WorldWideScience

Sample records for acidophilic microorganisms isolated

  1. Ardrea characterisation of acidophilic micro-organisms isolated from gold mines in Marmato, Colombia

    Edna Judith Márquez F.

    2008-02-01

    Full Text Available Mineral bio-oxidation improves the extraction of valuable metals and also decreases the impact caused by mining waste; however, the interactions between the micro-organisms so involved are little known. Double-layer solid culture media techniques and amplified ribosomal DNA restriction enzyme analysis (Ardrea, using Eco72I, Eco24I, XcmI and BsaAI enzymes, were used for characterising four micro-organisms isolated from gold mines located in Marmato, Colombia. This work was aimed at better understanding of native acidophilic micro-organisms’ microbial interactions in mixed cultures. Iron and sulphur oxidising isolates revealed similar restriction patterns to those previously reported for Acidithiobacillus ferrooxidans; however, one of them exhibited different colony morphology compared to previously reported morphology. The iron non-oxidising isolate presented a restriction pattern agreeing with theoretical analysis of Acidithiobacillus thiooxidans database sequences. ARDREA proved to be a viable technique for differentiating between At. ferrooxidans and At. thiooxidans; in turn, it enabled checking isolates’ identity with their physiological traits and colony morphology.

  2. Enumeration and Characterization of Acidophilic Microorganisms Isolated from a Pilot Plant Stirred-Tank Bioleaching Operation

    Okibe, Naoko; Gericke, Mariekie; Hallberg, Kevin B.; Johnson, D. Barrie

    2003-01-01

    Microorganisms were enumerated and isolated on selective solid media from a pilot-scale stirred-tank bioleaching operation in which a polymetallic sulfide concentrate was subjected to biologically accelerated oxidation at 45°C. Four distinct prokaryotes were isolated: three bacteria (an Acidithiobacillus caldus-like organism, a thermophilic Leptospirillum sp., and a Sulfobacillus sp.) and one archaeon (a Ferroplasma-like isolate). The relative numbers of these prokaryotes changed in the three...

  3. Metal resistance in acidophilic microorganisms and its significance for biotechnologies.

    Dopson, Mark; Holmes, David S

    2014-10-01

    Extremely acidophilic microorganisms have an optimal pH of biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications. PMID:25104030

  4. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    David Barrie Johnson

    2012-09-01

    Full Text Available Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30 ˚C, with a corresponding culture doubling time of 9 hours. The isolates displayed similar tolerance (10-50 mM to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC. Glycolic acid was identified as a significant component (12- 14% of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within three days. Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella, and mannitol and glucose (Euglena. These were rapidly metabolised by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp. though only fructose was utilised by the more fastidious heterotroph Acidocella aromatica. The significance of algae in promoting the growth of iron- (and sulfate- reducing heterotrophic acidophiles that are important in remediating mine-impacted waters is discussed.

  5. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    DavidBarrieJohnson

    2012-01-01

    Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30 ˚C, with a corresponding culture doubling time of 9 hours. The isolates displayed similar tolerance (10-50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled wi...

  6. Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process.

    Nie, Zhen-yuan; Liu, Hong-chang; Xia, Jin-lan; Yang, Yi; Zhen, Xiang-jun; Zhang, Li-Juan; Qiu, Guan-zhou

    2016-02-01

    While indirect model has been widely accepted in bioleaching, but the evidence of cell surface iron speciation has not been reported. In the present work the iron speciation on the cell surfaces of four typically acidophilic iron-oxidizing microorganism (mesophilic Acidithiobacillus ferrooxidans ATCC 23270, moderately thermophilic Leptospirillum ferriphilum YSK and Sulfobacillus thermosulfidooxidans St, and extremely thermophilic Acidianus manzaensis YN25) grown on different energy substrates (chalcopyrite, pyrite, ferrous sulfate and elemental sulfur (S(0))) were studied in situ firstly by using synchrotron-based micro- X-ray fluorescence analysis and X-ray absorption near-edge structure spectroscopy. Results showed that the cells grown on iron-containing substrates had apparently higher surface iron content than the cells grown on S(0). Both ferrous iron and ferric iron were detected on the cell surface of all tested AIOMs, and the Fe(II)/Fe(III) ratios of the same microorganism were affected by different energy substrates. The iron distribution and bonding state of single cell of A. manzaensis were then studied in situ by scanning transmission soft X-ray microscopy based on dual-energy contrast analysis and stack analysis. Results showed that the iron species distributed evenly on the cell surface and bonded with amino, carboxyl and hydroxyl groups. PMID:26645388

  7. The acidophilic microorganisms diversity present in lignite and pit coal from Paroseni, Halânga, Turceni mines

    Carmen Madalina CISMASIU

    2009-11-01

    Full Text Available Pollution from coal combustion is the largest problem in the current use of coal and the biggest constraint on the increased use of coal. When these fossil fuels are combusted, sulphur-di-oxide is released into the atmosphere causing acid rains which dissolves buildings, kills forest. Knowing the physiological groups of microorganisms present in the coal samples has an ecological importance, completing the knowledge in the field of the microorganism’s ecology and a practical importance, being a source of new microorganisms with biotechnological potential. The microbial communities evidenced in such sites include both groups of chemolithotrophic microorganisms involved in the metals biosolubilization processes and groups of heterotrophic microorganisms involved in the processes of bioaccumulation or biofixation of metallic ions. In this context, this paper presents the study regarding the main physiological groups of microorganisms present in the pit coal and lignite samples after the industrial processing of coal. The results revealed that the microorganisms belonging to the following physiological groups: aerobic heterotrophic acidophilic bacteria, strictly anaerobic heterotrophic (sulphur-reducing, nitrifying bacteria (nitrite and nitrate bacteria, denitrifying bacteria and acidophilic chemolithotrophic bacteria on Fe2+, on S0 and on S2O3.

  8. Metal uptake and Fe-, Ti-oxide biomineralization by acidophilic microorganisms in mine-waste environments, Elliot Lake, Canada

    Acidic effluent containing enhanced concentrations of toxic heavy metals discharges from a cumulative total of 104 ha of mine-tailings waste in Canada. Communities of acidophilic microorganisms, specifically the unicellular alga Euglena sp. and bacteria, thrive in many of the hostile, low-pH effluent environments, which are otherwise devoid of life. The microorganisms concentrate aqueous dissolved metals onto cell walls and at intracellular sites, during the life cycle, and strongly bind metals during early diagenesis. A sequence is observed in which amorphous Fe and Ti concentrated at cell walls are progressively transformed to microcrystalline aggregates of goethite, ferrihydrite, maghemite, magnetite, haematite, lepidocrocite, and ilmenite. The bioprecipitated Ti- and Fe-oxides and oxyhydroxides act as scavengers for heavy metals such as Cu, Pb, Zn, Ni, Cd, and Th. Acidophilic microorganisms play a central role in the toxic-metal budget of mine-tailings waste by efficiently sequestering aqueous metals and by promoting nucleation of oxide minerals whose inorganic formation is kinetically inhibited, thereby retarding toxic-metal dispersion into the natural environment

  9. Newly Isolated Penicillium ramulosum N1 Is Excellent for Producing Protease-Resistant Acidophilic Xylanase.

    Lin, Chaoyang; Shen, Zhicheng; Zhu, Tingheng; Qin, Wensheng

    2015-01-01

    Penicillium ramulosum N1 was isolated from decaying wood. This strain produces extracellular xylanases and cellulases. The highest activities of xylanases (250 U/ml) and carboxymethyl cellulose (CMCase; 6.5 U/ml) were produced when 1% barley straw was added as a carbon source. The optimum temperature and pH for xylanase activity was 55 and 3.0 °C, respectively. The xylanases exhibited strong protease resistance. CMCase revealed maximum activities at pH 3.0 and in the range of 60-70 °C. Filter paper activity was optimally active at pH 5.0 and 55 °C. The zymograms produced by the SDS-PAGE resolution of the crude enzymes indicated that there are four bands of protein with xylanase activity and three bands of proteins with endoglucanase. The results revealed that P. ramulosum N1 is a promising acidophilic and protease-resistant xylanase-producing microorganism that has great potential to be used in animal feed and food industry applications. PMID:26431535

  10. Alicyclobacillus sp. strain CC2, a thermo-acidophilic bacterium isolated from Deception Island (Antarctica) containing a thermostable superoxide dismutase enzyme

    Daniela N. Correa-Llantén; Maximiliano J. Amenábar; Patricio A. Muñoz; María T. Monsalves; Miguel E. Castro; Jenny M.Blamey

    2014-01-01

    A gram-positive, rod-shaped, aerobic, thermo-acidophilic bacterium CC2 (optimal temperature 55℃and pH 4.0), belonging to the genus Alicyclobacillus was isolated from geothermal soil collected from“Cerro Caliente”, Deception Island, Antarctica. Owing to the harsh environmental conditions found in this territory, microorganisms are exposed to conditions that trigger the generation of reactive oxygen species (ROS). They must have an effective antioxidant defense system to deal with this oxidative stress. We focused on one of the most important enzymes: superoxide dismutase, which was partially purified and characterized. This study presents the ifrst report of a thermo-acidophilic bacterium isolated from Deception Island with a thermostable superoxide dismutase (SOD).

  11. Uncovering a microbial enigma: isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium "Ferrovum myxofaciens".

    Johnson, D Barrie; Hallberg, Kevin B; Hedrich, Sabrina

    2014-01-01

    A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of "acid streamer" growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified "overlay" solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine ("Ferrovum myxofaciens" strain P3G) have been elucidated. "F. myxofaciens" is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. "F. myxofaciens" can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. "F. myxofaciens" and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of "F. myxofaciens" and other Betaproteobacteria, a new family, "Ferrovaceae," and order, "Ferrovales," within the class Betaproteobacteria are proposed. "F. myxofaciens" is the first extreme acidophile to be described in the class Betaproteobacteria. PMID:24242243

  12. Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria.

    Ňancucheo, Ivan; Rowe, Owen F; Hedrich, Sabrina; Johnson, D Barrie

    2016-05-01

    Growth media have been developed to facilitate the enrichment and isolation of acidophilic and acid-tolerant sulfate-reducing bacteria (aSRB) from environmental and industrial samples, and to allow their cultivation in vitro The main features of the 'standard' solid and liquid devised media are as follows: (i) use of glycerol rather than an aliphatic acid as electron donor; (ii) inclusion of stoichiometric concentrations of zinc ions to both buffer pH and to convert potentially harmful hydrogen sulphide produced by the aSRB to insoluble zinc sulphide; (iii) inclusion of Acidocella aromatica (an heterotrophic acidophile that does not metabolize glycerol or yeast extract) in the gel underlayer of double layered (overlay) solid media, to remove acetic acid produced by aSRB that incompletely oxidize glycerol and also aliphatic acids (mostly pyruvic) released by acid hydrolysis of the gelling agent used (agarose). Colonies of aSRB are readily distinguished from those of other anaerobes due to their deposition and accumulation of metal sulphide precipitates. Data presented illustrate the effectiveness of the overlay solid media described for isolating aSRB from acidic anaerobic sediments and low pH sulfidogenic bioreactors. PMID:27036143

  13. Shift from Acetoclastic to H2-Dependent Methanogenesis in a West Siberian Peat Bog at Low pH Values and Isolation of an Acidophilic Methanobacterium Strain▿

    Kotsyurbenko, O R; Friedrich, M W; Simankova, M V; Nozhevnikova, A. N.; Golyshin, P N; Timmis, K N; Conrad, R.

    2007-01-01

    Methane production and archaeal community composition were studied in samples from an acidic peat bog incubated at different temperatures and pH values. H(2)-dependent methanogenesis increased strongly at the lowest pH, 3.8, and Methanobacteriaceae became important except for Methanomicrobiaceae and Methanosarcinaceae. An acidophilic and psychrotolerant Methanobacterium sp. was isolated using H(2)-plus-CO(2)-supplemented medium at pH 4.5.

  14. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2014-04-08

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  15. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2016-03-22

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  16. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2013-07-23

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  17. A Description of an Acidophilic, Iron Reducer, Geobacter sp. FeAm09 Isolated from Tropical Soils

    Healy, O.; Souchek, J.; Heithoff, A.; LaMere, B.; Pan, D.; Hollis, G.; Yang, W. H.; Silver, W. L.; Weber, K. A.

    2014-12-01

    Iron (Fe) is the fourth most abundant element in the Earth's crust and plays a significant role controlling the geochemistry in soils, sediments, and aquatic systems. As part of a study to understand microbially-catalysed iron biogeochemical cycling in tropical soils, an iron reducing isolate, strain FeAm09, was obtained. Strain FeAm09 was isolated from acidic, Fe-rich soils collected from a tropical forest (Luquillo Experimental Forest, Puerto Rico). Strain FeAm09 is a rod-shaped, motile, Gram-negative bacterium. Taxonomic analysis of the near complete 16S rRNA gene sequence revealed that strain FeAm09 is 94.7% similar to Geobacter lovleyi, placing it in the genus Geobacter within the Family Geobacteraceae in the Deltaproteobacteria. Characterization of the optimal growth conditions revealed that strain FeAm09 is a moderate acidophile with an optimal growth pH of 5.0. The optimal growth temperature was 37°C. Growth of FeAm09 was coupled to the reduction of soluble Fe(III), Fe(III)-NTA, with H2, fumarate, ethanol, and various organic acids and sugars serving as the electron donor. Insoluble Fe(III), in the form of synthetic ferrihydrite, was reduced by strain FeAm09 using acetate or H2 as the electron donor. The use of H2 as an electron donor in the presence of CO2 and absence of organic carbon and assimilation of 14C-labelled CO2 into biomass indicate that strain FeAm09 is an autotrophic Fe(III)-reducing bacterium. Together, these data describe the first acidophilic, autotrophic Geobacter species. Iron reducing bacteria were previously shown to be as abundant in tropical soils as in saturated sediments (lake-bottoms) and saturated soils (wetlands) where Fe(III) reduction is more commonly recognized as a dominant mode of microbial respiration. Furthermore, Fe(III) reduction was identified as a primary driver of carbon mineralization in these tropical soils (Dubinsky et al. 2010). In addition to mineralizing organic carbon, Geobacter sp. FeAm09 is likely to also

  18. A novel acidophilic, thermophilic iron and sulfur-oxidizing archaeon isolated from a hot spring of tengchong, yunnan, China

    Jiannan Ding

    2011-06-01

    Full Text Available A novel thermoacidophilic iron and sulfur-oxidizing archaeon, strain YN25, was isolated from an in situ enriched acid hot spring sample collected in Yunnan, China. Cells were irregular cocci, about 0.9-1.02 µm×1.0-1.31 µm in the medium containing elemental sulfur and 1.5-2.22 µm×1.8-2.54 µm in ferrous sulfate medium. The ranges of growth and pH were 50-85 (optimum 65 and pH 1.0-6.0 (optimum 1.5-2.5. The acidophile was able to grow heterotrophically on several organic substrates, including various monosaccharides, alcohols and amino acids, though the growth on single substrate required yeast extract as growth factor. Growth occurred under aerobic conditions or via anaerobic respiration using elemental sulfur as terminal electron acceptor. Results of morphology, physiology, fatty acid analysis and analysis based on 16S rRNA gene sequence indicated that the strain YN25 should be grouped in the species Acidianus manzaensis. Bioleaching experiments indicated that this strain had excellent leaching capacity, with a copper yielding ratio up to 79.16% in 24 d. The type strain YN25 was deposited in China Center for Type Culture Collection (=CCTCCZNDX0050.

  19. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia

    Stott Matthew B

    2008-07-01

    Full Text Available Abstract Background The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the Verrucomicrobia, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia. Results We report the complete genome sequence of strain V4, the first one from a representative of the Verrucomicrobia. Isolate V4, initially named "Methylokorus infernorum" (and recently renamed Methylacidiphilum infernorum is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of M. infernorum was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C1-utilization pathways compared to other known methylotrophs. The M. infernorum genome does not encode tubulin, which was previously discovered in bacteria of the genus Prosthecobacter, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping Planctomycetes, Verrucomicrobia and Chlamydiae into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the M. infernorum lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of M. infernorum shows apparent adaptations for existence under extremely

  20. Alicyclobacillus dauci sp. nov., a slightly thermophilic, acidophilic bacterium isolated from a spoiled mixed vegetable and fruit juice product.

    Nakano, Chisa; Takahashi, Naoto; Tanaka, Naoto; Okada, Sanae

    2015-02-01

    A novel, moderately thermophilic, acidophilic, Gram-variable, rod-shaped, endospore-forming bacterium was isolated from a spoiled mixed vegetable and fruit juice product that had the off-flavour of guaiacol. The bacterium, strain 4F(T), grew aerobically at 20-50 °C (optimum 40 °C) and pH 3.0-6.0 (optimum pH 4.0) and produced acid from glycerol, d-galactose and d-glucose. It contained menaquinone-7 (MK-7) as the major isoprenoid quinone and the DNA G+C content was 49.6 mol%. The predominant cellular fatty acids of strain 4F(T) were ω-alicyclic (ω-cyclohexane fatty acids), which are characteristic of the genus Alicyclobacillus. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain belongs to the Alicyclobacillus cluster, and is related most closely to the type strains of Alicyclobacillus acidoterrestris (97.4 % similarity) and Alicyclobacillus fastidiosus (97.3 %). Strain 4F(T) produced guaiacol from vanillic acid. It can be distinguished from related species by its acid production type and guaiacol production. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness values, it can be concluded that the strain represents a novel species of the genus Alicyclobacillus, for which the name Alicyclobacillus dauci sp. nov. is proposed; the type strain is 4F(T) ( = DSM 28700(T) = NBRC 108949(T) = NRIC 0938(T)). PMID:25505343

  1. Detection, Isolation, and Characterization of Acidophilic Methanotrophs from Sphagnum Mosses

    N. Kip; Ouyang, W.J.; van der Winden, J.; Raghoebarsing, A.; van Niftrik, L.; De Pol, A.; Pan, Y.; L. Bodrossy; van Donselaar, E. G.; G. J. Reichart; M. S. M. Jetten; J. S. Sinninghe Damsté; Op den Camp, H.J.M.

    2011-01-01

    Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphapr...

  2. Detection, Isolation, and Characterization of Acidophilic Methanotrophs from Sphagnum Mosses ▿ †

    Kip, Nardy; Ouyang, Wenjing; van Winden, Julia; Raghoebarsing, Ashna; van Niftrik, Laura; Pol, Arjan; Pan, Yao; Bodrossy, Levente; Van Donselaar, Elly G.; Reichart, Gert-Jan; Jetten, Mike S. M.; Sinninghe Damsté, Jaap S.; Op Den Camp, Huub J M

    2011-01-01

    Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphapr...

  3. Isolation of hydrocarbon-degrading microorganisms in Mediterranean waters

    Abu-Elgheit, M.A.; Yusef, H.M.

    1980-01-01

    Two species or strains of Penicillium were isolated by the enrichment technique from areas exposed to oil seepage. Infrared spectroscopy revealed that, after eight days of treatment, these microorganisms were capable of degrading paraffinic and aromatic hydrocarbons in media made with Mediterranean waters. They could not, however, degrade crude oil.

  4. Isolated microorganisms from Iranian grapes and its derivatives

    S Maulani

    2012-03-01

    Full Text Available Background and Objectives: The objective of this study was to monitor the microorganisms isolated from grapes and its derivative traditional products produced in Iran.Material and Methods: Four kinds of grapes cultivated summer of 2010 in vineyard of Takestan and also grape derived products from Shahrod, Hamedan and Takestan were used for this study. The samples were cultured in specific media to isolate the microorganisms that might grow on or pollute the products.Results: Species of bacteria and fungi isolated from 4 kinds of grapes cultivated in Takestan graveyards and also from 2 kinds of derived traditional products; grape sap and sour grape (abe-ghure locally named, were taken from Takestan, Shahrod and Hamedan cities. Also, bacteria Bacillus spp., Micrococcus spp., Clostridium spp., and fungus of Penicillium spp., and Aspergillus spp. were isolated.Conclusion: The isolated bacteria were common microorganisms that grow in soil or in the organic fertilizer and may appear from the environments that samples were collected. These bacteria were not pathogenic to human. The fungus isolated from the grapes may harm humans as they produce toxin. The results suggested that bacterial diversity on grapes and its derived traditional products are expected to be monitored and described in all Iranian graveyards as Iran has been known as one of the world’s biggest grape producers.

  5. Color-Removal by Microorganisms Isolated from Human Hands

    Tsukasa Ito

    2013-08-01

    Full Text Available Microorganisms are essential for human life. Microorganisms decompose the carbon compounds in dead animals and plants and convert them into carbon dioxide. Intestinal bacteria assist in food digestion. Some vitamins are produced by bacteria that live in the intestines. Sewage and industrial wastewater are treated by activated sludge composed of microbial communities. All of these are due to the ability of microbes to produce many enzymes that can degrade chemicals. How do teachers make students understand that microorganisms are always associated with humans, and that microorganisms have the ability to degrade chemicals? The presence of microorganisms on humans can be shown by incubating agar plates after they are touched by the hands of students. The ability of microorganisms to degrade chemicals can be shown by an analytical measurement of the degradation of chemicals. When the chemicals are dyes (colorants in water, microbial activity on degradation of dyes can be demonstrated by observing a decreasing degree of color as a result of the enzymatic activity (e.g., azoreductase. Dyes are widely used in the textile, food, and cosmetic industries. They are generally resistant to conventional biological wastewater treatment systems such as the activated sludge process (4. The discharge of wastewater containing dye pollutes surface water. The ability of microorganisms to decolorize and degrade dyes has been widely investigated to use for bioremediation purposes (5. The goal of this tip is to understand the presence of bacteria on human skin and the ability of bacteria to degrade colorant chemicals (decolorization. In this tip, students first cultivate and isolate bacteria on their hands, and then examine potential decolorization activity of each bacterium by observing the degree of color of the liquid in tubes in which bacteria isolated from students’ hands were inoculated. Decolorization activity of bacterial isolates from human skin has been

  6. Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates.

    López, M J; Nichols, N N; Dien, B S; Moreno, J; Bothast, R J

    2004-03-01

    Acid pretreatment of lignocellulosic biomass releases furan and phenolic compounds, which are toxic to microorganisms used for subsequent fermentation. In this study, we isolated new microorganisms for depletion of inhibitors in lignocellulosic acid hydrolysates. A sequential enrichment strategy was used to isolate microorganisms from soil. Selection was carried out in a defined mineral medium containing a mixture of ferulic acid (5 mM), 5-hydroxymethylfurfural (5-HMF, 15 mM), and furfural (20 mM) as the carbon and energy sources, followed by an additional transfer into a corn stover hydrolysate (CSH) prepared using dilute acid. Subsequently, based on stable growth on these substrates, six isolates--including five bacteria related to Methylobacterium extorquens, Pseudomonas sp, Flavobacterium indologenes, Acinetobacter sp., Arthrobacter aurescens, and one fungus, Coniochaeta ligniaria--were chosen. All six isolates depleted toxic compounds from defined medium, but only C. ligniaria C8 (NRRL 30616) was effective at eliminating furfural and 5-HMF from CSH. C. ligniaria NRRL 30616 may be useful in developing a bioprocess for inhibitor abatement in the conversion of lignocellulosic biomass to fuels and chemicals. PMID:12908085

  7. Isolation and evaluation of microorganisms for MEOR process; Yuyo biseibutsu no tansaku to hyoka

    Taguchi, M.; Asaumi, H.; Yonebayashi, E. [Japan National Oil Corp., Tokyo (Japan)

    1998-10-30

    JNOC has been carrying out isolation of microorganisms for MEOR since 1988. This process strongly depends on abilities of microorganisms. To increase temperature criterion for MEOR, a survey of thermophilic microorganisms has been carried out. As a result, five microorganisms which can survive at 80-85 degree C and produce gas and/or show emulsification were isolated. (author)

  8. Antibacterial Effect of Copper on Microorganisms Isolated from Bovine Mastitis

    Reyes-Jara, Angelica; Cordero, Ninoska; Aguirre, Juan; Troncoso, Miriam; Figueroa, Guillermo

    2016-01-01

    The antimicrobial properties of copper have been recognized for several years; applying these properties to the prevention of diseases such as bovine mastitis is a new area of research. The aim of the present study was to evaluate in vitro the antimicrobial activity of copper on bacteria isolated from subclinical and clinical mastitis milk samples from two regions in Chile. A total of 327 microorganisms were recovered between March and September 2013, with different prevalence by sample origin (25 and 75% from the central and southern regions of Chile, respectively). In the central region, Escherichia coli and coagulase negative Staphylococci (CNS) were the most frequently detected in clinical mastitis cases (33%), while in the southern region S. uberis, S. aureus, and CNS were detected with frequencies of 22, 21, and 18%, respectively. Antibiotic susceptibility studies revealed that 34% of isolates were resistant to one or more antibiotics and the resistance profile was different between bacterial species and origins of isolation of the bacteria. The minimum inhibitory concentration of copper (MIC-Cu) was evaluated in all the isolates; results revealed that a concentration as low as 250 ppm copper was able to inhibit the great majority of microorganisms analyzed (65% of isolates). The remaining isolates showed a MIC-Cu between 375 and 700 ppm copper, and no growth was observed at 1000 ppm. A linear relationship was found between the logarithm of viable bacteria number and time of contact with copper. With the application of the same concentration of copper (250 ppm), CNS showed the highest tolerance to copper, followed by S. uberis and S. aureus; the least resistant was E. coli. Based on these in vitro results, copper preparations could represent a good alternative to dipping solutions, aimed at preventing the presence and multiplication of potentially pathogenic microorganisms involved in bovine mastitis disease. PMID:27199953

  9. Antibacterial Effect of Copper on Microorganisms Isolated from Bovine Mastitis.

    Reyes-Jara, Angelica; Cordero, Ninoska; Aguirre, Juan; Troncoso, Miriam; Figueroa, Guillermo

    2016-01-01

    The antimicrobial properties of copper have been recognized for several years; applying these properties to the prevention of diseases such as bovine mastitis is a new area of research. The aim of the present study was to evaluate in vitro the antimicrobial activity of copper on bacteria isolated from subclinical and clinical mastitis milk samples from two regions in Chile. A total of 327 microorganisms were recovered between March and September 2013, with different prevalence by sample origin (25 and 75% from the central and southern regions of Chile, respectively). In the central region, Escherichia coli and coagulase negative Staphylococci (CNS) were the most frequently detected in clinical mastitis cases (33%), while in the southern region S. uberis, S. aureus, and CNS were detected with frequencies of 22, 21, and 18%, respectively. Antibiotic susceptibility studies revealed that 34% of isolates were resistant to one or more antibiotics and the resistance profile was different between bacterial species and origins of isolation of the bacteria. The minimum inhibitory concentration of copper (MIC-Cu) was evaluated in all the isolates; results revealed that a concentration as low as 250 ppm copper was able to inhibit the great majority of microorganisms analyzed (65% of isolates). The remaining isolates showed a MIC-Cu between 375 and 700 ppm copper, and no growth was observed at 1000 ppm. A linear relationship was found between the logarithm of viable bacteria number and time of contact with copper. With the application of the same concentration of copper (250 ppm), CNS showed the highest tolerance to copper, followed by S. uberis and S. aureus; the least resistant was E. coli. Based on these in vitro results, copper preparations could represent a good alternative to dipping solutions, aimed at preventing the presence and multiplication of potentially pathogenic microorganisms involved in bovine mastitis disease. PMID:27199953

  10. Community of thermoacidophilic and arsenic resistant microorganisms isolated from a deep profile of mine heaps.

    Casas-Flores, S; Gómez-Rodríguez, E Y; García-Meza, J V

    2015-12-01

    Soluble arsenic (As) in acidic feed solution may inhibit the copper (Cu) bioleaching process within mine heaps. To clarify the effect of soluble arsenic on the live biomass and bioxidative activity in heaps, toxicological assays were performed using a synthetic feed solution given by a mine company. The microorganisms had previously been isolated from two heap samples at up to 66 m depth, and cultured using specific media for chemolithotrophic acidophiles (pH 1-2) and moderate thermophiles (48°C), for arsenic tolerance assay. The four media with the highest biomass were selected to assay As-resistance; one culture (Q63h) was chosen to assay biooxidative activity, using a heap sample that contained chalcopyrite and covellite. We found that 0.5 g/L of As does not affect living biomass or biooxidative activity on Cu sulfides, but it dissolves Cu, while As precipitates as arsenic acid (H3AsO4·½H2O). The arsenic tolerant community, as identified by 16S rDNA gene sequence analysis, was composed of three main metabolic groups: chemolithotrophs (Leptospirillum, Sulfobacillus); chemolithoheterotrophs and organoheterotrophs as Acidovorax temperans, Pseudomonas alcaligenes, P. mendocina and Sphingomonas spp. Leptospirillum spp. and S. thermosulfidooxidans were the dominant taxa in the Q63-66 cultures from the deepest sample of the oldest, highest-temperature heap. The results indicated arsenic resistance in the microbial community, therefore specific primers were used to amplify ars (arsenic resistance system), aio (arsenite oxidase), or arr (arsenate respiratory reduction) genes from total sample DNA. Presence of arsB genes in S. thermosulfidooxidans in the Q63-66 cultures permits H3AsO4-As(V) detoxification and strengthens the community's response to As. PMID:26283066

  11. A Novel Method Isolated Microorganisms in Soil Granule

    Liu Bao-ping; Xiang Wen-sheng; Wang Hong-yan; Fu Shi-cong

    2012-01-01

    A novel method isolated microorganisms in soil granule was built. The key steps included: repeated elutriation of soil by sterilized water, inoculation on the plates with the elutriated sediments, incubation of the plates and isolation of the actinomycetes by using selected culture medium. We formulated that most microflora included the dominant actinomycetes in the soil were carried away with the sterilized water in the elutriation procedure, some rare actinomycetes and few other microflora included bacteria were remained in the elutriated sediments, the other microflora were excluded to grew into colonies on the plates by using selective culture medium for actinomycetes in the elutriated sediments. Results showed the supposition. Non-streptomycete actinomycetes were isolated both from black soil samples from Chinese northeast area and compost samples from Chinese central area. Soil fungi in granule were isolated by using the selective conditions to favor fungi. The results showed that the method was effective

  12. Coaggregation occurs between microorganisms isolated from different environments.

    Stevens, Michael R E; Luo, Ting L; Vornhagen, Jay; Jakubovics, Nicholas S; Gilsdorf, Janet R; Marrs, Carl F; Møretrø, Trond; Rickard, Alexander H

    2015-11-01

    Coaggregation, the specific recognition and adherence of different microbial species, is thought to enhance biofilm formation. To date, no studies have focused on the ability of microorganisms isolated from a broad range of environments to coaggregate with each other and it is unclear whether coaggregation promotes the transmission of microorganisms between environmental niches. We aimed to evaluate the coaggregation ability of 29 bacteria and one fungus, isolated from a range of different environments, and to characterize the cell-surface polymers that mediate coaggregation between selected pairs. Strains were categorized as belonging to one of the four microbial archetypes: aquatic, broad environment, human opportunistic pathogen or human oral. A total of 23 of the 30 strains (77%) coaggregated with at least one other and 21/30 (70%) coaggregated with strains belonging to other archetypes. Nasopharyngeal bacteria belonging to the human opportunistic pathogen archetype showed the least number of coaggregations, and five Haemophilus influenzae strains did not coaggregate. Protease and sugar treatments indicated that coaggregation between strains of different archetypes was often mediated by lectin-saccharide interactions (9 of 15 evaluated pairs). In conclusion, coaggregation can occur between taxonomically disparate species isolated from discrete environments. We propose that these organisms be labeled as 'cross-environment coaggregating organisms'. The ability to coaggregate may aid species to colonize non-indigenous biofilms. PMID:26475462

  13. Isolation of cultivable microorganisms from Polish notes and coins.

    Kalita, Michal; Palusińska-Szysz, Marta; Turska-Szewczuk, Anna; Wdowiak-Wróbel, Sylwia; Urbanik-Sypniewska, Teresa

    2013-01-01

    The potential role of currency in the spread of pathogenic microflora has been evaluated in many countries. In this study Polish paper notes and the coins in general circulation were assayed for the presence of cultivable bacteria and fungi. Bacterial isolates identification was based on cultural and biochemical characters and by comparison of the 16S rRNA gene sequence. Fungal isolates were recognized with biochemical and morphological criteria. Coagulase-negative staphylococci, (43.6% of the total bacterial count) including Staphylococcus saprophyticus, S. epidermidis, and S. hominis, and Enteroccus spp. (30.8% of the total bacterial count), i.e. E.faecalis, E.faecium and E. durans, were the most numerous bacterial contamination. Penicillium spp., and Aspergillus spp. were the most frequently detected moulds whereas Candida spp. was the most frequent yeast isolated from currency. A visible dependence between the banknote denomination, the physical condition of paper currency, and the number of bacteria and fungi was found. The overall count of bacteria isolated from currency was thousand-fold higher than that of fungal isolates. The total amount of bacteria and fungi recovered from the coins was approximately 2.7-fold lower than that isolated from the notes. In summary, the Polish currency notes were found to be contaminated mainly with commensal bacteria and fungi while the opportunistic pathogenic microorganisms Escherichia coli, Pseudomonas stutzeri and C. albicans were detected at a low frequency. PMID:24459833

  14. Removal and Recovery of Uranium using Microorganisms Isolated from North American Uranium Deposits

    Takehiko Tsuruta

    2007-01-01

    Some attempts were made to remove and recover uranium that may be present in nuclear fuel effluents and mine tailings using microorganisms isolated from North American uranium deposits. To establish which microorganisms accumulate the most uranium, hundreds strains of microorganisms were screened. Of these strains of microorganisms tested, extremely high uranium accumulating ability was found in some bacteria isolated from North American uranium deposits. These bacterial strains, such as Arth...

  15. Enhanced Productivity of a Lutein-Enriched Novel Acidophile Microalga Grown on Urea

    Carlos Vilchez

    2010-12-01

    Full Text Available Coccomyxa acidophila is an extremophile eukaryotic microalga isolated from the Tinto River mining area in Huelva, Spain. Coccomyxa acidophila accumulates relevant amounts of b-carotene and lutein, well-known carotenoids with many biotechnological applications, especially in food and health-related industries. The acidic culture medium (pH < 2.5 that prevents outdoor cultivation from non-desired microorganism growth is one of the main advantages of acidophile microalgae production. Conversely, acidophile microalgae growth rates are usually very low compared to common microalgae growth rates. In this work, we show that mixotrophic cultivation on urea efficiently enhances growth and productivity of an acidophile microalga up to typical values for common microalgae, therefore approaching acidophile algal production towards suitable conditions for feasible outdoor production. Algal productivity and potential for carotenoid accumulation were analyzed as a function of the nitrogen source supplied. Several nitrogen conditions were assayed: nitrogen starvation, nitrate and/or nitrite, ammonia and urea. Among them, urea clearly led to the best cell growth (~4 ´ 108 cells/mL at the end of log phase. Ammonium led to the maximum chlorophyll and carotenoid content per volume unit (220 mg·mL-1 and 35 mg·mL-1, respectively. Interestingly, no significant differences in growth rates were found in cultures grown on urea as C and N source, with respect to those cultures grown on nitrate and CO2 as nitrogen and carbon sources (control cultures. Lutein accumulated up to 3.55 mg·g-1 in the mixotrophic cultures grown on urea. In addition, algal growth in a shaded culture revealed the first evidence for an active xanthophylls cycle operative in acidophile microalgae.

  16. Strategies for the isolation of microorganisms responsible for polyphosphate accumulation

    Several strategies were used to isolate organisms involved in the uptake and subsequent release of inorganic phosphate from waste water sludge. These included direct staining for polyphosphates (polyP), growing in 32P inorganic phosphate followed by autoradiography, resistance to dicyclohexyl carbodiimide (DCCD), an ATPase inhibitor, and isolation on the basis of the buoyant density of the cell. Among those microorganisms isolated, three were identified as Acinetobacter Iwoffii, A. calcoaceticus and Pseudomonas vesicularis. The P. vesicularis culture had 31% of phosphate as polyP. 31P NMR analysis of the whole cells revealed the presence of polyP when the cultures were grown aerobically to the late stationary phase and its subsequent loss during anaerobic incubation. Loss of polyP was also associated with a decrease in buoyant density of the cell. In the presence of DCCD, there was a decrease in the polyP peak, but a substantial increase in the sugar phosphates which is consistent with a hypothesis that polyP is used as a reserve energy source. P. vesicularis cells showed a two-fold increase in the level of polyphosphatase during early stationary phase, but a thirty-fold increase in polyphosphate kinase activity during late stationary phase. This increased enzyme activity is consistent with the increased polyP synthesis during the late stationary phase. 31 refs., 7 figs., 3 tabs

  17. Isolation of microorganisms from red pepper powder and their radiosensitivity

    From samples of red pepper powder sold in Korea were isolated and identified 13 species of molds (Aspergillus amsteodami, Asp. chevalieri, Asp. clavatus, Asp. Flavus, Asp. janus var. effusus, Asp. oryzae, Asp. oryzae var. brevis, Asp. repens, Asp. sydowi, Asp. thomii, Asp. tubingensis, Penicillium thomii, Scopulariopsis brevicaulis) and 5 species of bacteria (Bacillus pumilus, Bac. subtilis, Micrococus luteus, M. varians, Staphylococcus aureus). Radiosensitivity of these microorganisms was examined to give D10 values of 14-41 krad for molds, 11-24 krad for bacterial vegetative cells and 190-250 krad for bacterial spores. The red pepper powder was contaminated with 2-3x102 mold counts/g and 3-6x107 bacterial counts/g, which would be sufficiently destroyed by irradiating 200 krad r-rays. (Author)

  18. IDENTIFICATION OF Pseudomonas spp. AS AMOEBA-RESISTANT MICROORGANISMS IN ISOLATES OF Acanthamoeba

    Vinicius José Maschio

    2015-02-01

    Full Text Available Acanthamoeba is a “Trojan horse” of the microbial world. The aim of this study was to identify the presence of Pseudomonas as an amoeba-resistant microorganism in 12 isolates of Acanthamoeba. All isolates showed the genus Pseudomonas spp. as amoeba-resistant microorganisms. Thus, one can see that the Acanthamoeba isolates studied are hosts of Pseudomonas.

  19. Genomic insights into a new acidophilic, copper-resistant Desulfosporosinus isolate from the oxidized tailings area of an abandoned gold mine.

    Mardanov, Andrey V; Panova, Inna A; Beletsky, Alexey V; Avakyan, Marat R; Kadnikov, Vitaly V; Antsiferov, Dmitry V; Banks, David; Frank, Yulia A; Pimenov, Nikolay V; Ravin, Nikolai V; Karnachuk, Olga V

    2016-08-01

    Microbial sulfate reduction in acid mine drainage is still considered to be confined to anoxic conditions, although several reports have shown that sulfate-reducing bacteria occur under microaerophilic or aerobic conditions. We have measured sulfate reduction rates of up to 60 nmol S cm(-3) day(-1) in oxidized layers of gold mine tailings in Kuzbass (SW Siberia). A novel, acidophilic, copper-tolerant Desulfosporosinus sp. I2 was isolated from the same sample and its genome was sequenced. The genomic analysis and physiological data indicate the involvement of transporters and additional mechanisms to tolerate metals, such as sequestration by polyphosphates. Desulfosporinus sp. I2 encodes systems for a metabolically versatile life style. The genome possessed a complete Embden-Meyerhof pathway for glycolysis and gluconeogenesis. Complete oxidation of organic substrates could be enabled by the complete TCA cycle. Genomic analysis found all major components of the electron transfer chain necessary for energy generation via oxidative phosphorylation. Autotrophic CO2 fixation could be performed through the Wood-Ljungdahl pathway. Multiple oxygen detoxification systems were identified in the genome. Taking into account the metabolic activity and genomic analysis, the traits of the novel isolate broaden our understanding of active sulfate reduction and associated metabolism beyond strictly anaerobic niches. PMID:27222219

  20. Radiosensitivity of microorganisms isolated from radioactive waste repository

    Bacteria are much more diverse in comparison with plants and animals. Among the huge diversity of bacteria there are microorganisms capable to grow at or adapt to extreme conditions. Some bacteria grow at temperature above 100 deg. C, other thrive in high salinity such as 20-30% NaCl, still others can live at pH lower than 2 or pH higher than 10 or exhibit high radioresistance. Due to accelerated disarmament and nuclear energy activities, large quantities of radioactive waste and nuclear fuel are being placed in storage areas. The awareness the microbial activity could potentially effect the performance of a system for geological disposal of radioactive waste gained acceptance in the early to middle 1980s, and as a result many countries considering developing programmes to study and quantify microbial effects in terms of their own particular disposal concept. A new research programme was launched in 1995, sponsored by the NATO Scientific Affairs Division, for studying microbiologically influenced corrosion (MIC) in radioactive waste repositories and spent fuel storage area. Our programme concerns several major items that may have an influence on the mobility of radionuclides in direct and indirect ways thereby being important for the safety analysis. They are uptake and transport of radionuclides by microorganisms, diversity and distribution of subterranean bacteria in typical repository environments, environmental limitation and bacterial activity, effect of bacterial activity on the mobility of radionuclides, microbial gas production and consumption, bacterial recombination of hydrogen and oxygen from radiolysis, and microbially induced corrosion of waste canister. The Permian Boda Claystone Formation in the Mecsek Hill area is being considered for high level waste disposal. Groundwater, technical water, rock and surface samples were collected aseptically from different depths. The quantitative and qualitative analysis of aerobic and anaerobe isolates were

  1. Radiation-resistant micro-organisms isolated from textiles

    Towels from private homes and public offices and underwear contaminated by being used by employees at a public health laboratory were examined for occurrence of radiation-resistant bacteria and fungi. Three different methods were used for isolation of the most resistant organisms, one with multiplication of the microbial population prior to an irradiation used for selection, and two witout this multiplication and with the organisms placed on membrane filters or in situ on the textiles, respectively. A total of 44 different strains were isolated. Differences in the three methods used for selection of the most radiation-resistant microorganisms were not reflected in the results. 16 pigmentproducing Gram-positive cocci, tentatively classified as Micrococcus radiodurans, were the most radiation-resistant and were isolated in about half of the examinations. Other Gram-positive cocci, nonspore forming rods, some Nocardia and Candida parapsilosis strains and two Bacillus strains constituted the rest of the collection. With few exceptions dose-response curves for the strains were upward convex. D-6 values determined to be between 1.5 megarad for the most radiation sensitive, a Candida, and 5.7 megarad for the most resistant, tentatively classified as M. radiodurans. The D-6 values for the Bacillus strains were in both cases 1.8 megarad, consistent with a D-value of 0.3 megarad. The same resistance is reported to be the maximum resistance for B. pumilus, strain E601, commonly used as reference strain in the literature on radiation sterilization of medical devices and supplies. (author)

  2. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron.

    Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2015-08-01

    The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma. PMID:25896560

  3. Genome Sequence of the Acidophilic Bacterium Acidocella sp. Strain MX-AZ02

    Servín-Garcidueñas, Luis E.; Garrett, Roger A.; Amils, Ricardo;

    2013-01-01

    Here, we report the draft genome sequence of Acidocella sp. strain MX-AZ02, an acidophilic and heterotrophic alphaproteobacterium isolated from a geothermal lake in western Mexico.......Here, we report the draft genome sequence of Acidocella sp. strain MX-AZ02, an acidophilic and heterotrophic alphaproteobacterium isolated from a geothermal lake in western Mexico....

  4. PCR-mediated detection of acidophilic, bioleaching-associated bacteria.

    De Wulf-Durand, P; Bryant, L J; Sly, L I

    1997-01-01

    The detection of acidophilic microorganisms from mining environments by culture methods is time consuming and unreliable. Several PCR approaches were developed to amplify small-subunit rRNA sequences from the DNA of six bacterial phylotypes associated with acidic mining environments, permitting the detection of the target DNA at concentrations as low as 10 fg.

  5. Isolation of a New Broad-Host-Range IncQ-Like Plasmid, pTC-F14, from the Acidophilic Bacterium Acidithiobacillus caldus and Analysis of the Plasmid Replicon

    Gardner, Murray N.; Deane, Shelly M.; Rawlings, Douglas E

    2001-01-01

    A moderately thermophilic (45 to 50°C), highly acidophilic (pH 1.5 to 2.5), chemolithotrophic Acidithiobacillus caldus strain, f, was isolated from a biooxidation process used to treat nickel ore. Trans-alternating field electrophoresis analysis of total DNA from the A. caldus cells revealed two plasmids of approximately 14 and 45 kb. The 14-kb plasmid, designated pTC-F14, was cloned and shown by replacement of the cloning vector with a kanamycin resistance gene to be capable of autonomous re...

  6. Draft genome sequence of extremely acidophilic bacterium Acidithiobacillus ferrooxidans DLC-5 isolated from acid mine drainage in Northeast China

    Peng Chen

    2015-12-01

    Full Text Available Acidithiobacillus ferrooxidans type strain DLC-5, isolated from Wudalianchi in Heihe of Heilongjiang Province, China. Here, we present the draft genome of strain DLC-5 which contains 4,232,149 bp in 2745 contigs with 57.628% GC content and includes 32,719 protein-coding genes and 64 tRNA-encoding genes. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. JNNH00000000.1.

  7. Diversity of cultivable microorganisms isolated from ixodid ticks

    Rudolf, Ivo; Šikutová, Silvie; Hubálek, Zdeněk; Masaříková, J.; Švec, P.; Nováková, D.; Sedláček, I.; Mendel, Jan; Papoušek, Ivo

    Istanbul: International Union of Microbiological Societies, 2008. s. 153-154. [International Congress of Bacteriology and Applied Microbiology /12./. 05.08.2008-09.08.2008, Istanbul] R&D Projects: GA AV ČR KJB600930613 Institutional research plan: CEZ:AV0Z60930519 Keywords : ticks * diversity * microorganisms * bacteria * sequencing Subject RIV: EE - Microbiology, Virology http://www.iums2008.org/BAM_pdf.pdf

  8. Diversity of microorganisms isolated from the soil sample surround Chroogomphus rutilus in the Beijing region

    Wang, P; Liu, Y; Yin, Y; Jin, Haojie; Wang, S; Xu, F; Zhao, S; Geng, X

    2011-01-01

    isolates were selected for sequencing and phylogenetic analysis, based on their growth characteristics and colony morphology. Using 16S rRNA gene se-quence analysis, the bacterial isolates were divided into two monophyletic clusters which had significant hits to the genera Bacillus and Pseudomonas......, respectively. Using internal transcribed spacer (ITS) sequence analysis, fungal isolates were divided into four monophyletic clusters: Penicillium, Trichoderma, Mortierella, and Bionectria. Moreover, the phylogenetic diversity of these isolates was analysed. The results indicated that numerous microorganisms...

  9. Isolation of microorganisms capable of degrading isoquinoline under aerobic conditions.

    Aislabie, J; Rothenburger, S; Atlas, R M

    1989-01-01

    Isoquinoline-degrading microbial cultures were isolated from oil- and creosote-contaminated soils. The establishment of initial enrichment cultures required the use of emulsified isoquinoline. Once growth on isoquinoline was established, isoquinoline emulsification was no longer required for utilization of isoquinoline as the sole source of carbon and nitrogen by these cultures. An isoquinoline-degrading Acinetobacter strain was isolated from one of the enrichment cultures. The degradation of...

  10. Isolation of Microorganisms Using Sub-Micrometer Constrictions

    Tandogan, Nil; Abadian, Pegah N.; Epstein, Slava; Aoi, Yoshiteru; Goluch, Edgar D.

    2014-01-01

    We present an automated method for isolating pure bacterial cultures from samples containing multiple species that exploits the cell's own physiology to perform the separation. Cells compete to reach a chamber containing nutrients via a constriction whose cross-sectional area only permits a single cell to enter, thereby blocking the opening and preventing other cells from entering. The winning cell divides across the constriction and its progeny populate the chamber. The devices are passive a...

  11. Radiation resistance of some microorganisms isolated from irradiated herbs

    Three types of Egyptian medicinal herbs, sweet marjoram, spearmint and thyme were used in this study. The tested herbs were exposed to gamma radiation doses ranging from 1.0 to 10,0 kGy. The sublethal doses of radioresistant molds ranged from 1.0 to 2.0 kGy and the sublethal doses of radioresistant bacteria ranged from 7.0 to 8.0 kGy. The radioresistant molds isolated from sweet marjoram and spearmint herbs were identified as Aspergillus, whereas that isolated from thyme was identified as Aspergillus ochraceus. The radioresistant bacteria isolated from sweet marjoram, spearmint and thyme were identified as Bacillus megaterium, B.pantothenticus and B. brevis, respectively. All the radioresistant molds exhibited an exponential response. The D15value of Asp. ochraceus was 0.33 kGy, while that of Asp. niger were 0.45 and 0.5 kGy, respectively. All the bacterial species exhibited non-exponential response. The D10 -values for B.megaterium, B. pantothenticus and B. brevis were found to be 2.58, 3.0 and 1.63 kGy, respectively

  12. Microorganisms Isolated from the Patients in the Intensive Care Unit and Their Antibiotic Susceptibilities

    Harun Aðca

    2013-01-01

    Full Text Available  Aim:  It was aimed to investigate the microorganisms and their antibiotic susceptibilities isolated from various clinical specimens sent from the intensive care unit of our hospital between January 2010 and June 2011.Material and Method: Standard microbiological methods were assessed for the isolation of bacteria from clinical specimens. Antimicrobial susceptibilites were investigated according to the Clinical and Laboratory Standards Institute (CLSI standards by disc diffusion method. Result: In 236 samples microorganisms were isolated through 538 various clinical specimens. The most common isolated microorganisms are Acinetobacter baumanii 49 (%21, Pseudomonas aeruginosa 49 (%21, Escherichia coli 47 (%20, Candida spp. 22 (%9 and Enterococcus spp. 21 (%9 respectively. One of the most common isolated bacteria Acinetobacter baumanii strains are extremely resistant and their suscepitibilty against amikacin and imipenem were both found to be %8. While in Pseudomonas aeruginosa strains were found to be %80 susceptibile to amikacin, susceptibility to ciprofloxacin was %35. The highest resistance in E.coli was 87% against ampicillin and the least resistance was against imipeneme as 5%. While no resistance against  vancomycin in Enterococci, penicillin resistance was found to be 86%. Penicillin resistance in S. aureus was found 86% and oxacillin resistance was found 43%. Discussion: Knowledge of microorganism variety and the profile of antibiotic resistance in hospitals, especially in the ICU which is risky, against infectious disease is important in rational antibotic usage and infection control precautions.

  13. Removal and Recovery of Uranium using Microorganisms Isolated from North American Uranium Deposits

    Takehiko Tsuruta

    2007-01-01

    Full Text Available Some attempts were made to remove and recover uranium that may be present in nuclear fuel effluents and mine tailings using microorganisms isolated from North American uranium deposits. To establish which microorganisms accumulate the most uranium, hundreds strains of microorganisms were screened. Of these strains of microorganisms tested, extremely high uranium accumulating ability was found in some bacteria isolated from North American uranium deposits. These bacterial strains, such as Arthrobacter and Bacillus sp., can accumulate about 2500 µmol uranium per gram dry wt. of microbial cells within one hour. These microbial cells can remove uranium from the uranium refining waste water with high efficiency. These microbial cells can also accumulate thorium as well as uranium with high efficiency. The microbial cells immobilized with polyacrylamide gel have excellent handling characteristics and can be used repeatedly in the adsorption-desorption cycles. These new microorganisms isolated from uranium deposits can be used as an adsorbing agent for the removal of the nuclear fuel elements, which may be present in nuclear fuel effluents, mine tailings and other waste sources.

  14. Biosorption of uranium by microorganisms isolated from soil

    The quantitative distribution of microbial species of different layers (surface layer, 1.5 m, 2.5 m, 3.5 m) isolated from intended as a low-level radioactive landfill site has been investigated using traditional plate colony count. Bio-sorption of U using two kinds of fungi isolated from 3.5 m layer is studied. Solution pH value, bio-sorption time, adsorbent dosage, U initial concentration and temperature are researched. The results showed that F1, F2 had marked absorption effect on U, but the interaction regular pattern between F1, F2 and U was different. The maximum removal rate 90% was gained for F1 at pH5, while the maximum removal rate 97% was got for F2 at pH4; The kinetics adsorption model of both F1 and F2 followed pseudo-second order model. Biosorption equilibrium of F1 was established in 2 h. While F2 needed 12 h to establish bio-sorption equilibrium; In the studied concentration range of uranium, the isotherms biosorption process of F1 conformed to Freundlich equation, while F2 fitted well to Langmuir equation. The adsorption rate of F1 presented a slow pace of decline in the range of 50-600 ℃. (authors)

  15. Taxonomical study of yeasts and yeast-like microorganisms isolated from the denitrification unit biocenosis

    Elena Sláviková

    2014-08-01

    Full Text Available A set of 8 strains of yeasts and yeast-like microorganisms was isolated from the denitrification unit biocenosis fed with a synthetic medium containing methanol as a carbon source. These strains were identified as Candida boidinii, C. maltosa, Rhodotorula rubra and Trichosporon cutaneum.

  16. Taxonomical study of yeasts and yeast-like microorganisms isolated from the denitrification unit biocenosis

    Elena Sláviková; Anna Grabińska-Łoniewska

    2014-01-01

    A set of 8 strains of yeasts and yeast-like microorganisms was isolated from the denitrification unit biocenosis fed with a synthetic medium containing methanol as a carbon source. These strains were identified as Candida boidinii, C. maltosa, Rhodotorula rubra and Trichosporon cutaneum.

  17. Biodegradation of oil refinery residues using mixed-culture of microorganisms isolated from a landfarming

    Eduardo Beraldo de Morais; Sâmia Maria Tauk-Tornisielo

    2009-01-01

    In this study, the potential for using an inoculum composed of a mixed-culture of bacteria and fungi, isolated from a landfarming at the Paulínia Oil Refinery, Brazil, to degrade oil residues generated in the process of petroleum refinement was investigated. The isolation of these microorganisms was carried out beforehand, assuming that they would be better adapted to petroleum hydrocarbons, as the landfarming consisted of an area impacted by the deposit of such compounds. The Bartha and Pram...

  18. Microorganisms Isolated from the Patients in the Intensive Care Unit and Their Antibiotic Susceptibilities

    Harun Aðca

    2013-01-01

     Aim:  It was aimed to investigate the microorganisms and their antibiotic susceptibilities isolated from various clinical specimens sent from the intensive care unit of our hospital between January 2010 and June 2011.Material and Method: Standard microbiological methods were assessed for the isolation of bacteria from clinical specimens. Antimicrobial susceptibilites were investigated according to the Clinical and Laboratory Standards Institute (CLSI) standards by disc diffusion me...

  19. Susceptibility Pattern of Microorganisms Isolated by Percutaneous Needle Biopsy in Nonbacteremic Pyogenic Vertebral Osteomyelitis

    Desoutter, Sophie; Cottier, Jean-Philippe; Ghout, Idir; Issartel, Bertrand; Dinh, Aurélien; Martin, Arnaud; Carlier, Robert; Bernard, Louis

    2015-01-01

    Pyogenic vertebral osteomyelitis (VO) is diagnosed according to several lines of evidence: clinical, biological, radiological, and histological. Definitive diagnosis requires the isolation of a causative pathogen or histological confirmation. The aim of our study was to describe the microorganisms isolated by percutaneous needle biopsy (PNB) and to analyze their susceptibility patterns, in order to assess the possibility of empirical combination therapy for the treatment of nonbacteremic pati...

  20. Acidophilic, Heterotrophic Bacteria of Acidic Mine Waters

    Wichlacz, Paul L.; Unz, Richard F.

    1981-01-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and ...

  1. Diversity of Microorganisms Isolated from the Soil Sample surround Chroogomphus rutilus in the Beijing Region

    Peng Wang, Yu Liu, Yonggang Yin, Haojie Jin, Shouxian Wang, Feng Xu, Shuang Zhao, Xiaoli Geng

    2011-01-01

    Full Text Available Artificially cultivating Chroogomphus rutilus is too inefficient to be commercially feasible. Furthermore, isolating C. rutilus mycelia in the wild is difficult. Thus, it is important to determine the natural habitat of its fruiting body. This study focused on the ecology of the C. rutilus habitat to isolate and classify beneficial microorganisms that could affect its growth, which could be used in future research on artificial cultivation. In total, 342 isolates were isolated from soil samples collected around a C. rutilus colony in the Beijing region. Of these, 22 bacterial and 14 fungal isolates were selected for sequencing and phylogenetic analysis, based on their growth characteristics and colony morphology. Using 16S rRNA gene sequence analysis, the bacterial isolates were divided into two monophyletic clusters which had significant hits to the genera Bacillus and Pseudomonas, respectively. Using internal transcribed spacer (ITS sequence analysis, fungal isolates were divided into four monophyletic clusters: Penicillium, Trichoderma, Mortierella, and Bionectria. Moreover, the phylogenetic diversity of these isolates was analysed. The results indicated that numerous microorganisms were present in C. rutilus habitat. This was the first reported examination of the microbiological ecology of C. rutilus.

  2. Antimicrobial Sensitivity Pattern of Microorganisms Isolated from Vaginal Infections at a Tertiary Hospital in Bangalore, India

    Nagalakshmi Narayana-Swamy

    2015-03-01

    Full Text Available Background: The vagina contains dozens of microbiological species in variable quantities and is, therefore, considered a complex environment. Among the microorganisms, bacteria have important repercussions on women’s health. The present study was conducted especially to elucidate this type of vaginal isolates and their sensitivity towards currently used antibiotics. Methods: This was a retrospective study conducted at the Department of Obstetrics and Gynaecology, Sapthagiri Hospital, Bangalore, India from January 2012 to December 2013. All symptomatic women who had a high vaginal swab taken for culture and sensitivity testing were included in this study. Antibiotic susceptibility was tested using disc diffusion method (modified Kirby-Bauer method. The antibiotic sensitivity patterns of isolated microorganisms were studied. Results: Out of 200 patients, 95% had positive vaginal cultures. Fifteen types of microorganisms were isolated. The highest frequency of infection was observed at the age of 20-30 years, followed by 41-50 years and 31-40 years, and a low frequency of infection was observed above 50 years of age. The most prevalent pathogen was Escherichia coli, followed by Streptococcus agalactiae and diphtheroids with equal incidence. Among the antibiotics tested, isolated pathogens were completely resistant to nalidixic acid and highly sensitive to meropenem and imepenem. Conclusion: The high prevalence of gynaecological infections demands that patients with symptoms undergo thorough investigation with cultures and sensitivity essays. Changes in treatment protocols are required to treat vaginal infections effectively.

  3. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.

    Navarro, Claudio A; von Bernath, Diego; Jerez, Carlos A

    2013-01-01

    Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI), which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each of these

  4. Grazing of acidophilic bacteria by a flagellated protozoan.

    McGinness, S; Johnson, D B

    1992-01-01

    A biflagellated protozoan was isolated from an acidic drainage stream located inside a disused pyrite mine. The stream contained copious amounts of "acid streamer" bacterial growths, and the flagellate was observed in situ apparently grazing the streamer bacteria. The protozoan was obligately acidophilic, growing between pH 1.8 and 4.5, but not at pH 1.6 or 5.0, with optimum growth between pH 3 and 4. It was highly sensitive to copper, molybdenum, silver, and uranium, but tolerated ferrous and ferric iron up to 50 and 25 mM, respectively. In the laboratory, the protozoan was found to graze a range of acidophilic bacteria, including the chemolithotrophs Thiobacillus ferrooxidans, Leptospirillum ferrooxidans, and the heterotroph Acidiphilium cryptum. Thiobacillus thiooxidans and Thiobacillus acidophilus were not grazed. Filamentous growth of certain acidophiles afforded some protection against being grazed by the flagellate. In mixed cultures of T. ferrooxidans and L. ferrooxidans, the protozoan isolate displayed preferential grazing of the former. The possibility of using acidophilic protozoa as a means of controlling bacteria responsible for the production of acid mine drainage is discussed. PMID:24192830

  5. Isolation of microorganisms involved in reduction of crystalline iron(III oxides in natural environments

    Tomoyuki eHori

    2015-05-01

    Full Text Available Reduction of crystalline Fe(III oxides is one of the most important electron sinks for organic compound oxidation in natural environments. Yet a limited number of isolates makes it difficult to understand physiology and ecological impact of the microorganisms involved. Here, two-staged cultivation was implemented to selectively enrich and isolate crystalline iron(III reducers in soils and sediments. Firstly, iron reducers were enriched and other untargeted eutrophs were depleted by two-year successive culture on a crystalline ferric iron oxide (i.e., goethite, lepidocrocite, hematite, or magnetite as electron acceptor. Fifty-eight out of 136 incubation conditions allowed the continued existence of microorganisms as confirmed by PCR amplification. High-throughput Illumina sequencing based on 16S rRNA genes revealed that the enrichment cultures on each of the ferric iron oxides contained bacteria belonging to the Deltaproteobacteria (mainly Geobacteraceae, followed by Firmicutes and Chloroflexi, which also comprised most of the operational taxonomic units (OTUs identified. The Venn diagrams indicated that the core OTUs enriched with all of the iron oxides were dominant in the Geobacteraceae. Secondly, 38 enrichment cultures including novel microorganisms were transferred to soluble-iron(III media in order to stimulate proliferation of the enriched iron reducers. Through extinction dilution-culture and single colony isolation, six strains within the Deltaproteobacteria were finally obtained; five strains belonged to the genus Geobacter and one strain to Pelobacter. These isolates had 94.8–98.1% sequence similarities of 16S rRNA genes to cultured relatives. All the isolates were able to grow on acetate and ferric iron but their physiological characteristics differed considerably in terms of growth rate. The results demonstrate the successful enrichment and isolation of novel iron(III reducers that were able to thrive by reducing highly

  6. Isolation and screening of microorganisms with potential for biotransformation of terpenic substrates

    Mário César Jucoski Bier

    2011-10-01

    Full Text Available The objective of the present work was to isolate and select strains with potential to perform the biotransformation of terpenic substrates. Microorganisms obtained from a collection culture and also isolated from a natural source of terpene substrate were tested. Seventeen strains were selected by their resistance to terpenes in potato dextrose agar containing up to 1% of limonene or α-pinene and β-pinene (1:1. Subsequently, 10 strains were selected by their capacity of using these terpenes as sole carbon source in a mineral medium. The biotransformation capacity of these strains was tested and the products obtained were identified by GC-MS.

