-01

    1. The metabolism of exogenous arachidonic acid perfused through the pulmonary circulation was investigated in lungs taken from rats at different stages of the oestrous cycle. 2. Following perfusion with [14C]arachidonic acid there was more radioactivity associated with cyclo-oxygenase products in general at pro-oestrus than at any other stage of the cycle. 3. Production of 6-oxo-prostaglandin F1 alpha and hence of prostacyclin (PGI2) was also highest at pro-oestrus. 4. Production of thromboxane B2 was highest at pro-oestrus although it was never greater than PGI2 production at any stage. 5. Radioactivity retained in lung tissue was mostly present in phospholipid and free fatty acid fractions with the distribution at pro-oestrus being different from the other stages. 6. Following perfusion with [14C]oleic acid (which is not a substrate for cyclooxygenase), variations in the distribution of label in radioactivity in lung were also observed. However, these were not related to the stages of the oestrous cycle in the same way as those associated with arachidonic acid. 7. We conclude that both pathways of arachidonic acid metabolism in lung--oxidation via cyclo-oxygenase and incorporation into phospholipid - are affected by the progress of the oestrous cycle. 8. Altered arachidonate metabolism appeared to be associated chiefly with pro-oestrus and may be linked to those hormones involved in this stage of the oestrous cycle. PMID:6809935

  14. Abnormal glucose metabolism in acute myocardial infarction: influence on left ventricular function and prognosis

    Høfsten, Dan E; Løgstrup, Brian B; Møller, Jacob E;

    2009-01-01

    OBJECTIVES: We studied the influence of abnormal glucose metabolism on left ventricular (LV) function and prognosis in 203 patients with acute myocardial infarction. BACKGROUND: Abnormal glucose metabolism is associated with increased mortality after acute myocardial infarction. This appears to be...... particularly attributable to an increased incidence of post-infarction congestive heart failure. A relationship between glucose metabolism and LV function could potentially explain this excess mortality. METHODS: In patients without known diabetes, glucose metabolism was determined using an oral glucose...... atrial volume index) and by measuring plasma N-terminal pro-B-type natriuretic peptide levels. RESULTS: After adjustment for age and gender, a linear relationship between the degree of abnormal glucose metabolism was observed for each marker of LV dysfunction (p(trend) < 0.05) with the exception of left...

  15. Metabolic acidosis

    Acidosis - metabolic ... Metabolic acidosis occurs when the body produces too much acid. It can also occur when the kidneys are not ... the body. There are several types of metabolic acidosis. Diabetic acidosis develops when acidic substances, known as ...

  16. Metabolic pathways regulated by γ-aminobutyric acid (GABA) contributing to heat tolerance in creeping bentgrass (Agrostis stolonifera).

    Li, Zhou; Yu, Jingjin; Peng, Yan; Huang, Bingru

    2016-01-01

    γ-Aminobutyric acid is a non-protein amino acid involved in various metabolic processes. The objectives of this study were to examine whether increased GABA could improve heat tolerance in cool-season creeping bentgrass through physiological analysis, and to determine major metabolic pathways regulated by GABA through metabolic profiling. Plants were pretreated with 0.5 mM GABA or water before exposed to non-stressed condition (21/19 °C) or heat stress (35/30 °C) in controlled growth chambers for 35 d. The growth and physiological analysis demonstrated that exogenous GABA application significantly improved heat tolerance of creeping bentgrass. Metabolic profiling found that exogenous application of GABA led to increases in accumulations of amino acids (glutamic acid, aspartic acid, alanine, threonine, serine, and valine), organic acids (aconitic acid, malic acid, succinic acid, oxalic acid, and threonic acid), sugars (sucrose, fructose, glucose, galactose, and maltose), and sugar alcohols (mannitol and myo-inositol). These findings suggest that GABA-induced heat tolerance in creeping bentgrass could involve the enhancement of photosynthesis and ascorbate-glutathione cycle, the maintenance of osmotic adjustment, and the increase in GABA shunt. The increased GABA shunt could be the supply of intermediates to feed the tricarboxylic acid cycle of respiration metabolism during a long-term heat stress, thereby maintaining metabolic homeostasis. PMID:27455877

  17. Influence of metabolic syndrome on upper gastrointestinal disease.

    Sogabe, Masahiro; Okahisa, Toshiya; Kimura, Tetsuo; Okamoto, Koichi; Miyamoto, Hiroshi; Muguruma, Naoki; Takayama, Tetsuji

    2016-08-01

    A recent increase in the rate of obesity as a result of insufficient physical exercise and excess food consumption has been seen in both developed and developing countries throughout the world. Additionally, the recent increased number of obese individuals with lifestyle-related diseases associated with abnormalities in glucose metabolism, dyslipidemia, and hypertension, defined as metabolic syndrome (MS), has been problematic. Although MS has been highlighted as a risk factor for ischemic heart disease and arteriosclerotic diseases, it was also recently shown to be associated with digestive system disorders, including upper gastrointestinal diseases. Unlike high body weight and high body mass index, abdominal obesity with visceral fat accumulation is implicated in the onset of various digestive system diseases because excessive visceral fat accumulation may cause an increase in intra-abdominal pressure, inducing the release of various bioactive substances, known as adipocytokines, including tumor necrosis factor-α, interleukin-6, resistin, leptin, and adiponectin. This review article focuses on upper gastrointestinal disorders and their association with MS, including obesity, visceral fat accumulation, and the major upper gastrointestinal diseases. PMID:27372302

  18. Arachidonic acid metabolism by bovine placental tissue during the last month of pregnancy

    Conversion of tritiated arachidonic acid (AA) into metabolites of the cyclo- and lipoxygenase pathways by bovine fetal placental tissue (200 mg) and fetal plus maternal placental tissue (400 mg) of Days 255, 265, 275 of gestation and at parturition (n = 5) during a 30 min incubation was measured using reverse-phase high pressure liquid chromatography. Fetal placental tissue produced 13,14-dihydro-15-keto-prostaglandin E2 (PGEM) as the major metabolite, the synthesis of which increased from Day 265 to Day 275 and parturition by 150% and 475%, respectively. In tissues collected at parturition, PGE2 synthesis was also detected. On Day 275 and at parturition fetal placental tissue synthesized the metabolite 12-hydroxyheptadecatrienoic acid (HHT), and throughout the experimental period the lipoxygenase product 15-HETE was detected with synthesis rates increasing over time of gestation. In addition, an unidentified metabolite was regularly found in the radiochromatograms which eluted at 1 h and 1 min (U101), between HHT and 15-HETE. The synthesis of this metabolite decreased as pregnancy progressed. Furthermore, various other polar and nonpolar metabolites pooled under the heading UNID were eluted, the production of which increased over time of gestation. The presence of maternal placental tissue did not influence the synthesis of PGEM, 15-HETE and U101, but the production of HHT was decreased when maternal tissue was present. Also, as pregnancy progressed, maternal placental tissue seemed to contribute to the pool of unidentified metabolites. In conclusion, fetal placental tissue seems to be the major source of the AA metabolites when compared with maternal placental tissue, and AA metabolism by bovine placental tissue is markedly increased throughout the last month of pregnancy, suggesting a role for AA metabolites in mechanisms controlling parturition

  19. Study of metabolism of hydrazoic acid in the purex process

    The transfer of HN3 between different phases has been studied - It has been found that the transfer of HN3 from aqueous solution of the reprocessing to gaz phase is a physical mechanism of desorbtion. - The limiting phenomena of the transfer of HN3 fromt the organic to the gaseous phase, is the decomplexation of this specy with tributyl phosphate (TBP). - Chemical reactions of hydrazoic acid occurring with nitrogen oxides in the gaseous flow has shown that it is rapidly destroyed in the presence of nitrogen dioxide

  20. A dynamic mechanistic model of lactic acid metabolism in the rumen

    Mills, J.A.N.; Crompton, L.A.; Ellis, J.L.; Dijkstra, J.; Bannink, A.; Hook, S.E.; Benchaar, C.; France, J.

    2014-01-01

    Current feed evaluation systems for ruminants are too imprecise to describe diets in terms of their acidosis risk. The dynamic mechanistic model described herein arises from the integration of a lactic acid (La) metabolism module into an extant model of whole-rumen function. The model was evaluated

  1. UPTAKE AND METABOLISM OF ALL-TRANS RETINOIC ACID BY THREE NATIVE NORTH AMERICAN RANIDS

    Retinoids, which are Vvitamin A derivatives, are important signaling molecules that regulate processes critical for development in all vertebrates. The objective of our study was to examine uptake and metabolism of the model retinoid, all-trans retinoic acid (all-trans RA), by th...

  2. Role of Free Fatty Acid Receptor 2 (FFAR2) in the Regulation of Metabolic Homeostasis.

    Mohammad, Sameer

    2015-01-01

    Besides being an important source of fuel and structural components of biological membranes, free fatty acids (FFAs) are known to display a wide variety of roles that include modulation of receptor signaling and regulation of gene expression among many. FFAs play a significant role in maintaining metabolic homeostasis by activating specific G-Protein Coupled Receptors (GPCRs) in pancreatic β cells, immune cells, white adipose tissue, intestine and several other tissues. Free Fatty acid receptor 2 (FFAR2) also known as GPR43 belongs to this group of GPCRs and has been shown to participate in a number of important biological activities. FFAR2 is activated by short-chain fatty acids (SCFAs) such as acetate, propionate and butyrate. SCFAs are formed in the distal gut by bacterial fermentation of macro-fibrous material that escapes digestion in the upper gastrointestinal tract and enters the colon and have been shown to play vital role in the immune regulation and metabolic homeostasis. FFAR2 and other free fatty acid receptors are considered key components of the body's nutrient sensing mechanism and targeting these receptors is assumed to offer novel therapies for the management of diabetes and other metabolic disorders. This review aims to summarize the current state of our understanding of FFAR2 biology with a particular focus on its role in metabolic homeostasis. PMID:25850624

  3. Metabolic Engineering of the Tricarboxylic Acid Cycle for Improved Lysine Production by Corynebacterium glutamicum▿

    Becker, Judith; Klopprogge, Corinna; Schröder, Hartwig; Wittmann, Christoph

    2009-01-01

    In the present work, lysine production by Corynebacterium glutamicum was improved by metabolic engineering of the tricarboxylic acid (TCA) cycle. The 70% decreased activity of isocitrate dehydrogenase, achieved by start codon exchange, resulted in a >40% improved lysine production. By flux analysis, this could be correlated to a flux shift from the TCA cycle toward anaplerotic carboxylation.

  4. Comparative study of eicosapentaenoic acid metabolism by human platelets in vivo and in vitro

    During long-term dietary n-3 fatty acid supplementation, eicosapentaenoic acid (EPA) is not incorporated into phosphatidylinositol or -serine of human platelets in vivo and is not detectable in phosphatidic acid upon stimulation with thrombin. However, EPA is released from platelet phospholipids and metabolized to thromboxane B3 (TXB3). In contrast, in vitro, platelets incorporate [14C]EPA into phosphatidylinositol, whether they contain endogenous EPA in their cellular lipids or not. Following platelet stimulation, [14C]EPA appears in phosphatidic acid, as free fatty acid, and is transformed to TXB3. The authors conclude that the fatty acid compositions of platelet phospholipid subclasses are regulated with a high degree of specificity in vivo. Qualitative differences exist between in vivo and in vitro uptake of EPA into platelet phospholipid subclasses. After in vivo incorporation, EPA is released by action of a phospholipase A2

  5. Influence of humic acids in solution on uranium solvent extraction

    The harmful influence of humic acids in solution on uranium solvent extraction is investigated in this paper. The influence appears to be the poor phase separation and forming stable emulsion when uranium is extracted or stripped, and decreasing the loaded uranium in organic phase. The extractions of organic matter and solvent extraction of uranium were carried out for three sedimentary uranium ores. The results show that the stable emulsions of w/o or o/w type are formed separately with organic solvent containing tertiary amine or D2EHPA when uranium from liquors containing humic acid is extracted. Several humic acids of different molecular weight were fractionated by means of fractional solution containing varicus volume ratio of ethanol-ethylacetate. The physical characters and chemical composition of the humic acids were determined. It is found that there is distinct difference in emulsion-causing character among the humic acids with different molecular weight. The removal methods of humic acid from aqueous and organic solutions are discussed briefly

  6. Role of a liver fatty acid-binding protein gene in lipid metabolism in chicken hepatocytes.

    Gao, G L; Na, W; Wang, Y X; Zhang, H F; Li, H; Wang, Q G

    2015-01-01

    This study investigated the role of the chicken liver fatty acid-binding protein (L-FABP) gene in lipid metabolism in hepatocytes, and the regulatory relationships between L-FABP and genes related to lipid metabolism. The short hairpin RNA (shRNA) interference vector with L-FABP and an eukaryotic expression vector were used. Chicken hepatocytes were subjected to shRNA-mediated knockdown or L-FABP cDNA overexpression. Expression levels of lipid metabolism-related genes and biochemical parameters were detected 24, 36, 48, 60, and 72 h after transfection with the interference or overexpression plasmids for L-FABP, PPARα and L-BABP expression levels, and the total amount of cholesterol, were significantly affected by L-FABP expression. L-FABP may affect lipid metabolism by regulating PPARα and L-BABP in chicken hepatocytes. PMID:25966259

  7. Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    Shengxi Meng

    2013-01-01

    Full Text Available Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA, one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism.

  8. Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites

    Cooper, George; Reed, Chris; Nguyen,Dang; Carter, Malika; Wang, Yi

    2011-01-01

    Carbonaceous meteorites deliver a variety of organic compounds to Earth that may have played a role in the origin and/or evolution of biochemical pathways. Some apparently ancient and critical metabolic processes require several compounds, some of which are relatively labile such as keto acids. Therefore, a prebiotic setting for any such individual process would have required either a continuous distant source for the entire suite of intact precursor molecules and/or an energetic and compact ...

  9. Hepatic steatosis in n-3 fatty acid depleted mice: focus on metabolic alterations related to tissue fatty acid composition

    Malaisse WJ

    2008-12-01

    Full Text Available Abstract Background There are only few data relating the metabolic consequences of feeding diets very low in n-3 fatty acids. This experiment carried out in mice aims at studying the impact of dietary n-3 polyunsaturated fatty acids (PUFA depletion on hepatic metabolism. Results n-3 PUFA depletion leads to a significant decrease in body weight despite a similar caloric intake or adipose tissue weight. n-3 PUFA depleted mice exhibit hypercholesterolemia (total, HDL, and LDL cholesterol as well as an increase in hepatic cholesteryl ester and triglycerides content. Fatty acid pattern is profoundly modified in hepatic phospholipids and triglycerides. The decrease in tissue n-3/n-6 PUFA ratio correlates with steatosis. Hepatic mRNA content of key factors involved in lipid metabolism suggest a decreased lipogenesis (SREBP-1c, FAS, PPARγ, and an increased β-oxidation (CPT1, PPARα and PGC1α without modification of fatty acid esterification (DGAT2, GPAT1, secretion (MTTP or intracellular transport (L-FABP. Histological analysis reveals alterations of liver morphology, which can not be explained by inflammatory or oxidative stress. However, several proteins involved in the unfolded protein response are decreased in depleted mice. Conclusion n-3 PUFA depletion leads to important metabolic alterations in murine liver. Steatosis occurs through a mechanism independent of the shift between β-oxidation and lipogenesis. Moreover, long term n-3 PUFA depletion decreases the expression of factors involved in the unfolded protein response, suggesting a lower protection against endoplasmic reticulum stress in hepatocytes upon n-3 PUFA deficiency.

  10. INFLUENCE FEEDING AND TRAINING ON THE METABOLIC PROFIL SPORT HORSES

    M HALO

    2010-06-01

    Full Text Available In a group of 11 sport horses, the effect of the traianig process, inclunding training and resting periods, on the metabolic profile. Training proces was divided into four part: I. End of the sport season, II. End of the resting period, III. End of the quantitative training charged and IV. End of the qualitative training charged. The level glucose in the blood serum of the observed horses was stated within the reference limits, with the tendency towards the inncreased values in the 2-st and 4-st period (4,34 – 5,03 mmol.l-1. The average values global lipid and cholesterol was stated whitin the reference limits.

  11. Rumen microbial communities influence metabolic phenotypes in lambs

    Morgavi, Diego P.; Rahahao-Paris, Estelle; Popova, Milka;

    2015-01-01

    and the metabolic phenotype of lambs for identifying host-microbe associations and potential biomarkers of digestive functions. Twin lambs, separated in two groups after birth were exposed to practices (isolation and gavage with rumen fluid with protozoa or protozoa-depleted) that differentially restricted......The rumen microbiota is an essential part of ruminants forging their nutrition and health. Despite its importance, it is not fully understood how various groups of rumen microbes affect host-microbe relationships and functions. The aim of the study was to simultaneously explore the rumen microbiota...... the acquisition of microbes. Rumen microbiota, fermentation parameters, digestibility and growth were monitored for up to 31 weeks of age. Microbiota assembled in isolation from other ruminants lacked protozoa and had low bacterial and archaeal diversity whereas digestibility was not affected. Exposure to adult...

  12. The influence of dietary calcium and phosphorus on bone metabolism

    Schaafsma, G.

    1981-01-01

    By means of this study it was attempted to obtain a better insight into the possible influence of the diet on the development of human osteoporosis. This disease, which is a consequence of decalcification of the bones, occurs frequently in elderly people, particularly in postmenopausal women.On the

  13. Metabolic and Sensory Influences on Odor Sensitivity in Humans

    Ramaekers, M.G.; Verhoef, Alard; Gort, G.; Luning, P.A.; Boesveldt, S.

    2015-01-01

    Our olfactory sense plays an important role in eating behavior by modulating our food preferences
    and intake. However, hunger or satiety may also influence how we perceive odors. Albeit
    speculative, contradictory results found in the past may have resulted from confounding by type
    of mea

  14. The association between concentration of Uric Acid and metabolic syndrome among adolescents

    Homeira Rashidi

    2015-11-01

    Full Text Available Background: Metabolic syndromes are known as a set of risk factors for the development of cardio-vascular disease and diabetes in the individual. The association between concentration of uric acid and metabolic syndrome in adolescents has yet to be established thoroughly. The aim of this study was to investigate the relationship between uric acid and metabolic syndrome in a sample of adolescents. Methods: This cross-sectional study was conducted from September 23, 2009 to September 22, 2010 in Jundishapur University of Medical Sciences, Ahvaz, Iran. In this study, 240 individuals aged 10-19 years were randomly selected among participants of the Ahvaz MetS study (120 subjects normal and 120 subjects MetS. The serum levels of UA were measured by a colorimetric method. In the normal group, anyone with abdominal obesity, high systolic or diastolic blood pressure, High-density lipoprotein (HDL≤40 mg/dl, TG≤110 mg/dl, fasting blood sugar (FBS≤100 mg/dl or diabetes was excluded from the study. History of Anticonvulsive drugs or steroids use was the criteria for exclusion for both groups. Results: Of the 240 subjects aged a mean of 14.95±2.64 years, mean of uric acid in metabolic syndrome group was 4.8±1.4 mg/dl and in the control group was 4.18±1.01 mg/d (P=0.001. Participants were divided into three groups based on uric acid levels: ≤4.9 mg/dl, 4.9-5.7 mg/dl and >5.7 mg/dl. The risk of metabolic syndrome was significantly higher in third group of uric acid than the second and first group (odds ratio [OR], 3.7; 95% confidence interval [CI], 1.70 - 8.04 and (OR, 5.9; 95% CI, 2.42-14.35, P<0.001. In addition, uric acid level was inversely associated with hyperglycemia. The ORs of hypertriglyceridemia for the second and third group of uric acid were 4.36 (95% CI, 2.01- 9.47 5.75 (95% CI, 2.43-13.61 respectively, compared with lowest group of UA. Conclusion: The results showed that hyperuricemia was significantly linked with increased risk for

  15. Radioiodinated PHIPA`s; metabolically trapped fatty acids

    Eisenhut, M. [Heidelberg Univ. (Germany). Radiopharmaceutical Chemistry Lab.

    1998-12-31

    Radioiodinated PHIPA 3-10 [13-(4`-iodophenyl)-3-(p-phenylene)tridecanoic acid] has been developed for nuclear-cardiological investigation of coronary artery disease or cardiomyopathies of various origin. The compound features a phenylene group located within the backbone of a long-chain fatty acid. In spite of its bulky structure [{sup 123}I]PHIPA 3-10 is extracted by the myocardium in a manner similar to that for the unmodified fatty acid analogue, [{sup 123}I]IPPA. The retention of PHIPA 3-10 in heart muscle results from the presence of the p-phenylene group which prevents more than one {beta}-oxidation cycle. Only one single, rapidly formed metabolite was found in rat-heart extracts. According to comparative HPLC with synthetic metabolites and mass spectrometric analysis this metabolite was identified as [{sup 123}I]PHIPA 1-10, a by two methylene groups shortened PHIPA derivative. Formation of this metabolite could be suppressed by Etomoxir, a carnitine palmitoyl fransferase I inhibitor, indicating {beta}-oxidation of [{sup 123}I]PHIPA 3-10 in mitochondria. Final evidence for the involvement of mitochondria in the degradation of [{sup 123}I]PHIPA 3-10 was obtained performing density-gradient centrifugation with homogenized rat heart tissue. Labeled free PHIPA 3-10 and free metabolite peaked with the fraction containing mitochondria. With respect to its biochemical characteristics, [{sup 123}I]PHIPA 3-10 may be considered as a useful tool for nuclear cardiological investigations. (orig.) [Deutsch] Radioiodierte PHIPA 3-10 [13-(4`-Iodophenyl)-3-(p-phenylene)tridecanoic acid] wurde fuer Untersuchungen von koronaren Herzerkrankungen und Kardiomyopathien unterschiedlicher Genese entwickelt. Die Verbindung enthaelt eine in der Fettsaeurekette lokalisierte Phenylengruppe. Obwohl dieses Strukturelement raumfordernd ist, wird [{sup 123}I]PHIPA 3-10 aehnlich gut vom Herzmuskel aufgenommen, wie die unmodifizierte Fettsaeure [{sup 123}I]IPPA. Die auffallende

  16. Macrophage activation by lipopolysaccharide, interferon-γ and interleukin-4: effect of fatty acid metabolism

    Darmani, H.; Harwood, J. L.; Parton, J; Jackson, S. K.

    1995-01-01

    The aim of this study was to investigate the effects of interferon-γ and -β (IFN-γ, -β), interleukin-4 and -10 (IL-4, -10) and Hpopolysaccharide (LPS) on the metabolism and composition of phospholipid fatty acids in macrophages. Murine J774.2 macrophages were incubated with radiolabelled fatty acids and the appropriate stimulus and the incorporation and composition of the phospholipid classes was determined. IFN-γ and IL-4 specifically stimulated enhanced incorporation of [14C]-linoleic acid ...

  17. The metabolism of tritiated oleic acid in the rat. A radiological protection study

    The metabolism of 3H-labelled oleic acid has been studied in the rat during 600 days. The results of urinary and fecal excretions, of the retention of the total and fixed activities in 25 tissues or organs and the cumulative activity from day 4 to 616 are discussed. Oleic acid is more widely spread than other labelled molecules studied previously both as regard excretion or retention. During the first 4 days one can grossly admit that half the activity is fixed to water and half is stored in the adipose tissues which it leaves quickly first, then more slowly with a half-life of 200 days about. For some ten tissues, the cumulative activity due to the fixed fraction exceeds the cumulative activity due to tritiated water obtained by metabolism of oleic acid

  18. Metabolism of arachidonic acid in phorbol ester, interferon and dimethyl sulfoxide differentiation induced U937 cells

    U937, a human macrophage cell line can metabolize arachidonic acid to a prostaglandin E2-like substance, and an unidentified lipoxygenase product. This metabolism occurs at very low levels however since these cells have low lipase and fatty acid oxygenase activities. The investigated the appearance of these enzyme activities during differentiation induced by phorbol-12-myristate-13-acetate (PMA), human gamma interferon (INF), and dimethyl sulfoxide (DMSO) on days 1,3 and 5 of stimulation using 3H-arachidonic acid (3H-AA). Culture supernatants were analyzed for free 3H-AA and 3H metabolites by radio-thin layer chromatography (3H-MET). The increasing percentage of 3H-AA release suggests the appearance of phospholipase activity during differentiation

  19. Metabolism

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  20. Influencing of Deep Frying in Forming of Trans Fatty Acid.

    Ratu Ayu Dewi Sartika

    2009-04-01

    Full Text Available Frying process is one of the cooking's techniques usingvegetable oil. This process is commonly used in food industry, restaurants, food services, food retail and householdscale. This is a laboratory experimental study which performed in laboratory of Public Health Nutrition FKM-UI andIntegrated Laboratory IPB, Bogor from December 2005 until March 2006. It was conducted by two (2 type oftreatment (used cooking oil ex cassava and meat with 4 (four times for each treatment. The objective of this study is toknow the influence of frying by using deep frying (frying in high temperature and in a long time and repeating to transfatty acid formation in cooking oil. From the result revealed that fatty acid type mostly contained in a fresh cooking oilis oleic acid. Trans fatty acid was formed after second repeating of deep frying and increased in line with the frequent ofrepeating. Correlation test result had shown that negative association between elaidic acid (trans and oleic acid (cis(r = - 0,8; p value = 0.016. In accordance with the beginning of trans fatty acid formation, it would be better to use thecooking oil not more than twice.

  1. β-methyl-15-p-iodophenylpentadecanoic acid metabolism and kinetics in the isolated rat heart

    The use of 15-p-iodophenyl-β-methyl-pentadecanoic acid (βMe-IPPA) as an indicator of long chain fatty acid (LCFA) utilization in nuclear medicine studies was evaluated in the isolated, perfused, working rat heart. Time courses of radioactivity (residue curves) were obtained following bolus injections of both βMe-IPPA and its straight chain counterpart 15-p-iodophenyl-pentadecanoic acid (IPPA). IPPA kinetics clearly indicated flow independent impairment of fatty acid oxidation caused by the carnitine palmitoyltransferase I inhibitor 2[5(4-chlorophenyl)pentyl]oxirane-2-carboxylate (POCA). In contrast, βMe-IPPA kinetics were insensitive to changes in fatty acid oxidation rate and net utilization of long chain fatty acid. Analysis of radiolabeled species in coronary effluent and heart homogenates showed the methylated fatty acid to be readily incorporated into complex lipids but a poor substrate for oxidation. POCA did not significantly alter metabolism of the tracer, suggesting that the tracer is poorly metabolized beyond βMe-IPPA-CoA in the oxidative pathway. (orig.)

  2. Dietary Fatty Acids and Their Potential for Controlling Metabolic Diseases Through Activation of FFA4/GPR120

    Ulven, Trond; Christiansen, Elisabeth

    2015-01-01

    for the treatment of metabolic disorders, including type 2 diabetes and obesity. In this review, we discuss the various types of dietary fatty acids, the link between FFA4 and metabolic diseases, the potential effects of the individual fatty acids on health, and the ability of fatty acids to activate FFA4. We also......It is well known that the amount and type of ingested fat impacts the development of obesity and metabolic diseases, but the potential for beneficial effects from fat has received less attention. It is becoming clear that the composition of the individual fatty acids in diet is important. Besides...

  3. Lysophosphatidic acid metabolism and elimination in cardiovascular disease

    Salous, Abdelghaffar Kamal

    The bioactive lipids lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are present in human and mouse plasma at a concentration of ~0.1-1 microM and regulate physiological and pathophysiological processes in the cardiovascular system including atherothrombosis, intimal hyperplasia, and immune function, edema formation, and permeability. PPAP2B, the gene encoding LPP3, a broad activity integral membrane enzyme that terminates LPA actions in the vasculature, has a single nucleotide polymorphism that been recently associated with coronary artery disease risk. The synthesis and signaling of LPA and S1P in the cardiovascular system have been extensively studied but the mechanisms responsible for their elimination are less well understood. The broad goal of this research was to examine the role of LPP3 in the termination of LPA signaling in models of cardiovascular disease involving vascular wall cells, investigate the role of LPP3 in the elimination of plasma LPA, and further characterize the elimination of plasma LPA. The central hypothesis is that LPP3 plays an important role in attenuating the pathological responses to LPA signaling and that it mediates the elimination of exogenously applied bioactive lipids from the plasma. These hypotheses were tested using molecular biological approaches, in vitro studies, synthetic lysophospholipid mimetics, modified surgical procedures, and mass spectrometry assays. My results indicated that LPP3 played a critical role in attenuating LPA signaling mediating the pathological processes of intimal hyperplasia and vascular leak in mouse models of disease. Additionally, enzymatic inactivation of lysophospholipids by LPP and PLA enzymes in the plasma was not a primary mechanism for the rapid elimination of plasma LPA and S1P. Instead, evidence strongly suggested a transcellular uptake mechanism by hepatic non-parenchymal cells as the predominant mechanism for elimination of these molecules. These results support a model in

  4. Composition of fatty acids in plasma and erythrocytes and eicosanoids level in patients with metabolic syndrome

    Antonyuk Marina V

    2011-05-01

    Full Text Available Abstract Background Disturbances of the fatty acids composition in plasma and red blood cells and eicosanoid synthesis play an important role in the metabolic syndrome (MS formation. Methods The observation group included 61 people with metabolic syndrome (30 patients with MS and normal levels of insulin, 31 people with MS and insulin resistance - IR. The parameters of carbohydrate and lipid metabolism in blood serum were examined. The composition of nonesterified fatty acids (NEFA, fatty acid (FA of red blood cells lipids was analyzed by gas-liquid chromatography. Eicosanoids level in MS patients blood serum was studied by enzyme immunoassay. Results In MS patients in the absence of glucose-insulin homeostasis disturbances and in patients with IR the accumulation of polyunsaturated fatty acids (18:2 n6, 18:3 n3, 22:4 n6 and lower pool of saturated FA (12:0, 14:0, 16: 0, 17:0 in plasma were discovered. A deficit of polyunsaturated FA (18:3 n3, 20:4 n6 with a predominance of on-saturated FA (14:0, 18:0 in erythrocyte membranes was revealed. In MS patients regardless of the carbohydrate metabolism status high levels of leukotriene B4 and 6-keto-prostaglandin-F1α in serum were found. The development of IR in MS patients leads to increased synthesis of thromboxane A2. Conclusion The results revealed a disturbance in nonesterified fatty acids of plasma lipids and red blood cells, eicosanoid synthesis in MS patients. The breach of the plasma and cell membranes fatty acids compositions, synthesis of vasoactive and proinflammatory eicosanoids is an important pathogenetic part of the MS development.

  5. Metabolic and Sensory Influences on Odor Sensitivity in Humans.

    Ramaekers, Marielle G; Verhoef, Alard; Gort, Gerrit; Luning, Pieternel A; Boesveldt, Sanne

    2016-02-01

    Our olfactory sense plays an important role in eating behavior by modulating our food preferences and intake. However, hunger or satiety may also influence how we perceive odors. Albeit speculative, contradictory results found in the past may have resulted from confounding by type of meal that participants ate to induce satiety. We aimed to investigate the influence of hunger state on olfactory sensitivity, comparing hunger to satiety using 2 different types of lunch to control for sensory-specific satiety. Odor detection thresholds were measured in 2 groups of participants (39 per group, 18-40 years), under 3 conditions: when hungry (twice), after a sweet lunch, and after a savory lunch. One group had their detection thresholds tested for a sweet odor, whereas in the other group, sensitivity to a savory odor was measured. Differences in olfactory sensitivity conditions were analyzed using linear mixed models. Participants had higher scores on the odor sensitivity task in a hungry versus satiated state (P = 0.001). Within the satiated condition, there was no effect of type of lunch on odor sensitivity. In conclusion, hunger slightly enhances sensitivity to food odors, but did not significantly depend on the type of food participants ate, suggesting no clear influence of sensory-specific satiety. PMID:26567260

  6. Metabolic regulation of the plant hormone indole-3-acetic acid

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  7. Myogenic and metabolic feedback in cerebral autoregulation: Putative involvement of arachidonic acid-dependent pathways.

