WorldWideScience

Sample records for acidophilic microbial biofilms

  1. Biofilms: A microbial home

    Chandki, Rita; Banthia, Priyank; Banthia, Ruchi

    2011-01-01

    Microbial biofilms are mainly implicated in etiopathogenesis of caries and periodontal disease. Owing to its properties, these pose great challenges. Continuous and regular disruption of these biofilms is imperative for prevention and management of oral diseases. This essay provides a detailed insight into properties, mechanisms of etiopathogenesis, detection and removal of these microbial biofilms.

  2. Biochemistry and Ecology of Novel Cytochromes Catalyzing Fe(II) Oxidation by an Acidophilic Microbial Community

    Singer, S. W.; Jeans, C. J.; Thelen, M. P.; Verberkmoes, N. C.; Hettich, R. C.; Chan, C. S.; Banfield, J. F.

    2007-12-01

    An acidophilic microbial community found in the Richmond Mine at Iron Mountain, CA forms abundant biofilms in extremely acidic (pHoxidation is critical to the metabolic functioning of the community, and in turn this process generates acid mine drainage, causing an environmental catastrophe. Two conspicuous novel proteins isolated from these biofilms were identified as gene products of Leptospirillum group II and were characterized as cytochromes with unique properties. Sulfuric acid extraction of biofilm samples liberated one of these proteins, a 16 kDa cytochrome with an unusual alpha-band absorption at 579 (Cyt579). Genomic sequencing of multiple biofilms indicated that several variants of Cyt579 were present in Leptospirillum strains. Intact protein MS analysis identified the dominant variants in each biofilm and documented multiple N-terminal cleavage sites for Cyt579. By combining biochemical, geochemical and microbiological data, we established that the sequence variation and N-terminal processing of Cyt579 are selected by ecological conditions. In addition to the soluble Cyt579, the second cytochrome appears as a much larger protein complex of ~210 kDa predominant in the biofilm membrane fraction, and has an alpha-band absorption at 572 nm. The 60 kDa cytochrome subunit, Cyt572, resides in the outer membrane of LeptoII, and readily oxidizes Fe(II) at low pH (0.95 - 3.0). Several genes encoding Cyt572 were localized within a recombination hotspot between two strains of LeptoII, causing a large range of variation in the sequences. Genomic sequencing and MS proteomic studies established that the variants were also selected by ecological conditions. A general mechanistic model for Fe(II) oxidation has been developed from these studies. Initial Fe(II) oxidation by Cyt572 occurs at the outer membrane. Cyt572 then transfers electrons to Cyt579, perhaps representing an initial step in energy flow to the biofilm community. Amino acid variations and post

  3. Manipulation of Biofilm Microbial Ecology

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  4. Manipulatiaon of Biofilm Microbial Ecology

    Burkhalter, R.; Macnaughton, S.J.; Palmer, R.J.; Smith, C.A.; Whitaker, K.W.; White, D.C.; Zinn, M.; kirkegaard, R.

    1998-08-09

    The Biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms by generated. The most effective monitoring of biofilm formation, succession and desquamation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in the distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  5. Biofilm formation and microbial corrosion

    Goldstein, R.; Porcella, D.

    1992-07-01

    Biofilms-colonies of microorganisms growing on surfaces - can greatly accelerate the corrosion rates of metals and alloys in utility water systems. Fundamental EPRI research is showing how mechanisms of biofilm formation, interactions between bacterial species, and metabolic activities control such biofilm properties as corrosive potential This research is identifying methods to control biofilm development and prevent microbially influenced corrosion. The results should also apply to the control of other processes involving biological consortia, including the bioremediation of contaminated groundwater and soil and the biodesulfurization of coal.

  6. Antibiotic tolerance and microbial biofilms

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanisms....

  7. Microbial pathogenesis and biofilm development

    Reisner, A.; Høiby, N.; Tolker-Nielsen, Tim; Molin, Søren

    2004-01-01

    Microbial infections constitute a major cause of premature death in large parts of the world, and for several years we have seen an alarming tendency towards increasing problems of controlling such infections by antibiotic treatments. It is hoped that an improved understanding of the infectious...... been termed 'maturation', which is thought to be mediated by a differentiation process. Maturation into late stages of biofilm development resulting in stable and robust structures may require the formation of a matrix of extracellular polymeric substances (EPS), which are most often assumed to consist...... of polysaccharides. A recent striking finding is that DNA released from biofilm cells may be important as an initial matrix former [3]. At later times other EPS molecules may add to the shape and quality of the mature biofilm structure. Figure 1 summarizes the principle stepsinvolved in the...

  8. Electricity generation from tetrathionate in microbial fuel cells by acidophiles.

    Sulonen, Mira L K; Kokko, Marika E; Lakaniemi, Aino-Maija; Puhakka, Jaakko A

    2015-03-01

    Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m(-2) and 13.9 mW m(-2) and 433 mA m(-2) and 17.6 mW m(-2), respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2-2.5. PMID:25463232

  9. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina).

    Urbieta, María Sofía; González-Toril, Elena; Bazán, Ángeles Aguilera; Giaveno, María Alejandra; Donati, Edgardo

    2015-03-01

    Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms. PMID:25605537

  10. Electricity generation from tetrathionate in microbial fuel cells by acidophiles

    Sulonen, Mira L.K., E-mail: mira.sulonen@tut.fi; Kokko, Marika E.; Lakaniemi, Aino-Maija; Puhakka, Jaakko A.

    2015-03-02

    Highlights: • Electricity can be generated from tetrathionate in MFCs at pH below 2.5. • Tetrathionate disproportionated to sulfate and elemental sulfur. • Biohydrometallurgical process waters contained electrochemically active bacteria. • Acidithiobacillus spp. and Ferroplasma spp. were identified from the MFCs. - Abstract: Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m{sup −2} and 13.9 mW m{sup −2} and 433 mA m{sup −2} and 17.6 mW m{sup −2}, respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2–2.5.

  11. Electricity generation from tetrathionate in microbial fuel cells by acidophiles

    Highlights: • Electricity can be generated from tetrathionate in MFCs at pH below 2.5. • Tetrathionate disproportionated to sulfate and elemental sulfur. • Biohydrometallurgical process waters contained electrochemically active bacteria. • Acidithiobacillus spp. and Ferroplasma spp. were identified from the MFCs. - Abstract: Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m−2 and 13.9 mW m−2 and 433 mA m−2 and 17.6 mW m−2, respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2–2.5

  12. MICROBIAL BIOFILMS AS INDICATORS OF ESTUARINE CONDITION

    Microbial biofilms are complex communities of bacteria, protozoa, microalgae, and micrometazoa which exist in a polymer matrix on submerged surfaces. Their development is integrative of environmental conditions and is affected by local biodiversity, the availability of organic ma...

  13. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities

    Denef, Vincent [University of California, Berkeley; Kalnejals, Linda [University of California, Berkeley; Muller, R [Lawrence Livermore National Laboratory (LLNL); Wilmes, P [University of California, Berkeley; Baker, Brett J. [University of California, Berkeley; Thomas, Brian [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2010-01-01

    Bacterial species concepts are controversial. More widely accepted is the need to understand how differences in gene content and sequence lead to ecological divergence. To address this relationship in ecosystem context, we investigated links between genotype and ecology of two genotypic groups of Leptospirillumgroup II bacteria in comprehensively characterized, natural acidophilic biofilm communities. These groups share 99.7% 16S rRNA gene sequence identity and 95% average amino acid identity between their orthologs. One genotypic group predominates during early colonization, and the other group typically proliferates in later successional stages, forming distinct patches tens to hundreds of micrometers in diameter. Among early colonizing populations, we observed dominance of five genotypes that differed from each other by the extent of recombination with the late colonizing type. Our analyses suggest that the specific recombinant variant within the early colonizing group is selected for by environmental parameters such as temperature, consistent with recombination as a mechanism for ecological fine tuning. Evolutionary signatures, and strain-resolved expression patterns measured via mass spectrometry based proteomics, indicate increased cobalamin biosynthesis, (de)methylation, and glycine cleavage in the late colonizer. This may suggest environmental changes within the biofilm during development, accompanied by redirection of compatible solutes from osmoprotectants toward metabolism. Across 27 communities, comparative proteogenomic analyses show that differential regulation of shared genes and expression of a small subset of the 15% of genes unique to each genotype are involved in niche partitioning. In summary, the results show how subtle genetic variations can lead to distinct ecological strategies.

  14. Microbial Biofilm as a Smart Material

    Garde, Christian; Welch, Martin; Ferkinghoff-Borg, Jesper;

    2015-01-01

    Microbial biofilm colonies will in many cases form a smart material capable of responding to external threats dependent on their size and internal state. The microbial community accordingly switches between passive, protective, or attack modes of action. In order to decide which strategy to employ......, it is essential for the biofilm community to be able to sense its own size. The sensor designed to perform this task is termed a quorum sensor, since it only permits collective behaviour once a sufficiently large assembly of microbes have been established. The generic quorum sensor construct involves...

  15. Microbial pathogenesis and biofilm development

    Reisner, A.; Høiby, N.; Tolker-Nielsen, Tim;

    2004-01-01

    cycles of different microorganisms will eventually lead to improved treatments. Several bacteria have evolved specific strategies for virulent colonization of humans in addition to their otherwise harmless establishment as environmental inhabitants. In many such cases biofilm development seems to play a...... of polysaccharides. A recent striking finding is that DNA released from biofilm cells may be important as an initial matrix former [3]. At later times other EPS molecules may add to the shape and quality of the mature biofilm structure. Figure 1 summarizes the principle stepsinvolved in the...

  16. Biodiversity and interactions of acidophiles: Key to understanding and optimizing microbial processing of ores and concentrates

    D.B.JOHNSON

    2008-01-01

    Mining companies have become increasingly aware of the potential of microbiological approaches for recovering base and precious metals from low-grade ores,and for remediating acidic,metal-rich wastewaters that drain from both operating and abandoned mine sites.Biological systems offer a number of environmental and (sometimes) economical advantages over conventional approaches,such as pyrometallurgy,though their application is not appropriate in every situation.Mineral processing using micro-organisms has been exploited for extracting gold,copper,uranium and cobalt,and current developments are targeting other base metals.Recently,there has been a great increase in our knowledge and understanding of both the diversity of the microbiology of biomining environments,and of how the microorganisms interact with each other.The results from laboratory experiments which have simulated both stirred tank and heap bioreactor systems have shown that microbial consortia are more robust than pure cultures of mineral-oxidizing acidophiles,and also tend to be more effective at bioleaching and bio-oxidizing ores and concentrates.The paper presented a concise review of the nature and interactions of microbial consortia that are involved in the oxidation of sulfide minerals,and how these might be adapted to meet future challenges in biomining operations.

  17. Microbial Biofilms in Endodontic Infections: An Update Review

    Zahed Mohammadi; Flavio Palazzi; Luciano Giardino; Sousan Shalavi

    2013-01-01

    Biofilms and microbial aggregates are the common mechanisms for the survival of bacteria in nature. In other words, the ability to form biofilms has been regarded as a virulence factor. Microbial biofilms play an essential role in several infectious diseases such as pulp and periradicular pathosis. The aim of this article was to review the adaptation mechanisms of biofilms, their roles in pulpal and periapical pathosis, factors influencing biofilm formation, mechanisms of their antimicrobial ...

  18. Microbial Biofilms in Endodontic Infections: An Update Review

    Zahed Mohammadi

    2013-04-01

    Full Text Available Biofilms and microbial aggregates are the common mechanisms for the survival of bacteria in nature. In other words, the ability to form biofilms has been regarded as a virulence factor. Microbial biofilms play an essential role in several infectious diseases such as pulp and periradicular pathosis. The aim of this article was to review the adaptation mechanisms of biofilms, their roles in pulpal and periapical pathosis, factors influencing biofilm formation, mechanisms of their antimicrobial resistance, models developed to create biofilms, observation techniques of endodontic biofilms, and the effects of root canal irrigants and medicaments as well as lasers on endodontic biofilms. The search was performed from 1982 to December 2010, and was limited to papers in English language. The keywords searched on Medline were "biofilms and endodontics," "biofilms and root canal irrigation," "biofilms and intra-canal medicament," and "biofilms and lasers." The reference section of each article was manually searched to find other suitable sources of information.

  19. Biofilm and dental implant: The microbial link

    Sangeeta Dhir

    2013-01-01

    Full Text Available Mouth provides a congenial environment for the growth of the microorganisms as compared to any other part of the human body by exhibiting an ideal nonshedding surface. Dental plaque happens to be a diverse community of the microorganisms found on the tooth surface. Periodontal disease and the peri-implant disease are specific infections that are originating from these resident microbial species when the balance between the host and the microbial pathogenicity gets disrupted. This review discusses the biofilms in relation to the peri-implant region, factors affecting its presence, and the associated treatment to manage this complex microbial colony. Search Methodology: Electronic search of the medline was done with the search words: Implants and biofilms/dental biofilm formation/microbiology at implant abutment interface/surface free energy/roughness and implant, periimplantitis/local drug delivery and dental implant. Hand search across the journals - clinical oral implant research, implant dentistry, journal of dental research, international journal of oral implantology, journal of prosthetic dentistry, perioodntology 2000, journal of periodontology were performed. The articles included in the review comprised of in vivo studies, in vivo (animal and human studies, abstracts, review articles.

  20. MICROBIAL BIOFILMS AS INTEGRATIVE SENSORS OF ENVIRONMENTAL QUALITY

    Snyder, Richard A., Michael A. Lewis, Andreas Nocker and Joe E. Lepo. In press. Microbial Biofilms as Integrative Sensors of Environmental Quality. In: Estuarine Indicators Workshop Proceedings. CRC Press, Boca Raton, FL. 34 p. (ERL,GB 1198). Microbial biofilms are comple...

  1. Method for Studying Microbial Biofilms in Flowing-Water Systems

    Pedersen, Karsten

    1982-01-01

    A method for the study of microbial biofilms in flowing-water systems was developed with special reference to the flow conditions in electrochemical concentration cells. Seawater was circulated in a semiclosed flow system through biofilm reactors (3 cm s−1) with microscope cover slips arranged in lamellar piles parallel with the flow. At fixed time intervals cover slips with their biofilm were removed from the pile, stained with crystal violet, and mounted on microscope slides. The absorbance...

  2. [Leaching of Rare Earth Elements from Coal Ashes Using Acidophilic Chemolithotrophic Microbial Communities].

    Muravyov, M I; Bulaev, A G; Melamud, V S; Kondrat'eva, T F

    2015-01-01

    A method for leaching rare earth elements from coal ash in the presence of elemental sulfur using communities of acidophilic chemolithotrophic microorganisms was proposed. The optimal parameters determined for rare element leaching in reactors were as follows: temperature, 45 degrees C; initial pH, 2.0; pulp density, 10%; and the coal ash to elemental sulfur ratio, 10 : 1. After ten days of leaching, 52.0, 52.6, and 59.5% of scandium, yttrium, and lanthanum, respectively, were recovered. PMID:26263628

  3. Spatial & Temporal Geophysical Monitoring of Microbial Growth and Biofilm Formation

    Previous studies have examined the effect of biogenic gases and biomineralization on the acoustic properties of porous media. In this study, we investigated the spatiotemporal effect of microbial growth and biofilm formation on compressional waves and complex conductivity in sand...

  4. Extracellular DNA as matrix component in microbial biofilms

    Chiang, Wen-Chi; Tolker-Nielsen, Tim

    2010-01-01

    to various persistent infections in humans and animals, and to a variety of complications in industry, where solid–water interfaces occur. Knowledge about the molecular mechanisms involved in biofilm formation is necessary for creating strategies to control biofilms. Recent studies have shown that......Bacteria in nature primarily live in surface-associated communities commonly known as biofilms. Because bacteria in biofilms, in many cases, display tolerance to host immune systems, antibiotics, and biocides, they are often difficult or impossible to eradicate. Biofilm formation, therefore, leads...... extracellular DNA is an important component of the extracellular matrix of microbial biofilms. The present chapter is focussed on extracellular DNA as matrix component in biofilms formed by Pseudomonas aeruginosa as an example from the Gram-negative bacteria, and Streptococcus and Staphylococcus as examples...

  5. Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community

    Parro Víctor

    2010-06-01

    Full Text Available Abstract Background Extreme acidic environments are characterized by their high metal content and lack of nutrients (oligotrophy. Macroscopic biofilms and filaments usually grow on the water-air interface or under the stream attached to solid substrates (streamers. In the Río Tinto (Spain, brown filaments develop under the water stream where the Gram-negative iron-oxidizing bacteria Leptospirillum spp. (L. ferrooxidans and L. ferriphilum and Acidithiobacillus ferrooxidans are abundant. These microorganisms play a critical role in bioleaching processes for industrial (biominery and environmental applications (acid mine drainage, bioremediation. The aim of this study was to investigate the physiological differences between the free living (planktonic and the sessile (biofilm associated lifestyles of Leptospirillum spp. as part of its natural extremely acidophilic community. Results Total RNA extracted from environmental samples was used to determine the composition of the metabolically active members of the microbial community and then to compare the biofilm and planktonic environmental transcriptomes by hybridizing to a genomic microarray of L. ferrooxidans. Genes up-regulated in the filamentous biofilm are involved in cellular functions related to biofilm formation and maintenance, such as: motility and quorum sensing (mqsR, cheAY, fliA, motAB, synthesis of cell wall structures (lnt, murA, murB, specific proteases (clpX/clpP, stress response chaperons (clpB, clpC, grpE-dnaKJ, groESL, etc. Additionally, genes involved in mixed acid fermentation (poxB, ackA were up-regulated in the biofilm. This result, together with the presence of small organic acids like acetate and formate (1.36 mM and 0.06 mM respectively in the acidic (pH 1.8 water stream, suggests that either L. ferrooxidans or other member of the microbial community are producing acetate in the acidophilic biofilm under microaerophilic conditions. Conclusions Our results indicate that the

  6. The biofilm ecology of microbial biofouling, biocide resistance and corrosion

    White, D.C. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology]|[Oak Ridge National Lab., TN (United States). Environmental Science Div.; Kirkegaard, R.D.; Palmer, R.J. Jr.; Flemming, C.A.; Chen, G.; Leung, K.T.; Phiefer, C.B. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology; Arrage, A.A. [Univ. of Tennessee, Knoxville, TN (United States). Center for Environmental Biotechnology]|[Microbial Insights, Inc., Rockford, TN (United States)

    1997-06-01

    In biotechnological or bioremediation processes it is often the aim to promote biofilm formation, and maintain active, high density biomass. In other situations, biofouling can seriously restrict effective heat transport, membrane processes, and potentate macrofouling with loss of transportation efficiency. In biotechnological or bioremediation processes it is often the aim to promote biofilm formation, and maintain active, high density biomass. In other situations, biofouling can seriously restrict effective heat transport, membrane processes, and potentate macrofouling with loss of transportation efficiency. Heterogeneous distribution of microbes and/or their metabolic activity can promote microbially influenced corrosion (MIC) which is a multibillion dollar problem. Consequently, it is important that biofilm microbial ecology be understood so it can be manipulated rationally. It is usually simple to select organisms that form biofilms by flowing a considerably dilute media over a substratum, and propagating the organisms that attach. To examine the biofilm most expeditiously, the biomass accumulation, desquamation, and metabolic activities need to be monitored on-line and non-destructively. This on-line monitoring becomes even more valuable if the activities can be locally mapped in time and space within the biofilm. Herein the authors describe quantitative measures of microbial biofouling, the ecology of pathogens in drinking water distributions systems, and localization of microbial biofilms and activities with localized MIC.

  7. Microbiële biofilms in tandheelkunde

    B.P. Krom

    2015-01-01

    Aangehechte gemeenschappen van micro-organismen, ook wel biofilms genoemd, zijn altijd en overal aanwezig. Hoewel biofilms een slechte naam hebben, zijn ze meestal natuurlijk, gezond en zelfs gewenst. In de mondzorgpraktijk komen zowel gezonde (orale biofilms) als ongezonde (bijv. in de waterleiding

  8. Microbiële biofilms in tandheelkunde

    B.P. Krom

    2015-01-01

    Aangehechte gemeenschappen van micro-organismen, ook wel biofilms genoemd, zijn altijd en overal aanwezig. Hoewel biofilms een slechte naam hebben, zijn ze meestal natuurlijk, gezond en zelfs gewenst. In de tandartspraktijk komen zowel gezonde (orale biofilms) als ongezonde (bijv. in de waterleiding

  9. Microbial biofilm structure and organic matter use in mediterranean streams

    Romaní i Cornet, Anna M.; Amalfitano, Stefano; Artigas Alejo, Joan; Fazi, Stefano; Sabater, Sergi; Timoner Amer, Xisca; Ylla i Monfort, Irene; Zoppini, Annamaria

    2013-01-01

    River and stream biofilms in mediterranean fluvial ecosystems face both extreme seasonality as well as arrhythmic fluctuations. The hydrological extremes (droughts and floods) impose direct changes in water availability but also in the quantity and quality of organic matter and nutrients that sustain the microbial growth. This review analyzes how these ecological pulses might determine unique properties of biofilms developing in mediterranean streams. The paper brings together data from heter...

  10. Microbial fuel cell based on Klebsiella pneumoniae biofilm

    Zhang, Lixia [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Zhou, Shungui; Zhuang, Li; Zhang, Jintao; Lu, Na; Deng, Lifang [Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou 510650 (China); Li, Weishan [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006 (China)

    2008-10-15

    In this paper we reported a novel microbial fuel cell (MFC) based on Klebsiella pneumoniae (K. pneumoniae) strain L17 biofilm, which can utilize directly starch and glucose to generate electricity. The electrochemical activity of K. pneumoniae and the performance of the MFC were evaluated by cyclic voltammetry, scanning electron microscope (SEM) and polarization curve measurement. The results indicated that an established K. pneumoniae biofilm cells were responsible for the direct electron transfer from fuels to electrode during electricity production. The SEM observation proved the ability of K. pneumoniae to colonize on the electrode surface. This MFC generated power from the direct electrocatalysis by the K. pneumoniae strain L17 biofilm. (author)

  11. Microbial biofilm study by synchrotron X-ray microscopy

    Pennafirme, S.; Lima, I.; Bitencourt, J. A.; Crapez, M. A. C.; Lopes, R. T.

    2015-11-01

    Microbial biofilm has already being used to remove metals and other pollutants from wastewater. In this sense, our proposal was to isolate and cultivate bacteria consortia from mangrove's sediment resistant to Zn (II) and Cu (II) at 50 mg L-1 and to observe, through synchrotron X-ray fluorescence microscopy (microXRF), whether the biofilm sequestered the metal. The biofilm area analyzed was 1 mm2 and a 2D map was generated (pixel size 20×20 μm2, counting time 5 s/point). The biofilm formation and retention followed the sequence Zn>Cu. Bacterial consortium zinc resistant formed dense biofilm and retained 63.83% of zinc, while the bacterial consortium copper resistant retained 3.21% of copper, with lower biofilm formation. Dehydrogenase activity of Zn resistant bacterial consortium was not negatively affect by 50 mg ml-1 zinc input, whereas copper resistant bacterial consortium showed a significant decrease on dehydrogenase activity (50 mg mL-1 of Cu input). In conclusion, biofilm may protect bacterial cells, acting as barrier against metal toxicity. The bacterial consortia Zn resistant, composed by Nitratireductor spp. and Pseudomonas spp formed dense biofilm and sequestered metal from water, decreasing the metal bioavailability. These bacterial consortia can be used in bioreactors and in bioremediation programs.

  12. Laser Microbial Killing and Biofilm Disruption

    Krespi, Yosef P.; Kizhner, Victor

    2009-06-01

    Objectives: To analyze the ability of NIR lasers to reduce bacterial load and demonstrate the capability of fiber-based Q-switched Nd:YAG laser disrupting biofilm. Study Design: NIR diode laser was tested in vitro and in vivo using pathogenic microorganisms (S. aureus, S. pneumoniae, P. aeruginosa). In addition biofilms were grown from clinical Pseudomonas isolates and placed in culture plates, screws, tympanostomy tubes and PET sutures. Methods: In the animal experiments acute rhinosinusitis model was created by packing the rabbit nose with bacteria soaked solution. The nasal pack was removed in two days and nose was exposed to laser irradiation. A 940 nm diode laser with fiber diffuser was used. Nasal cultures were obtained before and after the laser treatments. Animals were sacrificed fifteen days following laser treatment and bacteriologic/histologic results analyzed. Q-switched Nd:YAG laser generated shockwave pulses were delivered on biofilm using special probes over culture plates, screws, tubes, and PET sutures for the biofilm experiments. Results: Average of two log bacteria reduction was achieved with NIR laser compared to controls. Histologic studies demonstrated preservation of tissue integrity without significant damage to mucosa. Biofilms were imaged before, during and after treatment using a confocal microscope. During laser-generated shockwave application, biofilm was initially seen to oscillate and eventually break off. Large and small pieces of biofilm were totally and instantly removed from the surface to which they were attached in seconds. Conclusions: Significant bacterial reduction was achieved with NIR laser therapy in this experimental in vitro and animal study. In addition we disrupted Pseudomonas aeruginosa biofilms using Q-switched Nd:YAG laser and special probes generating plasma and shockwave. This new and innovative method of bacteria killing and biofilm disruption without injuring host tissue may have clinical application in the

  13. Model-based evaluation of ferrous iron oxidation by acidophilic bacteria in chemostat and biofilm airlift reactors.

    Ebrahimi, Sirous; Faraghi, Neda; Hosseini, Maryam

    2015-10-01

    This article presents a model-based evaluation of ferrous iron oxidation in chemostat and biofilm airlift reactors inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria. The competition between the two types of bacteria in the chemostat and in the biofilm airlift reactors together with the distribution of both bacteria along the biofilm thickness at different time sections has been studied. The bacterial distribution profiles along the biofilm in the airlift reactor at different time scales show that in the beginning A. ferrooxidans bacteria are dominant, but when the reactor operates for a long time the desirable L. ferrooxidans species outcompete A. ferrooxidans as a result of the low Fe(2+) and high Fe(3+) concentrations. The results obtained from the simulation were compared with the experimental data of continuously operated internal loop airlift biofilm reactor. The model results are in good agreement with the experimental results. PMID:26264929

  14. Essential factors of an integrated moving bed biofilm reactor-membrane bioreactor: Adhesion characteristics and microbial community of the biofilm.

    Tang, Bing; Yu, Chunfei; Bin, Liying; Zhao, Yiliang; Feng, Xianfeng; Huang, Shaosong; Fu, Fenglian; Ding, Jiewei; Chen, Cuiqun; Li, Ping; Chen, Qianyu

    2016-07-01

    This work aims at revealing the adhesion characteristics and microbial community of the biofilm in an integrated moving bed biofilm reactor-membrane bioreactor, and further evaluating their variations over time. With multiple methods, the adhesion characteristics and microbial community of the biofilm on the carriers were comprehensively illuminated, which showed their dynamic variation along with the operational time. Results indicated that: (1) the roughness of biofilm on the carriers increased very quickly to a maximum value at the start-up stage, then, decreased to become a flat curve, which indicated a layer of smooth biofilm formed on the surface; (2) the tightly-bound protein and polysaccharide was the most important factor influencing the stability of biofilm; (3) the development of biofilm could be divided into three stages, and Gammaproteobacteria were the most dominant microbial species in class level at the last stage, which occupied the largest ratio (51.48%) among all microbes. PMID:27038266

  15. [Effect of temperature on the rate of oxidation of pyrrhotite-rich sulfide ore flotation concentrate and the structure of the acidophilic chemolithoautotrophic microbial community].

    Moshchanetskii, P V; Pivovarova, T A; Belyi, A V; Kondrat'eva, T F

    2014-01-01

    Oxidation of flotation concentrate of a pyrrhotite-rich sulfide ore by acidophilic chemolithoautotrophic microbial communities at 35, 40, and 45 degrees C was investigated. According to the physicochemical parameters of the liquid phase of the pulp, as well as the results of analysis of the solid residue after biooxidation and cyanidation, the community developed at 40 degrees C exhibited the highest rate of oxidation. The degree of gold recovery at 35, 40, and 45 degrees C was 89.34, 94.59, and 83.25%, respectively. At 40 degrees C, the highest number of microbial cells (6.01 x 10(9) cells/mL) was observed. While temperature had very little effect on the species composition of microbial communities, except for the absence of Leptospirillum ferriphilum at 35 degrees C, the shares of individual species in the communities varied with temperature. Relatively high numbers of Sulfobacillus thermosulfidooxidans, the organism oxidizing iron and elemental sulfur at higher rates than other acidophilic chemolithotrophic species, were observed at 40 degrees C. PMID:25844443

  16. High-throughput metal susceptibility testing of microbial biofilms

    Turner Raymond J

    2005-10-01

    Full Text Available Abstract Background Microbial biofilms exist all over the natural world, a distribution that is paralleled by metal cations and oxyanions. Despite this reality, very few studies have examined how biofilms withstand exposure to these toxic compounds. This article describes a batch culture technique for biofilm and planktonic cell metal susceptibility testing using the MBEC assay. This device is compatible with standard 96-well microtiter plate technology. As part of this method, a two part, metal specific neutralization protocol is summarized. This procedure minimizes residual biological toxicity arising from the carry-over of metals from challenge to recovery media. Neutralization consists of treating cultures with a chemical compound known to react with or to chelate the metal. Treated cultures are plated onto rich agar to allow metal complexes to diffuse into the recovery medium while bacteria remain on top to recover. Two difficulties associated with metal susceptibility testing were the focus of two applications of this technique. First, assays were calibrated to allow comparisons of the susceptibility of different organisms to metals. Second, the effects of exposure time and growth medium composition on the susceptibility of E. coli JM109 biofilms to metals were investigated. Results This high-throughput method generated 96-statistically equivalent biofilms in a single device and thus allowed for comparative and combinatorial experiments of media, microbial strains, exposure times and metals. By adjusting growth conditions, it was possible to examine biofilms of different microorganisms that had similar cell densities. In one example, Pseudomonas aeruginosa ATCC 27853 was up to 80 times more resistant to heavy metalloid oxyanions than Escherichia coli TG1. Further, biofilms were up to 133 times more tolerant to tellurite (TeO32- than corresponding planktonic cultures. Regardless of the growth medium, the tolerance of biofilm and planktonic

  17. Microbial biofilm growth on irradiated, spent nuclear fuel cladding

    A fundamental criticism regarding the potential for microbial influenced corrosion in spent nuclear fuel cladding or storage containers concerns whether the required microorganisms can, in fact, survive radiation fields inherent in these materials. This study was performed to unequivocally answer this critique by addressing the potential for biofilm formation, the precursor to microbial-influenced corrosion, in radiation fields representative of spent nuclear fuel storage environments. This study involved the formation of a microbial biofilm on irradiated spent nuclear fuel cladding within a hot cell environment. This was accomplished by introducing 22 species of bacteria, in nutrient-rich media, to test vessels containing irradiated cladding sections and that was then surrounded by radioactive source material. The overall dose rate exceeded 2 Gy/h gamma/beta radiation with the total dose received by some of the bacteria reaching 5 x 103 Gy. This study provides evidence for the formation of biofilms on spent-fuel materials, and the implication of microbial influenced corrosion in the storage and permanent deposition of spent nuclear fuel in repository environments

  18. Sponge larval settlement cues: the role of microbial biofilms in a warming ocean

    S. Whalan; Webster, N. S.

    2014-01-01

    Microbial biofilms play important roles in initiating settlement of marine invertebrate larvae. Given the importance of habitat selection by the motile larval phase, understanding settlement choices is critical if we are to successfully predict the population dynamics of sessile adults. Marine microbial biofilms show remarkable variability in community composition, often mediated by environmental conditions and biofilm age. To determine if biofilm communities were influenced by the time allow...

  19. Changes in Microbial Biofilm Communities during Colonization of Sewer Systems.

    Auguet, O; Pijuan, M; Batista, J; Borrego, C M; Gutierrez, O

    2015-10-01

    The coexistence of sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) in anaerobic biofilms developed in sewer inner pipe surfaces favors the accumulation of sulfide (H2S) and methane (CH4) as metabolic end products, causing severe impacts on sewerage systems. In this study, we investigated the time course of H2S and CH4 production and emission rates during different stages of biofilm development in relation to changes in the composition of microbial biofilm communities. The study was carried out in a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer using a combination of process data and molecular techniques (e.g., quantitative PCR [qPCR], denaturing gradient gel electrophoresis [DGGE], and 16S rRNA gene pyrotag sequencing). After 2 weeks of biofilm growth, H2S emission was notably high (290.7±72.3 mg S-H2S liter(-1) day(-1)), whereas emissions of CH4 remained low (17.9±15.9 mg COD-CH4 liter(-1) day(-1)). This contrasting trend coincided with a stable SRB community and an archaeal community composed solely of methanogens derived from the human gut (i.e., Methanobrevibacter and Methanosphaera). In turn, CH4 emissions increased after 1 year of biofilm growth (327.6±16.6 mg COD-CH4 liter(-1) day(-1)), coinciding with the replacement of methanogenic colonizers by species more adapted to sewer conditions (i.e., Methanosaeta spp.). Our study provides data that confirm the capacity of our laboratory experimental system to mimic the functioning of full-scale sewers both microbiologically and operationally in terms of sulfide and methane production, gaining insight into the complex dynamics of key microbial groups during biofilm development. PMID:26253681

  20. Biofilm and dental implant: The microbial link

    Sangeeta Dhir

    2013-01-01

    Mouth provides a congenial environment for the growth of the microorganisms as compared to any other part of the human body by exhibiting an ideal nonshedding surface. Dental plaque happens to be a diverse community of the microorganisms found on the tooth surface. Periodontal disease and the peri-implant disease are specific infections that are originating from these resident microbial species when the balance between the host and the microbial pathogenicity gets disrupted. This review discu...

  1. [Biofilm on a metal surface as a factor of microbial corrosion].

    Borets'ka, M O; Kozlova, I P

    2010-01-01

    Main attention was given in the present review to the research methods, phases of biofilm's forming, exopolymer compounds of bacteria as main biofilm forming factor. A microbial corrosion as a result of interaction between the biofilm and metal surface was considered. The interaction was displayed in biomineralization. The future trends of biofilms study were bound with research of their architecture. That architecture was determined by the structure and function of biofilms compounds: biopolymers and biominerals. PMID:20695231

  2. Molecular Analysis of Microbial Communities in Endotracheal Tube Biofilms

    Cairns, Scott; Thomas, John Gilbert; Hooper, Samuel James; Wise, Matthew Peter; Frost, Paul John; Wilson, Melanie Julia; Lewis, Michael Alexander Oxenham; Williams, David Wynne

    2011-01-01

    Background Ventilator-associated pneumonia is the most prevalent acquired infection of patients on intensive care units and is associated with considerable morbidity and mortality. Evidence suggests that an improved understanding of the composition of the biofilm communities that form on endotracheal tubes may result in the development of improved preventative strategies for ventilator-associated pneumonia. Methodology/Principal Findings The aim of this study was to characterise microbial bio...

  3. Preface for the microbial biofilm issue

    Wen-yuan Shi; Xue-dong Zhou

    2011-01-01

    @@ Ever since the first discovery of bacteria over 400 years ago by van LeeuwenhoeK,reductionism has been used by microbiologists as they analyzed small components of individually isolated bacteria to try and understand the whole.Powered by molecular biology and genomics,modern microbiologists have realized that the whole is more than the simple sum of its parts."System thinking"and"holism"have led microbiologists from studying individual cells to examining complex communities.Biofilm research is at the center stage of this exciting new revolution!

  4. INVESTIGATING THE EFFECT OF MICROBIAL GROWTH AND BIOFILM FORMATION ON SEISMIC WAVE PROPAGATION IN SEDIMENT

    Previous laboratory investigations have demonstrated that the seismic methods are sensitive to microbially-induced changes in porous media through the generation of biogenic gases and biomineralization. The seismic signatures associated with microbial growth and biofilm formation...

  5. Acoustic and Electrical Property Changes Due to Microbial Growth and Biofilm Formation in Porous Media

    A laboratory study was conducted to investigate the effect of microbial growth and biofilm formation on compressional waves, and complex conductivity during stimulated microbial growth. Over the 29 day duration of the experiment, compressional wave amplitudes and arrival times f...

  6. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community

    Xue, Zheng

    2014-07-15

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community. © 2014 © 2014 Taylor & Francis.

  7. Membrane biofouling characterization: effects of sample preparation procedures on biofilm structure and the microbial community.

    Xue, Zheng; Lu, Huijie; Liu, Wen-Tso

    2014-01-01

    Ensuring the quality and reproducibility of results from biofilm structure and microbial community analysis is essential to membrane biofouling studies. This study evaluated the impacts of three sample preparation factors (ie number of buffer rinses, storage time at 4°C, and DNA extraction method) on the downstream analysis of nitrifying biofilms grown on ultrafiltration membranes. Both rinse and storage affected biofilm structure, as suggested by their strong correlation with total biovolume, biofilm thickness, roughness and the spatial distribution of EPS. Significant variations in DNA yields and microbial community diversity were also observed among samples treated by different rinses, storage and DNA extraction methods. For the tested biofilms, two rinses, no storage and DNA extraction with both mechanical and chemical cell lysis from attached biofilm were the optimal sample preparation procedures for obtaining accurate information about biofilm structure, EPS distribution and the microbial community. PMID:25115516

  8. Microbial fuel cell based on electroactive sulfate-reducing biofilm

    Highlights: ► Regulation and management of electricity generation by variation of residence time. ► Design of microbial fuel cell based on electroactive biofilm on zeolite. ► Engineering solution for removing of the obtained elemental sulfur. - abstract: A two chambered laboratory scale microbial fuel cell (MFC) has been developed, based on natural sulfate-reducing bacterium consortium in electroactive biofilm on zeolite. The MFC utilizes potassium ferricyanide in the cathode chamber as an electron acceptor that derives electrons from the obtained in anode chamber H2S. The molecular oxygen is finally used as a terminal electron acceptor at cathode compartment. The generated power density was 0.68 W m−2 with current density of 3.2 A m−2 at 150 Ω electrode resistivity. The hydrogen sulfide itself is produced by microbial dissimilative sulfate reduction process by utilizing various organic substrates. Finally, elemental sulfur was identified as the predominant final oxidation product in the anode chamber. It was removed from MFC through medium circulation and gathering in an external tank. This report reveals dependence relationship between the progress of general electrochemical parameters and bacterial sulfate-reduction rate. The presented MFC design can be used for simultaneous sulfate purification of mining drainage wastewater and generation of renewable electricity

  9. Anti-microbial and anti-biofilm compounds from Indonesian medicinal plants

    Pratiwi, Sylvia U.T.

    2015-01-01

    Microbial biofilms causing elevated resistance to both most anti-microbial drugs and the host defense systems, which often results in persistent and difficult-to-treat infections. The discovery of anti-infective agents which are active against planktonic and biofilm microorganisms are therefore urgently required to deal with these biofilm-mediated infections. Plants are a rich source of new molecules with pharmacological properties for the development of new drugs. Indonesia is one of the cou...

  10. Biofilm removal technique using sands as a research tool for accessing microbial attachment on surface

    Nathanon Trachoo

    2004-01-01

    Biofilms have profound impacts on improved survival of the constituent microorganisms in nature. Biofilms were believed to protect constituent microorganisms from sanitizer treatment, provide a more suitable habitat for microorganisms, and become a site for genetic material exchanges between microorganisms. As we realize more about the significance of biofilm, methods used for biofilm study should be consistently developed and evaluated. To determine microbial attachment on surfaces, usually ...

  11. Factors Regulating Microbial Biofilm Development in a System with Slowly Flowing Seawater

    Pedersen, Karsten

    1982-01-01

    Microbial biofilm development was followed under growth conditions similar to those of a projected salinity power plant. Microscope glass cover slips were piled in biofilm reactors to imitate the membrane stacks in such a plant. A staining technique closely correlating absorbance values with biofilm dry weight was used for the study. Generally, the biofilms consisted of solitary and filamentous bacteria which were evenly distributed with considerable amounts of various protozoa and entrapped ...