  7. Isolation of a microorganism capable of degrading poly-(L-lactide).

    Ikura, Yoko; Kudo, Toshiaki

    1999-10-01

    The isolation of poly-(L-lactide) (PLA)-degrading microorganisms was investigated. A PLA-degrading actinomycete, strain No. 3118, was isolated and tentatively identified as a member of the genus Amycolatopsis. The optimum conditions for degradation of PLA were 43 degrees C at about pH 7 in a mineral salt medium with a low concentration of organic nutrients (0.002% yeast extract). The original shape of PLA film (Mw=2.3x10(5) after sterilization, 20 &mgr;m thick) disappeared within 2 weeks. Lactic acid was detected after the film was incubated with culture supernatant. PMID:12501367

  8. Isolation of microorganisms with chinitase, protease and keratinase activities from petroleum contaminated soils

    Cervantes-Gonzalez, E.; Rojas-Avelizapa, L.; Cruz-Camarillo, R. [1 Escuela Nacional de Ciencias Biologicas Departamento de Microbiologia, Laboratorio de Enzimas Microbianas, Mexico City (Mexico); Rojas-Avelizapa, N.G. [Programa de Biotecnologia del Petroleo, Instituto Mexicano del Petroleo, Mexico City (Mexico)

    2005-07-01

    The most important part in one process of bio-remediation are the microorganisms with the capacities to degrade target compounds, this research is based to find microorganisms hydrocarbon-clastic with enzyme activities to degrade chicken feather (keratinolytic activity) which is also a contaminant and has been used such as sorbent of petroleum and can be composted after the oil spill cleanup is complete, the isolation was also to degrade shrimp waste (chitinolitic and proteolitic activity) which is waste material that can be used in compost or such as sorbent of petroleum too. We isolated mesofilic aerobic microorganisms from mexican soils located in Tabasco, Mexico. We achieved to isolate 105 bacteria from 10 soils, 90% was Bacillus Gram (-) which are common in soils and all were hydrocarbon-clastic, only 7 different bacteria had protease and chitinase activity and 12 bacteria had keratinase activity. So we found three fungi and one actinomycete with capacity to degrade hydrocarbons and presence of chitinase activity. The results of growth and enzyme activities in liquid culture showed that the protease activity was produced between 18 and 48 h in almost all bacteria, the chitinase activity started at 12 h but was slight , only 0.5 U/ml, and the keratinase activity was produced after 6 h of incubation and there were correlation between logarithmic phase of growth and enzymes production. With this study we showed the existence of some enzyme activities from microorganisms that live in hostile habitats. This, can be useful in bio-treatment soils by the possible use of this type of residues that can be bio-degraded at the same time that the hydrocarbons increasing the speed or the quality of cleanup in soils. (authors)

  9. Isolation of microorganisms with chinitase, protease and keratinase activities from petroleum contaminated soils

    The most important part in one process of bio-remediation are the microorganisms with the capacities to degrade target compounds, this research is based to find microorganisms hydrocarbon-clastic with enzyme activities to degrade chicken feather (keratinolytic activity) which is also a contaminant and has been used such as sorbent of petroleum and can be composted after the oil spill cleanup is complete, the isolation was also to degrade shrimp waste (chitinolitic and proteolitic activity) which is waste material that can be used in compost or such as sorbent of petroleum too. We isolated mesofilic aerobic microorganisms from mexican soils located in Tabasco, Mexico. We achieved to isolate 105 bacteria from 10 soils, 90% was Bacillus Gram (-) which are common in soils and all were hydrocarbon-clastic, only 7 different bacteria had protease and chitinase activity and 12 bacteria had keratinase activity. So we found three fungi and one actinomycete with capacity to degrade hydrocarbons and presence of chitinase activity. The results of growth and enzyme activities in liquid culture showed that the protease activity was produced between 18 and 48 h in almost all bacteria, the chitinase activity started at 12 h but was slight , only 0.5 U/ml, and the keratinase activity was produced after 6 h of incubation and there were correlation between logarithmic phase of growth and enzymes production. With this study we showed the existence of some enzyme activities from microorganisms that live in hostile habitats. This, can be useful in bio-treatment soils by the possible use of this type of residues that can be bio-degraded at the same time that the hydrocarbons increasing the speed or the quality of cleanup in soils. (authors)

  10. Isolation of marine microorganisms from the Peniche coast with high biotechnological potential

    Clélia Neves Afonso

    2014-06-01

    Full Text Available The marine environment represents more than two thirds of our planet and although it is a possible source of natural products with bioactivity, is still largely unexplored, which represents a huge window of opportunity. During the last decades Marine Biotechnology has focused some of their efforts in the search and study of marine bacteria and fungi. These microorganisms have been a valuable tool in several scientific studies, basically because they grow with relative ease, achieving considerable densities of cell mass. This is an important feature because these organisms also produce bioactive compounds, with applications in the pharmaceutical, cosmetic and food area, among others. Such compounds frequently arise from defense mechanisms or as response to stress. Annually, a growing number of new compounds from marine organisms are discovered, characterized and identified, and from these most are originated from bacteria and fungi. In the search process for natural products with proven activity, it is generally accepted that one should have a diverse and largely unexplored repertoire of microorganisms, as it enlarges the possibility of obtaining new and diverse metabolites. In the present work, results concerning the isolation of microorganisms of marine origin, obtained from the water and sediments of the Peniche coast, are shown. The main objective is to create a database of isolated microorganisms, and at the same time obtaining a basic characterization, with some interesting features from the biotechnology point of view, on viability of long-term of their cultures, as well as prepare raw extracts for bioactivity screening. Also basic microbiology characteristics will be register: gram stain, catalase, oxidase, use of different sugars and amino acids as a carbon source and on different concentrations growths of salinity, relatively to 20 strains already isolated.

  11. Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria

    Lo, I [University of California, Berkeley; Denef, Vincent [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Goltsman, Daniela [University of California, Berkeley; DiBartolo, Genevieve [U.S. Department of Energy, Joint Genome Institute; Tyson, Gene W. [University of California, Berkeley; Allen, Eric E. [University of California, Berkeley; Ram, Rachna J. [University of California, Berkeley; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Richardson, Paul [U.S. Department of Energy, Joint Genome Institute; Thelen, Michael P. [University of California, Berkeley; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2007-01-01

    Microbes comprise the majority of extant organisms, yet much remains to be learned about the nature and driving forces of microbial diversification. Our understanding of how microorganisms adapt and evolve can be advanced by genome-wide documentation of the patterns of genetic exchange, particularly if analyses target coexisting members of natural communities. Here we use community genomic data sets to identify, with strain specificity, expressed proteins from the dominant member of a genomically uncharacterized, natural, acidophilic biofilm. Proteomics results reveal a genome shaped by recombination involving chromosomal regions of tens to hundreds of kilobases long that are derived from two closely related bacterial populations. Inter-population genetic exchange was confirmed by multilocus sequence typing of isolates and of uncultivated natural consortia. The findings suggest that exchange of large blocks of gene variants is crucial for the adaptation to specific ecological niches within the very acidic, metalrich environment. Mass-spectrometry-based discrimination of expressed protein products that differ by as little as a single amino acid enables us to distinguish the behaviour of closely related coexisting organisms. This is important, given that microorganisms grouped together as a single species may have quite distinct roles in natural systems1-3 and their interactions might be key to ecosystem optimization. Because proteomic data simultaneously convey information about genome type and activity, strainresolved community proteomics is an important complement to cultivation-independent genomic (metagenomic) analysis4-6 of microorganisms in the natural environment.

  12. Bioleaching in brackish waters--effect of chloride ions on the acidophile population and proteomes of model species.

    Zammit, Carla M; Mangold, Stefanie; Jonna, Venkateswara rao; Mutch, Lesley A; Watling, Helen R; Dopson, Mark; Watkin, Elizabeth L J

    2012-01-01

    High concentrations of chloride ions inhibit the growth of acidophilic microorganisms used in biomining, a problem particularly relevant to Western Australian and Chilean biomining operations. Despite this, little is known about the mechanisms acidophiles adopt in order to tolerate high chloride ion concentrations. This study aimed to investigate the impact of increasing concentrations of chloride ions on the population dynamics of a mixed culture during pyrite bioleaching and apply proteomics to elucidate how two species from this mixed culture alter their proteomes under chloride stress. A mixture consisting of well-known biomining microorganisms and an enrichment culture obtained from an acidic saline drain were tested for their ability to bioleach pyrite in the presence of 0, 3.5, 7, and 20 g L(-1) NaCl. Microorganisms from the enrichment culture were found to out-compete the known biomining microorganisms, independent of the chloride ion concentration. The proteomes of the Gram-positive acidophile Acidimicrobium ferrooxidans and the Gram-negative acidophile Acidithiobacillus caldus grown in the presence or absence of chloride ions were investigated. Analysis of differential expression showed that acidophilic microorganisms adopted several changes in their proteomes in the presence of chloride ions, suggesting the following strategies to combat the NaCl stress: adaptation of the cell membrane, the accumulation of amino acids possibly as a form of osmoprotectant, and the expression of a YceI family protein involved in acid and osmotic-related stress. PMID:22124722

  13. Microorganisms isolated from subsurface environments and their importance for astrobiology and theoretical biology

    Sergiu Fendrihan

    2010-07-01

    Full Text Available Objective: the article is a review of the very controversial microbial life in subsurfaceenvironments like caves, rocks, mines, deep subsurface water and springs, in very special extremeenvironments. Material and Methods: the methods of isolation of the bacteria and archaea fromsubsurface environments are discussed too and analysed. Results: the results of years of investigationsshowed the possiblilities of adaptation to extreme environments and survival on very long periods oftimes, even geological eras, of some microorganisms. The inner biochemical, physical, biological andenergetic mechanisms are still not elucidated, even some features were discovered. Conclusion: anextensive and intensive work of cooperation in this field of activity is required to discover themechanisms of long term survival in extreme conditions of the subsurface microorganisms.

  14. PATHOGENIC MICROORGANISMS ISOLATED FROM PERIWINKLES IN CREEKS SOUTH-SOUTH OF NIGERIA

    P. NWIYI

    2013-07-01

    Full Text Available One hundred and twenty pieces of periwinkle were obtain each from Yenogoa and Oron Creek. The periwinkle were of two genera namely: Pachymelania aurita obtained from Oronk Creek located in Akwa-Ibom State, while the Tympanotonus fuscatus notably a brackish water habitat was obtained from Yenogoa in Bayelsa state both in south-south Nigeria. Evaluation of possible microbiological isolate was carried out according to Cowan and Steel’s Manuel for medical Bacterial identification. The Creek in Yenogoa presented high level of Coliform count 2.6×105cfug-1 while the Oron Creek had an unacceptable load of Salmonella count 6×106cfug-1. The total bacterial count was highest in Oron Creek 1.46×108cfug-1 from Tympanotonus fuscatus. The microorganisms isolated from both Creeks were Esherichia coli, proteus sp, salmonella sp, pseudomonas sp and Enterobacter sp. Proteus sp was the least isolated while Salmonella sp was the highest.

  15. Isolation and Identification of Microorganisms in JSC Mars-1 Simulant Soil

    Mendez, Claudia; Garza, Elizabeth; Gulati, Poonam; Morris, Penny A.; Allen, Carlton C.

    2005-01-01

    Microorganisms were isolated and identified in samples of JSC Mars-1, a Mars simulant soil. JSC Mars-1 is an altered volcanic ash from a cinder cone south of Mauna Kea, Hawaii. This material was chosen because of its similarity to the Martian soil in physical and chemical composition. The soil was obtained by excavating 40 cm deep in a vegetated area to prevent contamination. In previous studies, bacteria from this soil has been isolated by culturing on different types of media, including minimal media, and using biochemical techniques for identification. Isolation by culturing is successful only for a small percentage of the population. As a result, molecular techniques are being employed to identify microorganisms directly from the soil without culturing. In this study, bacteria were identified by purifying and sequencing the DNA encoding the 16s ribosomal RNA (16s rDNA). This gene is well conserved in species and demonstrates species specificity. In addition, biofilm formation, an indicator of microbial life, was studied with this soil. Biofilms are microbial communities consisting of microbes and exopolysaccharides secreted by them. This is a protective way of life for the microbes as they are more resistant to environmental pressures.

  16. Determination of the cellulolytic activities of microorganisms isolated from poultry litter for sawdust degradation

    Akpomie O.OF

    2013-03-01

    Full Text Available Cellulolytic activities of bacterial and fungal isolates obtained from poultry droppings were determined using the ability of each isolate to produce clear zones on Carboxyl Methyl Cellulose Agar plates. The bacterial isolates were Klebsiella, Streptococcus, Celulomonas, Escherichia coli and Micrococus species. The cellulolytic counts ranged from 5.02 x 104 + 3.42 to 7.20 x 109 + 6.12 cfu/g. The cellulolytic activities of the bacterial isolates ranged from 0.04 to 0.26 iu/m with Cellulomonas having the highest cellulose activity. The fungal isolates were Aspergillus niger, Mucor mucedo, Trichoderma sp. and Penicllium chrysogenum with cellulose activities of 0.24 + 0.021 0.19 + 0.031, 0.23 + 0.05 and 0.23 + 0.028iu/ml respectively. All the isolates were able to degrade the sawdust to varying extent. The percentage degradation was highest with Micrococcus sp. (78.20% and least with Trichoderma sp. (65.83%. The study shows that is a potential source of cellulolytic microorganisms which could be employed in the degradation of sawdust.

  17. Assessment of lipolytic activity of isolated microorganisms from the savannah of the Tocantins

    Marysa de Kássia Guedes Soares

    2015-10-01

    Full Text Available Current study assesses the biodiversity and selects lipase-producer microorganisms with industrial interest, from the savannah of the state of Tocantins, Brazil. Seventeen pequi microorganisms (Caryocar brasiliense were isolated in the decomposition stage and 35 microorganisms were retrieved from the soil fraction under the collected pequi. Yarrowia lypolitica strain was used as positive control in all assays. The 52 strains were subjected to tests in a solid medium with Tween 20 for checking halos formed by crystals, indicating lipase production by inoculated strains. Another test to confirm lipase producers was conducted in microplates with liquid medium and enriched with p-nitrophenyl palmitate (pNPP monitored at 410 ηm. The AS16 and AP5 strains showed the highest activity for test conditions, namely, 0.072 and 0.067 U mL-1 respectively. Rates were higher than the lipase activity of Yarrowia lypolitica(0.052 U mL-1, a reference strain in current assay.

  18. Isolation and Characterization of Four Gram-Positive Nickel-Tolerant Microorganisms from Contaminated Sediments

    Van Nostrand, J. D.; Khijniak, T. V.; Gentry, T. J.; Novak, M. T.; Sowder, A. G.; Zhou, J. Z.; Bertsch, P. M.; Morris, P. J.

    2007-01-01

    Microbial communities from riparian sediments contaminated with high levels of Ni and U were examined for metal-tolerant microorganisms. Isolation of four aerobic Ni-tolerant, Gram-positive heterotrophic bacteria indicated selection pressure from Ni. These isolates were identified as Arthrobacter oxydans NR-1, Streptomyces galbus NR-2, Streptomyces aureofaciens NR-3, and Kitasatospora cystarginea NR-4 based on partial 16S rDNA sequences. A functional gene microarray containing gene probes for functions associated with biogeochemical cycling, metal homeostasis, and organic contaminant degradation showed little overlap among the four isolates. Fifteen of the genes were detected in all four isolates with only two of these related to metal resistance, specifically to tellurium. Each of the four isolates also displayed resistance to at least one of six antibiotics tested, with resistance to kanamycin, gentamycin, and ciprofloxacin observed in at least two of the isolates. Further characterization of S. aureofaciens NR-3 and K. cystarginea NR-4 demonstrated that both isolates expressed Ni tolerance constitutively. In addition, both were able to grow in higher concentrations of Ni at pH 6 as compared with pH 7 (42.6 and 8.5 mM Ni at pH 6 and 7, respectively). Tolerance to Cd, Co, and Zn was also examined in these two isolates; a similar pH-dependent metal tolerance was observed when grown with Co and Zn. Neither isolate was tolerant to Cd. These findings suggest that Ni is exerting a selection pressure at this site for metal-resistant actinomycetes.

  19. A proton shelter inspired by the sugar coating of acidophilic archaea

    Xiumei Wang; Bei’er Lv; Guixin Cai; Long Fu; Yuanzi Wu; Xiang Wang; Bin Ren; Hongwei Ma

    2012-01-01

    The acidophilic archaeons are a group of single-celled microorganisms that flourish in hot acid springs (usually pH < 3) but maintain their internal pH near neutral. Although there is a lack of direct evidence, the abundance of sugar modifications on the cell surface has been suggested to provide the acidophiles with protection against proton invasion. In this study, a hydroxyl (OH)-rich polymer brush layer was prepared to mimic the OH-rich sugar coating. Using a novel pH-sensitive dithioacet...

  20. Enhanced Degradation of Melanoidin and Caramel in Biomethanated Distillery Spentwash by Microorganisms Isolated from Mangroves

    Nagaraj Naik

    2010-03-01

    Full Text Available Four microorganisms isolated from samples of mangrove areas were found to be promising and significantly decolorized spent wash. Incidentally, they showed higher phenol degradation and COD reductionas well. The individual colorants imparting the color to spent wash were fractionated. Degradation of melanoidin and caramel was confirmed by UV and FTIR spectral analysis. Decrease in OD of melanoidin and caramel at their 8 max and appearance of new peaks and changes in functional groups of compounds in the IR spectra with respect to control suggest their degradation. K1 was the best melanoidin (77% as well as caramel (54% degrader followed by other three isolates (Ku3, Rtb2 and EB4.

  1. Exploring the multiple biotechnological potential of halophilic microorganisms isolated from two Argentinean salterns.

    Nercessian, Débora; Di Meglio, Leonardo; De Castro, Rosana; Paggi, Roberto

    2015-11-01

    The biodiversity and biotechnological potential of microbes from central Argentinean halophilic environments have been poorly explored. Salitral Negro and Colorada Grande salterns are neutral hypersaline basins exploded for NaCl extraction. As part of an ecological analysis of these environments, two bacterial and seven archaeal representatives were isolated, identified and examined for their biotechnological potential. The presence of hydrolases (proteases, amylases, lipases, cellulases and nucleases) and bioactive molecules (surfactants and antimicrobial compounds) was screened. While all the isolates exhibited at least one of the tested activities or biocompounds, the species belonging to Haloarcula genus were the most active, also producing antimicrobial compounds against their counterparts. In general, the biosurfactants were more effective against olive oil and aromatic compounds than detergents (SDS or Triton X-100). Our results demonstrate the broad spectrum of activities with biotechnological potential exhibited by the microorganisms inhabiting the Argentinean salterns and reinforce the importance of screening pristine extreme environments to discover interesting/novel bioactive molecules. PMID:26369649

  2. Investigation and Isolation of Cellulase-Producing microorganisms in the Red Sea

    Fatani, Siham

    2016-05-01

    Cellulolytic microorganisms are considered to be key players in biorefinery, especially for the utilization of plant biomass. These organisms have been isolated from various environments. The Red Sea is one of the seas with high biodiversity and a unique environment, characterized by high water temperature and high salinity . However, there is little information regarding cellulases in Red Sea environments. The aim of the present study is to evaluate the Red Sea as a gene resource for microbial cellulase. I first surveyed microbial cellulases in the Red Sea using a method called metagenomes, and then investigated their abundance and diversity. My survey revealed that the Red Sea biome has a substantial abundance and a wide range of cellulase enzymes with substantial abundance, when compared with those in other environments. Next, I tried to isolate cellulase-active microorganisms from the Red Sea and I successfully obtained seven strains of four different taxonomic groups. These strains showed a similarity of 99% identity to Aspergillus ustus, 99% to Staphylococcus pasteuri, 99% to Bacillus aerius and 99% to Bacillus subtilis. The enzyme assay I conducted, revealed that these strains actually secreted active cellulases. These results suggest that the Red Sea environment can be, indeed, an excellent gene resource of microbial cellulases.

  3. Corrosion of aluminum alloy 2024 by microorganisms isolated from aircraft fuel tanks.

    McNamara, Christopher J; Perry, Thomas D; Leard, Ryan; Bearce, Ktisten; Dante, James; Mitchell, Ralph

    2005-01-01

    Microorganisms frequently contaminate jet fuel and cause corrosion of fuel tank metals. In the past, jet fuel contaminants included a diverse group of bacteria and fungi. The most common contaminant was the fungus Hormoconis resinae. However, the jet fuel community has been altered by changes in the composition of the fuel and is now dominated by bacterial contaminants. The purpose of this research was to determine the composition of the microbial community found in fuel tanks containing jet propellant-8 (JP-8) and to determine the potential of this community to cause corrosion of aluminum alloy 2024 (AA2024). Isolates cultured from fuel tanks containing JP-8 were closely related to the genus Bacillus and the fungi Aureobasidium and Penicillium. Biocidal activity of the fuel system icing inhibitor diethylene glycol monomethyl ether is the most likely cause of the prevalence of endospore forming bacteria. Electrochemical impedance spectroscopy and metallographic analysis of AA2024 exposed to the fuel tank environment indicated that the isolates caused corrosion of AA2024. Despite the limited taxonomic diversity of microorganisms recovered from jet fuel, the community has the potential to corrode fuel tanks. PMID:16522539

  4. Susceptibility Pattern of Microorganisms Isolated by Percutaneous Needle Biopsy in Nonbacteremic Pyogenic Vertebral Osteomyelitis.

    Desoutter, Sophie; Cottier, Jean-Philippe; Ghout, Idir; Issartel, Bertrand; Dinh, Aurélien; Martin, Arnaud; Carlier, Robert; Bernard, Louis

    2015-12-01

    Pyogenic vertebral osteomyelitis (VO) is diagnosed according to several lines of evidence: clinical, biological, radiological, and histological. Definitive diagnosis requires the isolation of a causative pathogen or histological confirmation. The aim of our study was to describe the microorganisms isolated by percutaneous needle biopsy (PNB) and to analyze their susceptibility patterns, in order to assess the possibility of empirical combination therapy for the treatment of nonbacteremic patients without resorting to PNB. Based on a French prospective multicenter study of 351 patients with VO, we compiled clinical, biological, and radiological findings for 101 patients with microbiologically confirmed VO. Based on antibiotic susceptibility testing of PNB isolated pathogens, the suitabilities of four antibiotic combinations were analyzed: ofloxacin plus rifampin, levofloxacin plus rifampin, ciprofloxacin plus clindamycin, and ciprofloxacin plus amoxicillin-clavulanate. The main causative pathogens identified were coagulase-negative Staphylococcus spp. (26% of isolates), followed by Staphylococcus aureus (21%), Streptoccocus spp. (13%), and enterobacteria (21%). Empirical antibiotic combination therapy was effective in nearly 75% of cases, and the different combinations gave similar results, except for ofloxacin-rifampin, which was effective in only 58% of cases. A "perfect" empirical antibiotic therapy does not exist. If PNB is not possible, a combination of a fluoroquinolone with clindamycin or rifampin can be used, but the high risk of microbiological failure does not allow the exclusion of PNB. (This study has been registered with EudraCT, number 2006-000951-18, and ClinicalTrials.gov, number NCT00764114.). PMID:26438497

  5. Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile Ferrovum

    Sophie Roxana Ullrich

    2016-05-01

    Full Text Available Acid mine drainage (AMD, associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus Ferrovum are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of Ferrovum has proven to be extremely difficult and has so far only been successful for the designated type strain Ferrovum myxofaciens P3G. In this study, the genomes of two novel strains of Ferrovum (PN-J185 and Z-31 derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of Ferrovum sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G. Phylogenomic scrutiny suggests that the four strains represent three Ferrovum species that cluster in two groups (1 and 2. Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the F. myxofaciens strains (group 1 appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed

  6. Screening for isolation and characterisation of microorganisms and enzymes with usefull potential for degradation of celullose and hemicelluose

    José Fernando Mikán Venegas; Diana Edith Castellanos Suárez

    2007-01-01

    A practical, applied microbiology and biotechnology model is presented for isolating and characterising micro-organisms, this being a tiny part of the immense biodiversity of tropical soils. These microbes' ability to produce depolymerases and accessory hydrolases degrading xyloglucans-pectates or glucoarabinoxylans is analysed to evaluate their potential for degrading plant material. We propose culturing micro-organisms on the cell wall as main carbon source and as hydrolitic activity induce...

  7. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms

    Mark eDopson

    2014-04-01

    Full Text Available All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Acidophilic microorganisms have an optimum growth pH < 3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.

  8. Degradation of 14C-parathion 'in vitro' by microorganisms isolated from a gley humic soil

    It was determined 'in vitro' the degradation of Parathion by a bacterium and a fungus isolated from a sample of Gley Humic soil previously treated with repeated applications of the insecticide. In a qualitative colorimetric assay hydrolisis of parathion to p-nitrophenol just the bacterium gave a positive answer. In quantitative assays of 14C-parathion degradation in culture media containing both microorganisms, organic solvents extractions resulted in organic and aqueous phases, which were analysed by liquid scintillation counting and thin-layer chromatography. In a mineral salts medium plus buffer, the bacterium and the fungus behaved differently from the control, because part of the 14C-insecticide was metabolized to, at least, one metabolite and besides, the microorganisms presented smaller percentages of total recovery. The largest percentage of the radio carbon recovery from the extracts of the medium containing the fungus plus extract of yeast, was obtained from the aqueous phase and the existence of other metabolite was demonstrated by chromatograms of the organic phase. (Author)

  9. Uncovering a Microbial Enigma: Isolation and Characterization of the Streamer-Generating, Iron-Oxidizing, Acidophilic Bacterium “Ferrovum myxofaciens”

    Johnson, D. Barrie; Hallberg, Kevin B.; Hedrich, Sabrina

    2014-01-01

    A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of “acid streamer” growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified “overlay” solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolat...

  10. Uptake and distribution of 137Cs and stable Cs by microorganisms isolated from mushroom substrata in the Japanese forests

    The pH values of wild mushroom substrata, the influence of pH in medium on the appearance frequencies of microorganisms from mushroom substrata, and growth and Cs uptake by several microorganisms were investigated. The results showed that the pH values of 42 mushroom substrata were slightly acidic. There was no remarkable difference in the appearance frequencies of filamentous actinomycetes and planktonic bacteria at pH 5, 6 and 7, except in the samples of mushroom substrata from Mt. Fuji. The values of Cs concentration ratio (CR) for microorganisms isolated from mushroom substrata and for mushrooms were almost the same level, suggesting that those microorganisms could take up Cs in substrata and reserve Cs in their cells. (author)

  11. Dissimilatory Sb(V) reduction by microorganisms isolated from Sb-contaminated sediment

    Dovick, M. A.; Kulp, T. R.

    2013-12-01

    this isolate exhibited Sb(V)-dependent heterotrophic growth. These results suggest that the endogenous microbial community from this Sb-contaminated site includes anaerobic microorganisms capable of obtaining energy for growth by oxidizing heterotrophic electron donors using Sb(V) as the terminal electron acceptor. Ongoing work includes identification of the isolated organism using 16S rDNA phylogenetic markers as well as an inventory of known functional genes (e.g., arrA) within this isolate that may more typically encode for As(V)-reduction. These results elucidate the potentially significant role of microbiological transformations in controlling the speciation of Sb in the environment, and may help to identify potential bioremediation strategies for Sb contaminated waters.

  12. Biodegradation of oil refinery residues using mixed-culture of microorganisms isolated from a landfarming

    Eduardo Beraldo de Morais

    2009-12-01

    Full Text Available In this study, the potential for using an inoculum composed of a mixed-culture of bacteria and fungi, isolated from a landfarming at the Paulínia Oil Refinery, Brazil, to degrade oil residues generated in the process of petroleum refinement was investigated. The isolation of these microorganisms was carried out beforehand, assuming that they would be better adapted to petroleum hydrocarbons, as the landfarming consisted of an area impacted by the deposit of such compounds. The Bartha and Pramer respirometric test was used to measure the rate of biodegradation of the hydrocarbons by the mixed-culture of microorganisms via the evolution of CO2. The results obtained with respect to the efficiency of biodegradation showed no significant differences (P>0.05, indicating no increase in the biodegradation process using the inoculum. The addition of nutrients (N, P, K also did not contribute to an increase in biodegradation of the oil residue studied.Neste estudo foi investigado o potencial de um inóculo composto de cultura mista de bactérias e fungos, isolados do landfarming da Refinaria de Paulínia, Brasil, em degradar resíduos oleosos gerados no processo de refinamento de petróleo. O isolamento desses microrganismos foi realizado previamente, supondo-se que estejam melhor adaptados aos hidrocarbonetos de petróleo uma vez que o landfarming consiste em área impactada por deposição de tais compostos. Utilizou-se o teste respirométrico de Bartha e Pramer no intuito de verificar a taxa de biodegradação dos hidrocarbonetos pela cultura mista de microrganismos através da evolução de CO2. Os resultados obtidos para a eficiência da biodegradação não apresentaram diferença estatisticamente significativa (P>0.05 indicando que não houve aumento do processo de biodegradação com o uso do inóculo. A adição de nutrientes (N, P, K tampouco contribuiu para aumentar a biodegradação do resíduo oleoso estudado.

  13. Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria

    Johnson, D. Barrie; McGinness, Stephen

    1991-01-01

    Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was note...

  14. Essential Oils of Plants as Biocides against Microorganisms Isolated from Cuban and Argentine Documentary Heritage.

    Borrego, Sofía; Valdés, Oderlaise; Vivar, Isbel; Lavin, Paola; Guiamet, Patricia; Battistoni, Patricia; Gómez de Saravia, Sandra; Borges, Pedro

    2012-01-01

    Natural products obtained from plants with biocidal activity represent an alternative and useful source in the control of biodeterioration of documentary heritage, without negative environmental and human impacts. In this work, we studied the antimicrobial activity of seven essential oils against microorganisms associated with the biodeterioration of documentary heritage. The essential oils were obtained by steam distillation. The antimicrobial activity was analyzed using the agar diffusion method against 4 strains of fungi and 6 bacterial strains isolated from repositories air and documents of the National Archive of the Republic of Cuba and the Historical Archive of the Museum of La Plata, Argentina. Anise and garlic oils showed the best antifungal activity at all concentrations studied, while oregano oil not only was effective against fungi tested but also prevented sporulation of them all. Orange sweet and laurel oils were ineffective against fungi. Clove, garlic, and oregano oils showed the highest antibacterial activity at 25% against Enterobacter agglomerans and Streptomyces sp., while only clove and oregano oils were effective against Bacillus sp. at all concentrations studied. This study has an important implication for the possible use of the natural products from plants in the control of biodeterioration of documentary heritage. PMID:23762760

  15. Influence of Natural Food Preservatives Combined with Gamma Radiation on Certain Microorganisms Isolated from Egyptian Juices

    Twelve strains were isolated from different Egyptian juices. The nine bacteria strains were identified as Micrococcus agilis, Staphylococcus aureus, S. warneri, S. epidermidis, S. auricularls, Bacillus sp., Pseudomonas aeruginosa, Citrobacter frundii, and Streptococcus pedococcus while the yeast strains were Debaryomyces sp., Kluveromyces sp .and Pichia sp. Three of the previous strains were chosen in the present work according to their common contamination in all samples and their characteristics; S. aureus represented gram positive bacteria, P. aeruginosa represented gram negative bacteria and Debaryomyces sp. to represent yeast strains. S. aureus has completely annihilated by 250 μ g/ml. of nisin, or 0.2% citric acid, or 0.15% lactic acid, or 1.2 % cinnamon or 5 kGy of gamma rays.; P. aeruginosa was destroyed by 0.3 % citric acid, or 0.3 % lactic acid, or 4 % cinnamon or 4 kGy of gamma rays, while Debaryomyces sp. was eliminated by 4 % citric acid, or 4.5 % lactic acid, or 2 % cinnamon or 7 kGy of gamma rays. Nisin alone has no effect on P. aeruginosa or Debaryomyces sp. Combined treatments have decreased both of natural preservatives and irradiation doses needed to eliminate the microorganisms contaminated the juices. S. aureus was completely eliminated by 3 kGy combined with only 25 μ g/ml. of nisin. The lethal dose decreased to 2 kGy by combination with citric, lactic acid and cinnamon at conc. 0.05%, 0.01% and 0.4 %, respectively .The dose level of gamma rays needed to eliminate P. aeruginosa decreased to 3 kGy in combination with citric acid 0.1% or with cinnamon 0.5 % and it decreased to 2 kGy by combination with lactic acid 0.1 %. In case of Debaryomyces sp the lethal dose decreased from 7 kGy to 4 kGy by combination with citric acid 1.5 % or cinnamon 1 % and to 3 kGy with lactic acid 1.5 %. Also, the combination treatment has activated the effect of nisin on both of P. aeruginosa and Debaryomyces sp. Dose level of 4 kGy combined with 200 μ g/ml. nisin

  16. Environmental factors influenting species composition of acidophilous grasslands patches in agricultural landscape

    Halas, Petr

    2012-01-01

    Roč. 20, č. 1 (2012), s. 16-27. ISSN 1210-8812 Institutional support: RVO:68145535 Keywords : acidophilous grasslands * hemeroby * patch isolation * patch area * regression trees Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geonika.cz/EN/research/ENMgr/MGR_2012_01.pdf

  17. Environmental factors influencing the species composition of acidophilous grassland patches in agricultural lanscapes

    Halas, Petr

    2012-01-01

    Roč. 20, č. 1 (2012), s. 16-27. ISSN 1210-8812 Institutional research plan: CEZ:AV0Z30860518 Keywords : acidophilous grasslands * hemeroby * patch isolation * regression trees * Bohemian-Moravian Highland Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geonika.cz/CZ/CZresearch/CZMgrArchive.html

  18. Lipase production from a novel thermo-tolerant and extreme acidophile Bacillus pumilus using palm oil as the substrate and treatment of palm oil-containing wastewater.

    Saranya, P; Sukanya Kumari, H; Prasad Rao, B; Sekaran, G

    2014-03-01

    The thermo-tolerant and extreme acidophilic microorganism Bacillus pumilus was isolated from the soil collected from a commercial edible-oil extraction industry. Optimisation of conditions for the lipase production was conducted using response surface methodology. The optimum conditions for obtaining the maximum activity (1,100 U/mL) of extremely acidic thermostable lipase were fermentation time, 96 h; pH, 1; temperature, 50 °C; and concentration of palm oil, 50 g/L. After purification, a 7.1-fold purity of lipase with specific activity of 5,173 U/mg protein was obtained. The molecular weight of the thermo-tolerant acidophilic lipase (TAL) was 55 kDa. The predominant amino acid in the TAL was glycine. The functional groups of lipase were determined by Fourier transform infrared spectroscopy. TAL exhibited enhanced activity (114 %) with dimethyl sulphoxide (20 %, v/v), and it showed a moderate activity with methanol, hexane and benzene. The optimum conditions for the treatment of palm oil in wastewater using the TAL were found to be time, 3 h; pH, 1; temperature, 50 °C with pseudo second-order kinetic constant of 1.88 × 10(-3) L mol(-1) min(-1). The Michaelis-Menten enzyme kinetic model and the nonlinear kinetic model were evaluated for the TAL. TAL established hydrolysis efficiency of 96 % for palm oil in wastewater at 50 °C. PMID:24293300

  19. Antagonistic Potential against Pathogenic Microorganisms and Hydrogen Peroxide Production of Indigenous Lactobacilli Isolated from Vagina of Chinese Pregnant Women

    HENG-YI XU; WAN-HONG TIAN; CUI-XIANG WAN; LI-JUN JIA; LAN-YIN WANG; JING YUAN; CHUN-MEI LIU; MING ZENG; HUA WEI

    2008-01-01

    Objective To investigate the indigenous lactobacilli from the vagina of pregnant women and to screen the isolates with antagonistic potential against pathogenic microorganisms. Methods The strains were isolated from pregnant women's vagina and identified using the APISOCH system. The ability of the isolates to produce hydrogen peroxide was analyzed semi-quantitatively using the TMB-HRP-MRS agar. The antagonistic effects of the isolates on pathogenic microorganisms were determined with a double layer agar plate. Results One hundred and three lactobacilli strains were isolated from 60 samples of vaginal secretion from healthy pregnant women. Among them, 78 strains could produce hydrogen peroxide, in which 68%, 80%, 80%, and 88% had antagonistic effects against Candida albicans CMCC98001, Staphylococcus aureus CMCC26003, Escherichia coli CMCC44113, and Pseudomonas aeruginosa CMCC10110, respectively. Conclusion The recovery of hydrogen peroxide-producing lactobacilli decreases with the increasing pregnant age and time. The most commonly isolated species from vagina of Chinese pregnant women are Lactobacillus acidophilus and Lactobacillus crispatus. Most of L. Acidophilus and L. Crispatus produce a high H2O2 level.

  20. Isolation and study of microorganisms from oil samples for application in Microbial Enhanced Oil Recovery

    Gudiña, Eduardo J.; Pereira, Jorge F. B.; L. R. Rodrigues; Coutinho, João A. P.; J.A. Teixeira

    2012-01-01

    Microbial Enhanced Oil Recovery (MEOR) is potentially useful to increment oil recovery from a reservoir beyond primary and secondary recovery operations using microorganisms and their metabolites. Stimulation of bacterial growth for biosurfactant production and degradation of heavy oil fractions by indigenous microorganisms can enhance the fluidity and reduce the capillary forces that retain the oil into the reservoir. MEOR offers major advantages over conventional EOR, namely low...

  1. ISOLATION AND IDENTIFICATION OF MICROORGANISMS DURING SPONTANEOUS FERMENTATION OF MAIZE [Isolasi dan Identifikasi Mikroorganisme pada Fermentasi Spontan Jagung

    Rahmawati1,2

    2013-06-01

    Full Text Available Maize was traditionally the second most common staple food in Indonesia. Conversion to maize flour has been accomplished to improve its convenience. Traditionally, maize flour is produced by soaking the kernels in water followed by grinding. It was reported that final physicochemical characteristics of the maize flour were influenced by spontaneous fermentation which occurred during soaking. This research aimed to isolate and identify important microorganisms that grew during fermentation thus a standardized starter culture can be developed for a more controlled fermentation process. Soaking of maize grits was conducted in sterile water (grits:water=1:2, w/v in a closed container at room temperature (±28ºC for 72 hours. After 0, 4, 12, 24, 36, 48, 72 hours, water and maize grits were sampled and tested for the presence of mold, yeast, and lactic acid bacteria (LAB. Isolates obtained from the spontaneous fermentation were reinoculated into the appropriate media containing starch to observe their amylolytic activity. Individual isolate was then identified; mold by slide culture method, while yeast and LAB by biochemical rapid kits, i.e. API 20C AUX and API CH50, respectively. The number of each microorganism was plotted against time to obtain the growth curve of the microorganisms during spontaneous fermentation. The microorganisms were identified as Penicillium chrysogenum, P. citrinum, A. flavus, A. niger, Rhizopus stolonifer, R.oryzae, Fusarium oxysporum, Acremonium strictum, Candida famata, Kodamaea ohmeri, Candida krusei/incospicua, Lactobacillus plantarum 1a, Pediococcus pentosaceus, L. brevis 1, L. plantarum 1b, and L. paracasei ssp paracasei 3. Four molds and one yeast were amylolytic while none of the LAB was capable of starch hydrolysis. The growth curve suggested that the amylolitic mold and yeast grew to hydrolyze starch during the course of fermentation, while the LABs benefited from the hydrolyzed products and dominated the later

  2. Influence of natural food preservatives combined with gamma radiation on certain microorganisms isolated from Egyptian Juices

    Twelve strains were isolated from different Egyptian juices. They were identified as Micrococcus agilis. Staphylococcus aureus, S. warneri, Debaryomyces sp., Pichia sp., S. epidermidis, S. auricularls, Kluveromyces sp., Bacillus sp., Pseudomonas aeruginosa, Citrobacter frundii,and Streptococcus pedococcus. Three of the previous strains were chosen in the present work according to their common contamination in all samples and their characteristics; S. aureus represented gram positive bacteria, P. aeruginosa represented gram negative bacteria and Debaryomyces sp.to represent yeast strains. S. aureus has completely annihilated by 250 μg/ml. of nisin, or 0.2% citric acid, or 0.15% lactic acid, or 1.2 % cinnamon or 5 kGy of gamma rays. P. aeruginosa was destroyed by 0.3 % citric acid, or 0.3 % lactic acid, or 4 % cinnamon or 4 kGy of gamma rays, while Debaryomyces sp. was eliminated by 4 % citric acid, or 4.5 % lactic acid, or 4 % cinnamon or 7 kGy of gamma rays. Nisin alone has no effect on P. aeruginosa or Debaryomyces sp. Combined treatments have decreased both of natural preservatives and irradiation doses needed to eliminate the microorganisms contaminated the juices. S. aureus was completely eliminated by 3 kGy combined with only 25 μg/ml. of nisin. The lethal dose decreased to 2 kGy by combination with citric, lactic acid and cinnamon at conc. 0.05%, 0.01% and 0.4 %, respectively. The dose level of gamma rays needed to eliminate P. aeruginosa decreased to 3 kGy in combination with citric acid 0.1% or with cinnamon 0.5 % and it decreased to 2 kGy by combination with lactic acid 0.1 %. In case of Debaryomyces sp the lethal dose decreased from 7 kGy to 4 kGy by combination with citric acid 1.5 % or cinnamon 1 % and to 3 kGy with lactic acid 1.5 %. Also the combination treatment has activated the effect of nisin on both of P. aeruginosa and Debaryomyces sp. Dose level 4 kGy by combination with 200 μg/ml. nisin completely inhibited their growth

  3. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil

    Strains of hydrocarbon-degrading microorganisms (bacteria and fungi) were isolated from an agricultural soil in France. In a field, a portion was treated with oily cuttings resulting from the drilling of an onshore well. The cuttings which were spread at the rate of 600 g HC m-2 contained 10% of fuel oil hydrocarbons (HC). Another part of the field was left untreated. Three months after HC spreading, HC adapted bacteria and fungi were isolated at different soil depths in the two plots and identified. The biodegradation potential of the isolated strains was monitored by measuring the degradation rate of total HC, saturated hydrocarbons, aromatic hydrocarbons and resins of the fuel. Bacteria of the genera Pseudomonas, Brevundimonas, Sphingomonas, Acinetobacter, Rhodococcus, Arthrobacter, Corynebacterium and fungi belonging to Aspergillus, Penicillium, Beauveria, Acremonium, Cladosporium, Fusarium, and Trichoderma were identified. The most active strains in the assimilation of saturates and aromatics were Arthrobacter sp., Sphingomonas spiritivorum, Acinetobacter baumanii, Beauveria alba and Penicillum simplicissimum. The biodegradation potential of the hydrocarbon utilizing microorganisms isolated from polluted or unpolluted soils were similar. In laboratory pure cultures, saturated HC were more degraded than aromatic HC, whereas resins were resistant to microbial attack. On an average, individual bacterial strains were more active than fungi in HC biodegradation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  4. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil

    Chaineau, C.H.; Dupont, J.; Bury, E.; Oudot, J. [Museum National d`Histoire Naturelle, Laboratoire de Cryptogamie, 12 rue Buffon, 75005 Paris (France); Morel, J. [Ecole Nationale Superieure d`Agronomie et des Industries Alimentaires de Nancy, Laboratoire Sols et Environnement, INRA, 2 avenue de la Foret de Haye, B.P. 172, F-54505 Vandoeuvre-les-Nancy (France)

    1999-03-09

    Strains of hydrocarbon-degrading microorganisms (bacteria and fungi) were isolated from an agricultural soil in France. In a field, a portion was treated with oily cuttings resulting from the drilling of an onshore well. The cuttings which were spread at the rate of 600 g HC m{sup -2} contained 10% of fuel oil hydrocarbons (HC). Another part of the field was left untreated. Three months after HC spreading, HC adapted bacteria and fungi were isolated at different soil depths in the two plots and identified. The biodegradation potential of the isolated strains was monitored by measuring the degradation rate of total HC, saturated hydrocarbons, aromatic hydrocarbons and resins of the fuel. Bacteria of the genera Pseudomonas, Brevundimonas, Sphingomonas, Acinetobacter, Rhodococcus, Arthrobacter, Corynebacterium and fungi belonging to Aspergillus, Penicillium, Beauveria, Acremonium, Cladosporium, Fusarium, and Trichoderma were identified. The most active strains in the assimilation of saturates and aromatics were Arthrobacter sp., Sphingomonas spiritivorum, Acinetobacter baumanii, Beauveria alba and Penicillum simplicissimum. The biodegradation potential of the hydrocarbon utilizing microorganisms isolated from polluted or unpolluted soils were similar. In laboratory pure cultures, saturated HC were more degraded than aromatic HC, whereas resins were resistant to microbial attack. On an average, individual bacterial strains were more active than fungi in HC biodegradation

  5. Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil

    Chaineau, C.H.; Dupont, J.; Bury, E.; Oudot, J. [Museum National d' Histoire Naturelle, Laboratoire de Cryptogamie, 12 rue Buffon, 75005 Paris (France); Morel, J. [Ecole Nationale Superieure d' Agronomie et des Industries Alimentaires de Nancy, Laboratoire Sols et Environnement, INRA, 2 avenue de la Foret de Haye, B.P. 172, F-54505 Vandoeuvre-les-Nancy (France)

    1999-03-09

    Strains of hydrocarbon-degrading microorganisms (bacteria and fungi) were isolated from an agricultural soil in France. In a field, a portion was treated with oily cuttings resulting from the drilling of an onshore well. The cuttings which were spread at the rate of 600 g HC m{sup -2} contained 10% of fuel oil hydrocarbons (HC). Another part of the field was left untreated. Three months after HC spreading, HC adapted bacteria and fungi were isolated at different soil depths in the two plots and identified. The biodegradation potential of the isolated strains was monitored by measuring the degradation rate of total HC, saturated hydrocarbons, aromatic hydrocarbons and resins of the fuel. Bacteria of the genera Pseudomonas, Brevundimonas, Sphingomonas, Acinetobacter, Rhodococcus, Arthrobacter, Corynebacterium and fungi belonging to Aspergillus, Penicillium, Beauveria, Acremonium, Cladosporium, Fusarium, and Trichoderma were identified. The most active strains in the assimilation of saturates and aromatics were Arthrobacter sp., Sphingomonas spiritivorum, Acinetobacter baumanii, Beauveria alba and Penicillum simplicissimum. The biodegradation potential of the hydrocarbon utilizing microorganisms isolated from polluted or unpolluted soils were similar. In laboratory pure cultures, saturated HC were more degraded than aromatic HC, whereas resins were resistant to microbial attack. On an average, individual bacterial strains were more active than fungi in HC biodegradation. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  6. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles.

    Pradhan, Debabrata; Mishra, Debaraj; Kim, Dong J; Ahn, Jong G; Chaudhury, G Roy; Lee, Seoung W

    2010-03-15

    Bioleaching studies were conducted to evaluate the recovery of metal values from waste petroleum catalyst using two different acidophilic microorganisms, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Various leaching parameters such as contact time, pH, oxidant concentration, pulp densities, particle size, and temperature were studied in detail. Activation energy was evaluated from Arrhenius equation and values for Ni, V and Mo were calculated in case of both the acidophiles. In both cases, the dissolution kinetics of Mo was lower than those of V and Ni. The lower dissolution kinetics may have been due to the formation of a sulfur product layer, refractoriness of MoS(2) or both. Multivariate statistical data were presented to interpret the leaching data in the present case. The significance of the leaching parameters was derived through principle component analysis and multi linear regression analyses for both iron and sulfur oxidizing bacteria. PMID:19879686

  7. INVESTIGATION OF ANTIMICROBIAL ACTIVITY COMBINED PREPARATIONS FOR CLINICAL STRAINS OF MICROORGANISMS ISOLATED FROM PATIENTS WITH BACTERIAL VAGINIT

    Aslanian M. A.

    2015-12-01

    Full Text Available The problem of bacterial vaginit in some cases the cause of severe infectious diseases genitalia of the fetus and newborn, which can impair the health of future generations. It is noted that the treatment of antibacterial agents observed numerous negative side effects- reducing the biochemical activity of the intestinal microflora, abuse microbiota, leading to the development of dysbiosis, increasing the number of resistant strains of pathogens, the risk of allergic reaction sand immunological disorders. A study was conducted towards finding effective combinations of drugs from different pharmacological groups means to create a combination of drugs. The aim of the study was to develop and explore and Flamini combination of miramistin combined medicines to treat bacterial vaginit. As a result of studies in patients with bacterial vaginit pathological material was isolated and identified 72 strains of microorganisms (Staphylococcus spp, Streptococcus spp, Enterococcus spp, Escherichia coli, Haemophillu sssp, Candida albican sand various strains of anaerobic microorganisms. For the combined treatment of infectious and in flammatory diseases (mixed infections in humans the combined drugin tablet form. All clinical strains of microorganisms isolated from patients with bacterial vaginit were tested for sensitivity to the combined preparation in tablet form with Flamini and miramistin. The greatest sensitivity to the drugs found clinical strains of microorganisms: Staphylococcu saureus, Staphylococcus epidermidis, Peptococcus niger (diameter zone growth retardation is 25,5-23,5 mm. composition tablets number 1 (0.05 g Flamini, miramistini 0.02 g, which was selected for further study shows bacteriostatic effect against a wide range of microorganisms and fungi Rod Candida. IPC for Staphylococcus sp was 20-25 pg / mL for Streptococcus sp 35,0-40,0 mg / ml, for intestinal group 35,0-40,0 for fungi 30,0 mg / ml unlike pills number 2 and number 3, where the

  8. Using the second law of thermodynamics for enrichment and isolation of microorganisms to produce fuel alcohols or hydrocarbons.

    Kohn, Richard A; Kim, Seon-Woo

    2015-10-01

    Fermentation of crops, waste biomass, or gases has been proposed as a means to produce desired chemicals and renewable fuels. The second law of thermodynamics has been shown to determine the net direction of metabolite flow in fermentation processes. In this article, we describe a process to isolate and direct the evolution of microorganisms that convert cellulosic biomass or gaseous CO2 and H2 to biofuels such as ethanol, 1-butanol, butane, or hexane (among others). Mathematical models of fermentation elucidated sets of conditions that thermodynamically favor synthesis of desired products. When these conditions were applied to mixed cultures from the rumen of a cow, bacteria that produced alcohols or alkanes were isolated. The examples demonstrate the first use of thermodynamic analysis to isolate bacteria and control fermentation processes for biofuel production among other uses. PMID:26231417

  9. Molecular cloning, sequencing, and expression of omp-40, the gene coding for the major outer membrane protein from the acidophilic bacterium Thiobacillus ferrooxidans.

    Guiliani, N; Jerez, C A

    2000-06-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. Some of the surface components of this microorganism are probably involved in adaptation to their acidic environment and in bacterium-mineral interactions. We have isolated and characterized omp40, the gene coding for the major outer membrane protein from T. ferrooxidans. The deduced amino acid sequence of the Omp40 protein has 382 amino acids and a calculated molecular weight of 40,095.7. Omp40 forms an oligomeric structure of about 120 kDa that dissociates into the monomer (40 kDa) by heating in the presence of sodium dodecyl sulfate. The degree of identity of Omp40 amino acid sequence to porins from enterobacteria was only 22%. Nevertheless, multiple alignments of this sequence with those from several OmpC porins showed several important features conserved in the T. ferrooxidans surface protein, such as the approximate locations of 16 transmembrane beta strands, eight loops, including a large external L3 loop, and eight turns which allowed us to propose a putative 16-stranded beta-barrel porin structure for the protein. These results together with the previously known capacity of Omp40 to form ion channels in planar lipid bilayers strongly support its role as a porin in this chemolithoautotrophic acidophilic microorganism. Some characteristics of the Omp40 protein, such as the presence of a putative L3 loop with an estimated isoelectric point of 7.21 allow us to speculate that this can be the result of an adaptation of the acidophilic T. ferrooxidans to prevent free movement of protons across its outer membrane. PMID:10831405

  10. Studies on the Biodiversity of Halophilic Microorganisms Isolated from El-Djerid Salt Lake (Tunisia under Aerobic Conditions

    Abdeljabbar Hedi

    2009-01-01

    Full Text Available Bacterial and archaeal aerobic communities were recovered from sediments from the shallow El-Djerid salt lake in Tunisia, and their salinity gradient distribution was established. Six samples for physicochemical and microbiological analyses were obtained from 6 saline sites in the lake for physico-chemical and microbiological analyses. All samples studied were considered hypersaline with NaCl concentration ranging from 150 to 260 g/L. A specific halophilic microbial community was recovered from each site, and characterization of isolated microorganisms was performed via both phenotypic and phylogenetic approaches. Only one extreme halophilic organism, domain Archaea, was isolated from site 4 only, whereas organisms in the domain Bacteria were recovered from the five remaining sampling sites that contained up to 250 g/L NaCl. Members of the domain Bacteria belonged to genera Salicola, Pontibacillus, Halomonas, Marinococcus, and Halobacillus, whereas the only member of domain Archaea isolated belonged to the genus Halorubrum. The results of this study are discussed in terms of the ecological significance of these microorganisms in the breakdown of organic matter in Lake El-Djerid and their potential for industry applications.

  11. Isolation and identification of microorganisms and antibacterial activity of Laban Zeer, an Egyptian traditional fermented milk product

    Farag Ali Saleh

    2013-03-01

    Full Text Available Laban Zeer is a traditional Egyptian fermented milk product. The microorganisms of Laban Zeer were isolated and identified to species level, as well as the antibacterial activity of Laban Zeer was also studied against pathogenic bacteria. Total viable microorganisms, including, lactic acid bacteria (LAB, aerobic mesophilic bacterial, Enterococus and Enterobacteriaceae were enumerated. A total forty eight LAB and twenty eight yeast isolates were isolated from four Laban Zeer samples and identified by API 50 CHL and API 20C AUX identification system, respectively. The avenger of LAB counts were 7.4 cfu/g, while yeast and Enterococus counts were 4.67 and 4.39 cfu/g, respectively. It is noted that the count of bacteria belonging to the family of Enterobacteriaceae was not detected in all tested samples. The LAB species were identified as Leuconostoc mesenteroides subsp. cremoris, Lb. rhamnosus, Lb.  plantarum, Lb. paracasei subsp paracasei, Lb. delbercii subsp bulgaricus, Lb. curvatus subsp curvatus and Lb acidophilus. The isolated yeasts were identified as Sccharomyces cervisiae, Candida kefyr, Candida utilis and Rhodotorula mucilaginosa. The most frequently isolated species was found to be Leuconostoc mesenteroides subsp. cremoris (37.5%, Lb. rhamnosus (20.8%, Sccharomyces cervisiae (41.9% and Candida kefyr (29.0%.  The antimicrobial activities of Laban Zeer were evaluated in vitro using an agar well diffusion method and in situ method. The major supernatants of Laban Zeer samples inhibited the growth of pathogenic bacteria, belonging to Escherichia, Pseudomonas, Salmonella, Listeria and Staphylococcus genera in various degrees. The in situ method was performed by the inoculation of Staph. aureus and E. coli in Laban Zeer samples separately at an initial level around of 6 log cfu/ml. The count of Staph. aureus and E. coli were not detected after 12 and 3 days of refrigerated storage period,  respectively in samples number 2 and 3. Laban Zeer is

  12. In vitro characterization of the digestive stress response and immunomodulatory properties of microorganisms isolated from smear-ripened cheese.

    Adouard, Nadège; Foligné, Benoît; Dewulf, Joëlle; Bouix, Marielle; Picque, Daniel; Bonnarme, Pascal

    2015-03-16

    Thirty-six microorganisms (twenty-one bacteria, twelve yeasts and three fungi) were isolated from surface-ripened cheeses and subjected to in vitro digestive stress. The approach mimicked gastric and/or duodenal digestion. Lactobacillus rhamnosus GG, Escherichia coli Nissle 1917 and Saccharomyces boulardii were used as reference strains. We studied the microorganisms grown separately in culture medium and then included (or not) in a rennet gel. The microorganisms' immunomodulatory abilities were also assessed by profiling cytokine induction in human peripheral blood mononuclear cells (PBMCs). The loss of viability was less than 1 log CFU/mL for yeasts under all conditions. In contrast, Gram-negative bacteria survived gastric and/or duodenal stress well but most of the Gram-positive bacteria were more sensitive (especially to gastric stress). Inclusion of sensitive Gram-positive bacteria in rennet gel dramatically improved gastric survival, when compared with a non-included cultured (with a 4 log CFU/mL change in survival). However, the rennet gel did not protect the bacteria against duodenal stress. The PBMC cytokine assay tests showed that the response to yeasts was usually anti-inflammatory, whereas the response to bacteria varied from one strain to another. PMID:25589362

  13. Essential Oils of Plants as Biocides against Microorganisms Isolated from Cuban and Argentine Documentary Heritage

    Sofía Borrego; Oderlaise Valdés; Isbel Vivar; Paola Lavin; Patricia Guiamet; Patricia Battistoni; Sandra Gómez de Saravia; Pedro Borges

    2012-01-01

    Natural products obtained from plants with biocidal activity represent an alternative and useful source in the control of biodeterioration of documentary heritage, without negative environmental and human impacts. In this work, we studied the antimicrobial activity of seven essential oils against microorganisms associated with the biodeterioration of documentary heritage. The essential oils were obtained by steam distillation. The antimicrobial activity was analyzed using the agar diffusion m...

  14. Characterization of biofilm-forming microorganisms isolated from vaginal exudate in Portugal

    Alves, P.; Castro, J.; Cereija, Tatiana Barros Reis; Henriques, Ana Filipa Frutuoso Mendes; Cerca, Nuno

    2012-01-01

    Bacterial vaginosis (BV) is one of the most common gynaecological conditions affecting women in the reproductive age, and can lead to increase risk gynaecological infections and pre-term labour. The aetiology of this pathology is still poorly understood, but recent reports referring to the presence of anaerobic biofilms both in the healthy and BV vagina (with different microbial compositions) have led to the theory that the microorganisms that form biofilms may be relevant for the aetiology o...

  15. Gardnerella vaginalis virulence potential outcompetes with 30 other microorganisms isolated from BV patients

    Alves, P.; Castro, J.; Sousa, Cármen; Cereija, Tatiana Barros Reis; Cerca, Nuno

    2013-01-01

    Bacterial vaginosis (BV) is the most common vaginal disorder affecting millions of women every year, and is usually associated with several adverse health outcomes, including preterm birth and acquisition of sexually transmitted diseases. However, the etiology of BV is still under debate. Recently, new fastidious anaerobic bacteria have been associated with BV, but there are very few studies that comprehensively evaluate the virulence potential of these microorganisms, mainly due to difficult...

  16. Antimicrobial Susceptibility and Microorganisms Isolated from Blood Cultures of Hospitalized Patients in Intensive Care Units

    Emine Küçükateş

    2016-06-01

    Full Text Available Aim: The aim of this study was to evaluate microorganism growth in blood cultures of hospitalized patients in our intensive care units and to determine appropriate antimicrobial agents for treatment. Methods: We retrospectively investigated the blood cultures obtained from the patients hospitalized in the Coronary and Surgical Intensive Care Units at the Institute of Cardiology, İstanbul University, between July 2013 and December 2014. All microorganisms were identified using the conventional methods. Results: A total of 1034 blood cultures were obtained from 324 patients. Microbial growth was detected in 174 (16.8% blood cultures of 68 patients. Among all microbial growth, 113 (58.55% were gram-positive bacteria, 69 (35.75% were gram-negative rods and 11 (5.7% were fungi. Staphylococcus aureus was the most frequent microorganism (48; 24.87%, followed by coagulasenegative Staphylococci (35; 18,13%, Enterococcus spp. (30; 15,54%, Stenotrophomonas maltophilia, Escherichia coli, and Pseudomonas spp. 60.4% of Staphylococcus aureus were methicillin-resistant and 65.7% of coagulase-negative Staphylococci were also methicillin-resistant. All Staphylococci and Enterococci were not resistant to vancomycin, teicoplanin and tigecycline. All the gram-negative rods were susceptible to colistin and tigecycline, followed by imipenem (71.6% and meropenem (70.7%. Conclusions: We assume that infection control measures must be increased due to high antibiotic resistance and besides, antibiotic policies should be improved.

  17. Isolation and 16S DNA characterization of soil microorganisms from tropical soils capable of utilizing the herbicides hexazinone and tebuthiuron.

    Mostafa, Fadwa I Y; Helling, Charles S

    2003-11-01

    Six non-fermentative bacteria were isolated from Colombian (South America) and Hawaiian (USA) soils after enrichment with minimal medium supplemented with two herbicides, hexazinone (Hex) and tebuthiuron (Teb). Microscopic examination and physiological tests were followed by partial 16S DNA sequence analysis, using the first 527 bp of the 16S rRNA gene for bacterial identification. The isolated microorganisms (and in brackets, the herbicide that each degraded) were identified as: from Colombia. Methylobacterium organophilum [Teb], Paenibacillus pabuli [Teb], and Micrmbacterium foliorum [Hex]; and from Hawaii, Methylobacterium radiotolerans [Teb], Paenibacillus illinoisensis [Hex], and Rhodococcus equi [Hex]. The findings further explain how these herbicides, which have potential for illicit coca (Erythroxylum sp.) control, dissipate following their application to tropical soils. PMID:14649709

  18. Methods for Observing Microbial Biofilms Directly on Leaf Surfaces and Recovering Them for Isolation of Culturable Microorganisms

    Morris, C. E.; Monier, J.; Jacques, M.

    1997-01-01

    Epifluorescence microscopy, scanning electron microscopy, and confocal laser scanning microscopy were used to observe microbial biofilms directly on leaf surfaces. Biofilms were observed on leaves of all species sampled (spinach, lettuce, Chinese cabbage, celery, leeks, basil, parsley, and broad-leaved endive), although the epifluorescent images were clearest when pale green tissue or cuticle pieces were used. With these techniques, biofilms were observed that were about 20 (mu)m in depth and up to 1 mm in length and that contained copious exopolymeric matrices, diverse morphotypes of microorganisms, and debris. The epifluorescence techniques described here can be used to rapidly determine the abundance and localization of biofilms on leaves. An additional technique was developed to recover individual biofilms or portions of single biofilms from leaves and to disintegrate them for isolation of the culturable microorganisms they contained. Nineteen biofilms from broad-leaved endive, spinach, parsley, and olive leaves were thus isolated and characterized to illustrate the applications of this technique. PMID:16535579

  19. Metabolic response of environmentally isolated microorganisms to industrial effluents: Use of a newly described cell culture assay

    Ferebee, Robert N.

    1992-01-01

    An environmental application using a microtiter culture assay to measure the metabolic sensitivity of microorganisms to petrochemical effluents will be tested. The Biomedical Operations and Research Branch at NASA JSC has recently developed a rapid and nondestructive method to measure cell growth and metabolism. Using a colorimetric procedure the uniquely modified assay allows the metabolic kinetics of prokaryotic and eukaryotic cells to be measured. Use of such an assay if adapted for the routine monitoring of waste products, process effluents, and environmentally hazardous substances may prove to be invaluable to the industrial community. The microtiter method as described will be tested using microorganisms isolated from the Galveston Bay aquatic habitat. The microbial isolates will be identified prior to testing using the automated systems available at JSC. Sodium dodecyl sulfate (SDS), cadmium, and lead will provide control toxic chemicals. The toxicity of industrial effluent from two industrial sites will be tested. An effort will be made to test the efficacy of this assay for measuring toxicity in a mixed culture community.

  20. Determination of the cellulolytic activities of microorganisms isolated from poultry litter for sawdust degradation

    Akpomie O.OF; Ubogun M.

    2013-01-01

    Cellulolytic activities of bacterial and fungal isolates obtained from poultry droppings were determined using the ability of each isolate to produce clear zones on Carboxyl Methyl Cellulose Agar plates. The bacterial isolates were Klebsiella, Streptococcus, Celulomonas, Escherichia coli and Micrococus species. The cellulolytic counts ranged from 5.02 x 104 + 3.42 to 7.20 x 109 + 6.12 cfu/g. The cellulolytic activities of the bacterial isolates ranged from 0.04 to 0.26 iu/m with Cellulomonas...

  1. Selection of Streptomyces isolates from Turkish karstic caves against antibiotic resistant microorganisms.

    Yücel, Semra; Yamaç, Mustafa

    2010-01-01

    In this work, actinomycetes isolates were isolated from rock wall and speleothem surfaces and soil samples of 19 karstic caves in Turkey. Out of 290 isolates isolated, 180 isolates (62%) exhibited antimicrobial activity against a panel of four bacteria, two yeasts and four filamentous fungi in the screening program. One of them, Streptomyces sp. 1492, was examined for antibiotic production in batch culture. The maximum of antimicrobial activity was shown at 5th day. Antimicrobial activity of the extracted active compound was recorded as dose dependent bacteriostatic or bactericidal against antibiotic resistant clinical bacteria strains; methicillin-resistant Staphylococcus aureus (MRSA), vancomycin resistant Enterobacter faecium (VRE), and Acinetobacter baumanii. Minimum inhibitor concentration and minimum bactericidal concentrations were determined as lower than standard antibiotic streptomycin; 125 microg/ml and 250-1000 microg/ml, respectively. Active component was found as heat-stable. PMID:20067859

  2. Isolation and Characterization of Four Gram-PositiveNickel-Tolerant Microorganisms from Contaminated Riparian Sediments

    Van Nostrand, Joy D.; Khijniak, Tatiana V.; Gentry, Terry J.; Novak, Michelle T.; Sowder, Andrew G.; Zhou, Jizhong Z.; Bertsch, PaulM.; Morris, Pamela J.