    Berg, Ronan M G

    2016-07-01

    The present paper presents a mechanistic model of cerebral autoregulation, in which the dual effects of the arachidonic acid metabolites 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) on vascular smooth muscle mediate the cerebrovascular adjustments to a change in cerebral perfusion pressure (CPP). 20-HETE signalling in vascular smooth muscle mediates myogenic feedback to changes in vessel wall stretch, which may be modulated by metabolic feedback through EETs released from astrocytes and endothelial cells in response to changes in brain tissue oxygen tension. The metabolic feedback pathway is much faster than 20-HETE-dependent myogenic feedback, and the former thus initiates the cerebral autoregulatory response, while myogenic feedback comprises a relatively slower mechanism that functions to set the basal cerebrovascular tone. Therefore, assessments of dynamic cerebral autoregulation, which may provide information on the response time of the cerebrovasculature, may specifically be used to yield information on metabolic feedback mechanisms, while data based on assessments of static cerebral autoregulation represent the integrated functionality of myogenic and metabolic feedback. PMID:27241246

  8. Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans.

    Selkov, E; Overbeek, R; Kogan, Y; Chu, L; Vonstein, V; Holmes, D; Silver, S; Haselkorn, R; Fonstein, M

    2000-03-28

    A gapped genome sequence of the biomining bacterium Thiobacillus ferrooxidans strain ATCC23270 was assembled from sheared DNA fragments (3.2-times coverage) into 1,912 contigs. A total of 2,712 potential genes (ORFs) were identified in 2.6 Mbp (megabase pairs) of Thiobacillus genomic sequence. Of these genes, 2,159 could be assigned functions by using the WIT-Pro/EMP genome analysis system, most with a high degree of certainty. Nine hundred of the genes have been assigned roles in metabolic pathways, producing an overview of cellular biosynthesis, bioenergetics, and catabolism. Sequence similarities, relative gene positions on the chromosome, and metabolic reconstruction (placement of gene products in metabolic pathways) were all used to aid gene assignments and for development of a functional overview. Amino acid biosynthesis was chosen to demonstrate the analytical capabilities of this approach. Only 10 expected enzymatic activities, of the nearly 150 involved in the biosynthesis of all 20 amino acids, are currently unassigned in the Thiobacillus genome. This result compares favorably with 10 missing genes for amino acid biosynthesis in the complete Escherichia coli genome. Gapped genome analysis can therefore give a decent picture of the central metabolism of a microorganism, equivalent to that of a complete sequence, at significantly lower cost. PMID:10737802

  9. Suboptimal Light Conditions Influence Source-Sink Metabolism during Flowering.

    Christiaens, Annelies; De Keyser, Ellen; Pauwels, Els; De Riek, Jan; Gobin, Bruno; Van Labeke, Marie-Christine

    2016-01-01

    Reliance on carbohydrates during flower forcing was investigated in one early and one late flowering cultivar of azalea (Rhododendron simsii hybrids). Carbohydrate accumulation, invertase activity, and expression of a purported sucrose synthase gene (RsSUS) was monitored during flower forcing under suboptimal (natural) and optimal (supplemental light) light conditions, after a cold treatment (7°C + dark) to break flower bud dormancy. Post-production sucrose metabolism and flowering quality was also assessed. Glucose and fructose concentrations and invertase activity increased in petals during flowering, while sucrose decreased. In suboptimal light conditions RsSUS expression in leaves increased as compared to optimal light conditions, indicating that plants in suboptimal light conditions have a strong demand for carbohydrates. However, carbohydrates in leaves were markedly lower in suboptimal light conditions compared to optimal light conditions. This resulted in poor flowering of plants in suboptimal light conditions. Post-production flowering relied on the stored leaf carbon, which could be accumulated under optimal light conditions in the greenhouse. These results show that flower opening in azalea relies on carbohydrates imported from leaves and is source-limiting under suboptimal light conditions. PMID:26973689

  10. Influence of diseases and metabolic disorders on cow weight changes

    Šárka Podlahová

    2012-10-01

    Full Text Available Requirements on increasing economic efficiency of cattle breeding force farmers to use the latest up-to-datetechnology for monitoring and management of farming quality. Regular weighing and data processing can forinstance discover mistakes that can indicate defects, e.g. nutrition deficiencies, incorrect embryonic development,health problems, demanding nursing intervention. The aim of the research was to monitor manifestations of diseasesand metabolic disorders in the course of weight curve based on data from an automated system for weighing the liveweight of dairy cows. There was used in the weighing unit for milking robots Astronaut A3 (Lely company to obtainweight data of individual cows. There were selected dairy cows with the longest period of lactation or already dryingoff, and especially dairy cows with various health problems for study. Limiting values of weight changes wereestablished after assembling a general equation of mass curve. In the sphere of the diseases there was manifestedonly ketosis in the weight curves with a loss of 10.2 kg / day (38% weight loss. The results of the study will beapplied for compiling algorithm that will be implemented in the complete management system of cattle breeding,monitoring the dairy cows every day and highlight possible deviations exceeding of physiological changes in weight.

  11. Influence of dietary substances on intestinal drug metabolism and transport.

    Won, Christina S; Oberlies, Nicholas H; Paine, Mary F

    2010-11-01

    Successful delivery of promising new chemical entities via the oral route is rife with challenges, some of which cannot be explained or foreseen during drug development. Further complicating an already multifaceted problem is the obvious, yet often overlooked, effect of dietary substances on drug disposition and response. Some dietary substances, particularly fruit juices, have been shown to inhibit biochemical processes in the intestine, leading to altered pharmacokinetic (PK), and potentially pharmacodynamic (PD), outcomes. Inhibition of intestinal CYP3Amediated metabolism is the major mechanism by which fruit juices, including grapefruit juice, enhances systemic exposure to new and already marketed drugs. Inhibition of intestinal non-CYP3A enzymes and apically-located transport proteins represent recently identified mechanisms that can alter PK and PD. Several fruit juices have been shown to inhibit these processes in vitro, but some interactions have not translated to the clinic. The lack of in vitroin vivo concordance is due largely to a lack of rigorous methods to elucidate causative ingredients prior to clinical testing. Identification of specific components and underlying mechanisms is challenging, as dietary substances frequently contain multiple, often unknown, bioactive ingredients that vary in composition and bioactivity. A translational research approach, combining expertise from clinical pharmacologists and natural products chemists, is needed to develop robust models describing PK/PD relationships between a given dietary substance and drug of interest. Validation of these models through well-designed clinical trials would facilitate development of common practice guidelines for managing drug-dietary substance interactions appropriately. PMID:21189136

  12. Nucleic Acids and Protein Metabolism of Bone Marrow Cells Studied by Means of Tritiumlabelled Precursors

    The advantages of the use of tritium-labelled compounds in radioautographic technique are discussed. Tritium electrons have a maximal energy of 0.018 MeV, corresponding to about 1μm range in a photographic emulsion, and consequently they allow the highest possible resolution at a cellular and subcellular level. This is particularly useful for studying metabolic phenomena of tissues which are composed, as in the case of bone marrow, of different cellular types at various stages of differentiation. This technique has been used for investigating nucleic acids and protein metabolism of normal and leukaemic bone marrow cells. DNA metabolism has been studied utilizing a specific precursor, H3-thymidine. Some significant differences of the percentages of labelled cells have been detected by comparing the normal and leukaemic elements belonging to the same stage of maturation. In acute leukaemia cells, particularly, a strikingly lower incorporation of thymidine was found and these results have been taken as evidence of a decreased proliferative capacity of these cells, as compared to normal myeloblasts. With the same technique, RNA and protein metabolism have been investigated utilizing H3- uridine, H3-leucine and H3-phenylalanine as precursors. The existence of a strict interrelationship between RNA and protein metabolism is now fully accepted in cellular biology. The existence of a constant ratio between uridine and amino acids incorporation has also been demonstrated in normal bone marrow cells. In acute leukaemia cells the incorporation of RNA and protein precursors, although different from case to case, is constantly and significantly lower. Furthermore, the ratio between uridine and amino acids incorporation is constantly altered in these cells. The lower RNA and protein metabolism and its dissociation in acute leukaemia cells is discussed in relation to the well-known maturation defect of these cells. (author)

  13. The influence of BMI on the association between serum lycopene and the metabolic syndrome.

    Han, Guang-Ming; Soliman, Ghada A; Meza, Jane L; Islam, K M Monirul; Watanabe-Galloway, Shinobu

    2016-04-01

    Overweight and obese individuals have an increased risk of developing the metabolic syndrome because of subsequent chronic inflammation and oxidative stress, which the antioxidant nutrient lycopene can reduce. However, studies indicate that different BMI statuses can alter the positive effects of lycopene. Therefore, the purpose of this study was to examine how BMI influences the association between serum lycopene and the metabolic syndrome. The tertile rank method was used to divide 13 196 participants, aged 20 years and older, into three groups according to serum concentrations of lycopene. The associations between serum lycopene and the metabolic syndrome were analysed separately for normal-weight, overweight and obese participants. Overall, the prevalence of the metabolic syndrome was significantly higher in the first tertile group (OR 38·6 %; 95 % CI 36·9, 40·3) compared with the second tertile group (OR 29·3 %; 95 % CI 27·5, 31·1) and the third tertile group (OR 26·6 %; 95 % CI 24·9, 28·3). However, the associations between lycopene and the metabolic syndrome were only significant for normal-weight and overweight participants (P0·05), even after adjusting for possible confounding variables. In conclusion, BMI appears to strongly influence the association between serum lycopene and the metabolic syndrome. PMID:26857614

  14. Serum Phospholipid Docosahexaenoic Acid Is Inversely Associated with Arterial Stiffness in Metabolically Healthy Men

    Lee, Mi-Hyang; Kwon, Nayeon; Yoon, So Ra

    2016-01-01

    We hypothesized that lower proportion of serum phospholipid docosahexaenoic acid (DHA) is inversely associated with increased cardiovascular risk and vascular function in metabolically healthy men. To elucidate it, we first compared serum phospholipid free fatty acid (FA) compositions and cardiovascular risk parameters between healthy men (n = 499) and male patients with coronary artery disease (CAD, n = 111) (30-69 years) without metabolic syndrome, and then further-analyzed the association of serum phospholipid DHA composition with arterial stiffness expressed by brachial-ankle pulse wave velocity (ba-PWV) in metabolically healthy men. Basic parameters, lipid profiles, fasting glycemic status, adiponectin, high sensitivity C-reactive protein (hs-CRP) and LDL particle size, and serum phospholipid FA compositions were significantly different between the two subject groups. Serum phospholipid DHA was highly correlated with most of long-chain FAs. Metabolically healthy men were subdivided into tertile groups according to serum phospholipid DHA proportion: lower ( 3.235%). Fasting glucose, insulin resistance, hs-CRP and ba-PWVs were significantly higher and adiponectin and LDL particle size were significantly lower in the lower-DHA group than the higher-DHA group after adjusted for confounding factors. In metabolically healthy men, multiple stepwise regression analysis revealed that serum phospholipid DHA mainly contributed to arterial stiffness (β′-coefficients = -0.127, p = 0.006) together with age, systolic blood pressure, triglyceride (r = 0.548, p = 0.023). Lower proportion of serum phospholipid DHA was associated with increased cardiovascular risk and arterial stiffness in metabolically healthy men. It suggests that maintaining higher proportion of serum phospholipid DHA may be beneficial for reducing cardiovascular risk including arterial stiffness in metabolically healthy men. PMID:27482523

  15. Metabolomic applications to decipher gut microbial metabolic influence in health and disease

    Francois-Pierre eMartin

    2012-04-01

    Full Text Available Dietary preferences and nutrients composition have been shown to influence human and gut microbial metabolism, which ultimately has specific effects on health and diseases’ risk. Increasingly, results from molecular biology and microbiology demonstrate the key role of the gut microbiota metabolic interface to the overall mammalian host’s health status. There is therefore raising interest in nutrition research to characterize the molecular foundations of the gut microbial mammalian cross-talk at both physiological and biochemical pathway levels. Tackling these challenges can be achieved through systems biology approaches, such as metabolomics, to underpin the highly complex metabolic exchanges between diverse biological compartments, including organs, systemic biofluids and microbial symbionts. By the development of specific biomarkers for prediction of health and disease, metabolomics is increasingly used in clinical applications as regard to disease aetiology, diagnostic stratification and potentially mechanism of action of therapeutical and nutraceutical solutions. Surprisingly, an increasing number of metabolomics investigations in pre-clinical and clinical studies based on proton nuclear magnetic resonance (1H NMR spectroscopy and mass spectrometry (MS provided compelling evidence that system wide and organ-specific biochemical processes are under the influence of gut microbial metabolism. This review aims at describing recent applications of metabolomics in clinical fields where main objective is to discern the biochemical mechanisms under the influence of the gut microbiota, with insight into gastrointestinal health and diseases diagnostics and improvement of homeostasis metabolic regulation.

  16. Metabolic engineering of lactic acid bacteria for the production of industrially important compounds

    Maria Papagianni

    2012-10-01

    Full Text Available Lactic acid bacteria (LAB are receiving increased attention for use as cell factories for the production of metabolites with wide use by the food and pharmaceutical industries. The availability of efficient tools for genetic modification of LAB during the past decade permitted the application of metabolic engineering strategies at the levels of both the primary and the more complex secondary metabolism. The recent developments in the area with a focus on the production of industrially important metabolites will be discussed in this review.

  17. Lactobacillus acidophilus NCFM affects vitamin E acetate metabolism and intestinal bile acid signature in monocolonized mice

    Roager, Henrik Munch; Sulek, Karolina; Skov, Kasper;

    2014-01-01

    deconjugation and dehydroxylation of bile acids. Furthermore, we confirmed that carbohydrate metabolism is affected by NCFM in the mouse intestine. Especially, the digestion of larger carbohydrates (penta- and tetrasaccharides) was increased in MC mice. Interestingly, we also found vitamin E (α......-tocopherol acetate) in higher levels in the intestine of GF mice compared to MC mice, suggesting that NCFM either metabolizes the compound orindirectly affects the absorption by changing the metabolome in the intestine. The use of NCFM to increase the uptake of vitamin E supplements in humans and animals is a highly...

  18. Retinoic Acid-Related Orphan Receptors (RORs: Regulatory Functions in Immunity, Development, Circadian Rhythm, and Metabolism

    Donald N. Cook

    2015-12-01

    Full Text Available In this overview, we provide an update on recent progress made in understanding the mechanisms of action, physiological functions, and roles in disease of retinoic acid related orphan receptors (RORs. We are particularly focusing on their roles in the regulation of adaptive and innate immunity, brain function, retinal development, cancer, glucose and lipid metabolism, circadian rhythm, metabolic and inflammatory diseases and neuropsychiatric disorders. We also summarize the current status of ROR agonists and inverse agonists, including their regulation of ROR activity and their therapeutic potential for management of various diseases in which RORs have been implicated.

  19. Adipose tissue transcriptional response of lipid metabolism genes in growing Iberian pigs fed oleic acid v. carbohydrate enriched diets.

    Benítez, R; Núñez, Y; Fernández, A; Isabel, B; Rodríguez, C; Daza, A; López-Bote, C; Silió, L; Óvilo, C

    2016-06-01

    Diet influences animal body and tissue composition due to direct deposition and to the nutrients effects on metabolism. The influence of specific nutrients on the molecular regulation of lipogenesis is not well characterized and is known to be influenced by many factors including timing and physiological status. A trial was performed to study the effects of different dietary energy sources on lipogenic genes transcription in ham adipose tissue of Iberian pigs, at different growth periods and on feeding/fasting situations. A total of 27 Iberian male pigs of 28 kg BW were allocated to two separate groups and fed with different isocaloric feeding regimens: standard diet with carbohydrates as energy source (CH) or diet enriched with high oleic sunflower oil (HO). Ham subcutaneous adipose tissue was sampled by biopsy at growing (44 kg mean BW) and finishing (100 kg mean BW) periods. The first sampling was performed on fasted animals, while the last sampling was performed twice, with animals fasted overnight and 3 h after refeeding. Effects of diet, growth period and feeding/fasting status on gene expression were explored quantifying the expression of a panel of key genes implicated in lipogenesis and lipid metabolism processes. Quantitative PCR revealed several differentially expressed genes according to diet, with similar results at both timings: RXRG, LEP and FABP5 genes were upregulated in HO group while ME1, FASN, ACACA and ELOVL6 were upregulated in CH. The diet effect on ME1 gene expression was conditional on feeding/fasting status, with the higher ME1 gene expression in CH than HO groups, observed only in fasting samples. Results are compatible with a higher de novo endogenous synthesis of fatty acids (FA) in the carbohydrate-supplemented group and a higher FA transport in the oleic acid-supplemented group. Growth period significantly affected the expression of most of the studied genes, with all but PPARG showing higher expression in finishing pigs according to

  20. Influence of vitamin B6-deficiency on the uracilnucleotid-metabolism in different organs of the rat and on the glycosylation of plasmamembrane-proteins

    Rieger, Kathrin

    2010-01-01

    Pyridoxal-5?-phosphate (PLP), the physiologically active form of vitamin B6, functions as a cofactor for enzymes in a variety of metabolic reactions, particulary the amino acid metabolism. In addition, a number of studies have demonstrated a new role of vitamin B6 as a modulator of gene expression. Vitamin B6-deficiency hereby resulted in an enhanced expression of a number of genes. Herein, the influence of vitamin B6-deficiency a) on the concentration of nucleotides and UDP-sugars in rat liv...

  1. Metabolic engineering of lactic acid bacteria and characterization of novel enzymes for the production of industrially important compounds

    Aarnikunnas, Johannes Sakari

    2006-01-01

    Lactic acid bacteria (LAB) are a heterogeneous group of gram-positive bacteria that produce lactic acid as their main end-product during sugar fermentation. Because the LAB are able to rapidly lower pH through acid formation and additionally produce many flavor compounds, they are commonly used in the food and feed industry. LAB are also attractive organisms for metabolic engineering because their energy metabolism is generally not connected to their biosynthetic activity. Therefore, their su...

  2. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia

    Kaliannan, Kanakaraju; Wang, Bin; Li, Xiang-Yong; Kim, Kui-Jin; Kang, Jing X.

    2015-01-01

    Metabolic endotoxemia, commonly derived from gut dysbiosis, is a primary cause of chronic low grade inflammation that underlies many chronic diseases. Here we show that mice fed a diet high in omega-6 fatty acids exhibit higher levels of metabolic endotoxemia and systemic low-grade inflammation, while transgenic conversion of tissue omega-6 to omega-3 fatty acids dramatically reduces endotoxemic and inflammatory status. These opposing effects of tissue omega-6 and omega-3 fatty acids can be e...

  3. UVB Radiation Delays Tribolium castaneum Metamorphosis by Influencing Ecdysteroid Metabolism

    Sang, Wen; Yu, Lin; He, Li; Ma, Wei-Hua; Zhu, Zhi-Hui; Zhu, Fen; Wang, Xiao-Ping; Lei, Chao-Liang

    2016-01-01

    Ultraviolet B (UVB) radiation is an important environmental factor. It is generally known that UVB exhibits high genotoxicity due to causing DNA damage, potentially leading to skin carcinogenesis and aging in mammals. However, little is known about the effects of UVB on the development and metamorphosis of insects, which are the most abundant terrestrial animals. In the present study, we performed dose-response analyses of the effects UVB irradiation on Tribolium castaneum metamorphosis, assessed the function of the T. castaneum prothoracicotropic hormone gene (Trcptth), and analyzed ecdysteroid pathway gene expression profile and ecdysterone titers post-UVB irradiation. The results showed that UVB not only caused death of T. castaneum larvae, but also delayed larval-pupal metamorphosis and reduced the size and emergence rate of pupae. In addition, we verified the function of Trcptth, which is responsible for regulating metamorphosis. It was also found that the expression profiles of Trcptth as well as ecdysteroidogenesis and response genes were influenced by UVB radiation. Therefore, a disturbance pulse of ecdysteroid may be involved in delaying development under exposure to irradiation. To our knowledge, this is the first report indicating that UVB can influence the metamorphosis of insects. This study will contribute to a better understanding of the impact of UVB on signaling mechanisms in insect metamorphosis. PMID:26986217

  4. Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability.

    Figueroa, Carlos M; Feil, Regina; Ishihara, Hirofumi; Watanabe, Mutsumi; Kölling, Katharina; Krause, Ursula; Höhne, Melanie; Encke, Beatrice; Plaxton, William C; Zeeman, Samuel C; Li, Zhi; Schulze, Waltraud X; Hoefgen, Rainer; Stitt, Mark; Lunn, John E

    2016-02-01

    Trehalose 6-phosphate (Tre6P) is an essential signal metabolite in plants, linking growth and development to carbon metabolism. The sucrose-Tre6P nexus model postulates that Tre6P acts as both a signal and negative feedback regulator of sucrose levels. To test this model, short-term metabolic responses to induced increases in Tre6P levels were investigated in Arabidopsis thaliana plants expressing the Escherichia coli Tre6P synthase gene (otsA) under the control of an ethanol-inducible promoter. Increased Tre6P levels led to a transient decrease in sucrose content, post-translational activation of nitrate reductase and phosphoenolpyruvate carboxylase, and increased levels of organic and amino acids. Radio-isotope ((14)CO2) and stable isotope ((13)CO2) labelling experiments showed no change in the rates of photoassimilate export in plants with elevated Tre6P, but increased labelling of organic acids. We conclude that high Tre6P levels decrease sucrose levels by stimulating nitrate assimilation and anaplerotic synthesis of organic acids, thereby diverting photoassimilates away from sucrose to generate carbon skeletons and fixed nitrogen for amino acid synthesis. These results are consistent with the sucrose-Tre6P nexus model, and implicate Tre6P in coordinating carbon and nitrogen metabolism in plants. PMID:26714615

  5. Cadmium Induces Retinoic Acid Signaling by Regulating Retinoic Acid Metabolic Gene Expression*

    Cui, Yuxia; Freedman, Jonathan H.

    2009-01-01

    The transition metal cadmium is an environmental teratogen. In addition, cadmium and retinoic acid can act synergistically to induce forelimb malformations. The molecular mechanism underlying the teratogenicity of cadmium and the synergistic effect with retinoic acid has not been addressed. An evolutionarily conserved gene, β,β-carotene 15,15′-monooxygenase (BCMO), which is involved in retinoic acid biosynthesis, was studied in both Caenorhabditis elegans and murine Hepa 1–6 cells. In C. eleg...

  6. Maternal Factors Are Associated with the Expression of Placental Genes Involved in Amino Acid Metabolism and Transport.

    Pricilla E Day

    Full Text Available Maternal environment and lifestyle factors may modify placental function to match the mother's capacity to support the demands of fetal growth. Much remains to be understood about maternal influences on placental metabolic and amino acid transporter gene expression. We investigated the influences of maternal lifestyle and body composition (e.g. fat and muscle content on a selection of metabolic and amino acid transporter genes and their associations with fetal growth.RNA was extracted from 102 term Southampton Women's Survey placental samples. Expression of nine metabolic, seven exchange, eight accumulative and three facilitated transporter genes was analyzed using quantitative real-time PCR.Increased placental LAT2 (p = 0.01, y+LAT2 (p = 0.03, aspartate aminotransferase 2 (p = 0.02 and decreased aspartate aminotransferase 1 (p = 0.04 mRNA expression associated with pre-pregnancy maternal smoking. Placental mRNA expression of TAT1 (p = 0.01, ASCT1 (p = 0.03, mitochondrial branched chain aminotransferase (p = 0.02 and glutamine synthetase (p = 0.05 was positively associated with maternal strenuous exercise. Increased glutamine synthetase mRNA expression (r = 0.20, p = 0.05 associated with higher maternal diet quality (prudent dietary pattern pre-pregnancy. Lower LAT4 (r = -0.25, p = 0.05 and aspartate aminotransferase 2 mRNA expression (r = -0.28, p = 0.01 associated with higher early pregnancy diet quality. Lower placental ASCT1 mRNA expression associated with measures of increased maternal fat mass, including pre-pregnancy BMI (r = -0.26, p = 0.01. Lower placental mRNA expression of alanine aminotransferase 2 associated with greater neonatal adiposity, for example neonatal subscapular skinfold thickness (r = -0.33, p = 0.001.A number of maternal influences have been linked with outcomes in childhood, independently of neonatal size; our finding of associations between placental expression of transporter and metabolic genes and maternal smoking

  7. Leaf Responses of Micropropagated Apple Plants to Water Stress: Changes in Endogenous Hormones and Their Influence on Carbohydrate Metabolism

    LI Tian-hong; LI Shao-hua

    2007-01-01

    The changes in the concentrations of endogenous hormones and their influence on carbohydrate metabolism in leaves of micropropagated Fuji apple plants were studied under water deficiency stress. The results showed that water stress induced a rapid increase in the concentration of abscisic acid (ABA) and led to a decrease in concentrations of both zeatin and gibberellins (GAs). The concentration of indole-3-acetic acid (IAA) changed in an independent manner, which was not correlated with the different levels of water stress. With regard to the carbohydrates, the contents of sorbitol and sucrose increased, whereas the content of starch decreased. The increase in the concentration of ABA was significantly correlated with both the increase in the activity of aldose-6-phosphate reductase (A6PR) and the decrease in the activity of sorbitol dehydrogenase (SDH), indicating that ABA played a regulatory role in sorbitol metabolism. The concentration of ABA was positively correlated to the activity of sucrose-phosphate synthase (SPS) but negatively correlated to the activities of acid invertase (AI) and ADP-glucose-pyrophosphorylase (ADPGppase) in water-stressed plants, which indicated that ABA promoted sucrose synthesis and inhibited sucrose degradation and starch synthesis at the same time. Under conditions of water stress, the decrease in the level of zeatin was accompanied by a decrease in the activities of SDH and ADPGPPase. GAs concentration showed positive correlation with ADPGPPase activity. IAA showed no significant correlation with any of the enzymes tested in this study. The results of this study suggested that ABA might be one of the key factors regulating the distribution of carbohydrates under water stress. The metabolism of sorbitol and starch under conditions of water stress might be regulated by the combined action of many plant hormones.

  8. The influence of soil drought on the photosynthetic carbon metabolism in different cotton sorts and lines

    In this article the results about influence of a drought on assimilation of ability CO2 during photosynthesis at different cotton sorts and lines are submitted. It was established that in these conditions speed of a turnover Pentose phosphate reduction of cycle decreases. However thus amplification inclusion 14C in products P E P-carboxylation and glycolate metabolism of carbon is observed

  9. Effects of ascorbic acid and sodium ascorbate on cyclic nucleotide metabolism in human lymphocytes.

    Atkinson, J P; Weiss, A; Ito, M; Kelly, J; Parker, C W

    1979-01-01

    L-ascorbic acid (LAA) augmented cGMP many-fold in highly purified human peripheral blood lymphocytes. The cGMP response occurred within 10 sec and persisted for at least 60 min. D-ascorbic acid (DAA) and dehydroascorbic acid (DHAA) were also equally active in enhancing cGMP concentrations but metabolic precursors of ascorbic acid and other inorganic acids did not increase cGMP levels. Determination of the amount of DHAA contaminating the LAA precluded the possibility that it was solely responsible for the enhanced cGMP levels. The sodium or calcium salts of ascorbic acid did not increase cGMP concentrations. If these neutralized preparations were acidified, increased cGMP concentrations were then noted. In broken cell preparations, LAA, DAA, and DHAA and to a lesser extent sodium ascorbate (NaA) enhanced guanylate cyclase activity while neither inhibited cAMP or cGMP phosphodiesterase (PDE) activity. The possible role of H2O2, fatty acid liberation, prostaglandin production, oxidizing-reducing agents, and free radical formation in mediating the effects of ascorbic acid on cGMP levels were evaluated, but none of these potential mechanisms were definitively proven to be a required intermediary for the cGMP enhancing activity of ascorbic acid. LAA, DHAA or NaA did not induce lymphocyte transformation or modulate lectin-induced mitogenesis. PMID:36416

  10. A central role of abscisic acid in stress-regulated carbohydrate metabolism.

    Stefan Kempa

    Full Text Available BACKGROUND: Abiotic stresses adversely affect plant growth and development. The hormone abscisic acid (ABA plays a central role in the response and adaptation to environmental constraints. However, apart from the well established role of ABA in regulating gene expression programmes, little is known about its function in plant stress metabolism. PRINCIPAL FINDINGS: Using an integrative multiparallel approach of metabolome and transcriptome analyses, we studied the dynamic response of the model glyophyte Arabidopsis thaliana to ABA and high salt conditions. Our work shows that salt stress induces complex re-adjustment of carbohydrate metabolism and that ABA triggers the initial steps of carbon mobilisation. SIGNIFICANCE: These findings open new perspectives on how high salinity and ABA impact on central carbohydrate metabolism and highlight the power of iterative combinatorial approaches of non-targeted and hypothesis-driven experiments in stress biology.

  11. Genetic Investigation of Tricarboxylic Acid Metabolism during the Plasmodium falciparum Life Cycle

    Hangjun Ke

    2015-04-01

    Full Text Available New antimalarial drugs are urgently needed to control drug-resistant forms of the malaria parasite Plasmodium falciparum. Mitochondrial electron transport is the target of both existing and new antimalarials. Herein, we describe 11 genetic knockout (KO lines that delete six of the eight mitochondrial tricarboxylic acid (TCA cycle enzymes. Although all TCA KOs grew normally in asexual blood stages, these metabolic deficiencies halted life-cycle progression in later stages. Specifically, aconitase KO parasites arrested as late gametocytes, whereas α-ketoglutarate-dehydrogenase-deficient parasites failed to develop oocysts in the mosquitoes. Mass spectrometry analysis of 13C-isotope-labeled TCA mutant parasites showed that P. falciparum has significant flexibility in TCA metabolism. This flexibility manifested itself through changes in pathway fluxes and through altered exchange of substrates between cytosolic and mitochondrial pools. Our findings suggest that mitochondrial metabolic plasticity is essential for parasite development.

  12. Proliferation-dependent changes in amino acid transport and glucose metabolism in glioma cell lines

    Amino acid imaging is increasingly being used for assessment of brain tumor malignancy, extent of disease, and prognosis. This study explores the relationship between proliferative activity, amino acid transport, and glucose metabolism in three glioma cell lines (U87, Hs683, C6) at different phases of growth in culture. Growth phase was characterized by direct cell counting, proliferation index determined by flow cytometry, and [3H]thymidine (TdR) accumulation, and was compared with the uptake of two non-metabolized amino acids ([14C]aminocyclopentane carboxylic acid (ACPC) and [14C]aminoisobutyric acid (AIB)), and [18F]fluorodeoxyglucose (FDG). Highly significant relationships between cell number (density), proliferation index, and TdR accumulation rate were observed in all cell lines (r>0.99). Influx (K1) of both ACPC and AIB was directly related to cell density, and inversely related to the proliferation index and TdR accumulation in all cell lines. The volume of distribution (Vd) for ACPC and AIB was lowest during rapid growth and highest during the near-plateau growth phase in all cell lines. FDG accumulation in Hs683 and C6 cells was unaffected by proliferation rate, growth phase, and cell density, whereas FDG accumulation was correlated with TdR accumulation, growth phase, and cell density in U87 cells. This study demonstrates that proliferation rate and glucose metabolism are not necessarily co-related in all glioma cell lines. The values of K1 and Vd for ACPC and AIB under different growth conditions suggest that these tumor cell lines can up-regulate amino acid transporters in their cell membranes when their growth conditions become adverse and less than optimal. (orig.)