  12. Uncovering a microbial enigma: isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium "Ferrovum myxofaciens".

    Johnson, D Barrie; Hallberg, Kevin B; Hedrich, Sabrina

    2014-01-01

    A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of "acid streamer" growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified "overlay" solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine ("Ferrovum myxofaciens" strain P3G) have been elucidated. "F. myxofaciens" is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. "F. myxofaciens" can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. "F. myxofaciens" and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of "F. myxofaciens" and other Betaproteobacteria, a new family, "Ferrovaceae," and order, "Ferrovales," within the class Betaproteobacteria are proposed. "F. myxofaciens" is the first extreme acidophile to be described in the class Betaproteobacteria. PMID:24242243

  13. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes

    Stainless steel and graphite electrodes were individually addressed and polarized at -0.60 V vs. Ag/AgCl in reactors filled with a growth medium that contained 25 mM fumarate as the electron acceptor and no electron donor, in order to force the microbial cells to use the electrode as electron source. When the reactor was inoculated with Geobacter sulfurreducens, the current increased and stabilized at average values around 0.75 A m-2 for graphite and 20.5 A m-2 for stainless steel. Cyclic voltammetry performed at the end of the experiment indicated that the reduction started at around -0.30 V vs. Ag/AgCl on stainless steel. Removing the biofilm formed on the electrode surface made the current totally disappear, confirming that the G.sulfurreducens biofilm was fully responsible for the electrocatalysis of fumarate reduction. Similar current densities were recorded when the electrodes were polarized after being kept in open circuit for several days. The reasons for the bacteria presence and survival on non-connected stainless steel coupons were discussed. Chronoamperometry experiments performed at different potential values suggested that the biofilm-driven catalysis was controlled by electrochemical kinetics. The high current density obtained, quite close to the redox potential of the fumarate/succinate couple, presents stainless steel as a remarkable material to support biocathodes

  14. Biofilm

    Kvíderová, Jana

    Berlin: Springer, 2015 - (Amils, R.; Gargaud, M.; Cernicharo Quintanilla, J.; James Claves, H.; Irvine, W.; Pinti, D.; Viso, M.), s. 1-3 ISBN 978-3-642-27833-4 Institutional support: RVO:67985939 Keywords : biofilm * microbial mat * astrobiology Subject RIV: EF - Botanics

  15. Microbial growth and biofilm formation in geologic media is detected with complex conductivity measurements

    Davis, Caroline A.; Atekwana, Estella; Atekwana, Eliot; Slater, Lee D.; Rossbach, Silvia; Mormile, Melanie R.

    2006-09-01

    Complex conductivity measurements (0.1-1000 Hz) were obtained from biostimulated sand-packed columns to investigate the effect of microbial growth and biofilm formation on the electrical properties of porous media. Microbial growth was verified by direct microbial counts, pH measurements, and environmental scanning electron microscope imaging. Peaks in imaginary (interfacial) conductivity in the biostimulated columns were coincident with peaks in the microbial cell concentrations extracted from sands. However, the real conductivity component showed no discernible relationship to microbial cell concentration. We suggest that the observed dynamic changes in the imaginary conductivity (σ″) arise from the growth and attachment of microbial cells and biofilms to sand surfaces. We conclude that complex conductivity techniques, specifically imaginary conductivity measurements are a proxy indicator for microbial growth and biofilm formation in porous media. Our results have implications for microbial enhanced oil recovery, CO2 sequestration, bioremediation, and astrobiology studies.

  16. Probing of microbial biofilm communities for coadhesion partners.

    Ruhl, Stefan; Eidt, Andreas; Melzl, Holger; Reischl, Udo; Cisar, John O

    2014-11-01

    Investigations of interbacterial adhesion in dental plaque development are currently limited by the lack of a convenient assay to screen the multitude of species present in oral biofilms. To overcome this limitation, we developed a solid-phase fluorescence-based screening method to detect and identify coadhesive partner organisms in mixed-species biofilms. The applicability of this method was demonstrated using coaggregating strains of type 2 fimbrial adhesin-bearing actinomyces and receptor polysaccharide (RPS)-bearing streptococci. Specific adhesin/receptor-mediated coadhesion was detected by overlaying bacterial strains immobilized to a nitrocellulose membrane with a suspended, fluorescein-labeled bacterial partner strain. Coadhesion was comparable regardless of which cell type was labeled and which was immobilized. Formaldehyde treatment of bacteria, either in suspension or immobilized on nitrocellulose, abolished actinomyces type 2 fimbrial adhesin but not streptococcal RPS function, thereby providing a simple method for assigning complementary adhesins and glycan receptors to members of a coadhering pair. The method's broader applicability was shown by overlaying colony lifts of dental plaque biofilm cultures with fluorescein-labeled strains of type 2 fimbriated Actinomyces naeslundii or RPS-bearing Streptococcus oralis. Prominent coadhesion partners included not only streptococci and actinomyces, as expected, but also other bacteria not identified in previous coaggregation studies, such as adhesin- or receptor-bearing strains of Neisseria pharyngitis, Rothia dentocariosa, and Kingella oralis. The ability to comprehensively screen complex microbial communities for coadhesion partners of specific microorganisms opens a new approach in studies of dental plaque and other mixed-species biofilms. PMID:25107971

  17. Characterization, Microbial Community Structure, and Pathogen Occurrence in Urban Faucet Biofilms in South China

    Huirong Lin

    2015-01-01

    Full Text Available The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid were observed. CLSM (confocal laser scanning microscope revealed different distributions of attached cells, extracellular proteins, α-polysaccharides, and β-polysaccharides. The biofilms had complex bacterial compositions. Differences in bacteria diversity and composition from different tap materials and ages were observed. Proteobacteria was the common and predominant group in all biofilms samples. Some potential pathogens (Legionellales, Enterobacteriales, Chromatiales, and Pseudomonadales and corrosive microorganisms were also found in the biofilms. This study provides the information of characterization and visualization of the drinking water biofilms matrix, as well as the microbial community structure and opportunistic pathogens occurrence.

  18. Microbial Biofilm Community Variation in Flowing Habitats: Potential Utility as Bioindicators of Postmortem Submersion Intervals

    Jennifer M. Lang; Racheal Erb; Jennifer L. Pechal; Wallace, John R.; Ryan W. McEwan; Mark Eric Benbow

    2016-01-01

    Biofilms are a ubiquitous formation of microbial communities found on surfaces in aqueous environments. These structures have been investigated as biomonitoring indicators for stream heath, and here were used for the potential use in forensic sciences. Biofilm successional development has been proposed as a method to determine the postmortem submersion interval (PMSI) of remains because there are no standard methods for estimating the PMSI and biofilms are ubiquitous in aquatic habitats. We s...

  19. How to Study Biofilms after Microbial Colonization of Materials Used in Orthopaedic Implants

    Drago, Lorenzo; Agrappi, Serse; Bortolin, Monica; Toscano, Marco; Romanò, Carlo Luca; De Vecchi, Elena

    2016-01-01

    Over the years, various techniques have been proposed for the quantitative evaluation of microbial biofilms. Spectrophotometry after crystal violet staining is a widespread method for biofilm evaluation, but several data indicate that it does not guarantee a good specificity, although it is rather easy to use and cost saving. Confocal laser microscopy is one of the most sensitive and specific tools to study biofilms, and it is largely used for research. However, in some cases, no quantitative...

  20. In situ environment rather than substrate type dictates microbial community structure of biofilms in a cold seep system

    Lee, O.O.

    2014-01-08

    Using microscopic and molecular techniques combined with computational analysis, this study examined the structure and composition of microbial communities in biofilms that formed on different artificial substrates in a brine pool and on a seep vent of a cold seep in the Red Sea to test our hypothesis that initiation of the biofilm formation and spreading mode of microbial structures differs between the cold seep and the other aquatic environments. Biofilms on different substrates at two deployment sites differed morphologically, with the vent biofilms having higher microbial abundance and better structural features than the pool biofilms. Microbes in the pool biofilms were more taxonomically diverse and mainly composed of various sulfate-reducing bacteria whereas the vent biofilms were exclusively dominated by sulfur-oxidizing Thiomicrospira. These results suggest that the redox environments at the deployment sites might have exerted a strong selection on microbes in the biofilms at two sites whereas the types of substrates had limited effects on the biofilm development.

  1. Microbial endolithic biofilms: a means of surviving the harsh conditions of the Antarctic

    de Los Ríos, Asunción; Wierzchos, Jacek; Sancho, Leopoldo G.; Grube, Martín; Ascaso, Carmen

    2002-11-01

    Much of the Antarctic continent's microbiota is restricted to endolithic microecosystems which harbour distinct microbial communities as biofilms. The lithic substrate and the microorganisms comprising these films are intimately linked, giving rise to complex mineral-microbe interactions. The Antarctic biofilms analysed in this study were characterised by the presence of extracellular polymer substances. Cyanobacteria appeared as key components of these biofilms in zones where there were no nearby lichen thalli. Fungal cells were the predominant organisms in areas inhabited by epilithic lichens. The combined use of microscopy and molecular techniques enabled the identification of the different biological components of biofilms found in subsurface layers of the lighic substrate. It is proposed that in this extreme environment, the structure of the biofilm may favour the formation of microsites with specific physicochemical conditions that permit the survival of microbial communities.

  2. Assessment of Heterotrophic Growth Supported by Soluble Microbial Products in Anammox Biofilm using Multidimensional Modeling

    Liu, Yiwen; Sun, Jing; Peng, Lai; Wang, Dongbo; Dai, Xiaohu; Ni, Bing-Jie

    2016-01-01

    Anaerobic ammonium oxidation (anammox) is known to autotrophically convert ammonium to dinitrogen gas with nitrite as the electron acceptor, but little is known about their released microbial products and how these are relative to heterotrophic growth in anammox system. In this work, we applied a mathematical model to assess the heterotrophic growth supported by three key microbial products produced by bacteria in anammox biofilm (utilization associated products (UAP), biomass associated products (BAP), and decay released substrate). Both One-dimensional and two-dimensional numerical biofilm models were developed to describe the development of anammox biofilm as a function of the multiple bacteria–substrate interactions. Model simulations show that UAP of anammox is the main organic carbon source for heterotrophs. Heterotrophs are mainly dominant at the surface of the anammox biofilm with small fraction inside the biofilm. 1-D model is sufficient to describe the main substrate concentrations/fluxes within the anammox biofilm, while the 2-D model can give a more detailed biomass distribution. The heterotrophic growth on UAP is mainly present at the outside of anammox biofilm, their growth on BAP (HetB) are present throughout the biofilm, while the growth on decay released substrate (HetD) is mainly located in the inner layers of the biofilm. PMID:27273460

  3. Microbial analysis of anodic biofilm in a microbial fuel cell using slaughterhouse wastewater.

    Katuri, Krishna P; Enright, Ann-Marie; O'Flaherty, Vincent; Leech, Dónal

    2012-10-01

    The ability of dual-chambered microbial fuel cell, fed with slaughterhouse wastewater with an anaerobic mixed-sludge as initial source of bacteria, to generate power is investigated. MFC voltage generation across a fixed 100 Ω load indicates power generation capability, with power production correlated to changes in anolyte VFA content. A maximum MFC power density of 578 mW/m(2) is obtained for an MFC developed under 100 Ω load, compared to a maximum power density of 277 mW/m(2) for an MFC developed under higher resistance (1 MΩ) control conditions. Voltammetry of the biofilm developed under 100 Ω load displays a current-voltage signal indicative of bioelectrocatalytic oxidation of feed at a potential of -0.35 V vs. Ag/AgCl, compared to negligible signals for biofilms developed under control conditions. Denaturing gradient gel electrophoresis of PCR amplified 16S rRNA gene fragments reveals that the anodic bacterial communities in reactors operated under 100 Ω load result in communities of lower diversity than for the control condition, with Geovibrio ferrireducens dominant in the anodic biofilm community. These results indicate that in MFC reactors, functionally stable electroactive bacteria are enriched under 100 Ω load compared to high resistance control conditions, and were able to sustain higher power in MFCs. PMID:22226620

  4. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures.

    Vázquez-Nion, D; Rodríguez-Castro, J; López-Rodríguez, M C; Fernández-Silva, I; Prieto, B

    2016-07-01

    Microbial communities of natural subaerial biofilms developed on granitic historic buildings of a World Heritage Site (Santiago de Compostela, NW Spain) were characterized and cultured in liquid BG11 medium. Environmental barcoding through next-generation sequencing (Pacific Biosciences) revealed that the biofilms were mainly composed of species of Chlorophyta (green algae) and Ascomycota (fungi) commonly associated with rock substrata. Richness and diversity were higher for the fungal than for the algal assemblages and fungi showed higher heterogeneity among samples. Cultures derived from natural biofilms showed the establishment of stable microbial communities mainly composed of Chlorophyta and Cyanobacteria. Although most taxa found in these cultures were not common in the original biofilms, they are likely common pioneer colonizers of building stone surfaces, including granite. Stable phototrophic multi-species cultures of known microbial diversity were thus obtained and their reliability to emulate natural colonization on granite should be confirmed in further experiments. PMID:27192622

  5. Evaluation on the microbial interactions of anaerobic ammonium oxidizers and heterotrophs in Anammox biofilm

    Ni, Bing-Jie; Ruscalleda, Mael; Smets, Barth F.

    2012-01-01

    Anaerobic ammonium oxidation (Anammox) is a cost-effective new process to treat high-strength nitrogenous wastewater. In this work, the microbial interactions of anaerobic ammonium oxidizers and heterotrophs through the exchange of soluble microbial products (SMP) in Anammox biofilm and the affec...

  6. How to Study Biofilms after Microbial Colonization of Materials Used in Orthopaedic Implants.

    Drago, Lorenzo; Agrappi, Serse; Bortolin, Monica; Toscano, Marco; Romanò, Carlo Luca; De Vecchi, Elena

    2016-01-01

    Over the years, various techniques have been proposed for the quantitative evaluation of microbial biofilms. Spectrophotometry after crystal violet staining is a widespread method for biofilm evaluation, but several data indicate that it does not guarantee a good specificity, although it is rather easy to use and cost saving. Confocal laser microscopy is one of the most sensitive and specific tools to study biofilms, and it is largely used for research. However, in some cases, no quantitative measurement of the matrix thickness or of the amount of embedded microorganisms has been performed, due to limitation in availability of dedicated software. For this reason, we have developed a protocol to evaluate the microbial biofilm formed on sandblasted titanium used for orthopaedic implants, that allows measurement of biomass volume and the amount of included cells. Results indicate good reproducibility in terms of measurement of biomass and microbial cells. Moreover, this protocol has proved to be applicable for evaluation of the efficacy of different anti-biofilm treatments used in the orthopaedic setting. Summing up, the protocol here described is a valid and inexpensive method for the study of microbial biofilm on prosthetic implant materials. PMID:26927075

  7. Microbial composition of biofilms associated with lithifying rubble of Acropora palmata branches.

    Beltrán, Yislem; Cerqueda-García, Daniel; Taş, Neslihan; Thomé, Patricia E; Iglesias-Prieto, Roberto; Falcón, Luisa I

    2016-01-01

    Coral reefs are among the most productive ecosystems on the planet, but are rapidly declining due to global-warming-mediated changes in the oceans. Particularly for the Caribbean region, Acropora sp. stony corals have lost ∼80% of their original coverage, resulting in vast extensions of dead coral rubble. We analyzed the microbial composition of biofilms that colonize and lithify dead Acropora palmata rubble in the Mexican Caribbean and identified the microbial assemblages that can persist under scenarios of global change, including high temperature and low pH. Lithifying biofilms have a mineral composition that includes aragonite and magnesium calcite (16 mole% MgCO(3)) and calcite, while the mineral phase corresponding to coral skeleton is basically aragonite. Microbial composition of the lithifying biofilms are different in comparison to surrounding biotopes, including a microbial mat, water column, sediments and live A. palmata microbiome. Significant shifts in biofilm composition were detected in samples incubated in mesocosms. The combined effect of low pH and increased temperature showed a strong effect after two-week incubations for biofilm composition. Findings suggest that lithifying biofilms could remain as a secondary structure on reef rubble possibly impacting the functional role of coral reefs. PMID:26705570

  8. Oral microbial biofilm stimulation of epithelial cell responses.

    Peyyala, Rebecca; Kirakodu, Sreenatha S; Novak, Karen F; Ebersole, Jeffrey L

    2012-04-01

    Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfection biofilms were developed with Streptococcus sanguinis, Streptococcus oralis, Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis on rigid gas-permeable contact lenses. Biofilms, as well as planktonic cultures of these same bacterial species, were incubated under anaerobic conditions with a human oral epithelial cell line, OKF4, for up to 24h. Gro-1α, IL1α, IL-6, IL-8, TGFα, Fractalkine, MIP-1α, and IP-10 were shown to be produced in response to a range of the planktonic or biofilm forms of these species. P. gingivalis biofilms significantly inhibited the production of all of these cytokines and chemokines, except MIP-1α. Generally, the biofilms of all species inhibited Gro-1α, TGFα, and Fractalkine production, while F. nucleatum biofilms stimulated significant increases in IL-1α, IL-6, IL-8, and IP-10. A. naeslundii biofilms induced elevated levels of IL-6, IL-8 and IP-10. The oral streptococcal species in biofilms or planktonic forms were poor stimulants for any of these mediators from the epithelial cells. The results of these studies demonstrate that oral bacteria in biofilms elicit a substantially different profile of responses compared to planktonic bacteria of the same species. Moreover, certain oral species are highly stimulatory when in biofilms and interact with host cell receptors to trigger pathways of responses that appear quite divergent from individual bacteria. PMID:22266273

  9. Microbial biofilms are able to destroy hydroxyapatite in the absence of host immunity in vitro

    Junka, Adam Feliks; Szymczyk, Patrycja; Smutnicka, Danuta; Kos, Marcin; Smolina, Iryna; Bartoszewicz, Marzenna; Chlebus, Edward; Turniak, Michal; Sedghizadeh, Parish P.

    2014-01-01

    Introduction It is widely thought that inflammation and osteoclastogenesis result in hydroxyapatite (HA) resorption and sequestra formation during osseous infections, and microbial biofilm pathogens induce the inflammatory destruction of HA. We hypothesized that biofilms associated with infectious bone disease can directly resorb HA in the absence of host inflammation or osteoclastogenesis. Therefore, we developed an in vitro model to test this hypothesis. Materials and Methods Customized HA discs were manufactured as a substrate for growing clinically relevant biofilm pathogens. Single-species biofilms of S.mutans, S.aureus, P.aeruginosa and C.albicans, and mixed-species biofilms of C.albicans + S.mutans were incubated on HA discs for 72 hours to grow mature biofilms. Three different non-biofilm control groups were also established for testing. HA discs were then evaluated by means of scanning electron microscopy, micro-CT metrotomography, x-ray spectroscopy and confocal microscopy with planimetric analysis. Additionally, quantitative cultures and pH assessment were performed. ANOVA was used to test for significance between treatment and control groups. Results All investigated biofilms were able to cause significant (P<0.05) and morphologically characteristic alterations in HA structure as compared to controls. The highest number of alterations observed was caused by mixed biofilms of C.albicans + S.mutans. S. mutans biofilm incubated in medium with additional sucrose content was the most detrimental to HA surfaces among single-species biofilms. Conclusion These findings suggest that direct microbial resorption of bone is possible in addition to immune-mediated destruction, which has important translational implications for the pathogenesis of chronic bone infections and for targeted antimicrobial therapeutics. PMID:25544303

  10. Oral microbial biofilm stimulation of epithelial cell responses

    Peyyala, Rebecca; Kirakodu, Sreenatha S.; Novak, Karen F.; Ebersole, Jeffrey L.

    2012-01-01

    Oral bacterial biofilms trigger chronic inflammatory responses in the host that can result in the tissue destructive events of periodontitis. However, the characteristics of the capacity of specific host cell types to respond to these biofilms remain ill-defined. This report describes the use of a novel model of bacterial biofilms to stimulate oral epithelial cells and profile select cytokines and chemokines that contribute to the local inflammatory environment in the periodontium. Monoinfect...

  11. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system

    Chung, Kyungmi; Okabe, Satoshi [Hokkaido Univ., Sapporo (Japan). Dept. of Urban and Environmental Engineering

    2009-07-15

    A mediator-less three-stage two-chamber microbial fuel cell (MFC) system was developed and operated continuously for more than 1.5 years to evaluate continuous power generation while treating artificial wastewater containing glucose (10 mM) concurrently. A stable power density of 28 W/m3 was attained with an anode hydraulic retention time of 4.5 h and phosphate buffer as the cathode electrolyte. An overall dissolved organic carbon removal ratio was about 85%, and coulombic efficiency was about 46% in this MFC system. We also analyzed the microbial community structure of anode biofilms in each MFC. Since the environment in each MFC was different due to passing on the products to the next MFC in series, the microbial community structure was different accordingly. The anode biofilm in the first MFC consisted mainly of bacteria belonging to the Gammaproteobacteria, identified as Aeromonas sp., while the Firmicutes dominated the anode biofilms in the second and third MFCs that were mainly fed with acetate. Cyclic voltammetric results supported the presence of a redox compound(s) associated with the anode biofilm matrix, rather than mobile (dissolved) forms, which could be responsible for the electron transfer to the anode. Scanning electron microscopy revealed that the anode biofilms were comprised of morphologically different cells that were firmly attached on the anode surface and interconnected each other with anchor-like filamentous appendages, which might support the results of cyclic voltammetry. (orig.)

  12. Characterization, Microbial Community Structure, and Pathogen Occurrence in Urban Faucet Biofilms in South China

    Huirong Lin; Shuting Zhang; Song Gong; Shenghua Zhang; Xin Yu

    2015-01-01

    The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope) results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid) were observed. CLSM (confocal laser scanning microscope) revealed diffe...

  13. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms

    Okabe, Satoshi; Kindaichi, Tomonori; Ito, Tsukasa

    2005-01-01

    The cross-feeding of microbial products derived from 14C-labeled nitrifying bacteria to heterotrophic bacteria coexisting in an autotrophic nitrifying biofilm was quantitatively analyzed by using microautoradiography combined with fluorescence in situ hybridization (MAR-FISH). After only nitrifying bacteria were labeled with [14C] bicarbonate, biofilm samples were incubated with and without NH4+ as a sole energy source for 10 days. The transfer of 14C originally incorporated into nitrifying b...

  14. Metal concentrations in stream biofilm and sediments and their potential to explain biofilm microbial community structure

    Concentrations of metals associated with sediments have traditionally been analysed to assess the extent of heavy metal contamination in freshwater environments. Stream biofilms present an alternative medium for this assessment which may be more relevant to the risk incurred by stream ecosystems as they are intensively grazed by aquatic organisms at a higher trophic level. Therefore, we investigated zinc, copper and lead concentrations in biofilms and sediments of 23 stream sites variously impacted by urbanisation. Simultaneously, biofilm bacterial and ciliate protozoan community structure was analysed by Automated Ribosomal Intergenic Spacer Analysis and Terminal Restriction Fragment Length Polymorphism, respectively. Statistical analysis revealed that biofilm associated metals explained a greater proportion of the variations observed in bacterial and ciliate communities than did sediment associated-metals. This study suggests that the analysis of metal concentrations in biofilms provide a good assessment of detrimental effects of metal contaminants on aquatic biota. - Highlights: ► Zn, Cu and Pb concentrations in biofilm and sediments from 23 streams were assessed. ► Bacteria and ciliate protozoa were simultaneously used as biological indicators. ► Zn and Cu were generally enriched in biofilm compared to sediments. ► Metals in biofilm provide a useful assessment of freshwater ecosystem contamination. ► Results highlight the likely ecological importance of biofilm associated metals. - Metal concentrations in stream biofilms provide a good assessment of the effects of trace metal contaminants on freshwater ecosystems.

  15. Oral epithelial cell responses to multispecies microbial biofilms.

    Peyyala, R; Kirakodu, S S; Novak, K F; Ebersole, J L

    2013-03-01

    This report describes the use of a novel model of multispecies biofilms to stimulate profiles of cytokines/chemokines from oral epithelial cells that contribute to local inflammation in the periodontium. Streptococcus gordonii (Sg)/S. oralis (So)/S. sanguinis (Ss) and Sg/Fusobacterium nucleatum (Fn)/Porphyromonas gingivalis (Pg) biofilms elicited significantly elevated levels of IL-1α and showed synergistic stimulatory activity compared with an additive effect of the 3 individual bacteria. Only the Sg/Actinomyces naeslundii (An)/Fn multispecies biofilms elicited IL-6 levels above those of control. IL-8 was a primary response to the Sg/An/Fn biofilms, albeit the level was not enhanced compared with a predicted composite level from the monospecies challenges. These results represent some of the first data documenting alterations in profiles of oral epithelial cell responses to multispecies biofilms. PMID:23300185

  16. Characterization of mixed-culture biofilms established in microbial fuel cells

    For the successful operation of a microbial fuel cell, it is important to characterize the biofilm on the anode. The behavior of MFCs during initial biofilm growth and characterization of anodic biofilm were studied using two-chamber MFCs with activated sludge as inoculum. After three times' replacement of the anodic growth medium, the biofilms were well developed, and a maximum closed circuit potential of 0.41 V and 0.37 V (1000 Ω resistor) was achieved using acetate and glucose, respectively. Electron microscopy revealed that there were rod-shaped cells 0.2–0.3 μm wide by 1.5–2.5 μm long in the anode biofilm in the acetate-fed MFC, and these cells were mainly arranged by monolayer. The biofilm in the glucose-fed MFC was made of cocci-shaped cells in chains and a thick matrix. Both using acetate and glucose, the anodic bacterial communities were different than those of the activated sludge. Cyclic voltammograms suggested that extracellular electron transfer in these MFCs was accomplished mainly by the biofilms on the anode and not by bacteria-produced mediators. -- Highlights: ► The mixed-culture biofilms established in MFCs were characterized. ► The possible electron transfer mechanism was presented. ► In these MFCs the anodic area should be much larger.

  17. Biofilm removal technique using sands as a research tool for accessing microbial attachment on surface

    Nathanon Trachoo

    2004-01-01

    Full Text Available Biofilms have profound impacts on improved survival of the constituent microorganisms in nature. Biofilms were believed to protect constituent microorganisms from sanitizer treatment, provide a more suitable habitat for microorganisms, and become a site for genetic material exchanges between microorganisms. As we realize more about the significance of biofilm, methods used for biofilm study should be consistently developed and evaluated. To determine microbial attachment on surfaces, usually biofilms are grown on substratum surfaces and removed by vortexing with glass beads or scraping. However, scraping is not as effective as vortexing with glass beads. Another approach is direct-agar overlaying which cannot be used with high density biofilm. In this experiment, we compared effectiveness of glass beads (298±28 μm in diameter and sands (width: 221±55 μm and length: 329±118 μm in removing biofilm of Pseudomonas aeruginosa by vortexing method. The results suggested that acid-washed sands, which are significantly less inexpensive than glass beads, were as effective as (P>0.05 analytical grade glass beads in Pseudomonas aeruginosa biofilm removal without inhibiting growth of the organism.

  18. An Electrochemical Strategy to Measure the Thickness of Electroactive Microbial Biofilms

    Millo, Diego

    2015-01-01

    The study of electroactive microbial biofilms often requires knowledge of the biofilm thickness. Unfortunately, this parameter is, nowadays, only accessible through expensive microscopic techniques. This work overcomes this limitation by presenting a new strategy, exploiting the use of chronoamperometry (CA) alone. A mixed-culture biofilm is exposed to an O2-saturated solution during anode respiration to suppress its catalytic activity. Assuming that inactivation of the electrocatalytic process is caused by O2 diffusion through the biofilm, a simple relation allows the use of the time constant extracted from the fitting of the curve of the CA trace during inactivation for the straightforward and quantitative determination of biofilm thickness. The biofilm thickness obtained with this method obeys the expected trend reported for biofilm growth and is in agreement with optical measurements. Contrary to the techniques usually employed to determine biofilm thickness, this new strategy is very rapid, nondisruptive, inexpensive, and may become a convenient alternative with respect to expensive and time-consuming microscopic techniques.

  19. Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater.

    Commault, Audrey S; Lear, Gavin; Weld, Richard J

    2015-12-01

    Geobacter-dominated biofilms can be selected under stringent conditions that limit the growth of competing bacteria. However, in many practical applications, such stringent conditions cannot be maintained and the efficacy and stability of these artificial biofilms may be challenged. In this work, biofilms were selected on low-potential anodes (-0.36 V vs Ag/AgCl, i.e. -0.08 V vs SHE) in minimal acetate or ethanol media. Selection conditions were then relaxed by transferring the biofilms to synthetic wastewater supplemented with soil as a source of competing bacteria. We tracked community succession and functional changes in these biofilms. The Geobacter-dominated biofilms showed stability in their community composition and electrochemical properties, with Geobacter sp. being still electrically active after six weeks in synthetic wastewater with power densities of 100±19 mW·m(-2) (against 74±14 mW·m(-2) at week 0) for all treatments. After six weeks, the ethanol-selected biofilms, despite their high taxon richness and their efficiency at removing the chemical oxygen demand (0.8 g·L(-1) removed against the initial 1.3 g·L(-1) injected), were the least stable in terms of community structure. These findings have important implications for environmental microbial fuel cells based on Geobacter-dominated biofilms and suggest that they could be stable in challenging environments. PMID:25935865

  20. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose

  1. Combating biofilms

    Yang, Liang; Liu, Yang; Wu, Hong;

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life is...... believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  2. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms

    Jékely Gáspár

    2007-01-01

    Full Text Available Abstract Background The origin of eukaryotic cells was one of the most dramatic evolutionary transitions in the history of life. It is generally assumed that eukaryotes evolved later then prokaryotes by the transformation or fusion of prokaryotic lineages. However, as yet there is no consensus regarding the nature of the prokaryotic group(s ancestral to eukaryotes. Regardless of this, a hardly debatable fundamental novel characteristic of the last eukaryotic common ancestor was the ability to exploit prokaryotic biomass by the ingestion of entire cells, i.e. phagocytosis. The recent advances in our understanding of the social life of prokaryotes may help to explain the origin of this form of total exploitation. Presentation of the hypothesis Here I propose that eukaryotic cells originated in a social environment, a differentiated microbial mat or biofilm that was maintained by the cooperative action of its members. Cooperation was costly (e.g. the production of developmental signals or an extracellular matrix but yielded benefits that increased the overall fitness of the social group. I propose that eukaryotes originated as selfish cheaters that enjoyed the benefits of social aggregation but did not contribute to it themselves. The cheaters later evolved into predators that lysed other cells and eventually became professional phagotrophs. During several cycles of social aggregation and dispersal the number of cheaters was contained by a chicken game situation, i.e. reproductive success of cheaters was high when they were in low abundance but was reduced when they were over-represented. Radical changes in cell structure, including the loss of the rigid prokaryotic cell wall and the development of endomembranes, allowed the protoeukaryotes to avoid cheater control and to exploit nutrients more efficiently. Cellular changes were buffered by both the social benefits and the protective physico-chemical milieu of the interior of biofilms. Symbiosis

  3. Oral Epithelial Cell Responses to Multispecies Microbial Biofilms

    Peyyala, R.; Kirakodu, S.S.; Novak, K.F.; Ebersole, J L

    2013-01-01

    This report describes the use of a novel model of multispecies biofilms to stimulate profiles of cytokines/chemokines from oral epithelial cells that contribute to local inflammation in the periodontium. Streptococcus gordonii (Sg)/S. oralis (So)/S. sanguinis (Ss) and Sg/Fusobacterium nucleatum (Fn)/Porphyromonas gingivalis (Pg) biofilms elicited significantly elevated levels of IL-1α and showed synergistic stimulatory activity compared with an additive effect of the 3 individual bacteria. On...

  4. Composition of EPS fractions from suspended sludge and biofilm and their roles in microbial cell aggregation.

    Zhang, Peng; Fang, Fang; Chen, You-Peng; Shen, Yu; Zhang, Wei; Yang, Ji-Xiang; Li, Chun; Guo, Jin-Song; Liu, Shao-Yang; Huang, Yang; Li, Shan; Gao, Xu; Yan, Peng

    2014-12-01

    The adhesion and aggregation properties of microbial cell are closely related to extracellular polymeric substances (EPS). In this work, the composition and physicochemical characteristics of EPS in biofilm and suspended sludge (S-sludge) were determined to evaluate their roles in microbial cell aggregation. Raman spectroscopy and three-dimensional fluorescence spectra have been employed to reveal each EPS fraction in different composition. The flocculating capacity of each EPS fraction in the S-sludge shows extraordinary activity, comparing its counterpart in biofilm. Microbial cell surfaces present high hydrophobicity and increased zeta potentials upon EPS extraction. In addition, the respective contribution of EPS to cell aggregating was elucidated. The contribution of combined SEPS and LB-EPS was 23% for S-sludge sample, whereas that was negligible for biofilm sample. The contribution of LB-EPS and TB-EPS were 16% and 30% for S-sludge sample, and -6% and negligible for biofilm sample, respectively. Therefore, EPS promoted the S-sludge cells to aggregate, while in contrast, they showed a negligible or negative effect on the biofilm cells aggregating. PMID:24968163

  5. Biofilm vivacity and destruction on antimicrobial nanosurfaces assayed within a microbial fuel cell.

    Sugnaux, Marc; Fischer, Fabian

    2016-08-01

    A novel method was developed to assay the antimicrobial capacity of nanostructured surfaces for medical implants in a bicathodic microbial fuel cell. Nano-structured gold surfaces with protruding nanopillars and nanorings were investigated. Escherichia coli K12 were used as a model microbe to record electronic effects caused by the interaction with nanosurfaces. The nanostructured gold surfaces enabled power density maxima up to 1910mW/m(2), indicating fair vivacity, while flat surfaces on the nanoscale provided almost no power 0.35mW/m(2). The biofilm presence on antimicrobial nanosurfaces was confirmed by the addition of ampicillin and its bactericidal effect resulted in oscillating and declining potentiometric signals. Current density experiments showed that biofilms on antimicrobial nanostructured electrodes caused low currents, indicating that E.coli biofilm remained functional before destruction. The bicathodic microbial fuel cell sensor is a novel tool for evaluating antimicrobial effects caused by nanosurfaces and antibiotics. PMID:27071334

  6. Removal of radionuclide and metal contaminants by mixed microbial granular biofilms

    We have developed microbial granules consisting of mixed species of bacteria and assessed their potential to remove and immobilize uranium and chromium. The granules removed 218 mg g-1 of U(VI). Mixed granular biofilms reduced Cr(VI) at 0.17 mM d-1 g-1 under anaerobic conditions. XPS analysis showed the association of uranium with the granular biomass. Analyses by XANES of the granular biofilms revealed the conversion of soluble Cr(VI) to Cr(III). EXAFS analysis of the Cr-laden granular biofilms demonstrated similarity to Cr(III)-phosphate. Reduction of U(VI) to U(IV) was not evident in aerobic samples. Our studies demonstrate the potential use of granular biofilms in treating radionuclide and metal - containing effluents. (author)

  7. Inferring energy sources in constructed wetlands through stable isotope analysis of microbial biofilms

    This study presented a novel method of sequestering the microbial biofilm in constructed wetland ecosystems. Artificial substrates were fixed within 8 wetlands differing in age and construction materials over a 2 year period at oil sands lease sites in northeastern Alberta. Autotrophic and heterotrophic biofilm samples were collected from both the subsurface and epibenthic zones of the pipe surfaces of each submerged substrate assembly. A mixing model of d13C, d15N and d34S isotopic signatures was used to assess the contribution of 4 potential nutrient sources of the biofilm. Samples included dominant living and senescent emergent as well as submergent macrophytes, particulate organic matter, dissolved organic carbon, and invertebrates. The samples were collected to compare the biofilm signatures of each wetland in relation to the heterotrophic processes caused by the assimilation of oil sands-derived hydrocarbons and autochthonous detrital pools.

  8. A personal history of research on microbial biofilms and biofilm infections

    Høiby, Niels

    2014-01-01

    The observation of aggregated microorganisms surrounded by a self-produced matrix adhering to surfaces or located in tissues or secretions is as old as microbiology, with both Leeuwenhoek and Pasteur describing the phenomenon. In environmental and technical microbiology, biofilms were already shown...... aeruginosa cells in sputum and lung tissue from chronically infected cystic fibrosis patients. The term biofilm was introduced into medicine in 1985 by Costerton. In the following decades, it became obvious that biofilm infections are widespread in medicine, and their importance is now generally accepted....

  9. Ecological roles and biotechnological applications of marine and intertidal microbial biofilms.

    Mitra, Sayani; Sana, Barindra; Mukherjee, Joydeep

    2014-01-01

    This review is a retrospective of ecological effects of bioactivities produced by biofilms of surface-dwelling marine/intertidal microbes as well as of the industrial and environmental biotechnologies developed exploiting the knowledge of biofilm formation. Some examples of significant interest pertaining to the ecological aspects of biofilm-forming species belonging to the Roseobacter clade include autochthonous bacteria from turbot larvae-rearing units with potential application as a probiotic as well as production of tropodithietic acid and indigoidine. Species of the Pseudoalteromonas genus are important examples of successful surface colonizers through elaboration of the AlpP protein and antimicrobial agents possessing broad-spectrum antagonistic activity against medical and environmental isolates. Further examples of significance comprise antiprotozoan activity of Pseudoalteromonas tunicata elicited by violacein, inhibition of fungal colonization, antifouling activities, inhibition of algal spore germination, and 2-n-pentyl-4-quinolinol production. Nitrous oxide, an important greenhouse gas, emanates from surface-attached microbial activity of marine animals. Marine and intertidal biofilms have been applied in the biotechnological production of violacein, phenylnannolones, and exopolysaccharides from marine and tropical intertidal environments. More examples of importance encompass production of protease, cellulase, and xylanase, melanin, and riboflavin. Antifouling activity of Bacillus sp. and application of anammox bacterial biofilms in bioremediation are described. Marine biofilms have been used as anodes and cathodes in microbial fuel cells. Some of the reaction vessels for biofilm cultivation reviewed are roller bottle, rotating disc bioreactor, polymethylmethacrylate conico-cylindrical flask, fixed bed reactor, artificial microbial mats, packed-bed bioreactors, and the Tanaka photobioreactor. PMID:24817086

  10. Microbial Biofilm Community Variation in Flowing Habitats: Potential Utility as Bioindicators of Postmortem Submersion Intervals

    Jennifer M. Lang

    2016-01-01

    Full Text Available Biofilms are a ubiquitous formation of microbial communities found on surfaces in aqueous environments. These structures have been investigated as biomonitoring indicators for stream heath, and here were used for the potential use in forensic sciences. Biofilm successional development has been proposed as a method to determine the postmortem submersion interval (PMSI of remains because there are no standard methods for estimating the PMSI and biofilms are ubiquitous in aquatic habitats. We sought to compare the development of epinecrotic (biofilms on Sus scrofa domesticus carcasses and epilithic (biofilms on unglazed ceramic tiles communities in two small streams using bacterial automated ribosomal intergenic spacer analysis. Epinecrotic communities were significantly different from epilithic communities even though environmental factors associated with each stream location also had a significant influence on biofilm structure. All communities at both locations exhibited significant succession suggesting that changing communities throughout time is a general characteristic of stream biofilm communities. The implications resulting from this work are that epinecrotic communities have distinctive shifts at the first and second weeks, and therefore the potential to be used in forensic applications by associating successional changes with submersion time to estimate a PMSI. The influence of environmental factors, however, indicates the lack of a successional pattern with the same organisms and a focus on functional diversity may be more applicable in a forensic context.

  11. Evolution of the microbial community of the biofilm in a methane-based membrane biofilm reactor reducing multiple electron acceptors.

    Chen, Ran; Luo, Yi-Hao; Chen, Jia-Xian; Zhang, Yin; Wen, Li-Lian; Shi, Ling-Dong; Tang, Youneng; Rittmann, Bruce E; Zheng, Ping; Zhao, He-Ping

    2016-05-01

    Previous work documented complete perchlorate reduction in a membrane biofilm reactor (MBfR) using methane as the sole electron donor and carbon source. This work explores how the biofilm's microbial community evolved as the biofilm stage-wise reduced different combinations of perchlorate, nitrate, and nitrite. The initial inoculum, carrying out anaerobic methane oxidation coupled to denitrification (ANMO-D), was dominated by uncultured Anaerolineaceae and Ferruginibacter sp. The microbial community significantly changed after it was inoculated into the CH4-based MBfR and fed with a medium containing perchlorate and nitrite. Archaea were lost within the first 40 days, and the uncultured Anaerolineaceae and Ferruginibacter sp. also had significant losses. Replacing them were anoxic methanotrophs, especially Methylocystis, which accounted for more than 25 % of total bacteria. Once the methanotrophs became important, methanol-oxidizing denitrifying bacteria, namely, Methloversatilis and Methylophilus, became important in the biofilm, probably by utilizing organic matter generated by the metabolism of methanotrophs. When methane consumption was equal to the maximum-possible electron-donor supply, Methylomonas, also an anoxic methanotroph, accounted for >10 % of total bacteria and remained a major part of the community until the end of the experiments. We propose that aerobic methane oxidation coupled to denitrification and perchlorate reduction (AMO-D and AMO-PR) directly oxidized methane and reduced NO3 (-) to NO2 (-) or N2O under anoxic condition, producing organic matter for methanol-assimilating denitrification and perchlorate reduction (MA-D and MA-PR) to reduce NO3 (-). Simultaneously, bacteria capable of anaerobic methane oxidation coupled to denitrification and perchlorate reduction (ANMO-D and ANMO-PR) used methane as the electron donor to respire NO3 (-) or ClO4 (-) directly. Graphical Abstract ᅟ. PMID:26841777

  12. Investigation of Hyporheic Microbial Biofilms as Indicators of Heavy Metal Toxicity in the Clark Fork Basin, Montana

    Barnhart, E. P.; Hwang, C.; Bouskill, N.; Hornberger, M.; Fields, M. W.