    2006-08-30

    Microbial communities from riparian sediments contaminatedwith high levels of Ni and U were examined for metal-tolerantmicroorganisms. Isolation of four aerobic Ni-tolerant, Gram-positiveheterotrophic bacteria indicated selection pressure from Ni. Theseisolates were identified as Arthrobacter oxydans NR-1, Streptomycesgalbus NR-2, Streptomyces aureofaciens NR-3, and Kitasatosporacystarginea NR-4 based on partial 16S rDNA sequences. A functional genemicroarray containing gene probes for functions associated withbiogeochemical cycling, metal homeostasis, and organic contaminantdegradation showed little overlap among the four isolates. Fifteen of thegenes were detected in all four isolates with only two of these relatedto metal resistance, specifically to tellurium. Each of the four isolatesalso displayed resistance to at least one of six antibiotics tested, withresistance to kanamycin, gentamycin, and ciprofloxacin observed in atleast two of the isolates. Further characterization of S. aureofaciensNR-3 and K. cystarginea NR-4 demonstrated that both isolates expressed Nitolerance constitutively. In addition, both were able to grow in higherconcentrations of Ni at pH 6 as compared to pH 7 (42.6 and 8.5 mM Ni atpH 6 and 7, respectively). Tolerance to Cd, Co, and Zn was also examinedin these two isolates; a similar pH-dependent metal tolerance wasobserved when grown with Co and Zn. Neither isolate was tolerant to Cd.These findings suggest that Ni is exerting a selection pressure at thissite for metal-resistant actinomycetes.

  3. [Leaching of Rare Earth Elements from Coal Ashes Using Acidophilic Chemolithotrophic Microbial Communities].

    Muravyov, M I; Bulaev, A G; Melamud, V S; Kondrat'eva, T F

    2015-01-01

    A method for leaching rare earth elements from coal ash in the presence of elemental sulfur using communities of acidophilic chemolithotrophic microorganisms was proposed. The optimal parameters determined for rare element leaching in reactors were as follows: temperature, 45 degrees C; initial pH, 2.0; pulp density, 10%; and the coal ash to elemental sulfur ratio, 10 : 1. After ten days of leaching, 52.0, 52.6, and 59.5% of scandium, yttrium, and lanthanum, respectively, were recovered. PMID:26263628

  4. Specific single-cell isolation and genomic amplification of uncultured microorganisms

    Kvist, Thomas; Ahring, Birgitte Kiær; Lasken, R.S.; Westermann, Peter

    2007-01-01

    We in this study describe a new method for genomic studies of individual uncultured prokaryotic organisms, which was used for the isolation and partial genome sequencing of a soil archaeon. The diversity of Archaea in a soil sample was mapped by generating a clone library using group-specific pri...

  5. Isolation and evaluation of native cellulose degrading microorganisms for efficient bioconversion of weed biomass and rice straw.

    Mahanta, K; Jha, D K; Rajkhowa, D J; Kumar, Manoj

    2014-07-01

    Cellulose decomposing microorganisms (CDMs) are important for efficient bioconversion of plant biomasses. To this end, we isolated seven fungal isolates (Aspergillus wentii, Fusarium solani, Mucor sp., Penicillum sp., Trichoderma harzaianum, Trichoderma sp.1 and Trichoderma sp.2) and three bacterial isolates (bacterial isolate I, II and III) from partially decomposed farm yard manure, rice straw and vermicompost, and evaluated them for decomposition of rice straw (Oryza sativa), Ipomoea camea and Eichhornia crassipes biomass. CDMs inoculation, in general, reduced the composting period by 14-28 days in rice straw, 14-34 days in Eichhornia and 10-28 days in Ipomoea biomass over control. Of the 10 CDMs tested, Mucor sp. was found to be the most effective as Mucor-inoculated biomass required minimum time, i.e. 84, 68 and 80 days respectively for composting of rice straw, Eichhornia and Ipomoea biomass as against 112, 102 and 108 days required under their respective control. CDMs inoculation also narrowed down the C:N ratio of the composts which ranged from 19.1-22.7, 12.9-14.7 and 10.5-13.1 in rice straw, Eichhornia and Ipomoea biomass respectively as against 24.1, 17.1 and 16.2 in the corresponding control treatments. Aspergillus wentii, Fusarium solani, Mucor sp., and Penicillum sp. were found most effective (statistically at par) in reducing C:N ratio and causing maximum loss of carbon and dry matter in composted materials. These benefits of CDMs inoculation were also accompanied by significant increase in NPK contents in the composted materials. PMID:25004759

  6. Bioaccumulation of 137Cs by microorganisms isolated from soils contaminated with radionuclides

    With the aim to evaluate the possibility of utilisation of autochtone population of soil organisms, alone or with participation of higher plants, in the processes of bioremediation the authors quantitatively determined a number of psychrophyllic and mezophyllic germs in the soils contaminated by low-level activities of Cs-137 (0.08 - 2.8 kBq/g). Hereafter they gained isolates of clean cultures of mushrooms and actinomycetes and they determined their bioacumulative activity of Cs-137 at growing conditions. The authors found out, that a number of reproductionable psychrophyllic and mezophyllic germs are significantly lower in the soils with the highest contamination by radionuclides than in the soils with low contamination. They gained the clean cultures of 5 isolates of micromycetes and 3 isolates of actinomycetes from contaminated soil. The micromycetes demonstrated the highest values of bioaccumulation of caesium 39 nmol/g of wet biomass at the growing conditions. In actionoomycetes these values were 4.7 nmol/g (approximately in one order lower). The significant part of cesium accumulated by cell matter at growing conditions were localised in cell matter and it could not be removed by washing with 0.9 percent of NaCl solution. The determined values of bioconcentration factor BCF recalculated on dry weight of biomass were in the range from 16.04 to 26.20 in micromycetes and 3.24 in actinomycetes. From this situation arise, that autochtone population of soil micromycetes and actionomycetes, which is found in contaminated soil, can relevantly participate in the processes of binding of biologically accessible forms of Cs-137 after a creation of suitable conditions for grow. (author)

  7. Enhancing pesticide degradation using indigenous microorganisms isolated under high pesticide load in bioremediation systems with vermicomposts.

    Castillo Diaz, Jean Manuel; Delgado-Moreno, Laura; Núñez, Rafael; Nogales, Rogelio; Romero, Esperanza

    2016-08-01

    In biobed bioremediation systems (BBSs) with vermicomposts exposed to a high load of pesticides, 6 bacteria and 4 fungus strains were isolated, identified, and investigated to enhance the removal of pesticides. Three different mixtures of BBSs composed of vermicomposts made from greenhouse (GM), olive-mill (OM) and winery (WM) wastes were contaminated, inoculated, and incubated for one month (GMI, OMI and WMI). The inoculums maintenance was evaluated by DGGE and Q-PCR. Pesticides were monitored by HPLC-DAD. The highest bacterial and fungal abundance was observed in WMI and OMI respectively. In WMI, the consortia improved the removal of tebuconazole, metalaxyl, and oxyfluorfen by 1.6-, 3.8-, and 7.7-fold, respectively. The dissipation of oxyfluorfen was also accelerated in OMI, with less than 30% remaining after 30d. One metabolite for metalaxyl and 4 for oxyfluorfen were identified by GC-MS. The isolates could be suitable to improve the efficiency of bioremediation systems. PMID:27136610

  8. Enhanced degradation in soil of the herbicide EPTC and determination of its degradative pathway by an isolated soil microorganism

    A series of experiments was conducted to examine the ability of Ohio soils to develop enhanced degradation of the herbicide EPTC (s-ethyl N,N-dipropyl carbamothiaote) and to determine its metabolism by an isolated soil microorganism. Three soils selected to obtain an range in pH, texture, and organic carbon were treated with EPTC for 4 consecutive applications (6 weeks between applications). EPTC concentrations as measured by gas chromatography, decreased 80% or more one week after the second application in all three soils. Metabolism of unlabelled and labelled EPTC by an isolated soil microbe was followed by GC/MS and TLC/LSC analysis, respectively. Rapid decrease in 14-C activity in the organic fraction corresponded with rapid 14CO2 evolution and transient increase in 14-C activity in the aqueous fraction. Four metabolites were observed in the TLC analysis. Two were identified as EPTC-sulfoxide and N-depropyl EPTC with N-depropyl EPTC being confirmed by GC/MS analysis. The availability of different pathways for EPTC metabolism by soil microbes after repeated applications to the soil results in its very rapid degradation and loss of efficacy

  9. Influence of volatile constituents of fruit peels of Citrus reticulata Blanco on clinically isolated pathogenic microorganisms under In-vitro

    Husain Shahnaz Sultana; Mohammed Ali; Bibhu Prasad Panda

    2012-01-01

    Objective: To investigate the antimicrobial activity of volatile constituents of fruit peels of Citrus reticulata Blanco on clinically isolated pathogenic microorganisms. Methods: Extraction of volatile oil was carried out by Clevenger’s apparatus. Volatile chemical components were measured by GC-MS. Antimicrobial activity was carried by Agar well diffusion assay with reference to standard fluconazole and tetracycline. Results: The chemical composition of volatile oil of the fruit peels of Citrus reticulata Blanco (Rutaceae) of Delhi Region was composed mainly monoterpenes (99.1 %) constituting l-limonene (92.4 %), γ-terpene (2.6 %) andβ-phellandrene (1.8 %). The volatile oil showed antibacterial and antifungal activities against the clinically isolated pathogenic microbial strains Escherichia coli, Staphylococcus aureus, Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus and Candida albicans under in vitro condition. Conclusions: The potential antimicrobial activity of volatile oil present in fruit peels of C. reticulata can be useful for treatment of skin disorder and/or in aroma. Therapy, it can be incorporated into cosmetic formulations.

  10. Comparison of decolorization of reactive azo dyes by microorganisms isolated from various sources

    S.Padamavathy; S.Sandhya; K.Swaminathan; Y.V.Subrahmanyam; S.N.Kaul

    2003-01-01

    Azo dyes are among the oldest man-made chemicals and they are still widely used in the textile, printing and the food industries. About 10%-15% of the total dyes used in the industry is released into the environment during the manufacturing and usage. Some dyes and some of their N-substituted aromatic bio-transformation products are toxic and/or carcinogenic and therefore these dyes are considered to be environmental pollutants and health hazards. These azo dyes are degraded by physico-chemical and biological methods. Of these, biological methods are considered to be the most economical and efficient. In this work, attempts were made to degrade these dyes aerobically. The organisms which were efficient in degrading the following azo dyes-Red RB, Remazol Red, Remazol Blue, Remazol Violet, Remazol Yellow, Golden Yellow, Remazol Orange, Remazol Black- were isolated from three different sources viz., wastewater treatment plant, paper mill effluent treatment plant and tannery wastewater treatment plant. The efficiency of azo dye degradation by mixed cultures from each source was analyzed. It was found that mixed cultures from tannery treatment plant worked efficiently in decolorizing Remazol Red, Remazol Orange, Remazol Blue and Remazol Violet, while mixed cultures from the paper mill effluent worked efficiently in decolorizing Red RB, Golden Yellow and Remazol Yellow. The mixed cultures from wastewater treatment plant efficiently decolorized Remazol Black.

  11. Heterotrophic nitrogen removal by a newly-isolated alkalitolerant microorganism, Serratia marcescens W5.

    Wang, Teng; Dang, Qifeng; Liu, Chengsheng; Yan, Jingquan; Fan, Bing; Cha, Dongsu; Yin, Yanyan; Zhang, Yubei

    2016-07-01

    A new microbe, Serratia marcescens W5 was successfully isolated. Its feasibility in purification of excessively nitrogen-containing wastewater was evaluated using inorganic nitrogen media. Single factor tests showed that W5 exhibited high ammonium removal rates (above 80%) under different culture conditions (pH 7-10, C/N ratios of 6-20, 15-35°C, 0-2.5% of salinity, respectively). Besides various organic carbon sources, W5 was able to utilize calcium carbonate with 28.05% of ammonium removed. Further experiments indicated that W5 was capable of resisting high-strength ammonium (1200mg/L) with the maximum removal rate of 514.13mgL(-1)d(-1). The nitrogen removal pathway of W5 was also tested, showing that both nitrite and nitrate were efficiently removed only in the presence of ammonium, with hydroxylamine as intermediate, which was different from the conventional nitrogen removal pathway. All the results verified that W5 was a good candidate for the purification of excessively nitrogenous wastewater. PMID:27043057

  12. Biotechnical leaching of lean ores using heterotrophic microorganisms

    After reporting briefly on leaching with Thiobacillus, it is discussed whether in those cases where thiobacilli fail to work the limits of microbial leaching are reached or still other groups of microorganisms will be suitable. In this relation the great number of carbon-heterotrophic fungi and bacteria have to be considered which are partly oligotrophic and occur e.g. in weathering biotopes of rocks and minerals and which may even include heavy metals in the dissolving processes of weathering. The active agents are, as far as is known up to now, organic acids which are produced by microorganisms and given off to the medium where they may combine with metals to form water-soluble complex compounds. In order to detect and isolate suitable strains of fungi and bacteria it will be necessary to work out a screening program which proceeds from general to special selections. Experiments to identify the active agents and the conditions of their production will have to follow. It remains still an open question whether such studies will result in technical processes. Mass production processes which are possible with the carbon-autotrophic and acidophilic thiobacilli are less probable than special processes to get hold of rare and economically valuable metals whose extraction would be difficult by other means. (orig.)

  13. Isolation of microorganisms of cheese whey with lipolytic activity for removal of COD Isolamento de microrganismos do soro de queijo com atividade lipásica para remoção de DQO

    Eliane Hermes; Dayane C. da Rocha; Fábio Orssatto; Juliana F.R. Lucas; Simone D. Gomes; Luciane Sene

    2013-01-01

    The aim of this study was to isolate microorganisms that produce lipase and to assess the efficiency of COD removal intreatment of cheese whey under different operating conditions. The microorganisms were isolated from cheese whey and a commercial product; it was selectedthreemicroorganisms that obtained the best response to the lipolytic activity test through the enzyme index. Then, the microorganisms were inoculated in sterilized cheese whey samples, for two pH values (6.2 and 7.0), incubat...

  14. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  15. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities.

    Golińska, Patrycja; Wypij, Magdalena; Rathod, Dnyaneshwar; Tikar, Sagar; Dahm, Hanna; Rai, Mahendra

    2016-05-01

    Biosynthesis of silver nanoparticles (AgNPs) is an eco-friendly approach by using different biological sources; for example, plants and microorganisms such as bacteria, fungi, and actinobacteria. In this report, we present the biological synthesis of silver nanoparticles (AgNPs) by acidophilic actinomycetes SL19 and SL24 strains isolated from pine forest soil (pH < 4.0). The isolates based on 16S rRNA gene sequence were identified as Pilimelia columellifera subsp. pallida. The synthesized AgNPs were characterized by visual observations of colour change from light-yellow to dark-brown. The UV-vis spectra of AgNPs were recorded at 425 and 430 nm. The AgNPs were further characterized by Nanoparticle tracking analysis (NTA), Zeta potential, Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM). FTIR analysis revealed the presence of proteins as a capping agent. TEM analysis confirmed the formation of spherical and polydispersed NPs of 12.7 and 15.9 nm sizes. The in vitro antibacterial activity of AgNPs alone and in combination with antibiotics was evaluated against clinical bacteria viz., Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and uropathogens such as Enterobacter, S. aureus, P. aeruginosa, K. pneumoniae, and E. coli. The lowest MIC (40 μg ml(-1) ) was demonstrated by AgNPs synthesized from SL24 against E. coli. However, the AgNPs of SL19 showed lowest MIC (70 μg ml(-1) ) against S. aureus. The activity of antibiotic was enhanced, when tested in combination with silver nanoparticles synthesized from both actinobacterial strains. PMID:27151174

  16. Application of microorganisms in coal cleaning processes

    A secure energy supply is one of the basic pre-requisites for a sound economic system, sustained standard and quality of life and eventually for the social well-being of each individual. For a progressive country like Pakistan, it is obligatory that all energy options must be pursued vigorously including coal utilization, which given the relatively large resources available, is considered to be one of the major options for the next few hundred years. Bioprocessing of coal in an emerging technology which has started to receive considerable research attention. Recent research activities involving coal cleaning, direct coal conversion, and indirect conversion of coal-derived materials have generated a plethora of facts regarding biochemistry, chemistry, and thermodynamic behavior of coal, in that its bioprocessing is on the verge of becoming and acceptable means to great coals. In this research report, investigations pertaining to the various aspects of coal bio processing, including desulfurization and depyritization are discussed. Bituminous coals varying in total sulfur contents of 3-6% were depyritized more than 90% by mesophilic acidophiles like Thiobacillus ferroxidans and Thiobacillus thio oxidans and thermophilic Sulfolobus brierleyi. The archaebacterium, Sulfolobus brierleyi was found to desulfurize inorganic and organic sulfur components of the coal. Conditions were established under which it can remove more than 30% of the organic sulfur present in the coals. Heterotrophic microorganisms including oxenic and soil isolates were also employed for studying sulfurization. A soil isolate, Oil-2, was found to remove more than 70% dibenzothiophenic sulfur present in an oil-water emulsion (1:20 ratio). Pseudomonas putida and the bacterium oil-2 also remove 60-70% organic sulfur present in the shale-oil. Preliminary results indicate the presence of putatively known Kodama's pathway in the oil-2. The mass balance for sulfate indicated the possibility of the presence

  17. Genomics, physiology and applications of cold tolerant acidophiles

    Liljeqvist, Maria

    2012-01-01

    Psychrotolerant acidophiles have gained increasing interest because of their importance in biomining operations in environments where the temperature falls well below 10°C during large parts of the year. Acidithiobacillus ferrivorans is the only characterized acidophile with the ability to live a psychrotrophic lifestyle and is able to oxidize ferrous iron and inorganic sulfur compounds at low temperature. The A. ferrivorans SS3 genome sequence mirrors its low temperature chemolithotrophic li...

  18. Usability application of multiplex polymerase chain reaction in the diagnosis of microorganisms isolated from urine of patients treated in cancer hospital

    Cybulski, Zefiryn; Schmidt, Katarzyna; Grabiec, Alicja; Talaga, Zofia; Bociąg, Piotr; Wojciechowicz, Jacek; Roszak, Andrzej; Kycler, Witold

    2013-01-01

    Background The objective of this study was: i) to compare the results of urine culture with polymerase chain reaction (PCR) -based detection of microorganisms using two commercially available kits, ii) to assess antimicrobial susceptibility of urine isolates from cancer patients to chosen antimicrobial drugs and, if necessary, to update the recommendation of empirical therapy. Materials and methods. A one-year hospital-based prospective study has been conducted in Greater Poland Cancer Centre...

  19. Isolation and characterisation of phosphate solubilising microorganisms from the cold desert habitat of Salix alba Linn. in trans Himalayan region of Himachal Pradesh

    Chatli, Anshu S.; Beri, Viraj; B S Sidhu

    2008-01-01

    Phosphate solubilising microorganisms (PSM) (bacteria and fungi) associated with Salix alba Linn. from Lahaul and Spiti valleys of Himachal Pradesh were isolated on Pikovskaya (PVK), modified Pikovskaya (MPVK) and National Botanical Research Institute agar (NBRIP) media by spread plating. The viable colony count of P-solubilising bacteria (PSB) and fungi (PSF) was higher in rhizosphere than that of non-rhizosphere. The frequency of PSM was highest on MPVK followed by NBRIP and PVK agar. The m...

  20. Lignite microorganisms

    Bulankina, M.A.; Lysak, L.V.; Zvyagintsev, D.G. [Moscow MV Lomonosov State University, Moscow (Russian Federation). Faculty of Soil Science

    2007-03-15

    The first demonstration that samples of lignite at a depth of 10 m are considerably enriched in bacteria is reported. According to direct microscopy, the abundance of bacteria was about 10{sup 7} cells/g. About 70% of cells had intact cell membranes and small size, which points to their anabiotic state. The fungal mycelium length was no more than 1 m. Lignite inoculation onto solid glucose-yeast-peptone medium allowed us to isolate bacteria of the genera Bacillus, Rhodococcus, Arthrobacter, Micrococcus, Spirillum, and Cytophaga. Representatives of the genera Penicillium and Trichoderma were identified on Czapek medium. Moistening of lignite powder increased the microbial respiration rate and microbial and fungal abundance but did not increase their generic diversity. This finding suggests that the studied microorganisms are autochthonous to lignite.

  1. Heavy metal resistance of microorganisms isolated from coal mining environments of Santa Catarina Resistência a metais pesados em microrganismos isolados de ambientes da mineração do carvão de Santa Catarina

    Marcus Adonai Castro-Silva; André Oliveira de Souza Lima; Ana Valéria Gerchenski; Daniela Batista Jaques; André Luis Rodrigues; Pricila Lima de Souza; Leonardo Rubi Rörig

    2003-01-01

    The coal mining activity is characterized by the generation of large amount of by-products. One of them is pyrite, which tends to acidify the water, solubilizing heavy metals. As a consequence the environment becomes acid and rich in heavy metals, selecting microorganisms able to survive in this condition, which are of great interest as bioremediation agents. This work describes the isolation and characterization of microorganisms from a coal mining area in Santa Catarina. These microorganism...

  2. Prospect, isolation, and characterization of microorganisms for potential use in cases of oil bioremediation along the coast of Trindade Island, Brazil.

    Rodrigues, Edmo M; Kalks, Karlos H M; Tótola, Marcos R

    2015-06-01

    In the present study, acrylic coupons with a thin layer of oil on the surface were incubated in the coastal water of Trindade Island, Brazil, for 60 days. The microorganisms adhered to the coupons were isolated using enrichment medium with hexadecane and naphthalene as the sole carbon and energy source. A total of 15 bacterial isolates were obtained, and the ability of these isolates to use different hydrocarbons as the source of carbon and energy was investigated. None of the isolates produced biosurfactants under our experimental conditions. Subsequently, identification methods such as partial sequencing of the 16S rRNA gene and analysis of fatty acids (MIDI) profile were employed. Among the 15 isolates, representatives of Actinobacteria, Firmicutes, and Alphaproteobacteria were detected. The isolates Rhodococcus rhodochrous TRN7 and Nocardia farcinica TRH1 were able to use all the hydrocarbons added to the culture medium (toluene, octane, xylene, naphthalene, phenanthrene, pyrene, hexadecane, anthracene, eicosane, tetracosane, triacontane, and pentacontane). Polymerase chain reaction amplification of the DNA isolated by employing primers for catechol 2,3-dioxygenase, alkane dehydrogenase and the alpha subunit of hydroxylating dioxygenases polycyclic aromatic hydrocarbon rings genes demonstrated that various isolates capable of utilizing hydrocarbons do not exhibit genes of known routes of catabolism, suggesting the existence of unknown catabolic pathways in these microorganisms. Our findings suggest that the microbiota associated to the coast of tropical oceanic islands has the ability to assist in environmental regeneration in cases of accidents involving oil spills in its shore. Thus, it motivates studies to map bioremediation strategies using the autochthonous microbiota from these environments. PMID:25791233

  3. A proton shelter inspired by the sugar coating of acidophilic archaea

    Wang, Xiumei; Lv, Bei'er; Cai, Guixin; Fu, Long; Wu, Yuanzi; Wang, Xiang; Ren, Bin; Ma, Hongwei

    2012-11-01

    The acidophilic archaeons are a group of single-celled microorganisms that flourish in hot acid springs (usually pH polymer brush layer was prepared to mimic the OH-rich sugar coating. Using a novel pH-sensitive dithioacetal molecule as a probe, we studied the proton-resisting property and found that a 10-nm-thick polymer layer was able to raise the pH from 1.0 to > 5.0, indicating that the densely packed OH-rich layer is a proton shelter. As strong evidence for the role of sugar coatings as proton barriers, this biomimetic study provides insight into evolutionary biology, and the results also could be expanded for the development of biocompatible anti-acid materials.

  4. Deterioration study of a material for encapsulation of radioactive wastes, the Portland cement, by heterotrophic microorganisms isolated from natural media

    Soils and geologic formations selected for storage of radioactive waste storage contain microflora (nitrifying and sulfoxidizing bacteria, heterotrophic microorganisms) that can corrode cement through acidic metabolism products. Nutriments required for their development are also found in these biotopes. Corrosine effects of organic acids produced by heterotrophic microorganisms are: mass decrease, leaching (especially Ca), dissolution of portlandite crystals Ca (OH)2, increase of porosity and decrease of flexural strength. Excretion of corrosive organic acids by bacteria is promoted by high temperature and basic pH. Acidification by fungi requires also a high temperature but an acidic pH

  5. ATIVIDADE ENZIMÁTICA DE MICRORGANISMOS ISOLADOS DO JACATUPÉ (Pachyrhizus erosus L. Urban ENZYMATIC ACTIVITY OF MICROORGANISMS ISOLATED FROM YAM BEAN LEGUME (Pachyrhizus erosus L. Urban

    Tânia L. Montenegro STAMFORD

    1998-10-01

    Full Text Available O isolamento e a identificação de microrganismos produtores de enzimas de interesse comercial, utilizando tubérculos de jacatupé (Pachyrhizus erosus L. Urban, foi o objetivo principal deste trabalho. Isolaram-se microrganismos endofíticos e epifíticos identificados por observação micromorfológica. A avaliação da atividade enzimática das linhagens foi determinada pelo método de difusão em ágar. As sessenta e oito linhagens isoladas dos tubérculos de jacatupé foram cultivadas em meio sólido específico para amilase, lipase, protease e celulase por 96h a 280 C. Os microrganismos epifíticos encontrados foram Pithomyces (7,3%, Aspergillus (19,2%, Fusarium (5,9% e Trichoderma (5,8%, e os endofíticos foram Mucor (7,3%, Rhizopus (10,3%, Bacillus (19,0%, Staphylococcus (10,3% e Nocardiopsis (15%. As linhagens de Nocardiopsis sp. apresentaram atividade lipolítica superior à do padrão, porém a atividade amilolítica não apresentou diferença significativa comparada com o padrão. As linhagens de Mucor sp., Pithomyces sp. e Staphylococcus sp. produziram atividade proteolítica abaixo do padrão. Nenhum isolado apresentou atividade celulolítica.The isolation and identification of microorganisms that produce enzyme of commercial interest utilizing tubers of yam bean legume (Pachyrrizus erosus L. Urban was the main objective of this work. Endophytic and epiphytic microorganisms were isolated by micromorphologyc observation. The agar diffusion method was used to determine the enzymatic activity. Sixty-eight isolates from yam bean tubers were cultured at 280 C in solid medium specific to amylase, lipase, protease and cellulase for 96h. The epiphytic microorganisms Pithomyces (7,3%, Aspergillus (19,2%, Fusarium (5,9% and Trichoderma (5,8% and the endophytic microorganisms Mucor (7,3%, Rhizopus (10,3% Bacillus (19%, Staphylococcus (10,3% and Nocardiopsis (15% were isolated. Compared to the specific standard culture Nocardiopsis sp. showed

  6. Genomics and Metagenomics of Extreme Acidophiles in Biomining Environments

    Holmes, D. S.

    2015-12-01

    Over 160 draft or complete genomes of extreme acidophiles (pH metagenomic studies of such environments. This provides a rich source of latent data that can be exploited for understanding the biology of biomining environments and for advancing biotechnological applications. Genomic and metagenomic data are already yielding valuable insights into cellular processes, including carbon and nitrogen management, heavy metal and acid resistance, iron and sulfur oxido-reduction, linking biogeochemical processes to organismal physiology. The data also allow the construction of useful models of the ecophysiology of biomining environments and provide insight into the gene and genome evolution of extreme acidophiles. Additionally, since most of these acidophiles are also chemoautolithotrophs that use minerals as energy sources or electron sinks, their genomes can be plundered for clues about the evolution of cellular metabolism and bioenergetic pathways during the Archaean abiotic/biotic transition on early Earth. Acknowledgements: Fondecyt 1130683.

  7. Quantification of Antibiotic Residues and Determination of Antimicrobial Resistance Profiles of Microorganisms Isolated from Bovine Milk in Lebanon

    Sleiman Fawwak; Abi Khalil Pamela; Kassaify Zeina

    2013-01-01

    The rapid growth of dairy sectors in the Middle East, particularly in Lebanon, led to extensive use of antibiotics to enhance the health and productivity of animals. Prolonged usage may lead to antibiotic residues in foods of animal origin; hence, the emergence of antimicrobial resistant microorganisms. Accurate data on the antibiotic usage in livestock treatment, antibiotic residues and antimicrobial resistances in raw milk in Lebanon are lacking. This study aimed to investigate the types an...

  8. The effects of sodium hypochlorite on the control of inter-kingdom biofilm formation by drinking water-isolated microorganisms

    Simões, Lúcia C; Chaves, Ana F.A.; Simões, Manuel; Lima, Nelson

    2015-01-01

    Biofilms in drinking water distribution systems (DWDS) are responsible for several undesirable effects in water. One of the main drawbacks is their potential to protect pathogens from stress conditions. Microbial interactions in biofilms can benefit the survival of co existing microorganisms, including the increased resistance to antimicrobials. Chlorine disinfection is the main widespread strategy used in DWDS for microbial control. Even if new and alternative strategies are b...

  9. Biodiversity and interactions of acidophiles: Key to understanding and optimizing microbial processing of ores and concentrates

    D.B.JOHNSON

    2008-01-01

    Mining companies have become increasingly aware of the potential of microbiological approaches for recovering base and precious metals from low-grade ores,and for remediating acidic,metal-rich wastewaters that drain from both operating and abandoned mine sites.Biological systems offer a number of environmental and (sometimes) economical advantages over conventional approaches,such as pyrometallurgy,though their application is not appropriate in every situation.Mineral processing using micro-organisms has been exploited for extracting gold,copper,uranium and cobalt,and current developments are targeting other base metals.Recently,there has been a great increase in our knowledge and understanding of both the diversity of the microbiology of biomining environments,and of how the microorganisms interact with each other.The results from laboratory experiments which have simulated both stirred tank and heap bioreactor systems have shown that microbial consortia are more robust than pure cultures of mineral-oxidizing acidophiles,and also tend to be more effective at bioleaching and bio-oxidizing ores and concentrates.The paper presented a concise review of the nature and interactions of microbial consortia that are involved in the oxidation of sulfide minerals,and how these might be adapted to meet future challenges in biomining operations.

  10. Accompaniment of the biomass growth and synthesis of biosurfactants by microorganism isolated in oil wells; Acompanhamento do crescimento da biomassa e sintese de biosurfactantes por microorganismos isolados de pocos de petroleo

    Lobato, Ana Katerine de Carvalho Lima; Araujo, Manuelle Meike Silva de [Rio Grande do Norte Univ., Natal, RN (Brazil). Programa de Pos-graduacao em Engenharia Quimica]. E-mail: manuelle@eq.ufrn.br; Macedo, Gorete Ribeiro de [Rio Grande do Norte Univ., Natal, RN (Brazil). Dept. de Engenharia Quimica

    2003-07-01

    Biosurfactants are structurally diversified groups of active surface molecules synthesized by microorganisms as bacteria and fungi, cultivated in several carbon sources such as sucrose and hydrocarbons. These molecules, composed by a part hydrophilic and other hydrophobic one, they act preferentially in the interface among the flowing phases with different polarities linking interfaces oil/water or water/oil reducing the superficial tensions and interfacial among these phases. They have been used in environmental applications, such as bioremediation of soils, treatment of contaminated water fountains and in cleaning process of tanks and equipment. Oil reservoirs present conditions where some microorganisms can grow. These microorganisms when isolated and cultivated at laboratory can be characterized with relation to surfactants production. In this work, microorganisms were isolated of oil wells and the biosurfactants producers were selected, among the isolated ones, to form a culture bank with potential application in environmental pollution treatment and advanced oil recovery. A microorganism stump of the developed bank was cultivated in sucrose and hydrocarbon medium and the biosurfactant production was evaluated by superficial tension measurement. The microorganism biomass production was evaluated by optical density using a spectrophotometer and the substratum consumption by Dns method. (author)

  11. Antibacterial activity of (--cubebin isolated from Piper cubeba and its semisynthetic derivatives against microorganisms that cause endodontic infections

    Karen C.S. Rezende

    2016-06-01

    Full Text Available Abstract Recent publications have highlighted the numerous biological activities attributed to the lignan (--cubebin (1, Piper cubeba L. f., Piperaceae, and ongoing studies have focused on its structural optimization, in order to obtain derivatives with greater pharmacological potential. The aim of this study was the obtainment of (1, its semisynthetic derivatives and evaluation of antibacterial activity. The extract of the seeds of P. cubeba was chromatographed, subjected to recrystallization and was analyzed by HPLC and spectrometric techniques. It was used for the synthesis of: (--O-methylcubebin (2, (--O-benzylcubebin (3, (--O-acetylcubebin (4, (--O-(N, N-dimethylamino-ethyl-cubebin (5, (--hinokinin (6 and (--6.6'-dinitrohinokinin (7. The evaluation of the antibacterial activity has been done by broth microdilution technique for determination of the minimum inhibitory concentration and the minimum bactericidal concentration against Porphyromonas gingivalis, Prevotella nigrescens, Actinomyces naeslundii, Bacteroides fragilis and Fusobacterium nucleatum. It was possible to make an analysis regarding the relationship between structure and antimicrobial activity of derivatives against microorganisms that cause endodontic infections. The most promising were minimum inhibitory concentration =50 µg/ml against P. gingivalis by (2 and (3, and minimum inhibitory concentration =100 µg/ml against B. fragilis by (6. Cytotoxicity assays demonstrated that (1 and its derivatives do not display toxicity.

  12. Effect of VOCs and methane in the biological oxidation of the ferrous ion by an acidophilic consortium.

    Almenglo, F; Ramírez, M; Gómez, J M; Cantero, D; Revah, S; González-Sánchez, A

    2012-01-01

    During the elimination of H2S from biogas in an aqueous ferric sulphate solution, volatile organic compounds (VOCs) and methane are absorbed and may have an effect on the subsequent biological regeneration of ferric ion. This study was conducted to investigate the effect of maximum concentrations of methane and some VOCs found in biogas on the ferrous oxidation of an acidophilic microbial consortium (FO consortium). The presence and impact of heterotrophic microorganisms on the activity of the acidophilic consortium was also evaluated. No effect on the ferrous oxidation rate was found with gas concentrations of 1500 mg toluene m(-3), 1400 mg 2-butanol m(-3) or 1250 mg 1,2-dichloroethane m(-3), nor with methane at gas concentrations ranging from 15-25% (v/v). A tenfold increase in VOCs concentrations totally inhibited the microbial activity of the FO consortium and the heterotrophs. The presence of a heterotrophic fungus may promote the autotrophic growth of the FO consortium. PMID:22629626

  13. Thiol/Disulfide system plays a crucial role in redox protection in the acidophilic iron-oxidizing bacterium Leptospirillum ferriphilum.

    Javiera Norambuena

    Full Text Available Thiol/disulfide systems are involved in the maintenance of the redox status of proteins and other molecules that contain thiol/disulfide groups. Leptospirillum ferriphilum DSM14647, an acidophilic bacterium that uses Fe(2+ as electron donor, and withstands very high concentrations of iron and other redox active metals, is a good model to study how acidophiles preserve the thiol/disulfide balance. We studied the composition of thiol/disulfide systems and their role in the oxidative stress response in this extremophile bacterium. Bioinformatic analysis using genomic data and enzymatic assays using protein extracts from cells grown under oxidative stress revealed that the major thiol/disulfide system from L. ferriphilum are a cytoplasmic thioredoxin system (composed by thioredoxins Trx and thioredoxin reductase TR, periplasmic thiol oxidation system (DsbA/DsbB and a c-type cytochrome maturation system (DsbD/DsbE. Upon exposure of L. ferriphilum to reactive oxygen species (ROS-generating compounds, transcriptional activation of the genes encoding Trxs and the TR enzyme, which results in an increase of the corresponding activity, was observed. Altogether these data suggest that the thioredoxin-based thiol/disulfide system plays an important role in redox protection of L. ferriphilum favoring the survival of this microorganism under extreme environmental oxidative conditions.

  14. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes

    Rohwerder, T.; Sand, W. [Universitaet Duisburg-Essen, Biofilm Centre, Aquatic Biotechnology, Duisburg (Germany)

    2007-07-15

    The oxidation of reduced inorganic sulfur compounds to sulfuric acid is of great importance for biohydrometallurgical technologies as well as the formation of acidic (below pH 3) and often heavy metal-contaminated environments. The use of elemental sulfur as an electron donor is the predominant energy-yielding process in acidic natural sulfur-rich biotopes but also at mining sites containing sulfidic ores. Contrary to its significant role in the global sulfur cycle and its biotechnological importance, the microbial fundamentals of acidophilic sulfur oxidation are only incompletely understood. Besides giving an overview of sulfur-oxidizing acidophiles, this review describes the so far known enzymatic reactions related to elemental sulfur oxidation in acidophilic bacteria and archaea. Although generally similar reactions are employed in both prokaryotic groups, the stoichiometry of the key enzymes is different. Bacteria oxidize elemental sulfur by a sulfur dioxygenase to sulfite whereas in archaea, a sulfur oxygenase reductase is used forming equal amounts of sulfide and sulfite. In both cases, the activation mechanism of elemental sulfur is not known but highly reactive linear sulfur forms are assumed to be the actual substrate. Inhibition as well as promotion of these biochemical steps is highly relevant in bioleaching operations. An efficient oxidation can prevent the formation of passivating sulfur layers. In other cases, a specific inhibition of sulfur biooxidation may be beneficial for reducing cooling and neutralization costs. In conclusion, the demand for a better knowledge of the biochemistry of sulfur-oxidizing acidophiles is underlined. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  15. Isolation, identification and characterisation of the dominant microorganisms of kule naoto: the Maasai traditional fermented milk in Kenya.

    Mathara, Julius Maina; Schillinger, Ulrich; Kutima, Phillip Museve; Mbugua, Samuel K; Holzapfel, Wilhelm H

    2004-08-01

    From 22 samples of kule naoto, the traditional fermented milk products of the Maasai in Kenya, 300 lactic acid bacterial strains were isolated and phenotypically characterised by their ability to ferment different carbohydrates and by additional biochemical tests. Lactic acid bacteria (LAB), especially the genus Lactobacillus, followed by Enterococcus, Lactococcus and Leuconostoc, dominated the microflora of these samples. The major Lactobacillus species was Lactobacillus plantarum (60%), with a lower frequency of isolation for Lactobacillus fermentum, Lactobacillus paracasei and Lactobacillus acidophilus. Most strains produced enzymes such as beta-galactosidase and peptidases, which are of relevance to cultured dairy product processing, and exhibited similar patterns of enzymatic activity between species. Enterobacteriaceae could not be detected in 15 out of 22 samples (detection level 10(2)/ml). Conversely, yeasts (detection level 10(1)/ml) were detected in those samples in which Enterobacteriaceae were not found. The pH values of all these samples were < 4.5. PMID:15246238

  16. A universal protocol for the combined isolation of metabolites, DNA, long RNAs, small RNAs, and proteins from plants and microorganisms

    Valledor, Luis; Escandón, M.; Meijón, M.; Nukarinen, E.; Jesús Cañal, M.; Weckwerth, W.

    2014-01-01

    Roč. 79, č. 1 (2014), s. 173-180. ISSN 0960-7412 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : systems biology * combined isolation * RNA * small RNA * proteins * metabolites * Chlamydomonas reinhardtii * Arabidopsis thaliana * Populus sp. * Pinus sp. * technical advance Subject RIV: EI - Biotechnology ; Bionics Impact factor: 5.972, year: 2014

  17. The most common isolated microorganisms and its clinical manifestation in hospitalised women suffering from urogenital diseases in Latvia

    Anatolijs Naum and #269;iks

    2015-08-01

    Full Text Available Background: The monitoring of genital tract infections, especially sexually transmitted infections, is a vital part of health priority in many countries. One of the most common vaginal infections in women of childbearing age is bacterial vaginosis. Methods: This is a laboratory based retrospective study. We analysed 774 patients' cases (age range 18-35 years. Patients were subcategorized into three groups: patients with inflammation in genital tract, patients without inflammatory processes in genital tract, threatened abortion women. Laboratory tests also were divided depending on the type of examination. Results: There were 49 patients in the first group, 60 women in the second group and 236 pregnant women with threatened abortion in the third group. Gram negative bacteria (Escherichia coli and Enterococcus spp. were the most common isolated bacteria in the first and second group. Coagulase-negative staphylococci were predominant in the third group. Streptococcus agalactiae was isolated in 11.8 % cases. In our study, Trichomonas vaginalis infection was found in 1.2%. Conclusions: The most common isolated bacteria were Coagulase-negative staphylococci and gram negative bacteria. Ureaplasma urealyticum was detected in a decisive majority (38.9% of Mycoplasma species infections. In the first patients group and ndash; women with inflammatory process in genital tract were not found 3 bacteria, opposite to the second and third group. [Int J Reprod Contracept Obstet Gynecol 2015; 4(4.000: 959-962

  18. Classifying Microorganisms.

    Baker, William P.; Leyva, Kathryn J.; Lang, Michael; Goodmanis, Ben

    2002-01-01

    Focuses on an activity in which students sample air at school and generate ideas about how to classify the microorganisms they observe. The results are used to compare air quality among schools via the Internet. Supports the development of scientific inquiry and technology skills. (DDR)

  19. Degradation of olestra, a non caloric fat replacer, by microorganisms isolated from activated sludge and other environments.

    Lee, D M; Ventullo, R M

    1996-06-01

    Olestra is a non-caloric fat substitute consisting of fatty acids esterified to sucrose. Previous work has shown that olestra is not metabolized in the gut and is excreted unmodified in human feces. To better understand the fate of olestra in engineered and natural environments, aerobic bacteria and fungi that degrade olestra were enriched from sewage sludges, soils and municipal solid waste compost not previously exposed to olestra. Various mixed and pure cultures were obtained from these sources which were able to utilize olestra as a sole carbon and energy source. The fastest growing enrichment was obtained from activated sludge and later yielded an olestra-degrading pure culture of Pseudomonas aeruginosa. This mixed culture extensively degraded both 14C-fatty acid labeled olestra and 14C-sucrose labeled olestra during 8 days of incubation. Longer-term incubation with pure cultures of P.aeruginosa demonstrated that > 98% of 14C-sucrose labeled olestra and > 72% of 14C-fatty acid labeled olestra was mineralized to CO2 after 69 days. These results indicate that olestra degraders are present in environments not previously exposed to olestra and that olestra can serve as a sole carbon and energy source. Furthermore, a common bacterial species was isolated from activated sludge and shown to have the ability to degrade olestra. PMID:8782396

  20. 高效秸秆降解菌株的分离与选育%Microorganism Isolation and Screening for Efficient Degradation of Straw

    叶长明; 杨艳琴; 任屹罡; 魏明宝

    2012-01-01

    Experiments were conducted to screen the microorganisms of efficient degradation of corn stalk. The method of sodium carboxy-methylcellulose (CMC-Na) medium combined with filter paper inorganic salt medium was adopted to isolate the microorganisms during the initial screening period,and then corn stalk medium was used for rescreening and the test of enzyme production,in which the cellulase activity and filter paper activity(FPA) of the strains were measured. Through the comprehensive comparison of their degradation ability, two strains of fungi PJ-2 and PJ-4 and an actinomycete GJ-1 were isolated,which were identified as Penicillium,As-pergillus and Streptomyces, respectively, by the preliminary biology identification. Then mutants were obtained by ultraviolet (UV) mutagenesis. After further screening and test of the enzyme production,mutants UV-1-1 from PJ-2,UV-2-2 and UV-2-4 from PJ-4 were obtained with better enzyme activity. The enzyme activity of three mutant strains were 45%, 20%, 10% higher than the original strain,respectively,suggesting that the capacity of corn stalk degradation of mutants increased significantly.%为了选育高效降解玉米秸秆的菌株,首先用羧甲基纤维素钠(CMC - Na)培养基结合滤纸条无机盐培养基,对从样品中分离的菌株进行初筛,再以玉米秸秆培养基复筛并进行发酵产酶试验,测定CMC- Na酶活和FPA酶活,最后对目的菌进行紫外诱变.通过筛选得到降解效果较好的2株真菌PJ -2、PJ -4和1株放线菌GJ -1.紫外诱变后获得正向突变菌3株,分别为PJ-2的突变菌UV-1-1,PJ -4的突变菌UV-2 -2和UV-2 -4,这3株突变株的CMC - Na酶活力相对原菌株分别提高45%、20%和10%以上,菌株降解秸秆能力也显著提高.

  1. Dissolution kinetics of spent petroleum catalyst using sulfur oxidizing acidophilic microorganisms.

    Mishra, Debaraj; Ahn, Jong G; Kim, Dong J; Roychaudhury, G; Ralph, David E

    2009-08-15

    Bioleaching studies of spent petroleum catalyst were carried out using sulfur oxidizing, Acidithiobacillus species. Leaching studies were carried out in two-stage, in the first stage bacteria were grown and culture filtrate was used in the second stage for leaching purpose. XRD analysis of spent petroleum catalyst showed oxides of V, Fe and Al and sulfides of Mo and Ni. The leaching kinetics followed dual rate, initial faster followed by slower rate and equilibrium could be achieved within 7 days. The leaching rate of Ni and V were high compared to Mo. The low Mo leaching rate may be either due to formation of impervious sulfur layer or refractoriness of sulfides or both. The leaching kinetics followed 1st order rate. Using leaching kinetics, rate equations for dissolution process for different metal ions were evaluated. The rate determining step observed to be pore diffusion controlled. PMID:19286311

  2. Precipitation of Phosphate Minerals by Microorganisms Isolated from a Fixed-Biofilm Reactor Used for the Treatment of Domestic Wastewater

    Almudena Rivadeneyra

    2014-04-01

    Full Text Available The ability of bacteria isolated from a fixed-film bioreactor to precipitate phosphate crystals for the treatment of domestic wastewater in both artificial and natural media was studied. When this was demonstrated in artificial solid media for crystal formation, precipitation took place rapidly, and crystal formation began 3 days after inoculation. The percentage of phosphate-forming bacteria was slightly higher than 75%. Twelve major colonies with phosphate precipitation capacity were the dominant heterotrophic platable bacteria growing aerobically in artificial media. According to their taxonomic affiliations (based on partial sequencing of the 16S rRNA, the 12 strains belonged to the following genera of Gram-negative bacteria: Rhodobacter, Pseudoxanthobacter, Escherichia, Alcaligenes, Roseobacter, Ochrobactrum, Agromyce, Sphingomonas and Paracoccus. The phylogenetic tree shows that most of the identified populations were evolutionarily related to the Alphaproteobacteria (91.66% of sequences. The minerals formed were studied by X-ray diffraction, scanning electron microscopy (SEM, and energy dispersive X-ray microanalysis (EDX. All of these strains formed phosphate crystals and precipitated struvite (MgNH4PO4·6H2O, bobierrite [Mg3(PO42·8H2O] and baricite [(MgFe3(PO42·8H2O]. The results obtained in this study show that struvite and spherulite crystals did not show any cell marks. Moreover, phosphate precipitation was observed in the bacterial mass but also near the colonies. Our results suggest that the microbial population contributed to phosphate precipitation by changing the media as a consequence of their metabolic activity. Moreover, the results of this research suggest that bacteria play an active role in the mineral precipitation of soluble phosphate from urban wastewater in submerged fixed-film bioreactors.

  3. Microorganism Billiards

    Wahl, Colin; Spagnolie, Saverio E; Thiffeault, Jean-Luc

    2015-01-01

    Recent experiments and numerical simulations have shown that certain types of microorganisms "reflect" off of a flat surface at a critical angle of departure, independent of the angle of incidence. The nature of the reflection may be active (cell and flagellar contact with the surface) or passive (hydrodynamic) interactions. We explore the billiard-like motion of such a body inside a regular polygon and show that the dynamics can settle on a stable periodic orbit, or can be chaotic, depending on the swimmer's departure angle and the domain geometry. The dynamics are often found to be robust to the introduction of weak random fluctuations. The Lyapunov exponent of swimmer trajectories can be positive or negative, can have extremal values, and can have discontinuities depending on the degree of the polygon. A passive sorting device is proposed that traps swimmers of different departure angles into separate bins. We also study the external problem of a microorganism swimming in a patterned environment of square ...

  4. Effect of adaptation and pulp density on bioleaching of mine waste using indigenous acidophilic bacteria

    Cho, K.; Kim, B.; Lee, D.; Choi, N.; Park, C.

    2011-12-01

    Adaptation to environment is a natural phenomena that takes place in many animals, plants and microorganisms. These adapted organisms achieve stronger applicability than unadapted organisms after habitation in a specific environment for a long time. In the biohydrometallurgical industry, adaptation to special environment conditions by selective culturing is the most popular method for improving bioleaching activity of strains-although that is time consuming. This study investigated the influence of the bioleaching efficiency of mine waste under batch experimental conditions (adaptation and pulp density) using the indigenous acidophilic bacteria collected from acid mine drainage in Go-seong and Yeon-hwa, Korea. We conducted the batch experiments at the influences of parameters, such as the adaptation of bacteria and pulp density of the mine waste. In the adaptation case, the value of pH in 1'st adaptation bacteria sample exhibited lower than in 2'nd adaptation bacteria sample. And the content of both Cu and Zn at 1'st adaptation bacteria sample appeared lower than at 2'nd adaptation bacteria sample. In the SEM analysis, the rod-shaped bacteria with 1μm in length were observed on the filter paper (pore size - 0.45μm). The results of pulp density experiments revealed that the content of both Cu and Zn increased with increasing pulp density, since the increment of pulp density resulted in the enhancement of bioleaching capacity.

  5. Evaluation of epidemiological cut-off values indicates that biocide resistant subpopulations are uncommon in natural isolates of clinically-relevant microorganisms.

    Ian Morrissey

    Full Text Available To date there are no clear criteria to determine whether a microbe is susceptible to biocides or not. As a starting point for distinguishing between wild-type and resistant organisms, we set out to determine the minimal inhibitory concentration (MIC and minimal bactericidal concentration (MBC distributions for four common biocides; triclosan, benzalkonium chloride, chlorhexidine and sodium hypochlorite for 3319 clinical isolates, with a particular focus on Staphylococcus aureus (N = 1635 and Salmonella spp. (N = 901 but also including Escherichia coli (N = 368, Candida albicans (N = 200, Klebsiella pneumoniae (N = 60, Enterobacter spp. (N = 54, Enterococcus faecium (N = 53, and Enterococcus faecalis (N = 56. From these data epidemiological cut-off values (ECOFFs are proposed. As would be expected, MBCs were higher than MICs for all biocides. In most cases both values followed a normal distribution. Bimodal distributions, indicating the existence of biocide resistant subpopulations were observed for Enterobacter chlorhexidine susceptibility (both MICs and MBCs and the susceptibility to triclosan of Enterobacter (MBC, E. coli (MBC and MIC and S. aureus (MBC and MIC. There is a concern on the potential selection of antibiotic resistance by biocides. Our results indicate however that resistance to biocides and, hence any potential association with antibiotic resistance, is uncommon in natural populations of clinically relevant microorganisms.

  6. Genomics, metagenomics and proteomics in biomining microorganisms.

    Valenzuela, Lissette; Chi, An; Beard, Simon; Orell, Alvaro; Guiliani, Nicolas; Shabanowitz, Jeff; Hunt, Donald F; Jerez, Carlos A

    2006-01-01

    The use of acidophilic, chemolithotrophic microorganisms capable of oxidizing iron and sulfur in industrial processes to recover metals from minerals containing copper, gold and uranium is a well established biotechnology with distinctive advantages over traditional mining. A consortium of different microorganisms participates in the oxidative reactions resulting in the extraction of dissolved metal values from ores. Considerable effort has been spent in the last years to understand the biochemistry of iron and sulfur compounds oxidation, bacteria-mineral interactions (chemotaxis, quorum sensing, adhesion, biofilm formation) and several adaptive responses allowing the microorganisms to survive in a bioleaching environment. All of these are considered key phenomena for understanding the process of biomining. The use of genomics, metagenomics and high throughput proteomics to study the global regulatory responses that the biomining community uses to adapt to their changing environment is just beginning to emerge in the last years. These powerful approaches are reviewed here since they offer the possibility of exciting new findings that will allow analyzing the community as a microbial system, determining the extent to which each of the individual participants contributes to the process, how they evolve in time to keep the conglomerate healthy and therefore efficient during the entire process of bioleaching. PMID:16288845

  7. Enrichment of mesophilic acidophiles from the Underground Copper Mine Bor

    Conić Vesna T.

    2009-01-01

    Full Text Available In this work, autotrophic growth of mesophilic acidophiles from the Underground Copper Mine Bor was performed. Two selected solution samples collected from the 'Tilva Roš' ore body were prepared in a 9K nutrient medium (Silverman and Lundgren, 1959. The first sample TR k-16 was obtained during the hole drilling of the ore body, and the second TR k-31 from the drainage channel. Two samples of 9K media (Silverman and Lundgren, 1959 were inoculated with two selected solution samples from the underground mine Tilva Roš. Inoculated culture media were incubated without prior autoclaving in the period of 6 days at a temperature of 28 ?C with purging air through the system with enough oxygen and carbon dioxide. Oxidation rate of ferrous ions in the first 3 days of incubation was 14.8 and 10.7 wt.% Fe2+/day, the next 3 days 17.3 and 13.6 and for the total period of 6 days 98.3 and 74.8 wt.% for the first and second sample, respectively, i.e. 100 wt.% with initial percentage of ferrous ion in each medium. After centrifugation of enriched samples of culture media at 3000 rpm for 5 min, a plenty of mesophilic acidophiles were determined by microscopic method. According to Karavaiko [6], in the processes of incubition for 9K nutrient solution cells number reach a value of 108 cells/cm3.

  8. The taxonomic and physiologic diversity of the acidophilic bacteria of the genus Thiobacillus used in ores solubilization processes

    Carmen Mădălina Cişmaşiu

    2010-01-01

    Full Text Available The development of biotechnological processes, based mainly on the activity of the acidophilic chemolithotrophic, proved their efficiency in recovering metals from sulphides ores and mining drains and in bioremediation of the polluted environment with residual inorganic substances, like the heavy metals ions and their compounds.Due to the influence of the physical-chemical factors on the development and the metabolic activity of the microorganism’s present in the industrial effluents, the study of these parameters was imposed for raising the efficiency of the processes of adsorption and biosolubilization of the metallic ions. A special importance for using bacteria of the genus Acidithiobacillus in the biosolubilization processes of heavy metals from acid mine tailings is represented by the resistance of these bacteria to high concentrations of metal ions.The experiments prove a strong relationship between the acidity of the medium and the behaviour of the acidophilic chemolithotrophic bacteria. The comparative analyses regarding the influence of metallic ions (Cu2+, Zn2+ and Fe2+ on the physiologic diversity of the Acidithiobacillus populations, isolated from the mining sites, demonstrated the higher resistance of these bacteria to higher concentrations of metallic ions.

  9. Microbial community profiling of the Chinoike Jigoku ("Blood Pond Hell") hot spring in Beppu, Japan: isolation and characterization of Fe(III)-reducing Sulfolobus sp. strain GA1.

    Masaki, Yusei; Tsutsumi, Katsutoshi; Hirano, Shin-Ichi; Okibe, Naoko

    2016-09-01

    Chinoike Jigoku ("Blood Pond Hell") is located in the hot spring town of Beppu on the southern island of Kyushu in Japan, and is the site of a red-colored acidic geothermal pond. This study aimed to investigate the microbial population composition in this extremely acidic environment and to isolate/characterize acidophilic microorganism with metal-reducing ability. Initially, PCR (using bacteria- and archaea-specific primers) of environmental DNA samples detected the presence of bacteria, but not archaea. This was followed by random sequencing analysis, confirming the presence of wide bacterial diversity at the site (123 clones derived from 18 bacterial and 1 archaeal genera), including those closely related to known autotrophic and heterotrophic acidophiles (Acidithiobacillus sp., Sulfobacillus sp., Alicyclobacillus sp.). Nevertheless, successive culture enrichment with Fe(III) under micro-aerobic conditions led to isolation of an unknown archaeal organism, Sulfolobus sp. GA1 (with 99.7% 16S rRNA gene sequence identity with Sulfolobus shibatae). Unlike many other known Sulfolobus spp., strain GA1 was shown to lack sulfur oxidation ability. Strain GA1 possessed only minor Fe(II) oxidation ability, but readily reduced Fe(III) during heterotrophic growth under micro-aerobic conditions. Strain GA1 was capable of reducing highly toxic Cr(VI) to less toxic/soluble Cr(III), demonstrating its potential utility in bioremediation of toxic metal species. PMID:27208660

  10. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus

    Stefanie eMangold

    2011-02-01

    Full Text Available Given the challenges to life at low pH, an analysis of inorganic sulfur compound oxidation was initiated in the chemolithoautotrophic extremophile Acidithiobacillus caldus. A. caldus is able to metabolize elemental sulfur and a broad range of inorganic sulfur compounds. It has been implicated in the production of environmentally damaging acidic solutions as well as participating in industrial bioleaching operations where it forms part of microbial consortia used for the recovery of metal ions. Based upon the recently published A. caldus type strain genome sequence, a bioinformatic reconstruction of elemental sulfur and inorganic sulfur compound metabolism predicted genes included: sulfide quinone reductase (sqr, tetrathionate hydrolase (tth, two sox gene clusters potentially involved in thiosulfate oxidation (soxABXYZ, sulfur oxygenase reductase (sor, and various electron transport components. RNA transcript profiles by semi-quantitative reverse transcription PCR suggested up-regulation of sox genes in the presence of tetrathionate. Extensive gel based proteomic comparisons of total soluble and membrane enriched protein fractions during growth on elemental sulfur and tetrathionate identified differential protein levels from the two Sox clusters as well as several chaperone and stress proteins up-regulated in the presence of elemental sulfur. Proteomics results also suggested the involvement of heterodisulfide reductase (HdrABC in A. caldus inorganic sulfur compound metabolism. A putative new function of Hdr in acidophiles is discussed. Additional proteomic analysis evaluated protein expression differences between cells grown attached to solid, elemental sulfur versus planktonic cells. This study has provided insights into sulfur metabolism of this acidophilic chemolithotroph and gene expression during attachment to solid elemental sulfur.

  11. Heavy metal resistance of microorganisms isolated from coal mining environments of Santa Catarina Resistência a metais pesados em microrganismos isolados de ambientes da mineração do carvão de Santa Catarina

    Marcus Adonai Castro-Silva

    2003-11-01

    Full Text Available The coal mining activity is characterized by the generation of large amount of by-products. One of them is pyrite, which tends to acidify the water, solubilizing heavy metals. As a consequence the environment becomes acid and rich in heavy metals, selecting microorganisms able to survive in this condition, which are of great interest as bioremediation agents. This work describes the isolation and characterization of microorganisms from a coal mining area in Santa Catarina. These microorganisms comprised bacteria, fungi and yeasts resistant to zinc, nickel and cadmium.A atividade de mineração do carvão é responsável pela geração de diferentes sub-produtos. Entre esses, está a pirita que acidifica a água e acelera o processo de solubilização de metais. Como conseqüência, o ambiente torna-se ácido e rico em metais pesados, os quais selecionam os microrganismos capazes de sobreviver nestas condições. Esses microrganismos podem, por sua vez, serem empregados como agentes para a biorremediação de áreas contaminadas com metais pesados. No presente trabalho é descrito o isolamento e a caracterização de bactérias, fungos e leveduras resistentes aos metais zinco, níquel e cádmio.

  12. Construction of conjugative gene transfer system between E. coli and moderately thermophilic, extremely acidophilic Acidithiobacillus caldus MTH-04.

    Liu, Xiangmei; Lin, Jianqun; Zhang, Zheng; Bian, Jiang; Zhao, Qing; Liu, Ying; Lin, Jianqiang; Yan, Wangming

    2007-01-01

    A genetic transfer system for introducing foreign genes to biomining microorganisms is urgently needed. Thus, a conjugative gene transfer system was investigated for a moderately thermophilic, extremely acidophilic biomining bacterium, Acidithiobacillus caldus MTH-04. The broad-host-range IncP plasmids RP4 and R68.45 were transferred directly into A. caldus MTH-04 from Escherichia coli by conjugation at relatively high frequencies. Additionally the broad-host-range IncQ plasmids pJRD215, pVLT33, and pVLT35 were also transferred into A. caldus MTH-04 with the help of plasmid RP4 or strains with plasmid RP4 integrated into their chromosome, such as E. coli SM10. The Km(r) and Sm(r) selectable markers from these plasmids were successfully expressed in A. caldus MTH-04. Futhermore, the IncP and IncQ plasmids were transferred back into E. coli cells from A. caldus MTH-04, thereby confirming the initial transfer of these plasmids from E. coli to A. caldus MTH-04. All the IncP and IncQ plasmids studied were stable in A. caldus MTH-04. Consequently, this development of a conjugational system for A. caldus MTH-04 will greatly facilitate its genetic study. PMID:18051368

  13. Acquisition of useful and high ability genes for acidophilic bacteria; Kosansei saikin ni takai noryoku wo fuyosuru idenshi no kakutoku

    Senda, T.; Inoue, C.; Shinbori, Y. [Tohoku University, Sendai (Japan)

    1997-02-01

    This effort aims at the development of high-performance bacteria usable in bio-leaching in metal smelting by acquiring genes capable of realizing such. A method is used of choosing some isolated strains exhibiting high-performance traits and acquiring target genes therefrom by use of genetic engineering. Approximately 200 kinds in the aggregate of acidophilic bacteria are currently available for the study, including isolated iron-oxidizing and sulfur-oxidizing bacteria, standard species acquired for the study, and strains previously isolated by the laboratory. The bacteria are tested with respect to their Fe{sup 2+}-oxidizing rates, sulfur-oxidizing capabilities, and strength to withstand inhibiting substances (Ag{sup +}, Cl{sup -}, Mo{sup 6+}, etc.), which results in the nomination of 8 strains. The study planned to follow includes processes involving the extraction of chromosome DNAs from the 8 strains and their refinement, gene cloning by the Southern hybridization method, determination of their base sequences, determination of the difference between the strains in point of gene expression, and investigations of the relations that the results of these processes bear toward the said high-performance traits. Also under way is a study about the infuence-exerting factors revealed during the evaluation of the abilities of acidphlic bacteria. 2 refs., 2 tabs.

  14. Fatty acid profiles of marine benthic microorganisms isolated from the continental slope of bay of bengal: a possible implications in the benthic Food web

    Das, Surajit; Lyla, P. S.; Khan, S. Ajmal

    2007-12-01

    Marine bacteria, actinomycetes and fungal strains were isolated from continental slope sediment of the Bay of Bengal and studied for fatty acid profile to investigate their involvement in the benthic food-web. Fifteen different saturated and unsaturated fatty acids from bacterial isolates, 14 from actinomycetes and fungal isolates were detected. The total unsaturated fatty acids in bacterial isolates ranged from 11.85 to 37.26%, while the saturated fatty acid ranged between 42.34 and 80.74%. In actinomycetes isolates, total unsaturated fatty acids varied from 27.86 to 38.85% and saturated fatty acids ranged from 35.29 to 51.25%. In fungal isolates unsaturated fatty acids ranged between 44.62 and 65.52% while saturated FA ranged from 20.80 to 46.30%. The higher percentages of unsaturated fatty acids from the microbial isolates are helpful in anticipating the active participation in the benthic food-web of Bay of Bengal.

  15. Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH.

    Shunsuke Hirooka

    Full Text Available Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0-5.0 and a temperature 20-25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh under a nitrogen-depleted condition at low-pH (pH 3.0. These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems.