  13. The metabolism of L-[6-14C] ascorbic acid in detached grape leaves

    Grape leaves (Vitis labrusca L.) that are removed from the position opposite the flower cluster either 28 or 14 days before anthesis cleave L-ascorbic acid (AA) at the C4-C5 bond into a C4 and, presumably, a C2 fragment. Leaves taken from this position 14 days after anthesis fail to cleave AA. The C4 fragment is utilized for L(+)-tartaric acid (TA) biosynthesis while the C2 fragment is recycled into hexose and products of the hexose metabolism. When ( 6-14C ) AA is the source of the label, the sucrose-drived glucose from labeled leaves has a distribution of 14C in the carbon skeleton as follows: C1, 35%; C2, 14%; C3, 4%; C(4 + 5), 13% and C6, 34%. The effect of inhibitors of the glycolate pathway on ( 6-14C ) AA metabolism is examined. (author)

  14. Effect of myocardial perfusion and metabolic interventions on cardiac kinetics of phenylpentadecanoic acid (IPPA) I 123

    Reske, S.N.; Schoen, S.; Schmitt, W.; Knopp, R.; Winkler, C.; Machulla, H.J.

    1986-08-01

    The effect of regional myocardial perfusion and flow-independent adrenergic stimulation, as well as lactate-mediated inhibition of cardiac lipolysis, on cardiac IPPA uptake and metabolism was examined in canine hearts (flow studies) and in the isolated perfused Langendorff rat heart (metabolic interventions). In both normal and ischaemic myocardium, local perfusion is a major determinant of cardiac IPPA uptake. In pacing-induced hyperaemia, the strict flow-dependence of cardiac IPPA uptake is not preserved. Adrenergic stimulation raises the rate of oxidation of both palmitic acid /sup 14/C and IPPA. This change is reflected by increased metabolite production released into the perfusate and radioactivity clearance recorded externally. Lactate in high concentrations exerts the opposite effect on cardiac free fatty acid oxidation. IPPA is stored in this condition preferentially in tissue phospholipids and triglycerides.

  15. Influence of difenoconazole on lipid metabolism in marine medaka (Oryzias melastigma).

    Dong, Xiaocui; Li, Yan; Zhang, Lemeng; Zuo, Zhenghong; Wang, Chonggang; Chen, Meng

    2016-07-01

    Difenoconazole (DFZ) is a triazole fungicide that inhibits the biosynthesis of sterols in cell membranes and is widely used in agriculture for effectively treating fungal infections. However, there are few studies available addressing the effects of DFZ on lipid metabolism in marine fishes. The present study was conducted to investigate the effects of DFZ on lipid metabolism in marine medaka (Oryzias melastigma). After exposure to 1, 10, 100 and 1000 ng/L DFZ for 180 days, an increase in condition factor (CF), total lipids and polyunsaturated fatty acids (PUFA) contents accompanied with a decrease in saturated fatty acids was observed in the muscle of DFZ-exposed fish. The expression of peroxisome proliferator-activated receptor γ as well as retinoid X receptors in the muscle was up-regulated, which would be responsible for the lipid accumulation in the muscle. The elevation of Δ6-desaturase (FADS2) and Δ9-desaturase (SCD) mRNA levels in the muscle and liver might result in the increase of PUFA content. The increased CF index and total lipid amounts indicated that DFZ exposure could affect the health of fish. ∑SFA (sum of saturated fatty acids) and DHA (docosahexaenoic acid; 22:6n-3) concentrations decreased, and the levels of ∑PUFA and ∑n-6PUFA increased in the muscle, which suggested that DFZ exposure could change lipid metabolism and profiles in fish. PMID:27112457

  16. Cytosolic fatty acid-binding proteins: subjects and tools in metabolic research

    Binas, B. [Max Delbrueck Center for Molecular Medicine, Berlin-Buch (Germany)

    1998-12-31

    Fatty acid-binding proteins (FABPs) are major targets for specific binding of fatty acids in vivo. They constitute a widely expressed family of genetically related, small cytosolic proteins which very likely mediate intracellular transport of free long chain fatty acids. Genetic inhibition of FABP expression in vivo should therefore provide a useful tool to investigate and engineer fatty acid metabolism. (orig.) [Deutsch] Fettsaeurebindungsproteine (FABPs) sind wichtige Bindungsstellen fuer Fettsaeuren in vivo; sie bilden eine breit exprimierte Familie genetisch verwandter kleiner Zytosoleiweisse, die sehr wahrscheinlich den intrazellulaeren Transport unveresterter langkettiger Fettsaeuren vermitteln. Die genetische Hemmung der FABP-Expanssion in vivo bietet sich deshalb als Werkzeug zur Erforschung und gezielten Veraenderung des Fettsaeurestoffwechsels an. (orig.)

  17. Fatty acid-inducible ANGPTL4 governs lipid metabolic response to exercise

    Catoire, Milène; Alex, Sheril; Paraskevopulos, Nicolas;

    2014-01-01

    Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercis...... use of plasma triglycerides as fuel for active muscles. Our data suggest that nonexercising muscle and the local regulation of ANGPTL4 via AMPK and free fatty acids have key roles in governing lipid homeostasis during exercise.......Physical activity increases energy metabolism in exercising muscle. Whether acute exercise elicits metabolic changes in nonexercising muscles remains unclear. We show that one of the few genes that is more highly induced in nonexercising muscle than in exercising human muscle during acute exercise......-activated receptor-δ, presumably leading to reduced local uptake of plasma triglyceride-derived fatty acids and their sparing for use by exercising muscle. In contrast, the induction of ANGPTL4 in exercising muscle likely is counteracted via AMP-activated protein kinase (AMPK)-mediated down-regulation, promoting the...

  18. Protein and energy metabolism of young male Wistar rats fed conjugated linoleic acid as structured triacylglycerol

    Jørgensen, H.; Hansen, C. H.; Mu, Huiling;

    2010-01-01

    Twelve 4-week-old male Wistar rats weighing 100 g were fed diets semi-ad libitum for 22 d containing either 1.5% conjugated linoleic acid (CLA-diet) or high oleic sunflower oil (Control-diet). The CLA was structured triacylglycerol with predominantly cis-9, trans-11 and trans-10, cis-12 fatty aci...... isomers in the inner position and oleic acid in the other positions of the glycerol molecule. The rats were kept individually in metabolic cages. From days 8-16 energy, nitrogen (N) and carbon...

  19. Serum neutral amino acid concentrations in cirrhotic patients with impaired carbohydrate metabolism.

    Watanabe,Akiharu

    1983-08-01

    Full Text Available Serum neutral amino acid levels in cirrhotic patients with abnormal oral glucose tolerance test patterns were not different from those of subjects without impaired carbohydrate metabolism. However, the characteristic features of serum aminograms in the patients, that is, increased levels of tyrosine, decreased levels of valine and leucine and the diminished ratio of branched chain amino acids to phenylalanine and tyrosine levels, were less pronounced in those treated with insulin. This finding is clinically important for evaluating the serum aminogram of cirrhotic patients under insulin therapy.

  20. Intestinal absorption and postabsorptive metabolism of linoleic acid in rats with short-term bile duct ligation

    Minich, DM; Havinga, R; Stellaard, F; Vonk, RJ; Kuipers, F; Verkade, HJ

    2000-01-01

    We investigated in bile duct-ligated (BDL) and sham-operated control rats whether the frequent presence of essential fatty acid deficiency in cholestatic liver disease could be related to linoleic acid malabsorption, altered linoleic acid metabolism, or both. In plasma of BDL rats, the triene-to-tet

  1. Involvement of triacylglycerol in the metabolism of fatty acids by cultured neuroblastoma and glioma cells

    The metabolism (chain elongation, desaturation, and incorporation into complex lipids) of thirteen different radiolabeled fatty acids and acetate was examined in N1E-115 neuroblastoma and C-6 glioma cell lines in culture. During 6-hr incubations, all fatty acids were extensively (14-80%) esterified to complex lipids, mainly choline phosphoglycerides and triacylglycerol. With trienoic and tetraenoic substrates, inositol and ethanolamine phosphoglycerides also contained up to 30% of the labeled fatty acids; plasmalogen contained up to half of the label in the ethanolamine phosphoglyceride fraction of neuroblastoma cells. Chain elongation and delta 9, delta 6, and delta 5 desaturation occurred in both cell lines; delta 4 desaturation was not observed. Seemingly anomalous utilization of arachidic acid and some selectivity based on the geometric configuration of double bonds was observed. These studies indicate that these cell lines are capable of modulating cellular membrane composition by a combination of selective exclusion and removal of inappropriate acyl chains and of modification of other acyl chains by desaturation and chain elongation. The time courses and patterns of modification and incorporation of exogenous substrates into phospholipids and triacylglycerol suggest that exogenous unsaturated fatty acid may be incorporated into triacylglycerol and later released for further metabolism and incorporation into phospholipids. This supports a role for triacylglycerol in the synthesis of membrane complex lipids in cell lines derived from neural tissue

  2. Exercise-mediated vasodilation in human obesity and metabolic syndrome: effect of acute ascorbic acid infusion

    Limberg, Jacqueline K.; Kellawan, J. Mikhail; Harrell, John W.; Johansson, Rebecca E.; Eldridge, Marlowe W.; Proctor, Lester T.; Sebranek, Joshua J.; Schrage, William G.

    2014-01-01

    We tested the hypothesis that infusion of ascorbic acid (AA), a potent antioxidant, would alter vasodilator responses to exercise in human obesity and metabolic syndrome (MetSyn). Forearm blood flow (FBF, Doppler ultrasound) was measured in lean, obese, and MetSyn adults (n = 39, 32 ± 2 yr). A brachial artery catheter was inserted for blood pressure monitoring and local infusion of AA. FBF was measured during dynamic handgrip exercise (15% maximal effort) with and without AA infusion. To acco...

  3. Analysis and Simulation of Circadian Multi-Oscillator Systems in a Crassulacean Acid Metabolism Plant

    Bohn, Andreas

    2003-01-01

    Crassulacean acid metabolism (CAM) is an adaptation of photosynthetic organisms to drought stress: improved water-use efficiency is achieved by an optimized temporal arrangement of photosynthetic subprocesses, which are driven by an endogenous pacemaker, i.e. a circadian clock. The present work deals with the hypothesis that the circadian rhythm of gas-exchange of entire leaves of the CAM plant Kalanchoë daigremontiana has to be understood as the collective signal of the population of cells i...

  4. Effects of Salinity: Calcium Interaction on Growth and Nucleic Acid Metabolism in Five Species of Chenopodiaceae

    ABO-KASSEM, Essam El-Deen Mohaned

    2007-01-01

    Seed germination, seedling growth, and some enzyme activity of nucleic acid metabolism were studied in 5 members of Chenopodiaceae [Beta vulgaris L., Chenopodium quinoa Willd., Spinacea oleracea L., Allenrolfia occidentalis (S.Watson) Kuntze, Atriplex hortensis L.] under NaCl salinity alone or combined with 0.5 mM CaSO4. High salinity delayed radical emergence and decreased germination percentage in all plants. Combined CaSO4 reduced inhibition of seed germination in B. vulgaris, S. oleracea,...

  5. HDAC Inhibition Modulates Cardiac PPARs and Fatty Acid Metabolism in Diabetic Cardiomyopathy

    Ting-I Lee

    2016-01-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs regulate cardiac glucose and lipid homeostasis. Histone deacetylase (HDAC inhibitor has anti-inflammatory effects which may play a key role in modulating PPARs and fatty acid metabolism. The aim of this study was to investigate whether HDAC inhibitor, MPT0E014, can modulate myocardial PPARs, inflammation, and fatty acid metabolism in diabetes mellitus (DM cardiomyopathy. Electrocardiography, echocardiography, and western blotting were used to evaluate the electrophysiological activity, cardiac structure, fatty acid metabolism, inflammation, and PPAR isoform expressions in the control and streptozotocin-nicotinamide-induced DM rats with or without MPT0E014. Compared to control, DM and MPT0E014-treated DM rats had elevated blood glucose levels and lower body weights. However, MPT0E014-treated DM and control rats had smaller left ventricular end-diastolic diameter and shorter QT interval than DM rats. The control and MPT0E014-treated DM rats had greater cardiac PPAR-α and PPAR-δ protein expressions, but less cardiac PPAR-γ than DM rats. Moreover, control and MPT0E014-treated DM rats had lower concentrations of 5′ adenosine monophosphate-activated protein kinase 2α, PPAR-γ coactivator 1α, phosphorylated acetyl CoA carboxylase, cluster of differentiation 36, diacylglycerol acyltransferase 1 (DGAT1, DGAT2, tumor necrosis factor-α, and interleukin-6 protein than DM rats. HDAC inhibition significantly attenuated DM cardiomyopathy through modulation of cardiac PPARS, fatty acid metabolism, and proinflammatory cytokines.

  6. Alterations in the carnitine metabolism in epileptic children treated with valproic acid.

    Chung, S; Choi, J; Hyun, T.; Rha, Y.; Bae, C.

    1997-01-01

    Serum concentrations of total carnitine, free carnitine and acylcarnitine were measured in forty-one epileptic patients treated with valproic acid (VPA). Among them, 14 patients were on VPA monotherapy and 27 were on VPA polytherapy. Forty-one age and sex matched healthy normal controls were also evaluated for carnitine metabolism. The mean total and free carnitine were significantly lower in both the VPA monotherapy and polytherapy groups compared with the controls. However, there were no si...

  7. Characterization of the first enzyme in 2,4-dichlorophenoxyacetic acid metabolism.

    Hausinger, R P; Fukumori, F

    1995-01-01

    This paper reviews the properties of the Alcaligenes eutrophus JMP134 tfdA gene product, the enzyme responsible for the first step in 2,4-dichlorophenoxyacetic acid (2,4-D) biodegradation. The gene was overexpressed in Escherichia coli and several of its enzymatic properties were characterized. Although this enzyme catalyzes a hydroxylation reaction, it is not a monooxygenase. Rather, TfdA is an Fe(II) and alpha-ketoglutarate-dependent dioxygenase that metabolizes the latter cosubstrate to su...

  8. Dynamic changes in cardiac fatty acid metabolism in the stunned human myocardium

    The chronological changes or mechanisms in cardiac fatty acid metabolism under clinical conditions of hypoxia and ischemia have not been fully elucidated. 123I-15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) can be used with single photon emission computed tomography (SPECT) to evaluate myocardial fatty acid metabolism. We investigated chronological changes in energy metabolism in the stunned human myocardium by means of 123I-BMIPP myocardial SPECT. We conducted 123I-BMIPP myocardial SPECT in 10 patients with stunned myocardium during the acute, subacute and chronic phases after onset. The left ventricle was divided into 9 regions on SPECT, and the degree of abnormalities in each region was scored in four grades from normal (0) to defect (4). We also examined wash-out rates on BMIPP images. The scores on early BMIPP images in the acute, subacute and chronic phases were 5.6±1.8, 13.4±3.5 and 2.5±1.1, respectively, and the score was highest in the subacute phase (p<0.001). Similarly, scores on the late images were 2.3±1.7, 18.3±4.5 and 4.7±2.6, respectively, and highest in the subacute phase (p<0.001). The wash-out rates (normal: 18.2±2.1%) in the acute, subacute and chronic phases were 12.1±4.8%, 44.9±10.0% and 23.1±4.6%, respectively, with the value being lowest during the acute phase (p<0.05), and highest during the subacute phase (p<0.001). There results suggested that fatty acid metabolism in the stunned human myocardium changes dynamically over time. (author)

  9. Aspects of CO_2 Uptake in the Crassulacean Acid Metabolism Orchid Phalaenopsis

    Ichihashi, S.; Higuchi, T.; Shibayama, H; Tesima, Y.; Nishiwaki, K; Ota, K.

    2008-01-01

    Phalaenopsis and its hybrids are the most important orchid pot plant commercially in the world now. Research on photosynthesis gives us practical and useful information for improving cultivation. Although conventional gas-exchange technique has some limitations in the research of a crassulacean acid metabolism plant (CAM), we investigated CO_2 uptake in Phalaenopsis. CO_2 uptake at night (Phase 1) changed with temperature. Maximum CO_2 uptake was observed around 20℃. CO_2 absorption at night ...

  10. [Effect of amino acid supplements to barley meal on the nitrogen metabolism of growing castrated male swine (20-65 kg live weight)].

    Wecke, C; Gebhardt, G

    1981-03-01

    In 56 N-balance experiments of the influence of differentiated amino acid supplements to coarse barley meal enriched with energy, minerals and additives on the nitrogen metabolism of castrated male pigs, was investigated. The joint supplement of lysine and methionine remained without result in comparison with the sole supplementation of lysine. Only the additional supplementation of threonine resulted in the further improvement of protein utilisation. The results corroborate the effect of the amino acid lysine limiting the performance in barley protein and prove that threonine takes the second place in the sequence of limitation. PMID:6791610

  11. Influence of common preanalytical variations on the metabolic profile of serum samples in biobanks

    Fliniaux, Ophelie [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Gaillard, Gwenaelle [Biobanque de Picardie (France); Lion, Antoine [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Cailleu, Dominique [Batiment Serres-Transfert, rue de Mai/rue Dallery, Plateforme Analytique (France); Mesnard, Francois, E-mail: francois.mesnard@u-picardie.fr [University of Picardie Jules Verne, Laboratoire de Phytotechnologie EA 3900-BioPI (France); Betsou, Fotini [Integrated Biobank of Luxembourg (Luxembourg)

    2011-12-15

    A blood pre-centrifugation delay of 24 h at room temperature influenced the proton NMR spectroscopic profiles of human serum. A blood pre-centrifugation delay of 24 h at 4 Degree-Sign C did not influence the spectroscopic profile as compared with 4 h delays at either room temperature or 4 Degree-Sign C. Five or ten serum freeze-thaw cycles also influenced the proton NMR spectroscopic profiles. Certain common in vitro preanalytical variations occurring in biobanks may impact the metabolic profile of human serum.

  12. Influence of simulated acidic rain on root-infecting fungi

    Shafer, S.R.

    1983-01-01

    Influences of the acidity of simulated rain on root-infecting fungi were investigated. Effects of rain acidity on Phytophthora cinnamomi were studied. Propagule densities in soil depended upon the acidity (pH 5.6, 4.0, 3.2, or 2.4) of simulated rain and soil depth (1, 2, 4, or 8 cm). Lowest densities occurred in 1 to 2 cm soil layers exposed to rains at pH 3.2 or 2.4. Sporangium production on radicles of Lupinus angustifolius in Lakeland sand moistened with rain solution at pH 2.4 was 47% less than production with solution at pH 5.6. A linear response to solution acidity was exhibited. Infection of L. angustifolius roots by zoospores demonstrated a linear response to acidity of rain. Approximately 44% fewer lesions occurred on roots of seedlings exposed to rain at pH 2.4 than on roots of seedlings exposed to rain at pH 5.6. The acidity (pH 5.6, 4.0, 3.2, or 2.4) of repeated rains had no consistent effect on disease progress among L. augustifolius seedlings planted in infested soil. The formation of ectomycorrhizae on Pinus taeda seedlings exhibited a quadratic response to acidity of repeated rains. The percentage of short roots that were ectomycorrhizal was greatest among seedlings exposed to rains at pH 2.4 and least among seedlings exposed to rains at pH 4.0. The density of Macrophomina phaseolina propagules in Lakeland sand exposed to repeated rains at pH 2.4 was an average of 20% less than densities associated with rains at pH 5.6, 4.0, or 3.2.

  13. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus).

    Petzinger, Christina; Heatley, J J; Bailey, Christopher A; Bauer, John E

    2014-03-01

    Monk parrots (Myiopsitta monachus) are susceptible to atherosclerosis, a progressive disease characterized by the formation of plaques in the arteries accompanied by underlying chronic inflammation. The family of n-3 fatty acids, especially eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have consistently been shown to reduce atherosclerotic risk factors in humans and other mammals. Some avian species have been observed to convert α-linolenic acid (18:3n-3, ALA) to EPA and DHA (Htin et al. in Arch Geflugelk 71:258-266, 2007; Petzinger et al. in J Anim Physiol Anim Nutr, 2013). Therefore, the metabolic effects of including flaxseed oil, as a source of ALA, in the diet at three different levels (low, medium, and high) on the lipid metabolism of Monk parrots was evaluated through measuring plasma total cholesterol (TC), free cholesterol (FC), triacylglycerols (TAG), and phospholipid fatty acids. Feed intake, body weight, and body condition score were also assessed. Thus the dose and possible saturation response of increasing dietary ALA at constant linoleic acid (18:2n-6, LNA) concentration on lipid metabolism in Monk parrots (M. monachus) was evaluated. Calculated esterified cholesterol in addition to plasma TC, FC, and TAG were unaltered by increasing dietary ALA. The high ALA group had elevated levels of plasma phospholipid ALA, EPA, and docosapentaenoic acid (DPAn-3, 22:5n-3). The medium and high ALA groups had suppressed plasma phospholipid 20:2n-6 and adrenic acid (22:4n-6, ADA) compared to the low ALA group. When the present data were combined with data from a previous study (Petzinger et al. in J Anim Physiol Anim Nutr, 2013) a dose response to dietary ALA was observed when LNA was constant. Plasma phospholipid ALA, EPA, DPAn-3, DHA, and total n-3 were positively correlated while 20:2n-6, di-homo-gamma-linoleic acid (20:3n-6Δ7), arachidonic acid (20:4n-6), ADA, and total n-6 were inversely correlated with dietary en% ALA. PMID

  14. The Effect of Marine Derived n-3 Fatty Acids on Adipose Tissue Metabolism and Function

    Marijana Todorčević

    2015-12-01

    Full Text Available Adipose tissue function is key determinant of metabolic health, with specific nutrients being suggested to play a role in tissue metabolism. One such group of nutrients are the n-3 fatty acids, specifically eicosapentaenoic acid (EPA; 20:5n-3 and docosahexaenoic acid (DHA; 22:6n-3. Results from studies where human, animal and cellular models have been utilised to investigate the effects of EPA and/or DHA on white adipose tissue/adipocytes suggest anti-obesity and anti-inflammatory effects. We review here evidence for these effects, specifically focusing on studies that provide some insight into metabolic pathways or processes. Of note, limited work has been undertaken investigating the effects of EPA and DHA on white adipose tissue in humans whilst more work has been undertaken using animal and cellular models. Taken together it would appear that EPA and DHA have a positive effect on lowering lipogenesis, increasing lipolysis and decreasing inflammation, all of which would be beneficial for adipose tissue biology. What remains to be elucidated is the duration and dose required to see a favourable effect of EPA and DHA in vivo in humans, across a range of adiposity.

  15. Essential amino acid metabolism in infected/non-infected, poor, Guatemalan children

    Traditional methods used to evaluate protein metabolism left unanswered some of the relevant questions in public health in developing countries, such as growth retardation in children. Particularly, in developing countries, infection (clinical and subclinical) and malnutrition are still relevant problems, and the most important scientific issues for the application of stable isotope tracer methods are related to the impact of infection, such as the oxidative disposal of essential amino acids in well-nourished and malnourished children. The objectives of the present proposal are: (1) To simplify, make less expensive, less time-consuming, and less invasive, methods in clinical research on amino acid metabolism using stable-isotope tracers in children; and (2) To assess the effects of infection (clinical or subclinical) on whole-body protein turnover in children with and without malnutrition. The objectives involve the engineering and assessment of a portable instrument to be used in evaluations of protein oxidation in the developing world. Methodological issues such as intra- and inter-subject variability, which are of great importance for the interpretation of amino acid metabolism and protein turnover, will also be considered. 18 refs, 2 figs

  16. Influence of tacrolimus metabolism rate on BKV infection after kidney transplantation.

    Thölking, Gerold; Schmidt, Christina; Koch, Raphael; Schuette-Nuetgen, Katharina; Pabst, Dirk; Wolters, Heiner; Kabar, Iyad; Hüsing, Anna; Pavenstädt, Hermann; Reuter, Stefan; Suwelack, Barbara

    2016-01-01

    Immunosuppression is the major risk factor for BK virus nephropathy (BKVN) after renal transplantation (RTx). As the individual tacrolimus (Tac) metabolism rate correlates with Tac side effects, we hypothesized that Tac metabolism might also influence the BKV infection risk. In this case-control study RTx patients with BK viremia within 4 years after RTx (BKV group) were compared with a BKV negative control group. The Tac metabolism rate expressed as the blood concentration normalized by the daily dose (C/D ratio) was applied to assess the Tac metabolism rate. BK viremia was detected in 86 patients after a median time of 6 (0-36) months after RTx. BKV positive patients showed lower Tac C/D ratios at 1, 3 and 6 months after RTx and were classified as fast Tac metabolizers. 8 of 86 patients with BK viremia had histologically proven BKN and a higher median maximum viral load than BKV patients without BKN (441,000 vs. 18,572 copies/mL). We conclude from our data that fast Tac metabolism (C/D ratio <1.05) is associated with BK viremia after RTx. Calculation of the Tac C/D ratio early after RTx, may assist transplant clinicians to identify patients at risk and to choose the optimal immunosuppressive regimen. PMID:27573493

  17. Preferred Barefoot Step Frequency is Influenced by Factors Beyond Minimizing Metabolic Rate

    Yandell, Matthew B.; Zelik, Karl E.

    2016-03-01

    Humans tend to increase their step frequency in barefoot walking, as compared to shod walking at the same speed. Based on prior studies and the energy minimization hypothesis we predicted that people make this adjustment to minimize metabolic cost. We performed an experiment quantifying barefoot walking metabolic rate at different step frequencies, specifically comparing preferred barefoot to preferred shod step frequency. We found that subjects increased their preferred frequency when walking barefoot at 1.4 m/s (~123 vs. ~117 steps/min shod, P = 2e-5). However, average barefoot walking metabolic rates at the preferred barefoot and shod step frequencies were not significantly different (P = 0.40). Instead, we observed subject-specific trends: five subjects consistently reduced (‑8% average), and three subjects consistently increased (+10% average) their metabolic rate at preferred barefoot vs. preferred shod frequency. Thus, it does not appear that people ubiquitously select a barefoot step frequency that minimizes metabolic rate. We concluded that preferred barefoot step frequency is influenced by factors beyond minimizing metabolic rate, such as shoe properties and/or perceived comfort. Our results highlight the subject-specific nature of locomotor adaptations and how averaging data across subjects may obscure meaningful trends. Alternative experimental designs may be needed to better understand individual adaptations.

  18. Influence of diet, vitamin, tea, trace elements and exogenous antioxidants on arsenic metabolism and toxicity.

    Yu, Haiyan; Liu, Su; Li, Mei; Wu, Bing

    2016-04-01

    Health risk of arsenic (As) has received increasing attention. Acute and chronic exposure to As could cause several detrimental effects on human health. As toxicity is closely related to its bioaccessibility and metabolism. In real environment, many factors, such as diet and nutrition, can influence As bioaccessibility, metabolism and toxicity. This paper mainly reviews the influences of diets and elements on As bioaccessibility, metabolism and toxicity and their underlying mechanisms to provide suggestions for future investigations. Vitamins, jaggery, fruit, tea, glutathione, N-acetylcysteine and zinc could reduce the As-induced toxicity by increasing antioxidative enzymes to antagonize oxidative stress caused by As and/or increasing As methylation. However, bean and betel nut could increase risk of skin lesions caused by As. Interestingly, high-fat diet, selenium and iron have incompatible effects on As bioaccessibility, metabolism and toxicity in different experimental conditions. Based on current literatures, the As methylation and As-induced oxidative damage might be two main ways that the diets and elements influence As toxicity. Combined application of in vitro human cell lines and gastrointestinal models might be useful tools to simultaneously characterize the changes in As bioaccessibility and toxicity in the future research. PMID:26169729

  19. Influence of NO-containing gas flow on various parameters of energy metabolism in erythrocytes.

    Martusevich, A K; Solov'yova, A G; Peretyagin, S P; Karelin, V I; Selemir, V D

    2014-11-01

    We studied the influence of NO-containing gas phase on some parameters of energy metabolism in human erythrocytes. Whole blood samples were aerated with gas flows from the Plazon instrument (NO concentrations 800 and 80 ppm) and from the experimental generator (75 ppm). Activity of lactate dehydrogenase in direct and reverse reactions, lactate level, and a number of derived coefficients were estimated. Treatment of blood with 800 ppm NO inhibited erythrocyte energy metabolism, and its 10-fold dilution attenuated the effect. The use of ROS-free gas flow containing 75 ppm of NO promoted optimization of the process under investigation. PMID:25403392

  20. The interplay between sulphur and selenium metabolism influences the intracellular redox balance in Saccharomyces cerevisiae

    Mapelli, Valeria; Hillestrøm, Peter René; Patil, Kalpesh;

    2012-01-01

    Selenium (Se) is an essential element for most eukaryotic organisms, including humans. The balance between Se toxicity and its beneficial effects is very delicate. It has been demonstrated that a diet enriched with Se has cancer prevention potential in humans. The most popular commercial Se...... oxidative stress response is active when yeast actively metabolizes Se, and this response is linked to the generation of intracellular redox imbalance. The redox imbalance derives from a disproportionate ratio between the reduced and oxidized forms of glutathione and also from the influence of Se metabolism...

  1. Interleukin 1B Variant -1473G/C (rs1143623) Influences Triglyceride and Interleukin 6 Metabolism

    Delgado-Lista, Javier; Garcia-Rios, Antonio; Perez-Martinez, Pablo; Solivera, Juan; Yubero-Serrano, Elena M.; Fuentes, Francisco; Parnell, Laurence D.; Shen, Jian; Gomez, Purificacion; Jimenez-Gomez, Yolanda; Gomez-Luna, Maria J.; Marin, Carmen; Belisle, Sarah E.; Rodriguez-Cantalejo, Fernando; Meydani, Simin N.; Ordovas, Jose M.; Perez-Jimenez, Francisco

    2011-01-01

    Context: IL1b (IL1B or IL1β), a key modulator of the immune response, exerts its functions mainly via IL6 regulation. Fatty meals cause transient hypertriglyceridemia and are considered to be proinflammatory, but the extent of these responses shows high interindividual susceptibility. Objective: We evaluated the influence of a genetic variant located in the promoter region of IL1B (-1473G/C) on fasting and postprandial lipids and IL6. Design, Setting, and Participants: A total of 477 people over age 65 yr were genotyped for IL1B -1473G/C, and we evaluated fasting lipids depending on genotype. Then, 88 healthy young men were also genotyped and were fed a saturated fatty acid-rich meal. Serial blood samples were drawn for 11 h after the meal, and lipid fractions and IL6 were assayed. Main Outcome and Interventions: Fasting lipids were studied in the aged persons. Fasting and postprandial measurements of lipids and IL6 were performed in the healthy young men. Results: In the aged persons, CC subjects (minor allele homozygotes) showed higher triglyceride (P = 0.002) and cholesterol (P = 0.011) levels. Healthy young male carriers of the minor C allele showed higher postprandial triglycerides (P = 0.037), and those carried into large triglyceride-rich lipoproteins (P = 0.004). In addition, they showed higher postprandial IL6 concentrations (P = 0.008). Conclusions: Our work shows that inflammatory genes may regulate fasting and postprandial lipids because the carriers of the minor allele of an IL gene variant have altered lipid metabolism. To reinforce these gene-phenotype findings, IL6 (the natural effector of IL1B) was increased in these persons. PMID:21307135

  2. Succinic acid production with metabolically engineered E. coli recovered from two-stage fermentation.

    Ma, Jiang-Feng; Jiang, Min; Chen, Ke-Quan; Xu, Bing; Liu, Shu-Wen; Wei, Ping; Ying, Han-Jie

    2010-10-01

    Escherichia coli AFP111 cells recovered from spent two-stage fermentation broth were investigated for additional production of succinic acid under anaerobic conditions. Recovered cells produced succinic acid in an aqueous environment with no nutrient supplementation except for glucose and MgCO(3). In addition, initial glucose concentration and cell density had a significant influence on succinic acid mass yield and productivity. Although the final concentration of succinic acid from recovered cells was lower than from two-stage fermentation, an average succinic acid mass yield of 0.85 g/g was achieved with an average productivity of 1.81 g/l h after three rounds of recycling, which was comparable to two-stage fermentation. These results suggested that recovered cells might be reused for the efficient production of succinic acid. PMID:20495946

  3. Influence of humic acid on the structural properties of kaolin mercury porosimetry studies

    Hajnos M.