    2015-12-01

    Water-saturated sediments that underlie a stream channel contain microbial biofilms that are often responsible for the majority of the metabolic activity in river and stream ecosystems. Metal contamination from mining effluent can modify the biofilm community structure, diversity, and activity. Developing a mechanistic understanding of the biofilm response to metal contamination could provide a useful bioindicator of metal toxicity due to the ease of standard biofilm sampling, environmental ubiquity of biofilms and the rapid response of biofilms to environmental perturbation and metal toxicity. Here we present data on the structure of the biofilm community (e.g., microbial population composition and diversity) and trace metal concentrations in water, bed sediment and biota (benthic insects) across 15 sites in the Clark Fork Basin. Sample sites were selected across a historically-monitored metal pollution gradient at shallow riffles with bed sediment predominantly composed of pebbles, cobbles, and sand. Bed-sediment samples (for biofilm analysis) were obtained from the top 20 centimeters of the hyporheic zone and sieved using sterile sieves to obtain homogeneous sediment samples with particle sizes ranging from 1.70 to 2.36 millimeters. Linear discriminant analysis and effect size statistical methods were used to integrate the metals concentration data (for water and benthic-insects samples) with the microbial community analysis to identify microbial biomarkers of metal toxicity. The development of rapid microbial biomarker tools could provide reproducible and quantitative insights into the effectiveness of remediation activities on metal toxicity and advances in the field of environmental biomonitoring.

  13. COMPOSITION AND METHOD FOR CONTROLLING MICROBIAL ADHESION AND BIOFILM FORMATION OF SURFACES

    2003-01-01

    The present invention describes how coating of surfaces with an extract, particularly a fish extract, can significantly reduce microbial adhesion, attachment, colonization and biofilm formation on surfaces. Such reduction of microbial adherence, attachment and colonization will be applicable in a...... large range of areas. The reduced numbers of adhered, attached or colonized microbial organisms is not due to a general growth inhibitory effect and therefore the anti-adhesive effect may not be caused by the presence of antimicrobials (antibiotics or non-antibiotics) in the fish extract....

  14. Mini Review of Phytochemicals and Plant Taxa with Activity as Microbial Biofilm and Quorum Sensing Inhibitors

    Chieu Anh Kim Ta

    2015-12-01

    Full Text Available Microbial biofilms readily form on many surfaces in nature including plant surfaces. In order to coordinate the formation of these biofilms, microorganisms use a cell-to-cell communication system called quorum sensing (QS. As formation of biofilms on vascular plants may not be advantageous to the hosts, plants have developed inhibitors to interfere with these processes. In this mini review, research papers published on plant-derived molecules that have microbial biofilm or quorum sensing inhibition are reviewed with the objectives of determining the biosynthetic classes of active compounds, their biological activity in assays, and their families of occurrence and range. The main findings are the identification of plant phenolics, including benzoates, phenyl propanoids, stilbenes, flavonoids, gallotannins, proanthocyanidins and coumarins as important inhibitors with both activities. Some terpenes including monoterpenes, sesquiterpenes, diterpenes and triterpenes also have anti-QS and anti-biofilm activities. Relatively few alkaloids were reported. Quinones and organosulfur compounds, especially from garlic, were also active. A common feature is the polar nature of these compounds. Phytochemicals with these activities are widespread in Angiosperms in temperate and tropical regions, but gymnosperms, bryophytes and pteridophytes were not represented.

  15. MICROBIAL BIOFILMS PRODUCED BY PSEUDOMONAS FLUORESCENS ON SOLID SURFACES

    Dagmar Kozelová

    2011-04-01

    Full Text Available Normal 0 21 false false false MicrosoftInternetExplorer4 Normal 0 21 false false false MicrosoftInternetExplorer4 A biofilm is a complex aggregation of microorganisms growing on a solid substrate. Biofilms are characterized by structural heterogeneity, genetic diversity, complex community interactions, and an extracellular matrix of polymeric substances. The experimental part was focused on the adhesion of bacterial cells under static conditions and testing the effectiveness of disinfectants on created biofilm. In laboratory conditions we prepared and formed the bacterial biofilms Pseudomonas fluorescens in the four test surfaces of stainless steel, glass and plastic materials - PE (polyethylene and EPDM (ethylene propylene diene monomer. Over the next 72 hours and 72 hours were observed numbers of adhesion bacterial cells of P. fluorescens on solid surfaces of tested materials. The highest values adhesion cells reached P. fluorescens cells after 72 hours of cultivation on plastic surfaces, where  was increased in adhesion bacterial cells for EPDM in the values of 105 CFU/cm2 and for PE up to 106 CFU/cm2. The subsequent repeated 72-hour cultivation P. fluorescens was an increase (growth in the number of adhesion bacterial cells to all tested surfaces.doi:10.5219/18  

  16. Establishment of new genetic traits in a microbial biofilm community

    Christensen, Bjarke Bak; Sternberg, Claus; Andersen, Jens Bo; Eberl, Leo; Møller, Søren; Givskov, Michael Christian; Molin, Søren

    1998-01-01

    Conjugational transfer of the TOL plasmid (pWWO) was analyzed in a flow chamber biofilm community engaged in benzyl alcohol degradation. The community consisted of three species, Pseudomonas putida RI, Acinetobacter sp. strain C6, and an unidentified isolate, D8. Only P. putida RI could act as a...

  17. Community-based interference against integration of Pseudomonas aeruginosa into human salivary microbial biofilm.

    He, X; Hu, W; He, J; Guo, L; Lux, R; Shi, W

    2011-12-01

    As part of the human gastrointestinal tract, the oral cavity represents a complex biological system and harbors diverse bacterial species. Unlike the gut microbiota, which is often considered a health asset, studies of the oral commensal microbiota have been largely limited to their implication in oral conditions such as dental caries and periodontal disease. Less emphasis has been given to their potential beneficial roles, especially the protective effects against oral colonization by foreign or pathogenic bacteria. In this study, we used salivary microbiota derived from healthy human subjects to investigate protective effects against colonization and integration of Pseudomonas aeruginosa, an opportunistic bacterial pathogen, into developing or pre-formed salivary biofilms. When co-cultivated in saliva medium, P. aeruginosa persisted in the planktonic phase, but failed to integrate into the salivary microbial community during biofilm formation. Furthermore, in saliva medium supplemented with sucrose, the oral microbiota inhibited the growth of P. aeruginosa by producing lactic acid. More interestingly, while pre-formed salivary biofilms were able to prevent P. aeruginosa colonization, the same biofilms recovered from mild chlorhexidine gluconate treatment displayed a shift in microbial composition and showed a drastic reduction in protection. Our study indicates that normal oral communities with balanced microbial compositions could be important in effectively preventing the integration of foreign or pathogenic bacterial species, such as P. aeruginosa. PMID:22053962

  18. Multi-technique approach to assess the effects of microbial biofilms involved in copper plumbing corrosion.

    Vargas, Ignacio T; Alsina, Marco A; Pavissich, Juan P; Jeria, Gustavo A; Pastén, Pablo A; Walczak, Magdalena; Pizarro, Gonzalo E

    2014-06-01

    Microbially influenced corrosion (MIC) is recognized as an unusual and severe type of corrosion that causes costly failures around the world. A microbial biofilm could enhance the copper release from copper plumbing into the water by forming a reactive interface. The biofilm increases the corrosion rate, the mobility of labile copper from its matrix and the detachment of particles enriched with copper under variable shear stress due to flow conditions. MIC is currently considered as a series of interdependent processes occurring at the metal-liquid interface. The presence of a biofilm results in the following effects: (a) the formation of localized microenvironments with distinct pH, dissolved oxygen concentrations, and redox conditions; (b) sorption and desorption of labile copper bonded to organic compounds under changing water chemistry conditions; (c) change in morphology by deposition of solid corrosion by-products; (d) diffusive transport of reactive chemical species from or towards the metal surface; and (e) detachment of scale particles under flow conditions. Using a multi-technique approach that combines pipe and coupon experiments this paper reviews the effects of microbial biofilms on the corrosion of copper plumbing systems, and proposes an integrated conceptual model for this phenomenon supported by new experimental data. PMID:24355512

  19. A Biofilm Treatment Approach for Produced Water from Hydraulic Fracturing Using Engineered Microbial Mats

    Akyon, B.; Stachler, E.; Bibby, K. J.

    2015-12-01

    Hydraulic fracturing results in large volumes of wastewater, called "produced water". Treatment of produced water is challenged by its high salt, organic compound, and radionuclide concentrations. Current disposal approaches include deep well injection and physical-chemical treatment for surface disposal; however, deep well injection has been recently linked to induced seismicity and physical-chemical treatments suffer from fouling and high cost. The reuse of the produced water has emerged as a desirable management option; however, this requires pretreatment to generate a water of usable quality and limit microbial activity. Biological treatment is an underexplored area in produced water management and has the potential to remove organics and reduce overall costs for physiochemical treatment or reuse. Suspended growth biological treatment techniques are known to be limited by salinity motivating a more robust biofilm approach: 'microbial mats'. In this study, we used engineered microbial mats as a biofilm treatment for the produced water. Evaluation of the biodegradation performance of microbial mats in synthetic and real produced waters showed microbial activity at up to 100,000 mg/L TDS concentration (three times the salt concentration of the ocean). Organic removal rates reached to 1.45 mg COD/gramwet-day at 91,351 mg/L TDS in real produced water samples and initial evaluation demonstrated the potential for field-scale application. Metagenomic analyses of microbial mats demonstrated an adaptive shift in the microbial community treating different samples, suggesting the wide applicability of this treatment approach for produced waters with varying chemical composition. On-going studies focus on the evaluation of the removal of the organics and the contaminants of high concern in produced water using microbial mats as well as the effect of the biofilm growth conditions on the biodegradation in changing salt concentrations.

  20. Quantum dots conjugated zinc oxide nanosheets: Impeder of microbial growth and biofilm

    Patil, Rajendra [Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 (India); Gholap, Haribhau, E-mail: haribhau.gholap@fergusson.edu [Department of Physics, Fergusson College, Pune 411004 (India); Warule, Sambhaji [Department of Physics, Nowrosjee Wadia College, Pune 411001 (India); Banpurkar, Arun; Kulkarni, Gauri [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India); Gade, Wasudeo, E-mail: wngade@unipune.ac.in [Department of Biotechnology, Savitribai Phule Pune University, Pune 411007 (India)

    2015-01-30

    Graphical abstract: The visible light upon incident on ZnO/CdTe initiate the phenomenon of photocatalytical impedance of biofilm. - Highlights: • Synthesis of efficient light photocatalyst ZnO/CdTe nanostructures by hydrothermal method. • ZnO/CdTe nanostructures show a good antibacterial activity by action on cell membrane. • ZnO/CdTe nanostructures show a good antibiofilm activity, and also act on the cells inside the biofilm. - Abstract: The grieving problem of the 21st century has been the antimicrobial resistance in pathogenic microorganisms to conventional antibiotics. Therefore, developments of novel antibacterial materials which effectively inhibit or kill such resistant microorganisms have become the need of the hour. In the present study, we communicate the synthesis of quantum dots conjugated zinc oxide nanostructures (ZnO/CdTe) as an impeder of microbial growth and biofilm. The as-synthesized nanostructures were characterized by X-ray diffraction, ultraviolet–visible spectroscopy, photoluminescence spectroscopy, field emission scanning electron microscopy and high resolution transmission electron microscopy. The growth impedance property of ZnO and ZnO/CdTe on Gram positive organism, Bacillus subtilis NCIM 2063 and Gram negative, Escherichia coli NCIM 2931 and biofilm impedance activity in Pseudomonas aeruginosa O1 was found to occur due to photocatalytical action on the cell biofilm surfaces. The impedance in microbial growth and biofilm formation was further supported by ruptured appearances of cells and dettrered biofilm under field emission scanning electron and confocal laser scanning microscope. The ZnO/CdTe nanostructures array synthesized by hydrothermal method has an advantage of low growth temperature, and opportunity to fabricate inexpensive material for nano-biotechnological applications.

  1. Quantum dots conjugated zinc oxide nanosheets: Impeder of microbial growth and biofilm

    Graphical abstract: The visible light upon incident on ZnO/CdTe initiate the phenomenon of photocatalytical impedance of biofilm. - Highlights: • Synthesis of efficient light photocatalyst ZnO/CdTe nanostructures by hydrothermal method. • ZnO/CdTe nanostructures show a good antibacterial activity by action on cell membrane. • ZnO/CdTe nanostructures show a good antibiofilm activity, and also act on the cells inside the biofilm. - Abstract: The grieving problem of the 21st century has been the antimicrobial resistance in pathogenic microorganisms to conventional antibiotics. Therefore, developments of novel antibacterial materials which effectively inhibit or kill such resistant microorganisms have become the need of the hour. In the present study, we communicate the synthesis of quantum dots conjugated zinc oxide nanostructures (ZnO/CdTe) as an impeder of microbial growth and biofilm. The as-synthesized nanostructures were characterized by X-ray diffraction, ultraviolet–visible spectroscopy, photoluminescence spectroscopy, field emission scanning electron microscopy and high resolution transmission electron microscopy. The growth impedance property of ZnO and ZnO/CdTe on Gram positive organism, Bacillus subtilis NCIM 2063 and Gram negative, Escherichia coli NCIM 2931 and biofilm impedance activity in Pseudomonas aeruginosa O1 was found to occur due to photocatalytical action on the cell biofilm surfaces. The impedance in microbial growth and biofilm formation was further supported by ruptured appearances of cells and dettrered biofilm under field emission scanning electron and confocal laser scanning microscope. The ZnO/CdTe nanostructures array synthesized by hydrothermal method has an advantage of low growth temperature, and opportunity to fabricate inexpensive material for nano-biotechnological applications

  2. Enhancing Metagenomics Investigations of Microbial Interactions with Biofilm Technology

    Kakirde, Kavita S.; McLean, Robert J. C.

    2013-01-01

    Investigations of microbial ecology and diversity have been greatly enhanced by the application of culture-independent techniques. One such approach, metagenomics, involves sample collections from soil, water, and other environments. Extracted nucleic acids from bulk environmental samples are sequenced and analyzed, which allows microbial interactions to be inferred on the basis of bioinformatics calculations. In most environments, microbial interactions occur predominately in surface-adheren...

  3. Scanning Transmission X-Ray, Laser Scanning, and Transmission Electron Microscopy Mapping of the Exopolymeric Matrix of Microbial Biofilms

    Lawrence, J R; Swerhone, G. D. W.; Leppard, G. G.; Araki, T; Zhang, X.; West, M. M.; Hitchcock, A. P.

    2003-01-01

    Confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), and soft X-ray scanning transmission X-ray microscopy (STXM) were used to map the distribution of macromolecular subcomponents (e.g., polysaccharides, proteins, lipids, and nucleic acids) of biofilm cells and matrix. The biofilms were developed from river water supplemented with methanol, and although they comprised a complex microbial community, the biofilms were dominated by heterotrophic bacteria. TEM provid...

  4. Methods for Observing Microbial Biofilms Directly on Leaf Surfaces and Recovering Them for Isolation of Culturable Microorganisms

    Morris, C. E.; Monier, J.; Jacques, M.

    1997-01-01

    Epifluorescence microscopy, scanning electron microscopy, and confocal laser scanning microscopy were used to observe microbial biofilms directly on leaf surfaces. Biofilms were observed on leaves of all species sampled (spinach, lettuce, Chinese cabbage, celery, leeks, basil, parsley, and broad-leaved endive), although the epifluorescent images were clearest when pale green tissue or cuticle pieces were used. With these techniques, biofilms were observed that were about 20 (mu)m in depth and...

  5. Effects of marine microbial biofilms on the biocide release rate from antifouling paints – A model-based analysis

    Yebra, Diego Meseguer; Kiil, Søren; Weinell, Claus E.;

    2006-01-01

    Warmer [W. Gujer, O. Warmer, Modeling mixed population biofilms, in: W.G. Characklis, K.C. Marshall (Eds.), Biofilms, Wiley-Interscience, New York, 1990] are used to provide a reaction engineering-based insight to the effects of marine microbial slimes on biocide leaching and, to a minor extent...

  6. Extracellular Polysaccharides in Microbial Biofilm and Their Influence on the Electrophoretic Properties of Microbial Cells

    Růžička, F.; Horká, M. (Marie); Holá, V.

    2011-01-01

    The surfaces of biofilm-positive microorganisms are usually covered with biofilm-specific extracellular polysaccharide substances that play a key role in a biofilm formation and function [1,2] The presence of this substance on the surface can affect the physicochemical properties of the bacterial cell, including the cell-surface hydrophobicity and surface charge The differences in the surface charges lead to the different isoelectric points and the different electromigration characteristics o...

  7. Establishment of new genetic traits in a microbial biofilm community

    Christensen, Bjarke Bak; Sternberg, Claus; Andersen, Jens Bo;

    1998-01-01

    as a recipient for the TOL plasmid. Cells carrying a chromosomally integrated lacI(q) gene and a lacp-gfp-tagged version of the TOL plasmid were introduced as donor strains in the biofilm community after its formation. The occurrence of plasmid-carrying cells was analyzed by viable-count-based enumeration...... of donors and transconjugants, Upon transfer of the plasmids to the recipient cells, expression of green fluorescence was activated as a result of zygotic induction of the gfp gene. This allowed a direct in situ identification of cells receiving the gfp-tagged version of the TOL plasmid, Our data suggest......Conjugational transfer of the TOL plasmid (pWWO) was analyzed in a flow chamber biofilm community engaged in benzyl alcohol degradation. The community consisted of three species, Pseudomonas putida RI, Acinetobacter sp. strain C6, and an unidentified isolate, D8. Only P. putida RI could act...

  8. Metabolic profiling of biofilm bacteria known to cause microbial influenced corrosion.

    Beale, D J; Morrison, P D; Key, C; Palombo, E A

    2014-01-01

    This study builds upon previous research that demonstrated the simplicity of obtaining metabolite profiles of bacteria in urban water networks, by using the metabolic profile of bacteria extracted from a reticulation pipe biofilm, which is known to cause microbial influenced corrosion (MIC). The extracellular metabolites of the isolated bacteria, and those bacteria in consortium, were analysed in isolation, and after exposure to low levels of copper. Applying chemometric analytical methodologies to the metabolomic data, we were able to better understand the profile of the isolated biofilm bacteria, which were differentiated according to their activity and copper exposure. It was found that the metabolic activity of the isolated bacteria and the bacteria in consortium varied according to the bacterium's ability to metabolise copper. This demonstrates the power of metabolomic techniques for the discrimination of water reticulation biofilms comprising similar bacteria in consortium, but undergoing different physico-chemical activities, such as corrosion and corrosion inhibition. PMID:24434961

  9. Sequentially aerated membrane biofilm reactors for autotrophic nitrogen removal: microbial community composition and dynamics

    Pellicer i Nàcher, Carles; Franck, Stephanie; Gülay, Arda;

    2014-01-01

    (rich in oxygen) and AnAOB in regions neighbouring the liquid phase. Both communities were separated by a transition region potentially populated by denitrifying heterotrophic bacteria. AOB and AnAOB bacterial groups were more abundant and diverse than NOB, and dominated by the r...... reduction of the NOB Nitrospira and Nitrobacter and a 10-fold increase in AnAOB numbers. The study of biofilm sections with relevant 16S rRNA fluorescent probes revealed strongly stratified biofilm structures fostering aerobic ammonium oxidizing bacteria (AOB) in biofilm areas close to the membrane surface......-strategists Nitrosomonas europaea and Ca. Brocadia anammoxidans, respectively. Taken together, the present work presents tools to better engineer, monitor and control the microbial communities that support robust, sustainable and efficient nitrogen removal....

  10. Metagenome analyses of corroded concrete wastewater pipe biofilms reveal a complex microbial system

    Gomez-Alvarez Vicente

    2012-06-01

    Full Text Available Abstract Background Concrete corrosion of wastewater collection systems is a significant cause of deterioration and premature collapse. Failure to adequately address the deteriorating infrastructure networks threatens our environment, public health, and safety. Analysis of whole-metagenome pyrosequencing data and 16S rRNA gene clone libraries was used to determine microbial composition and functional genes associated with biomass harvested from crown (top and invert (bottom sections of a corroded wastewater pipe. Results Taxonomic and functional analysis demonstrated that approximately 90% of the total diversity was associated with the phyla Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria. The top (TP and bottom pipe (BP communities were different in composition, with some of the differences attributed to the abundance of sulfide-oxidizing and sulfate-reducing bacteria. Additionally, human fecal bacteria were more abundant in the BP communities. Among the functional categories, proteins involved in sulfur and nitrogen metabolism showed the most significant differences between biofilms. There was also an enrichment of genes associated with heavy metal resistance, virulence (protein secretion systems and stress response in the TP biofilm, while a higher number of genes related to motility and chemotaxis were identified in the BP biofilm. Both biofilms contain a high number of genes associated with resistance to antibiotics and toxic compounds subsystems. Conclusions The function potential of wastewater biofilms was highly diverse with level of COG diversity similar to that described for soil. On the basis of the metagenomic data, some factors that may contribute to niche differentiation were pH, aerobic conditions and availability of substrate, such as nitrogen and sulfur. The results from this study will help us better understand the genetic network and functional capability of microbial members of wastewater concrete biofilms.

  11. Biofilms

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-01-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and ...

  12. Solid and Aqueous Geochemical Controls on Phylogenetic Diversity and Abundance of Microbial Biofilms

    Jones, A. A.; Bennett, P. C.

    2015-12-01

    In the subsurface, the vast majority of microorganisms are found in biofilms attached to mineral surfaces. The fickle nature of these environments (chemically and physically) likely causes dynamic ecological shifts in these microbial communities. We used laboratory biofilm reactors (inoculated with a diverse subsurface community) to explore the role of mineralogy as part of a microbe-mineral-water ecosystem under variable pressures (mineralogy, pH, carbon, phosphate). Following multivariate analyses, pH was identified as the key physicochemical property associated with variation in both phylogenetic and taxonomic diversity as well as overall community structure (Pbiofilm accumulation (Pbiofilm accumulation (Pbiofilm accumulation (Pbiofilms. All reactors harbored structurally, taxonomically, and phylogenetically distinct microbial communities.

  13. Regional hydrology controls stream microbial biofilms: evidence from a glacial catchment

    A. Richter

    2004-08-01

    Full Text Available Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater hydrogeochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal, groundwater-fed (krenal and snow-fed (rhithral streams – all of them representative for alpine stream networks – and present evidence that these hydrologic and hydrogeochemical factors differentially affect sediment microbial biofilms. Average microbial biomass and bacterial carbon production were low in the glacial streams, whereas bacterial cell size, biomass, and carbon production were higher in the tributaries, most notably in the krenal stream. Whole-cell in situ fluorescence hybridization revealed reduced detection rates of the Eubacteria and higher abundance of α-Proteobacteria in the glacial stream, a pattern that most probably reflects the trophic status of this ecosystem. Our data suggest low flow during the onset of snowmelt and autumn as a short period (hot moment of favorable environmental conditions with pulsed inputs of allochthonous nitrate and dissolved organic carbon, and with disproportional high microbial growth. Krenal and rhithral streams with more constant and favorable environments serve as possible sources of microbes and organic matter to the main glacial channel during periods (e.g. snowmelt of elevated hydrologic linkage among streams. Ice and snow dynamics have a crucial impact on microbial biofilms, and we thus need better understanding of the microbial ecology and enhanced consideration of critical hydrological episodes in future models predicting alpine stream communities.

  14. Molecular Techniques Revealed Highly Diverse Microbial Communities in Natural Marine Biofilms on Polystyrene Dishes for Invertebrate Larval Settlement

    Lee, On On

    2014-01-09

    Biofilm microbial communities play an important role in the larval settlement response of marine invertebrates. However, the underlying mechanism has yet to be resolved, mainly because of the uncertainties in characterizing members in the communities using traditional 16S rRNA gene-based molecular methods and in identifying the chemical signals involved. In this study, pyrosequencing was used to characterize the bacterial communities in intertidal and subtidal marine biofilms developed during two seasons. We revealed highly diverse biofilm bacterial communities that varied with season and tidal level. Over 3,000 operational taxonomic units with estimates of up to 8,000 species were recovered in a biofilm sample, which is by far the highest number recorded in subtropical marine biofilms. Nineteen phyla were found, of which Cyanobacteria and Proteobacteria were the most dominant one in the intertidal and subtidal biofilms, respectively. Apart from these, Actinobacteria, Bacteroidetes, and Planctomycetes were the major groups recovered in both intertidal and subtidal biofilms, although their relative abundance varied among samples. Full-length 16S rRNA gene clone libraries were constructed for the four biofilm samples and showed similar bacterial compositions at the phylum level to those revealed by pyrosequencing. Laboratory assays confirmed that cyrids of the barnacle Balanus amphitrite preferred to settle on the intertidal rather than subtidal biofilms. This preference was independent of the biofilm bacterial density or biomass but was probably related to the biofilm community structure, particularly, the Proteobacterial and Cyanobacterial groups. © 2014 Springer Science+Business Media New York.

  15. Regional hydrology controls stream microbial biofilms: evidence from a glacial catchment

    A. Richter; R. Psenner; Wille, A; Battin, T. J.

    2004-01-01

    Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater hydrogeochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal), groundwater-fed (krenal) and snow-fed (rhithral) streams – all of them representative for alpine stream ...

  16. Functional Gene Composition, Diversity and Redundancy in Microbial Stream Biofilm Communities

    Dopheide, Andrew; Lear, Gavin; He, Zhili; Zhou, Jizhong; Lewis, Gillian D.

    2015-01-01

    We surveyed the functional gene composition and diversity of microbial biofilm communities in 18 New Zealand streams affected by different types of catchment land use, using a comprehensive functional gene array, GeoChip 3.0. A total of 5,371 nutrient cycling and energy metabolism genes within 65 gene families were detected among all samples (342 to 2,666 genes per stream). Carbon cycling genes were most common, followed by nitrogen cycling genes, with smaller proportions of sulphur, phosphor...

  17. The influence of microbial ecology of drinking water biofilms on their resistance to disinfection

    Simões, Lúcia C

    2010-01-01

    The knowledge of the role of microbial ecology of drinking water (DW) biofilms on disinfection might help to improve our understanding of their resistance mechanisms and allow the development of effective strategies to apply in drinking water distribution systems (DWDS). In this study six opportunistic bacteria (Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp.) isolated from a DWDS were used...

  18. Decomposing mangrove litter supports a microbial biofilm with potential nutritive value to penaeid shrimp post larvae

    Gatune, C.; Vanreusel, A.; Cnudde, C.; Ruwa, R.; Bossier, P; M. De Troch

    2012-01-01

    The use of fish meal in shrimp culture not only contributes to the decline of wild fish stocks, but also undermines its profitability and enhances ecosystem pollution. There is an urgent need for alternative natural food supply in shrimp cultures. The present study investigated the potential of mangrove litter from Rhizophora mucronata and the associated microbial biofilm as food for shrimp post larvae of Penaeus indicus and Penaeus monodon in a community-based ecological shrimp farm in Mtwap...

  19. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability

    Zhang, Yifeng; Angelidaki, Irini

    2011-01-01

    A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode was...

  20. Microbial Diversity in the Early In Vivo-Formed Dental Biofilm.

    Heller, D; Helmerhorst, E J; Gower, A C; Siqueira, W L; Paster, B J; Oppenheim, F G

    2016-03-01

    Although the mature dental biofilm composition is well studied, there is very little information on the earliest phase of in vivo tooth colonization. Progress in dental biofilm collection methodologies and techniques of large-scale microbial identification have made new studies in this field of oral biology feasible. The aim of this study was to characterize the temporal changes and diversity of the cultivable and noncultivable microbes in the early dental biofilm. Samples of early dental biofilm were collected from 11 healthy subjects at 0, 2, 4, and 6 h after removal of plaque and pellicle from tooth surfaces. With the semiquantitative Human Oral Microbiome Identification Microarray (HOMIM) technique, which is based on 16S rRNA sequence hybridizations, plaque samples were analyzed with the currently available 407 HOMIM microbial probes. This led to the identification of at least 92 species, with streptococci being the most abundant bacteria across all time points in all subjects. High-frequency detection was also made with Haemophilus parainfluenzae, Gemella haemolysans, Slackia exigua, and Rothia species. Abundance changes over time were noted for Streptococcus anginosus and Streptococcus intermedius (P = 0.02), Streptococcus mitis bv. 2 (P = 0.0002), Streptococcus oralis (P = 0.0002), Streptococcus cluster I (P = 0.003), G. haemolysans (P = 0.0005), and Stenotrophomonas maltophilia (P = 0.02). Among the currently uncultivable microbiota, eight phylotypes were detected in the early stages of biofilm formation, one belonging to the candidate bacterial division TM7, which has attracted attention due to its potential association with periodontal disease. PMID:26746720

  1. Syntrophic microbial communities on straw as biofilm carrier increase the methane yield of a biowaste-digesting biogas reactor

    Frank R. Bengelsdorf

    2015-08-01

    Full Text Available Biogas from biowaste can be an important source of renewable energy, but the fermentation process of low-structure waste is often unstable. The present study uses a full-scale biogas reactor to test the hypothesis that straw as an additional biofilm carrier will increase methane yield; and this effect is mirrored in a specific microbial community attached to the straw. Better reactor performance after addition of straw, at simultaneously higher organic loading rate and specific methane yield confirmed the hypothesis. The microbial communities on straw as a biofilm carrier and of the liquid reactor content were investigated using 16S rDNA amplicon sequencing by means of 454 pyrosequencing technology. The results revealed high diversity of the bacterial communities in the liquid reactor content as well as the biofilms on the straw. The most abundant archaea in all samples belonged to the genera Methanoculleus and Methanosarcina. Addition of straw resulted in a significantly different microbial community attached to the biofilm carrier. The bacterium Candidatus Cloacamonas acidaminovorans and methanogenic archaea of the genus Methanoculleus dominated the biofilm on straw. Syntrophic interactions between the hydrogenotrophic Methanoculleus sp. and members of the hydrogen-producing bacterial community within biofilms may explain the improved methane yield. Thus, straw addition can be used to improve and to stabilize the anaerobic process in substrates lacking biofilm-supporting structures.

  2. Impact of flow conditions on ammonium uptake and microbial community structure in benthic biofilms

    Arnon, Shai; Yanuka, Keren; Nejidat, Ali

    2010-05-01

    Excess nitrogen in surface waters is widely recognized to be a major global problem that adversely affects ecosystems, human health, and the economy. Today, most efforts to understand and model nutrient dynamics at large scales relies on macro-scale parameterization, such as mean channel geometry and velocity with uniform flow assumptions, as well as gross averages of in-situ nutrient transformation rates. However, there is increasing evidence that nutrient transformations in hyporheic zone are regulated by coupling between physical, chemical, and microbiological processes. Ignoring this greatly hinders the estimation of average biochemical transformation rates under the variable flow conditions found in aquatic systems. We used a combination of macro- and micro-scale observations in laboratory flumes to show that interplay between hydrodynamic transport, redox gradients, and microbial metabolism controls ammonium utilization by hyporheic microbial communities. Biofilm structural characteristics were quantified using denaturing gradient gel electrophoresis (DGGE) and real time PCR, while redox and pH gradients were measured using microelectrodes. We found that overlying velocities had profound effect on ammonium uptake due to mass transfer of ammonium from the bulk water to the benthic biofilms, but also due to the delivery of oxygen into the sediment bed. Under laminar flow conditions we didn't observe any change of ammonium uptake as a response to increase in overlying velocity. However, under non-laminar conditions we observe monotonic increase in ammonium uptake, with the greatest uptake under the fastest flow condition. We will discuss ammonium uptake rates results in the context of the different microbial communities and the micro-scale observations that were obtained using the microelectrodes. We anticipate that combined knowledge of the response of the microbial community and bulk nitrogen utilization rates to flow conditions will support the development of

  3. Large-scale environmental controls on microbial biofilms in high-alpine streams

    T. J. Battin

    2004-01-01

    Full Text Available Glaciers are highly responsive to global warming and important agents of landscape heterogeneity. While it is well established that glacial ablation and snowmelt regulate stream discharge, linkage among streams and streamwater geochemistry, the controls of these factors on stream microbial biofilms remain insufficiently understood. We investigated glacial (metakryal, hypokryal, groundwater-fed (krenal and snow-fed (rhithral streams - all of them representative for alpine stream networks - and present evidence that these hydrologic and hydrogeochemical factors differentially affect sediment microbial biofilms. Average microbial biomass and bacterial carbon production were low in the glacial streams, whereas bacterial cell size, biomass, and carbon production were higher in the tributaries, most notably in the krenal stream. Whole-cell in situ fluorescence hybridization revealed reduced detection rates of the Eubacteria and higher abundance of α-Proteobacteria in the glacial stream, a pattern that most probably reflects the trophic status of this ecosystem. Our data suggest low flow during the onset of snowmelt and autumn as a short period (hot moment of favorable environmental conditions with pulsed inputs of allochthonous nitrate and dissolved organic carbon, and with disproportionately high microbial growth. Tributaries are relatively more constant and favorable environments than kryal streams, and serve as possible sources of microbes and organic matter to the main glacial channel during periods (e.g., snowmelt of elevated hydrologic linkage among streams. Ice and snow dynamics - and their impact on the amount and composition of dissolved organic matter - have a crucial impact on stream biofilms, and we thus need to consider microbes and critical hydrological episodes in future models of alpine stream communities.

  4. Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes

    Dumas, Claire; Basséguy, Régine; Bergel, Alain

    2008-01-01

    Stainless steel and graphite electrodes were individually addressed and polarized at−0.60V vs. Ag/AgCl in reactors filled with a growth medium that contained 25mM fumarate as the electron acceptor and no electron donor, in order to force the microbial cells to use the electrode as electron source. When the reactor was inoculated with Geobacter sulfurreducens, the current increased and stabilized at average values around 0.75Am−2 for graphite and 20.5Am−2 for stainless steel. Cyclic voltamm...

  5. Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells.

    Yuan, Yong; Shin, Hyosul; Kang, Chan; Kim, Sunghyun

    2016-04-01

    An osmium redox polymer, PAA-PVI-[Os(4,4'-dimethyl-2,2'-bipyridine)2Cl]+/2+ that has been used in enzymatic fuel cells and microbial sensors, was applied for the first time to the anode of single-chamber microbial fuel cells with the mixed culture inoculum aiming at enhancing performance. Functioning as a molecular wire connecting the biofilm to the anode, power density increased from 1479 mW m(-2) without modification to 2355 mW m(-2) after modification of the anode. Evidence from cyclic voltammetry showed that the catalytic activity of an anodic biofilm was greatly enhanced in the presence of an osmium redox polymer, indicating that electrons were more efficiently transferred to the anode via co-immobilized osmium complex tethered to wiring polymer chains at the potential range of -0.3 V-+0.1 V (vs. SCE). The optimum amount of the redox polymer was determined to be 0.163 mg cm(-2). PMID:26599210

  6. Development of mixed microbial granular biofilms for denitrification of concentrated wastes

    Nitrate containing wastes are generated at various stages of the nuclear fuel cycle; fuel fabrication and reprocessing. A treatment process for removing nitrate from such concentrated nitrate bearing effluents is needed. Among other available options, biological denitrification is an economical and technically feasible method for nitrate removal. Granular biofilm based sequencing batch reactors (SBRs) may allow designing a compact and high rate processes suitable for the treatment of concentrated effluents. Hence, experiments were carried out in laboratory scale sequencing batch reactors (SBRs) to develop granular biofilms (composed of mixed microbes) for removing nitrate from the concentrated nitrate containing-media. Microbial granular biofilms, capable of consuming nitrate up to 2710 mg/l nitrate-N, were developed under anaerobic conditions in a 6-litre volume sequencing batch reactor (SBR). The SBR was inoculated with activated sludge flocs and operated with 24-h cycle and 50% volumetric exchange ratio. Synthetic media containing acetate as the energy source and electron donor, at carbon to nitrogen molar ratio of 2:1 and 3:1 was fed into the SBRs. Nitrate-N concentration in the SBR was increased in a step-wise manner starting from 677 to 2710 mg/l (1355 to 5420 mg/l in the feed). Complete removal of influent nitrate occurred within the first few hours of SBR cycle period. Effluent nitrate and nitrite levels (∼3 mg/l nitrate-N or nitrite-N) at the end of SBR cycle period (24 h) were found to be below the discharge limits. Under these conditions biomass predominantly consisted of granular biofilms. Results show the potential of granular biofilm based SBR for converting nitrate to nitrogen gas from concentrated nitrate bearing industrial effluents. (author)

  7. Characterization of a filamentous biofilm community established in a cellulose-fed microbial fuel cell

    Hotta Yasuaki

    2008-01-01

    Full Text Available Abstract Background Microbial fuel cells (MFCs are devices that exploit microorganisms to generate electric power from organic matter. Despite the development of efficient MFC reactors, the microbiology of electricity generation remains to be sufficiently understood. Results A laboratory-scale two-chamber microbial fuel cell (MFC was inoculated with rice paddy field soil and fed cellulose as the carbon and energy source. Electricity-generating microorganisms were enriched by subculturing biofilms that attached onto anode electrodes. An electric current of 0.2 mA was generated from the first enrichment culture, and ratios of the major metabolites (e.g., electric current, methane and acetate became stable after the forth enrichment. In order to investigate the electrogenic microbial community in the anode biofilm, it was morphologically analyzed by electron microscopy, and community members were phylogenetically identified by 16S rRNA gene clone-library analyses. Electron microscopy revealed that filamentous cells and rod-shaped cells with prosthecae-like filamentous appendages were abundantly present in the biofilm. Filamentous cells and appendages were interconnected via thin filaments. The clone library analyses frequently detected phylotypes affiliated with Clostridiales, Chloroflexi, Rhizobiales and Methanobacterium. Fluorescence in-situ hybridization revealed that the Rhizobiales population represented rod-shaped cells with filamentous appendages and constituted over 30% of the total population. Conclusion Bacteria affiliated with the Rhizobiales constituted the major population in the cellulose-fed MFC and exhibited unique morphology with filamentous appendages. They are considered to play important roles in the cellulose-degrading electrogenic community.

  8. Fate of organo-mineral particles in streams: Microbial degradation by streamwater & biofilm assemblages

    Hunter, W. R.; Raich, M.; Wanek, W.; Battin, T. J.

    2013-12-01

    Inland waters are of global biogeochemical importance. They receive carbon inputs of ~ 4.8 Pg C/ y of which, 12 % is buried, 18 % transported to the oceans, and 70 % supports aquatic secondary production. However, the mechanisms that determine the fate of organic matter (OM) in these systems are poorly defined. One aspect of this is the formation of organo-mineral complexes in aquatic systems and their potential as a route for OM transport and burial vs. their use as carbon (C) and nitrogen (N) sources within aquatic systems. Organo-mineral particles form by sorption of dissolved OM to freshly eroded mineral surfaces and may contribute to ecosystem-scale particulate OM fluxes. We experimentally tested the availability of mineral-sorbed OM as a C & N source for streamwater microbial assemblages and streambed biofilms. Organo-mineral particles were constructed in vitro by sorption of 13C:15N-labelled amino acids to hydrated kaolin particles, and microbial degradation of these particles compared with equivalent doses of 13C:15N-labelled free amino acids. Experiments were conducted in 120 ml mesocosms over 7 days using biofilms and water sampled from the Oberer Seebach stream (Austria). Each incubation experienced a 16:8 light:dark regime, with metabolism monitored via changes in oxygen concentrations between photoperiods. The relative fate of the organo-mineral particles was quantified by tracing the mineralization of the 13C and 15N labels and their incorporation into microbial biomass. Here we present the initial results of 13C-label mineralization, incorporation and retention within dissolved organic carbon pool. The results indicate that 514 (× 219) μmol/ mmol of the 13:15N labeled free amino acids were mineralized over the 7-day incubations. By contrast, 186 (× 97) μmol/ mmol of the mineral-sorbed amino acids were mineralized over a similar period. Thus, organo-mineral complexation reduced amino acid mineralization by ~ 60 %, with no differences observed

  9. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels.

    Marie Ragon

    Full Text Available BACKGROUND: The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta and ascomycete fungi (Ascomycota dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. CONCLUSIONS/SIGNIFICANCE: Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in

  10. Deciphering the contribution of biofilm to the pathogenesis of peritoneal dialysis infections: characterization and microbial behaviour on dialysis fluids

    Sampaio, J.; Machado, Diana; Gomes, Ana Marta; Machado, Idalina; Santos, Cledir; Lima, Nelson; Carvalho, Maria João; Cabrita, António; Rodrigues, Anabela; Martins, Margarida Isabel Barros Coelho

    2016-01-01

    Infections are major complications in peritoneal dialysis (PD) with a multifactorial etiology that comprises patient, microbial and dialytic factors. This study aimed at investigating the contribution of microbial biofilms on PD catheters to recalcitrant infections and their interplay with PD related-factors. A prospective observational study was performed on 47 patients attending Centro Hospitalar of Porto and Vila Nova de Gaia/Espinho to whom the catheter was removed due to infectious (n = ...

  11. Deciphering the Contribution of Biofilm to the Pathogenesis of Peritoneal Dialysis Infections: Characterization and Microbial Behaviour on Dialysis Fluids.