  16. Isolation and Screening of Microbes for The microorganism used as probiotics must be bio-safety, could be cheaply and easily

    Tresnawati Purwadaria

    2003-06-01

    Full Text Available produced, and suitable with the environment of the digestive track. Isolation was carried out from commercial culture (containing mixture of Bacillus spp., digestive tract (proventriculus, small intestine and large intestine of local and broiler chickens, and commercial yoghurts (fermented milk. Neutral and acidic nutrient agars (NA were used as the media at room temperature and in the aerobic or anaerobic conditions. Separate colonies were isolated, stained with Gram and spore staining and observed under the microscope. The bacteria which were Gram positive bacillus and can form spores were further identified. Eight different species of Bacillus spp.: B. laterosporus, B. coagulans, B. alvei, B. circulans, B. brevis B. bodius, B. pasteurii, and B. macroides were isolated from the commercial mixture. From the digestive tracts of local and broiler chickens, 13 bacteria and 2 yeasts were isolated, while 5 yeast were obtained from two commercial yoghurts. Those bacteria were facultative aerobic and only grew in neutral condition and not in acidic condition (pH 4.5, while the yeast were either facultative anaerobic also can grow in pH neutral and 4.5. The ability of each isolates to grow in the media containing mixture of minerals and glucose, sucrose or molasses were evaluated. Incubation was carried out in the shaker incubator at 40°C, 150 rpm for 48 hours. Dry matter of the biomass was determined as the growth parameter. All isolates of bacteria and yeast can grow in the substrate containing glucose, sucrose and molasses. Variance analyses show that there were interactions between kind of bacteria and carbon source or between kind of yeast and carbon source (P<0.05. Three isolates of bacteria that had highest production of biomass were B. coagulans on sucrose (the third for molasses, Sp. 9 on glucose, and B. apiarius on sucrose (the sixth on molasses. B. apiarius isolated from digestive tract of local chicken will be useful to be developed as

  17. Glyphosate-Degrading Microorganisms from Industrial Activated Sludge

    Balthazor, Terry M.; Hallas, Laurence E.

    1986-01-01

    A plating medium was developed to isolate N-phosphonomethylglycine (glyphosate)-degrading microorganisms, with glyphosate as the sole phosphorus source. Two industrial biosystems treating glyphosate wastes contained elevated microbial counts on the medium. One purified isolate metabolized glyphosate to aminomethylphosphonic acid, mineralizing this accumulating intermediate during log growth. This microorganism has been identified as a Flavobacterium species.

  18. Secondary metabolites from marine microorganisms

    KELECOM ALPHONSE

    2002-01-01

    Full Text Available After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  19. Microbial Iron Cycling in Acidic Geothermal Springs of Yellowstone National Park: Integrating Molecular Surveys, Geochemical Processes, and Isolation of Novel Fe-Active Microorganisms

    Mark A Kozubal; Macur, Richard E.; Zack J Jay; Jake P Beam; Malfatti, Stephanie A.; Susannah Green Tringe; Kocar, Benjamin D.; Thomas eBorch; Inskeep, William P.

    2012-01-01

    Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park (YNP). Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 84 °C and pH 2.4 to 3.6. All iron-oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly si...

  20. Microbial iron cycling in acidic geothermal springs of Yellowstone National Park: Integrating molecular surveys, geochemical processes and isolation of novel Fe-active microorganisms

    Mark A Kozubal

    2012-03-01

    Full Text Available Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park (YNP. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 84 °C and pH 2.4 to 3.6. All iron-oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65-70 °C, but increased in diversity below 60 °C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were observed for M. yellowstonensis str. MK1 and Sulfolobales str. MK5 cultures, and these rates are close to those measured in situ. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88 oC.

  1. Technological characterization and probiotic traits of yeasts isolated from Altamura sourdough to select promising microorganisms as functional starter cultures for cereal-based products.

    Perricone, Marianne; Bevilacqua, Antonio; Corbo, Maria Rosaria; Sinigaglia, Milena

    2014-04-01

    The main topic of this research was to select some suitable functional starter cultures for cereal-based food or beverages. This aim was achieved through a step-by step approach focused on the technological characterization, as well as on the evaluation of the probiotic traits of yeasts; the technological characterization relied on the assessment of enzymatic activities (catalase, urease, β-glucosidase), growth under various conditions (pH, temperature, addition of salt, lactic and acetic acids) and leavening ability. The results of this step were used as input data for a Principal Component Analysis; thus, the most technologically relevant 18 isolates underwent a second selection for their probiotic traits (survival at pH 2.5 and with bile salts added, antibiotic resistance, antimicrobial activity towards foodborne pathogens, hydrophobic properties and biofilm production) and were identified through genotyping. Two isolates (Saccharomyces cerevisiae strain 2 and S. cerevisiae strain 4) were selected and analyzed in the last step for the simulation of the gastric transit; these isolates showed a trend similar to S. cerevisiae var. boulardii ATCC MYA-796, a commercial probiotic yeast used as control. PMID:24290622

  2. Isolation of microorganisms of cheese whey with lipolytic activity for removal of COD Isolamento de microrganismos do soro de queijo com atividade lipásica para remoção de DQO

    Eliane Hermes

    2013-04-01

    Full Text Available The aim of this study was to isolate microorganisms that produce lipase and to assess the efficiency of COD removal intreatment of cheese whey under different operating conditions. The microorganisms were isolated from cheese whey and a commercial product; it was selectedthreemicroorganisms that obtained the best response to the lipolytic activity test through the enzyme index. Then, the microorganisms were inoculated in sterilized cheese whey samples, for two pH values (6.2 and 7.0, incubated at 35 °C and 150 rpm in shaker and the lipolityc activity and the efficiency of COD removal were measured in two time periods (24 and 48h. After incubation, it was observed that the treatments showed a good removal efficiency of COD for the pre-treatment and the isolated microorganism (S1 from the cheese whey showed the highest lipase production. Regarding the pH and time variables, there was not significant effect between the two evaluated factors. Among all treatments, T2 (S1, pH 7.0 and 24h obtained more enzyme production (4.87 U mL-1.O objetivo deste estudo foi isolar microrganismos produtores de lipase e avaliar a eficiência de remoção de DQO no tratamento de soro de leite sob diferentes condições operacionais. Os microrganismos foram isolados a partir do soro de queijo e de um produto comercial,e foram selecionados os três microrganismos que obtiveram a melhor resposta no teste da atividade lipolítica, através do índice enzimático. Em seguida, inocularam-se os micro-organismos em amostras de soro de queijo esterilizado, para dois valores de pH (6,2 e 7,0, incubaram-se a 35 ºC e 150 rpm em shaker e mensuram-se em dois períodos de tempo (24 e 48 h a atividade lipásica e a eficiência de remoção de DQO.Após a incubação, observou-se que os tratamentos apresentaram boa eficiência de remoção de DQO para o pré-tratamento,e o microrganismo (S1 isolado a partir do soro de queijo apresentou a maior produção de lipase. Com relação

  3. Pythium kandovanense sp. nov., a fungus-like eukaryotic micro-organism (Stramenopila, Pythiales) isolated from snow-covered ryegrass leaves.

    Chenari Bouket, Ali; Arzanlou, Mahdi; Tojo, Motoaki; Babai-Ahari, Asadollah

    2015-08-01

    Pythiumkandovanense sp. nov. (ex-type culture CCTU 1813T = OPU 1626T = CBS 139567T) is a novel oomycete species isolated from Lolium perenne with snow rot symptoms in a natural grassland in East-Azarbaijan province, Iran. Phylogenetic analyses based on sequence data from internal transcribed spacer (ITS)-rDNA, coxI and coxII mitochondrial genes clustered our isolates in Pythium group E as a unique, well supported clade. Pythium kandovanense sp. nov. is phylogenetically and morphologically distinct from the other closely related species in this clade, namely Pythium rostratifingens and Pythium rostratum. Pythium kandovanense sp. nov. can be distinguished from these two species by its cylindrical sporangia and lower temperatures for optimum and maximum growth rate. The development of zoospores released through a shorter discharge tube is an additional morphological feature which can be used to differentiate Pythium kandovanense sp. nov. from Pythium rostratifingens. Laboratory inoculation tests demonstrated the pathogenicity of Pythium kandovanense sp. nov. to L. perenne under wet cold (0-3 °C) conditions. PMID:25933619

  4. Radiation resistance of microorganisms on unsterilized infusion sets

    Christensen, E. Ahrensburg; Kristensen, H.; Hoborn, J.; Miller, A.

    1991-01-01

    Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor in a steriliza......Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor in a...

  5. Radiation resistance of microorganisms on unsterilized infusion sets

    Christensen, E. Ahrensburg; Kristensen, H.; Hoborn, J.;

    1991-01-01

    Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor in a steriliza......Three different methods were used for detecting and isolating microorganisms with high radiation resistance from the microbial contamination on infusion sets prior to sterilization. By all three methods, microorganisms with a radiation resistance high enough to be a critical factor...

  6. Biochemistry and Ecology of Novel Cytochromes Catalyzing Fe(II) Oxidation by an Acidophilic Microbial Community

    Singer, S. W.; Jeans, C. J.; Thelen, M. P.; Verberkmoes, N. C.; Hettich, R. C.; Chan, C. S.; Banfield, J. F.

    2007-12-01

    An acidophilic microbial community found in the Richmond Mine at Iron Mountain, CA forms abundant biofilms in extremely acidic (pHoxidation is critical to the metabolic functioning of the community, and in turn this process generates acid mine drainage, causing an environmental catastrophe. Two conspicuous novel proteins isolated from these biofilms were identified as gene products of Leptospirillum group II and were characterized as cytochromes with unique properties. Sulfuric acid extraction of biofilm samples liberated one of these proteins, a 16 kDa cytochrome with an unusual alpha-band absorption at 579 (Cyt579). Genomic sequencing of multiple biofilms indicated that several variants of Cyt579 were present in Leptospirillum strains. Intact protein MS analysis identified the dominant variants in each biofilm and documented multiple N-terminal cleavage sites for Cyt579. By combining biochemical, geochemical and microbiological data, we established that the sequence variation and N-terminal processing of Cyt579 are selected by ecological conditions. In addition to the soluble Cyt579, the second cytochrome appears as a much larger protein complex of ~210 kDa predominant in the biofilm membrane fraction, and has an alpha-band absorption at 572 nm. The 60 kDa cytochrome subunit, Cyt572, resides in the outer membrane of LeptoII, and readily oxidizes Fe(II) at low pH (0.95 - 3.0). Several genes encoding Cyt572 were localized within a recombination hotspot between two strains of LeptoII, causing a large range of variation in the sequences. Genomic sequencing and MS proteomic studies established that the variants were also selected by ecological conditions. A general mechanistic model for Fe(II) oxidation has been developed from these studies. Initial Fe(II) oxidation by Cyt572 occurs at the outer membrane. Cyt572 then transfers electrons to Cyt579, perhaps representing an initial step in energy flow to the biofilm community. Amino acid variations and post

  7. Microorganisms and Chemical Pollution

    Alexander, M.

    1973-01-01

    Discusses the importance of microorganisms in chemical pollution and pollution abatement. Selected chemical pollutants are chosen to illustrate that microorganisms synthesize hazardous substances from reasonably innocuous precursors, while others act as excellent environmental decontaminating agents by removing undesirable natural and synthetic…

  8. Prevalence of drug resistance and culture-positive rate among microorganisms isolated from patients with ocular infections over a 4-year period

    Shimizu Y

    2013-04-01

    Full Text Available Yusuke Shimizu,1 Hiroshi Toshida,1 Rio Honda,1 Asaki Matsui,1 Toshihiko Ohta,1 Yousuke Asada,2 Akira Murakami2 1Department of Ophthalmology, Juntendo University Shizuoka Hospital, Shizuoka, Japan; 2Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan Purpose: To investigate the microbial isolates from patients with ocular infections and the trend in the emergence of levofloxacin-resistant strains over the past four years from 2006 to 2009 retrospectively. Patients and methods: The subjects were 242 patients with ocular infections or traumas treated in our hospital including outpatients, inpatients, and emergency room patients. Most of them needed urgent care presenting with eye complaints, traumas, or decreased vision. Clinical samples were obtained from discharges, corneal, conjunctival tissues or vitreous fluid or aqueous humor, and cultured. Items for assessment included the patient’s age, the diagnosis, the prevalence of isolated bacteria, and the results of susceptibility tests for levofloxacin (LVFX cefamezin (CEZ, gentamicin (GM and vancomycin. This information was obtained from the patients’ medical records. Results: There were 156 male patients and 86 female patients who were aged from 2 months old to 94 years old and mean age was 56.8 ± 24.2 years. Of the 242 patients, 78 (32.2% had positive cultures. The culture-positive rate was significantly higher in male patients than female in total (P = 0.002 and in patients with corneal perforation (P = 0.005. Corneal perforation was the highest culture-positive rate (60.0%, followed by orbital cellulitis (56.5%, blepharitis (50.0%, dacryoadenitis (45.5%, conjunctivitis (38.2%, infectious corneal ulcer (28.5% and endophthalmitis (24.7%. LVFX-resistant strains accounted for 40 out of a total of 122 strains (32.8%, and the minimum inhibitory concentration (MIC was significantly higher in LVFX and GM compared with the other antibiotics. There were no vancomycin

  9. Characterization of a novel thiosulfate dehydrogenase from a marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH.

    Sharmin, Sultana; Yoshino, Eriko; Kanao, Tadayoshi; Kamimura, Kazuo

    2016-01-01

    A marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH, was isolated to develop a bioleaching process for NaCl-containing sulfide minerals. Because the sulfur moiety of sulfide minerals is metabolized to sulfate via thiosulfate as an intermediate, we purified and characterized the thiosulfate dehydrogenase (TSD) from strain SH. The enzyme had an apparent molecular mass of 44 kDa and was purified 71-fold from the solubilized membrane fraction. Tetrathionate was the product of the TSD-oxidized thiosulfate and ferricyanide or ubiquinone was the electron acceptor. Maximum enzyme activity was observed at pH 4.0, 40 °C, and 200 mM NaCl. To our knowledge, this is the first report of NaCl-stimulated TSD activity. TSD was structurally different from the previously reported thiosulfate-oxidizing enzymes. In addition, TSD activity was strongly inhibited by 2-heptyl-4-hydroxy-quinoline N-oxide, suggesting that the TSD is a novel thiosulfate:quinone reductase. PMID:26393925

  10. STUDY ON ANTIMICROBIAL EFFICACY AND TOXICITY OF CLOVE ETHANOL EXTRACT ON CLINICALLY ISOLATED MICROORGANISM STRAINS%丁香乙醇提取液对临床分离菌株的抗菌作用及毒性试验

    袁文静

    2011-01-01

    目的 研究丁香乙醇提取液的体外抗菌作用和毒性.方法 采用抑菌试验和动物试验方法,观察了丁香乙醇提取液对结核分枝杆菌、蜡状芽孢杆菌、肺炎克雷伯菌等临床分离菌株和大肠杆菌、金黄色葡萄球菌等标准菌株的抑菌环直径均大于7 mm.在40 mg/ml的浓度下对细胞无毒性伤害.小鼠急性毒理试验LD50值大于5 000mg/kg,长期毒理试验LD50值大于5 000 mg/kg.结论 丁香乙醇提取液具有良好的体外抗临床菌株作用,毒性低,具有开发成消毒液的前景.%Objective To investigate the antimicrobial activity and toxicity of the ethanol extract from clove. Methods Antibacterial method and animal test were used to observe the antimicrobial activity of the ethanol extract from clove. Results The diameters of bacterial inhibition zones of clinically isolated microorganism strains including Mycobacterium tuberculosis, Bacillus suhtilis and Klebsiella pneumoniae, and standard microorganism strains including Escherkhia coli and Staphylococcus aureus exposed to the clove ethanol extract were > 7 mm. The mouse acute oral LD50 was >5 000 mg/kg, the mouse long - time toxicity LD50 was > 5 000 mg/kg. Conclusion The clove ethanol extract has good clinically antimicrobial efficacy and low toxicity. It can be developed as a disinfectant in the future.

  11. In vitro minocycline activity on superinfecting microorganisms isolated from chronic periodontitis patients Atividade in vitro de minociclina sobre microrganismos superinfectantes isolados de pacientes com periodontite crônica

    Luciana Fernandes de Oliveira

    2006-09-01

    Full Text Available Chronic periodontitis is the most common type of periodontitis and it is associated with various species of microorganisms. Enteric rods, Pseudomonas, Staphyloccocus and Candida have been retrieved from periodontal pockets of patients with chronic periodontitis and correlated to cases of superinfection. Local or systemic antibiotic therapy is indicated to reinforce the effects of the conventional mechanical therapy. Minocycline has been suggested as one of the most effective drugs against periodontal pathogens. The aim of this work was to evaluate the minimal inhibitory concentration (MIC of minocycline on superinfecting microorganisms isolated from the periodontal pocket and the oral cavity of individuals with chronic periodontitis. Isolates of Enterobacteriaceae (n = 25, Staphylococcus spp. (n = 25, Pseudomonas aeruginosa (n = 9 and Candida spp. (n = 25 were included in the study. Minimal inhibitory concentrations (MIC of minocycline were determined using the Müeller-Hinton agar dilution method. Staphylococcus spp. isolates were the most sensitive to minocycline with a MIC of 8 µg/mL, followed by Enterobacteriaceae with a MIC of 16 µg/mL. The concentration of 16 µg/mL inhibited 96% of Candida spp. isolates. The MIC for 88.8% of the isolates of Pseudomonas aeruginosa was 128 µg/mL. A concentration of 1,000 µg/mL was not enough to inhibit 100% of the tested isolates.Periodontite crônica é a forma mais comum de periodontite e está associada a diversas espécies de microrganismos. Enterobactérias, Pseudomonas, Staphyloccocus e Candida têm sido recuperados de bolsas periodontais de indivíduos com periodontite crônica e implicados em casos de superinfecção. A terapia antimicrobiana local ou sistêmica pode ser utilizada para reforçar os efeitos da terapia mecânica convencional, e a minociclina tem sido sugerida como antimicrobiano eficaz frente a periodontopatógenos. O objetivo deste trabalho foi avaliar a concentração inibit

  12. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria

    Ňancucheo, Ivan; Johnson, D. Barrie

    2011-01-01

    Summary Two continuous‐flow bench‐scale bioreactor systems populated by mixed communities of acidophilic sulfate‐reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor p...

  13. Enhancement of uranium-accumulating ability of microorganisms by irradiation

    Sakaguchi, Takashi; Nakajima, Akira; Tsuruta, Takehiko [Miyazaki Medical Coll., Kiyotake (Japan)

    1998-01-01

    Some microorganisms having excellent ability to accumulate uranium were isolated, from soil and water systems in and around the Ningyo-toge Station of Power Reactor and Nuclear Fuel Development Corporation. The enhancement of uranium-accumulating ability of microorganisms by electron-beam irradiation was examined, and the ability of JW-046 was increased 3-5% by the irradiation. The irradiation affect the growth of some of microorganisms tested. (author)

  14. Microorganisms (Microbes), Role of

    Fenchel, Tom

    2013-01-01

    Microorganisms (microbes) are those life forms too small to be seen by the naked eye; that is, those that require a microscope or other form of magnification in order to be observed. The term microorganism is thus a functional description rather than a taxonomic one, and the grouping includes a w...... wide variety of organisms. The article focuses on the functional role of microbes in the biosphere and in different types of habitats - especially in terms of flow of energy and matter....

  15. Rumen microorganisms and fermentation

    AR Castillo-González

    2014-01-01

    Full Text Available The rumen consists of a complex ecosystem where nutrients consumed by ruminants are digested by fermentation process, which is executed by diverse microorganisms such as bacteria, protozoa, and fungi. A symbiotic relationship is found among different groups of microorganisms due to the diverse nature of these microbial species and their adaptability and interactions also coexist. The ruminant provides the necessary environment for the establishment of such microorganisms, while the microorganisms obtain energy from the host animal from microbial fermentation end products. Within the ruminal ecosystem, the microorganisms coexist in a reduced environment and pH remains close to neutral. Rumen microorganisms are involved in the fermentation of substrates contained in thedietof the animals (carbohydrates, proteins and lipids. However, the fermentation process is not 100% effective because there are energy losses mainly in the form of methane gas (CH4, which is a problem for the environment since it is a greenhouse gas. In order to improve the efficiency of ruminant production systems, nutritional strategies that aim to manipulate ruminal fermentation using additives in the diet such as monensin, tallow, buffers, nitrogen compounds, probiotics, and others have been used. These additives allow changing the ruminal fermentation process in ways that produce better growth efficiency while decreasing energy loss. The purpose of this review is to contribute to a better understanding of the fermentation processes taking place in the rumen, providing information that can be applied in the development of new nutritional strategies for the improvement of the digestion process to achieve maximum production.

  16. Bioemulsan Production by Iranian Oil Reservoirs Microorganisms

    A Amiriyan, M Mazaheri Assadi, VA Saggadian, A Noohi

    2004-10-01

    Full Text Available The biosurfactants are believed to be surface active components that are shed into the surrounding medium during the growth of the microorganisms. The oil degrading microorganism Acinetobacter calcoaceticus RAG-1 produces a poly-anionic biosurfactant, hetero-polysaccharide bioemulsifier termed as emulsan which forms and stabilizes oil-water emulsions with a variety of hydrophobic substrates. In the present paper results of the possibility of biosurfactant (Emulsan production by microorganisms isolated from Iranian oil reservoirs is presented. Fourthy three gram negative and gram positive, non fermentative, rod bacilli and coccobacilli shaped baceria were isolated from the oil wells of Bibi Hakimeh, Siri, Maroon, Ilam , East Paydar and West Paydar. Out of the isolated strains, 39 bacterial strains showed beta haemolytic activity, further screening revealed the emulsifying activity and surface tension. 11 out of 43 tested emulsifiers were identified as possible biosurfactant producers and two isolates produced large surface tension reduction, indicating the high probability of biosurfactant production. Further investigation revealed that, two gram negative, oxidase negative, aerobic and coccoid rods isolates were the best producers and hence designated as IL-1, PAY-4. Whole culture broth of isolates reduced surface tension from 68 mN /m to 30 and 29.1mN/m, respectively, and were stable during exposure to high salinity (10%NaCl and elevated temperatures(120C for 15 min .

  17. Fossil Microorganisms in Archaean

    Astafleva, Marina; Hoover, Richard; Rozanov, Alexei; Vrevskiy, A.

    2006-01-01

    Ancient Archean and Proterozoic rocks are the model objects for investigation of rocks comprising astromaterials. The first of Archean fossil microorganisms from Baltic shield have been reported at the last SPIE Conference in 2005. Since this confeence biomorphic structures have been revealed in Archean rocks of Karelia. It was determined that there are 3 types of such bion structures: 1. structures found in situ, in other words microorganisms even-aged with rock matrix, that is real Archean fossils biomorphic structures, that is to say forms inhabited early formed rocks, and 3. younger than Archean-Protherozoic minerali microorganisms, that is later contamination. We made attempt to differentiate these 3 types of findings and tried to understand of burial of microorganisms. The structures belongs (from our point of view) to the first type, or real Archean, forms were under examination. Practical investigation of ancient microorganisms from Green-Stone-Belt of Northern Karelia turns to be very perspective. It shows that even in such ancient time as Archean ancient diverse world existed. Moreover probably such relatively highly organized cyanobacteria and perhaps eukaryotic formes existed in Archean world.

  18. Detection and validation of a small broad-host-range plasmid pBBR1MCS-2 for use in genetic manipulation of the extremely acidophilic Acidithiobacillus sp.

    Hao, Likai; Liu, Xiangmei; Wang, Huiyan; Lin, Jianqun; Pang, Xin; Lin, Jianqiang

    2012-09-01

    An efficient genetic system for introducing genes into biomining microorganisms is essential not only to experimentally determine the functions of genes predicted based on bioinformatic analysis, but also for their genetic breeding. In this study, a small broad-host-range vector named pBBR1MCS-2, which does not belong to the IncQ, IncW, or IncP groups, was studied for the feasibility of its use in conjugative gene transfer into extremely acidophilic strains of Acidithiobacillus. To do this, a recombinant plasmid pBBR-tac-Sm, a derivative of pBBR1MCS-2, was constructed and the streptomycin resistant gene (Sm(r)) was used as the reporter gene. Using conjugation, pBBR-tac-Sm was successfully transferred into three tested strains of Acidithiobacillus. Then we measured its transfer frequency, its stability in Acidithiobacillus cells, and the level of resistance to streptomycin of the transconjugants and compared this with the IncQ plasmid pJRD215 control. Our results indicate that pBBR1MCS-2 provides a new and useful tool in the genetic manipulation of Acidithiobacillus strains. PMID:22705922

  19. Isolation of Resistance-Bearing Microorganisms

    Venkateswaran, Kasthuri, J.; Probst, Alexander; Vaishampayan, Parang A.; Ghosh, Sudeshna; Osman, Shariff

    2010-01-01

    To better exploit the principles of gas transport and mass transport during the processes of cell seeding of 3D scaffolds and in vitro culture of 3D tissue engineered constructs, the oscillatory cell culture bioreactor provides a flow of cell suspensions and culture media directly through a porous 3D scaffold (during cell seeding) and a 3D construct (during subsequent cultivation) within a highly gas-permeable closed-loop tube. This design is simple, modular, and flexible, and its component parts are easy to assemble and operate, and are inexpensive. Chamber volume can be very low, but can be easily scaled up. This innovation is well suited to work with different biological specimens, particularly with cells having high oxygen requirements and/or shear sensitivity, and different scaffold structures and dimensions. The closed-loop changer is highly gas permeable to allow efficient gas exchange during the cell seeding/culturing process. A porous scaffold, which may be seeded with cells, is fixed by means of a scaffold holder to the chamber wall with scaffold/construct orientation with respect to the chamber determined by the geometry of the scaffold holder. A fluid, with/without biological specimens, is added to the chamber such that all, or most, of the air is displaced (i.e., with or without an enclosed air bubble). Motion is applied to the chamber within a controlled environment (e.g., oscillatory motion within a humidified 37 C incubator). Movement of the chamber induces relative motion of the scaffold/construct with respect to the fluid. In case the fluid is a cell suspension, cells will come into contact with the scaffold and eventually adhere to it. Alternatively, cells can be seeded on scaffolds by gel entrapment prior to bioreactor cultivation. Subsequently, the oscillatory cell culture bioreactor will provide efficient gas exchange (i.e., of oxygen and carbon dioxide, as required for viability of metabolically active cells) and controlled levels of fluid dynamic shear (i.e., as required for viability of shear-sensitive cells) to the developing engineered tissue construct. This bioreactor was recently utilized to show independent and interactive effects of a growth factor (IGF-I) and slow bidirectional perfusion on the survival, differentiation, and contractile performance of 3D tissue engineering cardiac constructs. The main application of this system is within the tissue engineering industry. The ideal final application is within the automated mass production of tissue- engineered constructs. Target industries could be both life sciences companies as well as bioreactor device producing companies.

  20. Enhanced bioleaching on attachment of indigenous acidophilic bacteria to pyrite surface

    Wi, D. W.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    In recent years, bioleaching has been widely applied on an industrial scale due to the advantages of low cost and environment friendliness. The direct contact mechanism of bioleaching assumes the action of a metal sulfide-attached cell oxidizing the mineral by an enzyme system with oxygen to sulfate and metal cations. Fundamental surface properties of sulfide particles and leaching-bacteria in bioleaching play the key role in the efficiency of this process. The aim of this work is to investigate of direct contact bioleaching mechanism on pyrite through attachment properties between indigenous acidophilic bacteria and pyrite surfaces. The bacteria were obtained from sulfur hot springs, Hatchobaru thermal electricity plant in Japan. And pyrite was collected from mine waste from Gwang-yang abandoned gold mines, Korea. In XRD analyses of the pyrite, x-ray diffracted d-value belong to pyrite was observed. The indigenous acidophilic bacteria grew well in a solution and over the course of incubation pH decreased and Eh increased. In relation to a bacterial growth-curve, the lag phase was hardly shown while the exponential phase was very fast. Bioleaching experiment result was showed that twenty days after the indigenous acidophilic bacteria were inoculated to a pyrite-leaching medium, the bacterial sample had a greater concentration of Fe and Zn than within the control sample. In SEM-EDS analyses, rod-shaped bacteria and round-shaped microbes were well attached to the surface of pyrite. The size of the rod-shaped bacteria ranged from 1.05~1.10 ? to 4.01~5.38 ?. Round-shaped microbes were more than 3.0 ? in diameter. Paired cells of rod-shaped bacteria were attached to the surface of pyrite linearly.

  1. Photochemical performance of the acidophilic red alga Cyanidium sp. in a pH gradient

    Kvíderová, Jana

    2012-01-01

    Roč. 42, č. 2-3 (2012), s. 223-234. ISSN 0169-6149. [European Workshop on Astrobiology of the European-Astrobiology-Network-Association (EANA) /11/. German Aerosp Ctr, Cologne, 11.07.2011-14.07.2011] R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : acidophilic red alga * pH gradient * photochemistry Subject RIV: EF - Botanics Impact factor: 1.831, year: 2012

  2. Motion of magnetotactic microorganisms

    Magnetic moments for different magnetotactic microorganisms are obtained by electron microscopy analyses and studies of motion by optical microscopy. The results are analysed in terms of a model due to C.Bean. The considerations presented suggest that magnetotaxy is an efficient mechanism for orientation only if the time for reorientation is smaller than the cycles of environmental perturbations. (Author)

  3. The yeasts and yeast-like microorganisms in the denitrification unit biocenosis

    Alena Sláviková

    2014-08-01

    Full Text Available Taxonomic studies of the yeasts and yeast-like microorganisms in the denitrification unit biocenosis were carried out. A set of 13 strains of these microorganisms were examined for their morphological and physiological characters. Considering their special features and some relation to the known species, the isolated microorganisms were classified to the 3 genera: Candida, Geotrichium and Hansenula.

  4. Classification of root canal microorganisms using electronic-nose and discriminant analysis

    Özbilge Hatice; Kaya Esma; Er Özgür; Kahraman Yasemin; Asyalı Musa H; Aksebzeci Bekir H; Kara Sadık

    2010-01-01

    Abstract Background Root canal treatment is a debridement process which disrupts and removes entire microorganisms from the root canal system. Identification of microorganisms may help clinicians decide on treatment alternatives such as using different irrigants, intracanal medicaments and antibiotics. However, the difficulty in cultivation and the complexity in isolation of predominant anaerobic microorganisms make clinicians resort to empirical medical treatments. For this reason, identific...

  5. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    Mishra, Debaraj [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Dong J. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of)], E-mail: djkim@kigam.re.kr; Ralph, David E. [AJ Parker CRC for Hydrometallurgy, Murdoch University, South Street Murdoch, Perth 6153 (Australia); Ahn, Jong G. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Rhee, Young H. [Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2008-04-15

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO{sub 3}. Bioleach residues were characterized by EDX and XRD.

  6. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO3. Bioleach residues were characterized by EDX and XRD

  7. Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma genus.

    Potrykus, Joanna; Jonna, Venkateswara Rao; Dopson, Mark

    2011-01-01

    Extremely acidophilic archaea from the genus Ferroplasma inhabit iron-rich biomining environments and are important constituents of naturally occurring microbial consortia that catalyze the production of acid mine drainage. A combined bioinformatic, transcript profiling, and proteomic approach was used to elucidate iron homeostasis mechanisms in "F. acidarmanus" Fer1 and F. acidiphilum Y(T) . Bioinformatic analysis of the "F. acidarmanus" Fer1 genome sequence revealed genes encoding proteins hypothesized to be involved in iron-dependent gene regulation and siderophore biosynthesis; the Fhu and NRAMP cation acquisition systems; iron storage proteins; and the SUF machinery for the biogenesis of Fe-S clusters. A subset of homologous genes was identified on the F. acidiphilum Y(T) chromosome by direct PCR probing. In both strains, some of the genes appeared to be regulated in a ferrous/ferric iron-dependent manner, as indicated by RT-PCR. A detailed gel-based proteomics analysis of responses to iron depletion showed that a putative isochorismatase, presumably involved in siderophore biosynthesis, and the SufBCD system were upregulated under iron-limiting conditions. No evidence was obtained for iron sparing response during iron limitation. This study constitutes the first detailed investigation of iron homeostasis in extremely acidophilic archaea. PMID:21182194

  8. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect.

    Mishra, Debaraj; Kim, Dong J; Ralph, David E; Ahn, Jong G; Rhee, Young H

    2008-04-15

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO3. Bioleach residues were characterized by EDX and XRD. PMID:17825485

  9. Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans

    Thiobacillus thiooxidans is an acidophilic, obligately autotrophic bacterium which derives its energy by oxidizing reduced or partially reduced sulfur compounds and obtains its carbon by fixing carbon dioxide from the atmosphere. The strain is able to live in inorganic, acidic environments and is present in large numbers in coal mine drainage and in mineral ores. T. thiooxidans has been used industrially in metal leaching from mineral ores and in the microbial desulfurization of coal in combination with Thiobacillus ferrooxidans. Although T. thiooxidans has been well studied physiologically, very little is known about it genetics. The broad-host-range IncP plasmids RP4, R68.45, RP1::Tn501, and pUB307 were transferred directly to extremely acidophilic Thiobacillus thiooxidans from Escherichia coli by conjugation at frequencies of 10-5 to 10-7 per recipient. The ability of T. thiooxidans to receive and express the antibiotic resistance markers was examined. The plasmid RP4 was transferred back to E. coli from T. thiooxidans at a frequency of 1.0 x 10-3 per recipient

  10. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at −1 was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process

  11. Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals.

    Beolchini, Francesca; Dell'Anno, Antonio; De Propris, Luciano; Ubaldini, Stefano; Cerrone, Federico; Danovaro, Roberto

    2009-03-01

    This study deals with bioremediation treatments of dredged sediments contaminated by heavy metals based on the bioaugmentation of different bacterial strains. The efficiency of the following bacterial consortia was compared: (i) acidophilic chemoautotrophic, Fe/S-oxidising bacteria, (ii) acidophilic heterotrophic bacteria able to reduce Fe/Mn fraction, co-respiring oxygen and ferric iron and (iii) the chemoautotrophic and heterotrophic bacteria reported above, pooled together, as it was hypothesised that the two strains could cooperate through a mutual substrate supply. The effect of the bioremediation treatment based on the bioaugmentation of Fe/S-oxidising strains alone was similar to the one based only on Fe-reducing bacteria, and resulted in heavy-metal extraction yields typically ranging from 40% to 50%. The efficiency of the process based only upon autotrophic bacteria was limited by sulphur availability. However, when the treatment was based on the addition of Fe-reducing bacteria and the Fe/S oxidizing bacteria together, their growth rates and efficiency in mobilising heavy metals increased significantly, reaching extraction yields >90% for Cu, Cd, Hg and Zn. The additional advantage of the new bioaugmentation approach proposed here is that it is independent from the availability of sulphur. These results open new perspectives for the bioremediation technology for the removal of heavy metals from highly contaminated sediments. PMID:19118863

  12. Properties of thermophilic microorganisms

    Microorganisms are called thermophilic or extreme thermophilic (caldo-active) if they grow and reproduce over 470C and 700C, respectively. A survey of growth characteristics of thermophiles is presented and it includes those which also live at extreme pH. The prevalent but not completely emcompassing theory of the ability of thermophiles to grow at high temperatures is that they have macromolecules and cell organelles with high thermostability. Work on some proteins and cell organelles from thermophiles is reviewed. The thermostabilities of these components are compared with those of the living cells, and factors which may govern optimum as well as minimum growth temperatures of microorganisms are discussed. Examples are from the literature but also include enzymes involved in tetrahydrofolate metabolism and other proteins of acetogenic therhmophilic bacteria which are presently studied in the author's laboratory

  13. Interactions between plants and microorganisms

    Allelopathic microorganisms comprise rhizobacteria and fungi that colonize the surfaces of plant roots, and produce and release phytotoxic metabolites, similar to allelochemicals, that detrimentally affect growth of their host plants. The allelopathic microorganisms are grouped separately from typic...

  14. Detecting the presence of microorganisms

    Wilkins, Judd R. (Inventor); Stoner, Glenn E. (Inventor)

    1977-01-01

    The presence of microorganisms in a sample is determined by culturing microorganisms in a growth medium which is in contact with a measuring electrode and a reference electrode and detecting a change in potential between the electrodes caused by the presence of the microorganisms in the medium with a high impedance potentiometer.

  15. 嗜酸糖苷水解酶研究进展%Research Progress on Acidophilic Glycoside Hydrolase

    罗会颖; 姚斌; 范云六

    2013-01-01

    随着极端微生物及极端酶的广泛研究,嗜酸酶因其在极端酸性环境中具有高的酶活性和稳定性而倍受关注,并取得了较大的研究进展。嗜酸糖苷水解酶是嗜酸酶中最重要的一类,在生物能源、饲料、食品等工业中具有重要的应用前景。综述了重要嗜酸糖苷水解酶,包括嗜酸淀粉酶、嗜酸纤维素酶、嗜酸木聚糖酶和甘露聚糖酶在基因的挖掘、表达、分子改良嗜酸机制研究以及应用等方面国内外的研究进展,展望了嗜酸糖苷水解酶未来可能的研究方向和发展前景。%Extremophiles and enzymes from extremophiles are widely studied. Of them, acidophilic enzyme attracts much attention, due to its high activity and stability under extreme acidic conditions, and this research has made rapid progress. Acidophilic glycosyl hydrolase is one of the most important acidophilic enzymes, and has significant application prospect in bio-energy, animal feed, food and other industries. This paper reviewed the gene cloning, heterologous expression, molecular modification and acidophilic mechanisms of important acidophilic glycosyl hydrolases, including amylase, cellulase, xylanase, and mannanase. The research orientation and development prospects were also elucidated in this paper.

  16. Microorganisms for producing organic acids

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  17. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions

    Bauermeister, Anja; Rettberg, Petra; Flemming, Hans-Curt

    2014-08-01

    The question of life on Mars has been in focus of astrobiological research for several decades, and recent missions in orbit or on the surface of the planet are constantly expanding our knowledge on Martian geochemistry. For example, massive stratified deposits have been identified on Mars containing sulfate minerals and iron oxides, which suggest the existence of acidic aqueous conditions in the past, similar to acidic iron- and sulfur-rich environments on Earth. Acidophilic organisms thriving in such habitats could have been an integral part of a possibly widely extinct Martian ecosystem, but remains might possibly even exist today in protected subsurface niches. The chemolithoautotrophic strain Acidithiobacillus ferrooxidans was selected as a model organism to study the metabolic capacities of acidophilic iron-sulfur bacteria, especially regarding their ability to grow with in situ resources that could be expected on Mars. The experiments were not designed to accurately simulate Martian physical conditions (except when certain single parameters such as oxygen partial pressure were considered), but rather the geochemical environment that can be found on Mars. A. ferrooxidans could grow solely on the minerals contained in synthetic Mars regolith mixtures with no added nutrients, using either O2 as an external electron acceptor for iron oxidation, or H2 as an external electron donor for iron reduction, and thus might play important roles in the redox cycling of iron on Mars. Though the oxygen partial pressure of the Martian atmosphere at the surface was not sufficient for detectable iron oxidation and growth of A. ferrooxidans during short-term incubation (7 days), alternative chemical O2-generating processes in the subsurface might yield microhabitats enriched in oxygen, which principally are possible under such conditions. The bacteria might also contribute to the reductive dissolution of Fe3+-containing minerals like goethite and hematite, which are

  18. Diversity and adaptations of deep-sea microorganisms

    Raghukumar, C.

    from moderately barophilic or barotolerant microorganisms. The effect of pressure on cell membrane, protein and gene expression are studied in detail in some of these microorganisms. Cold temperatures and high pressures decrease membrane fluidity... and affect a number of membrane-associated processes including ion and nutrient flux and DNA replication (Bartlett, 1992). A barotolerant strain of Alteromonas isolated from 4033 m in the Izu-Ogasawara Trench, Japan showed an increase in the proportion...

  19. Microorganisms having enhanced resistance to acetate and methods of use

    Brown, Steven D; Yang, Shihui

    2014-10-21

    The present invention provides isolated or genetically modified strains of microorganisms that display enhanced resistance to acetate as a result of increased expression of a sodium proton antiporter. The present invention also provides methods for producing such microbial strains, as well as related promoter sequences and expression vectors. Further, the present invention provides methods of producing alcohol from biomass materials by using microorganisms with enhanced resistance to acetate.

  20. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-01-01

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions. PMID:26295411

  1. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  2. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis

    Elena Tamburini

    2015-08-01

    Full Text Available The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60–80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w on consumed xylose in microaerophilic conditions (kLa = 2·h−1. Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w, against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.

  3. Assessment of microorganisms from Indonesian Oil Fields

    Kadarwati, S.; Udiharto, M.; Rahman, M.; Jasjfi, E.; Legowo, E.H. [Research and Development Centre for Oil and Gas Technology LEMIGAS, Jakarta Selatan (Indonesia)

    1995-12-31

    Petroleum resources have been the mainstay of the national development in Indonesia. However, resources are being depleted after over a century of exploitation, while the demand continues to grow with the rapid economic development of the country. In facing the problem, EOR has been applied in Indonesia, such as the steamflooding project in Duri field, but a more energy efficient technology would be preferable. Therefore, MEOR has been recommended as a promising solution. Our study, aimed at finding indigenous microorganisms which can be developed for application in MEOR, has isolated microbes from some oil fields of Indonesia. These microorganisms have been identified, their activities studied, and the effects of their metabolisms examined. This paper describes the research carried out by LEMIGAS in this respect, giving details on the methods of sampling, incubation, identification, and activation of the microbes as well as tests on the effects of their metabolites, with particular attention to those with potential for application in MEOR.

  4. Pathogenic Microorganisms in Meat Products

    FARKOVÁ, Barbora

    2012-01-01

    The aim of this work is the analysis and description of microorganisms occurring in meat products. The work is by definition enter the search character, so the method chosen as the research literature analysis and the subsequent description of findings. The first chapter focuses on the characteristics of microorganisms and their distribution in several respects. Chapter 2 is already covered by specific genera of microorganisms that have been using a wide range of literary sources characterize...

  5. Biooxidación de sulfuros mediante cepas nativas de acidófilos compatibles con Acidithiobacillus ferrooxidans y thiooxidans, mina de oro El Zancudo, (Titiribí, Colombia Sulphide bioxidation using native Acidithiobacillus ferrooxidans and thiooxidans, related acidophile strains from "El Zancudo" gold mine (Titiribí, Colombia

    Márquez G. Marco A.

    2005-12-01

    Full Text Available El propósito de esta investigación fue evaluar a escala de laboratorio la acción de microorganismos acidófilos nativos compatibles con las especies Acidithiobacillus ferrooxidans y thiooxidans, aislados de la mina El Zancudo, Titiribí (Antioquia sobre la oxidación de sulfuros donde predominan la pirita y arsenopirita, variando las concentraciones de sustrato (8% y 16%, y el tamaño de partícula (75 um y 106 xm. Los resultados de las mediciones diarias de pH y potencial redox realizadas por un tiempo de 25 días, demuestran que hubo una actividad de oxidación eficiente y se llegó a valores de pH de 1,4 y potencial redox de 600 mV, además de encontrarse en solución niveles altos de alrededor de 20 g/L de As y 60 g/L de Fe. Por los análisis de DRX, FTIR y SEM/EDX, se evidencia la presencia de productos propios de la oxidación bacteriana, como jarosita y arsenatos de hierro, además de una corrosión inicial y avanzada en los granos de pirita y arsenopirita, respectivamente. Palabras clave: quimiolitotrofos, biolixiviación, pirita, arsenopirita, mineralogía aplicada.This investigation was aimed at a laboratory evaluation of the action of native Acidithiobacillus ferrooxidans-and thiooxidans-related acidophile micro-organism (isolated from El Zancudo gold mine in Titiribí, Colombia on the oxidation of sulphides, mainly consisting of pyrite and arsenopyrite; sulphide concentration varied from 8% to 16% and particle size from 75 um to 106 um. pH and redox potential measurement revealed efficient oxidation for each culture over a 25-day period, reaching 1,4 pH and 600 mV redox potential. 20 g/L As and 60 g/L Fe levels were reached in solution. XRD, FTIR and SEM/EDX analysis revealed the presence of bacterial oxidation products such as jarosite and iron arsenates, as well as low and high corrosion in pyrites and arsenopyrites, respectively. Key words: chemolithotrophics, bioleaching, pyrite, arsenopyrite, applied mineralogy.

  6. Gene Identification and Substrate Regulation Provide Insights into Sulfur Accumulation during Bioleaching with the Psychrotolerant Acidophile Acidithiobacillus ferrivorans

    Liljeqvist, Maria; Rzhepishevska, Olena I.; Dopson, Mark

    2013-01-01

    The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus...

  7. Technetium in micro-organisms

    This paper reports the results of experimental work on the interaction of technetium with the following aquatic micro-organisms and untreated and sterilised sediments: Flavobacterium halmephilum, Uronema marinum, Chlamydomonas reinhardtii, Dunaliella bioculata, Mytilus edulis, and marine sediments, collected near Coxyde, containing a mixed population of micro-organisms, and sterilised by autoclaving. (UK)

  8. Stress-tolerant P-solubilizing microorganisms.

    Vassilev, N; Eichler-Löbermann, B; Vassileva, M

    2012-08-01

    Drought, high/low temperature, and salinity are abiotic stress factors accepted as the main reason for crop yield losses in a world with growing population and food price increases. Additional problems create nutrient limitations and particularly low P soil status. The problem of phosphate fertilizers, P plant nutrition, and existing phosphate bearing resources can also be related to the scarcity of rock phosphate. The modern agricultural systems are highly dependent on the existing fertilizer industry based exclusively of this natural, finite, non-renewable resource. Biotechnology offers a number of sustainable solutions that can mitigate these problems by using plant beneficial, including P-solubilizing, microorganisms. This short review paper summarizes the current and future trends in isolation, development, and application of P-solubilizing microorganisms in stress environmental conditions bearing also in mind the imbalanced cycling and unsustainable management of P. Special attention is devoted to the efforts on development of biotechnological strategies for formulation of P-solubilizing microorganisms in order to increase their protection against adverse abiotic factors. PMID:22722910

  9. Selection of mesophilic microorganisms with biodesulfuration capacity

    The development of bio desulfurization (BDS) processes for hydrocarbons requires fast and reliable methods for the screening of microorganisms. This work shows the results of the screening process for indigenous Colombian strains with a BDS potential capacity. The main criteria for the screening were the qualitative and quantitative determination of 2-hydroxybiphenyl (2-HBP) as the typical metabolite of the 4S specific pathway. Microorganisms were cultured by two methodologies, A and B, using DBT as the model compound. The quantitative determination of metabolites was made by HPLC. Thirteen strains were evaluated, including the strain Rhodococcus rhodocrous IGTS8, by methods A and B. In method A, the inoculum was exposed to DBT since the beginning of the culture. Method B, employed two stages: (i) Growth period under limiting sulfur conditions, (ii) Transforming period, in which the pre-grown inoculum was exposed to the organic sulfur substrate. The culture of mesophilic microorganisms isolated by method B, served to find a mechanism for the organic sulfur metabolism, and the evaluation of the sulfur removal capability of five indigenous strains. In the cultures of these strains, 2- hydroxybiphenyl (2-HBP) was detected as a byproduct of DBT metabolism, both qualitatively and quantitatively

  10. Autecology of microorganisms of typical Ecuador biotopes.

    Tashyrev, O B; Pidgorskyi, V S; Toro, Miguel Naranjo; Gualoto, Miguel; Gladka, G V; Tashyreva, H O; Rokitko, P V; Romanovskaya, V A

    2014-01-01

    34 strains of aerobic chemoorganotrophic microorganisms were isolated from 23 soil and plant samples selected from highland biotopes of Ecuador-Andes massif (Papallacta, 4020 m), ash at the foot of the volcano Tungurahua, mountainous jungle (La Favorita, 1600 m), as well as in humid tropic botanical garden (state Puyo, 950 m). In mountain jungle samples the high number of bacteria--10(5)-10(7) CFU/g of sample were represented by 2-5 morphotypes. In highland (4020 m) samples the bacterial counts made from 10(2) to 10(7) CFU/g of sample. The current study describes resistance of isolated strains to high salinity, UV radiation and toxic metal ions. The majority of isolated strains were halotolerant. Isolates from volcanic ash showed high resistance level to UV radiation--LD99,99 made 1000-1440 J/m2; resistance level for isolates from the soil of Puyo Botanical Garden and isolates from rock lichen (Papallacta) LD99,99 made 1160 and 800 J/m2 respectively. Strains isolated from mountain jungle (La Favorita) showed lower UV-resistance. In highland biotopes of Ecuador occurred bacteria resistant to toxic metal ions. The highest resistance to Hg2+ was shown by isolate of lichen from mountain jungle, the maximal growth concentration was 0.025 g/L; to Cr(VI)--by isolate from lichen rock massif--3,0 g/L. Correlation between metal-resistance, halotolerace and UV resistance for studied strains was not detected, probably because of different microbial cell damage/repair mechanisms under the action of these factors. PMID:25639037

  11. 40 CFR 725.420 - Recipient microorganisms.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Recipient microorganisms. 725.420... CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS General Exemptions for New Microorganisms § 725.420 Recipient microorganisms. The following recipient microorganisms are eligible for...

  12. Radiation resistance of microorganisms from radiation sterilization processing environments

    The radiation resistance of microorganisms was examined on the samples of dust collected from the radiation sterilization processing environments including assembly, storage, and sterilization plant areas. The isolation of radiation resistant strains was performed by irradiation with screening doses ranging from 10 to 35 kGy and test pieces containing 106 to 108 CFU in dried serum-broth, representing 100 to 5000 colonies of primary cultures of microorganisms from 7 different sites. In an examination of 16900 colonies of aerobic microorganisms from 3 hygienically controlled production sites and 4 uncontrolled ones, 30 strains of bacteria were isolated. Of those 15 were classified as genus Bacillus, 9 as Micrococcus and 6 as Sarcina. The results are presented and discussed. (author)

  13. Toxicity of select organic acids to the slightly thermophilic acidophile Acidithiobacillus caldus.

    Aston, John E; Apel, William A; Lee, Brady D; Peyton, Brent M

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 microM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 microM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids. PMID:18803441

  14. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  15. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans.

    Christel, Stephan; Fridlund, Jimmy; Buetti-Dinh, Antoine; Buck, Moritz; Watkin, Elizabeth L; Dopson, Mark

    2016-04-01

    Acidithiobacillus ferrivoransis an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals.Acidithiobacillus ferrivoransobtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing ofAt. ferrivoransRNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by thetetH1gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites insoxXsuggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving thesatgene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknownAt. ferrivoranstetrathionate metabolic pathway that is important in biomining. PMID:26956550

  16. Effect of physical characteristics on bioleaching using indigenous acidophilic bacteria for recovering the valuable resources

    Wi, D.; Kim, B.; Cho, K.; Choi, N.; Park, C.

    2011-12-01

    Bioleaching technology which is based on the ability of bacteria to transform solid compounds into soluble or extractable elements that can be recovered, has developed rapidly in recent decades for its advantages, such as mild reaction, low energy consumption, simple process, environmentally friendly and suitable for low-grade mine tailing and residues. This study investigated the bioleaching efficiency of copper matte under batch experimental conditions (various mineral particle size) using the indigenous acidophilic bacteria collected from acidic hot spring in Hatchnobaru, Japan. We conducted the batch experiments at three different mineral particle sizes: 0.06, 0.16 and 1.12mm. The results showed that the pH in the bacteria inoculating sample increased than initial condition, possibly due to buffer effects by phosphate ions in growth medium. After 22 days from incubation the leached accumulation content of Cu was 0.06 mm - 1,197 mg/L, 0.16 mm - 970 mg/L and 1.12 mm - 704 mg/L. Additionally, through SEM analysis we found of gypsum formed crystals which coated the copper matte surface 6 days after inoculation in 1.12mm case. This study informs basic knowledge when bacteria apply to eco-/economic resources utilization studies including the biomining and the recycling of mine waste system.

  17. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities

    Denef, Vincent [University of California, Berkeley; Kalnejals, Linda [University of California, Berkeley; Muller, R [Lawrence Livermore National Laboratory (LLNL); Wilmes, P [University of California, Berkeley; Baker, Brett J. [University of California, Berkeley; Thomas, Brian [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2010-01-01

    Bacterial species concepts are controversial. More widely accepted is the need to understand how differences in gene content and sequence lead to ecological divergence. To address this relationship in ecosystem context, we investigated links between genotype and ecology of two genotypic groups of Leptospirillumgroup II bacteria in comprehensively characterized, natural acidophilic biofilm communities. These groups share 99.7% 16S rRNA gene sequence identity and 95% average amino acid identity between their orthologs. One genotypic group predominates during early colonization, and the other group typically proliferates in later successional stages, forming distinct patches tens to hundreds of micrometers in diameter. Among early colonizing populations, we observed dominance of five genotypes that differed from each other by the extent of recombination with the late colonizing type. Our analyses suggest that the specific recombinant variant within the early colonizing group is selected for by environmental parameters such as temperature, consistent with recombination as a mechanism for ecological fine tuning. Evolutionary signatures, and strain-resolved expression patterns measured via mass spectrometry based proteomics, indicate increased cobalamin biosynthesis, (de)methylation, and glycine cleavage in the late colonizer. This may suggest environmental changes within the biofilm during development, accompanied by redirection of compatible solutes from osmoprotectants toward metabolism. Across 27 communities, comparative proteogenomic analyses show that differential regulation of shared genes and expression of a small subset of the 15% of genes unique to each genotype are involved in niche partitioning. In summary, the results show how subtle genetic variations can lead to distinct ecological strategies.

  18. Screening of biosurfactants from cloud microorganisms

    Sancelme, Martine; Canet, Isabelle; Traikia, Mounir; Uhliarikova, Yveta; Capek, Peter; Matulova, Maria; Delort, Anne-Marie; Amato, Pierre

    2015-04-01

    The formation of cloud droplets from aerosol particles in the atmosphere is still not well understood and a main source of uncertainties in the climate budget today. One of the principal parameters in these processes is the surface tension of atmospheric particles, which can be strongly affected by trace compounds called surfactants. Within a project devoted to bring information on atmospheric surfactants and their effects on cloud droplet formation, we focused on surfactants produced by microorganisms present in atmospheric waters. From our unique collection of microorganisms, isolated from cloud water collected at the Puy-de-Dôme (France),1 we undertook a screening of this bank for biosurfactant producers. After extraction of the supernatants of the pure cultures, surface tension of crude extracts was determined by the hanging drop technique. Results showed that a wide variety of microorganisms are able to produce biosurfactants, some of them exhibiting strong surfactant properties as the resulting tension surface decreases to values less then 35 mN.m-1. Preliminary analytical characterization of biosurfactants, obtained after isolation from overproducing cultures of Rhodococcus sp. and Pseudomonas sp., allowed us to identify them as belonging to two main classes, namely glycolipids and glycopeptides. 1. Vaïtilingom, M.; Attard, E.; Gaiani, N.; Sancelme, M.; Deguillaume, L.; Flossmann, A. I.; Amato, P.; Delort, A. M. Long-term features of cloud microbiology at the puy de Dôme (France). Atmos. Environ. 2012, 56, 88-100. Acknowledgements: This work is supported by the French-USA ANR SONATA program and the French-Slovakia programs Stefanik and CNRS exchange.

  19. Medical Significance of Microorganisms in Spacecraft Environment

    Pierson, Duane L.; Ott, C. Mark

    2007-01-01

    Microorganisms can spoil food supplies, contaminate drinking water, release noxious volatile compounds, initiate allergic responses, contaminate the environment, and cause infectious diseases. International acceptability limits have been established for bacterial and fungal contaminants in air and on surfaces, and environmental monitoring is conducted to ensure compliance. Allowable levels of microorganism in water and food have also been established. Environmental monitoring of the space shuttle, the Mir, and the ISS have allowed for some general conclusions. Generally, the bacteria found in air and on interior surfaces are largely of human origin such as Staphylococcus spp., Micrococcus spp. Common environmental genera such as Bacillus spp. are the most commonly isolated bacteria from all spacecraft. Yeast species associated with humans such as Candida spp. are commonly found. Aspergillus spp., Penicillium spp., and Cladosporium spp. are the most commonly isolated filamentous fungi. Microbial levels in the environment differ significantly depending upon humidity levels, condensate accumulation, and availability of carbon sources. However, human "normal flora" of bacteria and fungi can result in serious, life-threatening diseases if human immunity is compromised. Disease incidence is expected to increase as mission duration increases.

  20. Geochemical Niches of Iron-Oxidizing Acidophiles in Acidic Coal Mine Drainage

    Jones, Daniel S.; Kohl, Courtney; Grettenberger, Christen; Larson, Lance N.; Burgos, William D.; Macalady, Jennifer L.

    2014-01-01

    A legacy of coal mining in the Appalachians has provided a unique opportunity to study the ecological niches of iron-oxidizing microorganisms. Mine-impacted, anoxic groundwater with high dissolved-metal concentrations emerges at springs and seeps associated with iron oxide mounds and deposits. These deposits are colonized by iron-oxidizing microorganisms that in some cases efficiently remove most of the dissolved iron at low pH, making subsequent treatment of the polluted stream water less ex...

  1. Sensor arrays for detecting microorganisms

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    2000-01-01

    A sensor array for detecting a microorganism comprising first and second sensors electrically connected to an electrical measuring apparatus, wherein the sensors comprise a region of nonconducting organic material and a region of conducting material compositionally that is different than the nonconducting organic material and an electrical path through the regions of nonconducting organic material and the conducting material. A system for identifying microorganisms using the sensor array, a computer and a pattern recognition algorithm, such as a neural net are also disclosed.

  2. Textiles for protection against microorganism

    Sauperl, O.

    2016-04-01

    Concerning micro-organisms such as bacteria, viruses and fungi, there is a huge progress in the development of textile materials and procedures which should effectively protect against these various pathogens. In this sense there is especially problematic hospital environment, where it is necessary to take into account properly designed textile material which, when good selected and composed, act as a good barrier against transfer of micro-organisms through material mainly in its wet state. Respect to this it is necessary to be familiar with the rules regarding selection of the input material, the choice of proper yarn construction, the choice of the proper weaving mode, the rules regarding selection of antimicrobial-active compound suitable for (eco-friendly) treatment, and the choice of the most appropriate test method by which it is possible objectively to conclude on the reduction of selected microorganism. As is well known, fabrics are three-dimensional structures with void and non-void areas. Therefore, the physical-chemical properties of the textile material/fabric, the surface characteristics together with the shape of microorganism, and the carriers' characteristics contribute to control the transfer of microorganism through textile material. Therefore, careful planning of textile materials and treatment procedure with the compound which is able to reduce micro-organism satisfactory is particularly important, especially due to the fact that in hospital environment population with impaired immune system is mainly presented.

  3. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T. [Department of Environmental and Life Science, Toyohashi University of Technology, Toyohashi 441-8580 (Japan); Hiraishi, A. [Department of Environmental and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan and Electronics-inspired Interdisciplinary Institute (EIIRIS), Toyohashi University of Technology, Toyohashi 441-8580 (Japan)

    2014-02-20

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum 'TM7' as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L{sup −1} was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  4. Identification of subsurface microorganisms at Yucca Mountain

    Bacteria isolated from ground water samples taken from 31 springs during 1993 were collected and processed according to procedures described in earlier reports. These procedures required aseptic collection of surface water samples in sterile screw-capped containers, transportation to the HRC microbiology laboratory, and culture by spread plating onto R2A medium. The isolates were further processed for identification using a gas chromatographic analysis of fatty acid methyl esters (FAME) extracted from cell membranes. This work generated a presumptive identification of 113 bacterial species distributed among 45 genera using a database obtained from Microbial ID, Inc., Newark, Delaware (MIDI). A preliminary examination of the FAME data was accomplished using cluster analysis and principal component analysis software obtained from MIDI. Typically, bacterial strains that cluster at less than 10 Euclidian distance units have fatty acid patterns consistent among members of the same species. Thus an organism obtained from one source can be recognized if it is isolated again from the same or any other source. This makes it possible to track the distribution of organisms and monitor environmental conditions or fluid transport mechanisms. Microorganisms are seldom found as monocultures in natural environments. They are more likely to be closely associated with other genera with complementary metabolic requirements. An understanding of the indigenous microorganism population is useful in understanding subtle changes in the environment. However, classification of environmental organisms using traditional methods is not ideal because differentiation of species with small variations or genera with very similar taxonomic characteristics is beyond the capabilities of traditional microbiological methods

  5. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low‐grade copper sulfide ore monitored by real‐time PCR and oligonucleotide prokaryotic acidophile microarray

    Remonsellez, Francisco; Galleguillos, Felipe; Moreno‐Paz, Mercedes; Parro, Víctor; Acosta, Mauricio; Demergasso, Cecilia

    2009-01-01

    Summary The bioleaching of metal sulfide has developed into a very important industrial process and understanding the microbial dynamic is key to advancing commercial bioleaching operations. Here we report the first quantitative description of the dynamic of active communities in an industrial bioleaching heap. Acidithiobacillus ferrooxidans was the most abundant during the first part of the leaching cycle, while the abundance of Leptospirillum ferriphilum and Ferroplasma acidiphilum increase...

  6. Molecular Cloning, Sequencing, and Expression of omp-40, the Gene Coding for the Major Outer Membrane Protein from the Acidophilic Bacterium Thiobacillus ferrooxidans†

    Guiliani, Nicolas; Jerez, Carlos A.

    2000-01-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. Some of the surface components of this microorganism are probably involved in adaptation to their acidic environment and in bacterium-mineral interactions. We have isolated and characterized omp40, the gene coding for the major outer membrane protein from T. ferrooxidans. The deduced amino acid sequence of the Omp40 protein has 382 amino acids and a calculated molecular weight ...

  7. Atividade antibacteriana de óleos essenciais em cepas isoladas de infecção urinária Antibacterial activity of essential oils on microorganisms isolated from urinary tract infection

    Rogério Santos Pereira

    2004-04-01

    Full Text Available A análise da atividade antibacteriana de óleos essenciais de ervas medicinais (Ocimum gratissimum, L., Cybopogum citratus (DC Stapf. e Salvia officinalis, L. foi verificada frente a 100 cepas de bactérias isoladas de indivíduos da comunidade com diagnóstico de infecção urinária. Os microrganismos foram semeados em ágar Muller Hinton e os extratos aplicados com replicador de Steers e incubados a 37°C por 24 horas. Verificou-se que Salvia officinalis, L. apresentou ação inibitória superior às outras ervas, tendo eficácia de 100% quando testadas em espécies de Klebsiella e Enterobacter, 96% em Escherichia coli, 83% contra Proteus mirabilis e 75% contra Morganella morganii.The antibacterial activity of essential oils extracted from medicinal plants (Ocimum gratissimum, L., Cybopogum citratus (DC Stapf., and Salvia officinalis, L. was assessed on bacterial strains derived from 100 urine samples. Samples were taken from subjects diagnosed with urinary tract infection living in the community. Microorganisms were plated on Müller Hinton agar. Plant extracts were applied using a Steers replicator and petri dishes were incubated at 37°C for 24 hours. Salvia officinalis, L. showed enhanced inhibitory activity compared to the other two herbs, with 100% efficiency against Klebsiella and Enterobacter species, 96% against Escherichia coli, 83% against Proteus mirabilis, and 75% against Morganella morganii.