    1998-01-01

    The influence of the coverage of the kaolin surface with humic acid on its structural properties has been investigated. Humic acid (HA) was extracted with water from Ah horizon of an acid forest soil. The particle size of kaolin

  4. Three conazoles increase hepatic microsomal retinoic acid metabolism and decrease mouse hepatic retinoic acid levels in vivo

    Conazoles are fungicides used in agriculture and as pharmaceuticals. In a previous toxicogenomic study of triazole-containing conazoles we found gene expression changes consistent with the alteration of the metabolism of all trans-retinoic acid (atRA), a vitamin A metabolite with cancer-preventative properties (Ward et al., Toxicol. Pathol. 2006; 34:863-78). The goals of this study were to examine effects of propiconazole, triadimefon, and myclobutanil, three triazole-containing conazoles, on the microsomal metabolism of atRA, the associated hepatic cytochrome P450 (P450) enzyme(s) involved in atRA metabolism, and their effects on hepatic atRA levels in vivo. The in vitro metabolism of atRA was quantitatively measured in liver microsomes from male CD-1 mice following four daily intraperitoneal injections of propiconazole (210 mg/kg/d), triadimefon (257 mg/kg/d) or myclobutanil (270 mg/kg/d). The formation of both 4-hydroxy-atRA and 4-oxo-atRA were significantly increased by all three conazoles. Propiconazole-induced microsomes possessed slightly greater metabolizing activities compared to myclobutanil-induced microsomes. Both propiconazole and triadimefon treatment induced greater formation of 4-hydroxy-atRA compared to myclobutanil treatment. Chemical and immuno-inhibition metabolism studies suggested that Cyp26a1, Cyp2b, and Cyp3a, but not Cyp1a1 proteins were involved in atRA metabolism. Cyp2b10/20 and Cyp3a11 genes were significantly over-expressed in the livers of both triadimefon- and propiconazole-treated mice while Cyp26a1, Cyp2c65 and Cyp1a2 genes were over-expressed in the livers of either triadimefon- or propiconazole-treated mice, and Cyp2b10/20 and Cyp3a13 genes were over-expressed in the livers of myclobutanil-treated mice. Western blot analyses indicated conazole induced-increases in Cyp2b and Cyp3a proteins. All three conazoles decreased hepatic atRA tissue levels ranging from 45-67%. The possible implications of these changes in hepatic atRA levels

  5. Ascorbic acid recycling by cultured beta cells: effects of increased glucose metabolism.

    Steffner, Robert J; Wu, Lan; Powers, Alvin C; May, James M

    2004-11-15

    Ascorbic acid is necessary for optimal insulin secretion from pancreatic islets. We evaluated ascorbate recycling and whether it is impaired by increased glucose metabolism in the rat beta-cell line INS-1. INS-1 cells, engineered with the potential for overexpression of glucokinase under the control of a tetracycline-inducible gene expression system, took up and reduced dehydroascorbic acid to ascorbate in a concentration-dependent manner that was optimal in the presence of physiologic D-glucose concentrations. Ascorbate uptake did not affect intracellular GSH concentrations. Whereas depletion of GSH in culture to levels about 25% of normal also did not affect the ability of the cells to reduce dehydroascorbic acid, more severe acute GSH depletion to less than 10% of normal levels did impair dehydroascorbic acid reduction. Culture of inducible cells in 11.8 mM D-glucose and doxycycline for 48 h enhanced glucokinase activity, increased glucose utilization, abolished D-glucose-dependent insulin secretion, and increased generation of reactive oxygen species. The latter may have contributed to subsequent decreases in the ability of the cells both to maintain intracellular ascorbate and to recycle it from dehydroascorbic acid. Cultured beta cells have a high capacity to recycle ascorbate, but this is sensitive to oxidant stress generated by increased glucose metabolism due to culture in high glucose concentrations and increased glucokinase expression. Impaired ascorbate recycling as a result of increased glucose metabolism may have implications for the role of ascorbate in insulin secretion in diabetes mellitus and may partially explain glucose toxicity in beta cells. PMID:15477012

  6. Metabolic pathway engineering for fatty acid ethyl ester production in Saccharomyces cerevisiae using stable chromosomal integration.

    de Jong, Bouke Wim; Shi, Shuobo; Valle-Rodríguez, Juan Octavio; Siewers, Verena; Nielsen, Jens

    2015-03-01

    Fatty acid ethyl esters are fatty acid derived molecules similar to first generation biodiesel (fatty acid methyl esters; FAMEs) which can be produced in a microbial cell factory. Saccharomyces cerevisiae is a suitable candidate for microbial large scale and long term cultivations, which is the typical industrial production setting for biofuels. It is crucial to conserve the metabolic design of the cell factory during industrial cultivation conditions that require extensive propagation. Genetic modifications therefore have to be introduced in a stable manner. Here, several metabolic engineering strategies for improved production of fatty acid ethyl esters in S. cerevisiae were combined and the genes were stably expressed from the organisms' chromosomes. A wax ester synthase (ws2) was expressed in different yeast strains with an engineered acetyl-CoA and fatty acid metabolism. Thus, we compared expression of ws2 with and without overexpression of alcohol dehydrogenase (ADH2), acetaldehyde dehydrogenase (ALD6) and acetyl-CoA synthetase (acs SE (L641P) ) and further evaluated additional overexpression of a mutant version of acetyl-CoA decarboxylase (ACC1 (S1157A,S659A) ) and the acyl-CoA binding protein (ACB1). The combined engineering efforts of the implementation of ws2, ADH2, ALD6 and acs SE (L641P) , ACC1 (S1157A,S659A) and ACB1 in a S. cerevisiae strain lacking storage lipid formation (are1Δ, are2Δ, dga1Δ and lro1Δ) and β-oxidation (pox1Δ) resulted in a 4.1-fold improvement compared with sole expression of ws2 in S. cerevisiae. PMID:25422103

  7. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    Liu, Jie, E-mail: JLiu@kumc.edu [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zunyi Medical College, Zunyi 563003 (China); Lu, Yuan-Fu [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zunyi Medical College, Zunyi 563003 (China); Zhang, Youcai; Wu, Kai Connie [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Fan, Fang [Cytopathology, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Klaassen, Curtis D. [University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.

  8. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport

  9. Overexpression of isocitrate lyase-glyoxylate bypass influence on metabolism in Aspergillus niger

    Meijer, Susan Lisette; Otero, José Manuel; Olivares Hernandez, Roberto; Andersen, Mikael Rørdam; Olsson, Lisbeth; Nielsen, Jens

    2009-01-01

    the cells was investigated. Inhibition of SDH was expected to lead to succinate production, but this was not observed. There was an increase in citrate and oxalate production in the wild-type strain. Furthermore, in the strain with over-expression of icl the organic acid production shifted from...... fumarate towards malate production when malonate was added to the cultivation medium. Overall, the icl over-expression and malonate addition had a significant impact on metabolism and on organic acid production profiles. Although the expected succinate and malate formation was not observed, a distinct and...

  10. Soybean Seed Development: Fatty Acid and Phytohormone Metabolism and Their Interactions.

    Nguyen, Quoc Thien; Kisiala, Anna; Andreas, Peter; Neil Emery, R J; Narine, Suresh

    2016-06-01

    Vegetable oil utilization is determined by its fatty acid composition. In soybean and other grain crops, during the seed development oil accumulation is important trait for value in food or industrial applications. Seed development is relatively short and sensitive to unfavorable abiotic conditions. These stresses can lead to a numerous undesirable qualitative as well as quantitative changes in fatty acid production. Fatty acid manipulation which targets a higher content of a specific single fatty acid for food or industrial application has gained more attention. Despite several successes in modifying the ratio of endogenous fatty acids in most domesticated oilseed crops, numerous obstacles in FA manipulation of seed maturation are yet to be overcome. Remarkably, connections with plant hormones have not been well studied despite their critical roles in the regulation and promotion of a plethora of processes in plant growth and development. While activities of phytohormones during the reproductive phase have been partially clarified in seed physiology, the biological role of plant hormones in oil accumulation during seed development has not been investigated. In this review seed development and numerous effects of abiotic stresses are discussed. After describing fatty acid and phytohormone metabolism and their interactions, we postulate that the endogenous plant hormones play important roles in fatty acid production in soybean seeds. PMID:27252591

  11. Metabolic Engineering of Yeast to Produce Fatty Acid-derived Biofuels: Bottlenecks and Solutions

    Jiayuan eSheng

    2015-06-01

    Full Text Available Fatty acid-derived biofuels can be a better solution than bioethanol to replace petroleum fuel, since they have similar energy content and combustion properties as current transportation fuels. The environmentally friendly microbial fermentation process has been used to synthesize advanced biofuels from renewable feedstock. Due to their robustness as well as the high tolerance to fermentation inhibitors and phage contamination, yeast strains such as Saccharomyces cerevisiae and Yarrowia lipolytica have attracted tremendous attention in recent studies regarding the production of fatty acid-derived biofuels, including fatty acids, fatty acid ethyl esters, fatty alcohols, and fatty alkanes. However, the native yeast strains cannot produce fatty acids and fatty acid-derived biofuels in large quantities. To this end, we have summarized recent publications in this review on metabolic engineering of yeast strains to improve the production of fatty acid-derived biofuels, identified the bottlenecks that limit the productivity of biofuels, and categorized the appropriate approaches to overcome these obstacles.

  12. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae

    Hasunuma, Tomohisa; Yoshimura, Kazuya; Matsuda, Fumio [Kobe Univ., Hyogo (Japan). Organization of Advanced Science and Technology; Sung, Kyung-mo; Sanda, Tomoya; Kondo, Akihiko [Kobe Univ., Hyogo (Japan). Dept. of Chemical Science and Engineering

    2011-05-15

    Recombinant yeast strains highly tolerant to formic acid during xylose fermentation were constructed. Microarray analysis of xylose-fermenting Saccharomyces cerevisiae strain overexpressing endogenous xylulokinase in addition to xylose reductase and xylitol dehydrogenase from Pichia stipitis revealed that upregulation of formate dehydrogenase genes (FDH1 and FDH2) was one of the most prominent transcriptional events against excess formic acid. The quantification of formic acid in medium indicated that the innate activity of FDH was too weak to detoxify formic acid. To reinforce the capability for formic acid breakdown, the FDH1 gene was additionally overexpressed in the xylose-metabolizing recombinant yeast. This modification allowed the yeast to rapidly decompose excess formic acid. The yield and final ethanol concentration in the presence of 20 mM formic acid is as essentially same as that of control. The fermentation profile also indicated that the production of xylitol and glycerol, major by-products in xylose fermentation, was not affected by the upregulation of FDH activity. (orig.)

  13. Glucose and amino acid metabolism in rat brain during sustained hypoglycemia

    The metabolism of glucose in brains during sustained hypoglycemia was studied. [U-14C]Glucose (20 microCi) was injected into control rats, and into rats at 2.5 hr after a bolus injection of 2 units of insulin followed by a continuous infusion of 0.2 units/100 g rat/hr. This regimen of insulin injection was found to result in steady-state plasma glucose levels between 2.5 and 3.5 mumol per ml. In the brains of control rats carbon was transferred rapidly from glucose to glutamate, glutamine, gamma-aminobutyric acid and aspartate and this carbon was retained in the amino acids for at least 60 min. In the brains of hypoglycemic rats, the conversion of carbon from glucose to amino acids was increased in the first 15 min after injection. After 15 min, the specific activity of the amino acids decreased in insulin-treated rats but not in the controls. The concentrations of alanine, glutamate, and gamma-amino-butyric acid decreased, and the concentration of aspartate increased, in the brains of the hypoglycemic rats. The concentration of pyridoxal-5'-phosphate, a cofactor in many of the reactions whereby these amino acids are formed from tricarboxylic acid cycle intermediates, was less in the insulin-treated rats than in the controls. These data provide evidence that glutamate, glutamine, aspartate, and GABA can serve as energy sources in brain during insulin-induced hypoglycemia

  14. Macro-micro nutrients interactions: dietary fats' influence on vitamin A metabolism

    Giordano, Elena

    2011-01-01

    It’s known that vitamin A (retinoids) and dietary fats are closely related nutritionally and that the ingestion of dietary fats is a major determinant in the absorption of vitamin A . This study focuses on investigating previously un-noticed mechanisms of interactions between different types of fats, with special emphasis on conjugated linoleic acid (CLA) and vitamin A metabolism. Specifically we examined the effects of dietary CLA on intestinal absorption and tissue uptake of retinoids. Sinc...

  15. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.

    Bowtell, Joanna L; Marwood, Simon; Bruce, Mark; Constantin-Teodosiu, Dumitru; Greenhaff, Paul L

    2007-01-01

    The tricarboxylic acid (TCA) cycle is the major final common pathway for oxidation of carbohydrates, lipids and some amino acids, which produces reducing equivalents in the form of nicotinamide adenine dinucleotide and flavin adenine dinucleotide that result in production of large amounts of adenosine triphosphate (ATP) via oxidative phosphorylation. Although regulated primarily by the products of ATP hydrolysis, in particular adenosine diphosphate, the rate of delivery of reducing equivalents to the electron transport chain is also a potential regulatory step of oxidative phosphorylation. The TCA cycle is responsible for the generation of approximately 67% of all reducing equivalents per molecule of glucose, hence factors that influence TCA cycle flux will be of critical importance for oxidative phosphorylation. TCA cycle flux is dependent upon the supply of acetyl units, activation of the three non-equilibrium reactions within the TCA cycle, and it has been suggested that an increase in the total concentration of the TCA cycle intermediates (TCAi) is also necessary to augment and maintain TCA cycle flux during exercise. This article reviews the evidence of the functional importance of the TCAi pool size for oxidative metabolism in exercising human skeletal muscle. In parallel with increased oxidative metabolism and TCA cycle flux during exercise, there is an exercise intensity-dependent 4- to 5-fold increase in the concentration of the TCAi. TCAi concentration reaches a peak after 10-15 minutes of exercise, and thereafter tends to decline. This seems to support the suggestion that the concentration of TCAi may be of functional importance for oxidative phosphorylation. However, researchers have been able to induce dissociations between TCAi pool size and oxidative energy provision using a variety of nutritional, pharmacological and exercise interventions. Brief periods of endurance training (5 days or 7 weeks) have been found to result in reduced TCAi pool

  16. Photoperiodism and crassulacean acid metabolism : I. Immunological and kinetic evidences for different patterns of phosphoenolpyruvate carboxylase isoforms in photoperiodically inducible and non-inducible Crassulacean acid metabolism plants.

    Brulfert, J; Müller, D; Kluge, M; Queiroz, O

    1982-05-01

    Plants of Kalanchoe blossfeldiana v. Poelln. Tom Thumb and Sedum morganianum E. Walth. were grown under controlled photoperiodic conditions under either short or long days. Gaz exchange measurements confirmed that in K. blossfeldiana Crassulacean acid metabolism (CAM) was photoperiodically inducible and that S. morganianum performed CAM independently of photoperiod. With K. blossfeldiana, a comparison of catalytic and regulatory properties of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) from short-day and long-day grown plants showed differences, but not with S. morganianum. Ouchterlony double diffusion tests and immunotitration experiments (using a S. morganianum PEPC antibody) established that CAM is induced in K. blossfeldiana-but not in S. morganianum-through the synthesis of a new PEPC isoform; this form shows an immunological behavior different from that prevailing under non-inductive conditions and can be considered as specific for CAM performance. PMID:24276159

  17. Combination of inositol and alpha lipoic acid in metabolic syndrome-affected women: a randomized placebo-controlled trial

    Capasso, Immacolata; Esposito, Emanuela; Maurea, Nicola; Montella, Maurizio; Crispo, Anna; De Laurentiis, Michelino; D’Aiuto, Massimiliano; Frasci, Giuseppe; Botti, Gerardo; Grimaldi, Maria; Cavalcanti, Ernesta; Esposito, Giuseppe; Fucito, Alfredo; Brillante, Giuseppe; D’Aiuto, Giuseppe

    2013-01-01

    Background Inositol has been reported to improve insulin sensitivity since it works as a second messenger achieving insulin-like effects on metabolic enzymes. The aim of this study was to evaluate the inositol and alpha lipoic acid combination effectiveness on metabolic syndrome features in postmenopausal women at risk of breast cancer. Methods A six-month prospective, randomized placebo-controlled trial was carried out on a total of 155 postmenopausal women affected by metabolic syndrome at ...

  18. Stimulus-specific induction of phospholipid and arachidonic acid metabolism in human neutrophils

    Phospholipid remodeling resulting in arachidonic acid (AA) release and metabolism in human neutrophils stimulated by calcium ionophore A23187 has been extensively studied, while data obtained using physiologically relevant stimuli is limited. Opsonized zymosan and immune complexes induced stimulus-specific alterations in lipid metabolism that were different from those induced by A23187. [3H]AA release correlated with activation of phospholipase A2 (PLA2) but not with cellular activation as indicated by superoxide generation. The latter correlated more with calcium-dependent phospholipase C (PLC) activation and elevation of cellular diacylglycerol (DAG) levels. When cells that had been allowed to incorporate [3H]AA were stimulated with A23187, large amounts of labeled AA was released, most of which was metabolized to 5-HETE and leukotriene B4. Stimulation with immune complexes also resulted in the release of [3H]AA but this released radiolabeled AA was not metabolized. In contrast, stimulation with opsonized zymosan induced no detectable release of [3H]AA. Analysis of [3H]AA-labeled lipids in resting cells indicated that the greatest amount of label was incorporated into the phosphatidylinositol (PI) pool, followed closely by phosphatidylcholine and phosphatidylserine, while little [3H]AA was detected in the phosphatidylethanolamine pool. During stimulation with A23187, a significant decrease in labeled PI occurred and labeled free fatty acid in the pellet increased. With immune complexes, only a small decrease was seen in labeled PI while the free fatty acid in the pellets was unchanged. In contrast, opsonized zymosan decreased labeled PI, and increased labeled DAG. Phospholipase activity in homogenates from human neutrophils was also assayed. A23187 and immune complexes, but not zymosan, significantly enhanced PLA2 activity in the cell homogenates. On the other hand, PLC activity was enhanced by zymosan and immune complexes. (Abstract Truncated)

  19. CHARACTERIZATION OF CYPS IN THE METABOLISM OF ALL TRANS RETINOIC ACID BY LIVER MICROSOMES FROM MICE TREATED WITH CONAZOLES

    Conazoles are fungicides used in crop protection and as pharmaceuticals. Triadimefon and propiconazole are hepatotumorigenic in mice, while myclobutanil is not. Previous toxicogenomic studies suggest that alteration of the retinoic acid metabolism pathway may involve in conazole-...

  20. Plasma pH does not influence the cerebral metabolic ratio during maximal whole body exercise

    Volianitis, Stefanos; Rasmussen, Peter; Seifert, Thomas;

    2011-01-01

    Exercise lowers the cerebral metabolic ratio of O2 to carbohydrate (glucose + 1/2 lactate) and metabolic acidosis appears to promote cerebral lactate uptake. However, the influence of pH on cerebral lactate uptake and, in turn, on the cerebral metabolic ratio during exercise is not known. Sodium...... bicarbonate (Bicarb, 1 m; 350–500 ml) or an equal volume of normal saline (Sal) was infused intravenously at a constant rate during a ‘2000 m' maximal ergometer row in six male oarsmen (23 ± 2 years; mean ± s.d.). During the Sal trial, pH decreased from 7.41 ± 0.01 at rest to 7.02 ± 0.02 but only to 7.36 ± 0...

  1. Taurine ameliorates cholesterol metabolism by stimulating bile acid production in high-cholesterol-fed rats.

    Murakami, Shigeru; Fujita, Michiko; Nakamura, Masakazu; Sakono, Masanobu; Nishizono, Shoko; Sato, Masao; Imaizumi, Katsumi; Mori, Mari; Fukuda, Nobuhiro

    2016-03-01

    This study was designed to investigate the effects of dietary taurine on cholesterol metabolism in high-cholesterol-fed rats. Male Sprague-Dawley rats were randomly divided into two dietary groups (n = 6 in each group): a high-cholesterol diet containing 0.5% cholesterol and 0.15% sodium cholate, and a high-cholesterol diet with 5% (w/w) taurine. The experimental diets were given for 2 weeks. Taurine supplementation reduced the serum and hepatic cholesterol levels by 37% and 32%, respectively. Faecal excretion of bile acids was significantly increased in taurine-treated rats, compared with untreated rats. Biliary bile acid concentrations were also increased by taurine. Taurine supplementation increased taurine-conjugated bile acids by 61% and decreased glycine-conjugated bile acids by 53%, resulting in a significant decrease in the glycine/taurine (G/T) ratio. Among the taurine-conjugated bile acids, cholic acid and deoxycholic acid were significantly increased. In the liver, taurine supplementation increased the mRNA expression and enzymatic activity of hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme for bile acid synthesis, by three- and two-fold, respectively. Taurine also decreased the enzymatic activity of acyl-CoA:cholesterol acyltransferase (ACAT) and microsomal triglyceride transfer protein (MTP). These observations suggest that taurine supplementation increases the synthesis and excretion of taurine-conjugated bile acids and stimulates the catabolism of cholesterol to bile acid by elevating the expression and activity of CYP7A1. This may reduce cholesterol esterification and lipoprotein assembly for very low density lipoprotein (VLDL) secretion, leading to reductions in the serum and hepatic cholesterol levels. PMID:26710098

  2. Identification and induction of cytochrome P450s involved in the metabolism of flavone-8-acetic acid in mice. : Identification of mouse Cyps involved in FAA metabolism

    Pham, Minh Hien; Rhinn, Hervé; Auzeil, Nicolas; Regazzetti, Anne; Harami, Djamel Eddine; Scherman, Daniel; Chabot, Guy,

    2011-01-01

    The metabolism of flavone-8-acetic acid (FAA) has been hypothesized to be partly responsible for its potent anticancer activity in mice. The purpose of this study was to identify the mouse enzymes involved in FAA Phase I metabolism and evaluate their possible induction in vivo by FAA. Mouse microsomes metabolized FAA into 6 metabolites: 3',4'-dihydrodiol-FAA, 5,6-epoxy-FAA, 4'-OH-FAA, 3'-OH-FAA, 3',4'-epoxy-FAA and 6-OH-FAA. Using Cyp-specific inhibitors (furafylline, Cyp1a2; α-naphthoflavone...

  3. Characterization of Streptococcus oligofermentans sucrose metabolism demonstrates reduced pyruvic and lactic acid production

    BAO Xu-dong; YUE Lin; GAO Xue-jun

    2011-01-01

    Background Streptococcus (S.) oligofermentans is a newly identified bacteria with a yet to be defined mechanism of sucrose metabolism that results in acid production.This study aimed to investigate the biochemical mechanisms of S.oligoferm-entans glucose metaolism.Methods The S.oligofermentans LMG21532,Lactobacillus (L.) fermentum 38 and the S.S.mutans UA140 were used to characterize sucrose metabolism by measuring lactate dehydrogenase (LDH) activity and lactic acid production.Continuous dynamics and high performance capillary electrophoresis were used to determine LDH activity and lactic acid production,respectively,from bacteria collected at 0,10 and 30 minutes after cultured in 10% sucrose.Results These analyses demonstrated that LDH activity of the three bacterial strains examined remained stable but significantly different throughout the sucrose fermentation process.The S.o/igofermentans LDH activity ((0.61±0.05) U/mg) was significantly lower than that of L.fermentum ((52.91+8.97) U/mg).In addition,the S.oligofermentans total lactate production ((0.048±0.021) mmol/L) was also significantly lower than that of L.fermentum ((0.958±0.201) mmol/L).Although the S.oligofermentans LDH production was almost double of that produced by S.mutans ((0.32±0.07) U/mg),lactic acid production was approximately one sixth that of S.mutans ((0.296±0.058) mmol/L).Additional tests examining pyruvic acid production (the LDH substrate) demonstrated that lactic acid concentrations correlated with pyruvic acid production.That is,pyruvic acid production by S.oligofermentans was undetectable following sucrose incubation,however,(0.074±t0.024) and (0.175±0.098) mmol/L pyruvic acid were produced by S.mutans and L.fermentum,respectively.Conclusion S.oligofermentans is incapable of fermenting carbohydrates to produce enough pyruvic acid,which results in reduced lactic acid production.

  4. Role of phosphate in the central metabolism of two lactic acid bacteria-a comparative systems biology approach

    Levering, J.; Musters, M.W.J.M.; Bekker, M.; Bellomo, D.; Fiedler, T.; Vos, de W.M.; Hugenholtz, F.; Kreikemeyer, B.; Kummer, U.; Teusink, B.

    2012-01-01

    Lactic acid-producing bacteria survive in distinct environments, but show common metabolic characteristics. Here we studied the dynamic interactions of the central metabolism in Lactococcus lactis, extensively used as a starter culture in the dairy industry, and Streptococcus pyogenes, a human patho

  5. Role of phosphate in the central metabolism of two lactic acid bacteria - a comparative systems biology approach.

    J. Levering; M.W. Musters; M. Bekker; D. Bellomo; T. Fiedler; W.M. de Vos; J. Hugenholtz; B. Kreikemeyer; U. Kummer; B. Teusink

    2012-01-01

    Lactic acid-producing bacteria survive in distinct environments, but show common metabolic characteristics. Here we studied the dynamic interactions of the central metabolism in Lactococcus lactis, extensively used as a starter culture in the dairy industry, and Streptococcus pyogenes, a human patho

  6. INFLUENCE OF HERBAL EXTRACTS ON METABOLIC DISTURBANCES IN DIABETES MELLITUS AND INSULIN RESISTANCE MODEL

    T. V. Yakimova

    2015-01-01

    Full Text Available The aim of this research was to assess the influence on metabolic processes of herbal extracts, used in diets with different fat content, in diabetes mellitus and insulin resistance model.Material and methods. The experiments were performing on 90 noninbred male albino rats. Diabetes mellitus was modeling with twice-repeated intraperitoneal streptozotocine (30 mg/kg injections. For the insulin resistance formation animals were fad meal with 30% fat content. Against the background rats were administering into the stomach nettle leafs (Urtica dioica L., 100 mg/kg, burdock roots (Arctium lappa L., 25 mg/kg extracts or intraperitoneal insulin preparation Actrapide HM Penfill (3 mg/kg daily during 10 days. During period of agents introduction one-half of animals continued to receive food with high fat content, the other half received diet with 8% fat content. The third rats group received only food with low fat content without extracts or insulin administration. In blood was measured the glucose, glycosylated hemoglobin, creatinine, urea, uric acid content, in liver homogenates – glycogen, protein content, aminotransferases and glucose-6phosphatase activity, in muscle homogenates – glycogen and protein content.Results. After streptozotocine injections and diet with 30% fat content the blood glucose level became by 4.0–5.3 fold more than level of intact animals, increased the hemoglobin glycosylation, also creatinine, urea, uric acid blood content, in liver and muscle homogenates raised glycogen content, decreased protein quantity, in liver homogenates increased aminotranferases and glucose-6-phosphatase activity. In animals only feeding with 8% fat diminished hyperglycemia, creatinine blood retention, the liver glycogen content and recovered its protein resources. The nettle or burdock extracts administrating to animals that continued to receive high fat meal decreased the blood glucose, glycosylated hemoglobin and creatinine content, the liver

  7. Effect and mechanism of waterborne prolonged Zn exposure influencing hepatic lipid metabolism in javelin goby Synechogobius hasta.

    Huang, Chao; Luo, Zhi; Hogstrand, Christer; Chen, Feng; Shi, Xi; Chen, Qi-Liang; Song, Yu-Feng; Pan, Ya-Xiong

    2016-07-01

    The present study was conducted to determine the effect and mechanism of waterborne Zn exposure influencing hepatic lipid deposition and metabolism in javelin goby Synechogobius hasta. S. hasta were exposed to four waterborne Zn concentrations (Zn 0.005 [control], 0.18, 0.36 and 0.55 mg l(-1) , respectively) for 60 days. Sampling occurred at days 20, 40 and 60, respectively. Zn exposure increased Zn content, declined hepatic lipid content and reduced viscerosomatic and hepatosomatic indices and lipogenic enzyme activities, including 6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME) and fatty acid synthase (FAS). At days 20 and 60, Zn exposure decreased hepatic mRNA levels of 6PGD, G6PD, ME, FAS, acetyl-CoA carboxylase (ACC)α, ACCβ, hormone-sensitive lipase (HSL)a, HSLb, sterol-regulator element-binding protein (SREBP)-1, peroxisome proliferators-activated receptor (PPAR)α and PPARγ. However, the mRNA levels of CPT 1 and adipose triglyceride lipase increased following Zn exposure. On day 40, Zn exposure reduced hepatic mRNA expression of 6PGD, G6PD, ME, FAS, ACCα, ACCβ, HSLa, HSLb, SREBP-1 and PPARγ but increased mRNA expression of CPT 1, adipose triglyceride lipase and PPARα. General speaking, Zn exposure reduced hepatic lipid content by inhibiting lipogenesis and stimulating lipolysis. For the first time, the present study provided evidence that chronic Zn exposure differentially influenced mRNA expression and activities of genes and enzymes involved in lipogenic and lipolytic metabolism in a duration-dependent manner, and provided new insight into the relationship between metal elements and lipid metabolism. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26602879

  8. Metabolism

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood ...

  9. A panel of free fatty acid ratios to predict the development of metabolic abnormalities in healthy obese individuals.

    Zhao, Linjing; Ni, Yan; Ma, Xiaojing; Zhao, Aihua; Bao, Yuqian; Liu, Jiajian; Chen, Tianlu; Xie, Guoxiang; Panee, Jun; Su, Mingming; Yu, Herbert; Wang, Congrong; Hu, Cheng; Jia, Weiping; Jia, Wei

    2016-01-01

    Increasing evidences support that metabolically healthy obese (MHO) is a transient state. However, little is known about the early markers associated with the development of metabolic abnormalities in MHO individuals. Serum free fatty acids (FFAs) profile is highlighted in its association with obesity-related insulin resistance, type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). To examine the association of endogenous fatty acid metabolism with future development of metabolic abnormalities in MHO individuals, we retrospectively analyzed 24 [product FFA]/[precursor FFA] ratios in fasting sera and clinical data from 481 individuals who participated in three independent studies, including 131 metabolic healthy subjects who completed the 10-year longitudinal Shanghai Diabetes Study (SHDS), 312 subjects cross-sectionally sampled from the Shanghai Obesity Study (SHOS), and 38 subjects who completed an 8-week very low carbohydrate diet (VLCD) intervention study. Results showed that higher baseline level of oleic acid/stearic acid (OA/SA), and lower levels of stearic acid/palmitic acid (SA/PA) and arachidonic acid/dihomo-γ-linolenic acid (AA/DGLA) ratios were associated with higher rate of MHO to MUO conversion in the longitudinal SHDS. Further, the finding was validated in the cross-sectional and interventional studies. This panel of FFA ratios could be used for identification and early intervention of at-risk obese individuals. PMID:27344992

  10. Day–Night Changes of Energy-rich Compounds in Crassulacean Acid Metabolism (CAM) Species Utilizing Hexose and Starch

    Chen, Li-Song; NOSE, Akihiro

    2004-01-01

    • Background and Aims Plants with crassulacean acid metabolism (CAM) can be divided into two groups according to the major carbohydrates used for malic acid synthesis, either polysaccharide (starch) or monosaccharide (hexose). This is related to the mechanism and affects energy metabolism in the two groups. In Kalanchoë pinnata and K. daigremontiana, which utilize starch, ATP-dependent phosphofructokinase (tonoplast inorganic pyrophosphatase) activity is greater than inorganic pyrophosphate-d...