    Joana Sampaio

    Full Text Available Infections are major complications in peritoneal dialysis (PD with a multifactorial etiology that comprises patient, microbial and dialytic factors. This study aimed at investigating the contribution of microbial biofilms on PD catheters to recalcitrant infections and their interplay with PD related-factors. A prospective observational study was performed on 47 patients attending Centro Hospitalar of Porto and Vila Nova de Gaia/Espinho to whom the catheter was removed due to infectious (n = 16 and non-infectious causes (n = 31. Microbial density on the catheter was assessed by culture methods and the isolated microorganisms identified by matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry. The effect of conventional and three biocompatible PD solutions on 16 Coagulase Negative Staphylococci (CNS and 10 Pseudomonas aeruginosa strains planktonic growth and biofilm formation was evaluated. Cultures were positive in 87.5% of the catheters removed due infectious and 90.3% removed due to non-infectious causes. However, microbial yields were higher on the cuffs of catheters removed due to infection vs. non-infection. Staphylococci (CNS and Staphylococcus aureus and P. aeruginosa were the predominant species: 32% and 20% in the infection and 43.3% and 22.7% in the non-infection group, respectively. In general, PD solutions had a detrimental effect on planktonic CNS and P. aeruginosa strains growth. All strains formed biofilms in the presence of PD solutions. The solutions had a more detrimental effect on P. aeruginosa than CNS strains. No major differences were observed between conventional and biocompatible solutions, although in icodextrin solution biofilm biomass was lower than in bicarbonate/lactate solution. Overall, we show that microbial biofilm is universal in PD catheters with the subclinical menace of Staphylococci and P. aeruginosa. Cuffs colonization may significantly contribute to infection. PD solutions

  12. Sulfur as a Matrix for the Development of Microbial Biofilm Communities

    Parker, C.; Bell, E.; Johnson, J. E.; Ma, X.; Stamps, B. W.; Rideout, J.; Johnson, H. A.; Vuono, D.; Spear, J. R.; Hanselmann, K.

    2013-12-01

    The high temperature, low oxygen, and high sulfide concentration of many hot springs select for a low diversity of organisms. The stringent requirements for growth and survival limit the types of interactions, which allow the microbial sulfur metabolism to be examined in depth. We combined geochemical, microbial and molecular data to understand mat development in the warm, oxygen-poor sulfidic Stinking Spring, Utah, USA. The upper flow zone of this spring has a variety of observable microbial biofilm structures that are linked to the activities of both sulfide-oxidizing and oxygenic bacteria. The diverse architecture of the microbial assemblages consist of bulbous ridge structures on the bottom of the streambed, floating mats that cover a large portion of the water surface area, and two morphologically different streamers; green long filaments and white shorter filaments, which both contain large amounts of elemental sulfur. We performed structural analysis using phase contrast and epifluorescence microscopy, and SEM coupled with EDS mapping. Amplicon sequenced 16S rRNA genes analyzed by QIIME and ARB indicated that the predominant organisms present were the cyanobacterial genus Leptolyngbya, and an ɛ-Proteobacteria closely related to the sulfur oxidizing genus Sulfurovum. Metagenomic analysis was conducted on six libraries from three locations using MG-RAST to analyze for genes associated with sulfur metabolism, specifically sulfur oxidation (sox) genes. The presence of sox genes and the microbial sulfur deposition strategy changes downstream as the sulfide concentration decreases. When sulfide is low, the streamers themselves become white and shorter with elemental sulfur deposited intracellularly, and diatoms seem to dominate over cyanobacteria, but do not form associations with the streamer structures. We propose that the microbial biofilms and green streamers present in the sulfide-rich section of the stream are formed in a multi-step process. Initial growth

  13. Population dynamics and spatial distribution of microbial species in multispecies biofilms under the action of direct electric current

    CAO Hongbin; LI Xingang; WU Jinchuan; ZHONG Fangli; ZHANG Yi

    2003-01-01

    The metabolism, population dynamics and spatial distribution of nitrifying bacteria and heterotrophs in biofilms under the action of direct electric current were investigated by using the micro-slicing technique. The nitrification rate of nitrifying bacteria was severely inhibited by a current over 10 Am-2 at lower C/N ratios. Compared to heterotrophs, the nitrifying bacteria in the surface biofilms were severely inhibited, resulting in a significant decrease in bacterial density. An increase in current density narrowed the less current-sensitive inner biofilm region, and in addition the density of NO2-oxidizers decreased more significantly than that of NH4-oxidizers in the surface biofilms probably due to electrochemical reactions at the anode. However, the effect of current on both the population dynamics and the spatial distribution of the microbial species was less significant at larger C/N ratios.

  14. Beneficial biofilms

    Sara R Robertson

    2015-10-01

    Full Text Available Surface-adherent biofilm growth is a common trait of bacteria and other microorganisms in nature. Within biofilms, organisms are present in high density and are enmeshed in an organic matrix containing polysaccharides and other molecules. The close proximity of organisms within biofilms facilitates microbial interactions and signaling, including many metabolic processes in which consortia rather than individual organisms participate. Biofilm growth also enables microorganisms to withstand chemical and biological stresses. Here, we review some current literature and document representative beneficial aspects of biofilms using examples from wastewater treatment, microbial fuel cells, biological repair (biocementation of stonework, and biofilm protection against Candida albicans infections. Finally, we address a chemical ecology strategy whereby desired microbial succession and beneficial biofilm formation can be encouraged via manipulation of culture conditions and bacterial signaling.

  15. Phototrophic Biofilm Assembly in Microbial-Mat-Derived Unicyanobacterial Consortia: Model Systems for the Study of Autotroph-Heterotroph Interactions

    Cole, Jessica K.; Hutchison, Janine R.; Renslow, Ryan S.; Kim, Young-Mo; Chrisler, William B.; Engelmann, Heather E.; Dohnalkova, Alice; Hu, Dehong; Metz, Thomas O.; Fredrickson, Jim K.; Lindemann, Stephen R.

    2014-04-07

    Though microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, the diversity and complexity of natural systems and their intractability to in situ environmental manipulation makes elucidation of the principles governing these interactions challenging. Examination of primary succession during phototrophic biofilm assembly provides a robust means by which to elucidate the dynamics of such interactions and determine their influence upon recruitment and maintenance of phylogenetic and functional diversity in microbial communities. We isolated and characterized two unicyanobacterial consortia from the Hot Lake phototrophic mat, quantifying the structural and community composition of their assembling biofilms. The same heterotrophs were retained in both consortia and included members of Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, taxa frequently reported as consorts of microbial photoautotrophs. Cyanobacteria led biofilm assembly, eventually giving way to a late heterotrophic bloom. The consortial biofilms exhibited similar patterns of assembly, with the relative abundances of members of Bacteroidetes and Alphaproteobacteria increasing and members of Gammaproteobacteria decreasing as colonization progressed. Despite similar trends in assembly at higher taxa, the consortia exhibited substantial differences in community structure at the species level. These similar patterns of assembly with divergent community structures suggest that, while similar niches are created by the metabolism of the cyanobacteria, the resultant webs of autotroph-heterotroph and heterotroph-heterotroph interactions driving metabolic exchange are specific to each primary producer. Altogether, our data support these Hot Lake unicyanobacterial consortia as generalizable model systems whose simplicity and tractability permit the deciphering of community assembly principles relevant to natural microbial communities.

  16. Methods for Observing Microbial Biofilms Directly on Leaf Surfaces and Recovering Them for Isolation of Culturable Microorganisms

    Morris, C. E.; Monier, J.; Jacques, M.

    1997-01-01

    Epifluorescence microscopy, scanning electron microscopy, and confocal laser scanning microscopy were used to observe microbial biofilms directly on leaf surfaces. Biofilms were observed on leaves of all species sampled (spinach, lettuce, Chinese cabbage, celery, leeks, basil, parsley, and broad-leaved endive), although the epifluorescent images were clearest when pale green tissue or cuticle pieces were used. With these techniques, biofilms were observed that were about 20 (mu)m in depth and up to 1 mm in length and that contained copious exopolymeric matrices, diverse morphotypes of microorganisms, and debris. The epifluorescence techniques described here can be used to rapidly determine the abundance and localization of biofilms on leaves. An additional technique was developed to recover individual biofilms or portions of single biofilms from leaves and to disintegrate them for isolation of the culturable microorganisms they contained. Nineteen biofilms from broad-leaved endive, spinach, parsley, and olive leaves were thus isolated and characterized to illustrate the applications of this technique. PMID:16535579

  17. Microbial analysis of in situ biofilm formation in drinking water distribution systems: implications for monitoring and control of drinking water quality.

    Douterelo, Isabel; Jackson, M; Solomon, C; Boxall, J

    2016-04-01

    Biofilm formation in drinking water distribution systems (DWDS) is influenced by the source water, the supply infrastructure and the operation of the system. A holistic approach was used to advance knowledge on the development of mixed species biofilms in situ, by using biofilm sampling devices installed in chlorinated networks. Key physico-chemical parameters and conventional microbial indicators for drinking water quality were analysed. Biofilm coverage on pipes was evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The microbial community structure, bacteria and fungi, of water and biofilms was assessed using pyrosequencing. Conventional wisdom leads to an expectation for less microbial diversity in groundwater supplied systems. However, the analysis of bulk water showed higher microbial diversity in groundwater site samples compared with the surface water site. Conversely, higher diversity and richness were detected in biofilms from the surface water site. The average biofilm coverage was similar among sites. Disinfection residual and other key variables were similar between the two sites, other than nitrates, alkalinity and the hydraulic conditions which were extremely low at the groundwater site. Thus, the unexpected result of an exceptionally low diversity with few dominant genera (Pseudomonas and Basidiobolus) in groundwater biofilm samples, despite the more diverse community in the bulk water, is attributed to the low-flow hydraulic conditions. This finding evidences that the local environmental conditions are shaping biofilm formation, composition and amount, and hence managing these is critical for the best operation of DWDS to safeguard water quality. PMID:26637423

  18. Prevention of microbial biofilms - the contribution of micro and nanostructured materials.

    Grumezescu, Alexandru Mihai; Chifiriuc, Carmen Mariana

    2014-01-01

    Microbial biofilms are associated with drastically enhanced resistance to most of the antimicrobial agents and with frequent treatment failures, generating the search for novel strategies which can eradicate infections by preventing the persistent colonization of the hospital environment, medical devices or human tissues. Some of the current approaches for fighting biofilms are represented by the development of novel biomaterials with increased resistance to microbial colonization and by the improvement of the current therapeutic solutions with the aid of nano (bio)technology. This special issues includes papers describing the applications of nanotechnology and biomaterials science for the development of improved drug delivery systems and nanostructured surfaces for the prevention and treatment of medical biofilms. Nanomaterials display unique and well-defined physical and chemical properties making them useful for biomedical applications, such as: very high surface area to volume ratio, biocompatibility, biodegradation, safety for human ingestion, capacity to support surface modification and therefore, to be combined with other bioactive molecules or substrata and more importantly being seemingly not attracting antimicrobial resistance. The use of biomaterials is significantly contributing to the reduction of the excessive use of antibiotics, and consequently to the decrease of the emergence rate of resistant microorganisms, as well as of the associated toxic effects. Various biomaterials with intrinsic antimicrobial activity (inorganic nanoparticles, polymers, composites), medical devices for drug delivery, as well as factors influencing their antimicrobial properties are presented. One of the presented papers reviews the recent literature on the use of magnetic nanoparticles (MNP)-based nanomaterials in antimicrobial applications for biomedicine, focusing on the growth inhibition and killing of bacteria and fungi, and, on viral inactivation. The anti

  19. Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells

    Liu, Jia

    2014-09-01

    Current generation in a microbial fuel cell can be limited by the amount of anode surface area available for biofilm formation, and slow substrate degradation kinetics. Increasing the anode surface area can increase the amount of biofilm, but performance will improve only if the anode material is located near the cathode to minimize solution internal resistance. Here we demonstrate that biofilms do not have to be in constant contact with the anode to produce current in an MFC. Granular activated carbon particles enriched with exoelectrogenic biofilm are fluidized (by stirring) in the anode chamber of the MFC, resulting in only intermittent contact between the particles and the anode current collector. The maximum power density generated is 951 ± 10 mW m-2, compared to 813 ± 2 mW m-2 for the control without stirring (packed bed), and 525 ± 1 mW m-2 in the absence of GAC particles and without stirring. GAC-biofilm particles demonstrate capacitor-like behavior, but achieve nearly constant discharge conditions due to the large number of particles that contact the current collector. These results provide proof of concept for the development of flowable electrode reactors, where anode biofilms can be electrically charged in a separate storage tank and then rapidly discharged in compact anode chambers. © 2014 Elsevier B.V. All rights reserved.

  20. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms

    Klausen, M.; Gjermansen, Morten; Kreft, J.-U.;

    2006-01-01

    Surface-associated microbial communities in many cases display dynamic developmental patterns. Model biofilms formed by Pseudomonas aeruginosa and Pseudomonas putida in laboratory flow-chamber setups represent examples of such behaviour. Dependent on the experimental conditions the bacteria in...... organisms do not possess comprehensive genetic programs for biofilm development. Instead the bacteria appear to have evolved a number of different mechanisms to optimize surface colonization, of which they express a subset in response to the prevailing environmental conditions. These mechanisms include the...... ability to regulate cellular adhesiveness and migration in response to micro-environmental signals including those secreted by the bacteria themselves....

  1. Microbial biofilms associated with fluid chemistry and megafaunal colonization at post-eruptive deep-sea hydrothermal vents

    O'Brien, Charles E.; Giovannelli, Donato; Govenar, Breea; Luther, George W.; Lutz, Richard A.; Shank, Timothy M.; Vetriani, Costantino

    2015-11-01

    At deep-sea hydrothermal vents, reduced, super-heated hydrothermal fluids mix with cold, oxygenated seawater. This creates temperature and chemical gradients that support chemosynthetic primary production and a biomass-rich community of invertebrates. In late 2005/early 2006 an eruption occurred on the East Pacific Rise at 9°50‧N, 104°17‧W. Direct observations of the post-eruptive diffuse-flow vents indicated that the earliest colonizers were microbial biofilms. Two cruises in 2006 and 2007 allowed us to monitor and sample the early steps of ecosystem recovery. The main objective of this work was to characterize the composition of microbial biofilms in relation to the temperature and chemistry of the hydrothermal fluids and the observed patterns of megafaunal colonization. The area selected for this study had local seafloor habitats of active diffuse flow (in-flow) interrupted by adjacent habitats with no apparent expulsion of hydrothermal fluids (no-flow). The in-flow habitats were characterized by higher temperatures (1.6-25.2 °C) and H2S concentrations (up to 67.3 μM) than the no-flow habitats, and the microbial biofilms were dominated by chemosynthetic Epsilonproteobacteria. The no-flow habitats had much lower temperatures (1.2-5.2 °C) and H2S concentrations (0.3-2.9 μM), and Gammaproteobacteria dominated the biofilms. Siboglinid tubeworms colonized only in-flow habitats, while they were absent at the no-flow areas, suggesting a correlation between siboglinid tubeworm colonization, active hydrothermal flow, and the composition of chemosynthetic microbial biofilms.

  2. The spherical nanoparticle-encapsulated chlorhexidine enhances anti-biofilm efficiency through an effective releasing mode and close microbial interactions

    Li, Xuan; Wong, Chi-Hin; Ng, Tsz-Wing; Zhang, Cheng-Fei; Leung, Ken Cham-Fai; Jin, Lijian

    2016-01-01

    We reported two forms (sphere and wire) of newly fabricated chlorhexidine (CHX)-loaded mesoporous silica nanoparticles (MSNs), and investigated their releasing capacities and anti-biofilm efficiencies. The interactions of the blank MSNs with planktonic oral microorganisms were assessed by field emission scanning electron microscopy. The anti-biofilm effects of the two forms of nanoparticle-encapsulated CHX were examined by 2,3-bis (2-methoxy- 4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide. The profiles of biofilm penetration were analyzed by fluorescent-labeled MSNs using confocal microscopy and ImageJ. The spherical MSNs with an average diameter of 265 nm exhibited a larger surface area and faster CHX-releasing rate than the MSN wires. The field emission scanning electron microscopy images showed that both shaped MSNs enabled to attach and further fuse with the surfaces of testing microbes. Meanwhile, the nanoparticle-encapsulated CHX could enhance the anti-biofilm efficiency with reference to its free form. Notably, the spherical nanoparticle-encapsulated CHX presented with a greater anti-biofilm capacity than the wire nanoparticle-encapsulated CHX, partly due to their difference in physical property. Furthermore, the relatively even distribution and homogeneous dispersion of spherical MSNs observed in confocal images may account for the enhanced penetration of spherical nanoparticle-encapsulated CHX into the microbial biofilms and resultant anti-biofilm effects. These findings reveal that the spherical nanoparticle-encapsulated CHX could preferably enhance its anti-biofilm efficiency through an effective releasing mode and close interactions with microbes. PMID:27330290

  3. Enhanced biofilm distribution and cell performance of microfluidic microbial fuel cells with multiple anolyte inlets.

    Yang, Yang; Ye, Dingding; Liao, Qiang; Zhang, Pengqing; Zhu, Xun; Li, Jun; Fu, Qian

    2016-05-15

    A laminar-flow controlled microfluidic microbial fuel cell (MMFC) is considered as a promising approach to be a bio-electrochemical system (BES). But poor bacterial colonization and low power generation are two severe bottlenecks to restrict its development. In this study, we reported a MMFC with multiple anolyte inlets (MMFC-MI) to enhance the biofilm formation and promote the power density of MMFCs. Voltage profiles during the inoculation process demonstrated MMFC-MI had a faster start-up process than the conventional microfluidic microbial fuel cell with one inlet (MMFC-OI). Meanwhile, benefited from the periodical replenishment of boundary layer near the electrode, a more densely-packed bacterial aggregation was observed along the flow direction and also the substantially low internal resistance for MMFC-MI. Most importantly, the output power density of MMFC-MI was the highest value among the reported µl-scale MFCs to our best knowledge. The presented MMFC-MI appears promising for bio-chip technology and extends the scope of microfluidic energy. PMID:26735875

  4. Metagenomic discovery of novel enzymes and biosurfactants in a slaughterhouse biofilm microbial community

    Thies, Stephan; Rausch, Sonja Christina; Kovacic, Filip; Schmidt-Thaler, Alexandra; Wilhelm, Susanne; Rosenau, Frank; Daniel, Rolf; Streit, Wolfgang; Pietruszka, Jörg; Jaeger, Karl-Erich

    2016-01-01

    DNA derived from environmental samples is a rich source of novel bioactive molecules. The choice of the habitat to be sampled predefines the properties of the biomolecules to be discovered due to the physiological adaptation of the microbial community to the prevailing environmental conditions. We have constructed a metagenomic library in Escherichia coli DH10b with environmental DNA (eDNA) isolated from the microbial community of a slaughterhouse drain biofilm consisting mainly of species from the family Flavobacteriaceae. By functional screening of this library we have identified several lipases, proteases and two clones (SA343 and SA354) with biosurfactant and hemolytic activities. Sequence analysis of the respective eDNA fragments and subsequent structure homology modelling identified genes encoding putative N-acyl amino acid synthases with a unique two-domain organisation. The produced biosurfactants were identified by NMR spectroscopy as N-acyltyrosines with N-myristoyltyrosine as the predominant species. Critical micelle concentration and reduction of surface tension were similar to those of chemically synthesised N-myristoyltyrosine. Furthermore, we showed that the newly isolated N-acyltyrosines exhibit antibiotic activity against various bacteria. This is the first report describing the successful application of functional high-throughput screening assays for the identification of biosurfactant producing clones within a metagenomic library. PMID:27271534

  5. Microbial corrosion of steel in Toarcian argillite: potential influence of bio-films

    Document available in extended abstract form only. In the context of a geological disposal of radioactive waste in clayey formations, the consequences of microbial activity are of concern regarding the corrosion of metallic components, such as the overpack surrounding vitrified waste. Generalized corrosion is one of the main processes taken into account in the dimensioning of these overpacks. However, the presence of microorganisms such as sulfate- or thiosulfate-reducing bacteria in the host rock in contact with these non-alloy materials may enhance localized corrosion processes, leading to a premature and undesirable loss of watertightness. Moreover, the passive corrosion layer, which is formed progressively during the generalized corrosion process and induces a decrease of corrosion rates, may react with iron-reducing bacteria and thus reactivate corrosion. The formation of bio-films may also lead to significant modifications of environment at the biofilm/metal interface in terms of pH, dissolved oxygen, organic and inorganic species, that may lead to electrochemical reactions that could potentially increase corrosion rates. There is thus a need for further investigations of the potential consequences on the physico-chemical conditions within geological disposal facilities. The French Institute for Radiological Protection and Nuclear Safety (IRSN) has been conducting research programs since 1991 in the Tournemire Underground Research Laboratory (URL), a railway tunnel which crosses a Toarcian argillaceous formation. This geological layer is particularly interesting for its physical and chemical properties close to those of Callovo-Oxfordian argillite. The importance of microbial processes in this formation was first shown by the study of time evolution of the chemical and isotopic compositions of fracture groundwaters collected in several boreholes. These investigations suggested that aqueous sulphates and their isotopic composition were controlled by bacterial

  6. Anodic biofilms in microbial fuel cells harbor low numbers of higher-power-producing bacteria than abundant genera

    Kiely, Patrick D.

    2010-07-15

    Microbial fuel cell (MFC) anode communities often reveal just a few genera, but it is not known to what extent less abundant bacteria could be important for improving performance. We examined the microbial community in an MFC fed with formic acid for more than 1 year and determined using 16S rRNA gene cloning and fluorescent in situ hybridization that members of the Paracoccus genus comprised most (~30%) of the anode community. A Paracoccus isolate obtained from this biofilm (Paracoccus denitrificans strain PS-1) produced only 5.6 mW/m 2, whereas the original mixed culture produced up to 10 mW/m 2. Despite the absence of any Shewanella species in the clone library, we isolated a strain of Shewanella putrefaciens (strain PS-2) from the same biofilm capable of producing a higher-power density (17.4 mW/m2) than the mixed culture, although voltage generation was variable. Our results suggest that the numerical abundance of microorganisms in biofilms cannot be assumed a priori to correlate to capacities of these predominant species for high-power production. Detailed screening of bacterial biofilms may therefore be needed to identify important strains capable of high-power generation for specific substrates. © 2010 Springer-Verlag.

  7. CMEIAS bioimage informatics that define the landscape ecology of immature microbial biofilms developed on plant rhizoplane surfaces

    Frank B Dazzo

    2015-10-01

    Full Text Available Colonization of the rhizoplane habitat is an important activity that enables certain microorganisms to promote plant growth. Here we describe various types of computer-assisted microscopy that reveal important ecological insights of early microbial colonization behavior within biofilms on plant root surfaces grown in soil. Examples of the primary data are obtained by analysis of processed images of rhizoplane biofilm landscapes analyzed at single-cell resolution using the emerging technology of CMEIAS bioimage informatics software. Included are various quantitative analyses of the in situ biofilm landscape ecology of microbes during their pioneer colonization of white clover roots, and of a rhizobial biofertilizer strain colonized on rice roots where it significantly enhances the productivity of this important crop plant. The results show that spatial patterns of immature biofilms developed on rhizoplanes that interface rhizosphere soil are highly structured (rather than distributed randomly when analyzed at the appropriate spatial scale, indicating that regionalized microbial cell-cell interactions and the local environment can significantly affect their cooperative and competitive colonization behaviors.

  8. Prevalence of microbial biofilms on selected fresh produce and household surfaces.

    Rayner, Joanna; Veeh, Richard; Flood, Janine

    2004-08-15

    Investigations of biofilms in domestic environments are sparsely represented in the literature. In this study, samples of various household surfaces, including food, laundry and kitchen items, were analyzed for evidence of biofilm presence. Visualization of the surfaces was carried out using cryostage scanning electron microscopy (CSEM) and light microscopy. Qualitative evidence of the presence of biofilm formation was obtained from all of the sample groups analyzed, suggesting the widespread existence of microorganisms in biofilms on domestic surfaces. This suggests that biofilms may be important in household hygiene, and highlights the need for standardized, approved biofilm methods suitable for consumer products testing. PMID:15240072

  9. Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria

    Lo, I [University of California, Berkeley; Denef, Vincent [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Goltsman, Daniela [University of California, Berkeley; DiBartolo, Genevieve [U.S. Department of Energy, Joint Genome Institute; Tyson, Gene W. [University of California, Berkeley; Allen, Eric E. [University of California, Berkeley; Ram, Rachna J. [University of California, Berkeley; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Richardson, Paul [U.S. Department of Energy, Joint Genome Institute; Thelen, Michael P. [University of California, Berkeley; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2007-01-01

    Microbes comprise the majority of extant organisms, yet much remains to be learned about the nature and driving forces of microbial diversification. Our understanding of how microorganisms adapt and evolve can be advanced by genome-wide documentation of the patterns of genetic exchange, particularly if analyses target coexisting members of natural communities. Here we use community genomic data sets to identify, with strain specificity, expressed proteins from the dominant member of a genomically uncharacterized, natural, acidophilic biofilm. Proteomics results reveal a genome shaped by recombination involving chromosomal regions of tens to hundreds of kilobases long that are derived from two closely related bacterial populations. Inter-population genetic exchange was confirmed by multilocus sequence typing of isolates and of uncultivated natural consortia. The findings suggest that exchange of large blocks of gene variants is crucial for the adaptation to specific ecological niches within the very acidic, metalrich environment. Mass-spectrometry-based discrimination of expressed protein products that differ by as little as a single amino acid enables us to distinguish the behaviour of closely related coexisting organisms. This is important, given that microorganisms grouped together as a single species may have quite distinct roles in natural systems1-3 and their interactions might be key to ecosystem optimization. Because proteomic data simultaneously convey information about genome type and activity, strainresolved community proteomics is an important complement to cultivation-independent genomic (metagenomic) analysis4-6 of microorganisms in the natural environment.

  10. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-28

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs. PMID:26095385

  11. [Effect of the biofilm biopolymers on the microbial corrosion rate of the low-carbon steel].

    Borets'ka, M O; Kozlova, I P

    2007-01-01

    The relationship between exopolymer's specific production, relative carbohydrate and protein content in the biofilm exopolymers of the pure and mixed Thiobacillus thioparus and Stenotrophomonas maltophilia cultures and their corrosion activity was studied. Change of growth model of investigated cultures from plankton to biofilm led to an increase of specific exopolymer's production. In the biofilm formed by T. thioparus and S. maltophilia biofilm on the low-carbon steel surface one could observe an increase of relative protein content in the exopolymer complex in comparison with those in the pure culture. The development of such biofilms stimulatied the 7-fold corrosion activity. PMID:17977451

  12. Medical Biofilms

    Bryers, James D.

    2008-01-01

    For more than two decades, Biotechnology and Bioengineering has documented research focused on natural and engineered microbial biofilms within aquatic and subterranean ecosystems, wastewater and waste-gas treatment systems, marine vessels and structures, and industrial bioprocesses. Compared to suspended culture systems, intentionally engineered biofilms are heterogeneous reaction systems that can increase reactor productivity, system stability, and provide inherent cell: product separation....

  13. Raoultella electrica sp. nov., isolated from anodic biofilms of a glucose-fed microbial fuel cell.

    Kimura, Zen-ichiro; Chung, Kyung Mi; Itoh, Hiroaki; Hiraishi, Akira; Okabe, Satoshi

    2014-04-01

    A Gram-stain-negative, non-spore-forming, rod-shaped bacterium, designated strain 1GB(T), was isolated from anodic biofilms of a glucose-fed microbial fuel cell. Strain 1GB(T) was facultatively anaerobic and chemo-organotrophic, having both a respiratory and a fermentative type of metabolism, and utilized a wide variety of sugars as carbon and energy sources. Cells grown aerobically contained Q-8 as the major quinone, but excreted Q-9 and a small amount of Q-10 when cultured with an electrode serving as the sole electron acceptor. The G+C content of the genomic DNA of 1GB(T) was 54.5 mol%. Multilocus sequence typing (MLST) analysis showed that strain 1GB(T) represented a distinct lineage within the genus Raoultella (98.5-99.4 % 16S rRNA gene sequence similarity and 94.0-96.5 % sequence similarity based on the three concatenated housekeeping genes gyrA, rpoB and parC. Strain 1GB(T) exhibited DNA-DNA hybridization relatedness of 7-43 % with type strains of all established species of the genus Raoultella. On the basis of these phenotypic, phylogenetic and genotypic data, the name Raoultella electrica sp. nov. is proposed for strain 1GB(T). The type strain is 1GB(T) ( = NBRC 109676(T) = KCTC 32430(T)). PMID:24449794

  14. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells

    Ren, Zhiyong

    2011-01-01

    The relationship between anode microbial characteristics and electrochemical parameters in microbial fuel cells (MFCs) was analyzed by time-course sampling of parallel single-bottle MFCs operated under identical conditions. While voltage stabilized within 4. days, anode biofilms continued growing during the six-week operation. Viable cell density increased asymptotically, but membrane-compromised cells accumulated steadily from only 9% of total cells on day 3 to 52% at 6. weeks. Electrochemical performance followed the viable cell trend, with a positive correlation for power density and an inverse correlation for anode charge transfer resistance. The biofilm architecture shifted from rod-shaped, dispersed cells to more filamentous structures, with the continuous detection of Geobacter sulfurreducens-like 16S rRNA fragments throughout operation and the emergence of a community member related to a known phenazine-producing Pseudomonas species. A drop in cathode open circuit potential between weeks two and three suggested that uncontrolled biofilm growth on the cathode deleteriously affects system performance. © 2010 Elsevier Ltd.

  15. Soluble Microbial Product Characterization of Biofilm Formation in Bench-Scale

    Mines, Paul

    2012-12-01

    The biological process known as activated sludge (AS) in conjunction with membrane separation technology for the treatment of wastewater has been employed for over four decades. While, membrane biological reactors (MBR) are now widely employed, the phenomenon of membrane fouling is still the most significant factor leading to performance decline of MBRs. Although much research has been done on the subject of MBR fouling over the past two decades, many questions remain unanswered, and consensus within the scientific community is rare. However, research has led to one system parameter generally being regarded as a contributor to membrane fouling, extracellular polymeric compounds (EPS). EPS, and more specifically, the soluble fraction of EPS known as soluble microbial products (SMP), must be further investigated in order to better understand membrane fouling. The biological activity and performance of the MBR is affected by myriad operational parameters, which in turn affects the SMP generated. A commonly varied operational parameter is, depending on the specific treatment needs of a MBR, the sludge retention time (SRT). This study aims to characterize the SMP in three bench-scale MBRs as the SRT is gradually lowered. By studying how the SMP change as the operation of the system is altered, greater understanding of how SMP are related to fouling can be achieved. At the onset of the study, a steady state was established in the system with a SRT of 20 days. Upon stabilization of a 20 day SRT, the system was gradually transitioned to a five and a half day SRT, in stepwise adjustments. Initially, both the trans-membrane pressure (TMP) and the SMP concentrations were at relatively low values, indicating the presence of minimal amounts of biofilm on the membrane surfaces. As the system was altered and more activated sludge was wasted from the reactors, the SRT inherently decreased. As the lower SRT was transitioned and established, the data from TMP measurements, as well

  16. Microbial community stratification in Membrane-Aerated Biofilm Reactors for Completely Autotrophic Nitrogen Removal

    Pellicer i Nàcher, Carles; Ruscalleda, Maël; Terada, Akihiko;

    bacterial granules or biofilms. In this sense, completely autotrophic nitrogen removal from high ammonium strength wastewater was achieved in a Membrane-Aereated Biofilm Reactor (MABR) in a single step. Here, a biofilm containing nitrifiers (Aerobic Ammonium and Nitrite Oxidizing Bacteria, AOB and NOB......Due to the necessity of a source of nitrite, most of the processes involving Anaerobic Ammonium Oxidation (Anammox) are based on a separated two-step process with a previous partial-nitritation reactor. However, these two processes can occur simultaneously in the same reactor by taking advantage of......, respectively) and Anaerobic Ammonium Oxidizing Bacteria (AnAOB) is grown on bubbleless aeration membranes to remove ammonium. Since oxygen permeates through the membrane-biofilm interface while ammonium diffuses into the biofilm from the biofilm-liquid interface, oxygen gradients can be established across the...

  17. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes

    Rohwerder, T.; Sand, W. [Universitaet Duisburg-Essen, Biofilm Centre, Aquatic Biotechnology, Duisburg (Germany)

    2007-07-15

    The oxidation of reduced inorganic sulfur compounds to sulfuric acid is of great importance for biohydrometallurgical technologies as well as the formation of acidic (below pH 3) and often heavy metal-contaminated environments. The use of elemental sulfur as an electron donor is the predominant energy-yielding process in acidic natural sulfur-rich biotopes but also at mining sites containing sulfidic ores. Contrary to its significant role in the global sulfur cycle and its biotechnological importance, the microbial fundamentals of acidophilic sulfur oxidation are only incompletely understood. Besides giving an overview of sulfur-oxidizing acidophiles, this review describes the so far known enzymatic reactions related to elemental sulfur oxidation in acidophilic bacteria and archaea. Although generally similar reactions are employed in both prokaryotic groups, the stoichiometry of the key enzymes is different. Bacteria oxidize elemental sulfur by a sulfur dioxygenase to sulfite whereas in archaea, a sulfur oxygenase reductase is used forming equal amounts of sulfide and sulfite. In both cases, the activation mechanism of elemental sulfur is not known but highly reactive linear sulfur forms are assumed to be the actual substrate. Inhibition as well as promotion of these biochemical steps is highly relevant in bioleaching operations. An efficient oxidation can prevent the formation of passivating sulfur layers. In other cases, a specific inhibition of sulfur biooxidation may be beneficial for reducing cooling and neutralization costs. In conclusion, the demand for a better knowledge of the biochemistry of sulfur-oxidizing acidophiles is underlined. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  18. In Situ Ecophysiology of Microbial Biofilm Communities Analyzed by CMEIAS Computer-Assisted Microscopy at Single-Cell Resolution

    Youssef G. Yanni

    2013-06-01

    Full Text Available This paper describes the utility of CMEIAS (Center for Microbial Ecology Image Analysis System computer-assisted microscopy to extract data from accurately segmented images that provide 63 different insights into the ecophysiology of microbial populations and communities within biofilms and other habitats. Topics include quantitative assessments of: (i morphological diversity as an indicator of impacts that substratum physicochemistries have on biofilm community structure and dominance-rarity relationships among populations; (ii morphotype-specific distributions of biovolume body size that relate microbial allometric scaling, metabolic activity and growth physiology; (iii fractal geometry of optimal cellular positioning for efficient utilization of allocated nutrient resources; (iv morphotype-specific stress responses to starvation, environmental disturbance and bacteriovory predation; (v patterns of spatial distribution indicating positive and negative cell–cell interactions affecting their colonization behavior; and (vi significant methodological improvements to increase the accuracy of color-discriminated ecophysiology, e.g., differentiation of cell viability based on cell membrane integrity, cellular respiratory activity, phylogenetically differentiated substrate utilization, and N-acyl homoserine lactone-mediated cell–cell communication by bacteria while colonizing plant roots. The intensity of these ecophysiological attributes commonly varies at the individual cell level, emphasizing the importance of analyzing them at single-cell resolution and the proper spatial scale at which they occur in situ.

  19. Surface-to-surface biofilm transfer: a quick and reliable startup strategy for mixed culture microbial fuel cells.

    Vogl, Andreas; Bischof, Franz; Wichern, Marc

    2016-01-01

    The startup of microbial fuel cells (MFCs) is known to be prone to failure or result in erratic performance impeding the research. The aim of this study was to advise a quick launch strategy for laboratory-scale MFCs that ensures steady operation performance in a short period of time. Different startup strategies were investigated and compared with membraneless single chamber MFCs. A direct surface-to-surface biofilm transfer (BFT) in an operating MFC proved to be the most efficient method. It provided steady power densities of 163 ± 13 mWm(-2) 4 days after inoculation compared to 58 ± 15 mWm(-2) after 30 days following a conventional inoculation approach. The in situ BFT eliminates the need for microbial acclimation during startup and reduces performance fluctuations caused by shifts in microbial biodiversity. Anaerobic pretreatment of the substrate and addition of suspended enzymes from an operating MFC into the new MFC proved to have a beneficial effect on startup and subsequent operation. Polarization methods were applied to characterize the startup phase and the steady state operation in terms of power densities, internal resistance and power overshoot during biofilm maturation. Applying this method a well-working MFC can be multiplied into an array of identically performing MFCs. PMID:27120629

  20. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode

    Yan, Hengjing

    2012-05-01

    Nitrogen removal is needed in microbial fuel cells (MFCs) for the treatment of most waste streams. Current designs couple biological denitrification with side-stream or combined nitrification sustained by upstream or direct aeration, which negates some of the energy-saving benefits of MFC technology. To achieve simultaneous nitrification and denitrification, without extra energy input for aeration, the air cathode of a single-chamber MFC was pre-enriched with a nitrifying biofilm. Diethylamine-functionalized polymer (DEA) was used as the Pt catalyst binder on the cathode to improve the differential nitrifying biofilm establishment. With pre-enriched nitrifying biofilm, MFCs with the DEA binder had an ammonia removal efficiency of up to 96.8% and a maximum power density of 900 ± 25 mW/m 2, compared to 90.7% and 945 ± 42 mW/m 2 with a Nafion binder. A control with Nafion that lacked nitrifier pre-enrichment removed less ammonia and had lower power production (54.5% initially, 750 mW/m 2). The nitrifying biofilm MFCs had lower Coulombic efficiencies (up to 27%) than the control reactor (up to 36%). The maximum total nitrogen removal efficiency reached 93.9% for MFCs with the DEA binder. The DEA binder accelerated nitrifier biofilm enrichment on the cathode, and enhanced system stability. These results demonstrated that with proper cathode pre-enrichment it is possible to simultaneously remove organics and ammonia in a single-chamber MFC without supplemental aeration. © 2012 Elsevier Ltd.

  1. Recent Advances in the Study of Marine Microbial Biofilm: From the Involvement of Quorum Sensing in Its Production up to Biotechnological Application of the Polysaccharide Fractions

    Paola Di Donato

    2016-05-01

    Full Text Available The present review will explore the most relevant findings on marine microbial biofilm, with particular attention towards its polysaccharide fraction, namely exopolysaccharide (EPS. EPSs of microbial origin are ubiquitous in nature, possess unique properties and can be isolated from the bacteria living in a variety of habitats, including fresh water or marine environments, extreme environments or different soil ecosystems. These biopolymers have many application in the field of biotechnology. Several studies showed that the biofilm formation is closely related to quorum sensing (QS systems, which is a mechanism relying on the production of small molecules defined as “autoinducers” that bacteria release in the surrounding environment where they accumulate. In this review, the involvement of microbial chemical communication, by QS mechanism, in the formation of marine biofilm will also be discussed.

  2. Phototrophic biofilm assembly in microbial-mat-derived unicyanobacterial consortia: model systems for the study of autotroph-heterotroph interactions

    StephenRLindemann

    2014-04-01

    Full Text Available Microbial autotroph-heterotroph interactions influence biogeochemical cycles on a global scale, but the diversity and complexity of natural systems and their intractability to in situ manipulation make it challenging to elucidate the principles governing these interactions. The study of assembling phototrophic biofilm communities provides a robust means to identify such interactions and evaluate their contributions to the recruitment and maintenance of phylogenetic and functional diversity over time. To examine primary succession in phototrophic communities, we isolated two unicyanobacterial consortia from the microbial mat in Hot Lake, Washington, characterizing the membership and metabolic function of each consortium. We then analyzed the spatial structures and quantified the community compositions of their assembling biofilms. The consortia retained the same suite of heterotrophic species, identified as abundant members of the mat and assigned to Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes. Autotroph growth rates dominated early in assembly, yielding to increasing heterotroph growth rates late in succession. The two consortia exhibited similar assembly patterns, with increasing relative abundances of members from Bacteroidetes and Alphaproteobacteria concurrent with decreasing relative abundances of those from Gammaproteobacteria. Despite these similarities at higher taxonomic levels, the relative abundances of individual heterotrophic species were substantially different in the developing consortial biofilms. This suggests that, although similar niches are created by the cyanobacterial metabolisms, the resulting webs of autotroph-heterotroph and heterotroph-heterotroph interactions are specific to each primary producer. The relative simplicity and tractability of the Hot Lake unicyanobacterial consortia make them useful model systems for deciphering interspecies interactions and assembly principles relevant to natural

  3. Microbial activity catalyzes oxygen transfer in membrane-aerated nitritating biofilm reactors

    Pellicer i Nàcher, Carles; Domingo Felez, Carlos; Lackner, Susanne;

    2013-01-01

    attain partial nitritation showed that predicted oxygen transfer rates are enhanced up to six times with biofilm activity. The higher availability of ammonia at the biofilm base drives this process. Such behavior can be captured with the addition of two terms (depending on system characteristics and...

  4. Biofilm Infections

    A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized as...... being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as...... diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well as...