  8. Recent Researches of Bioactive Metabolites in Marine Organisms-associated Microor-ganisms

    GU Qianqun; LU Jia; CUI Chengbin; ZHU Tianjiao; FANG Yuchun; LIU Hongbing; ZHU Weiming

    2004-01-01

    Recent researches have shown that some compounds isolated from marine organisms have striking structural similarities with the metabolites from known microorganisms. It is inferred from the researches that the symbiotic or associated marine microorganisms may be the true sources of those compounds or at least involved in the biosynthesizing process. This view has been further evidenced by the researches for many sponges and sponge-associated microorganisms. Importantly, growing evidence has highlighted that the symbiotic or associated marine microorganisms live in the microenvironment within the hosts, and they also produce secondary metabolites which are new and original in structure and unique in activity. All these suggest that the microorganisms associated with marine organisms are the sources with very high potential to be new natural bioactive agents. This article reviews briefly the research advances in the study of new bioactive metabolites from marine organisms-associated microorganisms since 2000.

  9. Role of effective microorganism in unfertile soil

    Yasotha Chandramohan

    2014-03-01

    Full Text Available The present study was conducted to evaluvate the effect of Effective microorganisms (EM.The EM isolation is very important for agricultural fields. For this study used the different kinds of natural ingrediends such as banana, papaya, pumpkin, egg, cane molasses and neem powder to added and mixed and wait for the fermentation. After 45 days the samples were collected.The collected sample were identified using plating technique, microscopic studies and Biochemical test. The identified effective organism was Bacillus megaterium. These Effective organisms acting against the pathogen. The results concluded miximum zone of inhibition against the pathogen Such as E.coil (16mm, P.aeruginosa (18mm, K.pneumoniae (19mm, S.aureus (17mm, S.epidermis (16mm

  10. Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus.

    Valdes, Jorge; Ossandon, Francisco; Quatrini, Raquel; Dopson, Mark; Holmes, David S

    2011-12-01

    Acidithiobacillus thiooxidans is a mesophilic, extremely acidophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and inorganic sulfur compounds. Here we present the draft genome sequence of A. thiooxidans ATCC 19377, which has allowed the identification of genes for survival and colonization of extremely acidic environments. PMID:22123759

  11. Draft Genome Sequence of the Extremely Acidophilic Biomining Bacterium Acidithiobacillus thiooxidans ATCC 19377 Provides Insights into the Evolution of the Acidithiobacillus Genus

    Valdes, Jorge; Ossandon, Francisco; Quatrini, Raquel; Dopson, Mark; Holmes, David S.

    2011-01-01

    Acidithiobacillus thiooxidans is a mesophilic, extremely acidophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and inorganic sulfur compounds. Here we present the draft genome sequence of A. thiooxidans ATCC 19377, which has allowed the identification of genes for survival and colonization of extremely acidic environments.

  12. Identification and Characterization of Extremophile Microorganisms with Significance to Astrobiology

    Bej, Asim K.

    2003-01-01

    It is now well recognized that microorganisms thrive in extreme ecological conditions such as geothermal vents, polar region, acid and alkaline lakes, and the cold pressurized depth of the ocean floor of this planet. Morphological, physiological, biochemical and genetic adaptations to extreme environments by these extremophile microorganisms have generated immense interest amongst astrobiologists who increasingly believe in the existence of extraterrestrial life. The evidence collected by NASA's space probe Galileo suggested the presence of liquid water and volcanic activity on Mars and Jupiter's satellite Europa. Volcanic activity provides some of the heat necessary to keep the water on Europa from freezing that could provide important dissolved chemicals needed by living organisms. The possibility of the existence of hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters on Mars, and a layer of liquid water under the ice on Europa provide sufficient 'raison d'etre' to study microorganisms in similar extreme environments on Earth, which could provide us with a model that would help establish the existence of extraterrestrial life on other planetary bodies. The objectives of the summer research project were as follows: (1) application of molecular approaches to help establish new species of extremophile microorganisms isolated from a hypersaline alkaline lake; and (2) identification of a major cold-shock gene (cspA) homolog from a psychrotolerant microorganism, PmagG1.

  13. Assessment of cellulolytic microorganisms in soils of Nevados Park, Colombia

    Lizeth Manuela Avellaneda-Torres

    2014-12-01

    Full Text Available A systematized survey was conducted to find soil-borne microbes that degrade cellulose in soils from unique ecosystems, such as the Superpáramo, Páramo, and the High Andean Forest in the Nevados National Natural Park (NNNP, Colombia. These high mountain ecosystems represent extreme environments, such as high levels of solar radiation, low atmospheric pressure, and extreme daily changes in temperature. Cellulolytic activity of the microorganisms was evaluated using qualitative tests, such as growth in selective media followed by staining with congo red and iodine, and quantitative tests to determine the activity of endoglucanase, β-glucosidase, exoglucanase, and total cellulase. Microorganisms were identified using molecular markers, such as the 16S rRNA gene for bacteria and the internal transcribed spacer region (ITS of ribosomal DNA for fungi. Multivariate statistical analysis (MVA was used to select microorganisms with high cellulolytic capacity. A total of 108 microorganisms were isolated from the soils and, in general, the enzymatic activities of fungi were higher than those of bacteria. Our results also found that none of the organisms studied were able to degrade all the components of the cellulose and it is therefore suggested that a combination of bacteria and/or fungi with various enzymatic activities be used to obtain high total cellulolytic activity. This study gives an overview of the potential microorganism that could be used for cellulose degradation in various biotechnological applications and for sustainable agricultural waste treatment.

  14. Screening of microorganisms for microbial enhanced oil recovery processes

    Yonebayashi, H. [Japan National Oil Corp., Tokyo (Japan); Yoshida, S. [Japan Food Research Laboratiories, Tokyo (Japan). Div. of Microbiology; Ono, K. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    The objective of this study is to screen effective microorganisms for the Microbial Enhanced Oil Recovery process (or simply as MEOR). Samples of drilling cuttings, formation water, and soil were collected from domestic drilling sites and oil fields. Moreover, samples of activated-sludge and compost were collected from domestic sewage treatment facility and food treatment facility. At first, microorganisms in samples were investigated by incubation with different media; then they were isolated. By two stage-screening based on metabolizing ability, 4 strains (Bacillus licheniformis TRC-18-2-a, Enterobacter cloacae TRC-322, Bacillus subtilis TRC-4118, and Bacillus subtilis TRC-4126) were isolated as effective microorganisms for oil recovery. B. licheniformis TRC-18-2-a is a multifunctional microorganism possessing excellent surfactant productivity, and in addition it has gas, acid and polymer productivities. E. cloacae TRC-332 has gas and acid producing abilities. B. subtilis TRC-4118 and TRC-4126 are effective biosurfactant producers, and they reduce the interfacial tension to 0.04 and 0.12 dyne/cm, respectively. (author)

  15. The survival and growth of microorganisms in mascara during use.

    Wilson, L A; Julian, A J; Ahearn, D G

    1975-04-01

    Over 150 mascaras representing eight popular brands were examined for their susceptibility to microbial contamination during their use by study group members. Additional mascaras from patients with symptoms and clinical findings of long-term blepharitis also were investigated. Early in the study, two brands without preservatives supported reproducing populations of microorganisms, including potential eye pathogens. These products, as currently manufactured, were recalcitrant to microbial attack. Microbes associated with the facial skin and fingers of the study group users were typically isolated from mascaras after use. Initial microorganisms isolated from mascaras were usually transients. Establishment of reproducing populations within the cosmetics appeared related to the number of uses, personal habits of the user, and the formulation of the product. Four patients with staphylococcal blepharitis and cosmetics heavily laden with Staphylococcus epidermidis showed marked clinical improvement when they stopped using the contaminated cosmetics. The application of used eye area makeup prior to and following ocular surgery should be avoided. PMID:1119519

  16. Release of marine sedimentary microorganisms by enzymes-antibiotic association

    Brisou, J.F. (Hopital d' Instruction des Armees, Ecole d' Application des Medecins de la Marine, Sainte-Anne, 83 - Toulon (France)); Makhlouf, B. (Institut Pasteur, Alger (Algeria))

    1982-12-06

    Polysaccharases release microorganisms from their natural seat, marine sediments for example. The enzymatic activity works both on the microbial adherence polysaccharides and on the support surfaces (cellulose, pectine, etc.). Dosages of glucose confirm polysaccharase activity. An association of bacitracine, thiophenicol and a few enzymes: cellulase, pectinase, amyloglucosidase, alpha amylase, hyaluronidase, release a considerable number of bacteria. The culture on specific mediums confirm the specificity of this release. E. coli polyresistant strain where isolated by amylo-glucosidase, glucuronidase association in a mixture of thiophenicol and bacitracine. Bacillus and other Gram positif bacteria are frequently isolated by this method. The number of colonizer microorganisms on solid media are considerably higher with sediments treated by enzymes, or by enzyme, antibiotic mixtures, than with untreated ones.

  17. An Ecological Survey of Microorganisms Associated with Plantain Roots (Rhizosphere

    O. S. Bello

    2011-01-01

    Full Text Available Problem statement: Micro-organisms are more predominant around root zone and as such play a vital role to plant. Micro-organisms are diverse and have property modification which are beneficial to plant growth and root development. Approach: The lack of knowledge on the specific microorganisms associated with plantain roots in Cross River State soils (which inturn leads to an avoidable loss of crop if appropriate management methods were employed led to the need for this study. Different ecological zones have different population of micro-organisms. The purpose of this study is to: to enumerate the rhizosphere microorganisms (bacteria and fungi associated with plantain roots at different locations across the ecological zones of the state and to identify the rhizosphere microorganisms associated with plantain roots of different location representing the ecological zones of the state. Results: To ascertain this, it was necessary to isolate micro-organisms from the roots of plantain in order to determine the different populations of microorganisms in different ecological zones across Cross River State, Nigeria. The isolation of bacteria and fungi colonizing the root of plantain were determined at six locations across the state, as follows: Obanliku, Boki, Etung, Obubra Biase and Odukpani Local Government Area. The activity growing roots of plantain were removed with the attached suckers and transferred to the laboratory for microbial analysis. Serial dilution method was used to determine the population of bacteria and fungi present in the root samples collected. Also, staining reaction as well as biochemical taste were carried out to identify the types of bacteria present and their biochemical reactions. Conclusion/Recommendations: The result showed that several types of bacteria and fungi were present around the roots of plantain. The types of bacteria and fungi are listed below; Bacteria: Micrococus, Rhizobium, Azomonas-agilis, Pseudomonads

  18. Phosphate Biomineralization of Cambrian Microorganisms

    McKay, David S.; Rozanov, Alexei Yu.; Hoover, Richard B.; Westall, Frances

    1998-01-01

    As part of a long term study of biological markers (biomarkers), we are documenting a variety of features which reflect the previous presence of living organisms. As we study meteorites and samples returned from Mars, our main clue to recognizing possible microbial material may be the presence of biomarkers rather than the organisms themselves. One class of biomarkers consists of biominerals which have either been precipitated directly by microorganisms, or whose precipitation has been influenced by the organisms. Such microbe-mediated mineral formation may include important clues to the size, shape, and environment of the microorganisms. The process of fossilization or mineralization can cause major changes in morphologies and textures of the original organisms. The study of fossilized terrestrial organisms can help provide insight into the interpretation of mineral biomarkers. This paper describes the results of investigations of microfossils in Cambrian phosphate-rich rocks (phosphorites) that were found in Khubsugul, Northern Mongolia.

  19. Screening of lipid degrading microorganisms for wastewater treatment

    Sarmurzina, Z. S.; Kozhakhmetov, S. S.; Anuarbekova, S. S.; Shaikhin, S. M.; Almagambetov, K. K.

    2013-01-01

    Aims: Fats, oils and greases (FOG) are poorly removable materials in wastewater treatment systems. The aim of this work is to find the most suitable strain(s) for a biological treatment technology of FOGs polluted wastewaters. Methodology and results: The 142 microorganisms from polluted environment were screened for lipase activity (LA) by sequentially using assays on agar-Tween 80, agar-fats, and turbidimetrically measuring the quantity of calcium salts with fatty acids. The isolates G23, G...

  20. Microorganism Utilization for Synthetic Milk

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  1. pH-dominated niche segregation of ammonia-oxidising microorganisms in Chinese agricultural soils.

    Baolan, Hu; Shuai, Liu; Wei, Wang; Lidong, Shen; Liping, Lou; Weiping, Liu; Guangming, Tian; Xiangyang, Xu; Ping, Zheng

    2014-10-01

    Ammonia-oxidising archaea (AOA) are increasingly recognised as the primary mediators of soil ammonia oxidation, particularly in acidic soils. To explore the niche segregation of AOA and ammonia-oxidising bacteria (AOB) and the potential effect of this segregation on nitrification rates and the nitrogen cycle in Chinese agricultural soils, AOA and AOB amoA gene databases were established, and 454 high-throughput sequencing was used to investigate the key factors leading to the niche segregation of these two types of microorganisms. qPCR results demonstrated that there were more functional genes for AOA than for AOB in most of the soils. AOA diversity was higher than AOB diversity in most of the soils with AOA operational taxonomic units (OTU) numbers ranging from 40 to 169 and AOB OTU numbers ranging from 18 to 105. pH was the most important factor influencing the community structure of AOA (P < 0.01) and AOB (P < 0.05), and acidophilic AOA (i.e. Nitrosotalea-related sequences) were dominant in soils with pH values below 6.0. In addition, AOA amoA gene copy numbers were significantly positively correlated with pH (P < 0.05), the ratio of AOA OTU numbers/AOB OTU numbers was significantly negatively correlated with pH (P < 0.05), and the percentage of sequences represented by the Nitrosotalea cluster was significantly negatively correlated with pH (P < 0.01). PMID:25065524

  2. Pseudallescheria angusta, A LIGNINOLYTIC MICROORGANISM FOR WOOD FIBRES BIOMODIFICATION

    Gema Guisado,

    2011-11-01

    Full Text Available Nowadays, the discovery of lignocellulolytic microorganisms that are better adapted to operational conditions while exhibiting the strong degrading activities is highly desired for successful lignocellulose biotransformation processes. In this study, microorganisms were isolated from lignocellulose-rich composting materials by selective methods. A screening of isolates known to have lignocellulolytic abilities was performed using several tests. Seven microorganisms showed ligninolytic potential and were subjected for further analysis according to their degrading activity. The fungus Pseudallescheriaangusta MF4 demonstrated high decolorization rates for three aromatic dyes: Poly R-478, Poly S-119, and Remazol Brilliant Blue R. In addition, the fungus showed a high production rate of ligninolytic enzymes in the presence of inducers. This fungus achieved the highest values of growth after 21 days of incubation on sawdust without any additional nutrients. Owing to its proven ligninolytic activity and capability of growing on a lignocellulosic substrate, the application of this isolate could be of interest in different biotechnological applications, particularly in biological treatment of wood fibres in order to improve the production of wood-based composites.

  3. 40 CFR 725.85 - Microorganism identity.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Microorganism identity. 725.85 Section... to Information § 725.85 Microorganism identity. (a) Claims applicable to the period prior to... specific microorganism identity at the time of submission of the information. This claim will apply only...

  4. Predatory Microorganisms Would Help Reclaim Water

    Benjaminson, Morris A.; Lehrer, Stanley

    1995-01-01

    Wastewater-reclamation systems of proposed type use predatory, nonpathogenic microorganisms to consume pathogenic microorganisms. Unlike some other wastewater-reclamation systems, these systems do not require use of toxic chemicals, intense heat, or ionizing radiation (conductivity rays or ultraviolet) to destroy microorganisms.

  5. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

    Jeremic, Sanja; Beškoski, Vladimir P; Djokic, Lidija; Vasiljevic, Branka; Vrvić, Miroslav M; Avdalović, Jelena; Gojgić Cvijović, Gordana; Beškoski, Latinka Slavković; Nikodinovic-Runic, Jasmina

    2016-05-01

    Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu(2+), Cd(2+) and Cr(6+) and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria- Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions. PMID:26942859

  6. Analysis of bioremediation of pesticides by soil microorganisms

    Ruml, Tomas; Klotz, Dietmar; Tykva, Richard

    1995-10-01

    The application of new pesticides requires careful monitoring of their distribution in the environment. The effect of the soil microflora on the stability of the [14C]- labelled juvenoid hormone analogue W-328 was estimated. The micro-organisms from two different soil samples were isolated and tested for their ability to decompose W-328. One bacterial strain, yeast and mold isolates, exhibited the degradation activity. The growth characteristics such as pH and temperature optima were determined. The degradation products were estimated using HPLC.

  7. The Effect of Specific Conditions on Cu, Ni, Zn and Al Recovery from PCBS Waste Using Acidophilic Bacterial Strains

    Mrážiková A.

    2016-03-01

    Full Text Available The objective of this work was to evaluate the influence of static, stirring and shaking conditions on copper, zinc, nickel and aluminium dissolution from printed circuit boards (PCBs using the mixed acidophilic bacterial culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The results revealed that static conditions were the most effective in zinc and aluminium dissolution. Zinc was removed almost completely under static conditions, whereas maximum of nickel dissolution was reached under the stirring conditions. The highest copper recovery (36% was reached under stirring conditions. The shaking conditions appeared to be the least suitable. The relative importance of these systems for the bioleaching of copper and nickel decreased in the order: stirring, static conditions, shaking.

  8. Purification and characterization of sulfide:quinone oxidoreductase from an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans.

    Wakai, Satoshi; Tsujita, Mizuho; Kikumoto, Mei; Manchur, Mohammed A; Kanao, Tadayoshi; Kamimura, Kazuo

    2007-11-01

    Sulfide:quinone oxidoreductase (SQR) was purified from membrane of acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans NASF-1 cells grown on sulfur medium. It was composed of a single polypeptide with an apparent molecular mass of 47 kDa. The apparent K(m) values for sulfide and ubiquinone were 42 and 14 muM respectively. The apparent optimum pH for the SQR activity was about 7.0. A gene encoding a putative SQR of A. ferrooxidans NASF-1 was cloned and sequenced. The gene was expressed in Escherichia coli as a thioredoxin-fusion protein in inclusion bodies in an inactive form. A polyclonal antibody prepared against the recombinant protein reacted immunologically with the purified SQR. Western blotting analysis using the antibody revealed an increased level of SQR synthesis in sulfur-grown A. ferrooxidans NASF-1 cells, implying the involvement of SQR in elemental sulfur oxidation in sulfur-grown A. ferrooxidans NASF-1 cells. PMID:17986789

  9. Identification of beer spoilage microorganisms using the MALDI Biotyper platform.

    Turvey, Michelle Elizabeth; Weiland, Florian; Meneses, Jon; Sterenberg, Nick; Hoffmann, Peter

    2016-03-01

    Beer spoilage microorganisms present a major risk for the brewing industry and can lead to cost-intensive recall of contaminated products and damage to brand reputation. The applicability of molecular profiling using matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) in combination with Biotyper software was investigated for the identification of beer spoilage microorganisms from routine brewery quality control samples. Reference mass spectrum profiles for three of the most common bacterial beer spoilage microorganisms (Lactobacillus lindneri, Lactobacillus brevis and Pediococcus damnosus), four commercially available brewing yeast strains (top- and bottom-fermenting) and Dekkera/Brettanomyces bruxellensis wild yeast were established, incorporated into the Biotyper reference library and validated by successful identification after inoculation into beer. Each bacterial species could be accurately identified and distinguished from one another and from over 5600 other microorganisms present in the Biotyper database. In addition, wild yeast contaminations were rapidly detected and distinguished from top- and bottom-fermenting brewing strains. The applicability and integration of mass spectrometry profiling using the Biotyper platform into existing brewery quality assurance practices within industry were assessed by analysing routine microbiology control samples from a local brewery, where contaminating microorganisms could be reliably identified. Brewery-isolated microorganisms not present in the Biotyper database were further analysed for identification using LC-MS/MS methods. This renders the Biotyper platform a promising candidate for biological quality control testing within the brewing industry as a more rapid, high-throughput and cost-effective technology that can be tailored for the detection of brewery-specific spoilage organisms from the local environment. PMID:26857464

  10. Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans.

    Liljeqvist, Maria; Rzhepishevska, Olena I; Dopson, Mark

    2013-02-01

    The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus ferrivorans genome contained genes from both Acidithiobacillus ferrooxidans and Acidithiobacillus caldus encoding enzymes whose assigned functions are redundant. Transcriptional analysis revealed that the petA1 and petB1 genes (implicated in ferrous iron oxidation) were downregulated upon growth on the inorganic sulfur compound tetrathionate but were on average 10.5-fold upregulated in the presence of ferrous iron. In contrast, expression of cyoB1 (involved in inorganic sulfur compound oxidation) was decreased 6.6-fold upon growth on ferrous iron alone. Competition assays between ferrous iron and tetrathionate with Acidithiobacillus ferrivorans SS3 precultured on chalcopyrite mineral showed a preference for ferrous iron oxidation over tetrathionate oxidation. Also, pure and mixed cultures of psychrotolerant acidophiles were utilized for the bioleaching of metal sulfide minerals in stirred tank reactors at 5 and 25°C in order to investigate the fate of ferrous iron and inorganic sulfur compounds. Solid sulfur accumulated in bioleaching cultures growing on a chalcopyrite concentrate. Sulfur accumulation halted mineral solubilization, but sulfur was oxidized after metal release had ceased. The data indicated that ferrous iron was preferentially oxidized during growth on chalcopyrite, a finding with important implications for biomining in cold environments. PMID:23183980

  11. Acidophilic denitrifiers dominate the N2O production in a 100-year-old tea orchard soil.

    Huang, Ying; Long, Xi-En; Chapman, Stephen J; Yao, Huaiying

    2015-03-01

    Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg(-1) of NO3 (-)-N) addition. Results showed the highest N2O emission (10.1 mg kg(-1) over 21 days) from the soil at pH 3.71 with 1000 mg kg(-1) NO3 (-) addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil. PMID:25273518

  12. Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans.

    Quatrini, Raquel; Jedlicki, Eugenia; Holmes, David S

    2005-12-01

    Commercial bioleaching of copper and the biooxidation of gold is a cost-effective and environmentally friendly process for metal recovery. A partial genome sequence of the acidophilic, bioleaching bacterium Acidithiobacillus ferrooxidans is available from two public sources. This information has been used to build preliminary models that describe how this microorganism confronts unusually high iron loads in the extremely acidic conditions (pH 2) found in natural environments and in bioleaching operations. A. ferrooxidans contains candidate genes for iron uptake, sensing, storage, and regulation of iron homeostasis. Predicted proteins exhibit significant amino acid similarity with known proteins from neutrophilic organisms, including conservation of functional motifs, permitting their identification by bioinformatics tools and allowing the recognition of common themes in iron transport across distantly related species. However, significant differences in amino acid sequence were detected in pertinent domains that suggest ways in which the periplasmic and outer membrane proteins of A. ferrooxidans maintain structural integrity and relevant protein-protein contacts at low pH. Unexpectedly, the microorganism also contains candidate genes, organized in operon-like structures that potentially encode at least 11 siderophore systems for the uptake of Fe(III), although it does not exhibit genes that could encode the biosynthesis of the siderophores themselves. The presence of multiple Fe(III) uptake systems suggests that A. ferrooxidans can inhabit aerobic environments where iron is scarce and where siderophore producers are present. It may also help to explain why it cannot tolerate high Fe(III) concentrations in bioleaching operations where it is out-competed by Leptospirillum species. PMID:15895264

  13. Upgrading of the nutritive value of starchy foods (cassava) through fermentation with genetically manipulated (irradiated) microorganisms

    More than two hundred samples of microorganisms were collected in the laboratory from the local habitats of sorgo reprocessing including alcoholic drink factories, glucose and starch producing factories and households. The screening programme was performed and the starch assimilating microorganisms which showed a good growth on the starch medium was isolated and identified. All yeast samples collected were found to belong to the genus and species Saccharomyces cerevisitae and bacteria to Bacillus subtilis sp. The microorganisms obtained from the screening programme were irradiated using the gamma-radiation dose of 27,5 krad (Cobalt-60). Preliminary results showed that after radiation treatment, some microorganisms had a better abilities to grow in starch medium in comparison with the untreated strains. The identification of some of the microorganisms were collected and studies on their fermentative properties are in progress. (author). 15 refs

  14. Influence of the Gas-Water Interface on Transport of Microorganisms through Unsaturated Porous Media

    Wan, Jiamin; Wilson, John L.; Kieft, Thomas L.

    1994-01-01

    In this article, a new mechanism influencing the transport of microorganisms through unsaturated porous media is examined, and a new method for directly visualizing bacterial behavior within a porous medium under controlled chemical and flow conditions is introduced. Resting cells of hydrophilic and relatively hydrophobic bacterial strains isolated from groundwater were used as model microorganisms. The degree of hydrophobicity was determined by contact-angle measurements. Glass micromodels a...

  15. Nucleic acid molecules conferring enhanced ethanol tolerance and microorganisms having enhanced tolerance to ethanol

    Brown, Steven; Guss, Adam; Yang, Shihui; Karpinets, Tatiana; Lynd, Lee; Shao, Xiongjun

    2014-01-14

    The present invention provides isolated nucleic acid molecules which encode a mutant acetaldehyde-CoA/alcohol dehydrogenase or mutant alcohol dehydrogenase and confer enhanced tolerance to ethanol. The invention also provides related expression vectors, genetically engineered microorganisms having enhanced tolerance to ethanol, as well as methods of making and using such genetically modified microorganisms for production of biofuels based on fermentation of biomass materials.

  16. Present status of effect of microorganisms from sand beach on public health

    Emmanuel Velonakis; Dimitra Dimitriadi; Emmanuel Papadogiannakis; Alkiviades Vatopoulos

    2014-01-01

    Microorganisms are significant components of beach sand. According to the research, all kind of microorganisms have been isolated from beach sand; certain genera and species are potential pathogens for humans and animals. In resort areas, especially during the summer, certain infections (e.g. gastroenteritis and dermatitis) are usually related to polluted bathing water. Lately, the interest of scientists is also focused on the potential association of some of the above disease...

  17. Progress in decontamination by halophilic microorganisms in saline wastewater and soil.

    Zhuang, Xuliang; Han, Zhen; Bai, Zhihui; Zhuang, Guoqiang; Shim, Hojae

    2010-05-01

    Environments with high-salt concentrations are often populated by dense microbial communities. Halophilic microorganisms can be isolated from different saline environments and different strains even belonging to the same genus have various applications. Wastewater and soil rich in both organic matter and salt are difficult to treat using conventional microorganisms typically found in wastewater treatment and soil bioremediation facilities. Studies on decontaminative capabilities and decontamination pathways of organic contaminants (i.e., aromatic compounds benzoate, cinnamate, 3-phenylpropionate, 4-hydroxybenzoic acid), heavy metals (i.e., tellurium, vanadium), and nutrients in the biological treatment of saline wastewater and soil by halophilic microorganisms are discussed in this review. PMID:20163899

  18. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma. PMID:19933342

  19. Production of Glycolic Acid by Chemolithotrophic Iron- and Sulfur-Oxidizing Bacteria and Its Role in Delineating and Sustaining Acidophilic Sulfide Mineral-Oxidizing Consortia▿

    Ñancucheo, Ivan; Johnson, D. Barrie

    2009-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacill...

  20. Biochemical characterization of an acidophilic β-mannanase from Gloeophyllum trabeum CBS900.73 with significant transglycosylation activity and feed digesting ability.

    Wang, Caihong; Zhang, Jiankang; Wang, Yuan; Niu, Canfang; Ma, Rui; Wang, Yaru; Bai, Yingguo; Luo, Huiying; Yao, Bin

    2016-04-15

    Acidophilic β-mannanases have been attracting much attention due to their excellent activity under extreme acidic conditions and significant industrial applications. In this study, a β-mannanase gene of glycoside hydrolase family 5, man5A, was cloned from Gloeophyllum trabeum CBS900.73, and successfully expressed in Pichia pastoris. Purified recombinant Man5A was acidophilic with a pH optimum of 2.5 and exhibited great pH adaptability and stability (>80% activity over pH 2.0-6.0 and pH 2.0-10.0, respectively). It had a high specific activity (1356 U/mg) against locust bean gum, was able to degrade galactomannan and glucomannan in a classical four-site binding mode, and catalyzed the transglycosylation of mannotetrose to mannooligosaccharides with higher degree of polymerization. Besides, it had great resistance to pepsin and trypsin and digested corn-soybean meal based diet in a comparable way with a commercial β-mannanase under the simulated gastrointestinal conditions of pigs. This acidophilic β-mannanase represents a valuable candidate for wide use in various industries, especially in the feed. PMID:26616977

  1. Impacts of Triclosan in Grey water on Soil Microorganisms

    The use of grey water for irrigation is becoming a common practice in arid regions such as the Southwestern US, the Middle East, Australia, and China. While grey water supplies nutrients to soil ecosystems, the possible impact of trace contaminants, particularly pharmaceuticals and personal care products, has not been determined. This paper examined the impact of triclosan, an antibacterial agent commonly added to consumer products, on microbial populations and microbial diversity in soil irrigated with grey water. While there was no change in the total number of heterotrophic microorganisms in the soil, both the types and the antibiotic resistance of the microorganisms were significantly influenced by triclosan. The proportion of the microbial isolates resistant to antibiotics increased while at the same time, overall diversity of the microbial community decreased.

  2. Metagenomics: Application of Genomics to Uncultured Microorganisms

    Handelsman, Jo

    2004-01-01

    Metagenomics (also referred to as environmental and community genomics) is the genomic analysis of microorganisms by direct extraction and cloning of DNA from an assemblage of microorganisms. The development of metagenomics stemmed from the ineluctable evidence that as-yet-uncultured microorganisms represent the vast majority of organisms in most environments on earth. This evidence was derived from analyses of 16S rRNA gene sequences amplified directly from the environment, an approach that ...

  3. A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment

    Castro, V.A.; Ott, C.M.; Garcia, V.M.; John, J.; Buttner, M.P.; Cruz, P.; Pierson, D.L.

    2009-01-01

    The determination of risk from infectious disease during long-duration missions is composed of several factors including the concentration and the characteristics of the infectious agent. Thus, a thorough knowledge of the microorganisms aboard spacecraft is essential in mitigating infectious disease risk to the crew. While stringent steps are taken to minimize the transfer of potential pathogens to spacecraft, several medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. Thus, several pathogens may not have been detected, such as Legionella pneumophila, the etiological agent of Legionnaire s disease. We hypothesize that environmental analysis using non-culture-based technologies will reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. The development of techniques for this flight experiment, operationally named SWAB, has already provided advances in NASA laboratory processes and beneficial information toward human health risk assessment. The translation of 16S ribosomal DNA sequencing for the identification of bacteria from the SWAB experiment to nominal operations has increased bacterial speciation of environmental isolates from previous flights three fold compared to previous conventional methodology. The incorporation of molecular-based DNA fingerprinting using repetitive sequence-based polymerase chain reaction (rep-PCR) into the capabilities of the laboratory has provided a methodology to track microorganisms between crewmembers and their environment. Both 16S ribosomal DNA

  4. Activities of methionine-γ-lyase in the acidophilic archaeon “Ferroplasma acidarmanus” strain fer1

    Khan MA

    2013-04-01

    Full Text Available M A Khan,1 Madeline M López-Muñoz,2 Charles W Kaspar,3 Kai F Hung1 1Department of Biological Sciences, Eastern Illinois University, Charleston, IL, USA; 2Department of Biology, Universidad de Puerto Rico, Mayaguez, Puerto Rico; 3Bacteriology Department, University of Wisconsin, Madison, WI, USA Abstract: Biogeochemical processes on exposed pyrite ores result in extremely high levels of sulfuric acid at these locations. Acidophiles that thrive in these conditions must overcome significant challenges, including an environment with proton concentrations at pH 3 or below. The role of sulfur metabolism in the archaeon “Ferroplasma acidarmanus” strain fer1's ability to thrive in this environment was investigated due to its growth-dependent production of methanethiol, a volatile organic sulfur compound. Two putative sequences for methionine-γ-lyase (EC 4.4.1.11, an enzyme known to carry out α, γ-elimination on L-methionine to produce methanethiol, were identified in fer1. Bioinformatic analyses identified a conserved pyridoxal-5'-phosphate (PLP binding domain and a partially conserved catalytic domain in both putative sequences. Detection of PLP-dependent and L-methionine-dependent production of α-keto compounds and thiol groups in fer1 confirmed the presence of methionine-γ-lyase activity. Further, fer1 lysate was capable of processing related substrates, including D-methionine, L-cysteine, L-cystathionine, and L/D-homocysteine. When the two putative fer1 methionine-γ-lyase gene-coded proteins were expressed in Escherichia coli cells, one sequence demonstrated an ability to carry out α, γ-elimination activity, while the other exhibited γ-replacement activity. These fer1 methionine-γ-lyases also exhibited optimum pH, substrate specificity, and catalytic preferences that are different from methionine-γ-lyases from other organisms. These differences are discussed in the context of molecular phylogeny constructed using a maximum

  5. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans

    Holmes David S

    2009-08-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans gains energy from the oxidation of ferrous iron and various reduced inorganic sulfur compounds at very acidic pH. Although an initial model for the electron pathways involved in iron oxidation has been developed, much less is known about the sulfur oxidation in this microorganism. In addition, what has been reported for both iron and sulfur oxidation has been derived from different A. ferrooxidans strains, some of which have not been phylogenetically characterized and some have been shown to be mixed cultures. It is necessary to provide models of iron and sulfur oxidation pathways within one strain of A. ferrooxidans in order to comprehend the full metabolic potential of the pangenome of the genus. Results Bioinformatic-based metabolic reconstruction supported by microarray transcript profiling and quantitative RT-PCR analysis predicts the involvement of a number of novel genes involved in iron and sulfur oxidation in A. ferrooxidans ATCC23270. These include for iron oxidation: cup (copper oxidase-like, ctaABT (heme biogenesis and insertion, nuoI and nuoK (NADH complex subunits, sdrA1 (a NADH complex accessory protein and atpB and atpE (ATP synthetase F0 subunits. The following new genes are predicted to be involved in reduced inorganic sulfur compounds oxidation: a gene cluster (rhd, tusA, dsrE, hdrC, hdrB, hdrA, orf2, hdrC, hdrB encoding three sulfurtransferases and a heterodisulfide reductase complex, sat potentially encoding an ATP sulfurylase and sdrA2 (an accessory NADH complex subunit. Two different regulatory components are predicted to be involved in the regulation of alternate electron transfer pathways: 1 a gene cluster (ctaRUS that contains a predicted iron responsive regulator of the Rrf2 family that is hypothesized to regulate cytochrome aa3 oxidase biogenesis and 2 a two component sensor-regulator of the RegB-RegA family that may respond to the redox state of the quinone pool

  6. Enhanced Productivity of a Lutein-Enriched Novel Acidophile Microalga Grown on Urea

    Casal, C.; Cuaresma, M.; Vega, J.M.; Vilchez, C.

    2011-01-01

    Coccomyxa acidophila is an extremophile eukaryotic microalga isolated from the Tinto River mining area in Huelva, Spain. Coccomyxa acidophila accumulates relevant amounts of b-carotene and lutein, well-known carotenoids with many biotechnological applications, especially in food and health-related i

  7. Siderophores from Marine Microorganisms and Their Applications

    LI Junfeng; CHI Zhenming

    2004-01-01

    In view of the fact that siderophores from microorganisms in different environments have received much attention in recent years because of their potential applications and diverse physiological functions, this review deals with siderophore-producing marine microorganisms and the detection, chemical structure and potential applications of siderophores.

  8. Surfactant producing TNT-degrading microorganisms for bioremediation

    Vorobyov, A.; Marchenko, A.; Rudneva, O.; Borovick, R. [Research Center for Toxicology and Hygienic Regulation of Biopreparations, Serpukhov, Moscow region (Russian Federation); Radosevich, M. [Univ. of Delaware, Newark (United States). Dept. of Plant and Soil Sciences

    2003-07-01

    In general the biodegradation of nitroaromatic hydrocarbons is influenced by their bioavailability. 2,4,6-trinitrotoluene is very poorly soluble in water. TNT is easily adsorbed to clay or humus fractions in the soil, and pass very slowly to the aqueous phase, where microorganisms metabolize it. Biosurfactants that increase TNT solubility and improve its bioavailability can thereby accelerate degradation. Pure cultures of microorganisms-TNT degraders were isolated by the method of enrichment cultures from samples of different-type soil contaminated by TNT (soddy-podzol, black earth, and gray forest ones). From 28 soil samples 35 isolates of microorganisms degrading TNT were taken. The isolated soil samples had been tested for availability of microbial activity towards TNT. By10 g of air-dried soil, 10 ml of distilled water, and 2 mg of TNT were placed into 750 ml shaken flasks. The flasks were incubated at 150 rev/min and 24 C. Glucose, sodium succinate or sodium acetate had been used as co-substrates. The ability of the strains to produce surfactants was studied by drop collapsing test and direct measuring of surface tension of cultural liquid after cultivation with TNT. Cells of the strains were cultivated on solid and liquid nutrient media. For drop collapsing test the cells were cultivated on solid nutrient media; the separated colonies were suspended in distilled water. Drop sustainability test ws conducted on a standard 96-well plates coated with a thin layer of vaseline oil. Surface tension of cultural liquid ws measured after cultivation of strains in the presence of TNT with the use of a ring tensiometer. Before measuring of surface tension microbial cells were collected from liquid culture by centrifugation. (orig.)

  9. Systems Biology of Industrial Microorganisms

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  10. FUNCTIONAL POLYHYDROXYALKANOATES SYNTHESIZED BY MICROORGANISMS

    Guo-qiang Chen; Qiong Wu; Kai Zhao; Peter H.Yu

    2000-01-01

    Many bacteria have been found to synthesize a family of polyesters termed polyhydroxyalkanoate, abbreviated as PHA. Some interesting physical properties of PHAs such as piezoelectricity, non-linear optical activity, biocompatibility and biodegradability offer promising applications in areas such as degradable packaging, tissue engineering and drug delivery.Over 90 PHAs with various structure variations have been reported and the number is still increasing. The mechanical property of PHAs changes from brittle to flexible to elastic, depending on the side-chainlength of PHA. Many attempts have been made to produce PHAs as biodegradable plastics using various microorganisms obtained from screening natural environments, genetic engineering and mutation. Due to the high production cost, PHAs still can not compete with the nondegradable plastics, such as polyethylene and polypropylene. Various processes have been developed using low cost raw materials for fermentation and an inorganic extraction process for PHA purification. However, a super PHA production strain may play the most critical role for any large-scale PHA production. Our recent study showed that PHA synthesis is a common phenomenon among bacteria inhabiting various locations, especially oil-contaminated soils. This is very important for finding a suitable bacterial strain for PHA production. In fact, PHA production strains capable of rapid growth and rapid PHA synthesis on cheap molasses substrate have been found on molasses contaminated soils. A combination of novel properties and lower cost will allow easier commercialization of PHA for many applications.

  11. Thermo-acidophillic biohydrogen production from rice bran de-oiled wastewater by Selectively enriched mixed culture

    D.Sivaramakrishna, D.Sreekanth, V.Himabindu, M.Lakshmi Narasu

    2010-07-01

    Full Text Available The present study focuses on the biohydrogen production in an anaerobic batch reactor operated at thermophillic (570C and acidophilic conditions (pH 6 with rice bran de-oiled wastewater (RBOW as substrate. The hydrogen generating mixed microflora was enriched from slaughter house sludge (SHS through acid treatment (pH 3-4, for 24h coupled with heat treatment (1h at 1000C to eliminate non-spore forming bacteria and to inhibit the growth of methanogenic bacteria (MB prior to inoculation in the reactor. The hydrogen production rate was maximum at 570C (1861±14ml/L-WW/d compared to 370C (651±30ml/L-ww/d. The Hydrogen yield increased with temperature from 1.1 to 2.2 molH2/mol of substrate respectively. The optimum pH range for hydrogen production in this system was observed in between 5.5 to 6. Acid-forming pathway with butyric acid as a major metabolite dominated the metabolic flow during the hydrogen production.

  12. Thermo-acidophillic biohydrogen production from rice bran de-oiled wastewater by Selectively enriched mixed culture

    Sivaramakrishna, D.; Sreekanth, D.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally Hyderabad-500 085 (India); Narasu, M. Lakshmi [Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally Hyderabad-500 085 (India)

    2010-07-01

    The present study focuses on the biohydrogen production in an anaerobic batch reactor operated at thermophillic (570C) and acidophilic conditions (pH 6) with rice bran de-oiled wastewater (RBOW) as substrate. The hydrogen generating mixed microflora was enriched from slaughter house sludge (SHS) through acid treatment (pH 3-4, for 24h) coupled with heat treatment (1h at 1000C) to eliminate non-spore forming bacteria and to inhibit the growth of methanogenic bacteria (MB) prior to inoculation in the reactor. The hydrogen production rate was maximum at 570C (1861 +- 14ml/L-WW/d) compared to 370C (651 +- 30ml/L-ww/d). The Hydrogen yield increased with temperature from 1.1 to 2.2 molH2/mol of substrate respectively. The optimum pH range for hydrogen production in this system was observed in between 5.5 to 6. Acid-forming pathway with butyric acid as a major metabolite dominated the metabolic flow during the hydrogen production.

  13. Formation of methylamine by rumen microorganisms

    An unknown ninhydrin positive peak on the chromatograms of amino acid analyzer of alkalified rumen fluid distillate of goats was isolated as DNP-derivative and identified as methylamine. Under normal feeding condition, its concentration in the rumen ranged 0.1-3.9 mgN/100 ml of rumen fluid and the proportion of methylamine in total volatile base, or apparent ammonia, ranged 0.5-13% during post-feeding. When ammonium salt was administered into the rumen with hay-concentrate ration, these values were increased up to 8.1 mgN/100 ml and 25.8% respectively. Concentrations of ammonia and methylamine when aspartic acid or alanine was administered into the rumen in place of concentrate mixture (control) were not markedly different from the control. In the case of arginine, glutamic acid or glycine administration, these concentrations were depressed as compared to the control. There were no distinct differences in the concentration of methylamine between the faunated and unfaunated goats. 14C from 14C-chlorella protein hydrolyzates, U-14C-alanine, 2-14C-glycine or 14C-sodium bicarbonate was incorporated into methylamine in invitro incubation with rumen micro-organisms. When the washed suspensions of rumen bacteria or protozoa were incubated with 14C-chlorella protein hydrolyzates, the radioactivity in methylamine appeared only in the case of bacteria suspensions. After the addition of 15N-ammonium citrate into the rumen, the incorporation of 15N into methylamine was observed during 1-9 hr. (auth.)

  14. Single cell genomics of subsurface microorganisms

    Stepanauskas, R.; Onstott, T. C.; Lau, C.; Kieft, T. L.; Woyke, T.; Rinke, C.; Sczyrba, A.; van Heerden, E.

    2012-12-01

    Recent studies have revealed unexpected abundance and diversity of microorganisms in terrestrial and marine subsurface, providing new perspectives over their biogeochemical significance, evolution, and the limits of life. The now commonly used research tools, such as metagenomics and PCR-based gene surveys enabled cultivation-unbiased analysis of genes encoded by natural microbial communities. However, these methods seldom provide direct evidence for how the discovered genes are organized inside genomes and from which organisms do they come from. Here we evaluated the feasibility of an alternative, single cell genomics approach, in the analysis of subsurface microbial community composition, metabolic potential and microevolution at the Sanford Underground Research Facility (SURF), South Dakota, and the Witwaterstrand Basin, South Africa. We successfully recovered genomic DNA from individual microbial cells from multiple locations, including ultra-deep (down to 3,500 m) and low-biomass (down to 10^3 cells mL^-1) fracture water. The obtained single amplified genomes (SAGs) from SURF contained multiple representatives of the candidate divisions OP3, OP11, OD1 and uncharacterized archaea. By sequencing eight of these SAGs, we obtained the first genome content information for these phylum-level lineages that do not contain a single cultured representative. The Witwaterstrand samples were collected from deep fractures, biogeochemical dating of which suggests isolation from tens of thousands to tens of millions of years. Thus, these fractures may be viewed as "underground Galapagos", a natural, long-term experiment of microbial evolution within well-defined temporal and spatial boundaries. We are analyzing multiple SAGs from these environments, which will provide detailed information about adaptations to life in deep subsurface, mutation rates, selective pressures and gene flux within and across microbial populations.

  15. Avaliação da produção de lipases por diferentes cepas de microrganismos isolados em efluentes de laticínios por fermentação submersa Evaluation of lipase production using different strains of microorganisms isolated from dairy effluent through submerged fermentation

    Mirela Roveda

    2010-03-01

    Full Text Available A produção enzimática é um dos campos mais promissores dentro das tecnologias para a síntese de compostos de alto valor agregado, estando em constante crescimento pela grande capacidade dos microrganismos de realizarem transformações químicas. As enzimas produzidas por processos fermentativos têm sido utilizadas para o controle ambiental. Muitas destas enzimas podem ser produzidas a partir de resíduos industriais, diminuindo os custos de produção. As lipases são enzimas que catalisam a hidrólise de triglicerídeos em glicerídeos e ácidos graxos. As lipases vêm sendo utilizadas na redução da concentração dos lipídios contidos nos efluentes, promovendo a hidrólise dos óleos e gorduras presentes. Objetivou-se avaliar a produção de lipases por fungos isolados a partir de efluentes de laticínios. Foram isolados 21 fungos, pertencentes aos gêneros Penicillium, Aspergillus, Trichoderma e Fusarium. Na etapa de seleção, 9 fungos foram selecionados devido à capacidade de crescimento em meio contendo azeite de oliva como substrato. Na fermentação submersa, os fungos E9 (Aspergillus, E21 (Aspergillus e E20 (Penicillium foram os que apresentaram as maiores atividades enzimáticas, de 1,250 a 2,250 U, utilizando-se como meio de cultivo o efluente coletado na saída do equalizador do sistema de tratamento de efluente.Enzymatic production is one of the most promising fields within technologies for the synthesis of high added value compounds, given their constant growth due to the great capacity of microorganisms to carry out chemical transformations. The enzymes produced from fermentation processes have been used for environmental control. Many of these enzymes can be produced from industrial residues, reducing the production cost. Lipases are a group of enzymes that catalyze hydrolysis of triglycerides to glycerides and fatty acids. Lipases have been used to reduce the concentration of lipids contained in effluent, promoting

  16. Few microorganisms associated with bacterial vaginosis may constitute the pathologic core

    Thorsen, Poul; Jensen, Inge Panum; Jeune, Bernard; Ebbesen, Niels; Arpi, Magnus; Bremmelgaard, Annie; Møller, Birger R.

    1998-01-01

    OBJECTIVE: To evaluate the association between various microorganisms isolated from the genital tract in pregnant women with bacterial vaginosis. STUDY DESIGN: A cross-sectional population-based study among pregnant women addressed at their first antenatal visit before 24 full gestational weeks......) between the microorganisms isolated from the lower genital tract in pregnant women with and without clinical diagnosis of bacterial vaginosis. RESULTS: Three thousand five hundred ninety-six (3596) pregnant women were asked to participate. Of the 3596 pregnant women 3174 (88.4%) agreed to participate...... before 24 full gestational weeks. After controlling for the presence of other microorganisms, strong associations between Gardnerella vaginalis, anaerobic bacteria, Mycoplasma hominis, and present bacterial vaginosis were found. Similarly Lactobacillus spp. were found to be associated with the absence of...

  17. Neutron radiography applied to the microorganisms detection

    This work aims to present a new method of microorganism detection in several culture medium, such as potable water and corporal fluids. After the steps of processes of growth in culture medium, separation and resuspension in a boron based lid solution, the microorganisms are deposited in lines detectors and at last submitted to a thermal neutrons beam (congruent with 2.2x105 n/cm2.s). The latent tracks registered by the alpha particles coming from the B(n,α)Li reaction are analyzed by an optical microscope, allowing the detection of microorganisms existence

  18. Lysogenic bacteriophage isolated from acidophilium

    Ward, Thomas W.; Bruhn, Debby F.; Bulmer, Deborah K.

    1992-01-01

    A bacteriophage identified as .phi.Ac1 capable of infecting acidophilic heterotropic bacteria (such as Acidiphilium sp.) and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phase having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element form ore or coal.

  19. Radiation resistence of microorganisms from radiation sterilization processing environments

    Sabovljev, Svetlana A.; Žunić, Zora S.

    The radiation resistance of microorganisms was examined on the samples of dust collected from the radiation sterilization processing environments including assembly, storage, and sterilization plant areas. The isolation of radiation resistant strains was performed by irradiation with screening doses ranging from 10 to 35 kGy and test pieces containing 10 6 to 10 8 CFU in dried serum-broth, representing 100 to 5000 colonies of primary cultures of microorganisms from 7 different sites. In an examination of 16900 colonies of aerobic microorganisms from 3 hygienically controlled production sites and 4 uncontrolled ones, 30 strains of bacteria were isolated. Of those 15 were classified as genus Bacillus, 9 as Micrococcus and 6 as Sarcina. All of the 15 strains of Gram positive sporeforming aerobic rods exhibited an exponential decrease in the surviving fraction as a function of dose, indicating that the inactivation of spores of aerobic rods is a consequence of a single energy deposition into the target. All strains were found to be moderately resistant to radiation with D-6 values (dose required to reduce survival to 6 log cycles) between 18 and 26 kGy. All of the isolated Gram positive cocci showed inactivation curves having a shoulder, indicating that different processes are involved in the inactivation of these cells, e.g. accumulation of sublethal lesions, or final repair capacity of potential lethal lesions. Moderate radiation resistance was observed in 13 strains with D-6 values between 16 to 30 kGy. Two slow-growing, red pigmented strains tentatively classified as genus Micrococcus isolated from uncontrolled sites (human dwellings) were exceptionally resistant with D-6 more than 45 kGy. For hygienically controlled sites, Gram positive spereforming rods composed two thirds of the resistant microflora, while Gram positive cocci comprised one third. For hygienically uncontrolled sites this ratio was reversed. An assumption is made that one isolated strain has grown

  20. Pentachlorophenol (PCP) degradation microorganism community structure under microaeration condition

    Chen Yuancai; Hao Yuan; Fu Shiyu; Zhan Huaiyu

    2007-01-01

    The comparison of pentachlorophenol (PCP)degradation was conducted under micro-aeration and anaerobic condition with three series of batch experiment,results of which indicated that during micro-aeration condition co-immobilized of anaerobic granular sludge and isolated aerobic bacterial species could enhance the efficiency of PCP reduction through the synergism of aerobes and anaerobes reductive dechlorination and exchange of metabolites within the co-immobilized granular sludge.While during anaerobic condition,there was no great difference in the three series.The specific activities experiment further confirmed that strict anaerobes were not affected over the presence of micro aeration environment.Microorganism community construction of co-immobilized anaerobic granular sludge and the mixed isolated aerobic community was also deduced.By the efficient cooperation of aerobes and anaerobes,the high efficiency removal rate of PCP was implemented.

  1. Selection of lipase-producing microorganisms through submerged fermentation.

    Colla, Luciane Maria; Primaz, Andreiza Lazzarotto; Benedetti, Silvia; Loss, Raquel Aparecida; de Lima, Marieli; Reinehr, Christian Oliveira; Bertolin, Telma Elita; Costa, Jorge Alberto Vieira

    2010-01-01

    Lipases are enzymes used in various industrial sectors such as food, pharmaceutical and chemical synthesis industries. The selection of microorganisms isolated from soil or wastewater is an alternative to the discovery of new species with high enzymes productivity and with different catalytic activities. In this study, the selection of lipolytic fungi was carried out by submerged fermentation. A total of 27 fungi were used, of which 20 were isolated from dairy effluent and 7 from soil contaminated with diesel oil. The largest producers were the fungi Penicillium E-3 with maximum lipolytic activity of 2.81 U, Trichoderma E-19 and Aspergillus O-8 with maximum activities of 2.34 and 2.03 U where U is the amount of enzyme that releases 1 micromol of fatty acid per min per mL of enzyme extract. The fungi had maximum lipolytic activities on the 4th day of fermentation. PMID:20737918

  2. Phylogenetic relationships among subsurface microorganisms

    Nierzwicki-Bauer, S.A.

    1991-01-01

    This project involves the development of group specific 16S ribosomal RNA-targeted oligonucleotide hybridization probes for the rapid detection of specific types of subsurface organisms (e.g., groups of microbes that share certain physiological traits). Major accomplishments for the period of 6/91 to 12/1/91 are described. Nine new probes have been synthesized on the basis of published 16S rRNA sequence data from the Ribosomal Database Project. We have initiated rapid screening of many of the subsurface microbial isolates obtained from the P24 borehole at the Savannah River Site. To date, we have screened approximately 50% of the isolates from P24. We have optimized our {und in situ} hybridization technique, and have developed a cell blot hybridization technique to screen 96 samples on a single blot. This is much faster than reading 96 individual slides. Preliminary experiments have been carried out which indicate specific nutrients can be used to amplify rRNA only in those organisms capable of metabolizing those nutrients. 1 tab., 2 figs.

  3. Biotransformations of monoterpenes by photoautotrophic micro-organisms.

    Balcerzak, L; Lipok, J; Strub, D; Lochyński, S

    2014-12-01

    Monoterpenes are widely used in food technology, cosmetic and pharmaceutical industries and as compounds of agricultural importance. It is known that compounds comprising this class can be transformed by a variety of organisms, namely by: bacteria, fungi, yeasts, plants or isolated enzymes. Biotransformations, as one of the most important tools of green chemistry, allow obtaining new products using whole cells of micro-organisms or isolated enzymes in mild reaction conditions. Therefore, biotransformations of monoterpenes, by different type of reaction such as: epoxidation, oxidation and stereoselective hydroxylation, resulted in the production of so desired, enantiomerically defined compounds that can be advised as natural seem to be interesting. Bearing in mind that such processes are carried out also by easy to maintain, photoautotrophic micro-organisms cultivated at large scale, this paper is focused on biotransformations of acyclic, monocyclic and bicyclic monoterpenes by freshwater or haliphylic cyanobacteria and microalgae on the way of mainly stereoselective hydroxylation. Moreover, aspects of potential industrial application of obtained products in medicine, perfume, cosmetics and food industry are discussed. PMID:25175902

  4. COUNTS OF MICROORGANISMS CAUSING BOVINE MASTITIS AND STUDY OF ANTIMICROBIAL ACTION

    Wanessa Oliveira Ribeiro

    2014-02-01

    Full Text Available Mastitis is an inflammation of the mammary gland caused mainly by microorganisms, altering the characteristics of milk and results in significant economic losses for this production complex. The study aimed to determine the main causative agents of bovine mastitis in a dairy farm in Rio Pomba city, Minas Gerais state, Brazil, and evaluate the use of plant extract and antibiotics commonly used in the control of microorganisms that cause this disease. Raw milk samples coming from 47 dairy cow were individually collected for microbiological evaluation. We also evaluated the sensitivity of isolates from the plant extract and the antibiotics commonly used in the farm. It was found that 17.0 %, 31.9 %, 85.4 % and 38.3 % of the samples presented, respectively, Staphylococcus aureus, coliforms, faecal coliforms and Escherichia coli. Furthermore, most of the samples showed counts of aerobic mesophilic microorganisms and Streptococcus sp. between 104 and 105 CFU.mL-1, while the counts of S. aureus ranged between 102 and 103 CFU.mL-1 in most of samples. A higher efficacy of tetracycline on the isolates of S. aureus was verified and of ampicillin on the E. coli isolates. All isolates of the latter bacteria were resistant to plant extract. Due to the high incidence of microorganisms, we emphasize the need for implementation of Good Agricultural Practices in milk production, because these bacteria are coming from hair, skin, mucous membranes of animals and/or belonging to the enteric microbiota of mammals, respectively.

  5. Factors Affecting High-Oxygen Survival of Heterotrophic Microorganisms from an Antarctic Lake

    Mikell, Alfred T.; Parker, B. C.; Gregory, E M

    1986-01-01

    We sought to determine factors relating to the survival of heterotrophic microorganisms from the high-dissolved-oxygen (HDO) waters of Lake Hoare, Antarctica. This lake contains perpetual HDO about three times that of normal saturation (40 to 50 mg liter−1). Five isolates, one yeast and four bacteria, were selected from Lake Hoare waters by growth with the membrane filter technique with oxygen added to yield dissolved concentrations 14 times that in situ, 175 mg liter−1. One bacterial isolate...

  6. Mass Spectrometry for Rapid Characterization of Microorganisms

    Demirev, Plamen A.; Fenselau, Catherine

    2008-07-01

    Advances in instrumentation, proteomics, and bioinformatics have contributed to the successful applications of mass spectrometry (MS) for detection, identification, and classification of microorganisms. These MS applications are based on the detection of organism-specific biomarker molecules, which allow differentiation between organisms to be made. Intact proteins, their proteolytic peptides, and nonribosomal peptides have been successfully utilized as biomarkers. Sequence-specific fragments for biomarkers are generated by tandem MS of intact proteins or proteolytic peptides, obtained after, for instance, microwave-assisted acid hydrolysis. In combination with proteome database searching, individual biomarker proteins are unambiguously identified from their tandem mass spectra, and from there the source microorganism is also identified. Such top-down or bottom-up proteomics approaches permit rapid, sensitive, and confident characterization of individual microorganisms in mixtures and are reviewed here. Examples of MS-based functional assays for detection of targeted microorganisms, e.g., Bacillus anthracis, in environmental or clinically relevant backgrounds are also reviewed.

  7. Pathogenic and opportunistic microorganisms in caves

    Sanchez-Moral Sergio; Hermosin Bernardo; Boiron Patrick; Rodriguez-Nava Veronica; Laiz Leonila; Jurado Valme; Saiz-Jimenez Cesareo

    2010-01-01

    With today’s leisure tourism, the frequency of visits to many caves makes it necessary to know about possible potentially pathogenic microorganisms in caves, determine their reservoirs, and inform the public about the consequences of such visits. Our data reveal that caves could be a potential danger to visitors because of the presence of opportunistic microorganisms, whose existence and possible development in humans is currently unknown.

  8. Selective accumulation of heavy metals by microorganisms

    An investigation of the removal and recovery of uranium from aqueous systems using microbial biomass has been described previously (Nakajima et al. 1982). To establish which microorganisms accumulate the most uranium, we extended our investigation of uranium uptake to 83 species of microorganisms, 32 bacteria, 15 yeasts, 16 fungi and 20 actinomycetes. Of these 83 species of microorganisms tested, extremely high uranium-absorbing ability was found in Pseudomonas stutzeri, Neurospora sitophila, Streptomyces albus and Streptomyces viridochromogenes. The selective accumulation of heavy metal ions by various microorganisms has also been examined. Uranyl, mercury and lead ions were readily accumulated by almost all the species of microorganisms tested. Actinomycetes and fungi differ from many bacteria and most yeasts in their selective accumulation of uranium and mercury. In addition to this fundamental research, uranium recovery was investigated in immobilized Streptomyces albus, a microorganism with high uranium-uptake ability. These immobilized cells adsorbed uranium readily and selectively. The immobilized cells recovered uranium almost quantitatively and almost all uranium absorbed was desorbed with 0.1 M Na2CO3. The dry weight of the free cells decreased by 50% during 5 adsorption-desorption cycles. However, the dry weight of the immobilized cells decreased by only 2% during 5 cycles. These results showed that microbial cells are more stable after immobilization and can be used repeatedly for the process of uranium adsorption-desorption. (orig.)

  9. Investigation of the bioremediation potential of aerobic zymogenous microorganisms in soil for crude oil biodegradation

    TATJANA ŠOLEVIĆ

    2011-03-01

    Full Text Available The bioremediation potential of the aerobic zymogenous microorganisms in soil (Danube alluvium, Pančevo, Serbia for crude oil biodegradation was investigated. A mixture of paraffinic types of oils was used as the substrate. The laboratory experiment of the simulated oil biodegradation lasted 15, 30, 45, 60 and 75 days. In parallel, an experiment with a control sample was conducted. Extracts were isolated from the samples with chloroform in a separation funnel. From these extracts, the hydrocarbons were isolated by column chromatography and analyzed by gas chromatography–mass spectrometry (GC–MS. n-Alkanes, isoprenoids, phenanthrene and its derivatives with one and two methyl groups were quantitatively analyzed. The ability and efficiency of zymogenous microorganisms in soil for crude oil bioremediation was assessed by comparison between the composition of samples which were exposed to the microorganisms and the control sample. The investigated microorganisms showed the highest bioremediation potential in the biodegradation of n-alkanes and isoprenoids. A considerably high bioremediation potential was confirmed in the biodegradation of phenanthrene and methyl phenanthrenes. Low bioremediation potential of these microorganisms was proven in the case of polycyclic alkanes of the sterane and triterpane types and dimethyl phenanthrenes.

  10. Screening of Microorganisms for Biodegradation of Simazine Pollution (Obsolete Pesticide Azotop 50 WP).

    Błaszak, Magdalena; Pełech, Robert; Graczyk, Paulina

    2011-09-01

    The capability of environmental microorganisms to biodegrade simazine-an active substance of 2-chloro-s-triazine herbicides (pesticide waste since 2007)-was assessed. An enormous metabolic potential of microorganisms impels to explore the possibilities of using them as an alternative way for thermal and chemical methods of utilization. First, the biotope rich in microorganisms resistant to simazine was examined. Only the higher dose of simazine (100 mg/l) had an actual influence on quantity of bacteria and environmental fungi incubated on substrate with simazine. Most simazine-resistant bacteria populated activated sludge and biohumus (vermicompost); the biggest strain of resistant fungi was found in floral soil and risosphere soil of maize. Compost and biohumus were the sources of microorganisms which biodegraded simazine, though either of them was the dominant considering the quantity of simazine-resistant microorganisms. In both cases of periodic culture (microorganisms from biohumus and compost), nearly 100% of simazine (50 mg/l) was degraded (within 8 days). After the repeated enrichment culture with simazine, the rate of its degradation highly accelerated, and just after 24 h, the significant decrease of simazine (20% in compost and 80% in biohumus) was noted. Although a dozen attempts of isolating various strains responsible for biodegradation of simazine from compost and biohumus were performed, only the strain identified as Arthrobacter urefaciens (NC) was obtained, and it biodegraded simazine with almost 100% efficiency (within 4 days). PMID:21949452

  11. Acidithiobacillus ferriphilus sp. nov., a facultatively anaerobic iron- and sulfur-metabolizing extreme acidophile.

    Falagán, Carmen; Johnson, D Barrie

    2016-01-01

    The genus Acidithiobacillus includes three species that conserve energy from the oxidation of ferrous iron, as well as reduced sulfur, to support their growth. Previous work, based on multi-locus sequence analysis, identified a fourth group of iron- and sulfur-oxidizing acidithiobacilli as a potential distinct species. Eleven strains of 'Group IV' acidithiobacilli, isolated from different global locations, have been studied. These were all shown to be obligate chemolithotrophs, growing aerobically by coupling the oxidation of ferrous iron or reduced sulfur (but not hydrogen) to molecular oxygen, or anaerobically by the oxidation of reduced sulfur coupled to ferric iron reduction. All strains were mesophilic, although some were also psychrotolerant. Strain variation was also noted in terms of tolerance to extremely low pH and to elevated concentrations of transition metals. One strain was noted to display far greater tolerance to chloride than reported for other iron-oxidizing acidithiobacilli. All of the strains were able to catalyse the oxidative dissolution of pyrite and, on the basis of some of the combined traits of some of the strains examined, it is proposed that these may have niche roles in commercial mineral bioprocessing operations, such as for low temperature bioleaching of polysulfide ores in brackish waters. The name Acidithiobacillus ferriphilus sp. nov. is proposed to accommodate the strains described, with the type strain being M20T ( = DSM 100412T = JCM 30830T). PMID:26498321

  12. [Hydrocarbon-Oxidizing potential and the genes for n-alkane biodegradation in a new acidophilic mycobacterial association from sulfur blocks].