  11. Metabolism of biogenic amines in acute cerebral ischemia: Influence of systemic hyperglycemia

    Milovanović Aleksandar

    2012-01-01

    Full Text Available Dopamine, norepinephrine and serotonin are biogenic amines which are transmitters of the central nervous system. The effects of ischemia on the brain parenchyma depends on many factors, such is the mechanism of blood flow interruption, velocity of the occurring blood flow interruption, duration of an ischemic episode, organization of anatomical structures of the brain blood vessels etc., which all influence the final outcome. During interruption of the brain circulation in experimental or clinical conditions, neurotransmitter metabolism, primarily of biogenic amines, is disturbed. Many researches with various experimental models of complete ischemia reported a decrease in the content of norepinephrine, dopamine and serotonin in the CNS tissue. It was proven that hyperglycemia can drastically increase cerebral injury followed by short-term cerebral ischemia. Considering the fact that biogenic amines (dopamine, norepinephrine and serotonin influence the size of neurologic damage, as well as the fact that in hyperglycemic conditions infarct size (from the morphological aspect is larger relative to normoglycemic status, the intention was to evaluate the role of biogenic amines in occurrence of damage in conditions of hyperglycemia, i.e. in the case of brain apoplexia in diabetics. Analysis of biogenic amines metabolism in states of acute hyperglycemia, as well as analysis of the effects of reversible and irreversible brain ischemia on metabolism of serotonin, dopamine and norepinephrine, showed that acute hyperglycemia slows down serotonin, dopamine and norepinephrine metabolism in the cerebral cortex and n. caudatus. Brain ischemia in normoglycemic animals by itself has no influence on biogenic amines metabolism, but the effect of ischemia becomes apparent during reperfusion. In recirculation, which corresponds to the occurrences in penumbra, release of biogenic amines is uncontrolled and increased. Brain ischemia in acute hyperglycemic animals

  12. All-trans retinoic acid increases oxidative metabolism in mature adipocytes

    Mercader, Josep; Madsen, Lise; Felipe, Francisco;

    2007-01-01

    BACKGROUND/AIMS: In rodents, retinoic acid (RA) treatment favors loss of body fat mass and the acquisition of brown fat features in white fat depots. In this work, we sought to examine to what extent these RA effects are cell autonomous or dependent on systemic factors. METHODS: Parameters of lipid...... metabolism and related gene expression were analyzed in differentiated 3T3-L1 adipocytes after exposure to RA or vehicle. RESULTS: Treatment with RA resulted in decreased cellular triacylglycerol content and increased basal lipolysis and fatty acid oxidation rate. At the mRNA level, RA treatment led to a...... increased expression of proteins favoring fat oxidation (peroxisome proliferator-activated receptor gamma coactivator-1alpha, uncoupling protein 2, fasting-induced adipose factor, enzymes of mitochondrial fatty acid oxidation). These changes paralleled inactivation of the retinoblastoma protein and were...

  13. Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria

    Michel Oelschlägel

    2015-06-01

    The styrene-degrading strains Rhodococcus opacus 1CP, Pseudomonas fluorescens ST, and the novel isolates Sphingopyxis sp. Kp5.2 and Gordonia sp. CWB2 were investigated with respect to their applicability to co-metabolically produce substituted phenylacetic acids. Isolates were found to differ significantly in substrate tolerance and biotransformation yields. Especially, P. fluorescens ST was identified as a promising candidate for the production of several phenylacetic acids. The biotransformation of 4-chlorostyrene with cells of strain ST was shown to be stable over a period of more than 200 days and yielded about 38 mmolproduct gcelldryweight−1 after nearly 350 days. Moreover, 4-chloro-α-methylstyrene was predominantly converted to the (S-enantiomer of the acid with 40% enantiomeric excess.

  14. Polyunsaturated fatty acids effect on serum triglycerides concentration in presence of metabolic syndrome components. The Alaska-Siberia Project

    Juan C. Lopez-Alvarenga; Ebbesson, Sven O. E.; Ebbesson, Lars O.E.; Tejero, M. Elizabeth; Voruganti, V. Saroja; Comuzzie, Anthony G

    2009-01-01

    Serum fatty acids (FA) have wide effects on metabolism: Serum saturated fatty acids (SFA) increase triglyceride (TG) levels in plasma while polyunsaturated fatty acids (PUFA) reduce them. Traditionally, Eskimos have a high consumption of omega -3 fatty acids (ω–3 FA), but the westernization of their food habits have increased their dietary SFAs, partly reflected in their serum concentrations. We studied the joint effect of serum SFAs and PUFAs on circulating levels of TG in the presence of me...

  15. Abnormal myocardial fatty acid metabolism in dilated cardiomyopathy detected by iodine-123 phenylpentadecanoic acid and tomographic imaging

    The radioidinated synthetic fatty acid iodine-123 phenylpentadecanoic acid (IPPA) has proven useful in the identification of regional abnormalities of cardiac metabolism in patients with myocardial ischemia. The present study was performed to test the hypothesis that the myocardial distribution and turnover of fatty acids, assessed noninvasively with IPPA, are altered in patients with cardiomyopathy. Nine normal volunteers and 19 patients with dilated cardiomyopathy of various etiologies underwent cardiac imaging with single-photon emission computed tomography (SPECT) after intravenous injection of IPPA. Apical short-axis and basal short-axis sections were reconstructed and quantitatively analyzed for relative IPPA activity distribution and washout. Patients with congestive cardiomyopathy demonstrated significantly greater heterogeneity of IPPA uptake than normal subjects (maximal percent variation of activity 27 +/- 11 vs 18 +/- 4, p less than 0.01). They also demonstrated a more rapid percent washout rate than control subjects (24 +/- 8 vs 17 +/- 6 for the apical short-axis section, p less than 0.05; 26 +/- 7 vs 18 +/- 5 for the basal short-axis section, p less than 0.01). These abnormalities of fatty acid distribution and turnover were independent of the etiology of the cardiomyopathy. The degree of heterogeneity of IPPA uptake was significantly related to the patients' New York Heart Association functional class (r = 0.64, p less than 0.01). Thus, compared with normal myocardium, the myocardium of patients with congestive cardiomyopathy demonstrates a more heterogeneous distribution of fatty acid uptake, which parallels the clinical severity of the disease. Furthermore, patients with congestive cardiomyopathy demonstrate a more rapid myocardial clearance of the labeled fatty acid, as assessed with SPECT imaging

  16. The Heparan and Heparin Metabolism Pathway is Involved in Regulation of Fatty Acid Composition

    Zhihua Jiang, Jennifer J. Michal, Xiao-Lin Wu, Zengxiang Pan, Michael D. MacNeil

    2011-01-01

    Full Text Available Six genes involved in the heparan sulfate and heparin metabolism pathway, DSEL (dermatan sulfate epimerase-like, EXTL1 (exostoses (multiple-like 1, HS6ST1 (heparan sulfate 6-O-sulfotransferase 1, HS6ST3 (heparan sulfate 6-O-sulfotransferase 3, NDST3 (N-deacetylase/N-sulfotransferase (heparan glucosaminyl 3, and SULT1A1 (sulfotransferase family, cytosolic, 1A, phenol-preferring, member 1, were investigated for their associations with muscle lipid composition using cattle as a model organism. Nineteen single nucleotide polymorphisms (SNPs/multiple nucleotide length polymorphisms (MNLPs were identified in five of these six genes. Six of these mutations were then genotyped on 246 Wagyu x Limousin F2 animals, which were measured for 5 carcass, 6 eating quality and 8 fatty acid composition traits. Association analysis revealed that DSEL, EXTL1 and HS6ST1 significantly affected two stearoyl-CoA desaturase activity indices, the amount of conjugated linoleic acid (CLA, and the relative amount of saturated fatty acids (SFA and monounsaturated fatty acids (MUFA in skeletal muscle (P<0.05. In particular, HS6ST1 joined our previously reported SCD1 and UQCRC1 genes to form a three gene network for one of the stearoyl-CoA desaturase activity indices. These results provide evidence that genes involved in heparan sulfate and heparin metabolism are also involved in regulation of lipid metabolism in bovine muscle. Whether the SNPs affected heparan sulfate proteoglycan structure is unknown and warrants further investigation.

  17. Non-invasive analysis of metabolic reactions in body tissues, the case of myocardial fatty acids

    Fatty acid catabolism may be observed in the myocardium by choosing 123I in the ω-position. The kinetics of uptake and release of this tracer, in mouse myocardium, are very similar to that of 1sup(C)-labelled palmitic acid. Because the 123I labels both, the anabolic substrate as well as the final catabolites, which are released into the circulating blood and partially reenter the field of view, they must be separately measured in order to observe the release rate of anabolic tracer as a consequence of fatty acid degradation. 123I in the form of sodium iodide, was chosen to separately observe the catabolic tracer. The catabolic tracer was substracted from the total tracer to yield the anabolically bound tracer. The application of the correction procedure to separately observe the anabolic tracer in the myocardium combined with ECG-triggering of imaging in diastole, gives excellent myocardial scintigrams and permits the construction of metabolic images giving the rates of release of fatty acid labelling for each image segment of the myocardium. There is evidence that in coronary artery disease accumulation defects show a diminished release rate whereas in caridomyopathy the accumulation image does not superimpose the metabolic image. In order to utilize emission computer assisted tomography to its full potential one needs an acceptable speed of imaging for measuring elimination rates of tracer; also ECG triggering to any phase of a cardiac cycle should be applicable in order to improve the image quality; and finally repeated images from one or different tracers should be of interest in order to construct functional images giving metabolic reaction rates in term of elimination half times, besides the image of the initial tracer accumulation. (orig./MG)

  18. Effects of volatile fatty acids on propionate metabolism and gluconeogenesis in caprine hepatocytes

    Aiello, R.J.; Armentano, L.E.

    1987-12-01

    Isolated caprine hepatocytes were incubated with fatty acids of various chain lengths. Short-chain fatty acids effects on rates of gluconeogenesis and oxidation from (2-/sup 14/C) propionate were determined. Additions of glucose (2.5 mM) had no effect on hepatic (2-/sup 14/C)-propionate metabolism in the presence and absence of amino acids. A complete mixture of amino acids increased label incorporation from (2-/sup 14/C) propionate into (/sup 14/C) glucose by 22%. Butyrate inhibited (2-/sup 14/C) propionate metabolism and increased the apparent Michaelis constant for (2-/sup 14/C) propionate incorporation into (/sup 14/C) glucose from 2.4 +/- 1.5 to 5.6 +/- .9 mM. Butyrate's effects on propionate were similar in the presence and absence of L-carnitine (1 mM). Isobutyrate, 2-methylbutyrate, and valerate (1.25 mM) had no effect on (/sup 14/C) glucose production but decreased /sup 14/CO/sub 2/ production to 57, 61, and 54% of the control (2-/sup 14/C) propionate (1.25 mM). This inhibition on /sup 14/CO/sub 2/ was not competitive. Isovalerate had no effect on either (2-/sup 14/C) propionate incorporation into glucose of CO/sub 2/. An increase in ratio of (/sup 14/C) glucose to /sup 14/CO/sub 2/ from (2-/sup 14/C)-propionate demonstrated that short-chain fatty acids other than butyrate do not inhibit gluconeogenesis from propionate. In addition, fatty acids that generate a net synthesis of intracellular oxaloacetate may partition propionate carbons toward gluconeogenic rather than oxidative pathways in goat hepatocytes.

  19. Effects of volatile fatty acids on propionate metabolism and gluconeogenesis in caprine hepatocytes

    Isolated caprine hepatocytes were incubated with fatty acids of various chain lengths. Short-chain fatty acids effects on rates of gluconeogenesis and oxidation from [2-14C] propionate were determined. Additions of glucose (2.5 mM) had no effect on hepatic [2-14C]-propionate metabolism in the presence and absence of amino acids. A complete mixture of amino acids increased label incorporation from [2-14C] propionate into [14C] glucose by 22%. Butyrate inhibited [2-14C] propionate metabolism and increased the apparent Michaelis constant for [2-14C] propionate incorporation into [14C] glucose from 2.4 +/- 1.5 to 5.6 +/- .9 mM. Butyrate's effects on propionate were similar in the presence and absence of L-carnitine (1 mM). Isobutyrate, 2-methylbutyrate, and valerate (1.25 mM) had no effect on [14C] glucose production but decreased 14CO2 production to 57, 61, and 54% of the control [2-14C] propionate (1.25 mM). This inhibition on 14CO2 was not competitive. Isovalerate had no effect on either [2-14C] propionate incorporation into glucose of CO2. An increase in ratio of [14C] glucose to 14CO2 from [2-14C]-propionate demonstrated that short-chain fatty acids other than butyrate do not inhibit gluconeogenesis from propionate. In addition, fatty acids that generate a net synthesis of intracellular oxaloacetate may partition propionate carbons toward gluconeogenic rather than oxidative pathways in goat hepatocytes

  20. Influences of humic and fulvic acids and organic matter on leachate chemistry from acid coal spoil

    Column-leaching experiments were conducted on an acid pyritic coal spoil to determine the influence of acid rain, humic acid (HA), fulvic acid (FA), and undecomposed organic matter (OM) on pH and Al, Fe, Mn, and SO4 concentrations in the spoil leachate and on the spoil. Simulated acid rain of pH 4.0 was applied for 50 weeks under laboratory conditions to spoil columns modified with 0.5% FA or HA, or 2.0% OM from four forest trees and two herbs. Quality-control methods were used to evaluate treatment effects. Addition of HA and tall fescue leaf material to a Lily, KY, spoil created a greater and longer lasting desirable effect on leachate pH and Al, Fe, Mn, and SO4 than additions of FA or OM of five other species. Results suggest that revegetation resulting in rapid production of matured soil OM may reduce the amount of some ions commonly leached from acid mine spoils

  1. Clostridium sticklandii, a specialist in amino acid degradation:revisiting its metabolism through its genome sequence

    Pelletier Eric

    2010-10-01

    Full Text Available Abstract Background Clostridium sticklandii belongs to a cluster of non-pathogenic proteolytic clostridia which utilize amino acids as carbon and energy sources. Isolated by T.C. Stadtman in 1954, it has been generally regarded as a "gold mine" for novel biochemical reactions and is used as a model organism for studying metabolic aspects such as the Stickland reaction, coenzyme-B12- and selenium-dependent reactions of amino acids. With the goal of revisiting its carbon, nitrogen, and energy metabolism, and comparing studies with other clostridia, its genome has been sequenced and analyzed. Results C. sticklandii is one of the best biochemically studied proteolytic clostridial species. Useful additional information has been obtained from the sequencing and annotation of its genome, which is presented in this paper. Besides, experimental procedures reveal that C. sticklandii degrades amino acids in a preferential and sequential way. The organism prefers threonine, arginine, serine, cysteine, proline, and glycine, whereas glutamate, aspartate and alanine are excreted. Energy conservation is primarily obtained by substrate-level phosphorylation in fermentative pathways. The reactions catalyzed by different ferredoxin oxidoreductases and the exergonic NADH-dependent reduction of crotonyl-CoA point to a possible chemiosmotic energy conservation via the Rnf complex. C. sticklandii possesses both the F-type and V-type ATPases. The discovery of an as yet unrecognized selenoprotein in the D-proline reductase operon suggests a more detailed mechanism for NADH-dependent D-proline reduction. A rather unusual metabolic feature is the presence of genes for all the enzymes involved in two different CO2-fixation pathways: C. sticklandii harbours both the glycine synthase/glycine reductase and the Wood-Ljungdahl pathways. This unusual pathway combination has retrospectively been observed in only four other sequenced microorganisms. Conclusions Analysis of the C

  2. Functional analysis of free fatty acid receptor GPR120 in human eosinophils: implications in metabolic homeostasis.

    Yasunori Konno

    Full Text Available Recent evidence has shown that eosinophils play an important role in metabolic homeostasis through Th2 cytokine production. GPR120 (FFA4 is a G protein-coupled receptor (GPCR for long-chain fatty acids that functions as a regulator of physiological energy metabolism. In the present study, we aimed to investigate whether human eosinophils express GPR120 and, if present, whether it possesses a functional capacity on eosinophils. Eosinophils isolated from peripheral venous blood expressed GPR120 at both the mRNA and protein levels. Stimulation with a synthetic GPR120 agonist, GW9508, induced rapid down-regulation of cell surface expression of GPR120, suggesting ligand-dependent receptor internalization. Although GPR120 activation did not induce eosinophil chemotactic response and degranulation, we found that GW9508 inhibited eosinophil spontaneous apoptosis and Fas receptor expression. The anti-apoptotic effect was attenuated by phosphoinositide 3-kinase (PI3K inhibitors and was associated with inhibition of caspase-3 activity. Eosinophil response investigated using ELISpot assay indicated that stimulation with a GPR120 agonist induced IL-4 secretion. These findings demonstrate the novel functional properties of fatty acid sensor GPR120 on human eosinophils and indicate the previously unrecognized link between nutrient metabolism and the immune system.

  3. MDG-1, an Ophiopogon polysaccharide, alleviates hyperlipidemia in mice based on metabolic profile of bile acids.

    Shi, Linlin; Wang, Jie; Wang, Yuan; Feng, Yi

    2016-10-01

    Hyperlipidemia is a chronic metabolic disorder with systemic complications that is prevalent worldwide. MDG-1, a water-soluble β-d-fructan polysaccharide from Ophiopogon japonicas has potent hypolipidemic and weight-control effects. The present study aimed to investigate the effects of MDG-1 on lipid metabolic disorders in diet-induced obese mice based on the metabolic profile of bile acids. C57BL/6 mice were treated with a low-fat diet, high-fat diet or high fat mixed with 1‰ (w/w) MDG-1 diet for 12 weeks. The results showed that MDG-1 inhibited body weight gain and lowered serum and liver total cholesterol contents in obese mice. In addition, MDG-1 could adsorb bile acids in the gut lumen and reduce their reabsorption, thus promoting cholesterol catabolism. Furthermore, MDG-1 inhibited the expression of the farnesoid X receptor, but activated the liver X receptor. Our findings shed new light on the mechanism of MDG-1 in the control of lipids. PMID:27312615

  4. Retinoic acid metabolism blocking agents (RAMBAs) for treatment of cancer and dermatological diseases.

    Njar, Vincent C O; Gediya, Lalji; Purushottamachar, Puranik; Chopra, Pankaj; Vasaitis, Tadas Sean; Khandelwal, Aakanksha; Mehta, Jhalak; Huynh, Carlic; Belosay, Aashvini; Patel, Jyoti

    2006-07-01

    The naturally occurring retinoids and their synthetic analogs play a key role in differentiation, proliferation, and apoptosis, and their use/potential in oncology, dermatology and a variety of diseases are well documented. This review focuses on the role of all-trans-retinoic acid (ATRA), the principal endogenous metabolite of vitamin A (retinol) and its metabolism in oncology and dermatology. ATRA has been used successfully in differentiated therapy of acute promyelocytic leukemia, skin cancer, Kaposi's sarcoma, and cutaneous T-cell lymphoma, and also in the treatment of acne and psoriasis. However, its usefulness is limited by the rapid emergence of acquired ATRA resistance involving multifactoral mechanisms. A key mechanism of resistance involves ATRA-induced catabolism of ATRA. Thus, a novel strategy to overcome the limitation associated with exogenous ATRA therapy has been to modulate and/or increase the levels of endogenous ATRA by inhibiting the cytochrome P450-dependent ATRA-4-hydroxylase enzymes (particularly CYP26s) responsible for ATRA metabolism. These inhibitors are also referred to as retinoic acid metabolism blocking agents (RAMBAs). This review highlights development in the design, synthesis, and evaluation of RAMBAs. Major emphasis is given to liarozole, the most studied and only RAMBA in clinical use and also the new RAMBAs in development and with clinical potential. PMID:16530416

  5. Polarity of fatty acid uptake and metabolism in a human intestinal cell line (CACO-2)

    Free fatty acids (ffa) can enter the intestinal cell via the apical (AP) or basolateral (BL) membrane. The authors are using the Caco-2 intestinal cell line to examine the polarity of ffa uptake and metabolism in the enterocyte. Cells are grown on permeable polycarbonate Transwell filters in order to obtain access to both AP and BL compartments. Differentiated Caco-2 cells form tight polarized monolayers which express small intestine-specific enzymes and are impermeable to the fluid phase marker Lucifer Yellow. Submicellar concentrations of 3H-palmitic acid (2uM) were added to AP or BL sides of Caco-2 monolayers at 37 degrees C and cells were incubated for various times between 2 and 120 minutes. Total AP and BL uptake is similar; however, when relative membrane surface areas are accounted for, AP uptake is about 2-fold higher. The metabolism of AP and BL ffa is not significantly different: triacylglycerol and phosphatidylcholine account for most of the metabolites (32±4 and 24±2% respectively at 5 minutes). Little ffa oxidation is observed. Preincubation with albumin-bound 2-monoolein (100uM) and palmitate (50uM) increases the level of TG metabolites. The results suggest that in this cell line the uptake of AP ffa may be greater than BL ffa, but that AP (dietary) ffa and BL (plasma) ffa are metabolized similarly

  6. Polarity of fatty acid uptake and metabolism in a human intestinal cell line (CACO-2)

    Trotter, P.J.; Storch, J. (Harvard School of Public Health, Boston, MA (United States))

    1990-02-26

    Free fatty acids (ffa) can enter the intestinal cell via the apical (AP) or basolateral (BL) membrane. The authors are using the Caco-2 intestinal cell line to examine the polarity of ffa uptake and metabolism in the enterocyte. Cells are grown on permeable polycarbonate Transwell filters in order to obtain access to both AP and BL compartments. Differentiated Caco-2 cells form tight polarized monolayers which express small intestine-specific enzymes and are impermeable to the fluid phase marker Lucifer Yellow. Submicellar concentrations of {sup 3}H-palmitic acid (2uM) were added to AP or BL sides of Caco-2 monolayers at 37{degrees}C and cells were incubated for various times between 2 and 120 minutes. Total AP and BL uptake is similar; however, when relative membrane surface areas are accounted for, AP uptake is about 2-fold higher. The metabolism of AP and BL ffa is not significantly different: triacylglycerol and phosphatidylcholine account for most of the metabolites (32{plus minus}4 and 24{plus minus}2% respectively at 5 minutes). Little ffa oxidation is observed. Preincubation with albumin-bound 2-monoolein (100uM) and palmitate (50uM) increases the level of TG metabolites. The results suggest that in this cell line the uptake of AP ffa may be greater than BL ffa, but that AP (dietary) ffa and BL (plasma) ffa are metabolized similarly.

  7. Metabolomic Analyses of Leishmania Reveal Multiple Species Differences and Large Differences in Amino Acid Metabolism.

    Gareth D Westrop

    Full Text Available Comparative genomic analyses of Leishmania species have revealed relatively minor heterogeneity amongst recognised housekeeping genes and yet the species cause distinct infections and pathogenesis in their mammalian hosts. To gain greater information on the biochemical variation between species, and insights into possible metabolic mechanisms underpinning visceral and cutaneous leishmaniasis, we have undertaken in this study a comparative analysis of the metabolomes of promastigotes of L. donovani, L. major and L. mexicana. The analysis revealed 64 metabolites with confirmed identity differing 3-fold or more between the cell extracts of species, with 161 putatively identified metabolites differing similarly. Analysis of the media from cultures revealed an at least 3-fold difference in use or excretion of 43 metabolites of confirmed identity and 87 putatively identified metabolites that differed to a similar extent. Strikingly large differences were detected in their extent of amino acid use and metabolism, especially for tryptophan, aspartate, arginine and proline. Major pathways of tryptophan and arginine catabolism were shown to be to indole-3-lactate and arginic acid, respectively, which were excreted. The data presented provide clear evidence on the value of global metabolomic analyses in detecting species-specific metabolic features, thus application of this technology should be a major contributor to gaining greater understanding of how pathogens are adapted to infecting their hosts.

  8. Glyoxylate cycle and metabolism of organic acids in the scutellum of barley seeds during germination.

    Ma, Zhenguo; Marsolais, Frédéric; Bernards, Mark A; Sumarah, Mark W; Bykova, Natalia V; Igamberdiev, Abir U

    2016-07-01

    During the developmental processes from dry seeds to seedling establishment, the glyoxylate cycle becomes active in the mobilization of stored oils in the scutellum of barley (Hordeum vulgare L.) seeds, as indicated by the activities of isocitrate lyase and malate synthase. The succinate produced is converted to carbohydrates via phosphoenolpyruvate carboxykinase and to amino acids via aminotransferases, while free organic acids may participate in acidifying the endosperm tissue, releasing stored starch into metabolism. The abundant organic acid in the scutellum was citrate, while malate concentration declined during the first three days of germination, and succinate concentration was low both in scutellum and endosperm. Malate was more abundant in endosperm tissue during the first three days of germination; before citrate became predominant, indicating that malate may be the main acid acidifying the endosperm. The operation of the glyoxylate cycle coincided with an increase in the ATP/ADP ratio, a buildup of H2O2 and changes in the redox state of ascorbate and glutathione. It is concluded that operation of the glyoxylate cycle in the scutellum of cereals may be important not only for conversion of fatty acids to carbohydrates, but also for the acidification of endosperm and amino acid synthesis. PMID:27181945

  9. EFFECTS OF SALICYLIC ACID ON SEEDLING GROWTH AND NITROGEN METABOLISM IN CUCUMBER (CUCUMIS SATIVUS L.

    Singh Pramod Kumar

    2010-09-01

    Full Text Available Salicylic acid is involved in the regulation of metabolic activity and defense mechanism in plants under various stress conditions. Present study was conducted to determine the effects of salicylic acid (10 to 500 μM on seedling growth, development and nitrogen use efficiency in cucumber (Cucumis sativus L. plants with or without nitrogen nutrient. Salicylic acid increased contents of chlorophyll, total non-structural carbohydrate and total nitrogen, as well as nitrate assimilation through the induction of nitrate reductase (EC 1.6.6.1 activity in isolated cucumber cotyledons. Accumulation of salicylic acid was two-fold higher in cotyledons without nitrate supply in comparison to that with nitrate supply. Further 50 μM of SA induced enhancement in seed germination and growth characteristics. However higher salicylic acid concentrations inhibited above physiological characteristics. Results show that, field application of salicylic acid need optimum physiological concentration (e.g., 50 μM to increase nitrogen use efficiency particularly during germination and seedling growth.

  10. The metabolism of [14C]histamine during pentagastrin-stimulated acid secretion in the cat

    The metabolism of exogenous [14C]histamine has been examined in cats during gastric secretion. The appearance of 14C-labelled metabolites has been measured chromatographically in urine and gastric juice under non-secreting and pentagastrin-stimulated conditions, and in gastric mucosa after pentagastrin stimulation. The main metabolites detected were (i) an acidic product, presumed to be methylimidazoleacetic acid, (ii) Nsup (tau)-methylhistamine, and (iii) an unidentified metabolite, moving rapidly in the chromatographic systems used, and designated 'preacetylhistamine'. No evidence was found for the presence of side chain (i,e. Nsup(α))-methylated histamines, either in the non-stimulated or pentagastrin-stimulated state. During a 3 hr non-stimulated period, followed by 3 hr of pentagastrin administration, the relative proportions of 14C-labelled metabolites excreted in urine remained unchanged. During acid secretion there was an increase in the proportion of 'pre-acetylhistamine' in gastric juice, which occurred at the expense of the acidic metabolites. It is suggested however that this effect is more likely to be the result of a slow adaptation to the administration of exogenous [14C]histamine than the result of acid secretion. The results of the present work do not appear to support the hypothesis of Code that a local control mechanism for acid secretion might involve the formation of Nsup(α)-methylated histamine metabolites in gastric mucosa. (author)

  11. INFLUENCE OF HERBAL EXTRACTS ON METABOLIC DISTURBANCES IN DIABETES MELLITUS AND INSULIN RESISTANCE MODEL

    T. V. Yakimova; O. N. Nasanova; A. I. Vengerovsky

    2015-01-01

    The aim of this research was to assess the influence on metabolic processes of herbal extracts, used in diets with different fat content, in diabetes mellitus and insulin resistance model.Material and methods. The experiments were performing on 90 noninbred male albino rats. Diabetes mellitus was modeling with twice-repeated intraperitoneal streptozotocine (30 mg/kg) injections. For the insulin resistance formation animals were fad meal with 30% fat content. Against the background rats were a...

  12. Regulation by diet and liver of brain metabolism of nutritionally essential polyunsaturated fatty acids*

    Rapoport Stanley I.

    2007-05-01

    Full Text Available It is possible to inject radiolabeled polyunsaturated fatty acids (PUFAs intravenously to quantify rates of brain and liver PUFA metabolism in the intact organism, in relation to diet, aging or disease. Because circulating α-linolenic acid (α-LNA, 18:3n-3 and linoleic acid (LA, 18:2n-6 in plasma do not contribute to brain docosahexaenoic acid (DHA, 22:6n-3 or arachidonic acid (AA, 20:4n-6, respectively, and DHA and AA cannot be synthesized de novo in vertebrate tissue, rates of incorporation of circulating DHA or AA into brain provide exact measurements of their rates of consumption by brain. Using positron emission tomography imaging, we reported that the adult human brain consumes AA and DHA at rates of 17.8 and 4.6 mg/day, respectively, and that the rate of AA consumption doesn’t change with age. In unanesthetized adult rats fed an n-3 PUFA “adequate” diet containing 4.6% (of total fatty acids α-LNA as its only n-3 PUFA, the liver secretes DHA derived from circulating α-LNA ten-times faster than the brain consumes DHA; thus the liver is capable of supplying all the brain’s DHA. With a low dietary α-LNA level, rat liver coefficients of α-LNA conversion to DHA are increased because of increased liver elongase and desaturase activities, and DHA loss from brain is slowed due to downregulated DHA-metabolizing enzymes, including Ca2+-independent phospholipase A2 (iPLA2. The n-3 PUFA “deficient” diet also increases brain expression of AA-metabolizing enzymes, cytosolic cPLA2, secretory sPLA2 and cyclooxygenase-2, and the brain docosapentaenoic acid (22:5n-6 concentration. These changes, plus reduced expression of brain derived neurotrophic factor (BDNF caused by the “deficient” diet, likely increase brain vulnerability to excitotoxicity and inflammation.

  13. Heating of vegetable oils influences the activity of enzymes participating in arachidonic acid formation in Wistar rats.

    Stawarska, Agnieszka; Białek, Agnieszka; Tokarz, Andrzej

    2015-10-01

    Dietary intake of lipids and their fatty acids profile influence many aspects of health. Thermal processing changes the properties of edible oils and can also modify their metabolism, for example, eicosanoids formation. The aim of our study was to verify whether the activity of desaturases can be modified by lipids intake, especially by the fatty acids content. The experimental diets contained rapeseed oil, sunflower oil, and olive oil, both unheated and heated (for 10 minutes at 200 °C each time before administration), and influenced the fatty acids composition in serum and the activity of enzymes participating in arachidonic acid (AA) formation. The activity of desaturases was determined by measuring the amounts of AA formed in vitro derived from linoleic acid as determined in liver microsomes of Wistar rats. In addition, the indices of ∆(6)-desaturase (D6D) and ∆(5)-desaturase (D5D) have been determined. To realize this aim, the method of high-performance liquid chromatography has been used with ultraviolet-visible spectrophotometry detection. Diet supplementation with the oils rich in polyunsaturated fatty acids affects the fatty acids profile in blood serum and the activity of D6D and ∆(5)-desaturase in rat liver microsomes, the above activities being dependent on the kind of oil applied. Diet supplementation with heated oils has been found to increase the amount of AA produced in hepatic microsomes; and in the case of rapeseed oil and sunflower oil, it has also increased D6D activity. PMID:26094213

  14. Influence of the RelA activity on E. coli metabolism by metabolite profiling of glucose-limited chemostat cultures

    Sónia Carneiro; Villas-Bôas, Silas G.; Ferreira, Eugénio C.; Isabel Rocha

    2012-01-01

    Metabolite profiling of E. coli W3110 and the isogenic DrelA mutant cells was used to characterize the RelA-dependent stringent control of metabolism under different growth conditions. Metabolic profiles were obtained by gas chromatography–mass spectrometry (GC-MS) analysis and revealed significant differences between E. coli strains grown at different conditions. Major differences between the two strains were assessed in the levels of amino acids and fatty acids and their precursor metabolit...