  5. Biofilm Infections

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Moser, Claus Ernst; Høiby, Niels

    being important in chronic infection. In 1993 the American Society for Microbiology (ASM) recognized that the biofilm mode of growth was relevant to microbiology. This book covers both the evidence for biofilms in many chronic bacterial infections as well as the problems facing these infections such as......A still increasing interest and emphasis on the sessile bacterial lifestyle biofilms has been seen since it was realized that the vast majority of the total microbial biomass exists as biofilms. Aggregation of bacteria was first described by Leeuwenhoek in 1677, but only recently recognized as...... diagnostics, pathogenesis, treatment regimes and in vitro and in vivo models for studying biofilms. This is the first scientific book on biofilm infections, chapters written by the world leading scientist and clinicians. The intended audience of this book is scientists, teachers at university level as well as...

  6. Microbial dynamics during conversion from supragingival to subgingival biofilms in an in vitro model.

    Thurnheer, T; Bostanci, N; Belibasakis, G N

    2016-04-01

    The development of dental caries and periodontal diseases result from distinct shifts in the microbiota of the tooth-associated biofilm. This in vitro study aimed to investigate changes in biofilm composition and structure, during the shift from a 'supragingival' aerobic profile to a 'subgingival' anaerobic profile. Biofilms consisting of Actinomyces oris, Candida albicans, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus mutans and Veillonella dispar were aerobically grown in saliva-containing medium on hydroxyapatite disks. After 64 h, Campylobacter rectus, Prevotella intermedia and Streptococcus anginosus were further added along with human serum, while culture conditions were shifted to microaerophilic. After 96 h, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola were finally added and the biofilm was grown anaerobically for another 64 h. At the end of each phase, biofilms were harvested for species-specific quantification and localization. Apart from C. albicans, all other species gradually increased during aerobic and microaerophilic conditions, but remained steady during anaerobic conditions. Biofilm thickness was doubled during the microaerophilic phase, but remained steady throughout the anaerobic phase. Extracellular polysaccharide presence was gradually reduced throughout the growth period. Biofilm viability was reduced during the microaerophilic conversion, but was recovered during the anaerobic phase. This in vitro study has characterized the dynamic structural shifts occurring in an oral biofilm model during the switch from aerobic to anaerobic conditions, potentially modeling the conversion of supragingival to subgingival biofilms. Within the limitations of this experimental model, the findings may provide novel insights into the ecology of oral biofilms. PMID:26033167

  7. Hydraulic continuity and biological effects of low strength very low frequency electromagnetic waves: Case of microbial biofilm growth in water treatment.

    Gérard, Merlin; Noamen, Omri; Evelyne, Gonze; Eric, Valette; Gilles, Cauffet; Marc, Henry

    2015-10-15

    This study aims to elucidate the interactions between water, subjected to electromagnetic waves of very low frequency (VLF) (kHz) with low strength electromagnetic fields (3.5 mT inside the coils), and the development of microbial biofilms in this exposed water. Experimental results demonstrate that in water exposed to VLF electromagnetic waves, the biomass of biofilm is limited if hydraulic continuity is achieved between the electromagnetic generator and the biofilm media. The measured amount of the biofilm's biomass is approximately a factor two lower for exposed biofilm than the non-exposed biofilm. Measurements of electromagnetic fields in the air and simulations exhibit very low intensities of fields (biofilm-exposed region at a distance of 1 m from the electromagnetic generator. Exposure to electric and magnetic fields of the quoted intensities cannot explain thermal and ionizing effects on the biofilm. A variable electrical potential with a magnitude close to 20 mV was detected in the tank in hydraulic continuity with the electromagnetic generator. The application of quantum field theory may help to explain the observed effects in this case. PMID:26150067

  8. Innovative biofilm inhibition and anti-microbial behavior of molybdenum sulfide nanostructures generated by microwave-assisted solvothermal route

    Qureshi, Nilam; Patil, Rajendra; Shinde, Manish; Umarji, Govind; Causin, Valerio; Gade, Wasudev; Mulik, Uttam; Bhalerao, Anand; Amalnerkar, Dinesh P.

    2015-03-01

    The incessant use of antibiotics against infectious diseases has translated into a vicious circle of developing new antibiotic drug and its resistant strains in short period of time due to inherent nature of micro-organisms to alter their genes. Many researchers have been trying to formulate inorganic nanoparticles-based antiseptics that may be linked to broad-spectrum activity and far lower propensity to induce microbial resistance than antibiotics. The way-out approaches in this direction are nanomaterials based (1) bactericidal and (2) bacteriostatic activities. We, herein, present hitherto unreported observations on microbial abatement using non-cytotoxic molybdenum disulfide nanostructures (MSNs) which are synthesized using microwave assisted solvothermal route. Inhibition of biofilm formation using MSNs is a unique feature of our study. Furthermore, this study evinces antimicrobial mechanism of MSNs by reactive oxygen species (ROS) dependent generation of superoxide anion radical via disruption of cellular functions.

  9. Morphological observation and microbial population dynamics in anaerobic polyurethane foam biofilm degrading gelatin

    Tommaso G.

    2002-01-01

    Full Text Available This work reports on a preliminary study of anaerobic degradation of gelatin with emphasis on the development of the proteolytic biofilm in polyurethane foam matrices in differential reactors. The evolution of the biofilm was observed during 22 days by optical and scanning electron microscopy (SEM analyses. Three distinct immobilization patterns could be observed in the polyurethane foam: cell aggregates entrapped in matrix pores, thin biofilms attached to inner polyurethane foam surfaces and individual cells that have adhered to the support. Rods, cocci and vibrios were observed as the predominant morphologies of bacterial cells. Methane was produced mainly by hydrogenothrophic reactions during the operation of the reactors.

  10. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis.

    Devendra H Dusane

    Full Text Available BACKGROUND: Marine epibiotic bacteria produce bioactive compounds effective against microbial biofilms. The study examines antibiofilm ability of a protein obtained from a tropical marine strain of Bacillus licheniformis D1. METHODOLOGY/PRINCIPAL FINDINGS: B. licheniformis strain D1 isolated from the surface of green mussel, Perna viridis showed antimicrobial activity against pathogenic Candida albicans BH, Pseudomonas aeruginosa PAO1 and biofouling Bacillus pumilus TiO1 cultures. The antimicrobial activity was lost after treatment with trypsin and proteinase K. The protein was purified by ultrafiltration and size-exclusion chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF analysis revealed the antimicrobial agent to be a 14 kDa protein designated as BL-DZ1. The protein was stable at 75°C for 30 min and over a pH range of 3.0 to 11.0. The sequence alignment of the MALDI-fingerprint showed homology with the NCBI entry for a hypothetical protein (BL00275 derived from B. licheniformis ATCC 14580 with the accession number gi52082584. The protein showed minimum inhibitory concentration (MIC value of 1.6 µg/ml against C. albicans. Against both P. aeruginosa and B. pumilus the MIC was 3.12 µg/ml. The protein inhibited microbial growth, decreased biofilm formation and dispersed pre-formed biofilms of the representative cultures in polystyrene microtiter plates and on glass surfaces. CONCLUSION/SIGNIFICANCE: We isolated a protein from a tropical marine strain of B. licheniformis, assigned a function to the hypothetical protein entry in the NCBI database and described its application as a potential antibiofilm agent.

  11. Stratification of Microbial Processes and Populations in Biofilms Treating Pig Farm Waste Air

    Juhler, Susanne; Saunders, Aaron Marc; Pedersen, Kristina;

    2006-01-01

    Biological air filters have been developed to reduce odor and ammonia emissions resulting from the rapidly expanding pig farm industry in many European countries. In contrast to aqueous biofilm environments, the biofilms of these filters are air-fed, allowing for extreme metabolite accumulation...... strong concentration gradients as both substrate load and metabolite accumulation decreases across the filter. To investigate bacterial activity, distribution, and community structure, an in situ approach was applied combining microsensor analysis in intact biofilm of a full-scale biofilter with...... fluorescence in situ hybridization (FISH) and cloning/sequencing of 16S rRNA genes. In the biofilm, the presence of AOB was restricted to a discrete zone between a dense surface layer of heterotrophs and an anoxic layer below. On filter level, both abundance and potential activity of the AOB increased from the...

  12. Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation.

    Rybalchenko, Oxana V; Bondarenko, Viktor M; Orlova, Olga G; Markov, Alexander G; Amasheh, S

    2015-10-01

    Beneficial effects of Lactobacilli have been reported, and lactic bacteria are employed for conservation of foods. Therefore, the effects of a Lactobacillus fermentum strain were analyzed regarding inhibitory effects on staphylococci, Candida albicans and enterotoxigenic enterobacteria by transmission electron microscopy (TEM). TEM of bacterial biofilms was performed using cocultures of bacteriocin-producing L. fermentum 97 with different enterotoxigenic strains: Staphylococcus epidermidis expressing the ica gene responsible for biofilm formation, Staphylococcus aureus producing enterotoxin type A, Citrobacter freundii, Enterobacter cloaceae, Klebsiella oxytoca, Proteus mirabilis producing thermolabile and thermostable enterotoxins determined by elt or est genes, and Candida albicans. L. fermentum 97 changed morphological features and suppressed biofilm formation of staphylococci, enterotoxigenic enterobacteria and Candida albicans; a marked transition to resting states, a degradation of the cell walls and cytoplasm, and a disruption of mature bacterial biofilms were observed, the latter indicating efficiency even in the phase of higher cell density. PMID:26267163

  13. Microbial interactions in biofilms : role of siderophores and iron-dependent mechanisms as biocontrol strategies

    Simões, M; Cleto, S.; Simões, Lúcia C; Pereira, Maria Olívia; Vieira, M. J.

    2007-01-01

    Biofilms are ubiquitous in nature and can cause significant problems in public health, medicine and industry. Antimicrobial approaches to treat bacterial proliferation and biofilm formation constitute a focal point of modern research. We are entering a post-chemical antimicrobial era, not only due to the need to delivering of environmentally- friendly products, but also due to the increasing resistance of some pathogens against the most common antimicrobials, and the recalcitra...

  14. Composition of Microbial Oral Biofilms during Maturation in Young Healthy Adults

    Langfeldt, D.; Neulinger, S.; Heuer, W.; Staufenbiel, I.; S. Künzel; Baines, J.; Eberhard, J; R. Schmitz

    2014-01-01

    In the present study we aimed to analyze the bacterial community structure of oral biofilms at different maturation stages in young healthy adults. Oral biofilms established on membrane filters were collected from 32 human subjects after 5 different maturation intervals (1, 3, 5, 9 and 14 days) and the respective phylogenetic diversity was analyzed by 16S rDNA amplicon sequencing. Our analyses revealed highly diverse entire colonization profiles, spread into 8 phyla/candidate divisions and in...

  15. Unravelling the interactions among microbial populations found in activated sludge during biofilm formation.

    Liébana, Raquel; Arregui, Lucía; Santos, Antonio; Murciano, Antonio; Marquina, Domingo; Serrano, Susana

    2016-09-01

    Microorganisms colonize surfaces and develop biofilms through interactions that are not yet thoroughly understood, with important implications for water and wastewater systems. This study investigated the interactions between N-acyl homoserine lactone (AHL)-producing bacteria, yeasts and protists, and their contribution to biofilm development. Sixty-one bacterial strains were isolated from activated sludge and screened for AHL production, with Aeromonas sp. found to be the dominant AHL producer. Shewanella xiamenensis, Aeromonas allosaccharophila, Acinetobacter junii and Pseudomonas aeruginosa recorded the highest adherence capabilities, with S. xiamenensis being the most effective in surface colonization. Additionally, highly significant interactions (i.e. synergic or antagonistic) were described for dual and multistrain mixtures of bacterial strains (P. aeruginosa, S. xiamenensis, A. junii and Pseudomonas stutzeri), as well as for strongly adherent bacteria co-cultured with yeasts. In this last case, the adhered biomass in co-cultures was lower than the monospecific biofilms of bacteria and yeast, with biofilm observations by microscopy suggesting that bacteria had an antagonist effect on the whole or part of the yeast population. Finally, protist predation by Euplotes sp. and Paramecium sp. on Aeromonas hydrophila biofilms not only failed to reduce biofilm formation, but also recorded unexpected results leading to the development of aggregates of high density and complexity. PMID:27306553

  16. Theoretical and practical aspects regarding the development and control of microbial biofilms attached to the surface of dental materials and dental prostheses in particular

    Zisi, Sonila; Bortollini, Sergio; Muntianu, Ligia; Papakoca, Kiro; Burlibasa, Mihai

    2012-01-01

    Microbial biofilms play an essential role in oral pathology, in the etiology of dental caries, periodontopathy, but also in surface contamination of dental materials (and here we refer to prosthetic material such as acrylic materials usedfor dentures, occlusal rims, try-in dentures, dental alloys used in fixed dental restorations, impression materials, etc.)

  17. Aggregation and removal of copper oxide (CuO) nanoparticles in wastewater environment and their effects on the microbial activities of wastewater biofilms.

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Geng, Nan; Yao, Yu; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2016-09-01

    The transport behaviors of copper oxide (CuO) NPs in wastewater matrix and their possible impacts on microbial activities of stable wastewater biofilms cultivated in a lab scale rotating biological contactor (RBC) were investigated. Significant aggregation of CuO NPs was observed in the wastewater samples, depending on their mass concentrations. Extracellular polymeric substance (EPS)-adsorbed copper accounted for a large proportion of the total copper accumulated in biofilms. The microelectrode profiles showed that a single pulse exposure to 50mg/L CuO resulted in a deeper penetration depth of oxygen in biofilms compared to the CuO NP free biofilms. The maximum oxygen consumption rate shifted to the deeper parts of biofilms, indicating that the respiration activities of bacteria in the top region of the biofilms was significantly inhibited by CuO NPs. Biofilms secreted more EPS in response to the nano-CuO stress, with higher production of proteins compared to polysaccharides. PMID:27281432

  18. Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria

    Johnson, D. Barrie; McGinness, Stephen

    1991-01-01

    Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was note...

  19. How do changes in dissolved oxygen concentration influence microbially-controlled phosphorus cycling in stream biofilms?

    Saia, S. M.; Locke, N. A.; Regan, J. M.; Carrick, H. J.; Buda, A. R.; Walter, M. T.

    2014-12-01

    Advances in molecular microbiology techniques (e.g. epi-fluorescent microscopy and PCR) are making it easier to study the influence of specific microorganisms on nutrient transport. Polyphosphate accumulating organisms (PAOs) are commonly used in wastewater treatment plants to remove excess phosphorus (P) from effluent water. PAOs have also been identified in natural settings but their ecological function is not well known. In this study, we tested the hypothesis that PAOs in natural environments would release and accumulate P during anaerobic and aerobic conditions, respectively. We placed stream biofilms in sealed, covered tubs and subjected them to alternating air (aerobic conditions) and N2 gas (anaerobic condition) bubbling for 12 hours each. Four treatments investigated the influence of changing dissolved oxygen on micribially-controlled P cycling: (1) biofilms bubbled continuously with air, (2) biofilms bubbled alternatively with air and N2, (3) biocide treated biofilms bubbled continuously with air, and (4) biocide treated biofilms bubbled alternatively with air and N2. Treatments 3 and 4 serve as abiotic controls to treatments 1 and 2. We analyzed samples every 12 hours for soluble reactive P (SRP), temperature, dissolved oxygen, and pH. We also used fluorescent microscopy (i.e. DAPI staining) and PCR to verify the presence of PAOs in the stream biofilms. SRP results over the course of the experiment support our hypothesis that anaerobic and aerobic stream conditions may impact PAO mediated P release and uptake, respectively in natural environments. The results of these experiments draw attention to the importance of microbiological controls on P mobility in freshwater ecosystems.

  20. 3D Imaging of Microbial Biofilms: Integration of Synchrotron Imaging and an Interactive Visualization Interface

    Thomas, Mathew; Marshall, Matthew J.; Miller, Erin A.; Kuprat, Andrew P.; Kleese van Dam, Kerstin; Carson, James P.

    2014-08-26

    Understanding the interactions of structured communities known as “biofilms” and other complex matrixes is possible through the X-ray micro tomography imaging of the biofilms. Feature detection and image processing for this type of data focuses on efficiently identifying and segmenting biofilms and bacteria in the datasets. The datasets are very large and often require manual interventions due to low contrast between objects and high noise levels. Thus new software is required for the effectual interpretation and analysis of the data. This work specifies the evolution and application of the ability to analyze and visualize high resolution X-ray micro tomography datasets.

  1. Biofilm establishment and heavy metal removal capacity of an indigenous mining algal-microbial consortium in a photo-rotating biological contactor.

    Orandi, S; Lewis, D M; Moheimani, N R

    2012-09-01

    An indigenous mining algal-microbial consortium was immobilised within a laboratory-scale photo-rotating biological contactor (PRBC) that was used to investigate the potential for heavy metal removal from acid mine drainage (AMD). The microbial consortium, dominated by Ulothrix sp., was collected from the AMD at the Sar Cheshmeh copper mine in Iran. This paper discusses the parameters required to establish an algal-microbial biofilm used for heavy metal removal, including nutrient requirements and rotational speed. The PRBC was tested using synthesised AMD with the multi-ion and acidic composition of wastewater (containing 18 elements, and with a pH of 3.5 ± 0.5), from which the microbial consortium was collected. The biofilm was successfully developed on the PRBC's disc consortium over 60 days of batch-mode operation. The PRBC was then run continuously with a 24 h hydraulic residence time (HRT) over a ten-week period. Water analysis, performed on a weekly basis, demonstrated the ability of the algal-microbial biofilm to remove 20-50 % of the various metals in the order Cu > Ni > Mn > Zn > Sb > Se > Co > Al. These results clearly indicate the significant potential for indigenous AMD microorganisms to be exploited within a PRBC for AMD treatment. PMID:22644382

  2. Purification of high ammonia wastewater in a biofilm airlift loop bioreactor with microbial communities analysis.

    Qiu, Chunsheng; Zhang, Dandan; Sun, Liping; Wen, Jianping

    2015-01-01

    A 70 m(3) gas-liquid-solid three-phase flow airlift loop bioreactor, in which biofilm attached on granular active carbon carriers, was used for purification of the high ammonia wastewater from bioethanol production. Under the optimum operating conditions, COD and NH4 (+)-N average removal rate of 89.0 and 98.6 % were obtained at hydraulic retention time of 10 h. Scanning electron microscopy was applied for observation of the biofilm formation. High contaminants removal efficiency was achieved by holding high biomass concentration in the reactor due to the attached biofilm over the carriers. The 16S rRNA gene clone library analysis indicated that 68.6 % of the clones were affiliated with the two phyla Bacteroidetes and Proteobacteria, and residual clones clustered with various sequences from uncultured bacteria. The presence of various anoxic/anaerobic bacteria indicated that the oxygen gradient inside the biofilm could provide appropriate micro-environment for nitrogen removal through simultaneous nitrification and denitrification. PMID:25344088

  3. Microbial biofilm growth vs. tissue integration : "The race for the surface" experimentally studied

    Subbiahdoss, Guruprakash; Kuijer, Roel; Grijpma, Dirk W.; van der Mei, Henny C.; Busscher, Henk J.

    2009-01-01

    Biomaterial-associated infections constitute a major clinical problem. Unfortunately, microorganisms are frequently introduced onto an implant surface during surgery and start the race for the surface before tissue integration can occur. So far, no method has been forwarded to study biofilm formatio

  4. Microbial biofilm growth vs. tissue integration: “The race for the surface” experimentally studied

    Subbiahdoss, Guruprakash; Kuijer, Roel; Grijpma, Dirk W.; Mei, van der Henny C.; Busscher, Henk J.

    2009-01-01

    Biomaterial-associated infections constitute a major clinical problem. Unfortunately, microorganisms are frequently introduced onto an implant surface during surgery and start the race for the surface before tissue integration can occur. So far, no method has been forwarded to study biofilm formatio

  5. ADAPTATION OF SUBSURFACE MICROBIAL BIOFILM COMMUNITIES IN RESPONSE TO CHEMICAL STRESSORS

    The impact of this work will help improve our understanding of how subsurface biofilm communities respond to chemical stressors that are likely to be present at hazardous waste sites. Ultimately, these results can be used to determine more effective ways to insure proper envir...

  6. Microbial diversity in biofilm infections of the urinary tract with the use of sonication techniques

    Holá, V.; Růžička, F.; Horká, Marie

    2010-01-01

    Roč. 59, č. 3 (2010), s. 525-528. ISSN 0928-8244 R&D Projects: GA MZd(CZ) NS9678 Institutional research plan: CEZ:AV0Z40310501 Keywords : biofilm * sonication * urinary tract infection * catheter Subject RIV: CA - Inorganic Chemistry Impact factor: 2.494, year: 2010

  7. Effect of different disinfection protocols on microbial and biofilm contamination of dental unit waterlines in community dental practices.

    Dallolio, Laura; Scuderi, Amalia; Rini, Maria S; Valente, Sabrina; Farruggia, Patrizia; Sabattini, Maria A Bucci; Pasquinelli, Gianandrea; Acacci, Anna; Roncarati, Greta; Leoni, Erica

    2014-02-01

    Output water from dental unit waterlines (DUWLs) may be a potential source of infection for both dental healthcare staff and patients. This study compared the efficacy of different disinfection methods with regard to the water quality and the presence of biofilm in DUWLs. Five dental units operating in a public dental health care setting were selected. The control dental unit had no disinfection system; two were disinfected intermittently with peracetic acid/hydrogen peroxide 0.26% and two underwent continuous disinfection with hydrogen peroxide/silver ions (0.02%) and stabilized chlorine dioxide (0.22%), respectively. After three months of applying the disinfection protocols, continuous disinfection systems were more effective than intermittent systems in reducing the microbial contamination of the water, allowing compliance with the CDC guidelines and the European Council regulatory thresholds for drinking water. P. aeruginosa, Legionella spp, sulphite-reducing Clostridium spores, S. aureus and β-haemolytic streptococci were also absent from units treated with continuous disinfection. The biofilm covering the DUWLs was more extensive, thicker and more friable in the intermittent disinfection dental units than in those with continuous disinfection. Overall, the findings showed that the products used for continuous disinfection of dental unit waterlines showed statistically better results than the intermittent treatment products under the study conditions. PMID:24552789

  8. Effect of Different Disinfection Protocols on Microbial and Biofilm Contamination of Dental Unit Waterlines in Community Dental Practices

    Laura Dallolio

    2014-02-01

    Full Text Available Output water from dental unit waterlines (DUWLs may be a potential source of infection for both dental healthcare staff and patients. This study compared the efficacy of different disinfection methods with regard to the water quality and the presence of biofilm in DUWLs. Five dental units operating in a public dental health care setting were selected. The control dental unit had no disinfection system; two were disinfected intermittently with peracetic acid/hydrogen peroxide 0.26% and two underwent continuous disinfection with hydrogen peroxide/silver ions (0.02% and stabilized chlorine dioxide (0.22%, respectively. After three months of applying the disinfection protocols, continuous disinfection systems were more effective than intermittent systems in reducing the microbial contamination of the water, allowing compliance with the CDC guidelines and the European Council regulatory thresholds for drinking water. P. aeruginosa, Legionella spp, sulphite-reducing Clostridium spores, S. aureus and β-haemolytic streptococci were also absent from units treated with continuous disinfection. The biofilm covering the DUWLs was more extensive, thicker and more friable in the intermittent disinfection dental units than in those with continuous disinfection. Overall, the findings showed that the products used for continuous disinfection of dental unit waterlines showed statistically better results than the intermittent treatment products under the study conditions.

  9. Microbial diversities (16S and 18S rDNA gene pyrosequencing) and environmental pathogens within drinking water biofilms grown on the common premise plumbing materials unplasticized polyvinylchloride and copper

    Drinking water (DW) biofilm communities influence the survival of opportunistic pathogens, e.g. Legionella pneumophila, via parasitization of free-living amoebae such as Acanthamoebae. Yet knowledge about the microbial composition of DW biofilms developed on common in-premise pl...

  10. The pulsed light inactivation of veterinary relevant microbial biofilms and the use of a RTPCR assay to detect parasite species within biofilm structures

    Garvey, M.; Coughlan, G.; Murphy, N.; Rowan, N.

    2016-01-01

    The presence of pathogenic organisms namely parasite species and bacteria in biofilms in veterinary settings, is a public health concern in relation to human and animal exposure. Veterinary clinics represent a significant risk factor for the transfer of pathogens from housed animals to humans, especially in cases of wound infection and the shedding of faecal matter. This study aims to provide a means of detecting veterinary relevant parasite species in bacterial biofilms, and to provide a means of disinfecting these biofilms. A real time PCR assay was utilized to detect parasite DNA in Bacillus cereus biofilms on stainless steel and PVC surfaces. Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose. PMID:26862516

  11. Influence of humic substances on biofilm structure and its microbial diversity in natural waters

    A.L. Rodrigues

    2010-01-01

    Doctoral dissertation for PhD degree in Chemical and Biological Engineering Natural organic matter (NOM) is ubiquitous in terrestrial and aquatic ecosystems; it comprises an important source of carbon for river biofilms which are major sites of carbon cycling in streams. NOM may be classified in two main categories: non-humic and humic substances (HSs). About 75 % of the dissolved organic carbon (DOC) in rivers results from HSs. The presence of HSs in water treatment plants is ...

  12. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.

    Song, Tian-Shun; Jin, Yuejuan; Bao, Jingjing; Kang, Dongzhou; Xie, Jingjing

    2016-11-01

    In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48h, at 40mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions. PMID:27262274

  13. Biophysics of biofilm infection.

    Stewart, Philip S

    2014-04-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could (1) allow prevailing hydrodynamic shear to remove biofilm, (2) increase the efficacy of designed interventions for removing biofilms, (3) enable phagocytic engulfment of softened biofilm aggregates, and (4) improve phagocyte mobility and access to biofilm. PMID:24376149

  14. Mucosal biofilms of Candida albicans

    Ganguly, Shantanu; Mitchell, Aaron P.

    2011-01-01

    Biofilms are microbial communities that form on surfaces and are embedded in an extracellular matrix. C. albicans forms pathogenic mucosal biofilms that are evoked by changes in host immunity or mucosal ecology. Mucosal surfaces are inhabited by many microbial species; hence these biofilms are polymicrobial. Several recent studies have applied paradigms of biofilm analysis to study mucosal C. albicans infections. These studies reveal that the Bcr1 transcription factor is a master regulator of...

  15. Novel Approaches to Manipulating Bacterial Pathogen Biofilms: Whole-Systems Design Philosophy and Steering Microbial Evolution.

    Penn, Alexandra S

    2016-01-01

    Understanding and manipulating bacterial biofilms is crucial in medicine, ecology and agriculture and has potential applications in bioproduction, bioremediation and bioenergy. Biofilms often resist standard therapies and the need to develop new means of intervention provides an opportunity to fundamentally rethink our strategies. Conventional approaches to working with biological systems are, for the most part, "brute force", attempting to effect control in an input and effort intensive manner and are often insufficient when dealing with the inherent non-linearity and complexity of living systems. Biological systems, by their very nature, are dynamic, adaptive and resilient and require management tools that interact with dynamic processes rather than inert artefacts. I present an overview of a novel engineering philosophy which aims to exploit rather than fight those properties, and hence provide a more efficient and robust alternative. Based on a combination of evolutionary theory and whole-systems design, its essence is what I will call systems aikido; the basic principle of aikido being to interact with the momentum of an attacker and redirect it with minimal energy expenditure, using the opponent's energy rather than one's own. In more conventional terms, this translates to a philosophy of equilibrium engineering, manipulating systems' own self-organisation and evolution so that the evolutionarily or dynamically stable state corresponds to a function which we require. I illustrate these ideas with a description of a proposed manipulation of environmental conditions to alter the stability of co-operation in the context of Pseudomonas aeruginosa biofilm infection of the cystic fibrosis lung. PMID:27193553

  16. Microbial succession within an anaerobic sequencing batch biofilm reactor (ASBBR treating cane vinasse at 55ºC

    Maria Magdalena Ferreira Ribas

    2009-08-01

    Full Text Available The aim of this work was to investigate the anaerobic biomass formation capable of treating vinasse from the production of sugar cane alcohol, which was evolved within an anaerobic sequencing batch biofilm reactor (ASBBR as immobilized biomass on cubes of polyurethane foam at the temperature of 55ºC. The reactor was inoculated with mesophilic granular sludge originally treating poultry slaughterhouse wastewater. The evolution of the biofilm in the polyurethane foam matrices was assessed during seven experimental phases which were thus characterized by the changes in the organic matter concentrations as COD (1.0 to 20.0 g/L. Biomass characterization proceeded with the examination of sludge samples under optical and scanning electron microscopy. The reactor showed high microbial morphological diversity along the trial. The predominance of Methanosaeta-like cells was observed up to the organic load of 2.5 gCOD/L.d. On the other hand, Methanosarcinalike microorganisms were the predominant archaeal population within the foam matrices at high organic loading ratios above 3.3 gCOD/L.d. This was suggested to be associated to a higher specific rate of acetate consumption by the later organisms.Este trabalho investigou a formação de um biofilme anaeróbio capaz de tratar vinhaça da produção de álcool de cana-de-açúcar, que evoluiu dentro de um reator operado em bateladas seqüenciais com biofilme (ASBBR tendo a biomassa imobilizada em cubos de espuma de poliuretano na temperatura de 55ºC. O reator foi inoculado com lodo granular mesofílico tratando água residuária de abatedouro de aves. A evolução do biofilme nas matrizes de espuma de poliuretano foi observada durante sete fases experimentais que foram caracterizadas por mudanças nas concentrações de matéria orgânica como DQO (1,0 a 20,0 g/L. A caracterização da biomassa foi feita por exames de amostras do lodo em microscopia ótica e eletrônica de varredura. O reator apresentou

  17. Comparative Evaluation of Antimicrobial Activity of Pomegranate-Containing Mouthwash Against Oral-Biofilm Forming Organisms: An Invitro Microbial Study

    Dabholkar, Charuta Sadanand; Shah, Mona; Bajaj, Monika; Doshi, Yogesh

    2016-01-01

    Introduction Pomegranate is considered “A pharmacy unto itself”. Hydrolysable tannins called punicalagins which have free scavenging properties are the most abundant polyphenols found in pomegranate-containing mouthwash. Aim To evaluate antimicrobial effect of pomegranate- containing mouthwash on oral biofilm-forming bacteria. Materials and Methods The mouthwashes used were divided into three groups- Group A: Chlorhexidine mouthwash (Hexidine); Group B: Herbal Mouthwash (Hiora) and Group C: Pomegranate-containing Mouthwash (Life-extension). Each mouthwash was diluted to five different concentrations. Reference strains of Streptococcus mutans (S.mutans) (ATCC 25175), Streptococcus salivarius (S.salivarius) (ATCC 7073), and Aggregatibacter actinomycetemcomitans (A.a) (NCTC 9710) were selected as being colonizers in dental biofilm formation. On each culture plate, five wells of 5mm were prepared and mouthwashes with different concentrations were added, followed by incubation in a CO2 jar for 24 hours at 37°C. Inhibition zone diameters were measured using a digital caliper. Results Chlorhexidine (0.12%) presented a zone of inhibition between 38.46% to 96.15% for all the three organisms, while Hiora presented zone of inhibition ranging from 33.33% to 69.23% but was resistant at <10 ml of dilution. Pomegranate mouthwash presented a zone of inhibition ranging from 38.48 to 57.69%, but was resistant at <10ml for S.mutans, and <25ml for A.a and S.salivarius. ANOVA test was done to compare the dilution of mouthwashes for a particular organism and Tukey’s multiple comparison tests were done to find the exact difference. A significant difference was seen between all the three groups at 50ml and 75 ml of dilution. At 75 ml concentration, a statistical difference was found between Groups B & C and Groups A & B; and at 50 ml between Groups A&C. Conclusion All the three types of mouthwash exhibit anti-microbial activity against biofilm forming organisms but at varying

  18. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.

    Navarro, Claudio A; von Bernath, Diego; Jerez, Carlos A

    2013-01-01

    Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI), which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each of these

  19. Metagenome Analyses of Corroded Concrete Wastewater Pipe Biofilms Reveals a Complex Microbial System

    Analysis of whole-metagenome pyrosequencing data and 16S rRNA gene clone libraries was used to determine microbial composition and functional genes associated with biomass harvested from crown (top) and invert (bottom) sections of a corroded wastewater pipe. Taxonomic and functio...

  20. Effect of biofilm in irrigation pipes on the microbial quality of irrigation water

    Aim: To test the hypothesis that microbial quality of irrigation water can be substantially altered by the association of E. coli with pipe lining in irrigation systems. Methods and Results: The sprinkler irrigation system was outfitted with coupons that were extracted before four 2-hour long irri...

  1. The numerous microbial species in oral biofilms: how could antibacterial therapy be effective?

    ten Cate, J M; Zaura, E

    2012-09-01

    Hundreds of bacterial species inhabit the oral cavity. Many of these have never been cultivated and can be assessed only with DNA-based techniques. This new understanding has changed the paradigm of the etiology of oral disease from that associated with 'traditional pathogens' as being primarily responsible for all diseases. Increasingly, associations between oral bacteria and systemic diseases are being reported. The emergence of antibiotic resistance is alarming and calls for in-depth studies of biofilms, bacterial physiology, and a body-wide approach to infectious diseases. We propose that the borderline between commensal bacteria and pathogens is no longer discrete. In a field of science where so many of the established paradigms are being undermined, a thorough analysis of threats and opportunities is required. This article addresses some of the questions that can be raised and serves to identify research opportunities and needs to leverage the prevention of oral diseases through novel antimicrobial strategies. PMID:22899691

  2. Pseudomonas aeruginosa biofilm infections

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display a...... remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because the...... use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  3. Anti-Microbial, Anti-Biofilm Activities and Cell Selectivity of the NRC-16 Peptide Derived from Witch Flounder, Glyptocephalus cynoglossus

    Chang Ho Seo

    2013-05-01

    Full Text Available Previous studies had identified novel antimicrobial peptides derived from witch flounder. In this work, we extended the search for the activity of peptide that showed antibacterial activity on clinically isolated bacterial cells and bacterial biofilm. Pseudomonas aeruginosa was obtained from otitis media and cholelithiasis patients, while Staphylococcus aureus was isolated from otitis media patients. We found that synthetic peptide NRC-16 displays antimicrobial activity and is not sensitive to salt during its bactericidal activity. Interestingly, this peptide also led to significant inhibition of biofilm formation at a concentration of 4–16 μM. NRC-16 peptide is able to block biofilm formation at concentrations just above its minimum inhibitory concentration while conventional antibiotics did not inhibit the biofilm formation except ciprofloxacin and piperacillin. It did not cause significant lysis of human RBC, and is not cytotoxic to HaCaT cells and RAW264.7 cells, thereby indicating its selective antimicrobial activity. In addition, the peptide’s binding and permeation activities were assessed by tryptophan fluorescence, calcein leakage and circular dichroism using model mammalian membranes composed of phosphatidylcholine (PC, PC/cholesterol (CH and PC/sphingomyelin (SM. These experiments confirmed that NRC-16 does not interact with any of the liposomes but the control peptide melittin did. Taken together, we found that NRC-16 has potent antimicrobial and antibiofilm activities with less cytotoxicity, and thus can be considered for treatment of microbial infection in the future.

  4. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus

    Stefanie eMangold

    2011-02-01

    Full Text Available Given the challenges to life at low pH, an analysis of inorganic sulfur compound oxidation was initiated in the chemolithoautotrophic extremophile Acidithiobacillus caldus. A. caldus is able to metabolize elemental sulfur and a broad range of inorganic sulfur compounds. It has been implicated in the production of environmentally damaging acidic solutions as well as participating in industrial bioleaching operations where it forms part of microbial consortia used for the recovery of metal ions. Based upon the recently published A. caldus type strain genome sequence, a bioinformatic reconstruction of elemental sulfur and inorganic sulfur compound metabolism predicted genes included: sulfide quinone reductase (sqr, tetrathionate hydrolase (tth, two sox gene clusters potentially involved in thiosulfate oxidation (soxABXYZ, sulfur oxygenase reductase (sor, and various electron transport components. RNA transcript profiles by semi-quantitative reverse transcription PCR suggested up-regulation of sox genes in the presence of tetrathionate. Extensive gel based proteomic comparisons of total soluble and membrane enriched protein fractions during growth on elemental sulfur and tetrathionate identified differential protein levels from the two Sox clusters as well as several chaperone and stress proteins up-regulated in the presence of elemental sulfur. Proteomics results also suggested the involvement of heterodisulfide reductase (HdrABC in A. caldus inorganic sulfur compound metabolism. A putative new function of Hdr in acidophiles is discussed. Additional proteomic analysis evaluated protein expression differences between cells grown attached to solid, elemental sulfur versus planktonic cells. This study has provided insights into sulfur metabolism of this acidophilic chemolithotroph and gene expression during attachment to solid elemental sulfur.

  5. Cometabolic degradation of lincomycin in a Sequencing Batch Biofilm Reactor (SBBR) and its microbial community.

    Li, Yancheng; Zhou, Jian; Gong, Benzhou; Wang, Yingmu; He, Qiang

    2016-08-01

    Cometabolism technology was employed to degrade lincomycin wastewater in Sequencing Batch Biofilm Reactor (SBBR). In contrast with the control group, the average removal rate of lincomycin increased by 56.0% and Total Organic Carbon (TOC) increased by 52.5% in the cometabolic system with glucose as growth substrate. Under the same condition, Oxidation-Reduction Potential (ORP) was 85.1±7.3mV in cometabolic system and 198.2±8.4mV in the control group, indicating that glucose changed the bulk ORP and created an appropriate growing environment for function bacteria. Functional groups of lincomycin were effectively degraded in cometabolic system proved by FTIR and GC-MS. Meanwhile, results of DGGE and 16S rDNA showed great difference in dominant populations between cometabolic system and the control group. In cometabolic system, Roseovarius (3.35%), Thiothrix (2.74%), Halomonas (2.49%), Ignavibacterium (2.02%), and TM7_genus_incertae_sedis (1.93%) were verified as dominant populations at genus level. Cometabolism may be synergistically caused by different functional dominant bacteria. PMID:27183234

  6. Bifunctional Ag/Fe/N/C Catalysts for Enhancing Oxygen Reduction via Cathodic Biofilm Inhibition in Microbial Fuel Cells.

    Dai, Ying; Chan, Yingzi; Jiang, Baojiang; Wang, Lei; Zou, Jinlong; Pan, Kai; Fu, Honggang

    2016-03-23

    Limitation of the oxygen reduction reaction (ORR) in single-chamber microbial fuel cells (SC-MFCs) is considered an important hurdle in achieving their practical application. The cathodic catalysts faced with a liquid phase are easily primed with the electrolyte, which provides more surface area for bacterial overgrowth, resulting in the difficulty in transporting protons to active sites. Ag/Fe/N/C composites prepared from Ag and Fe-chelated melamine are used as antibacterial ORR catalysts for SC-MFCs. The structure-activity correlations for Ag/Fe/N/C are investigated by tuning the carbonization temperature (600-900 °C) to clarify how the active-constituents of Ag/Fe and N-species influence the antibacterial and ORR activities. A maximum power density of 1791 mW m(-2) is obtained by Ag/Fe/N/C (630 °C), which is far higher than that of Pt/C (1192 mW m(-2)), only having a decline of 16.14% after 90 days of running. The Fe-bonded N and the cooperation of pyridinic N and pyrrolic N in Ag/Fe/N/C contribute equally to the highly catalytic activity toward ORR. The ·OH or O2(-) species originating from the catalysis of O2 can suppress the biofilm growth on Ag/Fe/N/C cathodes. The synergistic effects between the Ag/Fe heterojunction and N-species substantially contribute to the high power output and Coulombic efficiency of Ag/Fe/N/C catalysts. These new antibacterial ORR catalysts show promise for application in MFCs. PMID:26938657

  7. A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm

    Jiang, Huawei; Halverson, Larry J.; Dong, Liang

    2015-12-01

    Miniature microbial fuel cell (MFC) technology has received growing interest due to its potential applications in high-throughput screening of bacteria and mutants to elucidate mechanisms of electricity generation. This paper reports a novel miniature MFC with an improved output power density and short startup time, utilizing electrospun conducting poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers as a 3D porous anode within a 12 μl anolyte chamber. This device results in 423 μW cm-3 power density based on the volume of the anolyte chamber, using Shewanella oneidensis MR-1 as a model biocatalyst without any optimization of bacterial culture. The device also excels in a startup time of only 1hr. The high conductivity of the electrospun nanofibers makes them suitable for efficient electron transfer. The mean pore size of the conducting nanofibers is several micrometers, which is favorable for bacterial penetration and colonization of surfaces of the nanofibers. We demonstrate that S. oneidensis can fully colonize the interior region of this nanofibers-based porous anode. This work represents a new attempt to explore the use of electrospun PEDOT nanofibers as a 3D anode material for MFCs. The presented miniature MFC potentially will provide a high-sensitivity, high-throughput tool to screen suitable bacterial species and mutant strains for use in large-size MFCs.

  8. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox Biofilms from Digestate in Microbial Fuel Cells

    Enea Gino Di Domenico

    2015-01-01

    Full Text Available Microbial Fuel cells (MFCs have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.