    Ivanova, I E; Sukhacheva, M V; Kanat'eva, A Yu; Kravchenko, I K; Kurganov, A A

    2014-01-01

    Capacity of AG(S10), a new aerobic acidophilic (growing within the pH range from 1.3 to 4.5 with the optimum at 2.0-2.5) bacterial association from sulfur blocks of the Astrakhan gas-processing complex (AGC), for oxidation of hydrocarbons of various chemical structure was investigated. A broad spectrum of normal (C10-C21) and iso-alkanes, toluene, naphthalene, andphenanthrene, as well as isoprenoids resistant to microbial degradation, pristane and phytane (components of paraffin oil), and 2,2,4,4,6,8,8,-heptamethylnonane, a branched hydrocarbon, were biodegraded under acidic conditions. Microbiological investigation revealed the dominance of mycobacteria in the AGS10 association, which was confirmed by analysis of the 16S rRNA gene clone library. In the phylogenetic tree, the 16S rRNA sequences formed a branch within the cluster of slow-growing mycobacteria, with 98% homology to the closest species Mycobacterium florentinum. Genomic DNA of AG(S10) culture grown on C14-C17 n-alkanes at pH 2.5 was found to contain the genes of two hydroxylase families, alkB and Cyp 153, indicating their combined involvement in hydrocarbon biodegradation. The high hydrocarbon-oxidizing potential of the AGS10 bacterial association, indicated that further search for the genes responsible for degradation of various hydrocarbons in acidophilic mycobacteria could be promising. PMID:25941716

  13. [Effect of temperature on the rate of oxidation of pyrrhotite-rich sulfide ore flotation concentrate and the structure of the acidophilic chemolithoautotrophic microbial community].

    Moshchanetskii, P V; Pivovarova, T A; Belyi, A V; Kondrat'eva, T F

    2014-01-01

    Oxidation of flotation concentrate of a pyrrhotite-rich sulfide ore by acidophilic chemolithoautotrophic microbial communities at 35, 40, and 45 degrees C was investigated. According to the physicochemical parameters of the liquid phase of the pulp, as well as the results of analysis of the solid residue after biooxidation and cyanidation, the community developed at 40 degrees C exhibited the highest rate of oxidation. The degree of gold recovery at 35, 40, and 45 degrees C was 89.34, 94.59, and 83.25%, respectively. At 40 degrees C, the highest number of microbial cells (6.01 x 10(9) cells/mL) was observed. While temperature had very little effect on the species composition of microbial communities, except for the absence of Leptospirillum ferriphilum at 35 degrees C, the shares of individual species in the communities varied with temperature. Relatively high numbers of Sulfobacillus thermosulfidooxidans, the organism oxidizing iron and elemental sulfur at higher rates than other acidophilic chemolithotrophic species, were observed at 40 degrees C. PMID:25844443

  14. Functional microorganisms for functional food quality.

    Gobbetti, M; Cagno, R Di; De Angelis, M

    2010-09-01

    Functional microorganisms and health benefits represent a binomial with great potential for fermented functional foods. The health benefits of fermented functional foods are expressed either directly through the interactions of ingested live microorganisms with the host (probiotic effect) or indirectly as the result of the ingestion of microbial metabolites synthesized during fermentation (biogenic effect). Since the importance of high viability for probiotic effect, two major options are currently pursued for improving it--to enhance bacterial stress response and to use alternative products for incorporating probiotics (e.g., ice cream, cheeses, cereals, fruit juices, vegetables, and soy beans). Further, it seems that quorum sensing signal molecules released by probiotics may interact with human epithelial cells from intestine thus modulating several physiological functions. Under optimal processing conditions, functional microorganisms contribute to food functionality through their enzyme portfolio and the release of metabolites. Overproduction of free amino acids and vitamins are two classical examples. Besides, bioactive compounds (e.g., peptides, γ-amino butyric acid, and conjugated linoleic acid) may be released during food processing above the physiological threshold and they may exert various in vivo health benefits. Functional microorganisms are even more used in novel strategies for decreasing phenomenon of food intolerance (e.g., gluten intolerance) and allergy. By a critical approach, this review will aim at showing the potential of functional microorganisms for the quality of functional foods. PMID:20830633

  15. A Comprehensive Characterization of Microorganisms and Allergens in Spacecraft Environment

    Ott, C. M.; John, J.; Castro, V. A.; Cruz, P.; Buttner, L. M.; Pierson, D. L.

    2007-01-01

    The determination of risk from infectious disease during long-duration missions is composed of several factors including (1) the host#s susceptibility, (2) the host#s exposure to the infectious disease agent, and (3) the concentration of the infectious agent, and (4) the characteristics of the infectious agent. While stringent steps are taken to minimize the transfer of potential pathogens to spacecraft, several medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. Thus, several pathogens may not have been detected, such as Legionella pneumophila, the etiological agent of Legionnaire#s disease. We hypothesize that environmental analysis using non-culture-based technologies will reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. The development of techniques for this flight experiment, operationally named SWAB, has already provided advances in NASA laboratory processes and beneficial information toward human health risk assessment. The first accomplishment of the SWAB experiment was the incorporation of 16S ribosomal DNA sequencing for the identification of bacteria. The use of this molecular technique has increased bacterial speciation of environmental isolates from previous flights three fold compared to conventional methodology. This increased efficiency in bacterial speciation provides a better understanding of the microbial ecology and the potential risk to the crew. Additional SWAB studies focused on the use of molecular-based DNA fingerprinting using repetitive sequencebased

  16. Microorganism Utilization for Synthetic Milk Production

    Birmele, Michele; Morford, Megan; Khodadad, Christina; Spencer, Lashelle; Richards, Jeffrey; Strayer, Richard; Caro, Janicce; Hummerick, Mary; Wheeler, Ray

    2014-01-01

    A desired architecture for long duration spaceflight, such as aboard the International Space Station (ISS) or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of this project was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel- through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms.

  17. Microorganism characterization by single particle mass spectrometry.

    Russell, Scott C

    2009-01-01

    In recent years a major effort by several groups has been undertaken to identify bacteria by mass spectrometry at the single cell level. The intent of this review is to highlight the recent progress made in the application of single particle mass spectrometry to the analysis of microorganisms. A large portion of the review highlights improvements in the ionization and mass analysis of bio-aerosols, or particles that contain biologically relevant molecules such as peptides or proteins. While these are not direct applications to bacteria, the results have been central to a progression toward single cell mass spectrometry. Developments in single particle matrix-assisted laser desorption/ionization (MALDI) are summarized. Recent applications of aerosol laser desorption/ionization (LDI) to the analysis of single microorganisms are highlighted. Successful applications of off-line and on-the-fly aerosol MALDI to microorganism detection are discussed. Limitations to current approaches and necessary future achievements are also addressed. PMID:18949817

  18. Free tropospheric transport of microorganisms from Asia to North America

    D. Smith; Dan Jaffe; Michele Birmele; Griffin, Dale W.; Andrew Schuerger; Hee, J.; Michael Roberts

    2012-01-01

    Microorganisms are abundant in the troposphere and can be transported vast distances on prevailing winds. This study measures the abundance and diversity of airborne bacteria and fungi sampled at the Mt. Bachelor Observatory (located 2.7 km above sea level in North America) where incoming free tropospheric air routinely arrives from distant sources across the Pacific Ocean, including Asia. Overall deoxyribonucleic acid (DNA) concentrations for microorganisms in the free troposphere, derived from quantitative polymerase chain reaction assays, averaged 4.94 × 10(-5) ng DNA m(-3) for bacteria and 4.77 × 10(-3) ng DNA m(-3) for fungi. Aerosols occasionally corresponded with microbial abundance, most often in the springtime. Viable cells were recovered from 27.4 % of bacterial and 47.6 % of fungal samples (N = 124), with 49 different species identified by ribosomal DNA gene sequencing. The number of microbial isolates rose significantly above baseline values on 22-23 April 2011 and 13-15 May 2011. Both events were analyzed in detail, revealing distinct free tropospheric chemistries (e.g., low water vapor, high aerosols, carbon monoxide, and ozone) useful for ruling out boundary layer contamination. Kinematic back trajectory modeling suggested air from these events probably originated near China or Japan. Even after traveling for 10 days across the Pacific Ocean in the free troposphere, diverse and viable microbial populations, including presumptive plant pathogens Alternaria infectoria and Chaetomium globosum, were detected in Asian air samples. Establishing a connection between the intercontinental transport of microorganisms and specific diseases in North America will require follow-up investigations on both sides of the Pacific Ocean.

  19. Risk Assessment of Genetically Modified Microorganisms

    Jacobsen, B. L.; Wilcks, Andrea

    2001-01-01

    the industry, national administration and research institutions were gathered to discuss which elements should be considered in a risk assessment of genetically modified microorganisms used as food or food ingredients. The existing EU and national regulations were presented, together with the......The rapid development of recombinant DNA techniques for food organisms urges for an ongoing discussion on the risk assessment of both new as traditional use of microorganisms in food production. This report, supported by the Nordic Council of Ministers, is the result of a workshop where people from...

  20. Functional Properties of Microorganisms in Fermented Foods

    Tamang, Jyoti P.; Shin, Dong-Hwa; Jung, Su-Jin; Chae, Soo-Wan

    2016-01-01

    Fermented foods have unique functional properties imparting some health benefits to consumers due to presence of functional microorganisms, which possess probiotics properties, antimicrobial, antioxidant, peptide production, etc. Health benefits of some global fermented foods are synthesis of nutrients, prevention of cardiovascular disease, prevention of cancer, gastrointestinal disorders, allergic reactions, diabetes, among others. The present paper is aimed to review the information on some functional properties of the microorganisms associated with fermented foods and beverages, and their health-promoting benefits to consumers. PMID:27199913

  1. Hydrodynamic Phase Locking of Swimming Microorganisms

    Elfring, Gwynn J.; Lauga, Eric

    2009-08-01

    Some microorganisms, such as spermatozoa, synchronize their flagella when swimming in close proximity. Using a simplified model (two infinite, parallel, two-dimensional waving sheets), we show that phase locking arises from hydrodynamics forces alone, and has its origin in the front-back asymmetry of the geometry of their flagellar waveform. The time evolution of the phase difference between coswimming cells depends only on the nature of this geometrical asymmetry, and microorganisms can phase lock into conformations which minimize or maximize energy dissipation.

  2. Hydrodynamic phase-locking of swimming microorganisms

    Elfring, Gwynn J

    2009-01-01

    Some microorganisms, such as spermatozoa, synchronize their flagella when swimming in close proximity. Using a simplified model (two infinite, parallel, two-dimensional waving sheets), we show that phase-locking arises from hydrodynamics forces alone, and has its origin in the front-back asymmetry of the geometry of their flagellar waveform. The time-evolution of the phase difference between co-swimming cells depends only on the nature of this geometrical asymmetry, and microorganisms can phase-lock into conformations which minimize or maximize energy dissipation.

  3. Distribution of radiation resistant microorganism and bio-burden on infusion set

    Radiation screened 98 isolates from 3032 cfu on 56 infusion sets were studied for radiation resistance. The D10 values of these screened isolates were 0.8 to 4.0 kGy and mostly ranged within 1.2 to 1.6 kGy. The microorganisms with D10 ≤ 1.6 kGy were about 99.0% of the total bio-burden. All of the screened isolates were gram-positive bacteria, and 84 isolates were classified as Bacillus sp. and 14 isolates were characterized as Micrococcus sp.. One isolate with D10 of 4.0 kGy (from D-6 = 24 kGy) was found outside of the infusion sets, accounting for 0.033% of the total bio-burden. The most resistant bacteria were orange colony and were classified as a Micrococcus sp. with broad shoulder

  4. Yeasts in table olive processing: desirable or spoilage microorganisms?

    Arroyo-López, F N; Romero-Gil, V; Bautista-Gallego, J; Rodríguez-Gómez, F; Jiménez-Díaz, R; García-García, P; Querol, A; Garrido-Fernández, A

    2012-11-01

    Yeasts are unicellular eukaryotic microorganisms isolated from many foods, and are commonly found in table olive processing where they can play a double role. On one hand, these microorganisms can produce spoilage of fruits due to the production of bad odours and flavours, the accumulation of CO(2) leading to swollen containers, the clouding of brines, the softening of fruits and the degradation of lactic acid, which is especially harmful during table olive storage and packaging. But on the other hand, fortunately, yeasts also possess desirable biochemical activities (lipase, esterase, β-glucosidase, catalase, production of killer factors, etc.) with important technological applications in this fermented vegetable. Recently, the probiotic potential of olive yeasts has begun to be evaluated because many species are able to resist the passage through the gastrointestinal tract and show beneficial effects on the host. In this way, yeasts may improve consumers' health by decreasing cholesterol levels, inhibiting pathogens, degrading non assimilated compounds, producing antioxidants and vitamins, adhering to intestinal cells or by maintaining epithelial barrier integrity. Many yeast species, usually also found in table olive processing, such as Wicherhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens and Kluyveromyces lactis, have been reported to exhibit some of these properties. Thus, the selection of the most appropriate strains to be used as starters, alone or in combination with lactic acid bacteria, is a promising research line to develop in a near future which might improve the added value of the commercialized product. PMID:23141644

  5. Biomining Microorganisms: Molecular Aspects and Applications in Biotechnology and Bioremediation

    Jerez, Carlos A.

    The microbial solubilization of metals using chemolithoautotrophic microorganisms has successfully been used in industrial processes called biomining to extract metals such as copper, gold, uranium and others. The most studied leaching bacteria are from the genus Acidithiobacillus belonging to the Gram-negative γ-proteobacteria. Acidithiobacillus spp. obtain their energy from the oxidation of ferrous iron, elemental sulfur, or partially oxidized sulfur compounds. Other thermophilic archaeons capable of oxidizing sulfur and iron (II) have also been known for many years, and they are mainly from the genera Sulfolobus, Acidianus, Metallosphaera and Sulfurisphaera. Recently, some mesophilic iron (II)-oxidizing archaeons such as Ferroplasma acidiphilium and F. acidarmanus belonging to the Thermoplasmales have also been isolated and characterized. Recent studies of microorganisms consider them in their consortia, integrating fundamental biological knowledge with metagenomics, metaproteomics, and other data to obtain a global picture of how a microbial community functions. The understanding of microbial growth and activities in oxidizing metal ions will be useful for improving applied microbial biotechnologies such as biomining, bioshrouding, biomonitoring and bioremediation of metals in acidic environments.

  6. Applications of MS-MALDI–TOF for quick identification of microorganisms

    Petr Stursa

    2010-12-01

    Full Text Available From the beginning of microbiology scientists have discussed the issue of how to easily, quickly but also accurately identify unknown microorganisms. Today there is a number of precise but time– consuming and costly molecular techniques available. The MS MALDI–TOF–based method offers a suitable alternative for currently used methods. This method allows comparing different isolates according to the characteristic profile of ribosomal proteins and selecting those which are identical, or it enables accurate direct identification of the samples using a commercial database. Measurements that we did showed that the identification accuracy by MALDI–TOF mass spectrometry is comparable to the methods of 16S rRNA gene analysis, which is used as a standard method for identification of microorganisms. The disadvantage of using commercial databases for identification is a small scale of suchdatabase. It is possible to say that method of MALDI–TOF mass spectrometry offers a fast and suitable alternative for theidentification of microorganisms.

  7. Treatment of Pesticide Contaminated Wastewater by Soil Microorganisms

    *S. Jilani

    2011-03-01

    Full Text Available Cypermethrin is one of the most widely used pesticides in the country for agriculture crop production. Due to least water solubility and toxicity, its removal need especial attention. Microbial degradation is considered to be an efficient and cost effective method for decontamination of toxic pesticides from the environment. In this study, malathion degrading bacterial isolate, identified as Pseudomonas, was used to assess its biodegradation potential for cypermethrin in aqueous system. The experimental findings indicate that Pseudomonas was able to degrade cypermethrin, if suitable environmental conditions provided in the reactor. Increased concentration from 20 to 80 mg/L gradually decreased the removal efficiency. However, under continuous agitation, complete degradation of cypermethrin (20 mg/L occurred within a period of 48 hours. These results suggest that the use of potential microorganisms in the treatment system can successfully overcome many of the disadvantages associated with the conventional method used for the degradation of inhibitory compounds.

  8. Screening and flocculating properties of bioflocculant-producing microorganisms

    Yanling Sheng; Qiang Zhang; Yanru Sheng; Chengbin Li; Huajun Wang

    2006-01-01

    Screening of bioflocculant-producing microorganisms was carried out. A strain that secreted excellent bioflocculant was isolated from municipal sewage using the spread plate technique, identified as Klebsiella sp. by the analytical profile index (API) identification system, and named A9. Several important factors that had an effect on A9's bioflocculant-producing and flocculating activity were studied. A total of 4 g/L Kaolin suspension was used to measure the flocculating activity of the bioflocculant from A9. It was found that maltose and urea were A9's best carbon and nitrogen sources, respectively, and the flocculating activity of the flocculating agent from A9 was markedly increased by the addition of trivalent cations such as Fe3+ and Al3+; furthermore, the bioflocculant produced by A9 was most effective when the pH value was 6.0.

  9. Novel metal resistance genes from microorganisms: a functional metagenomic approach.

    González-Pastor, José E; Mirete, Salvador

    2010-01-01

    Most of the known metal resistance mechanisms are based on studies of cultured microorganisms, and the abundant uncultured fraction could be an important source of genes responsible for uncharacterized resistance mechanisms. A functional metagenomic approach was selected to recover metal resistance genes from the rhizosphere microbial community of an acid-mine drainage (AMD)-adapted plant, Erica andevalensis, from Rio Tinto, Spain. A total of 13 nickel resistant clones were isolated and analyzed, encoding hypothetical or conserved hypothetical proteins of uncertain functions, or well-characterized proteins, but not previously reported to be related to nickel resistance. The resistance clones were classified into two groups according to their nickel accumulation properties: those preventing or those favoring metal accumulation. Two clones encoding putative ABC transporter components and a serine O-acetyltransferase were found as representatives of each group, respectively. PMID:20830571

  10. Identification of selected microorganisms from activated sludge capable of benzothiazole and benzotriazole transformation.

    Kowalska, Katarzyna; Felis, Ewa

    2015-01-01

    Benzothiazole (BT) and benzotriazole (BTA) are present in the environment - especially in urban and industrial areas, usually as anthropogenic micropollutants. BT and BTA have been found in the municipal and industrial wastewater, rivers, soil, groundwater, sediments and sludge. The origins of those substances' presence in the environment are various industry branches (food, chemical, metallurgical, electrical), households and surface runoff from industrial areas. Increasingly strict regulations on water quality and the fact that the discussed compounds are poorly biodegradable, make them a serious problem in the environment. Considering this, it is important to look for environmentally friendly and socially acceptable ways to remove BT and BTA. The aim of this study was to identify microorganisms capable of BT and BTA transformation or/and degradation in aquatic environment. Selected microorganisms were isolated from activated sludge. The identification of microorganisms capable of BT and BTA removal was possible using molecular biology techniques (PCR, DNA sequencing). Among isolated microorganisms of activated sludge are bacteria potentially capable of BT and BTA biotransformation and/or removal. The most common bacteria capable of BT and BTA transformation were Rhodococcus sp., Enterobacter sp., Arthrobacter sp. They can grow in a medium with BT and BTA as the only carbon source. Microorganisms previously adapted to the presence of the studied substances at a concentration of 10 mg/l, showed a greater rate of growth of colonies on media than microorganisms unconditioned to the presence of such compounds. Results of the biodegradation test suggest that BT was degraded to a greater extent than BTA, 98-100% and 11-19%, respectively. PMID:26641641

  11. BIOREMEDIATION OF HEAVY METALS USING BIOSURFACTANT PRODUCING MICROORGANISMS

    Vijayanand.S

    2015-05-01

    Full Text Available The present study was carried out to evaluate degradation of heavy metals in effluent waste water samples using microorganisms. The physical and chemical properties of the effluent samples were analyzed using standard methods. The soil sample collected from the heavy metal contaminated sites was subjected to serial dilution and streak-plating methods and six different strains were isolated from the samples. The activity of the isolates for hemolysis was studied on the Blood-Agar plates. The isolated strains were studied for its biochemical and morphological characteristics. The dark-blue colonies were observed by CTAB method, which confirmed the anionic bio surfactant produced by the isolate. The isolates were subjected to other screening tests like emulsification activity and oil displacement technique. These strains were used in the degradation of heavy metals present in the effluent waste water samples. The organism KDM 4 showed better degradation with 93.18% ability in reducing zinc when incubated for 72 hours and 86.36% when incubated for 24 hours in sample 3. The lead reduction was found to be 84.13% by the organism KDM3 when incubated at 37°C for 72 hours incubation. The chromium was reduced by the organism KDM 6 with 87.9% ability when incubated for 72 hours. The organisms had capacity to reduce the heavy metals depending on the factors like time and concentration of inoculum. As the time of incubation increases, more reduction was observed. The least amount of degradation was found in the organism KDM5 with only 27.08%. The percentage of reduction of heavy metals varies from one sample to another sample.

  12. Pesticides in Soil: Effects on Microorganisms

    Ljiljana Radivojević

    2007-01-01

    Full Text Available Since their discovery to the present day, pesticides have been an inevitable segment of agricultural production and efforts have been made to synthesize compounds that would share a required efficacy along with selectivity, sufficient persistence on the object of protection and favourable toxicological and ecotoxicological characteristics so as to minimize their effect on the environment.When a pesticide gets into soil after application, it takes part in a number of physical, chemical and biological processes that depend not only on the compound itself, but a number of other factors as well, such as: physical, chemical and biological characteristics of soil; climatic factors, equipment used, method of application, method of storage, handling and disposal of waste, site characteristics (proximity of ground and underground waters, biodiversity and sensitivity of the environment. Microorganisms play an important role in pesticide degradation as they are able to utilize the biogenic elements from those compounds, as well as energy for their physiological processes. On the other hand, pesticides are more or less toxic substances that can have adverse effect on populations of microorganisms and prevent their development, reduce their abundance, deplete their taxonomic complexity and create communities with a lower level of diversity and reduced physiological activity.The article discusses complex interactions between pesticides and microorganisms in soil immediately after application and over the ensuing period. Data on changes in the abundance of some systematic and physiological groups of microorganisms, their microbial biomass and enzymatic activity caused under pesticide activity are discussed as indicators of these processes.

  13. Ecology and metagenomics of soil microorganisms

    Baldrian, Petr; Head, I. M.; Prosser, J. I.; Schloter, M.; Smalla, K.; Tebbe, C. C.

    2011-01-01

    Roč. 78, č. 1 (2011), s. 1-2. ISSN 0168-6496 R&D Projects: GA MŠk LC06066; GA MŠk(CZ) LA10001 Institutional research plan: CEZ:AV0Z50200510 Keywords : microorganism * bioremediation * biogenesis of soil Subject RIV: EE - Microbiology, Virology Impact factor: 3.408, year: 2011

  14. Engineered microorganisms having resistance to ionic liquids

    Ruegg, Thomas Lawrence; Thelen, Michael P.

    2016-03-22

    The present invention provides for a method of genetically modifying microorganisms to enhance resistance to ionic liquids, host cells genetically modified in accordance with the methods, and methods of using the host cells in a reaction comprising biomass that has been pretreated with ionic liquids.

  15. Radiation sensitivity of hyperthermal composting microorganisms

    Choi, Jong-Il; Yoon, Min-Chul; Kim, Jae-Hun; Yamashita, Masamichi; Kim, Geun Joong; Lee, Ju-Woon

    In the space station and vehicles designed for long human mission, high-temperature compost is a promising technology for decomposing organic waste and producing the fertilizers. In space, the microorganisms could have the changed biological activities or even be mutated by ionizing irradiation. Therefore, in this study, the effect of gamma irradiation on the sensitivity of bacteria in hyperthermal composting was investigated. The sequence analysis of the amplified 16s rDNA genes and amoA gene were used for the identification of composting microorganisms. Viability of microorganisms in compost soil after gamma irradiation was directly visualized with LIVE/DEAD Baclight viability kit. The dominant bacterial genera are Weissella cibaria and Leuconostoc sp. and fungus genera are Metschnikowia bicuspidate and Pichia guilliermondii, respectively. By the gamma irradiation up to the dose of 1 kGy, the microbial population was not changed. Also, the enzyme activities of amylase and cellulose were sustained by the gamma irradiation. These results show that these hyperthermia microorganisms might have the high resistance to gamma radiation and could be used for agriculture in the Space Station.

  16. Human recombinant lysosomal enzymes produced in microorganisms.

    Espejo-Mojica, Ángela J; Alméciga-Díaz, Carlos J; Rodríguez, Alexander; Mosquera, Ángela; Díaz, Dennis; Beltrán, Laura; Díaz, Sergio; Pimentel, Natalia; Moreno, Jefferson; Sánchez, Jhonnathan; Sánchez, Oscar F; Córdoba, Henry; Poutou-Piñales, Raúl A; Barrera, Luis A

    2015-01-01

    Lysosomal storage diseases (LSDs) are caused by accumulation of partially degraded substrates within the lysosome, as a result of a function loss of a lysosomal protein. Recombinant lysosomal proteins are usually produced in mammalian cells, based on their capacity to carry out post-translational modifications similar to those observed in human native proteins. However, during the last years, a growing number of studies have shown the possibility to produce active forms of lysosomal proteins in other expression systems, such as plants and microorganisms. In this paper, we review the production and characterization of human lysosomal proteins, deficient in several LSDs, which have been produced in microorganisms. For this purpose, Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, Yarrowia lipolytica, and Ogataea minuta have been used as expression systems. The recombinant lysosomal proteins expressed in these hosts have shown similar substrate specificities, and temperature and pH stability profiles to those produced in mammalian cells. In addition, pre-clinical results have shown that recombinant lysosomal enzymes produced in microorganisms can be taken-up by cells and reduce the substrate accumulated within the lysosome. Recently, metabolic engineering in yeasts has allowed the production of lysosomal enzymes with tailored N-glycosylations, while progresses in E. coli N-glycosylations offer a potential platform to improve the production of these recombinant lysosomal enzymes. In summary, microorganisms represent convenient platform for the production of recombinant lysosomal proteins for biochemical and physicochemical characterization, as well as for the development of ERT for LSD. PMID:26071627

  17. Microorganisms as Indicators of Soil Health

    Nielsen, M. N.; Winding, A.; Binnerup, S.; Hansen, B. M.; Hendriksen, N. B.; Kroer, N.

    Microorganisms are an essential part of living soil and of outmost importance for soil health. As such they can be used as indicators of soil health. This report reviews the current and potential future use of microbial indicators of soil health and recommends specific microbial indicators for soil...

  18. Biodiversity of deep-sea microorganisms

    Fengping Wang

    2013-07-01

    Full Text Available The oceans, with an average depth of 3,800 meters and an average pressure about 38 MPa, cover about 70% of the surface of the Earth. Geological structures under the seawater, such as marine sediments, oceanic crust, hydrothermal vents, and the cold seeps, vary significantly with regard to physical and chemical properties. In combination, these diverse environments contain the largest microbial ecosystem in the world. In deep seawater, the major microorganism groups are Alpha-& Gammaproteobacteria, and Marine Group I. In deep-sea sediments, the abundance of microbes is related to the content of organic matter and distance from land. Methane Oxidizing Archaea (ANME and sulfate reducing bacteria (Deltaproteobacteria are common in deep-sea cold seep environments; while in hydrothermal vents, the richness and dynamics of chemical substances have led to highly diversified archaeal and bacterial groups. In contrast, the oceanic crust is mainly composed of basic and ultrabasic rocks rich in minerals, and as a result houses microorganisms that are mainly autotrophic, utilizing iron, manganese and sulfur. Because more than 99% of deep-sea microorganisms cannot be cultured, an understanding of their diversity, physiological features, and biogeochemical roles remains to be fully achieved. In this article, we review and summarize what is known about the distribution and diversity of deep-sea microorganisms in diverse habitats. It is emphasized that there is much to learn about these microbes.

  19. [DIFFERENTIAL SENSITIVITY OF MICROORGANISMS TO POLYHEXAMETHYLENEGUANIDINE].

    Lysytsya, A V; Mandygra, Y M; Bojko, O P; Romanishyna, O O; Mandygra, M S

    2015-01-01

    Factors identified that affect the sensitivity of microorganisms to polyhexamethyleneguanidine (PHMG). Salts of PHMG chloride, valerate, maleate, succinate was to use. Test strains of Esherichia coli, Staphylococcus aureus, Bacillus cereus, Leptospira interrogans, Paenibacillus larvae, Mycobacterium bovis, M. avium, M. fortuitum, Aspergillus niger and some strains of viruses are taken as objects of research. We have determined that the cytoplasm membrane phospholipids is main "target" for the polycation molecules of PHMG. A differential sensitivity of the microorganisms to this drug is primarily determined by relative amount of lipids in membrane and their accessibility. Such trends exist: increase the relative contents of anionic lipids and more negative surface electric potential of membrane, and reduction of the sizes fat acid remainder of lipids bring to increase of microorganism sensitivity. Types of anion salt PHMG just have a certain value. Biocide activity of PHMG chloride is more, than its salts with organic acid. Feasibility of combining PHMG with other biocides in the multicomponent disinfectants studied and analyzed. This combination does not lead to a significant increase in the sensitivity of microorganisms tested in most cases. Most species of pathogenic bacteria can be quickly neutralized by aqueous solutions of PHMG in less than 1% concentrations. PMID:26638480

  20. Mechanism of inactivating microorganisms with ionizing radiation

    The inactivation of microorganisms with a high dose of ionizing radiation is characterized by the exponential function of the dose N/sub D/=N0exp(-kD) where N0 is the number of microorganisms before irradiation and N/sub D/ the number of microorganisms after irradiation with dose D and k is the constant characterizing the strain resistance. Microorganisms differ by their sensitivity to radiation. Important for their inactivation are irradiation conditions (the presence of O2, temperature, pressure, pH, etc.). The efficiency of sterilization is assessed by the inactivation coefficient, t.e., the relation between the initial and the final concentration of cells irradiated with the given dose. The value of this coefficient is usually 104 to 108. For routine control of the sterilization process biological indicators are used, i.e., monitors, contaminated with a high number of germs of the standard resistant strain Bacillus sphaericus C/sub I/A. (E.F.)

  1. The genomics of probiotic intestinal microorganisms

    Salminen, Seppo; Nurmi, Jussi; Gueimonde, Miguel

    2005-01-01

    An intestinal population of beneficial commensal microorganisms helps maintain human health, and some of these bacteria have been found to significantly reduce the risk of gut-associated disease and to alleviate disease symptoms. The genomic characterization of probiotic bacteria and other commensal intestinal bacteria that is now under way will help to deepen our understanding of their beneficial effects.

  2. Modelling the morphology of filamentous microorganisms

    Nielsen, Jens Bredal

    1996-01-01

    The rapid development in image analysis techniques has made it possible to study the growth kinetics of filamentous microorganisms in more detail than previously, However, owing to the many different processes that influence the morphology it is important to apply mathematical models to extract...

  3. Microorganisms in stable air as possible postsecretory milk contaminants

    Kristina Matković

    2006-12-01

    Full Text Available Quality and hygienic correct milk must satisfy conditions which are prescribed by Law on Raw Milk Quality (NN102/2000. If we know that freshly milked milk could contain a certain number of microorganisms originating from the stable air (so called postsecretory contamination, performed research can help in establishing microclimatic factors that can influence that kind of contamination. Research was carried out in a dairy stable, basic microclimatic parameters were analyzed as well as number of microorganisms in the stable air. Measurements were executed in the morning, at noon and in the evening, once a week, during two months. Microclimate parameters were determined by standard, attested Testo 400 device (Testo Inc., Germany and Merck MAS-100 device (Merck KgaA, Darmstadt, Germany. Air samples were inoculated on prepared Columbia and Sabouraud agar (Biolife, Milan, Italy. After incubation and counting, the most common colonies were reinoculated on selective medium and identified by microbiological procedures. Obtained values were analyzed by statistical program Statistica. Mean values of total bacterial count in stable air were between 8.81 x 104 CFU/m3 at noon up to 1.26 x 105 CFU/m3 in the evening, and mean values of total moulds count in stable air were between 5.23 x 104 CFU/m3 at noon up to 8.35 x 104 CFU/m3 in the morning. Ten bacterial genus’s were identified. The most common bacteria in stable air were gram-positive bacteria, specially Staphylococcus i Streptococcus genera. Nine mould genera were isolated, predominated by the genera Aspergillus, Penicillium and yeasts. By Wilcoxon matched pair test at a level of statistical significance of p<0.05 was demonstrated that air temperature, relative humidity and air flow velocity directly influence on total number of microorganisms in stable air. Number and species of identified microorganisms in stable air could have influence on hygiene quality of fresh milk. Therefore, by regularly

  4. Characteristics of cesium accumulation in mushroom and microorganism

    High-level concentration of radiocesium in mushrooms is widely known after the Chernobyl accident. In Japan, the concentrations in mushrooms have been higher than those in all of foodstuffs involving imported foods from foreign countries, though over seventeen years have passed since the accident. We assumed that the transfer of Cs-137 to mushrooms is both a direct pathway from soil and an indirect path way from the cells of soil microorganisms. In this study, in order to study the characteristics of accumulation of Cs in mushrooms, we performed the culture experiments of the saprophytic mushroom mycelia (Pleurotus otsreatus), one of edible mushroom to Japanese taste, and one of the representative soil microorganisms isolated from wild mushroom substrata, using stable Cs or Rb, Sr. The concentrations of radiocesium in wild mushrooms collected from the several forests in Japan have been investigated by gamma-ray spectrometry. On a scanning electron microscopy (SEM)- energy dispersive X-ray microanalyzer (EDX) study, brilliant spots were observed both in the mushroom mycelia (P. ostreatus Y-1) and in the mycelia of actinomycetes isolated from mushroom substrata. Higher peaks of Cs, P, Rb, and Sr were observed in comparison with the non-spots areas of the mushroom mycelia grown on the agar plate. Investigation on the effect of pH on Cs tolerance and Cs accumulation. Cs tolerance of the planktonic and the filamentous bacteria showed considerable difference; in 13 soil samples, planktonic bacteria being able to grow in the presence of 50mM CsCl were present in all the samples at a higher density but no filamentous bacteria could grow in the presence of 50mM Cs as far as tested in the 13 soil samples

  5. Doppler speedometer for micro-organisms

    Objective of Investigations: Development and creation of the Doppler speedometer for micro-organisms which allows to evaluate, in a real temporal scale, variations in the state of water suspension of micro-organisms under the effect of chemical, physical and other external actions. Statement of the Problem The main problem is absence of reliable, accessible for users and simple, in view of application, Doppler speedometers for micro-organisms. Nevertheless, correlation Doppler spectrometry in the regime of heterodyning the supporting and cell-scattered laser radiation is welt known. The main idea is that the correlation function of photo-current pulses bears an information on the averages over the assembly of cell velocities. For solving the biological problems, construction of auto-correlation function in the real-time regime with the delay time values comprising, function in the real-time regime with the delay time values comprising, nearly, 100 me (10 khz) or higher is needed. Computers of high class manage this problem using but the program software. Due to this, one can simplify applications of the proposed techniques provided he creates the Doppler speedometer for micro-organism on a base of the Pentium. Expected Result Manufactured operable mock-up of the Doppler speedometer for micro-organisms in a form of the auxiliary computer block which allows to receive an information, in the real time scale, on the results of external effects of various nature on the cell assembly in transparent medium with a small volume of the studied cell suspension

  6. Understanding the role of nitrogen dissimilation in soil microorganisms

    Roco, C. A.; Bakken, L. R.; Bergaust, L. L.; Frostegård; Shapleigh, J. P.; Yavitt, J. B.

    2011-12-01

    Uncertainty about the fate of nitrate in ecosystems has led to increased interest in soil nitrogen (N) transformations and microbial biogeochemistry of N. Microorganisms can utilize nitrate by either assimilatory or dissimilatory processes. The best studied dissimilatory processes are nitrate reduction to ammonium and denitrification, both of which are thought to occur under low O2 conditions. While there is an appreciation that denitrifying bacteria are diverse, the activity of each enzyme in the pathway is viewed more uniformly, in that all are presumed to have activity that is inversely correlated with O2 levels. However, the first step of denitrification, dissimilatory reduction of nitrate to nitrite, can occur at O2 concentrations that are high enough to repress downstream reduction of nitrite to gaseous products. To explore this in more detail, we tested for aerobic nitrate reduction (ANR) activity in a range of agricultural, wetland and forest soils located near Ithaca, New York. ANR was found in some environments, as evidenced by nitrite production in samples provided with both nitrate and a carbon source but not in controls. We next undertook a screen to isolate bacteria capable of ANR on an oxidized carbon source, succinate. Bacteria capable of ANR were surprisingly easy to isolate, as this phenotype was present in 10-15% of the isolates. 16S rDNA sequencing showed that the isolates included both gram negative and gram positive bacteria, although the majority were proteobacteria. The ANR isolates were tested for anoxic growth and less then 20% were able to grow under anoxic conditions as denitrifiers. To confirm the ANR phenotype, we measured the level of O2 present when nitrate reduction was first detected in two of the isolates using a robotic gas sampler. The O2 levels detected during ANR were higher than levels associated with the onset of nitrite reduction, since nitrite production began between 84% to 22% of atmospheric O2. Production of gaseous

  7. Evaluation of the presence of microorganisms in solid-organ preservation solution

    André Marcelo Colvara Mattana

    2011-12-01

    Full Text Available OBJECTIVE: To assess the presence of microorganism contamination in the preservation solution for transplant organs (kidney/pancreas. Method: Between August 2007 and March 2008, 136 samples of preservation solution were studied prior to graft implantation. Variables related to the donor and to the presence of microorganisms in the preservation solution of organs were evaluated, after which the contamination was evaluated in relation to the "recipient culture" variable. Univariate and multivariate statistical analyses were performed. RESULTS: The contamination rate of the preservation solution was 27.9%. Coagulase-negative Staphylococcus was the most frequently isolated microorganism. However, highly virulent agents, such as fungi and enterobacteria, were also isolated. In univariate analysis, the variable "donor antibiotic use" was significantly associated to the contamination of the preservation solution. On the other hand, multivariate analysis found statistical significance in "donor antibiotic use" and "donor's infectious complications" variables. CONCLUSIONS: In this study, 27.9% of the preservation solutions of transplant organs were contaminated. Infectious diseases and non-use of antibiotics by the donor were significantly related to the presence of microorganisms in organ preservation solutions. Contamination in organ preservation solutions was not associated with infection in the recipient.

  8. Recombinant microorganisms for increased production of organic acids

    Yi, Jian; Kleff, Susanne; Guettler, Michael V

    2013-04-30

    Disclosed are recombinant microorganisms for producing organic acids. The recombinant microorganisms express a polypeptide that has the enzymatic activity of an enzyme that is utilized in the pentose phosphate cycle. The recombinant microorganism may include recombinant Actinobacillus succinogenes that has been transformed to express a Zwischenferment (Zwf) gene. The recombinant microorganisms may be useful in fermentation processes for producing organic acids such as succinic acid and lactic acid. Also disclosed are novel plasmids that are useful for transforming microorganisms to produce recombinant microorganisms that express enzymes such as Zwf.

  9. Résilience d'une prairie subalpine acidophile au chaulage et à la fertilisation de courte durée

    Spiegelberger, T.; Deléglise, C.; DeDanieli, S.; Bernard-Brunet, C.

    2010-01-01

    / Une expérience de fertilisation a débuté en 1989 dans les Alpes françaises, sur une prairie acidophile située à 2000 m d'altitude, où de la chaux (« chaulage ») et des scories enrichies par chlorure de potassium (« fertilisation ») ont été apportés jusqu'en 1992. Depuis, aucun autre amendement n'a été appliqué. En 2007 nous avons revisité l'expérience et avons observé que le pH du sol était toujours sensiblement plus haut sur les placettes chaulées, alors que les concentrations du sol e...

  10. Specificity of pH sensitive Tc(V)-DMS for acidophilic osteoclastic bone cells: biological and cellular studies

    Bone scintigraphy is a sensitive imaging method for detecting skeletal metastases but the low specificity has decreased its oncological use. Bone scintigraphy has relied on Tc-bisphosphonate (Tc-BP) agents with affinity for the mineral phase. However, bio-functional Tc(V)-DMS agent, sensitive to acid pH of tumoral tissue has shown osteotrophic properties, in adult bone pathologies. Objectives: Basis for understanding the osteotropic character of the pH sensitive Tc(V)-DMS in bone metastasis. Methods: Studies on differential Tc(V)-DMS and Tc-BP accumulation response were carried out by acidophilic osteoclast (OC) and basophilic osteoblast (OB) cells subjected to variable pH incubation media (HEPES, 370C) and by bone tissue of Ehrlich Ascites Tumor (EAT) bearing mice, exposed to systemic NH4Cl or glucose mediated acidification (GmAc). Agents injected into tail vein and bone radioactivity analyzed. Bone metabolism markers measured in blood and urine (pH, Pi, Ca , Alp, Dpd). Acid-base regulation effect at cellular level, analyzed by using bafilomycin, amiloride, DIDS and acetazolamide inhibitors. Results: Lack of any OB response to acidification or alkalinization detected with either Tc(V)-DMS or Tc-BP agent. However, OC cells were highly sensitivity to acidification only in the presence of Tc(V)-DMS showing great radioactivity increase as the pH was lowered. This specificity also detected, in EAT bearing mice; increased bone tissue accumulation in response to systemic acidification was clearly detected upon administration of Tc(V)-DMS only under GmAc, an experimental model showing high urine excretion of deoxypyridinoline, a bone resorption marker. Conclusion: Peculiarity of multi nucleated OC cells sensitive to the environment pH and their activation in acid pH has been well known. Tc-BP agent showed lack of affinity for OC or OB cells. Specific affinity of OC cells for Tc(V)-DMS and its increased bone accumulation with the systemic pH lowering reflect the p

  11. Characterization of bacteria acidophilic in samples of water coming into a region that suffers influence of uranium mine in Caldas (MG)

    Campos, Michelle B.; Ferrari, Carla R.; Roque, Claudio V.; Ronqui, Leilane B.; Nascimento, Marcos R.L. do; Rodgher, Suzelei; Azevedo, Heliana [Laboratorio de Pocos de Caldas (LAPOC-CNEN/MG), MG (Brazil)], e-mail: michelle_borato@hotmail.com, e-mail: carlarolimferrari@yahoo.com.br, e-mail: cvroque@cnen.gov.br, e-mail: leilanebio@yahoo.com.br, e-mail: pmarcos@cnen.gov.br, e-mail: surodgher@uol.com.br, e-mail: hgomes@cnen.gov.br

    2009-07-01

    The fundamental condition for the bioleaching of the uranium ore is the presence of metallic sulfide such as pyrite associated with the ore, which is found in the ore and in the waste at the Unidade de Tratamento de Minerio (UTM) of Pocos de Caldas, State of Minas Gerais, Brazil. The present study aims to determine the chemical and microbiological characteristics in effluents of uranium mining from the UTM and in Antas dam, which receives treated effluents from the UTM. Water samples were collected Pit Mine (CM), located within the UTM facilities and from site 41 (Antas dam) in July and October 2008. We verified low pH values in water samples from CM (3.7) in comparison to the ones found at site 41 (6.65). There was a higher medium density value of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and heterotrophic acidophilic bacteria in water samples at site CM compared to the values recorded from samples at site 41. Medium values of Fe{sup 2+}, uranium and zinc in samples from the site CM were higher than at site 41. The concentration of fluoride (68.5 mL{sup -l}) and manganese (2.34 mL{sup -1}) in water samples from site 41 were above the limits fixed for water bodies in Resolution CONAMA 357. The relative seasonal variation of some variables observed at site CM (low pH values, high densities of Acidithiobacillus sp. and heterotrophic acidophilic bacteria) shows that this site is one of the main sites of occurrence of acid mine drainage and action of bioleaching bacteria at UTM. (author)

  12. Characterization of bacteria acidophilic in samples of water coming into a region that suffers influence of uranium mine in Caldas (MG)

    The fundamental condition for the bioleaching of the uranium ore is the presence of metallic sulfide such as pyrite associated with the ore, which is found in the ore and in the waste at the Unidade de Tratamento de Minerio (UTM) of Pocos de Caldas, State of Minas Gerais, Brazil. The present study aims to determine the chemical and microbiological characteristics in effluents of uranium mining from the UTM and in Antas dam, which receives treated effluents from the UTM. Water samples were collected Pit Mine (CM), located within the UTM facilities and from site 41 (Antas dam) in July and October 2008. We verified low pH values in water samples from CM (3.7) in comparison to the ones found at site 41 (6.65). There was a higher medium density value of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and heterotrophic acidophilic bacteria in water samples at site CM compared to the values recorded from samples at site 41. Medium values of Fe2+, uranium and zinc in samples from the site CM were higher than at site 41. The concentration of fluoride (68.5 mL-l) and manganese (2.34 mL-1) in water samples from site 41 were above the limits fixed for water bodies in Resolution CONAMA 357. The relative seasonal variation of some variables observed at site CM (low pH values, high densities of Acidithiobacillus sp. and heterotrophic acidophilic bacteria) shows that this site is one of the main sites of occurrence of acid mine drainage and action of bioleaching bacteria at UTM. (author)

  13. Novel Industrial Enzymes from Uncultured Arctic Microorganisms

    Vester, Jan Kjølhede

    reduce the risk of contaminations. Cold- and alkaline-active enzymes can be found in microorganisms adapted to living in natural environments with these conditions, which are extremely rare but found in the unique ikaite columns from SW Greenland (4-6 °C, pH >10). It is estimated that less than 1% of the......Many industrial and biotechnological processes make use of cold-active enzymes or could benefit from the use, as the reduced temperature can be beneficial in multiple ways. Such processes may save energy and production costs, improve hygiene, maintain taste and other organoleptic properties, and...... on the diversity of microorganisms from the ikaite columns as well as bioprospecting for enzyme activities using both culture dependent and independent methods. Two cold-active β-galactosidases and one extremely cold-active α-amylase, all related to Clostridia, were characterized in more details....

  14. UV inactivation of pathogenic and indicator microorganisms

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts

  15. Food fermentations: Microorganisms with technological beneficial use

    Bourdichon, François; Casaregola, Serge; Farrokh, Choreh;

    2012-01-01

    Microbial food cultures have directly or indirectly come under various regulatory frameworks in the course of the last decades. Several of those regulatory frameworks put emphasis on “the history of use”, “traditional food”, or “general recognition of safety”. Authoritative lists of microorganisms...... with a documented use in food have therefore come into high demand. One such list was published in 2002 as a result of a joint project between the International Dairy Federation (IDF) and the European Food and Feed Cultures Association (EFFCA). The “2002 IDF inventory” has become a de facto reference for food...... cultures in practical use. However, as the focus mainly was on commercially available dairy cultures, there was an unmet need for a list with a wider scope. We present an updated inventory of microorganisms used in food fermentations covering a wide range of food matrices (dairy, meat, fish, vegetables...

  16. UV inactivation of pathogenic and indicator microorganisms

    Chang, J.C.; Ossoff, S.F.; Lobe, D.C.; Dorfman, M.H.; Dumais, C.M.; Qualls, R.G.; Johnson, J.D.

    1985-06-01

    Survival was measured as a function of the dose of germicidal UV light for the bacteria Escherichia coli, Salmonella typhi, Shigella sonnei, Streptococcus faecalis, Staphylococcus aureus, and Bacillus subtilis spores, the enteric viruses poliovirus type 1 and simian rotavirus SA11, the cysts of the protozoan Acanthamoeba castellanii, as well as for total coliforms and standard plate count microorganisms from secondary effluent. The doses of UV light necessary for a 99.9% inactivation of the cultured vegetative bacteria, total coliforms, and standard plate count microorganisms were comparable. However, the viruses, the bacterial spores, and the amoebic cysts required about 3 to 4 times, 9 times, and 15 times, respectively, the dose required for E. coli. These ratios covered a narrower relative dose range than that previously reported for chlorine disinfection of E. coli, viruses, spores, and cysts.

  17. The anaerobic degradation of gaseous, nonmethane alkanes — From in situ processes to microorganisms

    Florin Musat

    2015-01-01

    The short chain, gaseous alkanes ethane, propane, n- and iso-butane are released in significant amounts into the atmosphere, where they contribute to tropospheric chemistry and ozone formation. Biodegradation of gaseous alkanes by aerobic microorganisms, mostly bacteria and fungi isolated from terrestrial environments, has been known for several decades. The first indications for short chain alkane anaerobic degradation were provided by geochemical studies of deep-sea environments around hydr...

  18. MONITORING OF OPPORTUNISTIC AND PATHOGENIC MICROORGANISMS IN SURGICAL DEPARTMENTS OF DNIPRODZERZHYNSK

    Donets, N.; Sokolova, I.; Moskalenko, A.; Drobina, A.; Vinnikov, A.

    2013-01-01

    The paper presents monitoring results of the spread of opportunistic and pathogenic microorganisms in patients of surgical departments of the Dniprodzerzhynsk city hospital No 7. 1464 strains of bacteria isolated from biological material of the patients from January to December 2012 were studied. Relevant standard methods of research and data interpretation in accordance with the regulatory guidelines were used. The microorganisms’ sensitivity to antibiotics was determined by the disk diffusi...

  19. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism

    Hassaninasab, Azam; Hashimoto, Yoshiteru; Tomita-Yokotani, Kaori; Kobayashi, Michihiko

    2011-01-01

    Polyphenol curcumin, a yellow pigment, derived from the rhizomes of a plant (Curcuma longa Linn) is a natural antioxidant exhibiting a variety of pharmacological activities and therapeutic properties. It has long been used as a traditional medicine and as a preservative and coloring agent in foods. Here, curcumin-converting microorganisms were isolated from human feces, the one exhibiting the highest activity being identified as Escherichia coli. We are thus unique in discovering that E. coli...

  20. Study of molasses / vinasse waste ratio for single cell protein and total microorganisms

    Marcia Luciana Cazetta; Maria Antonia Pedrine Colabone Celligoi

    2006-01-01

    Different molasses/ vinasse ratio were used as substrate to investigate single cell protein and total lipids production by five microorganisms: four yeasts strains: Candida lipolytica, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, a yeast isolated from vinasse lake (denominated LLV98) and a bacterium strain, Corynebacterium glutamicum. The media utilized were: a) 50% molasses and 50% vinasse; b) 25% molasses and 75% vinasse and c) 75% molasses and 25% vinasse. The objective of this work...

  1. Survival of Spacecraft-Associated Microorganisms under Simulated Martian UV Irradiation

    Newcombe, David A.; Schuerger, Andrew C.; Benardini, James N.; Dickinson, Danielle; Tanner, Roger; Venkateswaran, Kasthuri

    2005-01-01

    Spore-forming microbes recovered from spacecraft surfaces and assembly facilities were exposed to simulated Martian UV irradiation. The effects of UVA (315 to 400 nm), UVA+B (280 to 400 nm), and the full UV spectrum (200 to 400 nm) on the survival of microorganisms were studied at UV intensities expected to strike the surfaces of Mars. Microbial species isolated from the surfaces of several spacecraft, including Mars Odyssey, X-2000 (avionics), and the International Space Station, and their a...

  2. Screening of Natural Rubber-Degrading Microorganisms from Rubber Processing Factory Waste in Vietnam

    Nguyen Lan Huong; To Kim Anh; Phan Trung Nghia; Dao Viet Linh; Bui Thi Trang; Masao Fukuda

    2013-01-01

    Natural rubber-degrading microorganisms were isolated from waste of rubber processing factory in Cam Thuy of Vietnam. Four of them belong to Streptomyces sp. that showed the higher abilities for natural rubber degradation than the others. They are able to use both deproteinised natural rubber (DPNR) and synthetic rubber cis-1,4-polyisoprene (SR) as a sole source of carbon. Gel permeation chromatography (GPC) analysis revealed that these strains degraded DPNR and SR to low-molecular-weight pro...

  3. Antimicrobial Activity of Some Essential Oils Against Microorganisms Deteriorating Fruit Juices

    Helal, G. A.; Sarhan, M. M.; Abu Shahla, A. N. K.; Abou El-Khair, E. K.

    2006-01-01

    Seventeen microbial species including 10 fungal taxa, two yeasts and five bacteria, were isolated from freshly prepared orange, guava and banana juices kept in open bottles at room temperature for 7 days. Eight different essential oils, from local herbs, were tested for their antimicrobial activity against these test organisms. The essential oils of Cymbopogon citratus, Ocimum basilicum and Origanum majorana were found to be highly effective against these microorganisms. Aspergillus niger, A....

  4. Magnetotaxy in microorganisms of Rio de Janeiro region: an overview

    Some characteristics of several magnetotactic microorganisms found in sediments collected in Rio de Janeiro region are presented. The study of magnetic characteristics of these microorganisms indicate some general properties of the magnetotaxy phenomenons. (L.C.)

  5. ESTIMATING MICROORGANISM DENSITIES IN AEROSOLS FROM SPRAY IRRIGATION OF WASTEWATER

    This document summarizes current knowledge about estimating the density of microorganisms in the air near wastewater management facilities, with emphasis on spray irrigation sites. One technique for modeling microorganism density in air is provided and an aerosol density estimati...

  6. Microorganism Utilization for Synthetic Milk Production

    Morford, Megan A.; Khodadad, Christina Louise; Spencer, LaShelle E.; Richards, Jeffrey T.; Strayer, Richard F.; Caro, Janicce; Hummerick, Mary; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, such as aboard the International Space Station (ISS) or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of this project was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel- through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products.

  7. Airborne microorganisms and dust from livestock houses

    Zhao, Y.; Aarnink, A.J.A.; Jong, de, M.C.M.; Groot Koerkamp, P.W.G.

    2011-01-01

    The objective of this study was to evaluate the efficiencies and suitability of samplers for airborne microorganisms and dust, which could be used in practical livestock houses. Two studies were performed: 1) Testing impaction and cyclone pre-separators for dust sampling in livestock houses; 2) Determining sampling efficiencies of four bioaerosol samplers for bacteria and virus. Study 1. The overloading problem of the EU reference impaction pre-separator (IPS) was tested in layer houses and c...

  8. Mass Spectrometer for Airborne Micro-Organisms

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  9. Influence of near ultraviolet light on microorganisms

    Our results and the recent literature data on the biological action of near ultraviolet light (300-380 nm) are examined in the review. Factual material is presented on the principles governing the manifestation of the following effects of near ultraviolet light in microorganisms: inactivation, delayed growth, photoreactivation, photoprotection, photoinduced sporulation (in fungi), and carotene synthesis. The mature and possible mechanisms of the effects examined are discussed

  10. Rapid Evolution of Novel Traits in Microorganisms

    Selifonova, Olga; Valle, Fernando; Schellenberger, Volker

    2001-01-01

    The use of natural microorganisms in biotransformations is frequently constrained by their limited tolerance to the high concentrations of metabolites and solvents required for effective industrial production. In many cases, more robust strains have to be generated by random mutagenesis and selection. This process of directed evolution can be accelerated in mutator strains, which carry defects in one or more of their DNA repair genes. However, in order to use mutator strains, it is essential ...

  11. Consolidated bioprocessing method using thermophilic microorganisms

    Mielenz, Jonathan Richard

    2016-02-02

    The present invention is directed to a method of converting biomass to biofuel, and particularly to a consolidated bioprocessing method using a co-culture of thermophilic and extremely thermophilic microorganisms which collectively can ferment the hexose and pentose sugars produced by degradation of cellulose and hemicelluloses at high substrate conversion rates. A culture medium therefor is also provided as well as use of the methods to produce and recover cellulosic ethanol.

  12. Biodiversity of deep-sea microorganisms

    Fengping Wang; Yueheng Zhou; Xinxu Zhang; Xiang Xiao

    2013-01-01

    The oceans, with an average depth of 3,800 meters and an average pressure about 38 MPa, cover about 70% of the surface of the Earth. Geological structures under the seawater, such as marine sediments, oceanic crust, hydrothermal vents, and the cold seeps, vary significantly with regard to physical and chemical properties. In combination, these diverse environments contain the largest microbial ecosystem in the world. In deep seawater, the major microorganism groups are Alpha-& Gammaproteobact...

  13. Phylogenetic conservatism of functional traits in microorganisms

    Martiny, Adam C.; Treseder, Kathleen; Pusch, Gordon

    2012-01-01

    A central question in biology is how biodiversity influences ecosystem functioning. Underlying this is the relationship between organismal phylogeny and the presence of specific functional traits. The relationship is complicated by gene loss and convergent evolution, resulting in the polyphyletic distribution of many traits. In microorganisms, lateral gene transfer can further distort the linkage between phylogeny and the presence of specific functional traits. To identify the phylogenetic co...

  14. Biomining: metal recovery from ores with microorganisms.

    Schippers, Axel; Hedrich, Sabrina; Vasters, Jürgen; Drobe, Malte; Sand, Wolfgang; Willscher, Sabine

    2014-01-01

    Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms. PMID:23793914

  15. Complete nitrification by a single microorganism.

    van Kessel, Maartje A H J; Speth, Daan R; Albertsen, Mads; Nielsen, Per H; Op den Camp, Huub J M; Kartal, Boran; Jetten, Mike S M; Lücker, Sebastian

    2015-12-24

    Nitrification is a two-step process where ammonia is first oxidized to nitrite by ammonia-oxidizing bacteria and/or archaea, and subsequently to nitrate by nitrite-oxidizing bacteria. Already described by Winogradsky in 1890, this division of labour between the two functional groups is a generally accepted characteristic of the biogeochemical nitrogen cycle. Complete oxidation of ammonia to nitrate in one organism (complete ammonia oxidation; comammox) is energetically feasible, and it was postulated that this process could occur under conditions selecting for species with lower growth rates but higher growth yields than canonical ammonia-oxidizing microorganisms. Still, organisms catalysing this process have not yet been discovered. Here we report the enrichment and initial characterization of two Nitrospira species that encode all the enzymes necessary for ammonia oxidation via nitrite to nitrate in their genomes, and indeed completely oxidize ammonium to nitrate to conserve energy. Their ammonia monooxygenase (AMO) enzymes are phylogenetically distinct from currently identified AMOs, rendering recent acquisition by horizontal gene transfer from known ammonia-oxidizing microorganisms unlikely. We also found highly similar amoA sequences (encoding the AMO subunit A) in public sequence databases, which were apparently misclassified as methane monooxygenases. This recognition of a novel amoA sequence group will lead to an improved understanding of the environmental abundance and distribution of ammonia-oxidizing microorganisms. Furthermore, the discovery of the long-sought-after comammox process will change our perception of the nitrogen cycle. PMID:26610025

  16. Airborne Microorganism Disinfection by Photocatalytic HEPA Filter

    Rotruedee Chotigawin

    2010-07-01

    Full Text Available This study determined the efficacy of photocatalytic HEPA filters on microorganism disinfection in a closed-loop chamber and later applied it in an air purifier and tested its efficacy in an 8-m3 chamber and in a hospital. The photocatalytic filters were made by dip-coating a HEPA filter in a TiO2 slurry. In order to disinfect the microorganisms retained on the filter, UV-A light was irradiated onto the filter to create strong oxidative radicals which can destroy microorganisms. The findings showed that disinfection efficiency of the photocatalytic filters with high TiO2 loading was insignificantly higher than with lower loading. S. epidermidis was completely eliminated within 2 hours, while 86.8% of B. subtilis, 77.1% of A. niger, and 82.7% of P. citrinum were destroyed within 10 hours. When applying the photocatalytic filters into an air purifier in a 8-m3 chamber, it was found that as soon as the air purifier was turned on, 83.4% of S. epidermidis, 81.4% of B. subtilis, 88.5% of A. niger, and 75.8% of P. citrinum were removed from the air. In a hospital environment, the PCO air purifier efficacy was lower than that in the chamber. Besides, relative humidity, distances from the air purifier and room size were suspected to affect the efficacy of the photocatalytic filters.

  17. Radionuclides of foods in Japan and uptake of radio/stable elements by terrestrial food, microorganism

    According to our recent investigation from 2000 to 2003, radiocesium concentrations of foods in Japan imported from various foreign countries were low levels (137Cs concentrations. And also, we obtained the data that wild mushrooms collected from four points of Japanese forests in 2002 had been still contaminated by 137Cs (137Cs to mushrooms is both a direct path way from soil and an indirect path way from the cells of soil microorganisms. We performed the culture experiments of the saprophytic edible mushroom (Pleurotus otsreatus) mycelia and one of the representative soil microorganisms isolated from wild mushroom substrata, using several stable elements. On the isolation of soil microorganisms from mushroom substrata, the appearance frequencies of planktonic bacteria and filamentous actinomycetes were affected by pH of isolation medium. Cs tolerance of the planktonic bacteria and the filamentous actinomycetes showed considerable difference; as far as tested 13 soil samples, planktonic bacteria being able to grow in the presence of 50 mM CsCl were present in all the samples at a higher density but no filamentous actinomycetes could grow in the presence of 50 mM. Accumulation of Cs in filamentous actinomycetes (Streptomyces sp. K202) were two to eight times higher than those in bacteria when they were incubated in the presence of 5 mM CsCl. (author)

  18. The Characterization of Psychrophilic Microorganisms and their potentially useful Cold-Active Glycosidases Final Progress Report

    Brenchly, Jean E.

    2008-06-30

    Our studies of novel, cold-loving microorganisms have focused on two distinct extreme environments. The first is an ice core sample from a 120,000 year old Greenland glacier. The results of this study are particularly exciting and have been highlighted with press releases and additional coverage. The first press release in 2004 was based on our presentation at the General Meeting of the American Society for Microbiology and was augmented by coverage of our publication (Appl. Environ. Microbiol. 2005. Vol. 71:7806) in the Current Topics section of the ASM news journal, “Microbe.” Of special interest for this report was the isolation of numerous, phylogenetically distinct and potentially novel ultrasmall microorganisms. The detection and isolation of members of the ultrasmall population is significant because these cells pass through 0.2 micron pore filters that are generally used to trap microorganisms from environmental samples. Thus, analyses by other investigators that examined only cells captured on the filters would have missed a significant portion of this population. Only a few ultrasmall isolates had been obtained prior to our examination of the ice core samples. Our development of a filtration enrichment and subsequent cultivation of these organisms has added extensively to the collection of, and knowledge about, this important population in the microbial world.

  19. Antibiotics for Causative Microorganisms of Urinary Tract Infections

    M Esmaeili

    2005-09-01

    Full Text Available Background: Urinary tract infection is a common bacterial disease in children which may cause chronic renal failure and hypertention. Many reports suggest that the rate of antibiotic resistance to infectious organisms is increasing. Therefore periodic surveillance of resistance rates is needed to ensure that appropriate recommendations can be made for better management & preventing of late sequelae. Methods In this cross sectional descriptive study we investigate the results of urinalysis, urine culture and antibiotic sensitivity of the isolated organisms in the urine of 1556 children aged under 10 years in Mashhad city between April 2001 and June 2002. Described parameters are age, sex, incidence of significant bacteriuria, leucocyturia, causative bacterial agents, and antibiotic sensitivity pattern. Findings: The most common age group in both sexes was infantile period. Median age was 20.3 months in boys and 47.5 months in girls. E.coli, klebsiella and proteus were the causative organisms in 87.3%. They were sensitive to cefotaxime, cefixime, cephalotin, amikacin, ciprofloxacin, nitrofurantoin and gentamicin in more than 96% while resistant to trimetoprim-sultamethoxazol in about 75%. Conclusion: We recommend, with regard to continuous changing in causative microorganisms isolated from patients with urinary tract infection and antibiotic sensitivity pattern, as a guideline for physicians, to determine bacterial sensitivity in populations yearly.

  20. Phylogenetic relationships among subsurface microorganisms. Project technical progress report

    Nierzwicki-Bauer, S.A.

    1993-08-01

    The development of group-specific, 16S ribosomal RNA-targeted oligonucleotide hybridization probes for the rapid detection of specific types of subsurface microorganisms is described. Because portions of the 16S RRNA molecule are unique to particular organisms or groups, these unique sequences can serve as targets for hybridization probes with varied specificity. Target sequences for selected microbial groups have been identified by analysis of the available RRNA sequence data for subsurface microbes. Hybridization probes for these target sequences were produced and their effectiveness and specificity tested with RNA cell blot and in situ hybridizations. Selected probes were used to study phylogenetic relationships among subsurface microbes and to classify these organisms into the specific groups that the probes are designed to detect. To date, this work has been performed on the P24 and C10 borehole isolates from the Savannah River Site. The probes will also be used, with in situ hybridizations, to detect and monitor selected microbial groups in freshly collected subsurface samples and laboratory microcosms in collaboration with other investigators. In situ hybridizations permit detection of selected microbial types without the necessity to isolate and culture them in the laboratory.