  15. Metabolic engineering of Escherichia coli for production of mixed-acid fermentation end products

    Andreas Hartmut Förster

    2014-05-01

    Full Text Available Mixed-acid fermentation end products have numerous applications in biotechnology. This is probably the main driving force for the development of multiple strains that are supposed to produce individual end products with high yields. The process of engineering Escherichia coli strains for applied production of ethanol, lactate, succinate, or acetate was initiated several decades ago and is still ongoing. This review follows the path of strain development from the general characteristics of aerobic versus anaerobic metabolism over the regulatory machinery that enables the different metabolic routes. Thereafter, major improvements for broadening the substrate spectrum of Escherichia coli towards cheap carbon sources like molasses or lignocellulose are highlighted before major routes of strain development for the production of ethanol, acetate, lactate and succinate are presented.

  16. Lysosomal acid lipase: At the crossroads of normal and atherogenic cholesterol metabolism

    Joshua A Dubland

    2015-02-01

    Full Text Available Unregulated cellular uptake of apolipoprotein B-containing lipoproteins in the arterial intima leads to the formation of foam cells in atherosclerosis. Lysosomal acid lipase (LAL plays a crucial role in both lipoprotein lipid catabolism and excess lipid accumulation as it is the primary enzyme that hydrolyzes cholesteryl esters derived from both low density lipoprotein (LDL and modified forms of LDL. Evidence suggests that as atherosclerosis progresses, accumulation of excess free cholesterol in lysosomes leads to impairment of LAL activity, resulting in accumulation of cholesteryl esters in the lysosome as well as the cytosol in foam cells. Impaired metabolism and release of cholesterol from lysosomes can lead to downstream defects in ATP-binding cassette transporter A1 regulation, needed to offload excess cholesterol from plaque foam cells. This review focuses on the role LAL plays in normal cholesterol metabolism and how the associated changes in its enzymatic activity may ultimately contribute to atherosclerosis progression.

  17. Bioactive Compounds Derived from the Yeast Metabolism of Aromatic Amino Acids during Alcoholic Fermentation

    Albert Mas

    2014-01-01

    Full Text Available Metabolites resulting from nitrogen metabolism in yeast are currently found in some fermented beverages such as wine and beer. Their study has recently attracted the attention of researchers. Some metabolites derived from aromatic amino acids are bioactive compounds that can behave as hormones or even mimic their role in humans and may also act as regulators in yeast. Although the metabolic pathways for their formation are well known, the physiological significance is still far from being understood. The understanding of this relevance will be a key element in managing the production of these compounds under controlled conditions, to offer fermented food with specific enrichment in these compounds or even to use the yeast as nutritional complements.

  18. Influences of wetland plants on weathered acidic mine tailings

    Establishment of Carex rostrata, Eriophorum angustifolium and Phragmites australis on weathered, acidic mine tailings (pH ∼3) and their effect on pH in tailings were investigated in a field experiment. The amendments, sewage sludge and an ashes-sewage sludge mixture, were used as plant nutrition and their influence on the metal and As concentrations of plant shoots was analysed. An additional experiment was performed in greenhouse with E. angustifolium and sewage sludge as amendments in both weathered and unweathered tailings. After one year, plants grew better in amendments containing ashes in the field, also in those plants the metal and As shoot concentrations were generally lower than in other treatments. After two years, the only surviving plants were found in sewage sludge mixed with ashes. No effect on pH by plants was found in weathered acidic mine tailings in either field- or greenhouse experiment. - Wetland plant establishment on acidic mine tailings may contribute to a reduced metal release and a stabilisation of pH

  19. Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid.

    Di Gioia, Diana; Luziatelli, Francesca; Negroni, Andrea; Ficca, Anna Grazia; Fava, Fabio; Ruzzi, Maurizio

    2011-12-20

    Vanillin is one of the most important flavors in the food industry and there is great interest in its production through biotechnological processes starting from natural substrates such as ferulic acid. Among bacteria, recombinant Escherichia coli strains are the most efficient vanillin producers, whereas Pseudomonas spp. strains, although possessing a broader metabolic versatility, rapidly metabolize various phenolic compounds including vanillin. In order to develop a robust Pseudomonas strain that can produce vanillin in high yields and at high productivity, the vanillin dehydrogenase (vdh)-encoding gene of Pseudomonas fluorescens BF13 strain was inactivated via targeted mutagenesis. The results demonstrated that engineered derivatives of strain BF13 accumulate vanillin if inactivation of vdh is associated with concurrent expression of structural genes for feruloyl-CoA synthetase (fcs) and hydratase/aldolase (ech) from a low-copy plasmid. The conversion of ferulic acid to vanillin was enhanced by optimization of growth conditions, growth phase and parameters of the bioconversion process. The developed strain produced up to 8.41 mM vanillin, which is the highest final titer of vanillin produced by a Pseudomonas strain to date and opens new perspectives in the use of bacterial biocatalysts for biotechnological production of vanillin from agro-industrial wastes which contain ferulic acid. PMID:21875627

  20. High Production of 3-Hydroxypropionic Acid in Klebsiella pneumoniae by Systematic Optimization of Glycerol Metabolism.

    Li, Ying; Wang, Xi; Ge, Xizhen; Tian, Pingfang

    2016-01-01

    3-Hydroxypropionic acid (3-HP) is an important platform chemical proposed by the United States Department of Energy. 3-HP can be converted to a series of bulk chemicals. Biological production of 3-HP has made great progress in recent years. However, low yield of 3-HP restricts its commercialization. In this study, systematic optimization was conducted towards high-yield production of 3-HP in Klebsiella pneumoniae. We first investigated appropriate promoters for the key enzyme (aldehyde dehydrogenase, ALDH) in 3-HP biosynthesis, and found that IPTG-inducible tac promoter enabled overexpression of an endogenous ALDH (PuuC) in K. pneumoniae. We optimized the metabolic flux and found that blocking the synthesis of lactic acid and acetic acid significantly increased the production of 3-HP. Additionally, fermentation conditions were optimized and scaled-up cultivation were investigated. The highest 3-HP titer was observed at 83.8 g/L with a high conversion ratio of 54% on substrate glycerol. Furthermore, a flux distribution model of glycerol metabolism in K. pneumoniae was proposed based on in silico analysis. To our knowledge, this is the highest 3-HP production in K. pneumoniae. This work has significantly advanced biological production of 3-HP from renewable carbon sources. PMID:27230116

  1. Bace1 activity impairs neuronal glucose metabolism: rescue by beta-hydroxybutyrate and lipoic acid

    John A Findlay

    2015-10-01

    Full Text Available Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer’s disease (AD pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP cleaving enzyme 1 (BACE1, responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD.

  2. Endogenous and dietary lipids influencing feed intake and energy metabolism of periparturient dairy cows.

    Kuhla, B; Metges, C C; Hammon, H M

    2016-07-01

    The high metabolic priority of the mammary gland for milk production, accompanied by limited feed intake around parturition results in a high propensity to mobilize body fat reserves. Under these conditions, fuel selection of many peripheral organs is switched, for example, from carbohydrate to fat utilization to spare glucose for milk production and to ensure partitioning of tissue- and dietary-derived nutrients toward the mammary gland. For example, muscle tissue uses nonesterified fatty acids (NEFA) but releases lactate and amino acids in a coordinated order, thereby providing precursors for milk synthesis or hepatic gluconeogenesis. Tissue metabolism and in concert, nutrient partitioning are controlled by the endocrine system involving a reduction in insulin secretion and systemic insulin sensitivity and orchestrated changes in plasma hormones such as insulin, adiponectin, insulin growth factor-I, growth hormone, glucagon, leptin, glucocorticoids, and catecholamines. However, the endocrine system is highly sensitive and responsive to an overload of fatty acids no matter if excessive NEFA supply originates from exogenous or endogenous sources. Feeding a diet containing rumen-protected fat from late lactation to calving and beyond exerts similar negative effects on energy intake, glucose and insulin concentrations as does a high extent of body fat mobilization around parturition in regard to the risk for ketosis and fatty liver development. High plasma NEFA concentrations are thought not to act directly at the brain level, but they increase the energy charge of the liver which is, signaled to the brain to diminish feed intake. Cows differing in fat mobilization during the transition phase differ in their hepatic energy charge, whole body fat oxidation, glucose metabolism, plasma ghrelin, and leptin concentrations and in feed intake several week before parturition. Hence, a high lipid load, no matter if stored, mobilized or fed, affects the endocrine system

  3. Characteristic metabolism of free amino acids in cetacean plasma: cluster analysis and comparison with mice.

    Kazuki Miyaji

    Full Text Available From an evolutionary perspective, the ancestors of cetaceans first lived in terrestrial environments prior to adapting to aquatic environments. Whereas anatomical and morphological adaptations to aquatic environments have been well studied, few studies have focused on physiological changes. We focused on plasma amino acid concentrations (aminograms since they show distinct patterns under various physiological conditions. Plasma and urine aminograms were obtained from bottlenose dolphins, pacific white-sided dolphins, Risso's dolphins, false-killer whales and C57BL/6J and ICR mice. Hierarchical cluster analyses were employed to uncover a multitude of amino acid relationships among different species, which can help us understand the complex interrelations comprising metabolic adaptations. The cetacean aminograms formed a cluster that was markedly distinguishable from the mouse cluster, indicating that cetaceans and terrestrial mammals have quite different metabolic machinery for amino acids. Levels of carnosine and 3-methylhistidine, both of which are antioxidants, were substantially higher in cetaceans. Urea was markedly elevated in cetaceans, whereas the level of urea cycle-related amino acids was lower. Because diving mammals must cope with high rates of reactive oxygen species generation due to alterations in apnea/reoxygenation and ischemia-reperfusion processes, high concentrations of antioxidative amino acids are advantageous. Moreover, shifting the set point of urea cycle may be an adaptation used for body water conservation in the hyperosmotic sea water environment, because urea functions as a major blood osmolyte. Furthermore, since dolphins are kept in many aquariums for observation, the evaluation of these aminograms may provide useful diagnostic indices for the assessment of cetacean health in artificial environments in the future.

  4. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria.

    Shabalina, Irina G; Kalinovich, Anastasia V; Cannon, Barbara; Nedergaard, Jan

    2016-05-01

    The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged. PMID:26041126

  5. Metabolic phenotyping of the cyanobacterium Synechocystis 6803 engineered for production of alkanes and free fatty acids

    Highlights: ► Synechocystis 6803 was engineered for enhanced photosynthetic conversion of CO2 to alkanes. ► Synechocystis 6803 was engineered for accumulation of free fatty acids. ► Single-cell metabolic phenotyping was performed using SR-FTIR spectromicroscopy. ► Multivariate analysis of SR-FTIR data revealed biochemical shifts in engineered cells. ► SR-FTIR spectromicroscopy provides a high-throughput tool for screening engineered cells. -- Abstract: We demonstrate a simple high-throughput single-cell approach that exploits the ultrahigh brightness and non-invasive nature of synchrotron infrared beam to characterize strains of the cyanobacterium Synechocystis 6803 (S. 6803) constructed with altered metabolic traits affecting the acyl-CoA pool. Their metabolic responses to the modified traits were phenotyped by single-cell synchrotron radiation Fourier transform infrared (SR-FTIR) spectromicroscopy and multivariate analysis. SR-FTIR difference spectra and cluster vector plots segregated the strains as phenotypic populations based on signals in the hydrocarbon and biomolecular fingerprint regions, although each population incorporated a stochastic distribution of cells with different metabolic properties. All engineered strains exhibited an increase in FTIR features attributed to functional groups in hydrocarbon, fatty acid (FA), and/or FA ester chains, and a decrease in polysaccharide features. The metabolic signatures obtained by SR-FTIR were consistent with detailed qualitative and quantitative metabolic information provided in GC/MS/NMR data. A strain with extra copies of the FAR and FAD genes, encoding, respectively, the fatty acyl-ACP reductase and fatty aldehyde decarbonylase enzymes in the alkane biosynthesis pathway, showed up to a fivefold increase in the intracellular levels of heptadecane, a threefold increase in 9-heptadecene, and a significant increase in secreted 16:0 and 18:0 free FAs (FFAs). Inactivation of the AAS gene, encoding acyl

  6. Clinical aggressiveness of malignant gliomas is linked to augmented metabolism of amino acids.

    Panosyan, Eduard H; Lasky, Joseph L; Lin, Henry J; Lai, Albert; Hai, Yang; Guo, Xiuqing; Quinn, Michael; Nelson, Stanley F; Cloughesy, Timothy F; Nghiemphu, P Leia

    2016-05-01

    Glutamine, glutamate, asparagine, and aspartate are involved in an enzyme-network that controls nitrogen metabolism. Branched-chain-amino-acid aminotransferase-1 (BCAT1) promotes proliferation of gliomas with wild-type IDH1 and is closely connected to the network. We hypothesized that metabolism of asparagine, glutamine, and branched-chain-amino-acids is associated with progression of malignant gliomas. Gene expression for asparagine synthetase (ASNS), glutaminase (GLS), and BCAT1 were analyzed in 164 gliomas from 156 patients [33-anaplastic gliomas (AG) and 131-glioblastomas (GBM), 64 of which were recurrent GBMs]. ASNS and GLS were twofold higher in GBMs versus AGs. BCAT1 was also higher in GBMs. ASNS expression was twofold higher in recurrent versus new GBMs. Five patients had serial samples: 4-showed higher ASNS and 3-higher GLS at recurrence. We analyzed grade and treatment in 4 groups: (1) low ASNS, GLS, and BCAT1 (n = 96); (2) low ASNS and GLS, but high BCAT1 (n = 26); (3) high ASNS or GLS, but low BCAT1 (n = 25); and (4) high ASNS or GLS and high BCAT1 (n = 17). Ninety-one  % of patients (29/32) with grade-III lesions were in group 1. In contrast, 95 % of patients (62/65) in groups 2-4 had GBMs. Treatment was similar in 4 groups (radiotherapy-80 %; temozolomide-30 %; other chemotherapy-50 %). High expression of ASNS, GLS, and BCAT1 were each associated with poor survival in the entire group. The combination of lower ASNS, GLS, and BCAT1 levels correlated with better survival for newly diagnosed GBMs (66 patients; P = 0.0039). Only tumors with lower enzymes showed improved outcome with temozolomide. IDH1(WT) gliomas had higher expression of these genes. Manipulation of amino acid metabolism in malignant gliomas may be further studied for therapeutics development. PMID:26922345

  7. Antibiotics influence on lactic acid bacteria inhibiting gastrointestinal tract

    Andreja Čanžek Majhenič

    2001-04-01

    Full Text Available Lactic acid bacteria (LAB are common inhabitants of the gastrointestinal (GI tract and have important role in maintaining the equilibrium of GI flora, which can be influenced by various factors like diets, antimicrobials and stress. Minimal inhibitory concentrations (MIC and minimal bactericidal concentrations (MBC of 6 antibiotics, commonly used in human medicine for 8 selected lactobacilli strains were determined by macrodilution and microdilution methods in liquid media and by diffusion method on agar plates. The effects of Penicillin G and Ampicillin on intestinal LAB were tested in vivoon mice as well. Lactobacilli were sensitive to Penicillin G, (penicillines and their derivatives and Erythromycin (macrolides by in vitro testing. Clyndamycin (pyranosid showed moderate inhibitory effect. All lactobacilli strains were resistant to Kanamycin and Neomycin (aminoglycosides, while L. salivarius IM 124 has shown extra resistance to Erythromycin and Clyndamycin. The influence of orally administered Ampicillin showed no significant influence on LAB count in mice faeces. The effect of Penicillin G on mice LAB total count was significant, while no effect of orally administered lactobacilli was determined.

  8. Further studies of the influence of apolipoprotein B alleles on glucose and lipid metabolism

    Bentzen, Joan; Poulsen, Pernille; Vaag, Allan; Fenger, Mogens

    2003-01-01

    The effect of five genetic polymorphisms in the apolipoprotein B gene on parameters of lipid and glucose metabolism was assessed in 564 Danish mono- and dizygotic twins. Genotypes in apolipoprotein B T71I (ApaLI RFLP), A591V (AluI RFLP), L2712P (MvaI RFLP), R3611Q (MspI RFLP), and E4154K (EcoRI R...... five polymorphisms was seen in the dizygotic twins. The effect of the polymorphisms on lipid and glucose parameters could be mediated through linkage to genes with known effect on glucose metabolism or through free fatty acids exerting their effect on glucose metabolism.......The effect of five genetic polymorphisms in the apolipoprotein B gene on parameters of lipid and glucose metabolism was assessed in 564 Danish mono- and dizygotic twins. Genotypes in apolipoprotein B T71I (ApaLI RFLP), A591V (AluI RFLP), L2712P (MvaI RFLP), R3611Q (MspI RFLP), and E4154K (Eco......RI RFLP) were established using polymerase chain reaction and restriction enzyme digests. The effect of genotypes on lipid levels and on glucose, insulin, and HOMA (i.e., calculated parameters of beta-cell function and insulin resistance) was assessed by multivariate analyses of variance correcting for...

  9. Titratable acidity of beverages influences salivary pH recovery

    Livia Maria Andaló TENUTA

    2015-01-01

    Full Text Available A low pH and a high titratable acidity of juices and cola-based beverages are relevant factors that contribute to dental erosion, but the relative importance of these properties to maintain salivary pH at demineralizing levels for long periods of time after drinking is unknown. In this crossover study conducted in vivo, orange juice, a cola-based soft drink, and a 10% sucrose solution (negative control were tested. These drinks differ in terms of their pH (3.5 ± 0.04, 2.5 ± 0.05, and 5.9 ± 0.1, respectively and titratable acidity (3.17 ± 0.06, 0.57 ± 0.04 and < 0.005 mmols OH- to reach pH 5.5, respectively. Eight volunteers with a normal salivary flow rate and buffering capacity kept 15 mL of each beverage in their mouth for 10 s, expectorated it, and their saliva was collected after 15, 30, 45, 60, 90, and 120 s. The salivary pH, determined using a mini pH electrode, returned to the baseline value at 30 s after expectoration of the cola-based soft drink, but only at 90 s after expectoration of the orange juice. The salivary pH increased to greater than 5.5 at 15 s after expectoration of the cola drink and at 30 s after expectoration of the orange juice. These findings suggest that the titratable acidity of a beverage influences salivary pH values after drinking acidic beverages more than the beverage pH.

  10. Behaviour and metabolic rates of brown trout and Atlantic salmon : Influence of food, environment and social interactions

    Lans, Linnea

    2012-01-01

    For Atlantic salmon (Salmo salar) and brown trout (Salmo trutta), the decision to migrate or when to migrate is believed to be influenced by the individual’s metabolic rate (MR) relative its food intake. As MR was expected to be related to behaviour, the potential links between behaviour and metabolic costs was studied. For both salmon and trout the dominant individual had a higher standard metabolic rate (SMR) than its subordinate counterpart. Also, successful migrants of brown trout had a h...

  11. Metabolic engineering of Saccharomyces cerevisiae for production of carboxylic acids: current status and challenges.

    Abbott, Derek A; Zelle, Rintze M; Pronk, Jack T; van Maris, Antonius J A

    2009-12-01

    To meet the demands of future generations for chemicals and energy and to reduce the environmental footprint of the chemical industry, alternatives for petrochemistry are required. Microbial conversion of renewable feedstocks has a huge potential for cleaner, sustainable industrial production of fuels and chemicals. Microbial production of organic acids is a promising approach for production of chemical building blocks that can replace their petrochemically derived equivalents. Although Saccharomyces cerevisiae does not naturally produce organic acids in large quantities, its robustness, pH tolerance, simple nutrient requirements and long history as an industrial workhorse make it an excellent candidate biocatalyst for such processes. Genetic engineering, along with evolution and selection, has been successfully used to divert carbon from ethanol, the natural endproduct of S. cerevisiae, to pyruvate. Further engineering, which included expression of heterologous enzymes and transporters, yielded strains capable of producing lactate and malate from pyruvate. Besides these metabolic engineering strategies, this review discusses the impact of transport and energetics as well as the tolerance towards these organic acids. In addition to recent progress in engineering S. cerevisiae for organic acid production, the key limitations and challenges are discussed in the context of sustainable industrial production of organic acids from renewable feedstocks. PMID:19566685

  12. Metabolism meets immunity: the role of free fatty acid receptors in the immune system

    Alvarez-Curto, Elisa; Milligan, Graeme

    2016-01-01

    There are significant numbers of nutrient sensing G protein-coupled receptors (GPCRs) that can be found in cells of the immune system and in tissues that are involved in metabolic function, such as the pancreas or the intestinal epithelium. The family of free fatty acid receptors (FFAR1-4, GPR84), plus a few other metabolite sensing receptors (GPR109A, GPR91, GPR35) have been for this reason the focus of studies linking the effects of nutrients with immunological responses. A number of the be...

  13. Cytochrome P450s in the Regulation of Cellular Retinoic Acid Metabolism

    Ross, A. Catharine; Zolfaghari, Reza

    2011-01-01

    The active metabolite of vitamin A, retinoic acid (RA), is a powerful regulator of gene transcription. RA is also a therapeutic drug. The oxidative metabolism of RA by certain members of the cytochrome P450 (CYP) superfamily helps to maintain tissue RA concentrations within appropriate bounds. The CYP26 family—CYP26A1, CYP26B1, and CYP26C1—is distinguished by being both regulated by and active toward all-trans-RA (at-RA) while being expressed in different tissue-specific patterns. The CYP26A1...

  14. Conjugated Linoleic Acid and dairy cows: metabolism, reproduction and products quality

    Esposito, Giulia

    2010-01-01

    The aim of this dissertation was to evaluate in dairy cows the effects of the supplementation of Conjugated Linoleic Acid, as natural feed (pasture) or as additive (CLA rumen protected), on quality of dairy products and on cow metabolism and reproduction. In the first experiment three farms of the Alta Irpina area, (Campania region, Italy) were surveyed focusing on three main features 1.00 2.00 3.00 In the farms surveyed, cows’ requirements were seldom met due to the poor q...

  15. Gradient in the degree of Crassulacean acid metabolism within leaves of Kalanchoe daigremontiana.

    Winter, K

    1987-09-01

    Leaves of the Crassulacean acid metabolism plant Kalanchoe daigremontiana Hamet et Perr., about 3.3 mm thick, showed higher rates of net CO2 exchange through the lower than through the upper surface during day and night, although the lower surface received only a small fraction of the light which was incident on the upper surface. Nocturnal acidification was more pronounced in cells from the lower than from the upper portion of leaves. The lower activity of the exposed side of these long-lived succulent leaves may be related to the potentially adverse effects of excessive light. PMID:24225791

  16. Metabolic acidosis in late pregnancy due to 5-oxoproline (pyroglutamic acid)—A case report

    K. Jeyanthan; Sahathevan Sathiyathasan; Hamid, R.

    2012-01-01

    Introduction: Accumulation of 5-oxoproline (pyroglutamic acid) is a rare cause of severe, high anion gap metabolic acidosis in adults. Case: A 21 year old lady presented at 39 weeks gestation in her first pregnancy with 2 weeks history of shortness of breath. She suffered from ear ache and had been taking Paracetamol on regular basis for a year. She was admitted to having regular alcohol intake until the pregnancy when she stopped. She was not in acute distress and all her observations were s...

  17. Differences in Arachidonic Acid Levels and Fatty Acid Desaturase (FADS) Gene Variants in African Americans and European Americans with Diabetes/Metabolic Syndrome

    Sergeant, Susan; Hugenschmidt, Christina E.; Rudock, Megan E; Ziegler, Julie T.; Ivester, Priscilla; Ainsworth, Hannah C; Vaidya, Dhananjay; Case, L. Douglas; Langefeld, Carl D.; Freedman, Barry I.; Bowden, Donald W.; Mathias, Rasika A; Chilton, Floyd H.

    2011-01-01

    Over the past 50 years, increases in dietary n-6 polyunsaturated fatty acids (PUFAs), such as linoleic acid, have been hypothesized to cause or exacerbate chronic inflammatory diseases. This study examines an individual’s innate capacity to synthesize n-6-long chain PUFAs (LC-PUFAs), with respect to the fatty acid desaturase (FADS) locus in Americans of African and European descent with diabetes/metabolic syndrome. Compared to European Americans (EAm), African Americans (AfAm) exhibited marke...

  18. White-to-brite conversion in human adipocytes promotes metabolic reprogramming towards fatty acid anabolic and catabolic pathways

    V. Barquissau

    2016-05-01

    Conclusions: Conversion of human white fat cells into brite adipocytes results in a major metabolic reprogramming inducing fatty acid anabolic and catabolic pathways. PDK4 redirects glucose from oxidation towards triglyceride synthesis and favors the use of fatty acids as energy source for uncoupling mitochondria.

  19. Mathematical model of the metabolism of 123I-16-iodo-9-hexadecenoic acid in isolated rat heart. Validation by comparison with experimental measurements

    The aim of the present study was to demonstrate that it is possible to estimate the intracellular metabolism of a fatty acid labelled with iodine using external radioactivity measurements. 123I-16-iodo-9-hexadecenoic acid (IHA) was injected close to the coronary arteries of isolated rat hearts perfused according to the Langendorff technique. The time course of the cardiac radioactivity was measured using an INa crystal coupled to an analyser. The obtained curves were analysed using a four-compartment mathematical model, with the compartments corresponding to the vascular-IHA, intramyocardial free-IHA, esterified-IHA and iodide pools. Curve analysis using this model demonstrated that, as compared to substrate-free perfusion, the presence of glucose (11 mM) increased IHA storage and decreased its oxidation. These changes were enhanced by the presence of insulin. A comparison of these results with measurements of the radioactivity levels within the various cellular fractions valididated our proposed mathematical model. Thus, using only a mathematical analysis of a cardiac time-activity curve, it is possible to obtain quantitative information about IHA distribution in the different intracellular metabolic pathways. This technique is potentially useful for the study of metabolic effects of ischaemia or anoxia, as well as for the study of the influence of various substrates or drugs on IHA metabolism in isolated rat hearts. (orig.)

  20. Mathematical model of the metabolism of /sup 123/I-16-iodo-9-hexadecenoic acid in isolated rat heart. Validation by comparison with experimental measurements

    Dubois, F.; Mathieu, J.P.; Pernin, C.; Marti-Batlle, D.; Comet, M.; Depresseux, J.C.; Bontemps, L.; Demaison, L.; Keriel, C.; Cuchet, P.

    1986-04-01

    The aim of the present study was to demonstrate that it is possible to estimate the intracellular metabolism of a fatty acid labelled with iodine using external radioactivity measurements. /sup 123/I-16-iodo-9-hexadecenoic acid (IHA) was injected close to the coronary arteries of isolated rat hearts perfused according to the Langendorff technique. The time course of the cardiac radioactivity was measured using an INa crystal coupled to an analyser. The obtained curves were analysed using a four-compartment mathematical model, with the compartments corresponding to the vascular-IHA, intramyocardial free-IHA, esterified-IHA and iodide pools. Curve analysis using this model demonstrated that, as compared to substrate-free perfusion, the presence of glucose (11 mM) increased IHA storage and decreased its oxidation. These changes were enhanced by the presence of insulin. A comparison of these results with measurements of the radioactivity levels within the various cellular fractions valididated our proposed mathematical model. Thus, using only a mathematical analysis of a cardiac time-activity curve, it is possible to obtain quantitative information about IHA distribution in the different intracellular metabolic pathways. This technique is potentially useful for the study of metabolic effects of ischaemia or anoxia, as well as for the study of the influence of various substrates or drugs on IHA metabolism in isolated rat hearts.

  1. Influence of Cd, Co, and Zn on inorganic carbon acquisition and carbon metabolism in Emiliania huxleyi.

    Sutton, J. N.; Boye, M.; De La Broise, D.; Probert, I.

    2014-12-01

    Trace elements are essential micronutrients for primary producers; hence they influence the global carbon cycle and contribute to the regulation of Earth's climate. Over the past 25 years, the influence of Fe concentration on phytoplankton production has been well studied and this research has been instrumental in our understanding of the influence that biology has on the sequestration of atmospheric CO2. However, other trace elements that are directly involved in carbon metabolism by primary producers, such as Zn, Cd, and Co, have received less attention. We examined the physiological response of two strains of Emiliania huxleyi to a range of realistic trace element concentrations (Zn, Cd, Co) in the marine environment under batch, semi-continuous, and continuous culture conditions. In addition, the continuous culture system was maintained at a pH of 8.15 ±0.02 by a sensor and regulator-controlled CO2­ injection system. The results from this study will highlight the influence that trace element composition of seawater has on the growth rate, elemental quota, inorganic carbon uptake, and carbon metabolism of Emiliania huxleyi. Potential limitations for the interpretation of paleo-productivity records will be discussed.

  2. Leptin receptor polymorphisms interact with polyunsaturated fatty acids to augment risk of insulin resistance and metabolic syndrome in adults.

    Phillips, Catherine M; Goumidi, Louisa; Bertrais, Sandrine; Field, Martyn R; Ordovas, Jose M; Cupples, L Adrienne; Defoort, Catherine; Lovegrove, Julie A; Drevon, Christian A; Blaak, Ellen E; Gibney, Michael J; Kiec-Wilk, Beata; Karlstrom, Britta; Lopez-Miranda, Jose; McManus, Ross; Hercberg, Serge; Lairon, Denis; Planells, Richard; Roche, Helen M

    2010-02-01

    The leptin receptor (LEPR) is associated with insulin resistance, a key feature of metabolic syndrome (MetS). Gene-fatty acid interactions may affect MetS risk. The objective was to investigate the relationship among LEPR polymorphisms, insulin resistance, and MetS risk and whether plasma fatty acids, a biomarker of dietary fatty acids, modulate this. LEPR polymorphisms (rs10493380, rs1137100, rs1137101, rs12067936, rs1805096, rs2025805, rs3790419, rs3790433, rs6673324, and rs8179183), biochemical measurements, and plasma fatty acid profiles were determined in the LIPGENE-SU.VI.MAX study of MetS cases and matched controls (n = 1754). LEPR rs3790433 GG homozygotes had increased MetS risk compared with the minor A allele carriers [odds ratio (OR) = 1.65; 95% CI: 1.05-2.57; P = 0.028], which may be accounted for by their increased risk of elevated insulin concentrations (OR 2.40; 95% CI: 1.28-4.50; P = 0.006) and insulin resistance (OR = 2.15; 95% CI: 1.18-3.90; P = 0.012). Low (less than median) plasma (n-3) and high (n-6) PUFA status exacerbated the genetic risk conferred by GG homozygosity to hyperinsulinemia (OR 2.92-2.94) and insulin resistance (OR 3.40-3.47). Interestingly, these associations were abolished against a high (n-3) or low (n-6) PUFA background. Importantly, we replicated some of these findings in an independent cohort. Homozygosity for the LEPR rs3790433 G allele was associated with insulin resistance, which may predispose to increased MetS risk. Novel gene-nutrient interactions between LEPR rs3790433 and PUFA suggest that these genetic influences were more evident in individuals with low plasma (n-3) or high plasma (n-6) PUFA. PMID:20032477

  3. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  4. Intestinal concentrations of free and encapsulated dietary medium-chain fatty acids and effects on gastric microbial ecology and bacterial metabolic products in the digestive tract of piglets.