  9. Assessing microbial competition in a hydrogen-based membrane biofilm reactor (MBfR) using multidimensional modeling.

    Martin, Kelly J; Picioreanu, Cristian; Nerenberg, Robert

    2015-09-01

    The membrane biofilm reactor (MBfR) is a novel technology that safely delivers hydrogen to the base of a denitrifying biofilm via gas-supplying membranes. While hydrogen is an effective electron donor for denitrifying bacteria (DNB), it also supports sulfate-reducing bacteria (SRB) and methanogens (MET), which consume hydrogen and create undesirable by-products. SRB and MET are only competitive for hydrogen when local nitrate concentrations are low, therefore SRB and MET primarily grow near the base of the biofilm. In an MBfR, hydrogen concentrations are greatest at the base of the biofilm, making SRB and MET more likely to proliferate in an MBfR system than a conventional biofilm reactor. Modeling results showed that because of this, control of the hydrogen concentration via the intramembrane pressure was a key tool for limiting SRB and MET development. Another means is biofilm management, which supported both sloughing and erosive detachment. For the conditions simulated, maintaining thinner biofilms promoted higher denitrification fluxes and limited the presence of SRB and MET. The 2-d modeling showed that periodic biofilm sloughing helped control slow-growing SRB and MET. Moreover, the rough (non-flat) membrane assembly in the 2-d model provided a special niche for SRB and MET that was not represented in the 1-d model. This study compared 1-d and 2-d biofilm model applicability for simulating competition in counter-diffusional biofilms. Although more computationally expensive, the 2-d model captured important mechanisms unseen in the 1-d model. PMID:25854894

  10. A prospective study on evaluation of pathogenesis, biofilm formation, antibiotic susceptibility of microbial community in urinary catheter

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2015-09-01

    This study is aimed to isolate, detect biofilm formation ability and antibiotic susceptibility of urinary catheter adherent microorganisms from elderly hospitalized patient at the Universiti Kebangsaan Malaysia Medical Center. Microorganisms were isolated from three samples of urinary catheters (UC) surface; one of the acute vascular rejection patient (UCB) and two from benign prostate hyperplasia patients (UCC and UCD). A total of 100 isolates was isolated with 35 from UCB, 38 (UCC) and 28 (UCD). Ninety six were identified as Gram-negative bacilli, one Gram-positive bacilli and three yeasts. Results of biofilm forming on sterile foley catheter showed that all the isolates can form biofilm at different degrees; strong biofilm forming: 32% from the 35 isolates (UCB), 25% out of 38 isolates (UCC), 26% out of 28 isolates (UCD). As for moderate biofilm forming; 3% from UCB, 10% from UCC and 2% from UCD. Weak biofilm forming in UCC (3%). The antibiotic susceptibility for (UCB) isolates showed highly resistant to ampicillin, novobiocin and penicillin 100 (%), kanamycin (97%), tetracycline (94%), chloramphenicol (91%), streptomycin (77%) and showed low level of resistance to gentamycin (17%), while all the isolates from (UCC-D) showed high resistant towards ampicillin and penicillin, novobiocin (94%), tetracycline (61%), streptomycin (53%), gentamycin (50%) and low level of resistance to kanamycin (48%), chloramphenicol (47%). The findings indicate that these isolates can spread within the community on urinary catheters surface and produce strong biofilm, therefore, monitoring antibiotic susceptibility of bacteria isolated in the aggregation is recommended.

  11. Acidophilic, Heterotrophic Bacteria of Acidic Mine Waters

    Wichlacz, Paul L.; Unz, Richard F.

    1981-01-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and ...

  12. Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics.

    Sgier, Linn; Freimann, Remo; Zupanic, Anze; Kroll, Alexandra

    2016-01-01

    Biofilms serve essential ecosystem functions and are used in different technical applications. Studies from stream ecology and waste-water treatment have shown that biofilm functionality depends to a great extent on community structure. Here we present a fast and easy-to-use method for individual cell-based analysis of stream biofilms, based on stain-free flow cytometry and visualization of the high-dimensional data by viSNE. The method allows the combined assessment of community structure, decay of phototrophic organisms and presence of abiotic particles. In laboratory experiments, it allows quantification of cellular decay and detection of survival of larger cells after temperature stress, while in the field it enables detection of community structure changes that correlate with known environmental drivers (flow conditions, dissolved organic carbon, calcium) and detection of microplastic contamination. The method can potentially be applied to other biofilm types, for example, for inferring community structure for environmental and industrial research and monitoring. PMID:27188265

  13. Development of a web-based platform for the systematic and large-scale study of microbial adhesionand biofilms

    Azevedo, N. F.; Lourenço, Anália; Pereira, Maria Olívia; Veiga, Nuno; Machado, Idalina

    2010-01-01

    High-throughput biofilm studies are rapidly accumulating a large amount of omics-scale data. In other biological areas that deal with large datasets, such as genomics or proteomics, ways for simplifying the visualization and understanding of the obtained results have already been developed. As such, we have started the development of a Web-based platform for analogous management, visualization and exploration of biofilm data. This platform, named Biofomics, is comprised of three m...

  14. Viscoelastic Properties of Levan-DNA Mixtures Important in Microbial Biofilm Formation as Determined by Micro- and Macrorheology

    Stojković, Biljana; Sretenovic, Simon; Dogsa, Iztok; Poberaj, Igor; Stopar, David

    2015-01-01

    We studied the viscoelastic properties of homogeneous and inhomogeneous levan-DNA mixtures using optical tweezers and a rotational rheometer. Levan and DNA are important components of the extracellular matrix of bacterial biofilms. Their viscoelastic properties influence the mechanical as well as molecular-transport properties of biofilm. Both macro- and microrheology measurements in homogeneous levan-DNA mixtures revealed pseudoplastic behavior. When the concentration of DNA reached a critic...

  15. Growing and analyzing biofilms in flow chambers

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber-grown biofilms are addressed....

  16. Strategies for combating bacterial biofilm infections

    Wu,Hong; Moser, Claus; Wang, Heng-Zhuang; Høiby, Niels; Zhi-jun SONG

    2014-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwe...

  17. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  18. Understanding Biofilms in Chronic Sinusitis.

    Tajudeen, Bobby A; Schwartz, Joseph S; Palmer, James N

    2016-02-01

    Chronic sinusitis is a burdensome disease that has substantial individual and societal impact. Although great advances in medical and surgical therapies have been made, some patients continue to have recalcitrant infections. Microbial biofilms have been implicated as a cause of recalcitrant chronic sinusitis, and recent studies have tried to better understand the pathogenesis of chronic sinusitis as it relates to microbial biofilms. Here, we provide an overview of biofilms in chronic sinusitis with emphasis on pathogenesis, treatment, and future directions. In addition, recent evidence is presented, elucidating the role of bitter taste receptors as a possible key factor leading to biofilm formation. PMID:26758863

  19. Carbon dioxide and hydrogen sulfide associations with regional bacterial diversity patterns in microbially induced concrete corrosion.

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2014-07-01

    The microbial communities associated with deteriorating concrete corrosion fronts were characterized in 35 samples taken from wastewater collection and treatment systems in ten utilities. Bacterial communities were described using Illumina MiSeq sequencing of the V1V2 region of the small subunit ribosomal ribonucleic acid (SSU-rRNA) gene recovered from fresh corrosion products. Headspace gas concentrations (hydrogen sulfide, carbon dioxide, and methane), pore water pH, moisture content, and select mineralogy were tested for correlation to community outcomes and corrosion extent using pairwise linear regressions and canonical correspondence analysis. Corroding concrete was most commonly characterized by moisture contents greater than 10%, pore water pH below one, and limited richness (100 ppm) and carbon dioxide (>1%) gases, conditions which also were associated with low diversity biofilms dominated by members of the acidophilic sulfur-oxidizer genus Acidithiobacillus. PMID:24842376

  20. Biofilms and the food industry

    Nathanon Trachoo

    2003-11-01

    Full Text Available In the past, interest in biofilms was limited to research related to water distribution systems, waste water treatment and dental plaques. Biofilm has become a more popular research topic in many other areas in recent years including food safety. Biofilm formation can compromise the sanitation of food surfaces and environmental surfaces by spreading detached organisms to other areas of processing plants. Unfortunately, these detached organisms are not similar to normal microorganisms suspended in an aquatic environment but are more resistant to several stresses or microbial inactivation including some food preservation methods. Microstructures of biofilms as revealed by different types of microscopic techniques showed that biofilms are highly complex and consist of many symbiotic organisms, some of which are human pathogens. This article reviewed the process of biofilm formation, the significance of biofilms on food or food contact surfaces, their ability to protect foodborne pathogens from environmental stresses and recent methods for the study of biofilms on food contact surfaces.

  1. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  2. Microbially influenced corrosion: studies on enterobacteria isolated from seawater environment and influence of toxic metals on bacterial biofilm and bio-corrosion

    Bermond-Tilly, D.; Pineau, S.; Dupont-Morral, I. [Corrodys, 50 - Equeurdreville (France); Janvier, M.; Grimont, P.A.D. [Institut Pasteur, Unite BBPE, 75 - Paris (France)

    2004-07-01

    Full text of publication follows: The most widely involved bacteria in Microbially Induced Corrosion (MIC usually called bio-corrosion) are sulfate/thiosulfate-reducing bacteria. The sulfate-reducing bacteria (SRB) are major contributors to the anaerobic bio-corrosion of steel. However, corrosion process of pipelines (or off shores platforms) was found to be associated with many other bacteria. These bacteria are able to produce sulfides from the reduction of thiosulfate in anaerobic conditions. By this way, a thiosulfate-reducing non sulfate-reducing bacteria, Dethiosulfovibrio peptidovorans, showed a significant corrosive activity similar to or higher than that recorded for SRB involved in bio-corrosion, (Magot et al., 1997). Furthermore, a bacteria, Citrobacter amalonaticus, which belongs to the family of the Enterobacteriaceae, is involved in severe pitting corrosion process (Angeles Chavez et al., 2002). Recently, some bacteria (Citrobacter freundii, Proteus mirabilis and Klebsiella planticola characterized as belonging to the family of Enterobacteriaceae) were isolated from biofilm developed on carbon steel coupons immersed in natural seawater. The latter bacteria were also associated in severe pitting corrosion process on carbon steel coupons (Bermond-Tilly et al., 2003). Biofilm forms a protective layer, reducing the exposure of the metal surface to the external environment. However, bacteria included in the biofilm could also cause localized corrosion by consuming cathodic hydrogen from the steel or by producing corrosive metabolic end products and by the Extracellular Polymeric Substances (EPS) production. Thus, EPS can also play an important role in the corrosion of the metals (e.g. can complex metal ions). However, sulfate/thiosulfate-reducing bacteria and some Enterobacteria are highly efficient to bioremediation by precipitation of toxic metals from wastewater as metal sulfides. Recently it was shown that toxic metal may be involved in the formation

  3. Antibacterial activity of graphene-modified anode on Shewanella oneidensis MR-1 biofilm in microbial fuel cell

    Chen, Jie; Deng, Feng; Hu, Yongyou; Sun, Jian; Yang, Yonggang

    2015-09-01

    To clearly illustrate the antibacterial activity of graphene on anodic exoelectrogen, the growth of a Shewanella oneidensis MR-1 biofilm on graphene-modified anodes (GMAs) and bare graphite anodes (BGs) were compared. The GMAs with different amounts of graphene were obtained by the cyclic voltammetric electrodeposition of 5, 20 and 40 potential cycles (5-G, 20-G and 40-G). Confocal scanning laser microscopy and cyclic voltammetry results demonstrated that graphene exhibited an obvious antibacterial effect for initial Shewanella MR biofilm growth. After 5 h of inoculation, 40-G, 20-G and 5-G had 6.3, 8.8 and 13.9% lower levels of biofilm viability, respectively, compared to BG, and all three exhibited approximately 70% lower electrochemical activity compared to BG. However, 18 h later, the biofilm on the GMAs exhibited much higher viability than that of the BG, and the electrochemical activity increased to a similar level. This study revealed the dual effect of graphene, including the antibacterial activity on biofilms and the enhancement of bacterial attachment and electron transfer.

  4. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    David Barrie Johnson

    2012-09-01

    Full Text Available Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30 ˚C, with a corresponding culture doubling time of 9 hours. The isolates displayed similar tolerance (10-50 mM to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC. Glycolic acid was identified as a significant component (12- 14% of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within three days. Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella, and mannitol and glucose (Euglena. These were rapidly metabolised by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp. though only fructose was utilised by the more fastidious heterotroph Acidocella aromatica. The significance of algae in promoting the growth of iron- (and sulfate- reducing heterotrophic acidophiles that are important in remediating mine-impacted waters is discussed.

  5. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis

    Dusane, D.H.; Damare, S.R.; Nancharaiah, Y.V.; Ramaiah, N.; Venugopalan, V.P.; Kumar, A.R.; Zinjarde, S.S.

    and are particularly significant in the medical and industrial fields [1]. A variety of antimicrobial agents have been used to control biofilms. However, factors like lower efficacy and increased resistance of the biofilms towards these antimicrobial agents limit... with proteinase K (10 mg/ml; Sigma-Aldrich, USA) and trypsin (10 mg/ml; Sigma-Aldrich, USA) at 30uC for 1 h. The antimicrobial activity of the protein/ peptide in the supernatant was determined against the test cultures after inactivating the enzyme by incubating...

  6. Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane Biofilm Reactor (Hf-MBfR Used for the Biological Conversion of Carbon Dioxide to Methane.

    Hyun Chul Shin

    Full Text Available Hydrogenotrophic methanogens can use gaseous substrates, such as H2 and CO2, in CH4 production. H2 gas is used to reduce CO2. We have successfully operated a hollow-fiber membrane biofilm reactor (Hf-MBfR for stable and continuous CH4 production from CO2 and H2. CO2 and H2 were diffused into the culture medium through the membrane without bubble formation in the Hf-MBfR, which was operated at pH 4.5-5.5 over 70 days. Focusing on the presence of hydrogenotrophic methanogens, we analyzed the structure of the microbial community in the reactor. Denaturing gradient gel electrophoresis (DGGE was conducted with bacterial and archaeal 16S rDNA primers. Real-time qPCR was used to track changes in the community composition of methanogens over the course of operation. Finally, the microbial community and its diversity at the time of maximum CH4 production were analyzed by pyrosequencing methods. Genus Methanobacterium, related to hydrogenotrophic methanogens, dominated the microbial community, but acetate consumption by bacteria, such as unclassified Clostridium sp., restricted the development of acetoclastic methanogens in the acidic CH4 production process. The results show that acidic operation of a CH4 production reactor without any pH adjustment inhibited acetogenic growth and enriched the hydrogenotrophic methanogens, decreasing the growth of acetoclastic methanogens.

  7. Biofilm dispersion in Pseudomonas aeruginosa.

    Kim, Soo-Kyoung; Lee, Joon-Hee

    2016-02-01

    In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study. PMID:26832663

  8. Genomics, physiology and applications of cold tolerant acidophiles

    Liljeqvist, Maria

    2012-01-01

    Psychrotolerant acidophiles have gained increasing interest because of their importance in biomining operations in environments where the temperature falls well below 10°C during large parts of the year. Acidithiobacillus ferrivorans is the only characterized acidophile with the ability to live a psychrotrophic lifestyle and is able to oxidize ferrous iron and inorganic sulfur compounds at low temperature. The A. ferrivorans SS3 genome sequence mirrors its low temperature chemolithotrophic li...

  9. Metal resistance in acidophilic microorganisms and its significance for biotechnologies.

    Dopson, Mark; Holmes, David S

    2014-10-01

    Extremely acidophilic microorganisms have an optimal pH of biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications. PMID:25104030

  10. Hexacyanoferrate-adapted biofilm enables the development of a microbial fuel cell biosensor to detect trace levels of assimilable organic carbon (AOC) in oxygenated seawater.

    Cheng, Liang; Quek, Soon Bee; Cord-Ruwisch, Ralf

    2014-12-01

    A marine microbial fuel cell (MFC) type biosensor was developed for the detection of assimilable organic carbon (AOC) in ocean water for the purpose of online water quality monitoring for seawater desalination plants prone to biofouling of reverse osmosis (RO) membranes. The anodophilic biofilm that developed on the graphite tissue anode could detect acetate as the model AOC to concentrations as low as 5 µM (120 µg/L of AOC), which is sufficiently sensitive as an online biofouling risk sensor. Although the sensor was operated at a higher (+200 ± 10 mV) than the usual (-300 mV) anodic potential, the presence of oxygen completely suppressed the electrical signal. In order to overcome this outcompeting effect of oxygen over the anode as electron acceptor by the bacteria, hexacyanoferrate (HCF(III)) was found to enable the development of an adapted biofilm that transferred electrons to HCF(III) rather than oxygen. As the resultant of the reduced HCF(II) could readily transfer electrons to the anode while being re-oxidised to HCF(III), the marine MFC biosensor developed could be demonstrated to work in the presence of oxygen unlike traditional MFC. The possibility of operating the marine MFC in batch or continuous (in-line) mode has been explored by using coulombic or potentiometric interpretation of the signal. PMID:24942462

  11. The Efficacy of Umbelliferone, Arbutin, and N-Acetylcysteine to Prevent Microbial Colonization and Biofilm Development on Urinary Catheter Surface: Results from a Preliminary Study.

    Cai, Tommaso; Gallelli, Luca; Meacci, Francesca; Brugnolli, Anna; Prosperi, Letizia; Roberta, Stefani; Eccher, Cristina; Mazzoli, Sandra; Lanzafame, Paolo; Caciagli, Patrizio; Malossini, Gianni; Bartoletti, Riccardo

    2016-01-01

    We evaluated, in a preliminary study, the efficacy of umbelliferone, arbutin, and N-acetylcysteine to inhibit biofilm formation on urinary catheter. We used 20 urinary catheters: 5 catheters were incubated with Enterococcus faecalis (control group); 5 catheters were incubated with E. faecalis in presence of umbelliferone (150 mg), arbutin (60 mg), and N-acetylcysteine (150 mg) (group 1); 5 catheters were incubated with E. faecalis in presence of umbelliferone (150 mg), arbutin (60 mg), and N-acetylcysteine (400 mg) (group 2); and 5 catheters were incubated with E. faecalis in presence of umbelliferone (300 mg), arbutin (60 mg), and N-acetylcysteine (150 mg) (group 3). After 72 hours, planktonic microbial growth and microorganisms on catheter surface were assessed. In the control group, we found a planktonic load of ≥10(5) CFU/mL in the inoculation medium and retrieved 3.69 × 10(6) CFU/cm from the sessile cells adherent to the catheter surface. A significantly lower amount in planktonic (p arbutin, and N-acetylcysteine are able to reduce E. faecalis biofilm development on the surface of urinary catheters. PMID:27127655

  12. Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm.

    Jayashree, C; Tamilarasan, K; Rajkumar, M; Arulazhagan, P; Yogalakshmi, K N; Srikanth, M; Banu, J Rajesh

    2016-09-15

    Tubular upflow microbial fuel cell (MFC) utilizing sea food processing wastewater was evaluated for wastewater treatment efficiency and power generation. At an organic loading rate (OLR) of 0.6 g d(-1), the MFC accomplished total and soluble chemical oxygen demand (COD) removal of 83 and 95%, respectively. A maximum power density of 105 mW m(-2) (2.21 W m(-3)) was achieved at an OLR of 2.57 g d(-1). The predominant bacterial communities of anode biofilm were identified as RB1A (LC035455), RB1B (LC035456), RB1C (LC035457) and RB1E (LC035458). All the four strains belonged to genera Stenotrophomonas. The results of the study reaffirms that the seafood processing wastewater can be treated in an upflow MFC for simultaneous power generation and wastewater treatment. PMID:27254294

  13. Influence of flow on the structure of bacterial biofilms.

    Stoodley, Paul; Boyle, John D.; Lappin-Scott, Hilary M.

    2000-01-01

    Bacteria attached to surfaces in biofilms are responsible for the contamination of industrial processes and many types of microbial infections and disease. Once established, biofilms are notoriously difficult to eradicate. A more complete understanding of how biofilms form and behave is crucial if we are to predict, and ultimately control, biofilm processes. A major breakthrough in biofilm research came in the early 1990’s when confocal scanning laser microscopy (CSLM) showed that biofilms fo...

  14. Biofilms: a developing microscopic community

    Rivera Sandra Patricia

    2004-09-01

    Full Text Available Biofilms are microbial communities composed by different microbiota embebbed in a special adaptive environment. These communities show different characteristics such as heterogeneity, diversity in microenvironments, capacity to resist antimicrobial therapy and ability to allow bacterial communication. These characteristics convert them in complex organizations that are difficult to eradicate in their own environment. In the man, biofilms are associated to a great number of slow-development infectious processes which greatly difficulties their eradication. In the industry and environment, biofilms are centered in processes known as biofouling and bioremediation. The former is the contamination of a system due to the microbial activity of a biofilm. The latter uses biofilms to improve the conditions of a contaminated system. The study of biofilms is a new and exciting field which is constantly evolving and whose implications in medicine and industry would have important repercussions for the humankind.

  15. Strategies for combating bacterial biofilm infections

    Wu, Hong; Moser, Claus Ernst; Wang, Heng-Zhuang;

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the...

  16. Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens

    Sun, Guotao; Rodrigues, Diogo De Sacadura; Thygesen, Anders;

    2016-01-01

    naturally occurring mixed inocula. In this study, the electrochemical performance of MFCs and microbial community evolution were evaluated for three inocula including domestic wastewater (DW), lake sediment (LS) and biogas sludge (BS) with varying substrate loading (Lsub) and external resistance (Rext) on....... The data obtained contribute to understanding the microbial community response to Lsub and Rext for optimizing electricity generation in MFCs....

  17. Effect of Different Disinfection Protocols on Microbial and Biofilm Contamination of Dental Unit Waterlines in Community Dental Practices

    Laura Dallolio; Amalia Scuderi; Rini, Maria S.; Sabrina Valente; Patrizia Farruggia; Bucci Sabattini, Maria A.; Gianandrea Pasquinelli; Anna Acacci; Greta Roncarati; Erica Leoni

    2014-01-01

    Output water from dental unit waterlines (DUWLs) may be a potential source of infection for both dental healthcare staff and patients. This study compared the efficacy of different disinfection methods with regard to the water quality and the presence of biofilm in DUWLs. Five dental units operating in a public dental health care setting were selected. The control dental unit had no disinfection system; two were disinfected intermittently with peracetic acid/hydrogen peroxide 0.26% and two un...

  18. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms Rid A-1977-2009

    KUHL, M.; JØRGENSEN, BB

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO4(2-) reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100-mu-m) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured......, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying...... water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO4(2-) or organic substrate...

  19. Discovering Biofilms: Inquiry-Based Activities for the Classroom

    Redelman, Carly V.; Marrs, Kathleen; Anderson, Gregory G.

    2012-01-01

    In nature, bacteria exist in and adapt to different environments by forming microbial communities called "biofilms." We propose simple, inquiry-based laboratory exercises utilizing a biofilm formation assay, which allows controlled biofilm growth. Students will be able to qualitatively assess biofilm growth via staining. Recently, we developed a…

  20. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    DavidBarrieJohnson

    2012-01-01

    Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30 ˚C, with a corresponding culture doubling time of 9 hours. The isolates displayed similar tolerance (10-50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled wi...

  1. Biofilm ved kronisk rhinosinuitis og cystisk fibrose

    Fisker, Jacob; Buchwald, Christian von; Johansen, Helle Krogh

    2011-01-01

    Microbial biofilms are known to cause persistent foreign-body infections and have recently been acknowledged as involved in more than 65% of all human infections. Microbial biofilms have been detected in chronic rhinosinusitis, and chronic rhinosinusitis is mandatory in patients with cystic...

  2. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron.

    Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2015-08-01

    The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma. PMID:25896560

  3. Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma genus.

    Potrykus, Joanna; Jonna, Venkateswara Rao; Dopson, Mark

    2011-01-01

    Extremely acidophilic archaea from the genus Ferroplasma inhabit iron-rich biomining environments and are important constituents of naturally occurring microbial consortia that catalyze the production of acid mine drainage. A combined bioinformatic, transcript profiling, and proteomic approach was used to elucidate iron homeostasis mechanisms in "F. acidarmanus" Fer1 and F. acidiphilum Y(T) . Bioinformatic analysis of the "F. acidarmanus" Fer1 genome sequence revealed genes encoding proteins hypothesized to be involved in iron-dependent gene regulation and siderophore biosynthesis; the Fhu and NRAMP cation acquisition systems; iron storage proteins; and the SUF machinery for the biogenesis of Fe-S clusters. A subset of homologous genes was identified on the F. acidiphilum Y(T) chromosome by direct PCR probing. In both strains, some of the genes appeared to be regulated in a ferrous/ferric iron-dependent manner, as indicated by RT-PCR. A detailed gel-based proteomics analysis of responses to iron depletion showed that a putative isochorismatase, presumably involved in siderophore biosynthesis, and the SufBCD system were upregulated under iron-limiting conditions. No evidence was obtained for iron sparing response during iron limitation. This study constitutes the first detailed investigation of iron homeostasis in extremely acidophilic archaea. PMID:21182194

  4. Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans

    Thiobacillus thiooxidans is an acidophilic, obligately autotrophic bacterium which derives its energy by oxidizing reduced or partially reduced sulfur compounds and obtains its carbon by fixing carbon dioxide from the atmosphere. The strain is able to live in inorganic, acidic environments and is present in large numbers in coal mine drainage and in mineral ores. T. thiooxidans has been used industrially in metal leaching from mineral ores and in the microbial desulfurization of coal in combination with Thiobacillus ferrooxidans. Although T. thiooxidans has been well studied physiologically, very little is known about it genetics. The broad-host-range IncP plasmids RP4, R68.45, RP1::Tn501, and pUB307 were transferred directly to extremely acidophilic Thiobacillus thiooxidans from Escherichia coli by conjugation at frequencies of 10-5 to 10-7 per recipient. The ability of T. thiooxidans to receive and express the antibiotic resistance markers was examined. The plasmid RP4 was transferred back to E. coli from T. thiooxidans at a frequency of 1.0 x 10-3 per recipient

  5. Biogeophysical interactions control the formation of iron oxide microbial biofilms in acidic geothermal outflow channels of Yellowstone National Park

    Beam, J.; Berstein, H. C.; Jay, Z.; Kozubal, M. A.; Jennings, R. D.; Inskeep, W. P.

    2012-12-01

    Amorphous iron oxyhydroxide microbial mats in acidic (pH ~ 3) geothermal outflow channels of Yellowstone National Park (YNP) are habitats for diverse populations of autotrophic and heterotrophic microorganisms from the domains Archaea and Bacteria. These systems have been extensively characterized with regards to geochemical, physical, and microbiological (e.g., metagenomics) analyses; however, there is minimal data describing the formation of these iron oxide microbial mats. A conceptual model of Fe(III)-oxide microbial mat development was created, which includes four distinct stages. Autotrophic archaea (Metallosphaera yellowstonensis) and bacteria (Hydrogenobaculum spp.) are the first colonizers (Stage I) that provide pools of organic carbon for heterotrophic thermophiles (Stage II). M. yellowstonensis is an autotrophic Sulfolobales that is responsible for the oxidation of Fe(II) and can thus be defined as the mat 'architect' creating suitable habitats for microbial niches (e.g., anaerobic microorganisms) (Stage III). The last phase of mat formation (Stage IV) represents a pseudo-steady state mature microbial mat, which has been the subject of all previous microbial surveys of these systems. The conceptual model for Fe(III)-oxide microbial mat development was tested by inserting glass (SiO2) microscope slides into the main flow channels of two acidic geothermal springs in YNP. Slides were removed at various time intervals and analyzed for total iron accretion, microbial community structure (i.e., 16S rRNA gene abundance), and mRNA expression of community members. Routine geochemical and physical (e.g., flow) parameters were also measured to decipher their relative contribution to mat development. Initial and previous results show that autotrophic microorganisms (e.g, M. yellowstonensis) are often the first to colonize the glass slides and their activity was confirmed by mRNA expression of genes related to iron oxidation and carbon fixation. Heterotrophs are rare

  6. Biogeophysical interactions control the formation of iron oxide microbial biofilms in acidic geothermal outflow channels of Yellowstone National Park

    Beam, J.; Berstein, H. C.; Jay, Z.; Kozubal, M. A.; Jennings, R. D.; Inskeep, W. P.

    2012-12-01

    Amorphous iron oxyhydroxide microbial mats in acidic (pH ~ 3) geothermal outflow channels of Yellowstone National Park (YNP) are habitats for diverse populations of autotrophic and heterotrophic microorganisms from the domains Archaea and Bacteria. These systems have been extensively characterized with regards to geochemical, physical, and microbiological (e.g., metagenomics) analyses; however, there is minimal data describing the formation of these iron oxide microbial mats. A conceptual model of Fe(III)-oxide microbial mat development was created, which includes four distinct stages. Autotrophic archaea (Metallosphaera yellowstonensis) and bacteria (Hydrogenobaculum spp.) are the first colonizers (Stage I) that provide pools of organic carbon for heterotrophic thermophiles (Stage II). M. yellowstonensis is an autotrophic Sulfolobales that is responsible for the oxidation of Fe(II) and can thus be defined as the mat 'architect' creating suitable habitats for microbial niches (e.g., anaerobic microorganisms) (Stage III). The last phase of mat formation (Stage IV) represents a pseudo-steady state mature microbial mat, which has been the subject of all previous microbial surveys of these systems. The conceptual model for Fe(III)-oxide microbial mat development was tested by inserting glass (SiO2) microscope slides into the main flow channels of two acidic geothermal springs in YNP. Slides were removed at various time intervals and analyzed for total iron accretion, microbial community structure (i.e., 16S rRNA gene abundance), and mRNA expression of community members. Routine geochemical and physical (e.g., flow) parameters were also measured to decipher their relative contribution to mat development. Initial and previous results show that autotrophic microorganisms (e.g, M. yellowstonensis) are often the first to colonize the glass slides and their activity was confirmed by mRNA expression of genes related to iron oxidation and carbon fixation. Heterotrophs are rare

  7. Assessing impacts of unconventional natural gas extraction on microbial communities in headwater stream ecosystems in Northwestern Pennsylvania.

    Trexler, Ryan; Solomon, Caroline; Brislawn, Colin J; Wright, Justin R; Rosenberger, Abigail; McClure, Erin E; Grube, Alyssa M; Peterson, Mark P; Keddache, Mehdi; Mason, Olivia U; Hazen, Terry C; Grant, Christopher J; Lamendella, Regina

    2014-01-01

    Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale formations. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity. For example, operational taxonomic units (OTUs) within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA- sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems. PMID:25408683

  8. Assessing Impacts of Unconventional Natural Gas Extraction on Microbial Communities in Headwater Stream Ecosystems in Northwestern Pennsylvania

    Ryan eTrexler

    2014-11-01

    Full Text Available Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale play. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity (MSA+. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity (MSA-. For example, OTUs within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA- sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems.

  9. Differentiation of Microbial Species and Strains in Coculture Biofilms by Multivariate Analysis of Laser Desorption Postionization Mass Spectra

    University of Illinois at Chicago; Montana State University; Bhardwaj, Chhavi; Cui, Yang; Hofstetter, Theresa; Liu, Suet Yi; Bernstein, Hans C.; Carlson, Ross P.; Ahmed, Musahid; Hanley, Luke

    2013-04-01

    7.87 to 10.5 eV vacuum ultraviolet (VUV) photon energies were used in laser desorption postionization mass spectrometry (LDPI-MS) to analyze biofilms comprised of binary cultures of interacting microorganisms. The effect of photon energy was examined using both tunable synchrotron and laser sources of VUV radiation. Principal components analysis (PCA) was applied to the MS data to differentiate species in Escherichia coli-Saccharomyces cerevisiae coculture biofilms. PCA of LDPI-MS also differentiated individual E. coli strains in a biofilm comprised of two interacting gene deletion strains, even though these strains differed from the wild type K-12 strain by no more than four gene deletions each out of approximately 2000 genes. PCA treatment of 7.87 eV LDPI-MS data separated the E. coli strains into three distinct groups two ?pure? groups and a mixed region. Furthermore, the ?pure? regions of the E. coli cocultures showed greater variance by PCA when analyzed by 7.87 eV photon energies than by 10.5 eV radiation. Comparison of the 7.87 and 10.5 eV data is consistent with the expectation that the lower photon energy selects a subset of low ionization energy analytes while 10.5 eV is more inclusive, detecting a wider range of analytes. These two VUV photon energies therefore give different spreads via PCA and their respective use in LDPI-MS constitute an additional experimental parameter to differentiate strains and species.

  10. The Efficacy of Umbelliferone, Arbutin, and N-Acetylcysteine to Prevent Microbial Colonization and Biofilm Development on Urinary Catheter Surface: Results from a Preliminary Study

    Tommaso Cai

    2016-01-01

    Full Text Available We evaluated, in a preliminary study, the efficacy of umbelliferone, arbutin, and N-acetylcysteine to inhibit biofilm formation on urinary catheter. We used 20 urinary catheters: 5 catheters were incubated with Enterococcus faecalis (control group; 5 catheters were incubated with E. faecalis in presence of umbelliferone (150 mg, arbutin (60 mg, and N-acetylcysteine (150 mg (group 1; 5 catheters were incubated with E. faecalis in presence of umbelliferone (150 mg, arbutin (60 mg, and N-acetylcysteine (400 mg (group 2; and 5 catheters were incubated with E. faecalis in presence of umbelliferone (300 mg, arbutin (60 mg, and N-acetylcysteine (150 mg (group 3. After 72 hours, planktonic microbial growth and microorganisms on catheter surface were assessed. In the control group, we found a planktonic load of ≥105 CFU/mL in the inoculation medium and retrieved 3.69 × 106 CFU/cm from the sessile cells adherent to the catheter surface. A significantly lower amount in planktonic (p<0.001 and sessile (p=0.004 bacterial load was found in group 3, showing <100 CFU/mL and 0.12 × 106 CFU/cm in the incubation medium and on the catheter surface, respectively. In groups 1 and 2, 1.67 × 106 CFU/cm and 1.77 × 106 CFU/cm were found on catheter surface. Our results document that umbelliferone, arbutin, and N-acetylcysteine are able to reduce E. faecalis biofilm development on the surface of urinary catheters.

  11. Metagenomic Analysis of Showerhead Biofilms from a Hospital in Ohio

    Background: The National Institute of Health estimated that 80% of human microbial infections are associated with biofilms. Although water supplies and hospital equipments are constantly treated with disinfectants, the presence of biofilms in these areas has been frequently obser...

  12. Studying bacterial multispecies biofilms

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the...... benefits and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial...

  13. Genomics and Metagenomics of Extreme Acidophiles in Biomining Environments

    Holmes, D. S.

    2015-12-01

    Over 160 draft or complete genomes of extreme acidophiles (pH metagenomic studies of such environments. This provides a rich source of latent data that can be exploited for understanding the biology of biomining environments and for advancing biotechnological applications. Genomic and metagenomic data are already yielding valuable insights into cellular processes, including carbon and nitrogen management, heavy metal and acid resistance, iron and sulfur oxido-reduction, linking biogeochemical processes to organismal physiology. The data also allow the construction of useful models of the ecophysiology of biomining environments and provide insight into the gene and genome evolution of extreme acidophiles. Additionally, since most of these acidophiles are also chemoautolithotrophs that use minerals as energy sources or electron sinks, their genomes can be plundered for clues about the evolution of cellular metabolism and bioenergetic pathways during the Archaean abiotic/biotic transition on early Earth. Acknowledgements: Fondecyt 1130683.

  14. Characterisation of the Physical Composition and Microbial Community Structure of Biofilms within a Model Full-Scale Drinking Water Distribution System

    Fish, Katherine E.; Richard Collins; Nicola H. Green; Sharpe, Rebecca L.; Isabel Douterelo; A. Mark Osborn; Joby B Boxall

    2015-01-01

    Within drinking water distribution systems (DWDS), microorganisms form multi-species biofilms on internal pipe surfaces. A matrix of extracellular polymeric substances (EPS) is produced by the attached community and provides structure and stability for the biofilm. If the EPS adhesive strength deteriorates or is overcome by external shear forces, biofilm is mobilised into the water potentially leading to degradation of water quality. However, little is known about the EPS within DWDS biofilms...

  15. Bacterial Biofilm: Its Composition, Formation and Role in Human Infections

    Muhsin Jama; Ufaq Tasneem; Tahir Hussain; Saadia Andleeb

    2015-01-01

    Biofilm is an association of micro-organisms in which microbial cells adhere to each other on a living or non-living surfaces within a self-produced matrix of extracellular polymeric substance. Bacterial biofilm is infectious in nature and can results in nosocomial infections. According to National Institutes of Health (NIH) about about 65% of all microbial infections, and 80% of all chronic infections are associated with biofilms. Biofilm formation is a multi-step process starting with attac...

  16. Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile Ferrovum

    Sophie Roxana Ullrich

    2016-05-01

    Full Text Available Acid mine drainage (AMD, associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus Ferrovum are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of Ferrovum has proven to be extremely difficult and has so far only been successful for the designated type strain Ferrovum myxofaciens P3G. In this study, the genomes of two novel strains of Ferrovum (PN-J185 and Z-31 derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of Ferrovum sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G. Phylogenomic scrutiny suggests that the four strains represent three Ferrovum species that cluster in two groups (1 and 2. Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the F. myxofaciens strains (group 1 appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed

  17. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions

    Bauermeister, Anja; Rettberg, Petra; Flemming, Hans-Curt

    2014-08-01

    characterized by a high thermodynamic stability. Even in a desiccated environment, A. ferrooxidans survived for one week under simulated Martian shallow subsurface conditions (6 hPa, -20 °C, 0.13% O2) in the form of dried biofilms without loss of viability. Low temperature and low oxygen pressure were favorable to survival. Thus, the acidophilic iron-sulfur bacterium A. ferrooxidans may be considered a plausible candidate of a potential Martian food web based on its metabolic capacities. As an autotroph it would be located at the base of such a food web, providing organic carbon.

  18. Biofilm in endodontics: A review

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms’ formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to

  19. Bifunctional quaternary ammonium compounds to inhibit biofilm growth and enhance performance for activated carbon air-cathode in microbial fuel cells

    Li, Nan; Liu, Yinan; An, Jingkun; Feng, Cuijuan; Wang, Xin

    2014-12-01

    The slow diffusion of hydroxyl out of the catalyst layer as well as the biofouling on the surface of cathode are two problems affecting power for membrane-less air-cathode microbial fuel cells (MFCs). In order to solve both of them simultaneously, here we simply modify activated carbon air-cathode using a bifunctional quaternary ammonium compound (QAC) by forced evaporation. The maximum power density reaches 1041 ± 12 mW m-2 in an unbuffered medium (0.5 g L-1 NaCl), which is 17% higher than the control, probably due to the accelerated anion transport in the catalyst layer. After 2 months, the protein content reduced by a factor of 26 and the power density increases by 33%, indicating that the QAC modification can effectively inhibit the growth of cathodic biofilm and improve the stability of performance. The addition of NaOH and QAC epoxy have a negative effect on power production due to the clogging of pores in catalyst layer.

  20. Use of CMEIAS Image Analysis Software to Accurately Compute Attributes of Cell Size, Morphology, Spatial Aggregation and Color Segmentation that Signify in Situ Ecophysiological Adaptations in Microbial Biofilm Communities

    Frank B. Dazzo

    2015-03-01

    Full Text Available In this review, we describe computational features of computer-assisted microscopy that are unique to the Center for Microbial Ecology Image Analysis System (CMEIAS software, and examples illustrating how they can be used to gain ecophysiological insights into microbial adaptations occurring at micrometer spatial scales directly relevant to individual cells occupying their ecological niches in situ. These features include algorithms that accurately measure (1 microbial cell length relevant to avoidance of protozoan bacteriovory; (2 microbial biovolume body mass relevant to allometric scaling and local apportionment of growth-supporting nutrient resources; (3 pattern recognition rules for morphotype classification of diverse microbial communities relevant to their enhanced fitness for success in the particular habitat; (4 spatial patterns of coaggregation that reveal the local intensity of cooperative vs. competitive adaptations in colonization behavior relevant to microbial biofilm ecology; and (5 object segmentation of complex color images to differentiate target microbes reporting successful cell-cell communication. These unique computational features contribute to the CMEIAS mission of developing accurate and freely accessible tools of image bioinformatics that strengthen microscopy-based approaches for understanding microbial ecology at single-cell resolution.

  1. Spatial structure, cooperation and competition in biofilms.

    Nadell, Carey D; Drescher, Knut; Foster, Kevin R

    2016-09-01

    Bacteria often live within matrix-embedded communities, termed biofilms, which are now understood to be a major mode of microbial life. The study of biofilms has revealed their vast complexity both in terms of resident species composition and phenotypic diversity. Despite this complexity, theoretical and experimental work in the past decade has identified common principles for understanding microbial biofilms. In this Review, we discuss how the spatial arrangement of genotypes within a community influences the cooperative and competitive cell-cell interactions that define biofilm form and function. Furthermore, we argue that a perspective rooted in ecology and evolution is fundamental to progress in microbiology. PMID:27452230

  2. PCR-mediated detection of acidophilic, bioleaching-associated bacteria.

    De Wulf-Durand, P; Bryant, L J; Sly, L I

    1997-01-01

    The detection of acidophilic microorganisms from mining environments by culture methods is time consuming and unreliable. Several PCR approaches were developed to amplify small-subunit rRNA sequences from the DNA of six bacterial phylotypes associated with acidic mining environments, permitting the detection of the target DNA at concentrations as low as 10 fg.