  1. 40 CFR 725.88 - Uses of a microorganism.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Uses of a microorganism. 725.88... CONTROL ACT REPORTING REQUIREMENTS AND REVIEW PROCESSES FOR MICROORGANISMS Confidentiality and Public Access to Information § 725.88 Uses of a microorganism. (a) Assertion of claim. A person who...

  2. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum group II CF-1

    Gloria Paz Levicán

    2016-05-01

    Full Text Available Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species. Cobalamin (vitamin B12 is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular reactive oxygen species and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective.

  3. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1.

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective. PMID:27242761

  4. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective. PMID:27242761

  5. Worldwide Abundance and Distribution of Bacillus thuringiensis Isolates

    Martin, Phyllis A. W.; Travers, Russell S.

    1989-01-01

    We found the insect control agent Bacillus thuringiensis to be a ubiquitous soil microorganism. Using acetate selection to screen soil samples, we isolated B. thuringiensis in 785 of 1,115 soil samples. These samples were obtained in the United States and 29 other countries. A total of 48% of the B. thuringiensis isolates (8,916 isolates) fit the biochemical description of known varieties, while 52% represented undescribed B. thuringiensis types. Over 60% (1,052 isolates) of the isolates test...

  6. Biotransformation of Spanish coals by microorganisms; Biotransformacion de Carbones Espanoles por Microorganismos

    NONE

    2000-07-01

    some newly isolated microorganisms could solubilized different kinds of Spanish coals (hard coal, subbituminous coal and lignite). Certain fungi and bacteria could solubilized lignite when growing in a mineral medium. However, to solubilized higher rank coals (hard coal and subbituminous coal) microorganisms require a complete medium. Microorganisms, which showed higher capacity to solubilized coal, were incubated in the presence of coal (hard coal, subbituminous coal and lignite) at the optimal conditions to get coal liquefaction/solubilization. The resultant products were analysed by IR and UV/visible spectrometry. No major differences among the original coal, solubilized/liquefied coal and residual coal were detected. However, an increase in metallic carboxylate and a decrease in OH'- carboxylic groups were observed in the liquefied lignite. Humic acids derived from original lignite residual lignite and liquefied/solubilized lignite by microorganisms were analysed. Several differences were observed in the humic acids extracted from the liquefied lignite, such as an increase in the total acidity and in the proportion of the phenolic groups. Differences on the humic acid molecular weight were observed too. Several fungal and bacterial strains were able to grow using humic acids as sole carbon source. Microorganisms growing in humic acid were observed by Scanning Electron Microscopy. Besides, the coal solubilization capacity of several fungal strains (M2, m$ and AGI) growing in different culture media was assayed. In order to get some insight into the mechanisms of the liquefaction/solubilization of Spanish coals (hard coal, subbituminous coal and lignite) by these microorganisms, some features in the culture supernatants were studied: pH values; extracellular specific proteins; enzyme activities possibly related with coal solubilization and the presence of oxalate. M2 and M4 fungal strains grown in the presence of coal produced some specific extracellular

  7. Changes in Gram Negative Microorganisms' Resistance Pattern During 4 Years Period in a Referral Teaching Hospital; a Surveillance Study

    Hossein Khalili

    2012-09-01

    Full Text Available Background and purpose Surveillance studies evaluating antimicrobial susceptibilities are of great value in preventing the spread of resistant pathogens by elucidating the trend of resistance in commonly used antibiotics and as a consequence providing information for prescribing the most appropriate agent. This study is a longitudinal antimicrobial resistance surveillance study designed to evaluate the trend in antimicrobial resistance to gram negative microorganisms from 2007 to 2010. Method:During a four-year period (2007-2010 isolates derived from all patients admitted to infectious diseases ward of Imam Khomeini Hospital, the major referral center for infectious disease in Iran with the highest admission rates, were evaluated. Based on disk diffusion method and zone of inhibition size, the microorganism was regarded as to be sensitive, resistant or has intermediate susceptibility to the antimicrobial agents. Results:The widest spread Gram-negative microorganism in all of isolates taken together in our study was E.coli (30% followed by Stenotrophomonas maltophilia in 28.6% and Enterobacter spp. in 11.9%, respectively. The susceptibility to amikacin, imipenem, piperacillin/tazobactam, and nitrofurantoin was equal or above 50% for all microorganisms over four years. However, the susceptibility to ampicillin, ampicillin/sulbactam, cefotaxim, and ceftriaxone was less than 50% in derived isolates during the study period.Conclusion:In conclusion, the finding of the present study revealed that resistance rate to common antimicrobial agents in Iran is growing and isolates were susceptible mostly to broadspectrum antibiotics including imipenem and piperacillin/tazobactam

  8. Rumen Microorganisms Decrease Bioavailability of Inorganic Selenium Supplements.

    Galbraith, M L; Vorachek, W R; Estill, C T; Whanger, P D; Bobe, G; Davis, T Z; Hall, J A

    2016-06-01

    Despite the availability of selenium (Se)-enriched trace mineral supplements, we have observed low Se status in cattle and sheep offered traditional inorganic Se supplements. Reasons for this may include inadequate intake or low bioavailability of inorganic Se sources. The objective of this study was to determine whether rumen microorganisms (RMO) alter the bioavailability of Se sources commonly used in Se supplements. Rumen microorganisms were isolated from ewes (n = 4) and incubated ex vivo with no Se (control), with inorganic Na selenite or Na selenate, or with organic selenomethionine (SeMet). Total Se incorporated into RMO and the amount of elemental Se formed were determined under equivalent conditions. Incorporation of Se from Na selenite, Na selenate, or SeMet into RMO was measured as fold change compared with control (no added Se). Incorporation of Se into microbial mass was greater for SeMet (13.2-fold greater than no-Se control) compared with inorganic Se supplements (P = 0.02); no differences were observed between inorganic Na selenate (3.3-fold greater than no-Se control) and Na selenite (3.5-fold greater than no-Se control; P = 0.97). Formation of non-bioavailable, elemental Se was less for RMO incubated with SeMet compared with inorganic Se sources (P = 0.01); no differences were observed between Na selenate and Na selenite (P = 0.09). The clinical importance of these results is that the oral bioavailability of organic SeMet should be greater compared with inorganic Se sources because of greater RMO incorporation of Se and decreased formation of elemental Se by RMO. PMID:26537117

  9. Screening of lipid degrading microorganisms for wastewater treatment

    Sarmurzina, Z. S.

    2013-01-01

    Full Text Available Aims: Fats, oils and greases (FOG are poorly removable materials in wastewater treatment systems. The aim of this work is to find the most suitable strain(s for a biological treatment technology of FOGs polluted wastewaters. Methodology and results: The 142 microorganisms from polluted environment were screened for lipase activity (LA by sequentially using assays on agar-Tween 80, agar-fats, and turbidimetrically measuring the quantity of calcium salts with fatty acids. The isolates G23, G30, and Zb32 showed highest units of LA and were identified by sequence analysis of 16S rRNA genes. Lipid masses were determined gravimetrically after chloroform/ethyl alcohol extraction. In the model solutions with animal fats the strain Pseudomonas aeruginosa G23 reduced mass fractions of mutton fat, beef tallow, and lard by 79±5%, 88±4%, and 80±6% respectively. Under the same conditions Aeromonas punctata G30 reduced: 65±3%, 60±8%, and 75±4%, and P. aeruginosa Zb32 reduced: 47±5%, 52±6% and 73±7%. In the model solutions with FOGs trap specimens as a carbon source from the local cafeteria the strains P. aeruginosa G23, A. punctata G30, and P. aeruginosa Zb32 reduced a lipid mass fraction by 61.5±7%, 45.2±5%, and 37.5±3% respectively.Conclusion, significance and impact of study: The strain P. aeruginosa G23 is the most effective lipid-degrading microorganism and the best candidate to use in biological treatment technology of FOGs polluted wastewater in Kazakhstan.

  10. Increased radiosensitivity of microorganisms by vacuum treatment

    The influence of dehydration by vacuum (down to 10-7 to r) on radiobiological processes was studied on stationary phase cells of Escherichia coli B/r and Bacillus subtilis 168, and on spores of the latter strain. X-rays of 145 kV with a dose-rate of 1 krad/min and ultraviolet irradiation of 254 nm wavelength were applied. When the microorganisms were irradiated during vacuum exposure, their radiation sensitivity had increased, compared with the wet controls, irradiated at 760 torr. For the inactivation of E. coli cells by X-rays, the slope of the dose effect curve was increased by a factor of approximately 4. This supersensitivity to X-rays was not observed in cells which were exposed in multicellular layers or in the presence of salts (PO4-buffer), 5% glucose or nutrient broth. Likewise, the sensitivity to UV-irradiation of vegetative cells and spores was increased when irradiation was applied in vacuo. It was found that specific photoproducts of the DNA, such as DNA-protein, cross-links, 5-thyminyl-5,6-dihydrothyminine-, and trans-syn thymine dimer were formed under vacuum treatment. Since these lesions are not - or only less - repairable by cell-owned enzymatic repair processes, at least one of them may be responsible for the increased UV-sensitivity in vacuo. The formation of trans-syn thymine by UV requires an at least partially denatured DNA. Therefore, it is suggested that vacuum treatment of microorganisms could induce structural changes in their DNA, such as partial denaturation of the polymer. This effect might also be responsible for the increased sensitivity of microorganisms to ionizing radiation. (author)

  11. Increased Radiosensitivity of Microorganisms by Vacuum Treatment

    The influence of dehydration by vacuum (down to 10-7 torr) on radiobiological processes was studied on stationary phase cells of Escherichia coli B/r and Bacillus subtilis 168, and on spores of the latter strain. X-rays of 145 kV with a dose-rate of 1 krad/min and ultraviolet irradiation of 254 nm wavelength were applied. When the microorganisms were irradiated, during vacuum exposure, their radiation sensitivity had increased, compared with the wet controls, irradiated at 760 torr. For the inactivation of E. coli cells by X-rays, the slope of the dose effect curve was increased by a factor of approximately 4. This super sensitivity to X-rays was not observed in cells which were exposed in multicellular layers or in the presence of salts (Po4-buffer), 5% glucose or nutrient broth. Likewise, the sensitivity to UV-irradiation of vegetative cells and spores was increased when irradiation was applied in vacuo. It was found that specific photoproducts of the DNA, such as DNA-protein, cross-links, 5-thyminyl-, 5,6-dihydrothyminme-, and trans-syn thymine dimer were formed under vacuum treatment. Since these lesions are not - or only less - repairable by cell-owned enzymatic repair processes, at least one of them may be responsible for the increased UV-sensitivity in vacuo. The formation of trans-syn thymine dimer by UV requires an at least partially denatured DNA. Therefore, it is suggested that vacuum treatment of microorganisms could induce structural changes in their DNA, such as partial denaturation of the polymer. This effect might also be responsible for the increased sensitivity of microorganisms to ionizing radiation. (author)

  12. Microorganisms and biomolecules in space hard environment

    Horneck, G.

    1981-01-01

    Microorganisms and biomolecules exposed to space vacuum and to different intensities of selected wavelengths of solar ultraviolet radiation is studied. The influence of these factors, applied singly or simultaneously, on the integrity of microbial systems and biomolecules is measured. Specifically, this experiment will study in Bacillus subtilis spores (1) disturbances in subsequent germination, outgrowth, and colony formation; (2) photochemical reactions of the DNA and protein in vivo and in vitro and their role in biological injury; and (3) the efficiency of repair processes in these events.

  13. Mixing by microorganisms in stratified fluids

    Wagner, Gregory L; Lauga, Eric

    2014-01-01

    We examine the vertical mixing induced by the swimming of microorganisms at low Reynolds and P\\'eclet numbers in a stably stratified ocean, and show that the global contribution of oceanic microswimmers to vertical mixing is negligible. We propose two approaches to estimating the mixing efficiency, $\\eta$, or the ratio of the rate of potential energy creation to the total rate-of-working on the ocean by microswimmers. The first is based on scaling arguments and estimates $\\eta$ in terms of the ratio between the typical organism size, $a$, and an intrinsic length scale for the stratified flow, $\\ell = \\left ( \

  14. Complete nitrification by a single microorganism

    van Kessel, Maartje A. H. J.; Speth, Daan R.; Albertsen, Mads;

    2015-01-01

    unlikely. We also found highly similar amoA sequences (encoding the AMO subunit A) in public sequence databases, which were apparently misclassified as methane monooxygenases. This recognition of a novel amoA sequence group will lead to an improved understanding of the environmental abundance and...... nitrate in their genomes, and indeed completely oxidize ammonium to nitrate to conserve energy. Their ammonia monooxygenase (AMO) enzymes are phylogenetically distinct from currently identified AMOs, rendering recent acquisition by horizontal gene transfer from known ammonia-oxidizing microorganisms...

  15. Microorganisms in human milk: lights and shadows.

    Civardi, Elisa; Garofoli, Francesca; Tzialla, Chryssoula; Paolillo, Piermichele; Bollani, Lina; Stronati, Mauro

    2013-10-01

    Human milk has been traditionally considered germ free, however, recent studies have shown that it represents a continuous supply of commensal and potentially probiotic bacteria to the infant gut. Mammary microbioma may exercise anti-infective, anti-inflammatory, immunomodulatory and metabolic properties. Moreover human milk may be a source of pathogenic microorganism during maternal infection, if contaminated during expression or in case of vaccination of the mother. The non-sterility of breast milk can, thus, be seen as a protective factor, or rarely, as a risk factor for the newborn. PMID:24059550

  16. Engineering photosynthesis in plants and synthetic microorganisms.

    Maurino, Veronica G; Weber, Andreas P M

    2013-01-01

    Photosynthetic organisms, such as cyanobacteria, algae, and plants, sustain life on earth by converting light energy, water, and CO(2) into chemical energy. However, due to global change and a growing human population, arable land is becoming scarce and resources, including water and fertilizers, are becoming exhausted. It will therefore be crucial to design innovative strategies for sustainable plant production to maintain the food and energy bases of human civilization. Several different strategies for engineering improved photosynthesis in crop plants and introducing novel photosynthetic capacity into microorganisms have been reviewed. PMID:23028016

  17. Productivity and selective accumulation of carotenoids of the novel extremophile microalga Chlamydomonas acidophila grown with different carbon sources in batch systems

    Cuaresma, M.; Casal, C.; Forján, E.; Vílchez, C.

    2011-01-01

    Cultivation of extremophile microorganisms has attracted interest due to their ability to accumulate highvalue compounds. Chlamydomonas acidophila is an acidophile green microalga isolated by our group from Tinto River, an acidic river that flows down from the mining area in Huelva, Spain. This micr

  18. Application of 13C-stable isotope probing to identify RDX-degrading microorganisms in groundwater

    We employed stable isotope probing (SIP) with 13C-labeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to identify active microorganisms responsible for RDX biodegradation in groundwater microcosms. Sixteen different 16S rRNA gene sequences were derived from microcosms receiving 13C-labeled RDX, suggesting the presence of microorganisms able to incorporate carbon from RDX or its breakdown products. The clones, residing in Bacteroidia, Clostridia, α-, β- and δ-Proteobacteria, and Spirochaetes, were different from previously described RDX degraders. A parallel set of microcosms was amended with cheese whey and RDX to evaluate the influence of this co-substrate on the RDX-degrading microbial community. Cheese whey stimulated RDX biotransformation, altered the types of RDX-degrading bacteria, and decreased microbial community diversity. Results of this study suggest that RDX-degrading microorganisms in groundwater are more phylogenetically diverse than what has been inferred from studies with RDX-degrading isolates. Highlights: •SIP identified sixteen groundwater bacteria capable of using RDX and/or its metabolites as a carbon source. •The RDX degraders in groundwater are phylogenetically diverse and different from known RDX degraders. •Cheese whey induced community shift and altered diversity of the RDX-degrading microorganisms over time. -- RDX-degrading bacteria in contaminated groundwater, identified by SIP with 13C-labeled RDX, are phylogenetically diverse and different from known RDX degraders

  19. Antibiotic susceptibility and imaging findings of the causative microorganisms responsible for acute urinary tract infection in children: a five-year single center study

    Ji Eun Yoon; Wun Kon Kim; Jin Seok Lee; Kyeong-Seob Shin; Tae-Sun Ha

    2011-01-01

    Purpose : We studied the differences in the antibiotic susceptibilities of the microorganisms that causeing urinary tract infections (UTI) in children to obtain useful information on appropriate drug selection for childhood UTI. Methods : We retrospectively analyzed the antibiotic susceptibilities of 429 microorganisms isolated from 900 patients diagnosed with UTI in the Department of Pediatrics, Chungbuk National University Hospital, from 2003 to 2008. Results : The most common causative mic...

  20. Identification of periodontopathogen microorganisms by PCR technique

    Milićević Radovan

    2008-01-01

    Full Text Available INTRODUCTION Periodontitis is an inflammatory disease of the supporting tissues of teeth and is a major cause of tooth loss in adults. The onset and progression of periodontal disease is attributed to the presence of elevated levels of a consortium of pathogenic bacteria. Gram negative bacteria, mainly strict anaerobes, play the major role. OBJECTIVE The present study aimed to assess the presence of the main types of microorganisms involved in the aetiopathogenesis of periodontal disease: Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Eikenella corrodens, Treponema denticola, Tanerella forsythia and Prevotella intermedia in different samples collected from the oral cavity of 90 patients diagnosed with periodontitis. METHOD Bacterial DNA detection was performed in diverse biological materials, namely in dental plaque, gingival tissue and saliva, by means of multiplex PCR, a technique that allows simultaneous identification of two different bacterial genomes. RESULTS In the dental plaque of the periodontitis patients, Treponema denticola dominated. In the gingival tissue, Tannerella forsythia and Treponema denticola were the microbiota most frequently detected, whilst in saliva Treponema denticola and Eikenella corrodens were found with the highest percentage. CONCLUSION The identification of microorganisms by multiplex PCR is specific and sensitive. Rapid and precise assessment of different types of periodontopathogens is extremely important for early detection of the infection and consequently for the prevention and treatment of periodontal disease. In everyday clinical practice, for routine bacterial evaluation in patients with periodontal disease, the dental plaque is the most suitable biological material, because it is the richest in periodontal bacteria.

  1. Soil:An Extreme Habitat for Microorganisms?

    M.BOLTER

    2004-01-01

    The question is asked whether soils can be regarded as extreme environments with respect to microorganisms. After defining some extreme environments in a general sense, special properties of extreme environments are compared to soil habitats, with special emphasis laid on time frame and localities. In relation to water availability, nutrients and other properties, such places as aggregates can show properties of extreme habitats. These features, which can act at different levels of the system from the community level down to the cellular level, are summarized as stress factors. The latter,where many switches are located leading to different strategies of survival, is described as the most important one. This raises the question of how organisms have adapted to such conditions. The soil system demands a broad spectrum of adaptations and/or adjustments for a highly variable environment.The soil microorganisms'adaptation can thus be seen as the highest kind of flexibility and is more useful than any other special adaptation.

  2. Treatment of landfill leachate by immobilized microorganisms

    YE ZhengFang; YU HongYan; WEN LiLi; NI JinRen

    2008-01-01

    This paper focuses on the outcome and the main performance of the immobilized microbial that treats landfill leachate. Based on the analysis of COD and ammonia-nitrogen of the influent and effluent, research was done on the high removal efficiency of COD and ammonium nitrogen by immobilized microbial. The leachate composition was analyzed qualitatively using GC-MS before and after being treated. Biological loading of efficient microbial flora on the carrier was measured by Kjeldahl's method. Finally, the patterns of immobilized microbe were observed through scanning electron microscopy (SEM). The results showed that in immobilized microorganisms system, the efficiencies of COD and nitrogen were 98.3% and 99.9%, respectively. There was a great reduction of organic components in effluent. When the immobilized biomass on the carrier was 38 g·L-1 (H2O), the filamentous microorganism was highly developed. There was no inhibitory effect on the nitrobacteria and nitrococcus, when ammonia was over 200 mg·L-1 and NH3 over 150 mg·L-1, At a high organic loading, it still had good nitrification. This paper also compares the performance of immobilized microbial with free microbial under the same condition. The immobilized microbial technology demonstrated better than the latter in all aspects.

  3. Treatment of landfill leachate by immobilized microorganisms

    2008-01-01

    This paper focuses on the outcome and the main performance of the immobilized microbial that treats landfill leachate. Based on the analysis of COD and ammonia-nitrogen of the influent and effluent, research was done on the high removal efficiency of COD and ammonium nitrogen by immobilized microbial. The leachate composition was analyzed qualitatively using GC-MS before and after being treated. Biological loading of efficient microbial flora on the carrier was measured by Kjeldahl’s method. Finally, the patterns of immobilized microbe were observed through scanning electron microscopy (SEM). The results showed that in immobilized microorganisms system, the efficiencies of COD and nitrogen were 98.3% and 99.9%, respectively. There was a great reduction of organic components in effluent. When the immobilized biomass on the carrier was 38 g·L?1 (H2O), the filamentous microorganism was highly developed. There was no inhibitory effect on the nitrobacteria and nitrococcus, when ammonia was over 200 mg·L?1 and NH3 over 150 mg·L?1. At a high organic loading, it still had good nitrification. This paper also compares the performance of immobilized microbial with free microbial under the same condition. The immobilized microbial technology demonstrated better than the latter in all aspects.

  4. Nonenzymatic microorganism identification based on ribosomal RNA

    Ives, Jeffrey T.; Pierini, Alicia M.; Stokes, Jeffrey A.; Wahlund, Thomas M.; Read, Betsy; Bechtel, James H.; Bronk, Burt V.

    1999-11-01

    Effective defense against biological warfare (BW) agents requires rapid, fieldable and accurate systems. For micro- organisms like bacteria and viruses, ribosomal RNA (rRNA) provides a valuable target with multiple advantages of species specificity and intrinsic target amplification. Vegetative and spore forms of bacteria contain approximately 104 copies of rRNA. Direct detection of rRNA copies can eliminate some of the interference and preparation difficulties involved in enzymatic amplification methods. In order to apply the advantages of rRNA to BW defense, we are developing a fieldable system based on 16S rRNA, physical disruption of the micro-organism, solid phase hybridization, and fluorescence detection. Our goals include species-specific identification, complete operation from raw sample to identification in 15 minutes or less, and compact, fieldable instrumentation. Initial work on this project has investigated the lysis and hybridization steps, the species-specificity of oligonucleotides probes, and the development of a novel electromagnetic method to physically disrupt the micro- organisms. Target bacteria have been Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis). Continuing work includes further development of methods to rapidly disrupt the micro-organisms and release the rRNA, improved integration and processing, and extension to bacterial and mammalian viruses like MS2 and vesicular stomatitis virus.

  5. Diversity of Thermophilic Microorganisms within Hawaiian Fumaroles

    Ackerman, C. A.; Anderson, S.; Anderson, C.

    2007-12-01

    Fumaroles provide heat and moisture characteristic of an environment suitable for thermophilic microorganisms. On the Island of Hawaii, fumaroles are scattered across the southeastern portion of the island as a result of the volcanic activity from Kilauea Crater and Pu'u' O'o vent. We used metagenomics to detect 16S rDNA from archaeal and bacterial thermophilic microorganisms indicating their presence in Hawaiian fumaroles. The fumaroles sampled exist along elevation and precipitation gradients; varying from sea level to 4,012ft and annual rainfall from less than 20in to greater than 80in. To determine the effects of environmental gradients (including temperature, pH, elevation, and precipitation) on microbial diversity within and among fumaroles, we obtained 22 samples from 7 fumaroles over a three-day period in February of 2007. Temperature variations within individual fumaroles vary from 2.3oC to 35oC and the pH variances that range from 0.4 to 2.0. Temperatures of the different fumaroles range from 29.9oC to greater than 105oC, with pH values that vary from 2.55 to 6.93. Further data on the microbial diversity within fumaroles and among fumaroles will be determined once the sequencing of the microbial 16S rDNA regions is completed. We are currently assembling and sequencing clone libraries of bacterial and archaeal 16S rDNA fragments from fumaroles.

  6. Monitoring of opportunistic and pathogenic microorganisms in surgical departments of Dniprodzerzhynsk

    N. N. Donets

    2013-03-01

    Full Text Available The paper presents monitoring results of the spread of opportunistic and pathogenic microorganisms in patients of surgical departments of the Dniprodzerzhynsk city hospital No 7. 1464 strains of bacteria isolated from biological material of the patients from January to December 2012 were studied. Relevant standard methods of research and data interpretation in accordance with the regulatory guidelines were used. The microorganisms’ sensitivity to antibiotics was determined by the disk diffusion method. Assessment of the resistance of isolated microorganisms to antibiotics was made with the software Whonet 5.1. At the first stage of investigation sampling biological material and inoculation in the culture medium were made. The discharges of wounds, throat, nose, ears, vagina and urethra, and also urine from patients of surgical departments were sampled for bacteriological analysis. The main substratum was 5% blood agar. There may additionally be used the selective growth media (yolk-salt agar, Endo, and Saburo. At the second stage we identify microorganisms with bacterioscopic, bacteriological and biochemical methods. Identifying microorganisms of the genus Staphylococcus was made by the reaction of lecithinase presence, plasma-coagulation reaction and the mannitol oxidation reaction. For the identification of bacteria of the family Streptococcaceae the growth pattern in 0.5% sugar medium was used. It was differentiated from bacteria of the genus Enterococcus by plating onto egg yolk agar base and milk with 0.1% methylene blue. Identification of bacteria of the Enterobacteriaceae family was made by studying their colonies on dense differential diagnostic media. Suspicious colonies were transferred on a combined medium for primary identification (Olkenitsky's medium. Then the biochemical signs of enterobacteria were studied in the minimum number of tests. The third phase of the study included the determination of the sensitivity of

  7. Thermal effects on metabolic activities of thermophilic microorganisms from the thermal discharge point of Tuticorin thermal power plant area

    Metabolic activities of thermophilic microorganisms isolated from the thermal water discharge point at Tuticorin thermal power station were studied by growing the microorganisms in sterile medium and at various temperature regimes of 25, 35, 45, 55 and 65degC. The optimum temperature for the growth of the bacterium isolated from the thermal power plant station was 45 degC and beyond 65 degC the growth was gradually decreased. The bacteria isolated from open sea water were mesophiles with their growth optimum at 35 degC and microbes inhabiting the thermal discharge area were thermopiles as they were tolerant even at 55 degC. The amylase production, carbohydrate metabolism and lactose fermentation activities were optimum at 45 degC. At 25 degC and beyond 65 degC biochemical activities of the organisms were inhibited to a greater extent. (author)

  8. Antibiosis and dark-pigments secretion by the phytopathogenic and environmental fungal species after interaction in vitro with a Bacillus subtilis isolate

    Alexandre Paulo Machado

    2010-10-01

    Full Text Available In this work, different reactions in vitro between an environmental bacterial isolate and fungal species were related. The Gram-positive bacteria had terminal and subterminal endospores, presented metabolic characteristics of mesophilic and acidophilic growth, halotolerance, positive to nitrate reduction and enzyme production, as caseinase and catalase. The analysis of partial sequences containing 400 to 700 bases of the 16S ribosomal RNA gene showed identity with the genus Bacillus. However, its identity as B. subtilis was confirmed after analyses of the rpoB, gyrA, and 16S rRNA near-full-length sequences. Strong inhibitory activity of environmental microorganisms, such as Penicillium sp, Aspergillus flavus, A. niger, and phytopathogens, such as Colletotrichum sp, Alternaria alternata, Fusarium solani and F. oxysporum f.sp vasinfectum, was shown on co-cultures with B. subtilis strain, particularly on Sabouraud dextrose agar (SDA and DNase media. Red and red-ochre color pigments, probably phaeomelanins, were secreted by A. alternata and A. niger respectively after seven days of co-culture.Na presente investigação, nosso objetivo principal foi relatar diferentes interações in vitro de um isolado bacteriano ambiental com espécies fúngicas. Através da identificação clássica, nós verificamos que o bacilo ambiental apresentava endósporos terminais e subterminais, características metabólicas de mesofilia, acidofilia, halotolerância, redução de nitrato e produção de enzimas, como caseinase e catalase. Análise de seqüências parciais do gene 16S RNAr contendo de 400 a 700 bases revelou identidade com gênero Bacillus. No entanto, a espécie Bacillus subtilis foi confirmada somente depois da análise de seqüências dos genes rpoB, gyrA, and 16S RNAr. Intensa atividade inibitória aos fungos ambientais, como Penicillium sp, Aspergillus flavus, A. niger, e fitopatogênicos, como Colletotrichum sp, Alternaria alternata, Fusarium solani

  9. Optimization of bioethanol production from carbohydrate rich wastes by extreme thermophilic microorganisms

    Tomás, Ana Faria

    Second-generation bioethanol is produced from residual biomass such as industrial and municipal waste or agricultural and forestry residues. However, Saccharomyces cerevisiae, the microorganism currently used in industrial first-generation bioethanol production, is not capable of converting all...... of the carbohydrates present in these complex substrates into ethanol. This is in particular true for pentose sugars such as xylose, generally the second major sugar present in lignocellulosic biomass. The transition of second-generation bioethanol production from pilot to industrial scale is hindered...... by the recalcitrance of the lignocellulosic biomass, and by the lack of a microorganism capable of converting this feedstock to bioethanol with high yield, efficiency and productivity. In this study, a new extreme thermophilic ethanologenic bacterium was isolated from household waste. When assessed for ethanol...

  10. Present status of effect of microorganisms from sand beach on public health

    Emmanuel Velonakis; Dimitra Dimitriadi; Emmanuel Papadogiannakis; Alkiviades Vatopoulos

    2014-01-01

    Microorganisms are significant components of beach sand. According to the research, all kind of microorganisms have been isolated from beach sand; certain genera and species are potential pathogens for humans and animals. In resort areas, especially during the summer, certain infections (e.g. gastroenteritis and dermatitis) are usually related to polluted bathing water. Lately, the interest of scientists is also focused on the potential association of some of the above diseases with the beach sand. Relatively, recent epidemiological studies in the USA revealed positive correlation between time spent at the beach and gastroenteritis. New parameters such as wind blowing and beach users’ density are also introduced for discussion in association with the sand microbial load. Regarding the preventative measures, the microbiological quality of beach sand can be improved by raising the general level of hygiene, as well as by using simple methods, such as sweeping and aeration of the sand, together with constant beach supervision.

  11. Study of molasses / vinasse waste ratio for single cell protein and total microorganisms

    Marcia Luciana Cazetta

    2006-02-01

    Full Text Available Different molasses/ vinasse ratio were used as substrate to investigate single cell protein and total lipids production by five microorganisms: four yeasts strains: Candida lipolytica, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, a yeast isolated from vinasse lake (denominated LLV98 and a bacterium strain, Corynebacterium glutamicum. The media utilized were: a 50% molasses and 50% vinasse; b 25% molasses and 75% vinasse and c 75% molasses and 25% vinasse. The objective of this work was to study the growth of microorganisms and also evaluate protein and lipids content in the biomass obtained from these by-products. The highest single cell protein production was obtained by S. cerevisiae, 50.35%, followed by R. mucilaginosa, 41.96%. The lowest productions were obtained by C. glutamicum. The higher total lipids productions, more than 26%, were founded in molasses plus vinasse at 50%/50% by S. cerevisiae and C. glutamicum.

  12. Present status of effect of microorganisms from sand beach on public health

    Emmanuel Velonakis

    2014-09-01

    Full Text Available Microorganisms are significant components of beach sand. According to the research, all kind of microorganisms have been isolated from beach sand; certain genera and species are potential pathogens for humans and animals. In resort areas, especially during the summer, certain infections (e.g. gastroenteritis and dermatitis are usually related to polluted bathing water. Lately, the interest of scientists is also focused on the potential association of some of the above diseases with the beach sand. Relatively, recent epidemiological studies in the USA revealed positive correlation between time spent at the beach and gastroenteritis. New parameters such as wind blowing and beach users’ density are also introduced for discussion in association with the sand microbial load. Regarding the preventative measures, the microbiological quality of beach sand can be improved by raising the general level of hygiene, as well as by using simple methods, such as sweeping and aeration of the sand, together with constant beach supervision.

  13. Acute appendicitis: most common clinical presentation and causative microorganism

    Objective: To determine the most common clinical presentation and causative microorganism for acute appendicitis. Study Design: Descriptive. Place and duration of study: Department of Surgery, Combined Military Hospital Multan, from June 2002 to May 2004. Patients and Methods: Clinical features of all the patients, older than 5 years of age diagnosed with acute appendicitis were recorded. Patients presented with other pathology which mimic acute appendicitis were excluded from the study. Surgery was done under general anaesthesia. Appendices of all the patient as well as pus swabs from abdominal cavity were sent to the laboratory for histopathology and microbiological cultures to confirm the diagnoses of acute appendicitis and causative organism. Results: The mean age of 75 subjects was 32.56 +- 11.93 years. The most common symptom was pain in right iliac fossa (80 % cases) and the most common physical sign was tenderness (92% cases). Some of the patients(9.3%) had a histologically normal appendix. Maximum isolates on culture were E. coli. Conclusion: The most common presentation of acute appendicitis was pain in right iliac fossa while the most sensitive sign was tenderness. Proper history and sharp clinical examination is the key to diagnosis. The most frequent organism of appendicitis was Escherichia Coli. (author)

  14. Effect of microorganisms on in situ uranium mining

    The extraction of some metal values, e.g., uranium or copper, may be accomplished by using solutions to remove metals from ore bodies without practicing conventional mining. This process is referred to as in situ leaching and has been used industrially to recover uranium. The growth of microbial populations during in situ leaching is believed to be one of the causes of flow path plugging in the ore body, which results in decreased uranium production. Leach solution and solid samples from well casings and submersible pumps were collected from an in situ mining operation experiencing plugging problems. Bacillus sp., Micrococcus sp., pseudomonads, and xanthomonads were isolated from these samples on concentrations of 105 colony-forming units per milliliter. A mixed culture of these organisms was inoculated into a uranium core specimen in the laboratory to assess the role of microbes in the plugging problem. A one-third decrease in permeability was effected in 16 days. Hydrogen peroxide killed the microorganisms in the core and alleviated the plugging problems. Periodically injecting hydrogen peroxide into the ore body through the production wells may reduce microbial plugging problems

  15. Involvement of microorganisms in accelerated degradation of EPTC in soil

    Accelerated EPTC (S-ethyl dipropylcarbamothioate) degradation was confirmed in a mixed culture of microorganisms derived from a soil with enhanced degradation (history soil) by using 14C-labeled EPTC. The antibacterial agent chloramphenicol (D-(-)-threo-2,2-dichloro-N-[β-hydroxy-α-(hydroxymethyl)-p-nitrophenethyl]acetamide) markedly suppressed 14CO2 evolution while the antifungal agent cycloheximide (4-[(2R)-2((1S,3S,5S)-3,5-dimethyl-2-oxocyclohexyl)-2-hydroxyethyl]glutarimide) did not, suggesting that soil bacteria play a significant role in enhanced EPTC degradation. A fast EPTC bacterial degrader (FD1) strain and a slower one (SD1), which were isolated by a soil enrichment technique from a history soil, were capable of utilizing EPTC as a sole carbon source. Vernolate (S-propyl dipropylcarbamothioate), butylate (S-ethyl bis(2-methylpropyl)carbamothioate), or cycloate (S-ethyl cyclohexylethylcarbamothioate) were also degraded by these bacteria in a pattern similar to that in a soil with enhanced degradation. Inoculation of nonhistory soil with FD1 strain induced accelerated degradation of the herbicide in the soil at rates similar to those in field soils exhibiting EPTC accelerated degradation

  16. Susceptibility of microorganism to selected medicinal plants in Bangladesh

    S.M.Masud; Rana; Md.Mustahsan; Billah; Mohammad; Salim; Hossain; A.K.M.Saifuddin; S.K.M.Azizul; Islam; Sujan; Banik; Zannatul; Nairn; Golam; Sarwar; Raju

    2014-01-01

    Objective:To analyze in-vitro antimicrobial activities of some ethno-pharmacologically significant medicinal plants(methanol extract) against the pathogenic microorganisms(Escherichia coli,Salmonella spp..Bacillus cereus.Staphylococcus aureus.Aspergillus niger and Candida albicans).Methods:The disc diffusion method was applied for antibacterial test and the poisoned food technique was applied for antifungal test.Results:The methanol extract of Terminalia chebula(bark),Fhyllanthus acidus(fruits).Sarcochlamys pulcherrima(leaves) and Abelmoschus esculcntus(fruits) had significant in vitro antibacterial activity angainst the entire test samples in comparison to standard drug ciprofloxacin.Most of the plant extracts showed low activity against Gram negative bacteria while potential activity against Gram positive bacteria.The antifungal activities of methanol extracts of these plants and standard drug griseofulvin were determined against two pathogenicfungi,and Polygonum Iapathifolium(leaves) and Cinnamomum tamala(leaves) showed maximum activity,while Erioglossum rubiginosum(leaves) showed no antifungal activity.Conclusions:Further chemical and pharmacological investigations are required to identify and isolate chemical constituents responsible for these potential bioactivities and thus to determine their full spectrum of efficacy.

  17. Bacterial leaching of chalcopyrite and bornite with native bioleaching microorganism

    WANG Jun; QIN Wen-qing; ZHANG Yan-sheng; YANG Cong-ren; ZHANG Jian-wen; NAI Shao-shi; SHANG He; QIU Guan-zhou

    2008-01-01

    A native mesophilic iron-oxidizing bacterium,Acidithiobacillus ferrooxidans,has been isolated (30 ℃) from a typical,lead-zinc concentrate of Dachang Mine in the region of Liuzhou located in the southwest of China.Two typical copper sulfide minerals,chalcopyrite and bornite,were from Meizhou Copper Mine in the region of Guangdong Province,China.Variation of pH and cell growth on time and effects of some factors such as temperature,inoculation cell number,and pulp density on the bioleaching of chalcopyrite and bornite were investigated.The results obtained from the bioleaching experiments indicate that the efficiency of copper extraction depends on all of the mentioned variables,especially the pulp density has more effect than the other factors on the microorganism.In addition,the results show that the maximum copper recovery was achieved using a mesophilic culture.The copper dissolution reached 51.34% for the chalcopyrite while it was 72.35% for the bornite at pH 2.0,initial Fe(Ⅱ) concentration 9 g/L and pulp density 5%,after 30 d.

  18. Susceptibility of microorganism to selected medicinal plants in Bangladesh

    S M Masud Rana; Md Mustahsan Billah; Mohammad Salim Hossain; A K M Saifuddin; S K M Azizul Islam; Sujan Banik; Zannatul Naim; Golam Sarwar Raju

    2014-01-01

    Objective: To analyze in-vitro antimicrobial activities of some ethno-pharmacologically significant medicinal plants (methanol extract) against the pathogenic microorganisms (Escherichiacoli, Salmonella spp., Bacillus cereus, Staphylococcus aureus, Aspergillus niger and Candida albicans).Methods:The disc diffusion method was applied for antibacterial test and the poisoned food technique was applied for antifungal test.Results:The methanol extract of Terminalia chebula (bark), Phyllanthus acidus (fruits), Sarcochlamys pulcherrima (leaves) and Abelmoschus esculentus (fruits) had significant in vitro antibacterial activity angainst the entire test samples in comparison to standard drug ciprofloxacin. Most of the plant extracts showed low activity against Gram negative bacteria while potential activity against Gram positive bacteria. The antifungal activities of methanol extracts of these plants and standard drug griseofulvin were determined against two pathogenic fungi, andPolygonum lapathifolium (leaves) and Cinnamomum tamala (leaves) showed maximum activity, while Erioglossum rubiginosum (leaves) showed no antifungal activity.Conclusions:Further chemical and pharmacological investigations are required to identify and isolate chemical constituents responsible for these potential bioactivities and thus to determine their full spectrum of efficacy.

  19. Biosorption of 241Am by microorganism

    The biosorption of 241Am on A. niger, R. arrihizus and Candida albicans from aqueous solution, and the effects of the experimental conditions on the biosorption are investigated by the batch technique. The experimental results show that all the microorganism above are very efficient as the sorbent. The biosorption equilibrium time is 2 h and the optimum pH ranges 1-3. No significant differences on 241Am biosorption are observed at the temperature of 15-45 degree C, or in the presence and absence of Au3+ or Ag+. The relationship between concentrations of 241Am in aqueous solutions and adsorption capacities of 241Am can be described by the Freundlich adsorption equation on A. niger and R. arrihizus, while as it can be done by the Langmuir adsorption equation on Candida albicans

  20. Microorganism billiards in closed plane curves

    Krieger, Madison S

    2016-01-01

    Recent experiments have shown that many species of microorganisms leave a solid surface at a fixed angle determined by steric interactions and near-field hydrodynamics. This angle is completely independent of the incoming angle. For several collisions in a closed body this determines a unique type of billiard system, an aspecular billiard in which the outgoing angle is fixed for all collisions. We analyze such a system using numerical simulation of this billiard for varying tables and outgoing angles, and also utilize the theory of one-dimensional maps and wavefront dynamics. When applicable we cite results from and compare our system to similar billiard systems in the literature. We focus on examples from three broad classes: the ellipse, the Bunimovich billiards, and the Sinai billiards. The effect of a noisy outgoing angle is also discussed.

  1. Laboratory studies of ocean mixing by microorganisms

    Martinez-Ortiz, Monica; Dabiri, John O.

    2011-11-01

    Ocean mixing plays a major role in nutrient and energy transport and is an important input to climate models. Recent studies suggest that the contribution of fluid transport by swimming microorganisms to ocean mixing may be of the same order of magnitude as winds and tides. An experimental setup has been designed in order to study the mixing efficiency of vertical migration of plankton. To this end, a stratified water column is created to model the ocean's density gradient. The vertical migration of Artemia Salina (brine shrimp) within the water column is controlled via luminescent signals on the top and bottom of the column. By fluorescently labelling portions of the water column, the stirring of the density gradient by the animals is visualized and quantified. Preliminary results show that the vertical movement of these organisms produces enhanced mixing relative to control cases in which only buoyancy forces and diffusion are present.

  2. POLYPEPTIDE AND POLYSACCHARIDE PROCESSING IN HYPERTHERMOPHILIC MICROORGANISMS

    KELLY, ROBERT M.

    2008-12-22

    This project focused on the microbial physiology and biochemistry of heterotrophic hyperthermophiles with respect to mechanisms by which these organisms process polypeptides and polysaccharides under normal and stressed conditions. Emphasis is on two model organisms, for which completed genome sequences are available: Pyrococcus furiosus (growth Topt of 98°C), an archaeon, and Thermotoga maritima (growth Topt of 80°C), a bacterium. Both organisms are obligately anaerobic heterotrophs that reduce sulfur facultatively. Whole genome cDNA spotted microarrays were used to follow transcriptional response to a variety of environmental conditions in order to identify genes encoding proteins involved in the acquisition, synthesis, processing and utilization of polypeptides and polysaccharides. This project provided new insights into the physiological aspects of hyperthermophiles as these relate to microbial biochemistry and biological function in high temperature habitats. The capacity of these microorganisms to produce biohydrogen from renewable feedstocks makes them important for future efforts to develop biofuels.

  3. Safety Assessment of Foods Derived from Genetically Modified Microorganisms

    Schlundt, J

    2011-01-01

    Microorganisms have a long history of use in food production, e.g. in the production of sausages, cheeses, etc. Roughly one quarter of all food products rely on microbiological processes, and the safe use of microorganisms for food production is essential. The transfer of novel traits to food microorganisms through recombinant gene technology will result in new potential food safety issues. This requires the elaboration of criteria for safety assessment of foods derived from genetic microorga...

  4. Selection of potential microorganism for sago starch fermentation

    RUTH MELLIAWATI; ROHMATUSSOLIHAT; FERRA OCTAVINA

    2006-01-01

    Fermentation process of sago starch for the production of bioproduct requires potential microorganism that have ability to hydrolyze sago starch. The purpose of this research was to get the potential of amylolytic microorganisms for their capability of amyloglucosidase activity and to know the sugar strains of the fermentation result. Eleven amylolytic microorganisms (9 strains of mold and 2 strains of yeast) were obtained from the collection Research Centre for Biotechnology – Indonesian Ins...

  5. Multiorganismal Insects: Diversity and Function of Resident Microorganisms

    Douglas, Angela E.

    2014-01-01

    All insects are colonized by microorganisms on the insect exoskeleton, in the gut and hemocoel, and within insect cells. The insect microbiota is generally different from microorganisms in the external environment, including ingested food. Specifically, certain microbial taxa are favored by the conditions and resources in the insect habitat, by their tolerance of insect immunity, and by specific mechanisms for their transmission. The resident microorganisms can promote insect fitness by contr...

  6. Delayed diagnosis of high drug-resistant microorganisms carriage in repatriated patients: three cases in a French intensive care unit.

    Allyn, Jérôme; Angue, Marion; Belmonte, Olivier; Lugagne, Nathalie; Traversier, Nicolas; Vandroux, David; Lefort, Yannick; Allou, Nicolas

    2015-01-01

    We report three cases of high drug-resistant microorganisms (HDRMO) carriage by patients repatriated from a foreign country. National recommendations suggest systematic screening and contact isolation pending results of admission screening of all patients recently hospitalized abroad. HDRMO carriage (carbapenem-resistant Acinetobacter baumanii and carbapenemase-producing Enterobacteriaceae) was not isolated on admission screening swabs, but later between 3 and 8 days after admission. In absence of cross-transmission, two hypotheses seem possible: a false-negative test on admission, or a late onset favored by antibiotic pressure. Prolonged isolation may be discussed even in case of negative screening on admission from high-risk patients. PMID:25728976

  7. High-pressure inactivation of dried microorganisms.

    Espinasse, V; Perrier-Cornet, J-M; Marecat, A; Gervais, P

    2008-01-01

    Dried microorganisms are particularly resistant to high hydrostatic pressure effects. In this study, the survival of Saccharomyces cerevisiae was studied under pressure applied in different ways. Original processes and devices were purposely developed in our laboratory for long-term pressurization. Dried and wet yeast powders were submitted to high-pressure treatments (100-150 MPa for 24-144 h at 25 degrees C) through liquid media or inert gas. These powders were also pressurized after being vacuum-packed. In the case of wet yeasts, the pressurization procedure had little influence on the inactivation rate. In this case, inactivations were mainly due to hydrostatic pressure effects. Conversely, in the case of dried yeasts, inactivation was highly dependent on the treatment scheme. No mortality was observed when dried cells were pressurized in a non-aqueous liquid medium, but when nitrogen gas was used as the pressure-transmitting fluid, the inactivation rate was found to be between 1.5 and 2 log for the same pressure level and holding time. Several hypotheses were formulated to explain this phenomenon: the thermal effects induced by the pressure variations, the drying resulting from the gas pressure release and the sorption and desorption of the gas in cells. The highest inactivation rates were obtained with vacuum-packed dried yeasts. In this case, cell death occurred during the pressurization step and was induced by shear forces. Our results show that the mechanisms at the origin of cell death under pressure are strongly dependent on the nature of the pressure-transmitting medium and the hydration of microorganisms. PMID:17573691

  8. Influence of water chemistry on the distribution of an acidophilic protozoan in an acid mine drainage system at the abandoned Green Valley coal mine, Indiana, USA

    Brake, S.S.; Dannelly, H.K.; Connors, K.A.; Hasiotis, S.T. [Indiana State University, Terre Haute, IN (United States). Dept. of Geography Geology & Anthropology

    2001-07-01

    Euglena mutabilis, a benthic photosynthetic protozoan that intracellularly sequesters Fe, is variably abundant in the main effluent channel that contains acid mine drainage (AMD) discharging from the Green Valley coal mine site in western Indiana. Samples of effluent (pH 3.0-4.6) taken from the main channel and samples of contaminated stream water (pH 3.3 to 8.0) collected from an adjacent stream were analyzed to evaluate the influence of water chemistry on E. mutabilis distribution. E. mutabilis communities were restricted to areas containing unmixed effluent with the thickest (up to 3 mm) benthic communities residing in effluent containing high concentrations of total Fe (up to 12110 mg/l), SO{sub 4}(up to 2940 mg/l), Al (up to 1846 mg/l), and Cl (up to 629 mg/l). Communities were also present, but much less abundant, in areas with effluent containing lower concentrations of these same constituents. In effluent where SO{sub 4} was most highly concentrated, E. mutabilis was largely absent, suggesting that extremely high concentrations of SO{sub 4} may have an adverse effect on this potentially beneficial Fe-mediating, acidophilic protozoan.

  9. Analysis of Membrane Lipids of Airborne Micro-Organisms

    MacNaughton, Sarah

    2006-01-01

    A method of characterization of airborne micro-organisms in a given location involves (1) large-volume filtration of air onto glass-fiber filters; (2) accelerated extraction of membrane lipids of the collected micro-organisms by use of pressurized hot liquid; and (3) identification and quantitation of the lipids by use of gas chromatography and mass spectrometry. This method is suitable for use in both outdoor and indoor environments; for example, it can be used to measure airborne microbial contamination in buildings ("sick-building syndrome"). The classical approach to analysis of airborne micro-organisms is based on the growth of cultureable micro-organisms and does not provide an account of viable but noncultureable micro-organisms, which typically amount to more than 90 percent of the micro-organisms present. In contrast, the present method provides an account of all micro-organisms, including cultureable, noncultureable, aerobic, and anaerobic ones. The analysis of lipids according to this method makes it possible to estimate the number of viable airborne micro-organisms present in the sampled air and to obtain a quantitative profile of the general types of micro-organisms present along with some information about their physiological statuses.

  10. The ecology of micro-organisms in a closed environment

    Fox, L.

    1971-01-01

    Microorganisms under closed environmental ecological conditions with reference to astronauts infectious diseases, discussing bacteria growth in Biosatellite 2 and earth based closed chamber experiments

  11. Engineered microorganisms capable of producing target compounds under anaerobic conditions

    Buelter, Thomas; Meinhold, Peter; Feldman, Reid M. Renny; Hawkins, Andrew C.; Urano, Jun; Bastian, Sabine; Arnold, Frances

    2012-01-17

    The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

  12. Collective motion of micro-organisms from field theoretical viewpoint

    Kawamura, M; Kawamura, Masako; Sugamoto, Akio

    1995-01-01

    We analyze the collective motion of micro-organisms in the fluid and consider the problem of the red tide. The red tide is produced by the condensation of the micro-organisms, which might be a similar phenomenon to the condensation of the strings. We propose a model of the generation of the red tide. By considering the interaction between the micro-organisms mediated by the velocity fields in the fluid, we derive the Van der Waals type equation of state, where the generation of the red tide can be regarded as a phase transition from the gas of micro-organisms to the liquid.

  13. Isolation and cellular fatty acid composition of psychrotrophic Halomonas strains from Antarctic sea water

    Vipra Vijay Jadhav; Amit Yadav; Shouche, Yogesh S.; Rama Kaustubh Bhadekar

    2013-01-01

    Microorganisms from extreme environments such as Arctic, Antarctic and Polar regions modulate their membrane fatty acids to survive in such habitats. Characterization of such microorganisms helps in understanding their physiological behavior. In view of this, the present article describes isolation, characterization and cellular fatty acid composition of three bacterial isolates from Antarctic sea water samples. All the three isolates (BRI 6, 29 and 31) were psychrotrophic Gram negative rods....

  14. Using microorganisms to aid in hydrocarbon degradation

    Aliphatic hydrocarbons are threatening the potable water supply and the aquatic ecosystem. Given the right microbial inhabitant(s), a large portion of these aliphatic hydrocarbons could be biodegraded before reaching the water supply. The authors' purpose is to isolate possible oil-degrading organisms. Soil samples were taken from hydrocarbon-laden soils at petroleum terminals, a petroleum refinery waste-treatment facility, a sewage-treatment plant grease collector, a site of previous bioremediation, and various other places. Some isolates known to be good degraders were obtained from culture collection services. These samples were plated on a 10w-30 multigrade motor oil solid medium to screen for aliphatic hydrocarbon degraders. The degrading organisms were isolated, identified, and tested (CO2 evolution, BOD, and COD) to determine the most efficient degrader(s). Thirty-seven organisms were tested, and the most efficient degraders were Serratia marcescens, Escherichia coli, and Enterobacter agglomerans

  15. Using microorganisms to aid in hydrocarbon degradation

    Black, W.; Zamora, J. (Middle Tennessee State Univ., Murfreesboro (United States))

    1993-04-01

    Aliphatic hydrocarbons are threatening the potable water supply and the aquatic ecosystem. Given the right microbial inhabitant(s), a large portion of these aliphatic hydrocarbons could be biodegraded before reaching the water supply. The authors' purpose is to isolate possible oil-degrading organisms. Soil samples were taken from hydrocarbon-laden soils at petroleum terminals, a petroleum refinery waste-treatment facility, a sewage-treatment plant grease collector, a site of previous bioremediation, and various other places. Some isolates known to be good degraders were obtained from culture collection services. These samples were plated on a 10w-30 multigrade motor oil solid medium to screen for aliphatic hydrocarbon degraders. The degrading organisms were isolated, identified, and tested (CO[sub 2] evolution, BOD, and COD) to determine the most efficient degrader(s). Thirty-seven organisms were tested, and the most efficient degraders were Serratia marcescens, Escherichia coli, and Enterobacter agglomerans.

  16. Search for ancient microorganisms in Lake Baikal

    Hunter-Cevera, Jennie C.; Repin, Vladimir E.; Torok, Tamas

    2000-06-14

    Lake Baikal in Russia, the world's oldest and deepest continental lake lies in south central Siberia, near the border to Mongolia. The lake is 1,643 m deep and has an area of about 46,000 km2. It holds one-fifth of all the terrestrial fresh water on Earth. Lake Baikal occupies the deepest portion of the Baikal Rift Zone. It was formed some 30-45 million years ago. The isolated Lake Baikal ecosystem represents a unique niche in nature based on its historical formation. The microbial diversity present in this environment has not yet been fully harvested or examined for products and processes of commercial interest and value. Thus, the collection of water, soil, and sub-bottom sediment samples was decided to characterize the microbial diversity of the isolated strains and to screen the isolates for their biotechnological value.

  17. Protein expression on Cr resistant microorganism using electrophoresis method

    SAJIDAN

    2009-01-01

    Full Text Available Fatmawati U, Suranto, Sajidan. 2009. Protein expression on Cr resistant microorganism using electrophoresis method. Nusantara Bioscience 1: 31-37. Hexavalent chromium (Cr(VI is known as toxic heavy metals, so the need is reduced to Cr(III is much less toxicity. Pseudomonas aeruginosa, Pseudomonas putida, Klebsiella pneumoniae, Pantoea sp. and Saccharomyces cerevisiae are resistant Cr(VI microorganism and have ability to reduce Cr(VI. The aim of this research is to know ability of microorganism to reduce Cr(VI and to know protein band pattern between Cr(VI resistant microorganism and non resistant microorganism which inoculated on LB broth. SDS-PAGE was used to indentify protein expression. While, Cr(VI concentration was identified by 1.5 diphenylcarbazide method. The quantitative data was analyzed by two factorial ANOVA that continued with DMRT at 1% level test. The qualitative data i.e. protein expression analyzed by relative mobility (Rf. The results showed that the ability of microorganisms to reduce Cr(VI at initial concentration of 0.5 ppm, 1 ppm, 5 ppm and 10 ppm may vary, the average percentage of the ability of each microorganism in reducing Cr(VI is P. putida (65% > S. cerevisiae (64.45% >. P. aeruginosa (60.73% > Pantoea sp. (50.22% > K. pneumoniae (47.82% > without microorganisms (34.25%. The adding microorganisms have significantly influenced toward reduction of Cr(VI. The SDS-PAGE shows that protein expression between resistant and not resistant microorganisms are no different, but resistant microorganisms have more protein (protein band is thicker.

  18. Euryhaline Halophilic Microorganisms From the Suiyo Seamount Hydrothermal Vents.

    Okamoto, T.; Kimura, H.; Maruyama, A.; Naganuma, T.

    2002-12-01

    The euryhaline halophilic microorganisms grow in a wide salinity range from 15% NaCl or to even saturation (about 30% NaCl). A number of euryhaline halophiles have been found in a wide range of habitats from oceanic and terrestrial regimes, from deep-sea vents and seeps, and from Antarctic sea ice and terrains. We have isolated the euryhaline strains independently from a Mid-Atlantic Ridge vent fluids and Antarctic terrains are closely related species of the genus Halomonas. Some euryhaline halophiles maintain intracellular osmotic balance by controlling the concentration of compatible solute such as ectoine. This compatible solute not only stabilizes the proteins from denaturation caused by high salt concentration but also serves as a protectant against stresses such as heating, freezing and drying. The sub-seafloor structure of a hydrothermal vent is highly complicated with mosaic heterogeneity of physicochemical parameters such as temperature and salinity. This premise led us to the hypothesis that some euryhaline halophiles including Halomonas species well adapt to a wide salinity-ranged habitat in the sub-vent. To test this hypothesis, isolation and characterization of euryhaline halophiles from the Suiyo Seamount hydrothermal vents were conducted the drill-cored rock samples from the sites APSK-02, 03, and 07 and the filter-trapped fluid particle samples from the sites APSK-01 and 05 were used. For initial cultivation, a heterotrophic bacterial medium of 15% NaCl was used. The samples was added to the medium and incubated under both aerobic and anaerobic conditions at room temperature. A total of 5 euryhaline halophilic strains were obtained and phylogenetically characterized: two strains (both related to Marinobacter) from APSK-02 core section 2; one strain (related to H. meridiana) from APSK-07 core section 3; and two strains (related to H. meridiana and H. variabilis) from APSK-01 trapped particles. In addition, some thermophilic halophiles that grow at 20

  19. Enhancing the Sustainability of Quinoa Production and Soil Resilience by Using Bioproducts Made with Native Microorganisms

    Claudia Gutiérrez

    2013-11-01

    Full Text Available Microorganisms are involved in a network of interactions with plants, promoting growth and acting as biocontrol agents against diseases. In this work, we studied native microorganisms associated with quinoa plants (Chenopodium quinoa and the application of these organisms to the organic production of quinoa in the Andean Altiplano. Quinoa is a non-cereal grain native to the Andean highlands and is highly nutritious and gluten-free. As such, the international demand for quinoa has increased substantially in recent years. We isolated native endophytic bacteria that are able to fix nitrogen, solubilize phosphate and synthesize a phytohormone and native strains of Trichoderma, a fungus typically used for increasing plant growth and tolerance to biotic and abiotic stresses. Greenhouse assays and field trials allowed for selecting promissory bacterial isolates, mostly belonging to Bacillus and Paenibacillus genera, that increased plant length, panicle weight and grain yield. Selected microbial isolates were large-scale multiplied in simple and inexpensive culture media and then formulated to obtain bioproducts that were distributed among local farmers. Thus, we developed a technology for the exploitation of beneficial microbes, offering promising and environmentally friendly strategies for the organic production of quinoa without perturbing the native microbial diversity of Andean soils and making them more resilient to the adverse effects of climatic change and the over-production of quinoa.

  20. Effect of copper and lead on two consortia of phototrophic microorganisms and their capacity to sequester metals

    Burgos, A. [Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, Campus de UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona (Spain); Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Pasto (N) (Colombia); Maldonado, J. [Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, Campus de UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona (Spain); De los Rios, A. [Museo Nacional de Ciencias Naturales(CSIC), Serrano 115 dpdo, 28006 Madrid (Spain); Solé, A. [Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, Campus de UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona (Spain); Esteve, I., E-mail: isabel.esteve@uab.cat [Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Edifici C, Campus de UAB, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona (Spain); Departamento de Recursos Hidrobiológicos, Universidad de Nariño, Pasto (N) (Colombia); Museo Nacional de Ciencias Naturales(CSIC), Serrano 115 dpdo, 28006 Madrid (Spain)

    2013-09-15

    Highlights: •We studied the tolerance-resistance of phototrophic microorganisms to copper and lead. •We determined the capacity of consortia of microorganisms to sequester copper and lead. •CLSM-λscan is a technique for evaluating in vivo effect of metals on microorganisms. •SEM-EDX and TEM-EDX determined the capacity of microorganisms to sequester metals. -- Abstract: The roles of consortia of phototrophic microorganisms have been investigated in this paper to determine their potential role to tolerate or resist metals and to capture them from polluted cultures. With this purpose, two consortia of microorganisms: on one hand, Geitlerinema sp. DE2011 (Ge) and Scenedesmus sp. DE2009 (Sc) (both identified in this paper by molecular biology methods) isolated from Ebro Delta microbial mats, and on the other, Spirulina sp. PCC 6313 (Sp) and Chroococcus sp. PCC 9106 (Ch), from Pasteur culture collection were polluted with copper and lead. In order to analyze the ability of these consortia to tolerate and capture metals, copper and lead were selected, because both have been detected in Ebro Delta microbial mats. The tolerance-resistance to copper and lead for both consortia was determined in vivo and at cellular level by Confocal Laser Scanning Microscopy (CLSM-λscan function). The results obtained demonstrate that both consortia are highly tolerant-resistant to lead and that the limits between the copper concentration having cytotoxic effect and that having an essential effect are very close in these microorganisms. The capacity of both consortia to capture extra- and intracellular copper and lead was determined by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) respectively, coupled to an Energy Dispersive X-ray detector (EDX). The results showed that all the microorganisms assayed were able to capture copper extracellularly in the extrapolymeric substances, and lead extra- and intracellularly in polyphosphate inclusions. Moreover

  1. Effect of copper and lead on two consortia of phototrophic microorganisms and their capacity to sequester metals

    Highlights: •We studied the tolerance-resistance of phototrophic microorganisms to copper and lead. •We determined the capacity of consortia of microorganisms to sequester copper and lead. •CLSM-λscan is a technique for evaluating in vivo effect of metals on microorganisms. •SEM-EDX and TEM-EDX determined the capacity of microorganisms to sequester metals. -- Abstract: The roles of consortia of phototrophic microorganisms have been investigated in this paper to determine their potential role to tolerate or resist metals and to capture them from polluted cultures. With this purpose, two consortia of microorganisms: on one hand, Geitlerinema sp. DE2011 (Ge) and Scenedesmus sp. DE2009 (Sc) (both identified in this paper by molecular biology methods) isolated from Ebro Delta microbial mats, and on the other, Spirulina sp. PCC 6313 (Sp) and Chroococcus sp. PCC 9106 (Ch), from Pasteur culture collection were polluted with copper and lead. In order to analyze the ability of these consortia to tolerate and capture metals, copper and lead were selected, because both have been detected in Ebro Delta microbial mats. The tolerance-resistance to copper and lead for both consortia was determined in vivo and at cellular level by Confocal Laser Scanning Microscopy (CLSM-λscan function). The results obtained demonstrate that both consortia are highly tolerant-resistant to lead and that the limits between the copper concentration having cytotoxic effect and that having an essential effect are very close in these microorganisms. The capacity of both consortia to capture extra- and intracellular copper and lead was determined by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) respectively, coupled to an Energy Dispersive X-ray detector (EDX). The results showed that all the microorganisms assayed were able to capture copper extracellularly in the extrapolymeric substances, and lead extra- and intracellularly in polyphosphate inclusions. Moreover

  2. Nitrogen utilization pathways of soil microorganisms

    Pinggera, J.; Geisseler, D.; Merbach, I.; Ludwig, B.