    Zentek, Jürgen; Buchheit-Renko, Susanne; Männer, Klaus; Pieper, Robert; Vahjen, Wilfried

    2012-02-01

    The influence of low dietary levels of free and encapsulated medium-chain fatty acids on their concentrations in the digesta, the gastric microbial ecology and bacterial metabolic products in the gastrointestinal tract (GIT) in weaned piglets was studied. Starting after weaning, 36 piglets were fed a diet without (Control) or with medium-chain fatty acids uncoated (MCFA) or coated with vegetable fat and lecithin (MCFAc). After 4 weeks, the animals were killed, and digesta from the stomach and different sections of the GIT were collected. The concentrations of caprylic (p Lactobacillus johnsonii (p Lactobacillus amylovorus (p = 0.001) in gastric contents. A similar trend was seen with diet MCFA. Relative concentrations of short-chain fatty acids were characterised by lower propionic acid levels (p = 0.045), numerically (p < 0.1) higher acetic, lower n-butyric and i-valeric acid concentrations in the small intestine. Lactic acid concentrations were not significantly changed in the GIT, but ammonia concentrations increased (p < 0.001) in the distal small intestine in the MCFA and MCFAc groups. In conclusion, medium-chain fatty acids affected microbial ecology parameters in the gastric contents and bacterial metabolites in the small intestine. At low dietary levels, medium-chain fatty acids may be regarded as modulators of the gastric microbiota in weaned piglets. PMID:22397093

  5. Humification degree of Rendzina soil humic acids influenced by carbonate leaching and land use

    Radmanović Svjetlana B.; Đorđević Aleksandar R.; Nikolić Nataša S.

    2015-01-01

    The humification degrees of humic acids extracted from calcareous and decarbonated Rendzinas under different land use were characterized upon their optical properties, to evaluate the influence of carbonate leaching (decarbonation) and different land uses. Decarbonation influenced the humification degree of humic acids positively. Base leaching and acidification of decarbonated Rendzinas led to a decrease in humification degree of humic acids. In calcareous...

  6. Transport and Metabolism of the Endogenous Auxin Precursor lndole-3-Butyric Acid

    Lucia C. Strader; Bonnie Bartel

    2011-01-01

    T Plant growth and morphogenesis depend on the levels and distribution of the plant hormone auxin. Plants tightly regulate cellular levels of the active auxin indole-3-acetic acid (IAA) through synthesis, inactivation, and transport. Although the transporters that move IAA into and out of cells are well characterized and play important roles in development, little is known about the transport of IAA precursors. In this review, we discuss the accumulating evidence suggesting that the IAA precursor indole-3-butyric acid (IBA) is transported independently of the characterized IAA transport machinery along with the recent identification of specific IBA efflux carriers and enzymes suggested to metabolize IBA. These studies have revealed important roles for IBA in maintaining IAA levels and distribution within the plant to support normal development.

  7. Etofenamate fatty acid asters. An example of a new route of drug metabolism.

    Dell, H D; Fielder, J; Kamp, R; Gau, W; Kurz, J; Weber, B; Wuensche, C

    1982-01-01

    Etofenamate [2-(2-hydroxyethoxy)ethyl-N-(alpha, alpha, alpha-trifluoro-m-tolyl)-anthranilate] was administered to dogs by the oral route. Minor amounts of etofenamate (Eto) and its glucuronide were found in urine and feces. The main portion of metabolites was eliminated as flufenamic acid (Flu) and hydroxy derivatives of Eto and Flu. Furthermore, a highly lipophilic fraction was isolated (extraction and TLC) and further separated into several compounds (HPLC, GLC). These metabolites were identified as Eto oleate, palmitate, linoleate, stearate, palmitoleate, myristate, and laurate by NMR and MS. The structures were confirmed by comparison with authentic material. The conjugation of etofenamate with fatty acids is an example of a new route of drug metabolism. PMID:6124384

  8. Abnormal Unsaturated Fatty Acid Metabolism in Cystic Fibrosis: Biochemical Mechanisms and Clinical Implications

    Adam C. Seegmiller

    2014-09-01

    Full Text Available Cystic fibrosis is an inherited multi-organ disorder caused by mutations in the CFTR gene. Patients with this disease exhibit characteristic abnormalities in the levels of unsaturated fatty acids in blood and tissue. Recent studies have uncovered an underlying biochemical mechanism for some of these changes, namely increased expression and activity of fatty acid desaturases. Among other effects, this drives metabolism of linoeate to arachidonate. Increased desaturase expression appears to be linked to cystic fibrosis mutations via stimulation of the AMP-activated protein kinase in the absence of functional CFTR protein. There is evidence that these abnormalities may contribute to disease pathophysiology by increasing production of eicosanoids, such as prostaglandins and leukotrienes, of which arachidonate is a key substrate. Understanding these underlying mechanisms provides key insights that could potentially impact the diagnosis, clinical monitoring, nutrition, and therapy of patients suffering from this deadly disease.

  9. Asiatic Acid Alleviates Hemodynamic and Metabolic Alterations via Restoring eNOS/iNOS Expression, Oxidative Stress, and Inflammation in Diet-Induced Metabolic Syndrome Rats

    Poungrat Pakdeechote

    2014-01-01

    Full Text Available Asiatic acid is a triterpenoid isolated from Centella asiatica. The present study aimed to investigate whether asiatic acid could lessen the metabolic, cardiovascular complications in rats with metabolic syndrome (MS induced by a high-carbohydrate, high-fat (HCHF diet. Male Sprague-Dawley rats were fed with HCHF diet with 15% fructose in drinking water for 12 weeks to induce MS. MS rats were treated with asiatic acid (10 or 20 mg/kg/day or vehicle for a further three weeks. MS rats had an impairment of oral glucose tolerance, increases in fasting blood glucose, serum insulin, total cholesterol, triglycerides, mean arterial blood pressure, heart rate, and hindlimb vascular resistance; these were related to the augmentation of vascular superoxide anion production, plasma malondialdehyde and tumor necrosis factor-alpha (TNF-α levels (p < 0.05. Plasma nitrate and nitrite (NOx were markedly high with upregulation of inducible nitric oxide synthase (iNOS expression, but dowregulation of endothelial nitric oxide synthase (eNOS expression (p < 0.05. Asiatic acid significantly improved insulin sensitivity, lipid profiles, hemodynamic parameters, oxidative stress markers, plasma TNF-α, NOx, and recovered abnormality of eNOS/iNOS expressions in MS rats (p < 0.05. In conclusion, asiatic acid improved metabolic, hemodynamic abnormalities in MS rats that could be associated with its antioxidant, anti-inflammatory effects and recovering regulation of eNOS/iNOS expression.

  10. Dynamic metabolic modelling of volatile fatty acids conversion to polyhydroxyalkanoates by a mixed microbial culture.

    Pardelha, Filipa; Albuquerque, Maria G E; Reis, Maria A M; Oliveira, Rui; Dias, João M L

    2014-06-25

    In this work, we present a dynamic metabolic model that describes the uptake of complex mixtures of volatile fatty acids (VFA) and respective conversion into PHA by mixed microbial cultures (MMC). This model builds upon a previously published flux balance analysis model [1] that identified the minimization of TCA cycle activity as the key metabolic objective to predict PHA storage fluxes and respective composition. The model was calibrated either with experimental data of PHA production from fermented sugar cane molasses or from synthetic mixtures of VFA. All PHA production experiments were performed using a MMC selected with fermented sugar cane molasses under feast and famine regimen. The model was able to capture the process dynamics denoted by an excellent fit between experimental and computed time profiles of concentrations with the regression coefficients always above 0.92. The introduced VFA uptake regulatory factor reflects the decrease of acetyl-CoA and propionyl-CoA available to TCA cycle in conformity with the hypothesis that the minimization of TCA cycle is a key metabolic objective for MMC subjected to feast and famine regimen for the maximization of PHA production. PMID:23933561

  11. Metabolism of Terephthalic Acid and Its Effects on CYP4B1 Induction

    2006-01-01

    Objective To investgate the metabolism of terephthalic acid (TPA) in rats and its mechanism. Methods Metabolism was evaluated by incubating sodium terephthalate (NaTPA) with rat normal liver microsomes, or with microsomes pretreated by phenobarbital sodium, or with 3-methycholanthrene, or with diet control following a NADPH-generating system. The determination was performed by high performance liquid chromatography (HPLC), and the mutagenic activation was analyzed by umu tester strain Salmonella typhimurium NM2009. Expression of CYP4B 1 mRNA was detected by RT-PCR. Results The amount of NaTPA (12.5-200 μmol· L-1) detected by HPLC did not decrease in microsomes induced by NADPH-generating system. Incubation of TPA (0.025-0.1 mmol·L-1) with induced or noninduced liver microsomes in an NM2009 umu response system did not show any mutagenic activation. TPA exposure increased the expression of CYP4B 1 mRNA in rat liver, kidney, and bladder. Conclusion Lack of metabolism of TPA in liver and negative genotoxic data from NM2009 study are consistent with other previous short-term tests, suggesting that the carcinogenesis in TPA feeding animals is not directly interfered with TPA itself and/or its metabolites.

  12. Effects of naphthenic acid exposure on development and liver metabolic processes in anuran tadpoles

    Naphthenic acids (NA) are used in a variety of commercial and industrial applications, and are primary toxic components of oil sands wastewater. We investigated developmental and metabolic responses of tadpoles exposed to sub-lethal concentrations of a commercial NA blend throughout development. We exposed Lithobates pipiens tadpoles to 1 and 2 mg/L NA for 75 days and monitored growth and development, condition factor, gonad and liver sizes, and levels of liver glucose, glycogen, lipids and cholesterol following exposure. NA decreased growth and development, significantly reduced glycogen stores and increased triglycerides, indicating disruption to processes associated with energy metabolism and hepatic glycolysis. Effects on liver function may explain reduced growth and delayed development observed in this and previous studies. Our data highlight the need for greater understanding of the mechanisms leading to hepatotoxicity in NA-exposed organisms, and indicate that strict guidelines may be needed for the release of NA into aquatic environments. -- Highlights: ► We exposed Lithobates pipiens tadpoles to 1–2 mg/L NA in the laboratory. ► We monitored survival, growth and development for 75 days. ► We measured liver glycogen, glucose, triglycerides, and cholesterol levels. ► NA significantly reduced growth and development compared to controls. ► NA significantly reduced glycogen levels and increased triglycerides. -- Leopard frog (Lithobates pipiens) tadpoles chronically exposed to sub-lethal NA concentrations (1–2 mg/L) suffered decreased growth and development and disruption to liver metabolic processes

  13. Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare.

    Brilhaus, Dominik; Bräutigam, Andrea; Mettler-Altmann, Tabea; Winter, Klaus; Weber, Andreas P M

    2016-01-01

    Drought tolerance is a key factor for agriculture in the 21st century as it is a major determinant of plant survival in natural ecosystems as well as crop productivity. Plants have evolved a range of mechanisms to cope with drought, including a specialized type of photosynthesis termed Crassulacean acid metabolism (CAM). CAM is associated with stomatal closure during the day as atmospheric CO2 is assimilated primarily during the night, thus reducing transpirational water loss. The tropical herbaceous perennial species Talinum triangulare is capable of transitioning, in a facultative, reversible manner, from C3 photosynthesis to weakly expressed CAM in response to drought stress. The transcriptional regulation of this transition has been studied. Combining mRNA-Seq with targeted metabolite measurements, we found highly elevated levels of CAM-cycle enzyme transcripts and their metabolic products in T. triangulare leaves upon water deprivation. The carbohydrate metabolism is rewired to reduce the use of reserves for growth to support the CAM-cycle and the synthesis of compatible solutes. This large-scale expression dataset of drought-induced CAM demonstrates transcriptional regulation of the C3-CAM transition. We identified candidate transcription factors to mediate this photosynthetic plasticity, which may contribute in the future to the design of more drought-tolerant crops via engineered CAM. PMID:26530316

  14. Reversible Burst of Transcriptional Changes during Induction of Crassulacean Acid Metabolism in Talinum triangulare1[OPEN

    Winter, Klaus

    2016-01-01

    Drought tolerance is a key factor for agriculture in the 21st century as it is a major determinant of plant survival in natural ecosystems as well as crop productivity. Plants have evolved a range of mechanisms to cope with drought, including a specialized type of photosynthesis termed Crassulacean acid metabolism (CAM). CAM is associated with stomatal closure during the day as atmospheric CO2 is assimilated primarily during the night, thus reducing transpirational water loss. The tropical herbaceous perennial species Talinum triangulare is capable of transitioning, in a facultative, reversible manner, from C3 photosynthesis to weakly expressed CAM in response to drought stress. The transcriptional regulation of this transition has been studied. Combining mRNA-Seq with targeted metabolite measurements, we found highly elevated levels of CAM-cycle enzyme transcripts and their metabolic products in T. triangulare leaves upon water deprivation. The carbohydrate metabolism is rewired to reduce the use of reserves for growth to support the CAM-cycle and the synthesis of compatible solutes. This large-scale expression dataset of drought-induced CAM demonstrates transcriptional regulation of the C3–CAM transition. We identified candidate transcription factors to mediate this photosynthetic plasticity, which may contribute in the future to the design of more drought-tolerant crops via engineered CAM. PMID:26530316

  15. BRAIN-SPECIFIC CARNITINE PALMITOYLTRANSFERASE-1C: ROLE IN CNS FATTY ACID METABOLISM, FOOD INTAKE AND BODY WEIGHT

    Wolfgang, Michael J.; Cha, Seung Hun; Millington, David S.; Cline, Gary; Shulman, Gerald I.; Suwa, Akira; Asaumi, Makoto; Kurama, Takeshi; Shimokawa, Teruhiko; Lane, M. Daniel

    2008-01-01

    While the brain does not utilize fatty acids as a primary energy source, recent evidence shows that intermediates of fatty acid metabolism serve as hypothalamic sensors of energy status. Increased hypothalamic malonyl-CoA, an intermediate in fatty acid synthesis, is indicative of energy surplus and leads to the suppression of food intake and increased energy expenditure. Malonyl-CoA functions as an inhibitor of CPT1, a mitochondrial outer membrane enzyme that initiates translocation of fatty ...

  16. The effect of delta-aminolevulinic acid on the synthesis and metabolism of GABA in rabbit brain homogenates

    The porphyrin precursor delta-aminolevulinic acid (delta-ALA) is a structural analogue of the putative amino acid neurotransmitter, γ-aminobutyric acid (GABA). This study has demonstrated that delta-ALA has no effect on glutamate decarboxylase activity and only a small inhibitory effect on GABA aminotransferase activity. This would suggest that if accumulation of delta-ALA is related to development of the acute attack of porphyria, it is not via an effect on GABA synthesis and metabolism

  17. Influence of Obesity and Metabolic Disease on Carotid Atherosclerosis in Patients with Coronary Artery Disease (CordioPrev Study)

    Garcia-Rios, Antonio; Delgado-Casado, Nieves; Gomez-Luna, Purificacion; Gomez-Garduño, Angela; Gomez-Delgado, Francisco; Alcala-Diaz, Juan F.; Yubero-Serrano, Elena; Marin, Carmen; Perez-Caballero, Ana I.; Fuentes-Jimenez, Francisco J.; Camargo, Antonio; Rodriguez-Cantalejo, Fernando; Tinahones, Francisco J.; Ordovas, Jose M.; Perez- Jimenez, Francisco; Perez-Martinez, Pablo; Lopez-Miranda, Jose

    2016-01-01

    Background Recent data suggest that the presence of associated metabolic abnormalities may be important modifiers of the association of obesity with a poorer prognosis in coronary heart disease. We determined the influence of isolated overweight and obesity on carotid intima media thickness (IMT-CC), and also assessed whether this influence was determined by the presence of metabolic abnormalities. Methods 1002 participants from the CordioPrev study were studied at entry. We determined their metabolic phenotypes and performed carotid ultrasound assessment. We evaluated the influence of obesity, overweight and metabolic phenotypes on the IMT-CC. Results Metabolically sick participants (defined by the presence of two or more metabolic abnormalities) showed a greater IMT-CC than metabolically healthy individuals (p = 4 * 10−6). Overweight and normal weight patients who were metabolically healthy showed a lower IMT-CC than the metabolically abnormal groups (all p<0.05). When we evaluated only body weight (without considering metabolic phenotypes), overweight or obese patients did not differ significantly from normal-weight patients in their IMT-CC (p = 0.077). However, obesity was a determinant of IMT-CC when compared to the composite group of normal weight and overweight patients (all not obese). Conclusions In coronary patients, a metabolically abnormal phenotype is associated with a greater IMT-CC, and may be linked to a higher risk of suffering new cardiovascular events. The protection conferred in the IMT-CC by the absence of metabolic abnormality may be blunted by the presence of obesity. Trial Registration ClinicalTrials.gov NCT00924937 PMID:27064675

  18. Influence of carbofuran on certain metabolic and symbiotic activities of a cowpea Rhizobium

    Using carbon 14 radioisotope an in-vitro study of the effect of insecticides, carbofuran, on the metabolic and symbiotic activities of Rhizobium sp. cowpea group, was carried out. The study indicated that at 10 ppm carbofuran inhibited the in-vitro growth of the bacterium, suppressed the oxidation of all the Trichloroacetic acid (TCA) cycle intermediates, significantly reduced glucose oxidation and translocation and affected the growth and symbiotic activities of the cowpea as reflected by a reduction in the dry matter production and total nitrogen content. The insecticide was itself degraded by the Rhizobium sp. within 30 days of incubation

  19. Influence of oxidation on fulvic acids composition and biodegradability.

    Kozyatnyk, Ivan; Świetlik, Joanna; Raczyk-Stanisławiak, Ursula; Dąbrowska, Agata; Klymenko, Nataliya; Nawrocki, Jacek

    2013-08-01

    Oxidation is well-known process of transforming natural organic matter during the treatment of drinking water. Chlorine, ozone, and chlorine dioxide are common oxidants used in water treatment technologies for this purpose. We studied the influence of different doses of these oxidants on by-products formation and changes in biodegradable dissolved organic carbon (BDOC) and molecular weight distribution (MWD) of fulvic acids (FA) with different BDOC content. Chlorination did not significantly change the MWD of FA and disinfection by-products formation. However, higher molecular weight compounds, than those in the initial FA, were formed. It could be a result of chlorine substitution into the FA structure. Chlorine dioxide oxidized FA stronger than chlorine. During ozonation of FA, we found the highest increase of BDOD due to the formation of a high amount of organic acids and aldehydes. FA molecules were transformed into a more biodegradable form. Ozonation is the most preferable process among those observed for pre-treatment of FA before biofiltration. PMID:23746389

  20. Metabolic profiling of biofilm bacteria known to cause microbial influenced corrosion.

    Beale, D J; Morrison, P D; Key, C; Palombo, E A

    2014-01-01

    This study builds upon previous research that demonstrated the simplicity of obtaining metabolite profiles of bacteria in urban water networks, by using the metabolic profile of bacteria extracted from a reticulation pipe biofilm, which is known to cause microbial influenced corrosion (MIC). The extracellular metabolites of the isolated bacteria, and those bacteria in consortium, were analysed in isolation, and after exposure to low levels of copper. Applying chemometric analytical methodologies to the metabolomic data, we were able to better understand the profile of the isolated biofilm bacteria, which were differentiated according to their activity and copper exposure. It was found that the metabolic activity of the isolated bacteria and the bacteria in consortium varied according to the bacterium's ability to metabolise copper. This demonstrates the power of metabolomic techniques for the discrimination of water reticulation biofilms comprising similar bacteria in consortium, but undergoing different physico-chemical activities, such as corrosion and corrosion inhibition. PMID:24434961

  1. The structure of wheat bread influences the postprandial metabolic response in healthy men

    Eelderink, Coby; Noort, Martijn W J; Sozer, Nesli; Koehorst, Martijn; Holst, Jens J; Deacon, Carolyn F; Rehfeld, Jens F; Poutanen, Kaisa; Vonk, Roel J; Oudhuis, Lizette; Priebe, Marion G

    2015-01-01

    Postprandial high glucose and insulin responses after starchy food consumption, associated with an increased risk of developing several metabolic diseases, could possibly be improved by altering food structure. We investigated the influence of a compact food structure; different wheat products with...... a similar composition were created using different processing conditions. The postprandial glucose kinetics and metabolic response to bread with a compact structure (flat bread, FB) was compared to bread with a porous structure (control bread, CB) in a randomized, crossover study with ten healthy...... male volunteers. Pasta (PA), with a very compact structure, was used as the control. The rate of appearance of exogenous glucose (RaE), endogenous glucose production, and glucose clearance rate (GCR) was calculated using stable isotopes. Furthermore, postprandial plasma concentrations of glucose...

  2. Changes in oxidative properties of Kalanchoe blossfeldiana leaf mitochondria during development of Crassulacean acid metabolism.

    Rustin, P; Queiroz-Claret, C

    1985-06-01

    Kalanchoe blossfeldiana plants grown under long days (16 h light) exhibit a C3-type photosynthetic metabolism. Switching to short days (9 h light) leads to a gradual development of Crassulacean acid metabolism (CAM). Under the latter conditions, dark CO2 fixation produces large amounts of malate. During the first hours of the day, malate is rapidly decarboxylated into pyruvate through the action of a cytosolic NADP(+)-or a mitochondrial NAD(+)-dependent malic enzyme. Mitochondria were isolated from leaves of plants grown under long days or after treatment by an increasing number of short days. Tricarboxylic acid cycle intermediates as well as exogenous NADH and NADPH were readily oxidized by mitochondria isolated from the two types of plants. Glycine, known to be oxidized by C3-plant mitochondria, was still oxidized after CAM establishment. The experiments showed a marked parallelism in the increase of CAM level and the increase in substrate-oxidation capacity of the isolated mitochondria, particularly the capacity to oxidize malate in the presence of cyanide. These simultaneous variations in CAM level and in mitochondrial properties indicate that the mitochondrial NAD(+)-malic enzyme could account at least for a part of the oxidation of malate. The studies of whole-leaf respiration establish that mitochondria are implicated in malate degradation in vivo. Moreover, an increase in cyanide resistance of the leaf respiration has been observed during the first daylight hours, when malate was oxidized to pyruvate by cytosolic and mitochondrial malic enzymes. PMID:24249613

  3. Essential amino-acid metabolism in infected/non-infected, poor, Guatemalan children

    As mentioned above, it was our intention to develop and test a simplified version of the protocol to assess amino acid metabolism in children. With the combined efforts of a team of experts in the field, a generic protocol was developed as a mandate of the first CRP held at Boston in the fall of 1993. During the beginning of 1994, the final version of such a protocol was released to all the participants of the CRP meeting and arrangements were made in order to apply it and assess its usefulness in the field setting. Therefore, we have shifted our activities to apply, assess and adapt the generic protocol. We are now testing the protocol in the field to establish the variability parameters in both between and within individuals. After testing and refining the protocol, with the help of other groups in developed countries, by validation and/or comparative studies, we would be in a better position to recommend it as a tool to study amino acid metabolism in children in developing countries, whether to describe some specific profiles or to evaluate nutrition interventions. 1 fig., 3 tabs

  4. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria

    Gaspar, Paula; Carvalho, Ana L.; Vinga, Susana;

    2013-01-01

    The lactic acid bacteria (LAB) are a functionally related group of low-GC Gram-positive bacteria known essentially for their roles in bioprocessing of foods and animal feeds. Due to extensive industrial use and enormous economical value, LAB have been intensively studied and a large body of compr...... food fermentations. Here we discuss recent metabolic engineering strategies to improve particular cellular traits of LAB and to design LAB cell factories for the bioproduction of added value chemicals.......The lactic acid bacteria (LAB) are a functionally related group of low-GC Gram-positive bacteria known essentially for their roles in bioprocessing of foods and animal feeds. Due to extensive industrial use and enormous economical value, LAB have been intensively studied and a large body...... of comprehensive data on their metabolism and genetics was generated throughout the years. This knowledge has been instrumental in the implementation of successful applications in the food industry, such as the selection of robust starter cultures with desired phenotypic traits. The advent of genomics, functional...

  5. Lung, aorta, and platelet metabolism of 14C-arachidonic acid in vitamin E deficient rats

    14C-arachidonic acid metabolism was determined in aortas, platelets, and perfused lungs from rats pair fed a basal diet supplemented with 0 or 100 ppm vitamin E for 11 weeks. Spontaneous erythrocyte hemolysis tests showed 92% and 8% hemolysis for the 0 and 100 ppm vitamin E groups, respectively. Elevated lung homogenate levels of malonaldehyde in the 0 ppm group confirmed its deficient vitamin E status. Aortas from the vitamin E deficient group synthesized 54% less prostacyclin than aortas from the supplemented group (p less than 0.05). Although thromboxane generation by platelets from the vitamin E deficient group exhibited a 37% increase, this difference was not statistically significant compared to the supplemented animals. Greater amounts of PGE2, PGF2 alpha, TXB2, and 6-keto-PGF1 alpha were obtained in albumin buffer perfusates from lungs of vitamin E deficient rats than in those from supplemented rats. Significant differences (p less than 0.05) were noticed, however, only for PGE2 and PGF2 alpha. These studies indicate that vitamin E quantitatively alters arachidonic acid metabolism in aortic and lung tissue but its effect on thromboxane synthesis by platelets is less marked

  6. Metabolism of arachidonic acid in hamster lung microsomes is not completely inhibited by aspirin and indomethacin

    Uotila, P.; Paajanen, H.; Schalin, M.; Simberg, N.

    1983-10-01

    Aspirin (100 microM or 1 mM) or indomethacin (10 microM or 100 microM) was incubated with a microsomal preparation of hamster lungs in the presence of NADPH for 10 min. Then 14C-arachidonic acid (20 microM) was added and the incubation was continued for an additional 20 min. The metabolites were extracted with ethyl acetate first at pH 7.4 and then at pH 3.5 and analysed by thin layer chromatography. Both aspirin and indomethacin inhibited dose dependently the formation of all identified prostaglandins, including PGF2 alpha, 6-keto-PGF1 alpha, PGE2 and PGD2. The rate of formation of some unidentified metabolites extracted at pH 7.4 and 3.5 was, however, not changed by aspirin or indomethacin. We have earlier reported that in isolated perfused hamster lungs the formation of all arachidonate metabolites is inhibited by both aspirin and indomethacin. As the present study indicates that in the microsomes of hamster lungs all metabolic pathways of arachidonic acid are not inhibited by aspirin or indomethacin, it is possible that in isolated tissues and in vivo aspirin-like drugs have some other inhibitory effects on arachidonate metabolism than the inhibition of the cyclo-oxygenase enzyme.

  7. Potential opportunities for treatment of metabolic syndrome withalpha-lipoic acid (Berlithion®300

    T I Romantsova

    2009-09-01

    Full Text Available There are a lot of experi mental data confirmed the influence of alpha-lipoi с acid on activity of AMPK enzyme, receptors PPARα/γ and uncoupling proteins that prev ent oxidative phosphorylation (UCPl. AMPK is the enzyme responsible for food intake and energy expenditure in hypothalamus as w ell as in peripheral adipose tissue. PPARγ is the key modulator of lipid ho meostasis and adipocyte differentiation. UCPl is located in the brown adipose tissue and provides termogenesis. Via regulation of mentioned biological targets alpha-lipoic acid (Berlithion®300 lowers insulinresistance, favors weight losing process and improvement of blood lipid profile.

  8. Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli.

    Wang, Yongze; Tian, Tian; Zhao, Jinfang; Wang, Jinhua; Yan, Tao; Xu, Liyuan; Liu, Zao; Garza, Erin; Iverson, Andrew; Manow, Ryan; Finan, Chris; Zhou, Shengde

    2012-11-01

    Escherichia coli W, a sucrose-positive strain, was engineered for the homofermentative production of D-lactic acid through chromosomal deletion of the competing fermentative pathway genes (adhE, frdABCD, pta, pflB, aldA) and the repressor gene (cscR) of the sucrose operon, and metabolic evolution for improved anaerobic cell growth. The resulting strain, HBUT-D, efficiently fermented 100 g sucrose l(-1) into 85 g D-lactic acid l(-1) in 72-84 h in mineral salts medium with a volumetric productivity of ~1 g l(-1) h(-1), a product yield of 85 % and D-lactic acid optical purity of 98.3 %, and with a minor by-product of 4 g acetate l(-1). HBUT-D thus has great potential for production of D-lactic acid using an inexpensive substrate, such as sugar cane and/or beet molasses, which are primarily composed of sucrose. PMID:22791225

  9. Muscle protein degradation and amino acid metabolism during prolonged knee-extensor exercise in humans

    Van Hall, Gerrit; Saltin, B; Wagenmakers, A J

    1999-01-01

    The aim of this study was to investigate whether prolonged one-leg knee-extensor exercise enhances net protein degradation in muscle with a normal or low glycogen content. Net amino acid production, as a measure of net protein degradation, was estimated from leg exchange and from changes in the c...... and glutamate extracted in increased amounts from the blood during exercise, are used for the synthesis of glutamine and for tricarboxylic-acid cycle anaplerosis.......The aim of this study was to investigate whether prolonged one-leg knee-extensor exercise enhances net protein degradation in muscle with a normal or low glycogen content. Net amino acid production, as a measure of net protein degradation, was estimated from leg exchange and from changes in the...... concentrations of amino acids that are not metabolized in skeletal muscle. Experiments were performed at rest and during one-leg knee-extensor exercise in six subjects having one leg with a normal glycogen content and the other with a low glycogen content. Exercise was performed for 90 min at a workload of 60...

  10. Long-Chain Polyunsaturated Fatty Acids in Inborn Errors of Metabolism

    Katalin Fekete

    2010-09-01

    Full Text Available The treatment of children with inborn errors of metabolism (IEM is mainly based on restricted dietary intake of protein-containing foods. However, dietary protein restriction may not only reduce amino acid intake, but may be associated with low intake of polyunsaturated fatty acids as well. This review focuses on the consequences of dietary restriction in IEM on the bioavailability of long-chain polyunsaturated fatty acids (LCPUFAs and on the attempts to ameliorate these consequences. We were able to identify during a literature search 10 observational studies investigating LCPUFA status in patients with IEM and six randomized controlled trials (RCTs reporting effect of LCPUFA supplementation to the diet of children with IEM. Decreased LCPUFA status, in particular decreased docosahexaenoic acid (DHA status, has been found in patients suffering from IEM based on the evidence of observational studies. LCPUFA supplementation effectively improves DHA status without detectable adverse reactions. Further research should focus on functional outcomes of LCPUFA supplementation in children with IEM.

  11. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism

    Cao, Weijia; Ma, Weichao; Wang, Xin; Zhang, Bowen; Cao, Xun; Chen, Kequan; Li, Yan; Ouyang, Pingkai

    2016-01-01

    Microbial biosynthesis of pinocembrin is of great interest in the area of drug research and human healthcare. Here we found that the accumulation of the pathway intermediate cinnamic acid adversely affected pinocembrin production. Hence, a stepwise metabolic engineering strategy was carried out aimed at eliminating this pathway bottleneck and increasing pinocembrin production. The screening of gene source and the optimization of gene expression was first employed to regulate the synthetic pathway of cinnamic acid, which showed a 3.53-fold increase in pinocembrin production (7.76 mg/L) occurred with the alleviation of cinnamic acid accumulation in the engineered E. coli. Then, the downstream pathway that consuming cinnamic acid was optimized by the site-directed mutagenesis of chalcone synthase and cofactor engineering. S165M mutant of chalcone synthase could efficiently improve the pinocembrin production, and allowed the product titer of pinocembrin increased to 40.05 mg/L coupled with the malonyl-CoA engineering. With a two-phase pH fermentation strategy, the cultivation of the optimized strain resulted in a final pinocembrin titer of 67.81 mg/L. The results and engineering strategies demonstrated here would hold promise for the titer improvement of other flavonoids. PMID:27586788

  12. Nutritional and Hormonal Regulation of Citrate and Carnitine/Acylcarnitine Transporters: Two Mitochondrial Carriers Involved in Fatty Acid Metabolism.