  3. Grazing of acidophilic bacteria by a flagellated protozoan.

    McGinness, S; Johnson, D B

    1992-01-01

    A biflagellated protozoan was isolated from an acidic drainage stream located inside a disused pyrite mine. The stream contained copious amounts of "acid streamer" bacterial growths, and the flagellate was observed in situ apparently grazing the streamer bacteria. The protozoan was obligately acidophilic, growing between pH 1.8 and 4.5, but not at pH 1.6 or 5.0, with optimum growth between pH 3 and 4. It was highly sensitive to copper, molybdenum, silver, and uranium, but tolerated ferrous and ferric iron up to 50 and 25 mM, respectively. In the laboratory, the protozoan was found to graze a range of acidophilic bacteria, including the chemolithotrophs Thiobacillus ferrooxidans, Leptospirillum ferrooxidans, and the heterotroph Acidiphilium cryptum. Thiobacillus thiooxidans and Thiobacillus acidophilus were not grazed. Filamentous growth of certain acidophiles afforded some protection against being grazed by the flagellate. In mixed cultures of T. ferrooxidans and L. ferrooxidans, the protozoan isolate displayed preferential grazing of the former. The possibility of using acidophilic protozoa as a means of controlling bacteria responsible for the production of acid mine drainage is discussed. PMID:24192830

  4. Complete nucleotide sequence and analysis of two conjugative broad host range plasmids from a marine microbial biofilm.

    Peter Norberg

    Full Text Available The complete nucleotide sequence of plasmids pMCBF1 and pMCBF6 was determined and analyzed. pMCBF1 and pMCBF6 form a novel clade within the IncP-1 plasmid family designated IncP-1 ς. The plasmids were exogenously isolated earlier from a marine biofilm. pMCBF1 (62 689 base pairs; bp and pMCBF6 (66 729 bp have identical backbones, but differ in their mercury resistance transposons. pMCBF1 carries Tn5053 and pMCBF6 carries Tn5058. Both are flanked by 5 bp direct repeats, typical of replicative transposition. Both insertions are in the vicinity of a resolvase gene in the backbone, supporting the idea that both transposons are "res-site hunters" that preferably insert close to and use external resolvase functions. The similarity of the backbones indicates recent insertion of the two transposons and the ongoing dynamics of plasmid evolution in marine biofilms. Both plasmids also carry the insertion sequence ISPst1, albeit without flanking repeats. ISPs1is located in an unusual site within the control region of the plasmid. In contrast to most known IncP-1 plasmids the pMCBF1/pMCBF6 backbone has no insert between the replication initiation gene (trfA and the vegetative replication origin (oriV. One pMCBF1/pMCBF6 block of about 2.5 kilo bases (kb has no similarity with known sequences in the databases. Furthermore, insertion of three genes with similarity to the multidrug efflux pump operon mexEF and a gene from the NodT family of the tripartite multi-drug resistance-nodulation-division (RND system in Pseudomonas aeruginosa was found. They do not seem to confer antibiotic resistance to the hosts of pMCBF1/pMCBF6, but the presence of RND on promiscuous plasmids may have serious implications for the spread of antibiotic multi-resistance.

  5. Growing and Analyzing Biofilms in Flow Chambers

    Tolker-Nielsen, Tim; Sternberg, Claus

    2011-01-01

    This unit describes the setup of flow chamber systems for the study of microbial biofilms, and methods for the analysis of structural biofilm formation. Use of flow chambers allows direct microscopic investigation of biofilm formation. The biofilms in flow chambers develop under hydrodynamic......, and disassembly and cleaning of the system. In addition, embedding and fluorescent in situ hybridization of flow chamber–grown biofilms are addressed. Curr. Protoc. Microbiol. 21:1B.2.1-1B.2.17. © 2011 by John Wiley & Sons, Inc....

  6. Effect of VOCs and methane in the biological oxidation of the ferrous ion by an acidophilic consortium.

    Almenglo, F; Ramírez, M; Gómez, J M; Cantero, D; Revah, S; González-Sánchez, A

    2012-01-01

    During the elimination of H2S from biogas in an aqueous ferric sulphate solution, volatile organic compounds (VOCs) and methane are absorbed and may have an effect on the subsequent biological regeneration of ferric ion. This study was conducted to investigate the effect of maximum concentrations of methane and some VOCs found in biogas on the ferrous oxidation of an acidophilic microbial consortium (FO consortium). The presence and impact of heterotrophic microorganisms on the activity of the acidophilic consortium was also evaluated. No effect on the ferrous oxidation rate was found with gas concentrations of 1500 mg toluene m(-3), 1400 mg 2-butanol m(-3) or 1250 mg 1,2-dichloroethane m(-3), nor with methane at gas concentrations ranging from 15-25% (v/v). A tenfold increase in VOCs concentrations totally inhibited the microbial activity of the FO consortium and the heterotrophs. The presence of a heterotrophic fungus may promote the autotrophic growth of the FO consortium. PMID:22629626

  7. Strategies for combating bacterial biofilm infections

    Hong Wu; Claus Moser; Heng-Zhuang Wang; Niels Hiby; Zhi-Jun Song

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwelling devices. Clinical observations and experimental studies indicated clearly that antibiotic treatment alone is in most cases insufficient to eradicate biofilm infections. Therefore, to effectively treat biofilm infections with currently available antibiotics and evaluate the outcomes become important and urgent for clinicians. The review summarizes the latest progress in treatment of clinical biofilm infections and scientific investigations, discusses the diagnosis and treatment of different biofilm infections and introduces the promising laboratory progress, which may contribute to prevention or cure of biofilm infections. We conclude that, an efficient treatment of biofilm infections needs a well-established multidisciplinary collaboration, which includes removal of the infected foreign bodies, selection of biofilm-active, sensitive and well-penetrating antibiotics, systemic or topical antibiotic administration in high dosage and combinations, and administration of anti-quorum sensing or biofilm dispersal agents.

  8. Bacterial interactions in dental biofilm.

    Huang, Ruijie; Li, Mingyun; Gregory, Richard L

    2011-01-01

    Biofilms are masses of microorganisms that bind to and multiply on a solid surface, typically with a fluid bathing the microbes. The microorganisms that are not attached but are free floating in an aqueous environment are termed planktonic cells. Traditionally, microbiology research has addressed results from planktonic bacterial cells. However, many recent studies have indicated that biofilms are the preferred form of growth of most microbes and particularly those of a pathogenic nature. Biofilms on animal hosts have significantly increased resistance to various antimicrobials compared to planktonic cells. These microbial communities form microcolonies that interact with each other using very sophisticated communication methods (i.e., quorum-sensing). The development of unique microbiological tools to detect and assess the various biofilms around us is a tremendously important focus of research in many laboratories. In the present review, we discuss the major biofilm mechanisms and the interactions among oral bacteria. PMID:21778817

  9. Molecular basis of in-vivo biofilm formation by bacterial pathogens

    Joo, Hwang-Soo; Otto, Michael

    2012-01-01

    Bacterial biofilms are involved in a multitude of serious chronic infections. In recent years, modeling biofilm infection in vitro led to the identification of microbial determinants governing biofilm development. However, we lack information as to whether biofilm formation mechanisms identified in vitro have relevance for biofilm-associated infection. Here, we discuss the molecular basis of biofilm formation using staphylococci and Pseudomonas aeruginosa to illustrate key points, as their bi...

  10. Permeabilizing biofilms

    Soukos, Nikolaos S.; Lee, Shun; Doukas, Apostolos G.

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  11. Drug resistance mechanisms of fungal biofilms

    Seneviratne, CJ; Samaranayake, LP

    2011-01-01

    Fungi are ubiquitous in nature and exist in soil, water, plants, and in animals and humans. Similar to bacteria, fungi also form confluent biofilms either singly (mono-species) or with other microbial species (mixed-species). Fungal biofilms are known to be highly resistant to the adverse environmental conditions including antimicrobials and biocide compared to its planktonic (free-floating) counterparts. Although bacterial biofilms have been studied in detail, relatively little is known of f...

  12. Spatial Patterns of Carbonate Biomineralization in Biofilms

    Li, Xiaobao; Chopp, David L.; Russin, William A.; Brannon, Paul T.; Parsek, Matthew R.; Packman, Aaron I.

    2015-01-01

    Microbially catalyzed precipitation of carbonate minerals is an important process in diverse biological, geological, and engineered systems. However, the processes that regulate carbonate biomineralization and their impacts on biofilms are largely unexplored, mainly because of the inability of current methods to directly observe biomineralization within biofilms. Here, we present a method for in situ, real-time imaging of biomineralization in biofilms and use it to show that Pseudomonas aerug...

  13. Detection of in-situ derivatized peptides in microbial biofilms by laser desorption 7.87 eV postionizaton mass spectrometry.

    Edirisinghe, P. D.; Moore, J. F.; Skinner-Nemec, K. A.; Lindberg, C.; Giometti, C. S.; Veryovkin, I. V.; Hunt, J. E.; Pellin, M. J.; Hanley, L.; Biosciences Division; Univ. of Illinois at Chicago; MassThink

    2007-01-01

    A novel analytical method based on laser desorption postionization mass spectrometry (LDPI-MS) was developed to investigate the competence and sporulation factor-a pentapeptide of amino acid sequence ERGMT-within intact Bacillus subtilis biofilms. Derivatization of the neat ERGMT peptide with quinoline- and anthracene-based tags was separately used to lower the peptide ionization potential and permit direct ionization by 7.87-eV vacuum ultraviolet radiation. The techniques of mass shifting and selective ionization of the derivatized peptide were combined here to permit detection of ERGMT peptide within intact biofilms by LDPI-MS, without any prior extraction or chromatographic separation. Finally, imaging MS specific to the derivatized peptide was demonstrated on an intact biofilm using LDPI-MS. The presence of ERGMT in the biofilms was verified by bulk extraction/LC-MS. However, MALDI imaging MS analyses were unable to detect ERGMT within intact biofilms.

  14. Influence of biofilm thickness on micropollutants removal in nitrifying MBBRs

    Torresi, Elena; Andersen, Henrik Rasmus; Smets, Barth F.; Plósz, Benedek G.; Christensson, M.

    2015-01-01

    The removal of pharmaceuticals was investigated in nitrifying Moving Bed Biofilm Reactors (MBBRs) containing carriers with different biofilm thicknesses. The biofilm with the thinnest thickness was found to have the highest nitrification and biotransformation rate for some key pharmaceuticals. Microbial analysis revealed a different relative abundance of nitrifying guilds in the different carriers, suggesting the importance of nitrite oxidizing bacteria in removal of micropollutants.

  15. Dynamic interactions of neutrophils and biofilms

    Josefine Hirschfeld

    2014-12-01

    Full Text Available Background: The majority of microbial infections in humans are biofilm-associated and difficult to treat, as biofilms are highly resistant to antimicrobial agents and protect themselves from external threats in various ways. Biofilms are tenaciously attached to surfaces and impede the ability of host defense molecules and cells to penetrate them. On the other hand, some biofilms are beneficial for the host and contain protective microorganisms. Microbes in biofilms express pathogen-associated molecular patterns and epitopes that can be recognized by innate immune cells and opsonins, leading to activation of neutrophils and other leukocytes. Neutrophils are part of the first line of defense and have multiple antimicrobial strategies allowing them to attack pathogenic biofilms. Objective/design: In this paper, interaction modes of neutrophils with biofilms are reviewed. Antimicrobial strategies of neutrophils and the counteractions of the biofilm communities, with special attention to oral biofilms, are presented. Moreover, possible adverse effects of neutrophil activity and their biofilm-promoting side effects are discussed. Results/conclusion: Biofilms are partially, but not entirely, protected against neutrophil assault, which include the processes of phagocytosis, degranulation, and formation of neutrophil extracellular traps. However, virulence factors of microorganisms, microbial composition, and properties of the extracellular matrix determine whether a biofilm and subsequent microbial spread can be controlled by neutrophils and other host defense factors. Besides, neutrophils may inadvertently contribute to the physical and ecological stability of biofilms by promoting selection of more resistant strains. Moreover, neutrophil enzymes can degrade collagen and other proteins and, as a result, cause harm to the host tissues. These parameters could be crucial factors in the onset of periodontal inflammation and the subsequent tissue breakdown.

  16. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T. [Department of Environmental and Life Science, Toyohashi University of Technology, Toyohashi 441-8580 (Japan); Hiraishi, A. [Department of Environmental and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan and Electronics-inspired Interdisciplinary Institute (EIIRIS), Toyohashi University of Technology, Toyohashi 441-8580 (Japan)

    2014-02-20

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum 'TM7' as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L{sup −1} was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  17. Antibiotic tolerance and resistance in biofilms

    Ciofu, Oana; Tolker-Nielsen, Tim

    One of the most important features of microbial biofilms is their tolerance to antimicrobial agents and components of the host immune system. The difficulty of treating biofilm infections with antibiotics is a major clinical problem. Although antibiotics may decrease the number of bacteria in...

  18. Microelectrodes as novel research tools for environmental biofilm studies

    Biofilm processes are widely utilized in environmental engineering for biodegradation of contaminated waters, gases and soils. It is important to understand the structure and functions of biofilms. Microelectrodes are novel experimental tools for environmental biofilm studies. The authors reviewed the techniques of oxygen, sulfide, redox potential and pH microelectrode. These microelectrodes have tip diameters of 3 to 20 μm, resulting a high spatial resolution. They enable us directly measure the chemical conditions as results of microbial activities in biofilms. The authors also reported the laboratory and field studies of wastewater biofilms using microelectrode techniques. The results of these studies provided experimental evidence on the stratification of microbial processes and the associated redox potential change in wastewater biofilms: (1) The oxygen penetration depth was only a fraction of the biofilm thickness. This observation, first made under laboratory conditions, has been confirmed under field conditions. (2) The biofilms with both aerobic oxidation and sulfate reduction had a clearly stratified structure. This was evidenced by a sharp decrease of redox potential near the interface between the aerobic zone and the sulfate reduction zone within the biofilm. In this type of biofilms, aerobic oxidation took place only in a shallow layer near the biofilm surface and sulfate reduction occurred in the deeper anoxic zone. (3) The redox potential changed with the shift of primary microbial process in biofilms, indicating that it is possible to use redox potential to help illustrate the structure and functions of biofilms. (author)

  19. Experimental evolution in biofilm populations.

    Steenackers, Hans P; Parijs, Ilse; Foster, Kevin R; Vanderleyden, Jozef

    2016-05-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  20. Desiccation stress in two intertidal beachrock biofilms

    Petrou, Katherina; Trimborn, Scarlett; Kühl, Michael; Ralph, Peter J.

    2014-01-01

    Chlorophyll a fluorescence was used to look at the effect of desiccation on the photophysiology in two beachrock microbial biofilms from the intertidal rock platform of Heron Island, Australia. The photophysiological response to desiccation differed between the beachrock microbial communities. The black biofilm from the upper shoreline, dominated by Calothrix sp., showed a response typical of desiccation-tolerant cyanobacteria, where photosynthesis closed down during air exposure with a rapid...

  1. Does bacterial communication play a role for the effect of triclosan, Corsodyl and Listerine on biofilm formation and growth of Streptococcus mutans?

    2011-01-01

    Biofilm and biofilm formation Bacteria colonize biological and inert surfaces in the form of matrixencapsulated communities referred to as biofilms (1). These microbial biofilms are a highly distinct form of microbial life compared with the planktonic, or freely floating, form of microbial life that has been exhaustively studied for the last century (2). Bacterial biofilms account for the majority of chronic diseases, including gingivitis, endocarditis and nosocomial infections (1). Mic...

  2. Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells

    Weiss Nielsen, Martin; Sternberg, Claus; Molin, Søren;

    2011-01-01

    Many microbial cells have the ability to form sessile microbial communities defined as biofilms that have altered physiological and pathological properties compared to free living microorganisms. Biofilms in nature are often difficult to investigate and reside under poorly defined conditions(1). ...

  3. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia.

    Rawlings, Douglas E; Johnson, D Barrie

    2007-02-01

    Biomining, the use of micro-organisms to recover precious and base metals from mineral ores and concentrates, has developed into a successful and expanding area of biotechnology. While careful considerations are made in the design and engineering of biomining operations, microbiological aspects have been subjected to far less scrutiny and control. Biomining processes employ microbial consortia that are dominated by acidophilic, autotrophic iron- or sulfur-oxidizing prokaryotes. Mineral biooxidation takes place in highly aerated, continuous-flow, stirred-tank reactors or in irrigated dump or heap reactors, both of which provide an open, non-sterile environment. Continuous-flow, stirred tanks are characterized by homogeneous and constant growth conditions where the selection is for rapid growth, and consequently tank consortia tend to be dominated by two or three species of micro-organisms. In contrast, heap reactors provide highly heterogeneous growth environments that change with the age of the heap, and these tend to be colonized by a much greater variety of micro-organisms. Heap micro-organisms grow as biofilms that are not subject to washout and the major challenge is to provide sufficient biodiversity for optimum performance throughout the life of a heap. This review discusses theoretical and pragmatic aspects of assembling microbial consortia to process different mineral ores and concentrates, and the challenges for using constructed consortia in non-sterile industrial-scale operations. PMID:17259603

  4. The acidophilic microorganisms diversity present in lignite and pit coal from Paroseni, Halânga, Turceni mines

    Carmen Madalina CISMASIU

    2009-11-01

    Full Text Available Pollution from coal combustion is the largest problem in the current use of coal and the biggest constraint on the increased use of coal. When these fossil fuels are combusted, sulphur-di-oxide is released into the atmosphere causing acid rains which dissolves buildings, kills forest. Knowing the physiological groups of microorganisms present in the coal samples has an ecological importance, completing the knowledge in the field of the microorganism’s ecology and a practical importance, being a source of new microorganisms with biotechnological potential. The microbial communities evidenced in such sites include both groups of chemolithotrophic microorganisms involved in the metals biosolubilization processes and groups of heterotrophic microorganisms involved in the processes of bioaccumulation or biofixation of metallic ions. In this context, this paper presents the study regarding the main physiological groups of microorganisms present in the pit coal and lignite samples after the industrial processing of coal. The results revealed that the microorganisms belonging to the following physiological groups: aerobic heterotrophic acidophilic bacteria, strictly anaerobic heterotrophic (sulphur-reducing, nitrifying bacteria (nitrite and nitrate bacteria, denitrifying bacteria and acidophilic chemolithotrophic bacteria on Fe2+, on S0 and on S2O3.

  5. Photo-catalytic inactivation of an Enterococcus biofilm: the anti-microbial effect of sulphated and europium-doped titanium dioxide nanopowders.

    Dworniczek, Ewa; Plesch, Gustav; Seniuk, Alicja; Adamski, Ryszard; Michal, Róbert; Čaplovičová, Mária

    2016-04-01

    The control and prevention of biofilm-related infections is an important public healthcare issue. Given the increasing antibiotic resistance among bacteria and fungi that cause serious infections in humans, promotion of new strategies combating microorganisms has been essential. One attractive approach to inactivate microorganisms is the use of semiconductor photo-catalysis, which has become the subject of extensive research. In this study, the bactericidal properties of four photo-catalysts, TiO2, TiO2-S, TiO2-Eu and TiO2-Eu-S, were investigated against established 24, 48, 72 and 96 h biofilms ofEnterococcus The exposure of biofilms to the catalysts induced the production of superoxide radical anions. The best photo-catalytic inactivation was achieved with the TiO2-Eu-S and TiO2-S nanopowders and 24 h biofilms. Transmission electron microscopy images showed significant changes in the structure of the biofilm cells following photo-inactivation. The results suggest that doping with europium and modifying the surface with sulphate groups enhanced the bactericidal activity of the TiO2nanoparticles against enterococcal biofilms. PMID:26940291

  6. Genome Sequence of the Acidophilic Bacterium Acidocella sp. Strain MX-AZ02

    Servín-Garcidueñas, Luis E.; Garrett, Roger A.; Amils, Ricardo;

    2013-01-01

    Here, we report the draft genome sequence of Acidocella sp. strain MX-AZ02, an acidophilic and heterotrophic alphaproteobacterium isolated from a geothermal lake in western Mexico.......Here, we report the draft genome sequence of Acidocella sp. strain MX-AZ02, an acidophilic and heterotrophic alphaproteobacterium isolated from a geothermal lake in western Mexico....

  7. Biofilm induced tolerance towards antimicrobial peptides.

    Anders Folkesson

    Full Text Available Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We address the question of how biofilm organization affects antibiotic susceptibility. We established Escherichia coli biofilms with differential structural organization due to the presence of IncF plasmids expressing altered forms of the transfer pili in two different biofilm model systems. The mature biofilms were subsequently treated with two antibiotics with different molecular targets, the peptide antibiotic colistin and the fluoroquinolone ciprofloxacin. The dynamics of microbial killing were monitored by viable count determination, and confocal laser microscopy. Strains forming structurally organized biofilms show an increased bacterial survival when challenged with colistin, compared to strains forming unstructured biofilms. The increased survival is due to genetically regulated tolerant subpopulation formation and not caused by a general biofilm property. No significant difference in survival was detected when the strains were challenged with ciprofloxacin. Our data show that biofilm formation confers increased colistin tolerance to cells within the biofilm structure, but the protection is conditional being dependent on the structural organization of the biofilm, and the induction of specific tolerance mechanisms.

  8. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2011-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimension...

  9. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Lemire, Joe A.; Marc A Demeter; Iain George; Howard Ceri; Turner, Raymond J.

    2015-01-01

    Moving bed biofilm reactors (MBBRs) are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR) carriers (biofilm support materials), allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that ...

  10. The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms

    Nilsson, Martin; Rybtke, Morten; Givskov, Michael;

    2016-01-01

    Microbial biofilms are tolerant to antibiotic treatment and therefore cause problematic infections. Knowledge about the molecular mechanisms underlying biofilm-associated antimicrobial tolerance will aid the development of antibiofilm drugs. Screening of a Streptococcus mutans transposon mutant...

  11. An Update on the Management of Endodontic Biofilms Using Root Canal Irrigants and Medicaments

    Mohammadi, Zahed; Soltani, Mohammad Karim; Shalavi, Sousan

    2014-01-01

    Microbial biofilm is defined as a sessile multicellular microbial community characterized by cells that are firmly attached to a surface and enmeshed in a self-produced matrix of extracellular polymeric substances. Biofilms play a very important role in pulp and periradicular pathosis. The aim of this article was to review the role of endodontic biofilms and the effects of root canal irrigants, medicaments as well as lasers on biofilms A Medline search was performed on the English articles pu...

  12. Current understanding of multi-species biofilms

    Yang, Liang; Liu, Yang; Wu, Hong;

    2011-01-01

    Direct observation of a wide range of natural microorganisms has revealed the fact that the majority of microbes persist as surface-attached communities surrounded by matrix materials, called biofilms. Biofilms can be formed by a single bacterial strain. However, most natural biofilms are actually...... formed by multiple bacterial species. Conventional methods for bacterial cleaning, such as applications of antibiotics and/or disinfectants are often ineffective for biofilm populations due to their special physiology and physical matrix barrier. It has been estimated that billions of dollars are spent...... every year worldwide to deal with damage to equipment, contaminations of products, energy losses, and infections in human beings resulted from microbial biofilms. Microorganisms compete, cooperate, and communicate with each other in multi-species biofilms. Understanding the mechanisms of multi...

  13. Mechanisms of biofilm resistance to antimicrobial agents.

    Mah, T F; O'Toole, G A

    2001-01-01

    Biofilms are communities of microorganisms attached to a surface. It has become clear that biofilm-grown cells express properties distinct from planktonic cells, one of which is an increased resistance to antimicrobial agents. Recent work has indicated that slow growth and/or induction of an rpoS-mediated stress response could contribute to biocide resistance. The physical and/or chemical structure of exopolysaccharides or other aspects of biofilm architecture could also confer resistance by exclusion of biocides from the bacterial community. Finally, biofilm-grown bacteria might develop a biofilm-specific biocide-resistant phenotype. Owing to the heterogeneous nature of the biofilm, it is likely that there are multiple resistance mechanisms at work within a single community. Recent research has begun to shed light on how and why surface-attached microbial communities develop resistance to antimicrobial agents. PMID:11166241

  14. An electrochemical impedance model for integrated bacterial biofilms

    Bacterial cells attachment onto solid surfaces and the following growth into mature microbial biofilms may result in highly antibiotic resistant biofilms. Such biofilms may be incidentally formed on tissues or implanted devices, or intentionally formed by directed deposition of microbial sensors on whole-cell bio-chip surface. A new method for electrical characterization of the later on-chip microbial biofilm buildup is presented in this paper. Measurement of impedance vs. frequency in the range of 100 mHz to 400 kHz of Escherichia coli cells attachment to indium-tin-oxide-coated electrodes was carried out while using optical microscopy estimating the electrode area coverage. We show that impedance spectroscopy measurements can be interpreted by a simple electrical equivalent model characterizing both attachment and growth of the biofilm. The correlation of extracted equivalent electrical lumped components with the visual biofilm parameters and their dependence on the attachment and growth phases is confirmed.

  15. Salmonella biofilms

    Castelijn, G.A.A.

    2013-01-01

    Biofilm formation by Salmonellaspp. is a problem in the food industry, since biofilms may act as a persistent source of product contamination. Therefore the aim of this study was to obtain more insight in the processes involved and the factors contributing to Salmonellabiofilm formation. A collectio

  16. Biofilm Development

    Tolker-Nielsen, Tim

    2015-01-01

    , and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  17. A versatile reactor for continuous monitoring of biofilm properties in laboratory and industrial conditions

    M.O. Pereira; Morin, P.; Vieira, M. J.; Melo, L. F.

    2002-01-01

    Aims: The understanding of the dynamics of surface microbial colonization with concomitant monitoring of biofilm formation requires the development of biofilm reactors that enable direct and real-time evaluation under different hydrodynamic conditions. Methods and Results: This work proposes and discusses a simple flow cell reactor that provides a means to monitoring biofilm growth by periodical removing biofilm-attached slides for off-line, both non-destructive and destructive biofilm ana...

  18. Effect of nanoporous TiO2 coating and anodized Ca2+ modification of titanium surfaces on early microbial biofilm formation

    Wennerberg Ann

    2011-03-01

    Full Text Available Abstract Background The soft tissue around dental implants forms a barrier between the oral environment and the peri-implant bone and a crucial factor for long-term success of therapy is development of a good abutment/soft-tissue seal. Sol-gel derived nanoporous TiO2 coatings have been shown to enhance soft-tissue attachment but their effect on adhesion and biofilm formation by oral bacteria is unknown. Methods We have investigated how the properties of surfaces that may be used on abutments: turned titanium, sol-gel nanoporous TiO2 coated surfaces and anodized Ca2+ modified surfaces, affect biofilm formation by two early colonizers of the oral cavity: Streptococcus sanguinis and Actinomyces naeslundii. The bacteria were detected using 16S rRNA fluorescence in situ hybridization together with confocal laser scanning microscopy. Results Interferometry and atomic force microscopy revealed all the surfaces to be smooth (Sa ≤ 0.22 μm. Incubation with a consortium of S. sanguinis and A. naeslundii showed no differences in adhesion between the surfaces over 2 hours. After 14 hours, the level of biofilm growth was low and again, no differences between the surfaces were seen. The presence of saliva increased the biofilm biovolume of S. sanguinis and A. naeslundii ten-fold compared to when saliva was absent and this was due to increased adhesion rather than biofilm growth. Conclusions Nano-topographical modification of smooth titanium surfaces had no effect on adhesion or early biofilm formation by S. sanguinis and A. naeslundii as compared to turned surfaces or those treated with anodic oxidation in the presence of Ca2+. The presence of saliva led to a significantly greater biofilm biovolume but no significant differences were seen between the test surfaces. These data thus suggest that modification with sol-gel derived nanoporous TiO2, which has been shown to improve osseointegration and soft-tissue healing in vivo, does not cause greater biofilm

  19. Diffusion in biofilms respiring on electrodes

    Renslow, Ryan S. [Washington State Univ., Pullman, WA (United States); Babauta, Jerome T. [Washington State Univ., Pullman, WA (United States); Majors, Paul D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Beyenal, Haluk [Washington State Univ., Pullman, WA (United States)

    2012-11-15

    The goal of this study was to measure spatially and temporally resolved effective diffusion coefficients (De) in biofilms respiring on electrodes. Two model electrochemically active biofilms, Geobacter sulfurreducens PCA and Shewanella oneidensis MR-1, were investigated. A novel nuclear magnetic resonance microimaging perfusion probe capable of simultaneous electrochemical and pulsed-field gradient nuclear magnetic resonance (PFG-NMR) techniques was used. PFG-NMR allowed for noninvasive, nondestructive, high spatial resolution in situ De measurements in living biofilms respiring on electrodes. The electrodes were polarized so that they would act as the sole terminal electron acceptor for microbial metabolism. We present our results as both two-dimensional De heat maps and surface-averaged relative effective diffusion coefficient (Drs) depth profiles. We found that (1) Drs decreases with depth in G. sulfurreducens biofilms, following a sigmoid shape; (2) Drs at a given location decreases with G. sulfurreducens biofilm age; (3) average De and Drs profiles in G. sulfurreducens biofilms are lower than those in S. oneidensis biofilms—the G. sulfurreducens biofilms studied here were on average 10 times denser than the S. oneidensis biofilms; and (4) halting the respiration of a G. sulfurreducens biofilm decreases the De values. Density, reflected by De, plays a major role in the extracellular electron transfer strategies of electrochemically active biofilms.

  20. Ardrea characterisation of acidophilic micro-organisms isolated from gold mines in Marmato, Colombia

    Edna Judith Márquez F.

    2008-02-01

    Full Text Available Mineral bio-oxidation improves the extraction of valuable metals and also decreases the impact caused by mining waste; however, the interactions between the micro-organisms so involved are little known. Double-layer solid culture media techniques and amplified ribosomal DNA restriction enzyme analysis (Ardrea, using Eco72I, Eco24I, XcmI and BsaAI enzymes, were used for characterising four micro-organisms isolated from gold mines located in Marmato, Colombia. This work was aimed at better understanding of native acidophilic micro-organisms’ microbial interactions in mixed cultures. Iron and sulphur oxidising isolates revealed similar restriction patterns to those previously reported for Acidithiobacillus ferrooxidans; however, one of them exhibited different colony morphology compared to previously reported morphology. The iron non-oxidising isolate presented a restriction pattern agreeing with theoretical analysis of Acidithiobacillus thiooxidans database sequences. ARDREA proved to be a viable technique for differentiating between At. ferrooxidans and At. thiooxidans; in turn, it enabled checking isolates’ identity with their physiological traits and colony morphology.

  1. Enrichment of mesophilic acidophiles from the Underground Copper Mine Bor

    Conić Vesna T.

    2009-01-01

    Full Text Available In this work, autotrophic growth of mesophilic acidophiles from the Underground Copper Mine Bor was performed. Two selected solution samples collected from the 'Tilva Roš' ore body were prepared in a 9K nutrient medium (Silverman and Lundgren, 1959. The first sample TR k-16 was obtained during the hole drilling of the ore body, and the second TR k-31 from the drainage channel. Two samples of 9K media (Silverman and Lundgren, 1959 were inoculated with two selected solution samples from the underground mine Tilva Roš. Inoculated culture media were incubated without prior autoclaving in the period of 6 days at a temperature of 28 ?C with purging air through the system with enough oxygen and carbon dioxide. Oxidation rate of ferrous ions in the first 3 days of incubation was 14.8 and 10.7 wt.% Fe2+/day, the next 3 days 17.3 and 13.6 and for the total period of 6 days 98.3 and 74.8 wt.% for the first and second sample, respectively, i.e. 100 wt.% with initial percentage of ferrous ion in each medium. After centrifugation of enriched samples of culture media at 3000 rpm for 5 min, a plenty of mesophilic acidophiles were determined by microscopic method. According to Karavaiko [6], in the processes of incubition for 9K nutrient solution cells number reach a value of 108 cells/cm3.

  2. Alternating Current Influences Anaerobic Electroactive Biofilm Activity.

    Wang, Xin; Zhou, Lean; Lu, Lu; Lobo, Fernanda Leite; Li, Nan; Wang, Heming; Park, Jaedo; Ren, Zhiyong Jason

    2016-09-01

    Alternating current (AC) is known to inactivate microbial growth in suspension, but how AC influences anaerobic biofilm activities has not been systematically investigated. Using a Geobacter dominated anaerobic biofilm growing on the electrodes of microbial electrochemical reactors, we found that high frequency AC ranging from 1 MHz to 1 kHz (amplitude of 5 V, 30 min) showed only temporary inhibition to the biofilm activity. However, lower frequency (100 Hz, 1.2 or 5 V) treatment led to 47 ± 19% permanent decrease in limiting current on the same biofilm, which is attributed to the action of electrohydrodynamic force that caused biofilm damage and loss of intercellular electron transfer network. Confocal microscopy images show such inactivation mainly occurred at the interface between the biofilm and the electrode. Reducing the frequency further to 1 Hz led to water electrolysis, which generated gas bubbles that flushed all attached cells out of the electrode. These findings provide new references on understanding and regulating biofilm growth, which has broader implications in biofouling control, anaerobic waste treatment, energy and product recovery, and general understanding of microbial ecology and physiology. PMID:27485403

  3. Biofilms: The Stronghold of Legionella pneumophila

    Mena Abdel-Nour

    2013-10-01

    Full Text Available Legionellosis is mostly caused by Legionella pneumophila and is defined as a severe respiratory illness with a case fatality rate ranging from 5% to 80%. L. pneumophila is ubiquitous in natural and anthropogenic water systems. L. pneumophila is transmitted by inhalation of contaminated aerosols produced by a variety of devices. While L. pneumophila replicates within environmental protozoa, colonization and persistence in its natural environment are also mediated by biofilm formation and colonization within multispecies microbial communities. There is now evidence that some legionellosis outbreaks are correlated with the presence of biofilms. Thus, preventing biofilm formation appears as one of the strategies to reduce water system contamination. However, we lack information about the chemical and biophysical conditions, as well as the molecular mechanisms that allow the production of biofilms by L. pneumophila. Here, we discuss the molecular basis of biofilm formation by L. pneumophila and the roles of other microbial species in L. pneumophila biofilm colonization. In addition, we discuss the protective roles of biofilms against current L. pneumophila sanitation strategies along with the initial data available on the regulation of L. pneumophila biofilm formation.

  4. Biofilm Exopolysaccharides of Pathogenic Fungi: Lessons from Bacteria.

    Sheppard, Donald C; Howell, P Lynne

    2016-06-10

    Exopolysaccharides play an important structural and functional role in the development and maintenance of microbial biofilms. Although the majority of research to date has focused on the exopolysaccharide systems of biofilm-forming bacteria, recent studies have demonstrated that medically relevant fungi such as Candida albicans and Aspergillus fumigatus also form biofilms during infection. These fungal biofilms share many similarities with those of bacteria, including the presence of secreted exopolysaccharides as core components of the extracellular matrix. This review will highlight our current understanding of fungal biofilm exopolysaccharides, as well as the parallels that can be drawn with those of their bacterial counterparts. PMID:27129222

  5. Treatment of Oral Multispecies Biofilms by an Anti-Biofilm Peptide.

    Zhejun Wang

    Full Text Available Human oral biofilms are multispecies microbial communities that exhibit high resistance to antimicrobial agents. Dental plaque gives rise to highly prevalent and costly biofilm-related oral infections, which lead to caries or other types of oral infections. We investigated the ability of the recently identified anti-biofilm peptide 1018 to induce killing of bacterial cells present within oral multispecies biofilms. At 10 μg/ml (6.5 μM, peptide 1018 was able to significantly (p50% of the biofilm being killed and >35% being dispersed in only 3 minutes. Peptide 1018 may potentially be used by itself or in combination with CHX as a non-toxic and effective anti-biofilm agent for plaque disinfection in clinical dentistry.

  6. Wound biofilms: lessons learned from oral biofilms

    Mancl, Kimberly A.; Kirsner, Robert S.; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque,are a primary cause of oral diseases including caries, gingivitis and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible, thus biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well-elucidated. In contrast, wound research has relati...

  7. Focus on the physics of biofilms

    Lecuyer, Sigolene; Stocker, Roman; Rusconi, Roberto

    2015-03-01

    Bacteria are the smallest and most abundant form of life. They have traditionally been considered as primarily planktonic organisms, swimming or floating in a liquid medium, and this view has shaped many of the approaches to microbial processes, including for example the design of most antibiotics. However, over the last few decades it has become clear that many bacteria often adopt a sessile, surface-associated lifestyle, forming complex multicellular communities called biofilms. Bacterial biofilms are found in a vast range of environments and have major consequences on human health and industrial processes, from biofouling of surfaces to the spread of diseases. Although the study of biofilms has been biologists’ territory for a long time, a multitude of phenomena in the formation and development of biofilms hinges on physical processes. We are pleased to present a collection of research papers that discuss some of the latest developments in many of the areas to which physicists can contribute a deeper understanding of biofilms, both experimentally and theoretically. The topics covered range from the influence of physical environmental parameters on cell attachment and subsequent biofilm growth, to the use of local probes and imaging techniques to investigate biofilm structure, to the development of biofilms in complex environments and the modeling of colony morphogenesis. The results presented contribute to addressing some of the major challenges in microbiology today, including the prevention of surface contamination, the optimization of biofilm disruption methods and the effectiveness of antibiotic treatments.

  8. Community-Level Assessment of the Effects of the Broad-Spectrum Antimicrobial Chlorhexidine on the Outcome of River Microbial Biofilm Development▿

    Lawrence, J R; Zhu, B.; Swerhone, G. D. W.; Topp, E.; Roy, J; L. I. Wassenaar; Rema, T.; Korber, D R

    2008-01-01

    Chlorhexidine is a common-use antibacterial agent found in a range of personal-care products. We used rotating annular reactors to cultivate river biofilms under the influence of chlorhexidine or its molar equivalent in nutrients. Studies of the degradation of [14C]chlorhexidine demonstrated that no mineralization of the compound occurred. During studies with 100 μg liter−1 chlorhexidine, significant changes were observed in the protozoan and micrometazoan populations, the algal and cyanobact...

  9. Two-step nitrification in a pure moving bed biofilm reactor-membrane bioreactor for wastewater treatment: nitrifying and denitrifying microbial populations and kinetic modeling.

    Leyva-Díaz, J C; González-Martínez, A; Muñío, M M; Poyatos, J M

    2015-12-01

    The moving bed biofilm reactor-membrane bioreactor (MBBR-MBR) is a novel solution to conventional activated sludge processes and membrane bioreactors. In this study, a pure MBBR-MBR was studied. The pure MBBR-MBR mainly had attached biomass. The bioreactor operated with a hydraulic retention time (HRT) of 9.5 h. The kinetic parameters for heterotrophic and autotrophic biomasses, mainly nitrite-oxidizing bacteria (NOB), were evaluated. The analysis of the bacterial community structure of the ammonium-oxidizing bacteria (AOB), NOB, and denitrifying bacteria (DeNB) from the pure MBBR-MBR was carried out by means of pyrosequencing to detect and quantify the contribution of the nitrifying and denitrifying bacteria in the total bacterial community. The relative abundance of AOB, NOB, and DeNB were 5, 1, and 3%, respectively, in the mixed liquor suspended solids (MLSS), and these percentages were 18, 5, and 2%, respectively, in the biofilm density (BD) attached to carriers. The pure MBBR-MBR had a high efficiency of total nitrogen (TN) removal of 71.81±16.04%, which could reside in the different bacterial assemblages in the fixed biofilm on the carriers. In this regard, the kinetic parameters for autotrophic biomass had values of YA=2.3465 mg O2 mg N(-1), μm, A=0.7169 h(-1), and KNH=2.0748 mg NL(-1). PMID:26264139

  10. Molecular analysis of benthic biofilms from acidic coal mine drainage, Pennsylvania, USA

    Mills, D. B.; Jones, D. S.; Burgos, W. D.; Macalady, J. L.