    2012-04-01

    Nitrogen (N) is an essential nutrient for all organisms. In terrestrial ecosystems N occurs predominantly in the form of organic matter. Here, soil microorganisms can use two possible mechanisms for the uptake of organic N: the direct route and the mobilization-immobilization-turnover (MIT) route. In the direct route simple organic molecules are taken up directly into the cell. The deamination occurs inside the cell and only the surplus N is released into the soil solution. In the second route, the deamination occurs outside the cell and all N is mineralized before assimilation. To determine the importance of the different N uptake pathways of soil microorganisms an incubation experiment (21 days, 20°C) is currently being carried out. Corn leaves with different C to N ratios (20, 40) and (NH4)2SO4 have been added to three soils (Haplic Chernozem, FAO) with different fertilization histories (300dt/ha farmyard manure every second year, mineral NPK fertilizer, no fertilization) from the long-term experiment at Bad Lauchstädt. Contents of NH4+, NO3- and microbial biomass C (Cmic) and N (Nmic), CO2 production, potential protease activity, gross N mineralization and mineralization of added amino acids will be determined after 3, 7 and 21 days. Preliminary results show that the protease activity (without addition of corn residues) decreased in the order manure-fertilized soil (18.26 mg tyrosine kg-1 soil h-1) > Soil with mineral NPK fertilizer (17.45 mg tyrosine kg-1 soil h-1) > unfertilized soil (11.34 mg tyrosine kg-1 oven dry soil h-1). The turnover of amino acids after 24h was higher for the manure-fertilized soil (99.5% of the added amino acids were consumed) than for the NPK- fertilized and unfertilized soils (76%). The effects of the fertilization histories on the temporal dynamics of the different biological properties (Cmic, Nmic), CO2 production, protease activity and N mineralization rates will be presented.

  3. Microorganisms in Food--Their Significance and Methods of Enumeration.

    Andrews, S.

    1980-01-01

    Described are laboratory methods for enumerating microorganisms in food. These methods are utilized to determine if foods are potentially hazardous to the consumer due to high concentrations of microorganisms. Discussed are indicator organisms, including coliforms, interococci, yeasts, and molds; food poisoning organisms (staphylococci and…

  4. Microorganisms in the Coloured Rain of Sri Lanka

    Samaranayake, Anil; Wickramarathne, K.; Wickramasinghe, N. C.

    2013-02-01

    A variety of pigmented microorganisms have been identified in the red, yellow, blue and black rain that fell over Sri Lanka in December 2012 and January 2013. There is tentative evidence for the presence of similar organisms, including diatoms, in meteorites falling over the same time period. These microorganisms are likely to have served as nuclei for the condensation of rain drops.

  5. Effect of gamma radiation on native endolithic microorganisms from a radioactive waste deposit site.

    Pitonzo, B J; Amy, P S; Rudin, M

    1999-07-01

    A time-course experiment was conducted to evaluate the effects of gamma radiation on the indigenous microbiota present in rock obtained from Yucca Mountain, Nevada Test Site. Microcosms were constructed by placing pulverized Yucca Mountain rock in polystyrene cylinders. Continuous exposure (96 h) at a dose rate of 1.63 Gy/min was used to mimic the near-field environment surrounding waste canisters. The expected maximum surface dose rate from one unbreached canister designed to contain spent nuclear fuels is 0.06 Gy/min. Considering the current repository packing design, multiple canisters within one vault, the cumulative dose rate may well approach that used in this experiment. The microbial communities were characterized after receiving cumulative doses of 0, 0.098, 0. 58, 2.33, 4.67, 7.01 and 9.34 kGy. Radiation-resistant microorganisms in the pulverized rock became viable but nonculturable (VBNC) after a cumulative dose of 2.33 kGy. VBNC microorganisms lose the ability to grow on media on which they have routinely been cultured in response to the environmental stress imposed (i.e. radiation) but can be detected throughout the time course using direct fluorescence microscopy techniques. Two representative exopolysaccharide-producing isolates from Yucca Mountain were exposed to the same radiation regimen in sand microcosms. One isolate was much more radiation-resistant than the other, but both had greater resistance than the general microbial community based on culturable counts. However, when respiring cell counts (VBNC) were compared after irradiation, the results would indicate much more radiation resistance of the individual isolates and the microbial community in general. These results have significant implications for underground storage of nuclear waste as they indicate that indigenous microorganisms are capable of surviving gamma irradiation in a VBNC state. PMID:10381842

  6. Modelling and application of the inactivation of microorganism

    Prevention of consuming contaminated food with toxic microorganisms causing infections and consideration of food protection and new microbial inactivation methods are obligatory situations. Food microbiology is mainly related with unwanted microorganisms spoiling foods during processing and transporting stages and causing diseases. Determination of pathogen microorganisms is important for human health to define and prevent dangers and elongate shelf life. Inactivation of pathogen microorganisms can provide food security and reduce nutrient losses. Microbial inactivation which is using methods of food protection such as food safety and fresh. With this aim, various methods are used such as classical thermal processes (pasteurisation, sterilisation), pressured electrical field (PEF), ionised radiation, high pressure, ultrasonic waves and plasma sterilisation. Microbial inactivation modelling is a secure and effective method in food production. A new microbiological application can give useful results for risk assessment in food, inactivation of microorganisms and improvement of shelf life. Application and control methods should be developed and supported by scientific research and industrial applications

  7. Tracking microorganisms and gene in the environment

    Studies have been conducted to determine the sensitivities and limitations of various methods for determining the fate of genetically engineered microorganisms (GEMs) and their genes in the environment. Selective viable plate count procedures can be designed to detect the introduced organisms with high sensitivity; but they are restricted by potential mutations affecting the expression of the selective characteristic in the introduced organism, the occurrence of the particular selective characteristic in the indigenous organisms, and the need to culture the organism. The accuracy of this approach is greatly improved by colony hybridization procedures that use a specific gene probe to detect the introduced genes, but this approach is still only as sensitive as the plating procedure. Direct extraction of DNA from environmental samples, coupled with dot blot hybridization with radiolabeled probe DNA or solution hybridization, gives a high degree of both sensitivity and precision. This approach does not require culturing of the organism; and even if an introduced gene moves into a new organism or if the introduced organism is viable but nonculturable, the gene probe methods will detect the persistence of the introduced genes in the environment. Efficient direct DNA extraction methods have been developed and tested following in vitro experimental additions of GEMs to sediment and water samples

  8. Snow as a habitat for microorganisms

    Hoham, Ronald W.

    1989-01-01

    There are three major habitats involving ice and snow, and the microorganisms studied from these habitats are most eukaryotic. Sea ice is inhabited by algae called diatoms, glacial ice has sparse populations of green algai cal desmids, and the temporary and permanent snows in mountainous regions and high latitudes are inhabited mostly by green algal flagellates. The life cycle of green algal flagellates is summarized by discussing the effects of light, temperature, nutrients, and snow melts. Specific examples of optimal conditions and environmental effects for various snow algae are given. It is not likely that the eukaryotic snow algae presented are candidated for life on the planet Mars. Evolutionally, eukaryotic cells as know on Earth may not have had the opportunity to develop on Mars (if life evolved at all on Mars) since eukaryotes did not appear on Earth until almost two billion years after the first prokaryotic organisms. However, the snow/ice ecosystems on Earth present themselves as extreme habitats were there is evidence of prokaryotic life (eubacteria and cyanbacteria) of which literally nothing is known. Any future surveillances of extant and/or extinct life on Mars should include probes (if not landing sites) to investigate sites of concentrations of ice water. The possibility of signs of life in Martian polar regions should not be overlooked.

  9. Heavy metal removal and recovery using microorganisms

    Microorganisms -- bacteria, fungi, and microalgae -- can accumulate relatively large amounts of toxic heavy metals and radionuclides from the environment. These organisms often exhibit specificity for particular metals. The metal content of microbial biomass can be a substantial fraction of total dry weight with concentration factors (metal in dry biomass to metal in solution) exceeding one million in some cases. Both living and inert (dead) microbial biomass can be used to reduce heavy metal concentrations in contaminated waters to very low levels -- parts per billion and even lower. In many respects (e.g. specificity, residual metal concentrations, accumulation factors, and economics) microbial bioremoval processes can be superior to conventional processes, such as ion exchange and caustic (lime or hydroxide) precipitation for heavy metals removal from waste and contaminated waters. Thus, bioremoval could be developed to contribute to the clean-up of wastes at the Savannah River Site (SRS) and other DOE facilities. However, the potential advantages of bioremoval processes must still be developed into practical operating systems. A detailed review of the literature suggests that appropriate bioremoval processes could be developed for the SRS. There is great variability from one biomass source to another in bioremoval capabilities. Bioremoval is affected by pH, other ions, temperature, and many other factors. The biological (living vs. dead) and physical (immobilized vs. dispersed) characteristics of the biomass also greatly affect metal binding. Even subtle differences in the microbial biomass, such as the conditions under which it was cultivated, can have major effects on heavy metal binding

  10. Separation of rare earth elements by microorganisms

    The selective accumulation of rare earth elements in Gram-positive bacteria and actinomycetes was examined. The resting cells of 18 strains having high capacities to accumulate rare earth elements were screened for selectivity using a solution containing 5 elements: Y, La, Sm, Er, and Lu. Among the strains tested, Bacillus megaterium accumulated Sm, Streptomyces albus accumulated Lu, and Arthrobacter nicotianae accumulated both Sm and Lu in higher quantities than the other metals. Similar results were also obtained from a solution containing Y and 14 rare elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu). The amount of Sm accumulated in B. megaterium and that of Lu accumulated in S. albus increased as the initial metal concentration increased. S. albus and B. megaterium cells show the highest capacity to accumulate Lu and Sm, respectively, from a solution containing 5 elements, Y, La, Sm, Er, and Lu when each metal concentration ranged from 20 to 100 μM. These results suggest that the separation of these two rare earth elements using microorganisms should be possible. (author)

  11. Titanium photocatalyst against human pathogenic microorganisms

    The conventional methods of disinfection are not effective in the longer term. They are time and staff intensive and use aggressive chemicals. Photocatalytic oxidation on surfaces coated with titanium dioxide (TiO2) might offer a possible alternative. The antimicrobial activity of TiO2 powder P25 and thin films of TiO2 on glass slides against representative strains of microorganisms associated with hospital-acquired infections (Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans) was investigated in vitro. High efficiency has been found in the case of the studied bacterial strains, particularly for the P. aeruginosa. It was shown that it is possible to disinfect surfaces coated with TiO2 and stimulated by UV-A light. The reduction efficiencies for P. aeruginosa, S. aureus and C. albicans were 3.19, 2.32 and 1.22. In all cases sublethal UV-A doses provoked an important lethality in the presence of TiO2. (authors)

  12. Enrichment of denitrifying anaerobic methane oxidizing microorganisms.

    Hu, Shihu; Zeng, Raymond J; Burow, Luke C; Lant, Paul; Keller, Jurg; Yuan, Zhiguo

    2009-10-01

    The microorganisms responsible for anaerobic oxidation of methane (AOM) coupled to denitrification have not been clearly elucidated. Three recent publications suggested it can be achieved by a denitrifying bacterium with or without the involvement of anaerobic methanotrophic archaea. A key factor limiting the progress in this research field is the shortage of enrichment cultures performing denitrifying anaerobic methane oxidation (DAMO). In this study, DAMO cultures were enriched from mixed inoculum including sediment from a freshwater lake, anaerobic digester sludge and return activated sludge from a sewage treatment plant. Two reactors, operated at 35°C and at 22°C, respectively, showed simultaneous methane oxidation and nitrate reduction after several months of operation. Analysis of 16S rRNA gene clone libraries from the 35°C enrichment showed the presence of an archaeon closely related to other DAMO archaea and a dominated bacterium belonging to the yet uncultivated NC10 phylum. This culture preferred nitrite to nitrate as the electron acceptor. The present study suggests that the archaea are rather methanotrophs than methanogens. The highest denitrification rate achieved was 2.35 mmol NO3 (-) -N gVSS(-1)  day(-1) . The culture enriched at 22°C contained the same NC10 bacterium observed in the culture enriched at 35°C but no archaea. PMID:23765890

  13. Hydrodynamic theory of swimming of flagellated microorganisms.

    de la Torre, J G; Bloomfield, V A

    1977-10-01

    A theory of the type commonly used in polymer hydrodynamics is developed to calculate swimming properties of flagellated microorganisms. The overall shape of the particle is modeled as an array of spherical beads which act, at the same time, as frictional elements. The fluid velocity field is obtained as a function of the forces acting at each bead through Oseen-type, hydrodynamic interaction tensors. From the force and torque equilibrium conditions, such quantities as swimming velocity, angular velocity, and efficiency can be calculated. Application is made to a spherical body propelled by a helical flagellum. A recent theory by Lighthill, and earlier formulations based on tangential and normal frictional coefficients of a curved cylinder, CT and CN, are analyzed along with our theory. Although all the theories predict similar qualitative characteristics, such as optimal efficiency and the effect of fluid viscosity, they lead to rather different numerical values. In agreement with Lighthill, we found the formalisms based on CN and CT coefficients to be somewhat inaccurate, and head-flagellum interactions are shown to play an important role. PMID:901902

  14. Microorganisms in nuclear waste disposal. Part I

    This article gives information about the structure of the multi-author review. Block I contains a general introduction on the possible effects of microorganisms in nuclear waste disposal, a summary of basic information on how a repository is planned and constructed, and on the type and composition of waste deposited. In Block II some important basic topics of microbial ecology relevant to repository conditions are presented; subsoil microbiology, adhesion to surfaces, starvation and survival in oligotrophic environments, and bioenergetics. Block III reviews some examples of general metabolic behaviour relevant to microrganisms in nuclear waste disposal such as tolerance to heavy metals, transformation of elements or gas formation. In block IV experimental data are presented which have been obtained in applied research directed to specific questions emerging from safety assessments, such as examination of microbial population in future repository sites, degradation of bitumen or sorption of nuclides. In the final block V, an attempt is made via modelling and computer simulation to foresee the behaviour of a complex system 'repository' in the future, on the basis of our present knowledge. (author) 1 fig

  15. Uses of irradiation for inactivation of microorganisms

    The lethal effects of radiation on microorganisms was noted soon after the discovery of X rays in 1895. In 1904, it was shown that vegetative bacteria are more sensitive than spores; however, no industrial applications could be made as the radiation sources were too expensive. In the mid-1950s, it became economical and practical to sterilize medical products, and ever since sterilization has been a growing industry. Radiation sterilization technology has made possible users of new materials, such as plastics. Food irradiation is about to take off. Just as there was a resistance to pasteurization of milk when it was first introduced, there will be resistance to radpasteurization. Irradiated foods have been proven safe beyond reasonable doubt. Safety has been established through two independent methods: (1) through the most extensive multigeneration animal feeding studies ever carried out, and (2) by analyzing the radiolytic products formed and the chemical changes that take place when food is irradiated. The possible toxicity of these products has been evaluated by an independent group of toxicologists, who based their evaluation on the results of exposure of these products in large quantities either to humans or to animals

  16. Radiation resistance of microorganisms comprising the bioburden of operating room packs

    Experiments were undertaken to determine the radiation resistance of 673 isolates obtained from the culture of surgical pack materials which had been exposed to gamma-radiation doses of 0.2 to 0.8 Mrad, using a screen test employing radiation doses of 1.0, 1.5 and 2.0 Mrad. The methods and materials are described. The D10 of radiation resistant microorganisms was determined more closely, since they would need significantly greater radiation dosage to be reduced to an acceptable probability of survival. Results are analyzed and discussed. (U.K.)

  17. Atividade antimicrobiana de bactérias ácido-lácticas isoladas de queijos de coalho artesanal e industrial frente a microrganismos indicadores Antimicrobial activity of lactic acid bacteria isolated from artisanal and industrial "coalho" cheese against indicator microorganisms

    L.G. Guedes Neto

    2005-09-01

    Full Text Available Quatro cepas de Lactobacillus spp. e duas cepas de Lactococcus spp. isoladas de queijos de coalho artesanal e industrial foram testadas quanto às suas atividades antimicrobianas. Observou-se atividade antagonista dessas bactérias ácido-lácticas frente a elas, a outras bactérias ácido-lácticas isoladas de queijo de coalho, aos patógenos isolados dos mesmos queijos e a cepas de patógenos de referência. Verificou-se diferença (PFour strains of Lactobacillus spp. and two strains of Lactococcus spp. were isolated from artisanal and industrial "coalho" cheese and tested for inhibitory activity. It was observed antagonistic activity of the lactic acid bacteria against themselves and other lactic acid bacteria and pathogens isolated from the same cheese samples, as well as against pathogenic strains from other sources. Significant difference (P<0.05 was observed among the antagonistic activities, except when lactic acid bacteria were used as indicator. From the tested bacteria, Lactobacillus spp. showed the strongest antagonistic activity.

  18. The Use of Microorganism for Biological Control of Anthracnose in Nam Dok Mai Mango for Export

    Antagonist were tested inhibition of mycelial growth of Collectorichum gloeosporioides, a causal agent of anthracnose on potato dextrose agar (PDA) revealed that 46 isolated that 46 isolate inhibited the growth of mycelia by 40.01-60.00 5. The selected four isolates inhibit the growth of fungal nycelia by 47.01-50.00 % including YFm1, YFm2, Y18 and AC2-1 were test for the potential reduce anthracnose lesion development on detected Nam Dok Mai mango by application of antagonistic microorganism before inoculation of C. gloeosporioides. This result slow that four isolate antagonistic reduced sized of lesion on Nam Dok Mai mango by 89.23, 75.38, 58.46 and 33.85 %, respectively as compare the control. Five isolate of antagonist including YFm1, YFm2, Y18, CLY35 and CLY23 could inhibited the growth of mycelia on PDA by 44.01-50.00 % were test the potential reduce anthracnose lesion development on detected Nam Dok Mai mango by application of antagonistic microorganism after inoculation of C. gloeosporioides. It was found that this application could not inhibit anthracnose on fruit mango as compare to the control. YFm1 were test for the potential inhibition anthracnose disease under field condition. It was found that YFm1 could control of C. gloeosporioides within 7 and 14 day after spraying antagonistic suspension. The efficiency test of YFm1 for anthracnose controlling on mango was followed by export treatment Azoxystrobin, ET-fon and showed 55.55%, 77.77 % and 88.88 % anthracnose infection and/or spoilage respectively

  19. Application of (13)C-stable isotope probing to identify RDX-degrading microorganisms in groundwater.

    Cho, Kun-Ching; Lee, Do Gyun; Roh, Hyungkeun; Fuller, Mark E; Hatzinger, Paul B; Chu, Kung-Hui

    2013-07-01

    We employed stable isotope probing (SIP) with (13)C-labeled hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to identify active microorganisms responsible for RDX biodegradation in groundwater microcosms. Sixteen different 16S rRNA gene sequences were derived from microcosms receiving (13)C-labeled RDX, suggesting the presence of microorganisms able to incorporate carbon from RDX or its breakdown products. The clones, residing in Bacteroidia, Clostridia, α-, β- and δ-Proteobacteria, and Spirochaetes, were different from previously described RDX degraders. A parallel set of microcosms was amended with cheese whey and RDX to evaluate the influence of this co-substrate on the RDX-degrading microbial community. Cheese whey stimulated RDX biotransformation, altered the types of RDX-degrading bacteria, and decreased microbial community diversity. Results of this study suggest that RDX-degrading microorganisms in groundwater are more phylogenetically diverse than what has been inferred from studies with RDX-degrading isolates. PMID:23603473

  20. The effect of microorganisms on asphaltopropylene concrete in a radioactive waste repository. Part 2

    The permeability of asphaltopropylene concrete (APC) was examined after the action of aerobic bacteria and molds, and the changes in its volume, weight and swelling capacity were recorded. APC has been used as a sealing material in low level radioactive waste pits at the Dukovany NPP repository. Results of check-up sampling of microorganisms in the repository are evaluated. Sulphate reducing bacteria, which have been detected in soil near the reactor site, were isolated and their action upon asphaltopropylene (AP) was investigated. The resistance of bitumen layers containing model waste, against the action of aerobic bacteria and molds and against water was also examined. Bitumen samples containing model waste were found to absorb water at low temperatures considerably faster than unfilled bitumen. At elevated temperatures the absorption of water is appreciable, causing high weight losses of the bituminized waste layer due to degradation. The time dependences of the bitumen sample weight at 20 degC and 60 degC in distilled and cement water are given in the Appendix. The results included in the final reports ''Investigation of the effect of microorganisms on asphaltopropylene-based insulating materials employed as sealing in the secondary radioactive waste repository at the Dukovany NPP in relation to the microbial flora present. Bacteria'' and ''Investigation of the impact of biodegradation effects of aerobic and anaerobic microorganisms including molds on asphalt and asphaltopropylene in conditions of the ground repository at the Dukovany NPP'' are also given. (J.B.). 8 tabs., 33 figs

  1. [Microorganisms in heat supply lines and internal corrosion of steel pipes].

    Rozanova, E P; Dubinina, G A; Lebedeva, E V; Suntsova, L A; Lipovskikh, V M; Tsvetkov, N N

    2003-01-01

    In laboratory experiments with batch cultures of thermophilic microorganisms isolated from urban heat supply systems, the growth of sulfate-reducing, iron-oxidizing, and iron-reducing bacteria was found to accelerate the corrosion rate of the steel-3 plates used in the pipelines. In the absence of bacteria and dissolved oxygen, minimal, corrosion was determined. The aforementioned microorganisms, as well as sulfur-oxidizing bacteria, were found to be widespread in water and corrosion deposits in low-alloy steel pipelines (both delivery and return) of the Moscow heat networks, as well as in the corrosion deposits on the steel-3 plates in a testing unit supplied with the network water. The microorganisms were found in samples with water pH ranging from 8.1 to 9.6 and a temperature lower than 90 degrees C. Magnetite, lepidocrocite, goethite, X-ray amorphous ferric oxide were the corrosion products identified on the steel-3 plates, as well as siderite, aragonite, and S0. The effect of microbiological processes on the rate of electrochemical corrosion was evaluated from the accumulation of corrosion deposits and from variation in total and local corrosion of the steel plates in a testing unit. PMID:12751246

  2. The interaction pattern of murine serum ficolin-A with microorganisms.

    Tina Hummelshøj

    Full Text Available The ficolins are soluble pattern recognition molecules in the lectin pathway of complement, but the spectrum and mode of interaction with pathogens are largely unknown. In this study, we investigated the binding properties of the murine serum ficolin-A towards a panel of different clinical relevant microorganisms (N = 45 and compared the binding profile with human serum ficolin-2 and ficolin-3. Ficolin-A was able to bind Gram-positive bacteria strains including E. faecalis, L. monocytogenes and some S. aureus strains, but not to the investigated S. agalactiae (Group B streptococcus strains. Regarding Gram-negative bacteria ficolin-A was able to bind to some E. coli and P. aeruginosa strains, but not to the investigated Salmonella strains. Of particular interest ficolin-A bound strongly to the pathogenic E. coli, O157:H7 and O149 strains, but it did not bind to the non-pathogenic E. coli, ATCC 25922 strain. Additionally, ficolin-A was able to bind purified LPS from these pathogenic strains. Furthermore, ficolin-A bound to a clinical isolate of the fungus A. fumigatus. In general ficolin-2 showed similar selective binding spectrum towards pathogenic microorganisms as observed for ficolin-A indicating specific pathophysiological roles of these molecules in host defence. In contrast, ficolin-3 did not bind to any of the investigated microorganisms and the anti-microbial role of ficolin-3 still remains elusive.

  3. Culture-Dependent and -Independent Methods to Investigate the Predominant Microorganisms Associated with Wet Processed Coffee.

    Feng, Xiaomin; Dong, Honghong; Yang, Pan; Yang, Ruijuan; Lu, Jun; Lv, Jie; Sheng, Jun

    2016-08-01

    The fermentation process of Yunnan arabica coffee is a typical wet fermentation. Its excellent quality is closely related to microbes in the process of fermentation. The purpose of this study was to isolate and identify the microorganisms in the wet method of coffee processing in Yunnan Province, China. Microbial community structure and dominant bacterial species were evaluated by traditional cultivated separation method and PCR-DGGE technology, and were further analyzed in combination with the changes of organic acid content, activity of pectinase, and physical parameters (pH and temperature). A large number of microorganisms which can produce pectinase were found. Among them, Enterobacter cowanii, Pantoea agglomerans, Enterobacteriaceae bacterium, and Rahnella aquatilis were the predominant gram-negative bacteria, Bacillus cereus was the predominant gram-positive bacterium, Pichia kluyveri, Hanseniaspora uvarum, and Pichia fermentans were the predominant yeasts, and all those are pectinase-producing microorganisms. As for the contents of organic acids, oxalic was the highest, followed by acetic and lactic acids. Butyrate and propionate, which were unfavorable during the fermentation period, were barely discovered. PMID:27113591

  4. OPTICAL AND DIELECTRIC SENSORS BASED ON ANTIMICROBIAL PEPTIDES FOR MICROORGANISMS DIAGNOSIS

    CesarAugusto SouzaAndrade

    2014-08-01

    Full Text Available Antimicrobial peptides (AMPs are natural compounds isolated from a wide variety of organisms that include microorganisms, insects, amphibians, plants and humans. These biomolecules are considered as part of the innate immune system and are known as natural antibiotics, presenting a broad spectrum of activities against bacteria, fungi and/or viruses. Technological innovations have enabled AMPs to be utilized for the development of novel biodetection devices. Advances in nanotechnology, such as the synthesis of nanocomposites, nanoparticles, and nanotubes have permitted the development of nanostructured platforms with biocompatibility and greater surface areas for the immobilization of biocomponents, arising as additional tools for obtaining more efficient biosensors. Diverse AMPs have been used as biological recognition elements for obtaining biosensors with more specificity and lower detection limits, whose analytical response can be evaluated through electrochemical impedance and fluorescence spectroscopies. AMP-based biosensors have shown potential for applications such as supplementary tools for conventional diagnosis methods of microorganisms. In this review, conventional methods for microorganism diagnosis as well new strategies using AMPs for the development of impedimetric and fluorescent biosensors are highlighted. AMP-based biosensors show promise as methods for diagnosing infections and bacterial contaminations as well as applications in quality control for clinical analyses and microbiological laboratories.

  5. Identification of subsurface microorganisms at Yucca Mountain

    Bacteria isolated from water samples collected in a series of ground water springs have been isolated, enumerated, and identified from twenty six sites. Ten sites were sampled in Death Valley, California and sixteen sites were sampled in Ash Meadows, Nevada. Replicate samples were collected and tested from four locations. All water samples were collected in conjunction with the HRC chemistry group conducting ground water fingerprinting studies. The protocol for collection of samples, as described in the 3rd quarterly report, specified aseptic collection in sterile screw-capped containers and transportation on ice to the HRC microbiology laboratory. All samples were inoculated by spread plating onto R2A (Difco Laboratories, Detroit, MI) bacterial culture medium. the R2A plates were then incubated at 28 degrees for 5--7 days and colonies wee counted with the aid of a grid template and magnifying lens

  6. Microbe landscape and biological properties of microorganisms revealed from urine of the patients with the uncomplicated infections of urine tract

    Rustam Khudoyberganov

    2011-03-01

    Full Text Available The study considers microbe landscape and basic microbiological characteristics of the revealed infectious agents in acute and chronic uncomplicated infections of the urological tract (UTUI. The E.coli species seem to be prevailed (66.3% as etiological agent of the uncomplicated infections of urinary tract. The microorganisms of this kind were defined in monoculture in 78% of cases and in associations with the other microorganisms in 22%. The distinctions in frequency of isolation of E.coli strains, urine specie (Ur E.coli and fecal specie (Kol E.coli, having only mannose-resistant hemagglutinins, and also combination of manno-resistant and mannose-sensitive hemagglutinins. Presence of only mannose-sensitive hemagglutinins with identical frequency were registered in the cultures E.coli, isolated from the urine of the patients with acute and chronic pyelonephritis and from feces of the healthy people.

  7. 40 CFR 725.239 - Use of specific microorganisms in activities conducted outside a structure.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Use of specific microorganisms in... MICROORGANISMS Exemptions for Research and Development Activities § 725.239 Use of specific microorganisms in...: (1) Characteristics of recipient microorganism. The recipient microorganism is limited to strains...

  8. Physiologically anaerobic microorganisms of the deep subsurface

    Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) were significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site

  9. A new acidophilic endo-β-1,4-xylanase from Penicillium oxalicum: cloning, purification, and insights into the influence of metal ions on xylanase activity.

    Liao, Hanpeng; Sun, Shaowei; Wang, Pan; Bi, Wenli; Tan, Shiyong; Wei, Zhong; Mei, Xinlan; Liu, Dongyang; Raza, Waseem; Shen, Qirong; Xu, Yangchun

    2014-07-01

    A new acidophilic xylanase (XYN11A) from Penicillium oxalicum GZ-2 has been purified, identified and characterized. Synchronized fluorescence spectroscopy was used for the first time to evaluate the influence of metal ions on xylanase activity. The purified enzyme was identified by MALDI TOF/TOF mass spectrometry, and its gene (xyn11A) was identified as an open reading frame of 706 bp with a 68 bp intron. This gene encodes a mature protein of 196 residues with a predicted molecular weight of 21.3 kDa that has the 100 % identity with the putative xylanase from the P. oxalicum 114-2. The enzyme shows a structure comprising a catalytic module family 10 (GH10) and no carbohydrate-binding module family. The specific activities were 150.2, 60.2, and 72.6 U/mg for beechwood xylan, birchwood xylan, and oat spelt xylan, respectively. XYN11A exhibited optimal activity at pH 4.0 and remarkable pH stability under extremely acidic condition (pH 3). The specific activity, K m and V max values were 150.2 U/mg, 30.7 mg/mL, and 403.9 μmol/min/mg for beechwood xylan, respectively. XYN11A is a endo-β-1,4-xylanase since it release xylobiose and xylotriose as the main products by hydrolyzing xylans. The activity of XYN11A was enhanced 155 % by 1 mM Fe(2+) ions, but was inhibited strongly by Fe(3+). The reason of enhancing the xylanase activity of XYN11A with 1 mM Fe(2+) treatment may be responsible for the change of microenvironment of tryptophan residues studied by synchronous fluorescence spectrophotometry. Inhibition of the xylanase activity by Fe(3+) was first time demonstrated to associate tryptophan fluorescence quenching. PMID:24818699

  10. Acidophilic granulocytes in the gills of gilthead seabream Sparus aurata: evidence for their responses to a natural infection by a copepod ectoparasite.

    Lui, Alice; Manera, Maurizio; Giari, Luisa; Mulero, Victoriano; Dezfuli, Bahram Sayyaf

    2013-09-01

    Immunohistochemical and ultrastructural studies were conducted on the gills of gilthead seabream, Sparus aurata L., naturally infected with the copepod ectoparasite Ergasilus lizae (Krøyer, 1863) in order to assess pathology and the host immune cell response. Gills of 56 gilthead seabream were screened for ectoparasites; 36 specimens (64.3%) harbored E. lizae. Intensity of infection was 32.7 ± 8.7 (mean ± SE). Pathological alterations to the gills of the host were more pronounced in close proximity to the copepod site of attachment. The parasite attached to the gills by means of its modified second antennae, occluded the arteries, provoked epithelial hyperplasia and hemorrhages and most often caused lamellar disruption. Numerous granular cells were encountered near the site of E. lizae attachment. In both infected and uninfected gills, the granular cells lay within the filaments and frequently occurred within the connective tissue inside and outside the blood vessels of the filaments. The type of granular cell was identified by immunohistochemical staining by using the monoclonal antibody G7 (mAb G7), which specifically recognizes acidophilic granulocytes (AGs) of S. aurata and with an anti-histamine antibody (as a marker for mast cells, MCs) on sections from 13 uninfected gills and 21 parasitized gills. The use of mAb G7 revealed that, in gills harboring copepods, the number of G7-positive cells (i.e., AGs; 32.9 ± 3.9, mean number of cells per 45,000 μm2 ± SE) was significantly higher than the density of the same cells in uninfected gills (15.3 ± 3.8; ANOVA, P < 0.05). Few histamine-positive granular cells (i.e., MCs) were found in the uninfected and parasitized gills. Here, we show, for the first time in S. aurata infected gills, that AGs rather than MCs are recruited and involved in the response to E. lizae infection in seabream. PMID:23644766

  11. Eukaryotic microorganisms in cold environments. Examples from Pyrenean glaciers

    CristinaCid

    2013-03-01

    Full Text Available Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the “Little Ice Age” although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and derreplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (> 1 % of all sequences were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema , Heteromita , Koliella and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of

  12. Exploration and conservation of bacterial genetic resources as bacteriocin producing inhibitory microorganisms to pathogen bacteria in livestock

    2013-01-01

    Exploration and conservation of microorganisms producing bacteriocin was done as the primary study towards the collection of potential bacteria and its application in improving livestock health condition and inhibit food borne pathogens. Diferent kinds of samples such as beef cattle rectal swab, rumen fluids, cow’s milk, chicken gut content, goat’s milk were collected at Bogor cattle slaughter houses, poultry slaughter houses, dairy cattle and goat farms. A total of 452 bacterial isolates con...

  13. Halophilic microorganisms from Romanian saline environments as a source of extracellular enzymes with potential in agricultural economy

    Enache, Madalina; Neagu, Simona; Cojoc, Roxana

    2013-01-01

    Halophilic microorganisms, either bacteria or archaea, flourish in media with salinity levels varying from negligible until to saturation in NaCl and thus are considered extremophiles. Such kinds of media as salt lakes, salted soils, salt deposits or salt mines are widely distributed over the entire Romanian landscape. Several strains of halophilic bacteria and archaea have been isolated from such environments and characterized either by polyphasic taxonomy approach or by their ability to pro...

  14. Removal of Nitrogen,Phosphorus,and Organic Pollutants From Water Using Seeding Type Immobilized Microorganisms

    LIN WANG; LI-JING HUANG; LUO-JIA YUN; FEI TANG; JING-HUI ZHAO; YAN-QUN LIU; XIN ZENG; QI-FANG LUO

    2008-01-01

    Objective To study the possibility of removing nitrogen.phosphorus,and organic pollutants using seeding type immobilized microorganisms.Methods Lakes P and M in Wuhan were chosen as the objects to study the removal of nitrogen,phosphorus,and organic pollutants with the seeding type immobilized microorganisms.Correlations between the quantity ofheterotrophic bacteria and the total nitrogen(TN),total phosphorus(TP),and toml organic carbon(TOC)in the two lakes were studied.The dominant bacteria were detected.inoculated to the sludge and acclimated by increasing nitrogen,phosphorus and decreasing carbon source in an intermittent,time-controlled and fixed-quantity way.The bacteria were thenused to prepare the seeding type immobilized microorganisms,selecting diatomim as the adsorbent cairtier.The ability and influence factors of removing nitrogen,phosphorus,and organic pollutant from water samples by the seeding type immobilized microorganismswere studied.Results The coefficients of the heterotrophic bacterial quantity correlatedwith TOC,TP,and TN were 0.9143,0.8229,0.7954 in Lake P and 0.9168,0.7187,0.6022 in Lake M.Ton swains of dominant heterotrophic bacteria belonging to Pseudomonas,Coccus,Aeromonas,Bacillus,and Enterobateriaceae,separately,were isolated.The appropriate conditions for the seeding type immobilized microorgansims in purifying the water sample were exposure time=24h,pH=7.0-8.0.and quantity of the immobilized microorganisms=0.75-1g/50 mL.The removal rates of TOC,TP,and TN under the above conditions were 80.2%,81.6%,and 86.8%,respectively.Conclusion The amount of heterotrophic bacteria in the two lakes was correlatexl with TOC,TP, and TN.These bacteria could be acclimatized and prepared for the immobilizedmicroorganisms which could effectively remove nitrogen,phosphorus,and mixed organic pollutants in the water sample.

  15. ISOLATION AND CHARACTERIZATION OF ENDOPHYTIC FUNGI FROM HEALTHY LEAF OF COCOA PLANT

    Surapati, Untung; Izha, MNY; Nur, Amin

    2015-01-01

    The new prospective area on agriculture and forestry are the use of microorganisms to promote plant growth and to protect the plant hosts from pests and diseases. One group of the microorganisms is endophytic fungi. The research aims to isolate and to identify of fungal endophyte of healthy leaf of cocoa plant. A total of 6 isolates of fungal endophyte were isolated from healthy leaf of cocoa plant. The isolates belonged to 1 genera namely: Trichoderma sp., and 5 isolates that have not been...

  16. Fate of indicator microorganisms under nutrient management plan conditions.

    Bradford, Scott A; Segal, Eran

    2009-01-01

    Nutrient management plans (NMPs) for application of wastewater from concentrated animal feeding operations are designed to meet crop water and nutrient requirements, but implicitly assume that pathogenic microorganisms in the wastewater will be retained and die-off in the root zone. A NMP was implemented on a field plot to test this assumption by monitoring the fate of several fecal indicator microorganisms (Enterococcus, fecal coliforms, somatic coliphage, and total Escherichia coli). When well-water and wastewater were applied to meet measured evapotranspiration (ET), little advective transport of the indicator microorganisms occurred below the root zone and the remaining microorganisms rapidly died-off (within 1 mo). Additional experiments were conducted in the laboratory to better quantify microorganism transport and survival in the field soil. Batch survival experiments revealed much more rapid die-off rates for the bacterial indicator microorganisms in native than in sterilized soil, suggesting that biotic factors controlled survival. Saturated column experiments with packed field soil, demonstrated much greater transport potential for somatic coliphage than bacterial indicators (Enterococcus and total E. coli) and that the retention rates for the indicator microorganisms were not log-linear with depth. A worst case transport scenario of ponded infiltration on a large undistributed soil column from the field was also initiated and indicator microorganisms were not detected in the column outflow or in the soil at a depth of 65 cm. All of these observations support the hypothesis that a NMP at this site will protect groundwater supplies from microorganism contamination, especially when applied water and wastewater meet ET. PMID:19549950

  17. Few microorganisms associated with bacterial vaginosis may constitute the pathologic core: a population-based microbiologic study among 3596 pregnant women

    Thorsen, P; Jensen, I P; Jeune, B; Ebbesen, N; Arpi, M; Bremmelgaard, A; Møller, B R

    1998-01-01

    OBJECTIVE: To evaluate the association between various microorganisms isolated from the genital tract in pregnant women with bacterial vaginosis. STUDY DESIGN: A cross-sectional population-based study among pregnant women addressed at their first antenatal visit before 24 full gestational weeks......) between the microorganisms isolated from the lower genital tract in pregnant women with and without clinical diagnosis of bacterial vaginosis. RESULTS: Three thousand five hundred ninety-six (3596) pregnant women were asked to participate. Of the 3596 pregnant women 3174 (88.4%) agreed to participate...... before 24 full gestational weeks. After controlling for the presence of other microorganisms, strong associations between Gardnerella vaginalis, anaerobic bacteria, Mycoplasma hominis, and present bacterial vaginosis were found. Similarly Lactobacillus spp. were found to be associated with the absence of...

  18. Participation of microorganisms in processes of waste biodegradation

    V. V. Kolomoets

    2009-11-01

    Full Text Available It is shown, that microorganisms can be used for utilisation of products of waste degradation. The influence of microelements small doses on the ability of secured cultures of soil microorganisms to grow on poor nutrient medium was studied. The cultures simulate the relationship of the end products of waste pyrolysis. The positive influence of MnCl2, K2HPO4, NH4NО3 as well as the complex of microelements on the ability of secured microorganisms to accumulate the biomass and assimilate the substrate is shown. Among two secured and studied germ culturesthe genus of –Bacillus is more promising.

  19. Effective dynamics of microorganisms that interact with their own trail

    Kranz, W Till; Golestanian, Ramin

    2015-01-01

    Like ants, some microorganisms are known to leave trails on surfaces to communicate. Using a simple phenomenological model for an actively moving particle, we explore how trail-mediated self-interaction could affect the behaviour of individual microorganisms. The effective dynamics of each microorganism takes on the form of a delayed stochastic dynamical equation with the trail interaction appearing in the form of short-term memory. Depending on the strength of the coupling, the dynamics exhibits effective diffusion in both orientation and position, orientational oscillations, and a localization transition with a divergent orientational correlation time.

  20. Influence of microorganisms on the alteration of glasses

    Under specific conditions, microorganisms may enhance the alteration process of basaltic glass. However bacterial activity in the near field of a glass container would be possible only in environmental conditions provide nutrients and energetic substrates for bacterial growth. Depending of these conditions, microorganisms can: - modify the pH or the medium, - consume or produce soluble organic acids. To qualify the long term behaviour of glass, in presence of microorganisms, a qualitative and quantitative estimation of microbial activity potentialities and their consequences is needed. This must be achieved in studying the availability of the chemical species in the environment. (authors)

  1. Antibiotic producing microorganisms from River Wiwi, Lake Bosomtwe and the Gulf of Guinea at Doakor Sea Beach, Ghana

    Tawiah Adelaide A

    2012-10-01

    Full Text Available Abstract Background Microorganisms have provided a wealth of metabolites with interesting activities such as antimicrobial, antiviral and anticancer. In this study, a total of 119 aquatic microbial isolates from 30 samples (taken from water bodies in Ghana were screened by the agar-well diffusion method for ability to produce antibacterial-metabolites. Results Antibacterial activity was exhibited by 27 of the isolates (14 bacteria, 9 actinomycetes and 4 fungi against at least one of the indicator microorganisms: Enterococcus faecalis (ATCC 29212, Bacillus thuringiensis (ATCC 13838, Pseudomonas aeruginosa (ATCC 27853, Staphylococcus aureus (ATCC 25923, Proteus vulgaris (NCTC 4635 and Bacillus Subtilis (NCTC 10073. A sea isolate MAI2 (identified as a strain of Pseudomonas aeruginosa exhibited the highest antibacterial activity (lowest zone of inhibition = 22 mm. The metabolites of MAI2 extracted with chloroform were stable to heat and gave minimum inhibitory concentrations ranging between 250 and 2000 μg/ml. Bioautography of the extract revealed seven active components. Conclusion This study has therefore uncovered the potential of water bodies in the West African sub-region as reservoirs of potent bioactive metabolite producing microorganisms.

  2. [Resistance of the petroleum-oxidizing microorganism Dietzia sp. to hyperosmotic shock in reconstituted biofilms].

    Plakunov, V K; Zhurina, M V; Beliaev, S S

    2008-01-01

    A number of halotolerant and halophilic bacterial strains were isolated from the Romashkinskoe oil field (Tatarstan) stratal waters having a salinity of up to 100 g/l. The isolation of pure cultures involved biofilm reconstitution on M9 medium with paraffins. The associations obtained were dispersed and reinoculated onto solid media that contained either peptone and yeast extract (PY) or paraffins. It was shown that such associations included both oil-oxidizing bacteria and accompanying chemoheterotrophic bacteria incapable of oil oxidation. The pure cultures that were isolated were used for creating binary biofilms. In these biofilms, interactions between halophilic and nonhalophilic bacteria under hypo- and hyperosmotic shocks were investigated. We conducted a detailed study of a biofilm obtained from an oil-oxidizing halotolerant species (with an upper growth limit of 10-12% NaCl) identified as Dietzia sp. and an extremely halophilic gram-negative bacterium (growing within the 5-20% NaCl concentration range) of the genus Chromohalobacter that did not oxidize paraffins. If these microorganisms were grown in a mixed suspension (planktonic) culture that was not supplemented with an additional amount of NaCl, no viable cells of the halophilic microorganism were detected after reinoculation. In contrast, only halophilic cells were detected at a NaCl concentration of 15%. Thus, no mutual protective influence of the microorganisms manifested itself in suspension culture, either under hypo- or under hyperosmotic shock. Neither could the halophile cells be detected after reinoculating a biofilm obtained on a peptone medium without addition of NaCl. However, biofilms produced at a NaCl concentration of 15% contained approximately equal numbers of cells of the halophilic and halotolerant organisms. Thus, the halophile in biofilms sustaining a hyperosmotic shock exerts a protective influence on the halotolerant microorganism. Preliminary data suggest that this effect is due

  3. Bioprocessing of lignite coals using reductive microorganisms

    Crawford, D.L.

    1992-03-29

    In order to convert lignite coals into liquid fuels, gases or chemical feedstock, the macromolecular structure of the coal must be broken down into low molecular weight fractions prior to further modification. Our research focused on this aspect of coal bioprocessing. We isolated, characterized and studied the lignite coal-depolymerizing organisms Streptomyces viridosporus T7A, Pseudomonas sp. DLC-62, unidentified bacterial strain DLC-BB2 and Gram-positive Bacillus megaterium strain DLC-21. In this research we showed that these bacteria are able to solubilize and depolymerize lignite coals using a combination of biological mechanisms including the excretion of coal solublizing basic chemical metabolites and extracellular coal depolymerizing enzymes.

  4. Molecular Identification of Microorganisms from Endodontic Infections

    Rolph, H. J.; Lennon, A.; Riggio, M. P.; Saunders, W. P.; MacKenzie, D; Coldero, L.; Bagg, J.

    2001-01-01

    A relatively wide range of bacteria have been isolated from root canals using standard culture techniques. However, only 50% of the bacteria in the oral cavity are cultivable (S. S. Socransky et al., Arch. Oral Biol. 8:278–280, 1963); hence, bacterial diversity in endodontic infections is underestimated. This study used a PCR-based 16S rRNA gene assay, followed by cloning and sequencing of 16S rRNA amplicons from a small subset of samples to assess the diversity of bacteria present in infecte...

  5. The Philippine National Collection of Microorganisms (PNCM):Repository of Microbial Diversity of the Country

    Monsalud R.G.; Magbanua F.O.; Parungao M.P.; Banaay C.G.B.; Bayer M.H.D.; Yap J.K.; Tapay L.M.

    2002-01-01

    The prime function of the Philippine National Collection of Microorganisms (PNCM), being the national repository of microbial strains, is to collect and preserve strains for their continued viability and availability for future use. To date, a total of 2144 strains of bacteria (1357), yeasts (250), filamentous fungi (377), algae (14), and strains still to be identified (146) are maintained at the PNCM. These are preserved and maintained using various methods which include modified liquid drying (lyophilization), ultra-low temperature ( -70℃ ) storage in 10% glycerol, storage in sterile soil, distilled water and overlaying with mineral oil. Periodic viability testing is done to assess the stability of these preserved cultures under storage. Aside from preservation and maintenance of cultures, the PNCM is also involved in several research activities.One of these is the isolation, characterization and identification of some Vibrio isolates from the Philippines. Details on this particular study is presented in this report.

  6. Isolation, growth, ultrastructure, and metal tolerance of the green alga, Chlamydomonas acidophila (Chlorophyta).

    Nishikawa, K; Tominaga, N

    2001-12-01

    An acidophilic volvocine flagellate, Chlamydomonas acidophila (Volvocales) that was isolated from an acid lake, Katanuma, in Miyagi prefecture, Japan was studied for growth, ultrastructural characterization, and metal tolerance. Chlamydomonas acidophila is obligately photoautotrophic, and did not grow in the cultures containing acetate or citrate even in the light. The optimum pH for growth was 3.5-4.5. To characterize metal tolerance, the toxic effects of Cd, Co, Cu, and Zn on this alga were also studied. Effective metal concentrations, which limited the growth by 50%, EC50 were measured, after 72 h of static exposure. EC50s were 14.4 microM Cd2+, 81.3 microM Co2+, 141 microM Cu2+, and 1.16 mM Zn2+ for 72 h of exposure. Thus, this alga had stronger tolerance to these metals than other species in the genus Chlamydomonas. PMID:11826960

  7. Distribution of microorganisms in medical devices and their inactivation effects by gamma-irradiation

    Radiation treatment is getting important position for sterilizing medical devices and for packaging films of foods. Recently, survey of bioburden is an important technique for evaluation of sterility doses for medical devices. However, many studies have been done mainly on the irradiation effects of spore-forming bacteria in medical devices. In this study, radiation sensitivity of spore-forming bacteria and fungi were examined after the survey on distribution of microorganisms in several kinds of medical devices. The main contaminant in disposable syringes, needles and conical flasks were consisted of Bacillus, with lesser amount of Micrococcus, Pseudomonas, Peptococcaceae and fungi as positive of 5 - 60 % in the medical devices which cultivated in thioglycolate broth. Bacillus group were identified as B. pumilus, B. sphaericus, B. coagulans, B. megaterium and etc. Fungi were isolated a lesser amounts compared with spore-forming bacteria and identified as Blastomyces, Penicillium, Haplosporangium, Euricoa and Audeobasidium. Peptococaceae were not isolated after irradiation with a dose of 0.1 Mrad even the samples were contaminated with high percentage. The D10 values of dryed endospores of Bacillus-isolates which attached to the filter paper with pepton-glycerin were obtained to be 0.11 - 0.19 Mrad. The D10 values of many isolates of fungi in dry condition were obtained below 0.08 Mrad. However, the isolate of Aureobasidium is radiation-resistant, and it's D10 values was obtained as 0.28 Mrad under aerobic and anaerobic dry condition. (author)

  8. Microorganisms in potential host rocks for geological disposal of nuclear waste and their interactions with radionuclides

    Cherkouk, A.; Liebe, M.; Luetke, L.; Moll, H.; Stumpf, T. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2015-07-01

    The long-term safety of nuclear waste in a deep geological repository is an important issue in our society. Microorganisms indigenous to potential host rocks are able to influence the oxidation state, speciation and therefore the mobility of radionuclides as well as gas generation or canister corrosion. Therefore, for the safety assessment of such a repository it is necessary to know which microorganisms are present in the potential host rocks (e.g. clay, salt) and if these microorganisms can influence the performance of a repository. Microbial diversity in potential host rocks for geological disposal of nuclear waste was analyzed by culture-independent molecular biological methods (e.g. 16S rRNA gene retrieval) as well as enrichment and isolation of indigenous microbes. Among other isolates, a Paenibacillus strain, as a representative of Firmicutes, was recovered in R2A media under anaerobic conditions from Opalinus clay from the Mont Terri in Switzerland. Accumulation experiments and potentiometric titrations showed a strong interaction of Paenibacillus sp. cells with U(VI) within a broad pH range (3-7). Additionally, the interactions of the halophilic archaeal strain Halobacterium noricense DSM 15987, a salt rock representative reference strain, with U(VI) at high ionic strength was investigated. After 48 h the cells were still alive at uranium concentrations up to 60 μM, which demonstrates that Halobacterium noricense can tolerate uranium concentrations up to this level. The formed uranium sorption species were examined with time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results about the microbial communities present in potential host rocks for nuclear waste repositories and their interactions with radionuclides contribute to the safety assessment of a prospective nuclear waste repository.

  9. Microorganisms in potential host rocks for geological disposal of nuclear waste and their interactions with radionuclides

    The long-term safety of nuclear waste in a deep geological repository is an important issue in our society. Microorganisms indigenous to potential host rocks are able to influence the oxidation state, speciation and therefore the mobility of radionuclides as well as gas generation or canister corrosion. Therefore, for the safety assessment of such a repository it is necessary to know which microorganisms are present in the potential host rocks (e.g. clay, salt) and if these microorganisms can influence the performance of a repository. Microbial diversity in potential host rocks for geological disposal of nuclear waste was analyzed by culture-independent molecular biological methods (e.g. 16S rRNA gene retrieval) as well as enrichment and isolation of indigenous microbes. Among other isolates, a Paenibacillus strain, as a representative of Firmicutes, was recovered in R2A media under anaerobic conditions from Opalinus clay from the Mont Terri in Switzerland. Accumulation experiments and potentiometric titrations showed a strong interaction of Paenibacillus sp. cells with U(VI) within a broad pH range (3-7). Additionally, the interactions of the halophilic archaeal strain Halobacterium noricense DSM 15987, a salt rock representative reference strain, with U(VI) at high ionic strength was investigated. After 48 h the cells were still alive at uranium concentrations up to 60 μM, which demonstrates that Halobacterium noricense can tolerate uranium concentrations up to this level. The formed uranium sorption species were examined with time-resolved laser-induced fluorescence spectroscopy (TRLFS). The results about the microbial communities present in potential host rocks for nuclear waste repositories and their interactions with radionuclides contribute to the safety assessment of a prospective nuclear waste repository.

  10. BIODEGRADATION OF MTBE BY A MICROORGANISM CONSORTIUM

    M. Alimohammadi, A. R. Mesdaghinia, M. Mahmoodi, S. Nasseri, A. H. Mahvi and J. Nouri

    2005-10-01

    Full Text Available Methyl Tert-Butyl Ether (MTBE is one of the ether oxygenates which its use has been increased within the last twenty years. This compound is produced from isobutylene and methanol reaction that is used as octane index enhancer and also increases dissolved oxygen in gasoline and decreases carbon monoxide emission in four phased motors because of better combustion of gasoline. High solubility in water (52 g/L, high vapor pressure (0.54 kg/cm3, low absorption to organic carbon of soil and presence of MTBE in the list of potentially-carcinogens of U.S EPA has made its use of great concern. The culture media used in this study was Mineral Salt Medium (MSM. The study lasted for 236 days and in three different concentrations of MTBE of 200, 5 and 0.8 mg/L. A control sample was also used to compare the results. This research studied the isolation methods of microbial consortium in the MTBE polluted soils in Tehran and Abadan petroleum refinery besides MTBE degradation. The results showed the capability of bacteria in consuming MTBE as carbon source. Final microbial isolation was performed with several microbial passages as well as keeping consortium in a certain amount of MTBE as the carbon source.

  11. Tolerances of microorganisms to extreme environmental conditions

    Microbial isolates from sites relevant to the disposal of radioactive wastes have been subjected to extreme environmental conditions in order to ascertain their tolerance ability. Two groups were chosen, sulphate reducing bacteria and sulphur oxidising bacteria, because of their potential effects on waste containment. They have been subjected to high temperatures, pressures and radiation (delta-emissions) in optimal media conditions and their ability to tolerate the conditions has been ascertained by epifluorescence microscopy and adenosine tri-phosphate (ATP) analysis followed by 'culture-on' to assess post experimental viability. Results indicate that the sulphate reducers in general, are more tolerant to these conditions than the sulphur oxidisers, some proving to be thermophilic. The sulphate reducer showed increased growth rates, as determined by population numbers, at 500C and survived at 800C, 4,500 psig (310 bar) with no subsequent loss in viability. Gamma irradiation of this group and an isolate of 105 rad over 4 hours had no effect on population numbers or viability. Such resistances are not apparent with the sulphur oxidisers whose numbers decreased with increasing radiation dose and are destroyed with pressure. (author)

  12. Phylogenetic relationships among subsurface microorganisms. Progress report

    Nierzwicki-Bauer, S.A.

    1991-12-31

    This project involves the development of group specific 16S ribosomal RNA-targeted oligonucleotide hybridization probes for the rapid detection of specific types of subsurface organisms (e.g., groups of microbes that share certain physiological traits). Major accomplishments for the period of 6/91 to 12/1/91 are described. Nine new probes have been synthesized on the basis of published 16S rRNA sequence data from the Ribosomal Database Project. We have initiated rapid screening of many of the subsurface microbial isolates obtained from the P24 borehole at the Savannah River Site. To date, we have screened approximately 50% of the isolates from P24. We have optimized our {und in situ} hybridization technique, and have developed a cell blot hybridization technique to screen 96 samples on a single blot. This is much faster than reading 96 individual slides. Preliminary experiments have been carried out which indicate specific nutrients can be used to amplify rRNA only in those organisms capable of metabolizing those nutrients. 1 tab., 2 figs.

  13. Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry.

    Boots, A W; Smolinska, A; van Berkel, J J B N; Fijten, R R R; Stobberingh, E E; Boumans, M L L; Moonen, E J; Wouters, E F M; Dallinga, J W; Van Schooten, F J

    2014-06-01

    The identification of specific volatile organic compounds (VOCs) produced by microorganisms may assist in developing a fast and accurate methodology for the determination of pulmonary bacterial infections in exhaled air. As a first step, pulmonary bacteria were cultured and their headspace analyzed for the total amount of excreted VOCs to select those compounds which are exclusively associated with specific microorganisms. Development of a rapid, noninvasive methodology for identification of bacterial species may improve diagnostics and antibiotic therapy, ultimately leading to controlling the antibiotic resistance problem. Two hundred bacterial headspace samples from four different microorganisms (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae) were analyzed by gas chromatography-mass spectrometry to detect a wide array of VOCs. Statistical analysis of these volatiles enabled the characterization of specific VOC profiles indicative for each microorganism. Differences in VOC abundance between the bacterial types were determined using ANalysis of VAriance-principal component analysis (ANOVA-PCA). These differences were visualized with PCA. Cross validation was applied to validate the results. We identified a large number of different compounds in the various headspaces, thus demonstrating a highly significant difference in VOC occurrence of bacterial cultures compared to the medium and between the cultures themselves. Additionally, a separation between a methicillin-resistant and a methicillin-sensitive isolate of S. aureus could be made due to significant differences between compounds. ANOVA-PCA analysis showed that 25 VOCs were differently profiled across the various microorganisms, whereas a PCA score plot enabled the visualization of these clear differences between the bacterial types. We demonstrated that identification of the studied microorganisms, including an antibiotic susceptible and resistant S. aureus substrain

  14. Bio deteriorating microorganism of two archaeological buildings at the site of Uxmal, Mexico

    Several types of microorganisms are strongly involved in the rock decay of monuments of cultural heritage. Microbial colonization is conditioned by environmental factors such as climatic variables (relative humidity, temperature) as well as by natural and anthropogenic pollution. Microbial colonizers of monument walls are often heterotrophic bacteria, cyanobacteria, algae and fungi. Two different sites for sampling were chosen at the archaeological site of Uxmal in the Yucatan peninsula, Mexico. One of the sites was a rock wall exposed to open air, rain and sunlight. The rocks appeared partially covered by a thick black crust. The other sampling site was located at one of the stone walls of an inner chamber of the Governors house. This wall was in a dark room, protected from the sunlight, rain and outer air. In this case the coverage found was thick and predominantly dark green colored. heterotrophic bacteria (Bacillus sp., Pseudomonas sp.), cyanophyta (Cyanosystis sp.) and different fungi were isolated and taxonomically classified. Crust deposits were observed by using stereoscopic magnifier, Scanning Electron Microscopy (SEM) or Environmental Scanning Microscope (ESEM). Possible mechanisms of rock decay based on the type of microorganisms isolated, physicochemical characteristics of the constructional materials, and environmental factors are discussed. (Author)

  15. NEW LIPASE-PRODUCERS MICROORGANISMS FROM PERUVIAN AMAZONIA WHICH HYDROLYZE PALM OIL AND DERIVATIVES

    Roxana Trujillo

    2014-04-01

    Full Text Available Two yeasts: Cryptococcus uchicensis TMY9 and Pichia uchicensis TMY10 and one fungus Verticillium tingalensis TMFMB are described for the first time as lipase producer microorganisms. The strains have been isolated after an ecological screening in a palm oil industry. The yeasts- C. uchicensis and Pichia uchicensis - mainly produce extracellular lipases as active as those produced by traditional lipase producing microorganisms. The extracellular lipases are active in the hydrolysis of crude palm oil and its industrial derivatives. Contrarily in the isolated fungus, the lipase mainly remains bonded to biomass. In all cases, greater hydrolytic activities are observed in the hydrolysis of palm olein and super-olein than with saturated substrates as stearine. P. uchicensis lipase shows moderated selectivity versus saturated acid triglycerides compared to substrates with high proportion of oleic acid (olein or superolein. The opposite behavior is observed with C. uchicensis and fungal lipases. P. uchicensis produces a more active crude lipase than C. uchicensis with lower biomass production. The kinetic runs performed with crude yeast lipases suggest a three steps mechanism where the high penetration of lipase in the fat gouts favors the hydrolysis.

  16. BV and non-BV associated Gardnerella vaginalis establish similar synergistic interactions with other BV-associated microorganisms in dual-species biofilms.

    Castro, Joana; Cerca, Nuno

    2015-12-01

    Dual-species biofilm formation between Gardnerella vaginalis strains isolated from women with or without bacterial vaginosis (BV) and other 24 BV-associated microorganisms support that the key difference in virulence potential between BV-negative and BV-positive G. vaginalis strains seems not to be related with biofilm maturation. PMID:26505928

  17. BV and non-BV associated Gardnerella vaginalis establish similar synergistic interactions with other BV-associated microorganisms in dual-species biofilms

    Castro, J.; Cerca, Nuno

    2015-01-01

    Dual-species biofilm formation between Gardnerella vaginalis strains isolated from women with or without bacterial vaginosis (BV) and other 24 BV-associated microorganisms support that the key difference in virulence potential between BV-negative and BV-positive G. vaginalis strains seems not to be related with biofilm maturation.

  18. Screening of thermotolerant microorganisms and application for oil separation from palm oil mill wastewater

    Aran H-Kittikun

    2007-05-01

    Full Text Available The characteristics of palm oil mill wastewater (POMW were brown color, pH 3.8-4.3, temperature 48-55oC, total solids 68.2-82.1 g/l, suspended solids 26.2-65.6 g/l, oil and grease 19.1-25.1 g/l, COD 49.9-160.7g/l and BOD 32.5-75.3 g/l. After centrifugation (3,184 xg of 50 ml POMW for 10 min, the POMW was separated into 3 layers: top (oil, middle (supernatant and bottom layer (sediment. The sediment containeddry weight 1.19 g and oil and grease 1.07 g. In order to release oil and grease trapped in palm fiber debris in the POMW, cellulase- and/or xylanase-enzyme-producing and thermotolerant microorganisms wereisolated. The isolates SO1 and SO2 were isolated from soil near the first anaerobic pond of the palm oil mill. They were aerobic, Gram positive, rod shaped, thermotolerant microorganisms and produced cellulase 12.11 U/ml (3 days and 7.2 U/ml (4 days, and xylanase 50.98 U/ml (4 days and 20.42 U/ml (4 days, respectivelyin synthetic medium containing carboxymethycellulose as a carbon source. When these 2 isolates were added into the steriled POMW under shaking condition for 7 days, after centrifugation at 3,184 xg the isolate SO1gave the better % reduction of dry weight (64.66 % and of oil and grease in the bottom layer (85.32 % of the POMW.

  19. Marine microorganisms as potential biofactories for synthesis of metallic nanoparticles.

    Manivasagan, Panchanathan; Nam, Seung Yun; Oh, Junghwan

    2016-11-01

    The use of marine microorganisms as potential biofactories for green synthesis of metallic nanoparticles is a relatively new field of research with considerable prospects. This method is eco-friendly, time saving, and inexpensive and can be easily scaled up for large-scale synthesis. The increasing need to develop simple, nontoxic, clean, and environmentally safe production methods for nanoparticles and to decrease environmental impact, minimize waste, and increase energy productivity has become important in this field. Marine microorganisms are tiny organisms that live in marine ecosystems and account for >98% of biomass of the world's ocean. Marine microorganisms synthesize metallic nanoparticles either intracellularly or extracellularly. Marine microbially-produced metallic nanoparticles have received considerable attention in recent years because of their expected impact on various applications such as medicine, energy, electronic, and space industries. The present review discusses marine microorganisms as potential biofactories for the green synthesis of metallic nanoparticles and their potential applications. PMID:26920850

  20. Indigenous microorganisms production and the effect on composting process

    Abu-Bakar, Nurul-Ain; Ibrahim, Nazlina

    2013-11-01

    In this study, production of indigenous microorganisms (IMO) and effect on addition of IMO in composting process were done. Production of IMO was done in a series of steps to allow propagation of beneficial microorganisms. Effect of IMO addition in composting process was investigated by having 4 treatments; 1) rice straw without IMO nor manure and rice bran, 2) rice straw with IMO only, 3) rice straw with manure and rice bran, 4) rice straw with IMO, manure and rice bran. Production of IMO using cooked rice yields white molds. Addition of IMO during composting did not affect temperature increment. However, there were differences in numbers of microorganisms found during each stages of composting. Initial composting stage was dominated by mesophilic bacteria and actinomycetes, followed by thermophilic bacteria and later by actinomycetes upon composting completion. In conclusion, this study showed that IMO addition in composting increased microorganisms which are responsible in organic decomposition.