    Giudetti, Anna M; Stanca, Eleonora; Siculella, Luisa; Gnoni, Gabriele V; Damiano, Fabrizio

    2016-01-01

    The transport of solutes across the inner mitochondrial membrane is catalyzed by a family of nuclear-encoded membrane-embedded proteins called mitochondrial carriers (MCs). The citrate carrier (CiC) and the carnitine/acylcarnitine transporter (CACT) are two members of the MCs family involved in fatty acid metabolism. By conveying acetyl-coenzyme A, in the form of citrate, from the mitochondria to the cytosol, CiC contributes to fatty acid and cholesterol synthesis; CACT allows fatty acid oxidation, transporting cytosolic fatty acids, in the form of acylcarnitines, into the mitochondrial matrix. Fatty acid synthesis and oxidation are inversely regulated so that when fatty acid synthesis is activated, the catabolism of fatty acids is turned-off. Malonyl-CoA, produced by acetyl-coenzyme A carboxylase, a key enzyme of cytosolic fatty acid synthesis, represents a regulator of both metabolic pathways. CiC and CACT activity and expression are regulated by different nutritional and hormonal conditions. Defects in the corresponding genes have been directly linked to various human diseases. This review will assess the current understanding of CiC and CACT regulation; underlining their roles in physio-pathological conditions. Emphasis will be placed on the molecular basis of the regulation of CiC and CACT associated with fatty acid metabolism. PMID:27231907

  13. Influence of the body mass and visceral adiposity on glucose metabolism in obese women with Pro12Pro genotype in PPARgamma2 gene

    Vanessa Chaia Kaippert

    2013-06-01

    Full Text Available Introduction: Glucose metabolism may be altered in obesity and genotype for PPAR 2 can influence this variable. Objective: To evaluate the influence of body mass (BM and visceral adiposity (VA in glucose metabolism in morbid obese women with Pro12Pro genotype. Methods: Were selected 25 morbidly obese women. Groups were formed according to body mass index (BMI [G1: 40-45 kg/m² (n = 17; G2: > 45 kg/m² (n = 8]. Anthropometric, glycemia and insulinemia assessments (fasting, 60 and 120 minutes after high polyunsaturated fatty acids meal were carried out. The insulin resistance (IR and insulin sensitivity (IS were assessed by HOMA-IR and QUICKI respectively. Results: G2 had higher BMI and waist circumference, compared to G1, impaired fasting glucose, low IS and higher IR. The postprandial glucose was normal, but there was a higher insulin peak one hour after the meal in G2. Conclusion: Increased BM and VA were associated with worse glucose metabolism suggesting metabolic differences between morbid obese with Pro12Pro genotype.

  14. Exploration of lipid metabolism in relation with plasma membrane properties of Duchenne muscular dystrophy cells: influence of L-carnitine.

    Françoise Le Borgne

    Full Text Available Duchenne muscular dystrophy (DMD arises as a consequence of mutations in the dystrophin gene. Dystrophin is a membrane-spanning protein that connects the cytoskeleton and the basal lamina. The most distinctive features of DMD are a progressive muscular dystrophy, a myofiber degeneration with fibrosis and metabolic alterations such as fatty infiltration, however, little is known on lipid metabolism changes arising in Duchenne patient cells. Our goal was to identify metabolic changes occurring in Duchenne patient cells especially in terms of L-carnitine homeostasis, fatty acid metabolism both at the mitochondrial and peroxisomal level and the consequences on the membrane structure and function. In this paper, we compared the structural and functional characteristics of DMD patient and control cells. Using radiolabeled L-carnitine, we found, in patient muscle cells, a marked decrease in the uptake and the intracellular level of L-carnitine. Associated with this change, a decrease in the mitochondrial metabolism can be seen from the analysis of mRNA encoding for mitochondrial proteins. Probably, associated with these changes in fatty acid metabolism, alterations in the lipid composition of the cells were identified: with an increase in poly unsaturated fatty acids and a decrease in medium chain fatty acids, mono unsaturated fatty acids and in cholesterol contents. Functionally, the membrane of cells lacking dystrophin appeared to be less fluid, as determined at 37°C by fluorescence anisotropy. These changes may, at least in part, be responsible for changes in the phospholipids and cholesterol profile in cell membranes and ultimately may reduce the fluidity of the membrane. A supplementation with L-carnitine partly restored the fatty acid profile by increasing saturated fatty acid content and decreasing the amounts of MUFA, PUFA, VLCFA. L-carnitine supplementation also restored muscle membrane fluidity. This suggests that regulating lipid metabolism

  15. Relationship between Sialic acid and metabolic variables in Indian type 2 diabetic patients

    Nayak B Shivananda

    2005-08-01

    Full Text Available Abstract Background Plasma sialic acid is a marker of the acute phase response. Objective is to study the relationship between sialic acid relationship with metabolic variables in Indian type 2 diabetes with and without microvascular complications. Research design and Methods Fasting Venous blood samples were taken from 200 subjects of which 50 were of diabetes mellitus (DM and nephropathy patients, 50 patients with type 2 diabetes and retinopathy, 50 patients with type 2 diabetes without any complications and 50 healthy individuals without diabetes. The Indian subject's aged 15–60 years with type 2 diabetes were recruited for the study. Simultaneously urine samples were also collected from each of the subjects. All the blood samples were analyzed for total cholesterol, triglyceride (TG, low-density lipoprotein (LDL, high-density lipoprotein (HDL, fasting and postprandial glucose on fully automated analyzer. Serum and urine sialic acid along with microalbumin levels were also estimated. Results There was a significantly increasing trend of plasma and urine sialic acid with severity of nephropathy (P 1c, serum triglyceride and cholesterol concentrations, waist-to-hip ratio and hypertension. Significant correlations were found between sialic acid concentration and cardiovascular risk factors like LDL and TG in the diabetic subjects. Conclusion The main finding of this study is that elevated serum and urinary sialic acid and microalbumin concentrations were strongly related to the presence of microvascular complications like diabetic nephropathy and retinopathy and cardiovascular risk factors in Indian type 2 diabetic subjects. Further study of acute-phase response markers and mediators as indicators or predictors of diabetic microvascular complications is therefore justified.

  16. Day-to-night variations of cytoplasmic pH in a crassulacean acid metabolism plant.

    Hafke, J B; Neff, R; Hütt, M T; Lüttge, U; Thiel, G

    2001-01-01

    In crassulacean acid metabolism (CAM) large amounts of malic acid are redistributed between vacuole and cytoplasm in the course of night-to-day transitions. The corresponding changes of the cytoplasmic pH (pHcyt) were monitored in mesophyll protoplasts from the CAM plant Kalanchoe daigremontiana Hamet et Perrier by ratiometric fluorimetry with the fluorescent dye 2',7'-bis-(2-carboxyethyl)-5-(and-6-)carboxyfluorescein as a pHcyt indicator. At the beginning of the light phase, pHcyt was slightly alkaline (about 7.5). It dropped during midday by about 0.3 pH units before recovering again in the late-day-to-early-dark phase. In the physiological context the variation in pHcyt may be a component of CAM regulation. Due to its pH sensitivity, phosphoenolpyruvate carboxylase appears as a likely target enzyme. From monitoring delta pHcyt in response to loading the cytoplasm with the weak acid salt K-acetate a cytoplasmic H(+)-buffer capacity in the order of 65 mM H+ per pH unit was estimated at a pHcyt of about 7.5. With this value, an acid load of the cytoplasm by about 10 mM malic acid can be estimated as the cause of the observed drop in pHcyt. A diurnal oscillation in pHcyt and a quantitatively similar cytoplasmic malic acid is predicted from an established mathematical model which allows simulation of the CAM dynamics. The similarity of model predictions and experimental data supports the view put forward in this model that a phase transition of the tonoplast is an essential functional element in CAM dynamics. PMID:11732184

  17. Does genetic variation in the Δ6-desaturase promoter modify the association between α-linolenic acid and the prevalence of metabolic syndrome?123

    Truong, Hong; DiBello, Julia R; Ruiz-Narvaez, Edward; Kraft, Peter; Campos, Hannia; Baylin, Ana

    2009-01-01

    Background: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are associated with protection against components of the metabolic syndrome, but the role of α-linolenic acid (ALA), the metabolic precursor of EPA and DHA, has not been studied. The Δ6-desaturase enzyme converts ALA into EPA and DHA, and genetic variation in the Δ6-desaturase gene (FADS2) may affect this conversion.

  18. Metabolic regulation of trisporic acid on Blakeslea trispora revealed by a GC-MS-based metabolomic approach.

    Jie Sun

    Full Text Available The zygomycete Blakeslea trispora is used commercially as natural source of â-carotene. Trisporic acid (TA is secreted from the mycelium of B. trispora during mating between heterothallic strains and is considered as a mediator of the regulation of mating processes and an enhancer of carotene biosynthesis. Gas chromatography-mass spectrometry and multivariate analysis were employed to investigate TA-associated intracellular biochemical changes in B. trispora. By principal component analysis, the differential metabolites discriminating the control groups from the TA-treated groups were found, which were also confirmed by the subsequent hierarchical cluster analysis. The results indicate that TA is a global regulator and its main effects at the metabolic level are reflected on the content changes in several fatty acids, carbohydrates, and amino acids. The carbon metabolism and fatty acids synthesis are sensitive to TA addition. Glycerol, glutamine, and ã-aminobutyrate might play important roles in the regulation of TA. Complemented by two-dimensional electrophoresis, the results indicate that the actions of TA at the metabolic level involve multiple metabolic processes, such as glycolysis and the bypass of the classical tricarboxylic acid cycle. These results reveal that the metabolomics strategy is a powerful tool to gain insight into the mechanism of a microorganism's cellular response to signal inducers at the metabolic level.

  19. Vanadate influence on metabolism of sugar phosphates in fungus Phycomyces blakesleeanus.

    Milan Žižić

    Full Text Available The biological and chemical basis of vanadium action in fungi is relatively poorly understood. In the present study, we investigate the influence of vanadate (V5+ on phosphate metabolism of Phycomyces blakesleeanus. Addition of V5+ caused increase of sugar phosphates signal intensities in 31P NMR spectra in vivo. HPLC analysis of mycelial phosphate extracts demonstrated increased concentrations of glucose 6 phosphate, fructose 6 phosphate, fructose 1, 6 phosphate and glucose 1 phosphate after V5+ treatment. Influence of V5+ on the levels of fructose 2, 6 phosphate, glucosamine 6 phosphate and glucose 1, 6 phosphate (HPLC, and polyphosphates, UDPG and ATP (31P NMR was also established. Increase of sugar phosphates content was not observed after addition of vanadyl (V4+, indicating that only vanadate influences its metabolism. Obtained results from in vivo experiments indicate catalytic/inhibitory vanadate action on enzymes involved in reactions of glycolysis and glycogenesis i.e., phosphoglucomutase, phosphofructokinase and glycogen phosphorylase in filamentous fungi.

  20. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress

    Nazar, Rahat; Umar, Shahid; Khan, Nafees A

    2015-01-01

    Ascorbate (AsA)–glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of...

  1. The impact of acetate metabolism on yeast fermentative performance and wine quality: reduction of volatile acidity of grape musts and wines

    Moura, A. Vilela; Schuller, Dorit Elisabeth; Faia, A. Mendes; Silva, Rui D.; Chaves, S R; Sousa, Maria João; Côrte-Real, Manuela

    2011-01-01

    Acetic acid is the main component of the volatile acidity of grape musts and wines. It can be formed as a byproduct of alcoholic fermentation or as a product of the metabolism of acetic and lactic acid bacteria, which can metabolize residual sugars to increase volatile acidity. Acetic acid has a negative impact on yeast fermentative performance and affects the quality of certain types of wine when present above a given concentration. In this minireview, we present an o...

  2. Shikimic Acid Ozonolysis is Influenced by its Physical State

    Steimer, S.; Krieger, U. K.; Lampimäki, M.; Peter, T.; Ammann, M.

    2013-12-01

    Atmospheric aerosols play an important role in climate, air quality and human health. They undergo continuous transformation, changing their physical and chemical properties. Recent findings show that secondary organic aerosol (SOA) particles can form amorphous solids and semi-solids under atmospheric conditions [1]. Such physical states are highly viscous, leading to a decreased diffusivity within the bulk of the material. Inhibited mass transport could slow down chemical reactions, thereby increasing the lifetime of the organic compounds involved. First indications of such behavior were recently shown for the reaction of thin protein films with ozone [2] and formation of organonitrogen from ammonia uptake to α-pinene secondary organic material [3]. In this study, we investigated the influence of physical state on the ozonolysis of shikimic acid. This carboxylic acid is a constituent of biomass burning aerosols and used here as a proxy for oxygenated organic aerosol. The viscosity of the organic material was adjusted by varying the humidity of the system between 0% and 92% RH, assuming a correlation between the two parameters since water acts as a plasticizer. The system was probed with two complementary techniques: coated wall flow tube measurements, where the uptake of ozone is measured via loss from the gas phase and in situ X-ray microspectroscopy on single particles, where oxidation of the bulk can be observed. Additionally, data from electrodynamic balance measurements and kinetic modeling were used to facilitate data analysis. The dependence of the ozonolysis on relative humidity was clearly observed with both techniques. The coated wall flow tube measurements showed a long term, gradually changing ozone uptake over more than 15 hours, the magnitude of which varied over nearly two orders between driest and wettest conditions. It was possible to separate the uptake into two distinct kinetic regimes, the first of which displayed a Langmuir-Hinshelwood type

  3. Influence of phytic acid on the corrosion behavior of iron under acidic and neutral conditions

    Highlights: • PA can effectively inhibit the corrosion of iron as a mixed type inhibitor in acidic solutions. • Phytate behaves like an environmentally-friendly film former and can form stable metal chelate complexes on the iron surface under neutral conditions. • Adsorption of PA on the iron surface obeys the Langmuir adsorption isotherm under acidic conditions. • The binding mode between PA and the iron substrate is strongly dependent on the pH value of the solutions. - Abstract: The influence of phytic acid (PA) on the corrosion of iron under acidic and neutral conditions was investigated by means of Electrochemical Impedance Spectroscopy (EIS) and polarization curve methods. The electrochemical results indicate that, PA can effectively inhibit the corrosion of iron as a mixed type inhibitor in H2SO4 solution; however, PA tends to react with the dissolved Fe (II) ions, forming stable metal chelate complexes with strong anodic inhibition action on the iron surface, in Na2SO4 solution. Fourier Transform Infrared Spectroscopic (FTIR) analysis confirms the existence of PA or its salts on the iron substrates. X-ray Photoelectron Spectroscopic (XPS) characterization demonstrates that PA adsorbs on the iron surface mainly in the form of undissociated molecules under acidic condition, while phytate ions may bind to the iron substrate through connection of C-O-P bond with oxidized iron surface under neutral condition. The great difference in binding mode between PA and the iron substrate makes PA act as either a corrosion inhibitor or a film former under different conditions

  4. Rapid decrease in amino acid metabolism in prolactin-secreting pituitary adenomas after bromocriptine treatment: a PET study

    Four patients with prolactin-secreting pituitary adenomas were examined with positron emission tomography using L-[11C]methionine to monitor the effect of dopamine agonist treatment on the amino acid metabolism in the tumors. Within the first few hours after intramuscular injection of bromocriptine retard (50 mg) the amino acid metabolism decreased by 40%. Two of the patients were reexamined 7 and 9 days later and showed a 70% reduction in the metabolism of the adenomas. This metabolic effect was later accompanied by significant tumor shrinkage in all adenomas. It is suggested that bromocriptine has a general and rapid effect on the protein synthesis of the prolactin-secreting pituitary adenoma cells

  5. Rapid decrease in amino acid metabolism in prolactin-secreting pituitary adenomas after bromocriptine treatment: a PET study

    Bergstroem, M.M.; Muhr, C.; Lundberg, P.O.; Bergstroem, K.G.; Gee, A.D.; Fasth, K.J.; Langstroem B5

    1987-09-01

    Four patients with prolactin-secreting pituitary adenomas were examined with positron emission tomography using L-(/sup 11/C)methionine to monitor the effect of dopamine agonist treatment on the amino acid metabolism in the tumors. Within the first few hours after intramuscular injection of bromocriptine retard (50 mg) the amino acid metabolism decreased by 40%. Two of the patients were reexamined 7 and 9 days later and showed a 70% reduction in the metabolism of the adenomas. This metabolic effect was later accompanied by significant tumor shrinkage in all adenomas. It is suggested that bromocriptine has a general and rapid effect on the protein synthesis of the prolactin-secreting pituitary adenoma cells.

  6. Associations of fatty acids in cerebrospinal fluid with peripheral glucose concentrations and energy metabolism.

    Reiner Jumpertz

    Full Text Available Rodent experiments have emphasized a role of central fatty acid (FA species, such as oleic acid, in regulating peripheral glucose and energy metabolism. Thus, we hypothesized that central FAs are related to peripheral glucose regulation and energy expenditure in humans. To test this we measured FA species profiles in cerebrospinal fluid (CSF and plasma of 32 individuals who stayed in our clinical inpatient unit for 6 days. Body composition was measured by dual energy X-ray absorptiometry and glucose regulation by an oral glucose test (OGTT followed by measurements of 24 hour (24EE and sleep energy expenditure (SLEEP as well as respiratory quotient (RQ in a respiratory chamber. CSF was obtained via lumbar punctures; FA concentrations were measured by liquid chromatography/mass spectrometry. As expected, FA concentrations were higher in plasma compared to CSF. Individuals with high concentrations of CSF very-long-chain saturated FAs had lower rates of SLEEP. In the plasma moderate associations of these FAs with higher 24EE were observed. Moreover, CSF monounsaturated long-chain FA (palmitoleic and oleic acid concentrations were associated with lower RQs and lower glucose area under the curve during the OGTT. Thus, FAs in the CSF strongly correlated with peripheral metabolic traits. These physiological parameters were most specific to long-chain monounsaturated (C16:1, C18:1 and very-long-chain saturated (C24:0, C26:0 FAs.Together with previous animal experiments these initial cross-sectional human data indicate that central FA species are linked to peripheral glucose and energy homeostasis.

  7. Subchronic effects of valproic acid on gene expression profiles for lipid metabolism in mouse liver

    Valproic acid (VPA) is used clinically to treat epilepsy, however it induces hepatotoxicity such as microvesicular steatosis. Acute hepatotoxicity of VPA has been well documented by biochemical studies and microarray analysis, but little is known about the chronic effects of VPA in the liver. In the present investigation, we profiled gene expression patterns in the mouse liver after subchronic treatment with VPA. VPA was administered orally at a dose of 100 mg/kg/day or 500 mg/kg/day to ICR mice, and the livers were obtained after 1, 2, or 4 weeks. The activities of serum liver enzymes did not change, whereas triglyceride concentration increased significantly. Microarray analysis revealed that 1325 genes of a set of 32,996 individual genes were VPA responsive when examined by two-way ANOVA (P 1.5). Consistent with our previous results obtained using an acute VPA exposure model (Lee et al., Toxicol Appl Pharmacol. 220:45-59, 2007), the most significantly over-represented biological terms for these genes included lipid, fatty acid, and steroid metabolism. Biological pathway analysis suggests that the genes responsible for increased biosynthesis of cholesterol and triglyceride, and for decreased fatty acid β-oxidation contribute to the abnormalities in lipid metabolism induced by subchronic VPA treatment. A comparison of the VPA-responsive genes in the acute and subchronic models extracted 15 commonly altered genes, such as Cyp4a14 and Adpn, which may have predictive power to distinguish the mode of action of hepatotoxicants. Our data provide a better understanding of the molecular mechanisms of VPA-induced hepatotoxicity and useful information to predict steatogenic hepatotoxicity

  8. SarA influences the sporulation and secondary metabolism in Streptomyces coelicolor M145

    Xijun Ou; Bo Zhang; Lin Zhang; Kai Dong; Chun Liu; Guoping Zhao; Xiaoming Ding

    2008-01-01

    The filamentous bacteria Streptomyces exhibit a complex life cycle involving morphological differentiation and secondary metabolism. A putative membrane protein gene sarA (sco4069), sporulation and antibiotic production related gene A, was partially characterized in Streptomyces coelicolor M145. The gene product had no characterized functional domains and was highly conserved in Streptomyces. Compared with the wild-type M145, the sarA mutant accelerated sporulation and dramatically decreased the production of actinorhodin and undecylprodigiosin.Reverse transcription-polymerase chain reaction analysis showed that SarA influenced antibiotic production by controlling the abundance of actll-orf4 and redZ messenger RNA.

  9. Cereal Processing Influences Postprandial Glucose Metabolism as Well as the GI Effect

    Vinoy, Sophie; Normand, Sylvie; Meynier, Alexandra; Sothier, Monique; Louche-Pelissier, Corinne; Peyrat, Jocelyne; Maitrepierre, Christine; Nazare, Julie-Anne; Brand-Miller, Jeannie; Laville, Martine

    2015-01-01

    Objective: Technological processes may influence the release of glucose in starch. The aim of this study was to compare the metabolic response and the kinetics of appearance of exogenous glucose from 2 cereal products consumed at breakfast. Methods: Twenty-five healthy men were submitted to a randomized, open, crossover study that was divided into 2 parts: 12 of the 25 subjects were included in the “isotope part,” and the 13 other subjects were included in the “glycemic part.” On test days, s...

  10. Influence of altitude on vitamin D and bone metabolism of lactating sheep and goats

    Kohler, M.; Leiber, F; Willems, H.; Merbold, L.; Liesegang, A.

    2013-01-01

    This study investigated the influence of alpine grazing on vitamin D (vitD) and bone metabolism in sheep and goats. Two groups of five adult lactating East Friesian milk sheep and Saanen dairy goats were kept on pastures at 2000 to 2600 m a.s.l. (SA: sheep alpine; GA: goats alpine) and 400 m a.s.l. (SL: sheep lowland; GL: goats lowland). The animals were milked twice daily and the milk yield was measured. Blood, milk, skin and forage samples were collected and the left metatarsi were measured...

  11. Biochemical mechanisms involved in the Omega fatty acids digestion, absorption and metabolism

    Léa Silvia Sant´Ana

    2004-01-01

    Lipids consist of a broad group of compounds that are very different from one another and fatty acids are the substances present in greater quantity. The inadequate ingestion of these substances has an influence on the incidence of various diseases, such as coronary heart disease, some types of cancer, immune diseases and rheumatoid arthritis. In order to understand the role of lipids in the animal body it is necessary to know the food lipid composition, as well the absorption and digestion m...

  12. Potential opportunities for treatment of metabolic syndrome withalpha-lipoic acid (Berlithion®300)

    T I Romantsova; I. S. Kuznetsov

    2009-01-01

    There are a lot of experi mental data confirmed the influence of alpha-lipoi с acid on activity of AMPK enzyme, receptors PPARα/γ and uncoupling proteins that prev ent oxidative phosphorylation (UCPl). AMPK is the enzyme responsible for food intake and energy expenditure in hypothalamus as w ell as in peripheral adipose tissue. PPARγ is the key modulator of lipid ho meostasis and adipocyte differentiation. UCPl is located in the brown adipose tissue and provides termogenesis. Via regulation o...

  13. Combined treatment with caffeic and ferulic acid from Baccharis uncinella C. DC. (Asteraceae) protects against metabolic syndrome in mice.

    Bocco, B M; Fernandes, G W; Lorena, F B; Cysneiros, R M; Christoffolete, M A; Grecco, S S; Lancellotti, C L; Romoff, P; Lago, J H G; Bianco, A C; Ribeiro, M O

    2016-03-01

    Fractionation of the EtOH extract from aerial parts of Baccharis uncinella C. DC. (Asteraceae) led to isolation of caffeic and ferulic acids, which were identified from spectroscopic and spectrometric evidence. These compounds exhibit antioxidant and anti-inflammatory properties and have been shown to be effective in the prevention/treatment of metabolic syndrome. This study investigated whether the combined treatment of caffeic and ferulic acids exhibits a more significant beneficial effect in a mouse model with metabolic syndrome. The combination treatment with caffeic and ferulic acids was tested for 60 days in C57 mice kept on a high-fat (40%) diet. The data obtained indicated that treatment with caffeic and ferulic acids prevented gain in body weight induced by the high-fat diet and improved hyperglycemia, hypercholesterolemia and hypertriglyceridemia. The expression of a number of metabolically relevant genes was affected in the liver of these animals, showing that caffeic and ferulic acid treatment results in increased cholesterol uptake and reduced hepatic triglyceride synthesis in the liver, which is a likely explanation for the prevention of hepatic steatosis. In conclusion, the combined treatment of caffeic and ferulic acids displayed major positive effects towards prevention of multiple aspects of the metabolic syndrome and liver steatosis in an obese mouse model. PMID:26840707

  14. The Effect of Rumen Acid Load on Postpartum Performance and Blood Metabolic Responses in Transition Holstein Cows

    S. D. Mesgaran; Vakili, A.; A. H. Moosavi; G. Koolabadi

    2011-01-01

    Problem statement: The transition period is the most stressful time in the production cycle of a dairy cow because of depressed feed intake, endocrine and metabolic changes at parturition. The aim was to determine the effect of rumen acid load on postpartum performance and metabolic parameters in transition Holstein cows. Approach: The Acidogenicity Values (AV) of the diets were determined using an In-vitro essay. Thirty late pregnant multiparous Holstein cows with the ave...

  15. Application of Metabolic Flux Analysis to Identify the Mechanisms of Free Fatty Acid Toxicity to Human Hepatoma Cell Line

    Srivastava, Shireesh; Chan, Christina

    2008-01-01

    Chronic exposure to elevated levels of free fatty acids (FFAs) has been shown to cause cell death (lipotoxicity), but the underlying mechanisms of lipotoxicity in hepatocytes remain unclear. We have previously shown that the saturated FFAs cause much greater toxicity to human hepatoma cells (HepG2) than the unsaturated ones (Srivastava and Chan, 2007). In this study, metabolic flux analysis (MFA) was applied to identify the metabolic changes associated with the cytotoxicity of saturated FFA. ...

  16. Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology.

    Kaur, Baljinder; Chakraborty, Debkumar; Kumar, Balvir

    2014-10-01

    Occurrence of feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase (ech) genes responsible for the bioconversion of ferulic acid to vanillin have been reported and characterized from Amycolatopsis sp., Streptomyces sp., and Pseudomonas sp. Attempts have been made to express these genes in Escherichia coli DH5α, E. coli JM109, and Pseudomonas fluorescens. However, none of the lactic acid bacteria strain having GRAS status was previously proposed for heterologous expression of fcs and ech genes for production of vanillin through biotechnological process. Present study reports heterologous expression of vanillin synthetic gene cassette bearing fcs and ech genes in a dairy isolate Pediococcus acidilactici BD16. After metabolic engineering, statistical optimization of process parameters that influence ferulic acid to vanillin biotransformation in the recombinant strain was carried out using central composite design of response surface methodology. After scale-up of the process, 3.14 mM vanillin was recovered from 1.08 mM ferulic acid per milligram of recombinant cell biomass within 20 min of biotransformation. From LCMS-ESI spectral analysis, a metabolic pathway of phenolic biotransformations was predicted in the recombinant P. acidilactici BD16 (fcs (+)/ech (+)). PMID:25077778

  17. The effect of chronic exposure to high palmitic acid concentrations on the aerobic metabolism of human endothelial EA.hy926 cells.

    Broniarek, Izabela; Koziel, Agnieszka; Jarmuszkiewicz, Wieslawa

    2016-09-01

    A chronic elevation of circulating free fatty acids (FFAs) is associated with diseases like obesity or diabetes and can lead to lipotoxicity. The goals of this study were to assess the influence of chronic exposure to high palmitic acid (PAL) levels on mitochondrial respiratory functions in endothelial cells and isolated mitochondria. Human umbilical vein endothelial cells (EA.hy926 line) were grown for 6 days in a medium containing either 100 or 150 μM PAL. Growth at high PAL concentrations induced a considerable increase in fatty acid-supplied respiration and a reduction of mitochondrial respiration during carbohydrate and glutamine oxidation. High PAL levels elevated intracellular and mitochondrial superoxide generation; increased inflammation marker, acyl-coenzyme A (CoA) dehydrogenase, uncoupling protein 2 (UCP2), and superoxide dismutase 2 expression; and decreased hexokinase I and pyruvate dehydrogenase expression. No change in aerobic respiration capacity was observed, while fermentation was decreased. In mitochondria isolated from high PAL-treated cells, an increase in the oxidation of palmitoylcarnitine, a decrease in the oxidation of pyruvate, and an increase in UCP2 activity were observed. Our results demonstrate that exposure to high PAL levels induces a shift in endothelial aerobic metabolism toward the oxidation of fatty acids. Increased levels of PAL caused impairment and uncoupling of the mitochondrial oxidative phosphorylation system. Our data indicate that FFAs significantly affect endothelial oxidative metabolism, reactive oxygen species (ROS) formation, and cell viability and, thus, might contribute to endothelial and vascular dysfunction. PMID:27417103

  18. Short term effects of dietary medium-chain fatty acids and n-3 long-chain polyunsaturated fatty acids on the fat metabolism of healthy volunteers

    Hauenschild A

    2003-11-01

    Full Text Available Abstract Background The amount and quality of dietary fatty acids can modulate the fat metabolism. Objective This dietary intervention is based on the different metabolic pathways of long-chain saturated fatty acids (LCFA, which are mostly stored in adipocytic triacylglycerols, medium-chain fatty acids (MCFA which are preferentially available for hepatic mitochondrial β-oxidation and n-3 long-chain polyunsaturated fatty acids (n-3 LCPUFA suggested to modulate fat oxidation and storage by stimulating the peroxisomal β-oxidation. Combined dietary MCFA and n-3 LCPUFA without LCFA may synergistically stimulate fatty acid oxidation resulting in blood lipid clearance and LCFA release from adipocytes. Design In a short term, parallel, randomized, double-blind trial effects on the fatty acid metabolism of 10 healthy volunteers (Body Mass Index 25–30 of a formula containing 72% MCFA and 22% n-3 LCPUFA without LCFA (intake: 1.500 kcal/day; fat: 55.5% of energy were measured in comparison to an isoenergetic formula with equal fat amount and LCFA dominated lipid profile. Results The plasma triacylglycerol (p Conclusion Combined dietary 72% MCFA and 22% n-3 LCPUFA without LCFA stimulate the fatty acid oxidation and release from adipocytes without affecting any safety parameters measured.

  19. Caveolin-1 Is Necessary for Hepatic Oxidative Lipid Metabolism: Evidence for Crosstalk between Caveolin-1 and Bile Acid Signaling

    Manuel A. Fernández-Rojo

    2013-07-01

    Full Text Available Caveolae and caveolin-1 (CAV1 have been linked to several cellular functions. However, a model explaining their roles in mammalian tissues in vivo is lacking. Unbiased expression profiling in several tissues and cell types identified lipid metabolism as the main target affected by CAV1 deficiency. CAV1−/− mice exhibited impaired hepatic peroxisome proliferator-activated receptor α (PPARα-dependent oxidative fatty acid metabolism and ketogenesis. Similar results were recapitulated in CAV1-deficient AML12 hepatocytes, suggesting at least a partial cell-autonomous role of hepatocyte CAV1 in metabolic adaptation to fasting. Finally, our experiments suggest that the hepatic phenotypes observed in CAV1−/− mice involve impaired PPARα ligand signaling and attenuated bile acid and FXRα signaling. These results demonstrate the significance of CAV1 in (1 hepatic lipid homeostasis and (2 nuclear hormone receptor (PPARα, FXRα, and SHP and bile acid signaling.

  20. Uptake, translocation, and metabolism of oxabetrinil and CGA-133205 in grain sorghum (Sorghum bicolor) and their influence on metolachlor metabolism

    The uptake, translocation, and metabolism of the oxime ether safeners oxabetrinil and CGA-133205 in grain sorghum [Sorghum bicolor (L.) Moench, var. Funk G-522-DR] were investigated. Following application of [14C]oxabetrinil and [14C]CGA-133205 to imbibed seeds, it appears that the safeners are conferring protection to grain sorghum by increasing the rate of metolachlor metabolism