    2010-12-01

    Acid mine drainage (AMD) is a common environmental problem in Pennsylvania that results from the oxidation of sulfide minerals exposed at abandoned coal mines. In these systems, acidophilic microorganisms catalyze the oxidation of ferrous (Fe2+) to ferric iron (Fe3+), which precipitates as iron-hydroxide minerals. To develop and improve low-pH bioremediation strategies, characterization of the microbiology of AMD systems is essential. An acidic (pH 2-4) AMD spring known as ‘Lower Red Eyes’ in Gallitzan State Forest, PA, is fed by anoxic groundwater with ferrous iron concentrations above 550 mg/L. More than half of the total iron is removed after the springwater flows downstream over 80 m of stagnant pools and iron-oxide terraces. We used fluorescence in situ hybridization (FISH) and 16S rDNA cloning to characterize the microbial communities from orange sediments and green benthic biofilms. 16S rDNA sequences were extracted from a green biofilm found in a pH 3.5 pool 10 m downstream of the emergence. Based on chloroplast 16S rDNA sequences and morphological characteristics, we found that Euglena mutabilis was the dominant eukaryotic organism from this location. Euglena mutabilis is a photosynthetic protozoan common in acidic and heavy metal affected environments, and likely contributes to the precipitation of iron oxides through the production of molecular oxygen. Bacterial 16S rDNA sequences were cloned from iron-oxide sediments with orange cauliflower morphology 27 m downstream from the spring emergence. More than 60% of bacterial sequences retrieved from the orange sediment sample are related to the iron-oxidizing Betaproteobacterium Ferrovum myxofaciens. Other bacterial sequences include relatives of iron-oxidizing genera in the Gammaproteobacteria, Betaproteobacteria, and Actinobacteria. FISH analyses show that Betaproteobacteria-dominated communities are associated with Euglena in multiple upstream locations where pH is above 3.0. Using light microscopy

  11. Actinomyces naeslundii in intial dental biofilm formation

    Dige, Irene; Raarup, Merete Krog; Nyengaard, Jens Randel;

    2009-01-01

    Combined use of Confocal Laser Scanning Microscopy (CLSM) and Fluorescent in situ Hybridization (FISH) offers new opportunities for analysing the spatial relationships and temporal changes of specific members of microbial populations in intact dental biofilms. AIMS: The purpose of this study was ...... colonization in the inner part of the biofilm may have important ecological consequences. This study was supported by Aarhus University Research Foundation, The Swedish Patent Revenue Fund for Research in Preventive Odontology, and The Danish Dental Association....

  12. Biofilm mediated decontamination of pollutants from the environment

    Arindam Mitra

    2016-01-01

    Full Text Available In this review, we highlight beneficial use of microbial biofilms in remediation of environmental pollutants by bioremediation. Bioremediation is an environment friendly, cost effective, sustainable technology that utilizes microbes to decontaminate and degrade a wide variety of pollutants into less harmful products. Relative to free-floating planktonic cells, microbes existing in biofilm mode are advantageous for bioremediation because of greater tolerance to pollutants, environmental stress and ability to degrade varied harsh pollutants via diverse catabolic pathways. In biofilm mode, microbes are immobilized in a self-synthesized matrix which offers protection from stress, contaminants and predatory protozoa. Contaminants ranging from heavy metals, petroleum, explosives, pesticides have been remediated using microbial consortia of biofilms. In the industry, biofilm based bioremediation is used to decontaminate polluted soil and groundwater. Here we discuss conventional and newer strategies utilizing biofilms in environmental remediation.

  13. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    Ling, Fangqiong; Liu, Wen-Tso

    2012-01-01

    This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, ...

  14. The role of biofilms in onychomycosis.

    Gupta, Aditya K; Daigle, Deanne; Carviel, Jessie L

    2016-06-01

    Onychomycosis is a fungal infection of nails primarily caused by dermatophyte fungi. Fungi are traditionally understood as existing in the environment as planktonic organisms; however, recent advancements in microbiology suggest that fungi form biofilms-complex sessile microbial communities irreversibly attached to epithelial surfaces by means of an extracellular matrix. The extracellular matrix also acts as a protective barrier to the organisms within the biofilm. The biofilm is surprisingly resistant to injury and may act as a persistent source of infection possibly accounting for antifungal resistance in onychomycosis. PMID:27012826

  15. Microbial Community Structure during Nitrate and Perchlorate Reduction in Ion-exchange Brine Using the Hydrogen-based membrane Biofilm Reactor (MBIR)

    Detoxification of perchlorate by microbial communities under denitrifying conditions has been recently reported, although the identity of the mixed populations involved in perchlorate reduction is not well understood. In order to address this, the bacterial diversity of membrane ...

  16. Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces.

    Bellenberg, Sören; Díaz, Mauricio; Noël, Nanni; Sand, Wolfgang; Poetsch, Ansgar; Guiliani, Nicolas; Vera, Mario

    2014-11-01

    Bioleaching of metal sulfides is an interfacial process where biofilm formation is considered to be important in the initial steps of this process. Among the factors regulating biofilm formation, molecular cell-to-cell communication such as quorum sensing is involved. A functional LuxIR-type I quorum sensing system is present in Acidithiobacillus ferrooxidans. However, cell-to-cell communication among different species of acidophilic mineral-oxidizing bacteria has not been studied in detail. These aspects were the scope of this study with emphasis on the effects exerted by the external addition of mixtures of synthetic N-acyl-homoserine-lactones on pure and binary cultures. Results revealed that some mixtures had inhibitory effects on pyrite leaching. Some of them correlated with changes in biofilm formation patterns on pyrite coupons. We also provide evidence that A. thiooxidans and Acidiferrobacter spp. produce N-acyl-homoserine-lactones. In addition, the observation that A. thiooxidans cells attached more readily to pyrite pre-colonized by living iron-oxidizing acidophiles than to heat-inactivated or biofilm-free pyrite grains suggests that other interactions also occur. Our experiments show that pre-cultivation conditions influence A. ferrooxidans attachment to pre-colonized pyrite surfaces. The understanding of cell-to-cell communication may consequently be used to develop attempts to influence biomining/bioremediation processes. PMID:25172572

  17. Effects of photodynamic therapy on Enterococcus faecalis biofilms

    López-Jiménez, L.; Fusté, E.; Martínez-Garriga, B.; Arnabat-Domínguez, J.; Vinuesa, T.; Viñas, M

    2015-01-01

    Microbial biofilms are involved in almost all infectious pathologies of the oral cavity. This has led to the search for novel therapies specifically aimed at biofilm elimination. In this study, we used atomic force microscopy (AFM) to visualize injuries and to determine surface roughness, as well as confocal laser scanning microscopy (CLSM) to enumerate live and dead bacterial cells, to determine the effects of photodynamic therapy (PDT) on Enterococcus faecalis biofilms. The AFM images showe...

  18. Raman microspectroscopy for species identification and mapping within bacterial biofilms

    Beier, Brooke D; Quivey, Robert G.; Berger, Andrew J.

    2012-01-01

    A new method of mapping multiple species of oral bacteria in intact biofilms has been developed, using the optical technique of confocal Raman microscopy. A species classification algorithm, developed on dried biofilms, was used to analyze spectra of hydrated biofilms containing two microbial species central to dental health: Streptococcus sanguinis and Streptococcus mutans. The algorithm transferred successfully to the hydrated environment, correctly identifying the species of origin of sing...

  19. Influence of biofilm thickness on micropollutants removal in nitrifying MBBRs

    Torresi, Elena; Andersen, Henrik Rasmus; Smets, Barth F.;

    The removal of pharmaceuticals was investigated in nitrifying Moving Bed Biofilm Reactors (MBBRs) containing carriers with different biofilm thicknesses. The biofilm with the thinnest thickness was found to have the highest nitrification and biotransformation rate for some key pharmaceuticals. Mi....... Microbial analysis revealed a different relative abundance of nitrifying guilds in the different carriers, suggesting the importance of nitrite oxidizing bacteria in removal of micropollutants....

  20. Seasonal dynamics of bacterial biofilms on the kelp Laminaria hyperborea

    Bengtsson, Mia M.; Sjøtun, Kjersti; Øvreås, Lise

    2010-01-01

    Seasonal variations of the cell density and bacterial community composition in biofilms growing on the surface of the kelp Laminaria hyperborea from 2 sites on the southwestern coast of Norway were investigated using total cell enumeration and denaturing gradient gel electrophoresis (DGGE) fingerprinting. The major taxonomical groups of bacteria inhabiting the biofilms were identified by DGGE band sequence classification. The microbial cell density of the biofilm appeared to be ...

  1. Dispersal of Biofilms by Secreted, Matrix Degrading, Bacterial DNase

    Nijland, Reindert; Hall, Michael J; Burgess, J. Grant

    2010-01-01

    Microbial biofilms are composed of a hydrated matrix of biopolymers including polypeptides, polysaccharides and nucleic acids and act as a protective barrier and microenvironment for the inhabiting microbes. While studying marine biofilms, we observed that supernatant produced by a marine isolate of Bacillus licheniformis was capable of dispersing bacterial biofilms. We investigated the source of this activity and identified the active compound as an extracellular DNase (NucB). We have shown ...

  2. Protocols to Study the Physiology of Oral Biofilms

    Lemos, José A.; Abranches, Jacqueline; Koo, Hyun; Marquis, Robert E.; Burne, Robert A.

    2010-01-01

    The oral cavity harbors several hundred different bacterial species that colonize both hard (teeth) and soft tissues, forming complex populations known as microbial biofilms. It is widely accepted that the phenotypic characteristics of bacteria grown in biofilms are substantially different from those grown in suspensions. Because biofilms are the natural habitat for the great majority of oral bacteria, including those contributing to oral diseases, a better understanding of the physiology of ...

  3. Ultrastructure of Biofilms Formed by Bacteria from Industrial Processes

    Raulio, Mari

    2010-01-01

    Microorganisms exist predominantly as sessile multispecies communities in natural habitats. Most bacterial species can form these matrix-enclosed microbial communities called biofilms. Biofilms occur in a wide range of environments, on every surface with sufficient moisture and nutrients, also on surfaces in industrial settings and engineered water systems. This unwanted biofilm formation on equipment surfaces is called biofouling. Biofouling can significantly decrease equipment performance a...

  4. Biofilm research using calorimetry - a marriage made in heaven

    Buchholz, Friederike; Harms, Hauke; Maskow, Thomas

    2010-01-01

    Abstract Bacteria growing surface-associated, so-called biofilms, play an important role in technical processes like waste water treatment, bioremediation, or bioprocessing. On the contrary, problems arise when biofilm growth results in e.g. clogged pipes, microbially influenced corrosion or pathogenic contamination, undesired processes that may cause huge financial losses. For observation purposes and to develop efficient control strategies, real time monitoring tools for biofilms...

  5. Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal

    Gjermansen, Morten; Ragas, Paula Cornelia; Tolker-Nielsen, Tim

    2006-01-01

    Microbial biofilm formation often causes problems in medical and industrial settings, and knowledge about the factors that are involved in biofilm development and dispersion is useful for creating strategies to control the processes. In this report, we present evidence that proteins with GGDEF an...... regulating the transition of bacteria between a roaming lifestyle and a sessile biofilm lifestyle....

  6. Impact of nutrient composition on a degradative biofilm community

    Møller, Søren; Korber, Darren R.; Wolfaardt, Gideon M.;

    1997-01-01

    A microbial community was cultivated in flow cells with 2,4,6-trichlorobenzoic acid (2,4,6-TCB) as sole carbon and energy source and was examined with scanning confocal laser microscopy and fluorescent molecular probes. The biofilm community which developed under these conditions exhibited a...... physicochemistry of degradative biofilm communities....

  7. Metagenomic and metaproteomic analyses of Accumulibacter phosphatis-enriched floccular and granular biofilm.

    Barr, Jeremy J; Dutilh, Bas E; Skennerton, Connor T; Fukushima, Toshikazu; Hastie, Marcus L; Gorman, Jeffrey J; Tyson, Gene W; Bond, Philip L

    2016-01-01

    Biofilms are ubiquitous in nature, forming diverse adherent microbial communities that perform a plethora of functions. Here we operated two laboratory-scale sequencing batch reactors enriched with Candidatus Accumulibacter phosphatis (Accumulibacter) performing enhanced biological phosphorus removal. Reactors formed two distinct biofilms, one floccular biofilm, consisting of small, loose, microbial aggregates, and one granular biofilm, forming larger, dense, spherical aggregates. Using metagenomic and metaproteomic methods, we investigated the proteomic differences between these two biofilm communities, identifying a total of 2022 unique proteins. To understand biofilm differences, we compared protein abundances that were statistically enriched in both biofilm states. Floccular biofilms were enriched with pathogenic secretion systems suggesting a highly competitive microbial community. Comparatively, granular biofilms revealed a high-stress environment with evidence of nutrient starvation, phage predation pressure, and increased extracellular polymeric substance and cell lysis. Granular biofilms were enriched in outer membrane transport proteins to scavenge the extracellular milieu for amino acids and other metabolites, likely released through cell lysis, to supplement metabolic pathways. This study provides the first detailed proteomic comparison between Accumulibacter-enriched floccular and granular biofilm communities, proposes a conceptual model for the granule biofilm, and offers novel insights into granule biofilm formation and stability. PMID:26279094

  8. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces

    Bagge, Dorthe; Hjelm, M.; Johansen, C.;

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended...

  9. A limited legacy effect of copper in marine biofilms.

    McElroy, David J; Doblin, Martina A; Murphy, Richard J; Hochuli, Dieter F; Coleman, Ross A

    2016-08-15

    The effects of confounding by temporal factors remains understudied in pollution ecology. For example, there is little understanding of how disturbance history affects the development of assemblages. To begin addressing this gap in knowledge, marine biofilms were subjected to temporally-variable regimes of copper exposure and depuration. It was expected that the physical and biological structure of the biofilms would vary in response to copper regime. Biofilms were examined by inductively coupled plasma optical emission spectrometry, chlorophyll-a fluorescence and field spectrometry and it was found that (1) concentrations of copper were higher in those biofilms exposed to copper, (2) concentrations of copper remain high in biofilms after the source of copper is removed, and (3) exposure to and depuration from copper might have comparable effects on the photosynthetic microbial assemblages in biofilms. The persistence of copper in biofilms after depuration reinforces the need for consideration of temporal factors in ecology. PMID:27297593

  10. Microscale Confinement features in microfluidic devices can affect biofilm

    Kumar, Aloke [ORNL; Karig, David K [ORNL; Neethirajan, Suresh [University of Guelph; Acharya, Rajesh K [ORNL; Mukherjee, Partha P [ORNL; Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL

    2013-01-01

    Biofilms are aggregations of microbes that are encased by extra-cellular polymeric substances (EPS) and adhere to surfaces and interfaces. Biofilm development on abiotic surfaces is a dynamic process, which typically proceeds through an initial phase of adhesion of plankntonic microbes to the substrate, followed by events such as growth, maturation and EPS secretion. However, the coupling of hydrodynamics, microbial adhesion and biofilm growth remain poorly understood. Here, we investigate the effect of semiconfined features on biofilm formation. Using a microfluidic device and fluorescent time-lapse microscopy, we establish that confinement features can significantly affect biofilm formation. Biofilm dynamics change not only as a function of confinement features, but also of the total fluid flow rate, and our combination of experimental results and numerical simulations reveal insights into the link between hydrodynamics and biofilm formation.

  11. A Description of an Acidophilic, Iron Reducer, Geobacter sp. FeAm09 Isolated from Tropical Soils

    Healy, O.; Souchek, J.; Heithoff, A.; LaMere, B.; Pan, D.; Hollis, G.; Yang, W. H.; Silver, W. L.; Weber, K. A.

    2014-12-01

    Iron (Fe) is the fourth most abundant element in the Earth's crust and plays a significant role controlling the geochemistry in soils, sediments, and aquatic systems. As part of a study to understand microbially-catalysed iron biogeochemical cycling in tropical soils, an iron reducing isolate, strain FeAm09, was obtained. Strain FeAm09 was isolated from acidic, Fe-rich soils collected from a tropical forest (Luquillo Experimental Forest, Puerto Rico). Strain FeAm09 is a rod-shaped, motile, Gram-negative bacterium. Taxonomic analysis of the near complete 16S rRNA gene sequence revealed that strain FeAm09 is 94.7% similar to Geobacter lovleyi, placing it in the genus Geobacter within the Family Geobacteraceae in the Deltaproteobacteria. Characterization of the optimal growth conditions revealed that strain FeAm09 is a moderate acidophile with an optimal growth pH of 5.0. The optimal growth temperature was 37°C. Growth of FeAm09 was coupled to the reduction of soluble Fe(III), Fe(III)-NTA, with H2, fumarate, ethanol, and various organic acids and sugars serving as the electron donor. Insoluble Fe(III), in the form of synthetic ferrihydrite, was reduced by strain FeAm09 using acetate or H2 as the electron donor. The use of H2 as an electron donor in the presence of CO2 and absence of organic carbon and assimilation of 14C-labelled CO2 into biomass indicate that strain FeAm09 is an autotrophic Fe(III)-reducing bacterium. Together, these data describe the first acidophilic, autotrophic Geobacter species. Iron reducing bacteria were previously shown to be as abundant in tropical soils as in saturated sediments (lake-bottoms) and saturated soils (wetlands) where Fe(III) reduction is more commonly recognized as a dominant mode of microbial respiration. Furthermore, Fe(III) reduction was identified as a primary driver of carbon mineralization in these tropical soils (Dubinsky et al. 2010). In addition to mineralizing organic carbon, Geobacter sp. FeAm09 is likely to also

  12. A soil-based microbial biofilm exposed to 2,4-D: bacterial community development and establishment of conjugative plasmid pJP4

    Aspray, T.J.; Hansen, Susse Kirkelund; Burns, R.G.

    2005-01-01

    of the genera Pseudomonas, Burkholderia, Collimonas and Rhodococcus. A 2,4-D degrading donor strain, Pseudomonas putida SM 1443 (pJP4::gfp), was inoculated into flow cell chambers containing 2-day old biofilm communities. Transfer of pJP4::gfp from the donor to the bacterial community was detectable as GFP...... fluorescing cells and images were captured using confocal scanning laser microscopy (GFP fluorescence was repressed in the donor due to the presence of a chromosomally located lacl(q) repressor gene). Approximately 5-10 transconjugant microcolonies, 20-40 mu m in diameter, could be seen to develop in each...

  13. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    Marchetti Leonardo

    2006-04-01

    Full Text Available Abstract Background Olive mill wastewater (OMW is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter

  14. Ureolytic Biomineralization Reduces Proteus mirabilis Biofilm Susceptibility to Ciprofloxacin.

    Li, Xiaobao; Lu, Nanxi; Brady, Hannah R; Packman, Aaron I

    2016-05-01

    Ureolytic biomineralization induced by urease-producing bacteria, particularly Proteus mirabilis, is responsible for the formation of urinary tract calculi and the encrustation of indwelling urinary catheters. Such microbial biofilms are challenging to eradicate and contribute to the persistence of catheter-associated urinary tract infections, but the mechanisms responsible for this recalcitrance remain obscure. In this study, we characterized the susceptibility of wild-type (ure+) and urease-negative (ure-) P. mirabilis biofilms to killing by ciprofloxacin. Ure+ biofilms produced fine biomineral precipitates that were homogeneously distributed within the biofilm biomass in artificial urine, while ure- biofilms did not produce biomineral deposits under identical growth conditions. Following exposure to ciprofloxacin, ure+ biofilms showed greater survival (less killing) than ure- biofilms, indicating that biomineralization protected biofilm-resident cells against the antimicrobial. To evaluate the mechanism responsible for this recalcitrance, we observed and quantified the transport of Cy5-conjugated ciprofloxacin into the biofilm by video confocal microscopy. These observations revealed that the reduced susceptibility of ure+ biofilms resulted from hindered delivery of ciprofloxacin into biomineralized regions of the biofilm. Further, biomineralization enhanced retention of viable cells on the surface following antimicrobial exposure. These findings together show that ureolytic biomineralization induced by P. mirabilis metabolism strongly regulates antimicrobial susceptibility by reducing internal solute transport and increasing biofilm stability. PMID:26953206

  15. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    E. S. Vorobey

    2012-03-01

    Full Text Available Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molecules of the Quorum sensing system. Coordination of bacterial cells activity in the biofilms gives them significant advantages: in the biofilms bacteria are protected from the influence of the host protective factors and the antibacterial drugs.

  16. Biofilm-based central line-associated bloodstream infections.

    Yousif, Ammar; Jamal, Mohamed A; Raad, Issam

    2015-01-01

    Different types of central venous catheters (CVCs) have been used in clinical practice to improve the quality of life of chronically and critically ill patients. Unfortunately, indwelling devices are usually associated with microbial biofilms and eventually lead to catheter-related bloodstream infections (CLABSIs).An estimated 250,000-400,000 CLABSIs occur every year in the United States, at a rate of 1.5 per 1,000 CVC days and a mortality rate of 12-25 %. The annual cost of caring for patients with CLABSIs ranges from 296 million to 2.3 billion dollars.Biofilm formation occurs on biotic and abiotic surfaces in the clinical setting. Extensive studies have been conducted to understand biofilm formation, including different biofilm developmental stages, biofilm matrix compositions, quorum-sensing regulated biofilm formation, biofilm dispersal (and its clinical implications), and multi-species biofilms that are relevant to polymicrobial infections.When microbes form a matured biofilm within human hosts through medical devices such as CVCs, the infection becomes resistant to antibiotic treatment and can develop into a chronic condition. For that reason, many techniques have been used to prevent the formation of biofilm by targeting different stages of biofilm maturation. Other methods have been used to diagnose and treat established cases of CLABSI.Catheter removal is the conventional management of catheter associated bacteremia; however, the procedure itself carries a relatively high risk of mechanical complications. Salvaging the catheter can help to minimize these complications.In this article, we provide an overview of microbial biofilm formation; describe the involvement of various genetic determinants, adhesion proteins, organelles, mechanism(s) of biofilm formation, polymicrobial infections, and biofilm-associated infections on indwelling intravascular catheters; and describe the diagnosis, management, and prevention of catheter-related bloodstream infections

  17. Bacterial biofilms. Bacteria Quorum sensing in biofilms

    E. S. Vorobey; O. S. Voronkova; A. I. Vinnikov

    2012-01-01

    Data on biofilms, their structure and properties, peculiarities of formation and interaction between microorganisms in the film are presented. Information on discovery and study of biofilms, importance of biofilms in the medical and clinical microbiology are offered. The data allow to interpret biofilm as a form of existence of human normal microflora. For the exchange of information within the biofilm between the individual cells of the same or different species bacteria use the signal molec...

  18. Monitoring of biofilm formation on different material surfaces of medical devices using hyperspectral imaging method

    Contamination of the inner surface of indwelling (implanted) medical devices by microbial biofilm is a serious problem. Some microbial bacteria such as Escherichia coli form biofilms that lead to potentially life-threatening infections. Other types of medical devices such as bronchoscopes and duod...

  19. Bacterial Lysine Decarboxylase Influences Human Dental Biofilm Lysine Content, Biofilm Accumulation and Sub-Clinical Gingival Inflammation

    Lohinai, Z.; Keremi, B.; Szoko, E.; Tabi, T.; Szabo, C.; Tulassay, Z.; Levine, M.

    2012-01-01

    Background Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study were to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR), and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for a week. Methods Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm and saliva before OHR and in dental biofilm after OHR. Results Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After a week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine post-OHR, unless biofilm lysine exceeded the minimal blood plasma content in which case PI was further increased but GCF exudation was reduced. Conclusions After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Clinical Relevance Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. PMID:22141361

  20. Oral mucosal lesions, microbial changes, and taste disturbances induced by adjuvant chemotherapy in breast cancer patients

    Jensen, Siri Beier; Mouridsen, Henning T.; Bergmann, Olav Jonas;

    2008-01-01

    %) and ulceration (n = 7, 16%). Five patients (11%) were diagnosed with oral candidosis. Scores of dental bacterial plaque and gingival inflammation increased during CT and the oral microbial composition changed towards a more acidophilic flora. Taste disturbances were experienced by 84% (n = 38) of the...

  1. The control of biofilm formation by hydrodynamics of purified water in industrial distribution system

    Florjanič, Maja; Kristl, Julijana

    2015-01-01

    Systems for storage and distribution of purified water at ambient temperature are highly susceptible to microbial contamination. The water flow, microbial content and chemical quality of the purified water in an industrial water system have been simulated in a biofilm annular reactor (BAR) to study the impact of different hydrodynamic conditions on biofilm development. Our results reveal the potential of stagnant purified water at total organic compounds (TOC) below 50 ppb to develop biofilm ...

  2. Isolation of Extracellular Polymeric Substances from Biofilms of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius

    Jachlewski, Silke; Jachlewski, Witold D.; Linne, Uwe; Bräsen, Christopher; Wingender, Jost; Siebers, Bettina

    2015-01-01

    Extracellular polymeric substances (EPS) are the major structural and functional components of microbial biofilms. The aim of this study was to establish a method for EPS isolation from biofilms of the thermoacidophilic archaeon, Sulfolobus acidocaldarius, as a basis for EPS analysis. Biofilms of S. acidocaldarius were cultivated on the surface of gellan gum-solidified Brock medium at 78°C for 4 days. Five EPS extraction methods were compared, including shaking of biofilm suspensions in phosp...

  3. Ratiometric Imaging of Extracellular pH in Bacterial Biofilms with C-SNARF-4

    Schlafer, Sebastian; Garcia, Javier E.; Greve, Matilde; Merete K Raarup; Nyvad, Bente; Dige, Irene

    2014-01-01

    pH in the extracellular matrix of bacterial biofilms is of central importance for microbial metabolism. Biofilms possess a complex three-dimensional architecture characterized by chemically different microenvironments in close proximity. For decades, pH measurements in biofilms have been limited to monitoring bulk pH with electrodes. Although pH microelectrodes with a better spatial resolution have been developed, they do not permit the monitoring of horizontal pH gradients in biofilms in rea...

  4. Putative Role of β-1,3 Glucans in Candida albicans Biofilm Resistance▿

    Nett, Jeniel; Lincoln, Leslie; Marchillo, Karen; Massey, Randall; Holoyda, Kathleen; Hoff, Brian; VanHandel, Michelle; Andes, David

    2006-01-01

    Biofilms are microbial communities, embedded in a polymeric matrix, growing attached to a surface. Nearly all device-associated infections involve growth in the biofilm life style. Biofilm communities have characteristic architecture and distinct phenotypic properties. The most clinically important phenotype involves extraordinary resistance to antimicrobial therapy, making biofilm infections very difficulty to cure without device removal. The current studies examine drug resistance in Candid...

  5. Community Structure and Activity Dynamics of Nitrifying Bacteria in a Phosphate-Removing Biofilm

    Gieseke, Armin; Purkhold, Ulrike; Wagner, Michael; Amann, Rudolf; Schramm, Andreas

    2001-01-01

    The microbial community structure and activity dynamics of a phosphate-removing biofilm from a sequencing batch biofilm reactor were investigated with special focus on the nitrifying community. O2, NO2−, and NO3− profiles in the biofilm were measured with microsensors at various times during the nonaerated-aerated reactor cycle. In the aeration period, nitrification was oxygen limited and restricted to the first 200 μm at the biofilm surface. Additionally, a delayed onset of nitrification aft...

  6. Inhibitory effects of Tamarix hispida extracts on planktonic form and biofilm formation of six pathogenic bacteria

    Zianab Mohsenipour; Mehdi Hassanshahian

    2015-01-01

     Introduction: Biofilms are communities of microorganisms embedded in a self-produced extracellular polymeric matrix. Bacterial cells are protected from antimicrobial agents in biofilm structure. Biofilms formation cause many problems in industry, medicine and microbial drug resistance; thus it is essential to find new techniques for removing and inhibiting biofilms. This study aimed to examine the antimicrobial effect of Tamarix hispida alcoholic extracts against six path...

  7. Pronounced Effect of the Nature of the Inoculum on Biofilm Development in Flow Systems▿

    Kroukamp, Otini; Dumitrache, Romeo G.; Wolfaardt, Gideon M

    2010-01-01

    Biofilm formation renders sessile microbial populations growing in continuous-flow systems less susceptible to variation in dilution rate than planktonic cells, where dilution rates exceeding an organism's maximum growth rate (μmax) results in planktonic cell washout. In biofilm-dominated systems, the biofilm's overall μmax may therefore be more relevant than the organism's μmax, where the biofilm μmax is considered as a net process dependent on the adsorption rate, growth rate, and removal r...

  8. Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates

    Karcher Patrick; Ezeji Thaddeus C; Annous Bassam A; Qureshi Nasib; Maddox Ian S

    2005-01-01

    Abstract This article describes the use of biofilm reactors for the production of various chemicals by fermentation and wastewater treatment. Biofilm formation is a natural process where microbial cells attach to the support (adsorbent) or form flocs/aggregates (also called granules) without use of chemicals and form thick layers of cells known as "biofilms." As a result of biofilm formation, cell densities in the reactor increase and cell concentrations as high as 74 gL-1 can be achieved. Th...

  9. [Hydrocarbon-Oxidizing potential and the genes for n-alkane biodegradation in a new acidophilic mycobacterial association from sulfur blocks].

    Ivanova, I E; Sukhacheva, M V; Kanat'eva, A Yu; Kravchenko, I K; Kurganov, A A

    2014-01-01

    Capacity of AG(S10), a new aerobic acidophilic (growing within the pH range from 1.3 to 4.5 with the optimum at 2.0-2.5) bacterial association from sulfur blocks of the Astrakhan gas-processing complex (AGC), for oxidation of hydrocarbons of various chemical structure was investigated. A broad spectrum of normal (C10-C21) and iso-alkanes, toluene, naphthalene, andphenanthrene, as well as isoprenoids resistant to microbial degradation, pristane and phytane (components of paraffin oil), and 2,2,4,4,6,8,8,-heptamethylnonane, a branched hydrocarbon, were biodegraded under acidic conditions. Microbiological investigation revealed the dominance of mycobacteria in the AGS10 association, which was confirmed by analysis of the 16S rRNA gene clone library. In the phylogenetic tree, the 16S rRNA sequences formed a branch within the cluster of slow-growing mycobacteria, with 98% homology to the closest species Mycobacterium florentinum. Genomic DNA of AG(S10) culture grown on C14-C17 n-alkanes at pH 2.5 was found to contain the genes of two hydroxylase families, alkB and Cyp 153, indicating their combined involvement in hydrocarbon biodegradation. The high hydrocarbon-oxidizing potential of the AGS10 bacterial association, indicated that further search for the genes responsible for degradation of various hydrocarbons in acidophilic mycobacteria could be promising. PMID:25941716

  10. Modified a colony forming unit microbial adherence to hydrocarbons assay and evaluated cell surface hydrophobicity and biofilm production of Vibrio scophthalmi

    Vibrio scophthalmi has been considered as an opportunistic pathogen of the flat fish. There is little information available on V. scophthalmi adhesion to the host, an important step in the initial infection process. The objectives of this study were to (1) develop a modified Microbial Adherence to H...

  11. A novel approach for harnessing biofilm communities in moving bed biofilm reactors for industrial wastewater treatment

    Joe A. Lemire

    2015-10-01

    Full Text Available Moving bed biofilm reactors (MBBRs are an effective biotechnology for treating industrial wastewater. Biomass retention on moving bed biofilm reactor (MBBR carriers (biofilm support materials, allows for the ease-of-operation and high treatment capacity of MBBR systems. Optimization of MBBR systems has largely focused on aspects of carrier design, while little attention has been paid to enhancing strategies for harnessing microbial biomass. Previously, our research group demonstrated that mixed-species biofilms can be harvested from an industrial wastewater inoculum [oil sands process water (OSPW] using the Calgary Biofilm Device (CBD. Moreover, the resultant biofilm communities had the capacity to degrade organic toxins (naphthenic acids—NAs that are found in OSPW. Therefore, we hypothesized that harnessing microbial communities from industrial wastewater, as biofilms, on MBBR carriers may be an effective method to bioremediate industrial wastewater.Here, we detail our methodology adapting the workflow employed for using the CBD, to generate inoculant carriers to seed an MBBR.In this study, OSPW-derived biofilm communities were successfully grown, and their efficacy evaluated, on commercially available MBBR carriers affixed within a modified CBD system. The resultant biofilms demonstrated the capacity to transfer biomass to recipient carriers within a scaled MBBR. Moreover, MBBR systems inoculated in this manner were fully active 2 days post-inoculation, and readily degraded a select population of NAs. Together, these findings suggest that harnessing microbial communities on carriers affixed within a modified CBD system may represent a facile and rapid method for obtaining functional inoculants for use in wastewater MBBR treatment systems.

  12. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms

    Mark eDopson

    2014-04-01

    Full Text Available All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Acidophilic microorganisms have an optimum growth pH < 3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.

  13. Study of the effect of essential oil of Salvia glutinosa L. on microbial biofilm formation by clinical isolates of Acinetobacter baumannii

    Tutar, Uǧur

    2016-04-01

    Acinetobacter baumannii is becoming a serious concern in the treatment of infections that can develop resistance to many antibiotics. This persistence may be explained by its capacity to form biofilms. In our study, the essential oil (EO) of the Salvia glutinosa plant, was obtained through the hydrodistillation method. Antimicrobial and antibiofilm activities of the EO on the 20 multi-drug resistant (MDR) A.baumannii isolates were researched. Broth microdilution methods were applied for the determination of the antimicrobial activity. For the determined antibiofilm activity, the Minimal Biofilm Inhibition Concentration (MBIC) test was implemented with the microtiter plate method. Photometric assay was applied for the identification of the antioxidant capacity and colorimetric assay was used to specify the cytotoxicity of the EO of S. glutinosa on L929 cells. In our study, Minimal Inhibition Concentration (MIC) and Minimal Bactericidal Concentration (MBC) values between 1.25-2.5 µl/mL and 5-10 µl/mL respectively. MBIC value of the EO was found as 0.3-2.5 µl/mL. IC50= = 24.4±0.66 µl/mL was found as the antioxidant capacity of the EO. At 25%, 12.5% and 6.25% EO concentrations, no cytotoxicity appeared for the fibroblast cells in terms of the cytotoxic activities (p>0.05). According to the findings obtained in our study, antibiofilm, antimicrobial and antioxidant activities of the S. glutinosa EO seem remarkable. These findings seem promising for the development of potential phytotherapeutic agents in the treatment of the multi-drug resistance (MDR) A.baumannii infections.

  14. A novel planar flow cell for studies of biofilm heterogeneity and flow-biofilm interactions

    Zhang, Wei; Sileika, Tadas S.; Chen, Cheng; Liu, Yang; Lee, Jisun; Packman, Aaron I.

    2012-01-01

    Biofilms are microbial communities growing on surfaces, and are ubiquitous in nature, in bioreactors, and in human infection. Coupling between physical, chemical, and biological processes is known to regulate the development of biofilms; however, current experimental systems do not provide sufficient control of environmental conditions to enable detailed investigations of these complex interactions. We developed a novel planar flow cell that supports biofilm growth under complex two-dimensional fluid flow conditions. This device provides precise control of flow conditions and can be used to create well-defined physical and chemical gradients that significantly affect biofilm heterogeneity. Moreover, the top and bottom of the flow chamber are transparent, so biofilm growth and flow conditions are fully observable using non-invasive confocal microscopy and high-resolution video imaging. To demonstrate the capability of the device, we observed the growth of Pseudomonas aeruginosa biofilms under imposed flow gradients. We found a positive relationship between patterns of fluid velocity and biofilm biomass because of faster microbial growth under conditions of greater local nutrient influx, but this relationship eventually reversed because high hydrodynamic shear leads to the detachment of cells from the surface. These results reveal that flow gradients play a critical role in the development of biofilm communities. By providing new capability for observing biofilm growth, solute and particle transport, and net chemical transformations under user-specified environmental gradients, this new planar flow cell system has broad utility for studies of environmental biotechnology and basic biofilm microbiology, as well as applications in bioreactor design, environmental engineering, biogeochemistry, geomicrobiology, and biomedical research. PMID:21656713

  15. Biofilm Matrix Proteins

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enz...

  16. Delving through electrogenic biofilms: from anodes to cathodes to microbes

    Lucie Semenec

    2015-08-01

    Full Text Available The study of electromicrobiology has grown into its own field over the last decades and involves microbially driven redox reactions at electrodes as part of a microbial electrochemical system (MES. The microorganisms known to use electrodes as either electron acceptors; electricigens, or electron donors; electrotrophs, drive the redox reactions within these systems through extracellular electron transfer (EET processes. These exoelectrogenic microorganisms form biofilms, referred to as electroactive biofilms (EAB, in order to maximize adherence and contact with electrode surfaces and with one another. In this review, we will discuss the key differences between biofilms that utilize the electrode as an electron acceptor or donor, including their mechanisms for electron transfer, structural and functional compositions as well as which species are enriched for in each microenvironment. Lastly, we will discuss the intricacies of interspecies and intraspecies biofilm formation in electrode biofilms and considerations required for future bioengineering efforts.

  17. Redox Conductivity of Current-Producing Mixed Species Biofilms

    Fan, Yanzhen; Liu, Hong

    2016-01-01

    While most biological materials are insulating in nature, efficient extracellular electron transfer is a critical property of biofilms associated with microbial electrochemical systems and several microorganisms are capable of establishing conductive aggregates and biofilms. Though construction of these conductive microbial networks is an intriguing and important phenomenon in both natural and engineered systems, few studies have been published related to conductive biofilms/aggregates and their conduction mechanisms, especially in mixed-species environments. In the present study, current-producing mixed species biofilms exhibited high conductivity across non-conductive gaps. Biofilm growth observed on the inactive electrode contributed to overall power outputs, suggesting that an electrical connection was established throughout the biofilm assembly. Electrochemical gating analysis of the biofilms over a range of potentials (-600–200 mV, vs. Ag/AgCl) resulted in a peak-manner response with maximum conductance of 3437 ± 271 μS at a gate potential of -360 mV. Following removal of the electron donor (acetate), a 96.6% decrease in peak conductivity was observed. Differential responses observed in the absence of an electron donor and over varying potentials suggest a redox driven conductivity mechanism in mixed-species biofilms. These results demonstrated significant differences in biofilm development and conductivity compared to previous studies using pure cultures. PMID:27159497

  18. Redox Conductivity of Current-Producing Mixed Species Biofilms.

    Li, Cheng; Lesnik, Keaton Larson; Fan, Yanzhen; Liu, Hong

    2016-01-01

    While most biological materials are insulating in nature, efficient extracellular electron transfer is a critical property of biofilms associated with microbial electrochemical systems and several microorganisms are capable of establishing conductive aggregates and biofilms. Though construction of these conductive microbial networks is an intriguing and important phenomenon in both natural and engineered systems, few studies have been published related to conductive biofilms/aggregates and their conduction mechanisms, especially in mixed-species environments. In the present study, current-producing mixed species biofilms exhibited high conductivity across non-conductive gaps. Biofilm growth observed on the inactive electrode contributed to overall power outputs, suggesting that an electrical connection was established throughout the biofilm assembly. Electrochemical gating analysis of the biofilms over a range of potentials (-600-200 mV, vs. Ag/AgCl) resulted in a peak-manner response with maximum conductance of 3437 ± 271 μS at a gate potential of -360 mV. Following removal of the electron donor (acetate), a 96.6% decrease in peak conductivity was observed. Differential responses observed in the absence of an electron donor and over varying potentials suggest a redox driven conductivity mechanism in mixed-species biofilms. These results demonstrated significant differences in biofilm development and conductivity compared to previous studies using pure cultures. PMID:27159497

  19. Biofilms and their effect on local chemistry

    Fouling and corrosion are frequently mediated by microorganisms attached to the metal surface and/or embedded in a gelatinous organic matrix termed a biofilm. Biofilms substantially change the local chemistry of the adjacent metal and, thereby, influence corrosion processes. The extent of changes in local chemistry is influenced by the microenvironmental conditions at the metal surface including the number and types of microorganisms present, the dissolved oxygen concentration, the flow velocity, the buffering capacity of the bulk water, and many other factors. Since microbial-influenced corrosion is generally localized, the spatial distribution or patchiness of the microbial activity also affects the corrosion processes. A unified approach to understanding and controlling biofilms and the related corrosion is presented in the context of a case study recently conducted by CCE, Inc. at a nuclear power plant site

  20. Multiple Roles of Biosurfactants in Biofilms.

    Satputea, Surekha K; Banpurkar, Arun G; Banat, Ibrahim M; Sangshetti, Jaiprakash N; Patil, Rajendra H; Gade, Wasudev N

    2016-01-01

    Microbial growth and biofilms formation are a continuous source of contamination on most surfaces with biological, inanimate, natural or man-made. The use of chemical surfactants in daily practice to control growth, presence or adhesion of microorganisms and ultimately the formation of biofilms and biofouling is therefore becoming essential. Synthetic surfactants are, however, not preferred or ideal and biologically derived surface active biosurfactants (BSs) molecules produced mainly by microorganisms are therefore becoming attractive and sought by many industries. The search for innovative and interesting BS molecules that have effective antimicrobial activities and to use as innovative alternatives to chemical surfactants with added antimicrobial value among many other advantages has been ongoing for some time. This review discusses the various roles of BS molecules in association with biofilm formation. Recent updates on several mechanisms involved in biofilm development and control are presented vide this article. PMID:26786675

  1. Biofilms in Infections of the Eye

    Paulo J. M. Bispo

    2015-03-01

    Full Text Available The ability to form biofilms in a variety of environments is a common trait of bacteria, and may represent one of the earliest defenses against predation. Biofilms are multicellular communities usually held together by a polymeric matrix, ranging from capsular material to cell lysate. In a structure that imposes diffusion limits, environmental microgradients arise to which individual bacteria adapt their physiologies, resulting in the gamut of physiological diversity. Additionally, the proximity of cells within the biofilm creates the opportunity for coordinated behaviors through cell–cell communication using diffusible signals, the most well documented being quorum sensing. Biofilms form on abiotic or biotic surfaces, and because of that are associated with a large proportion of human infections. Biofilm formation imposes a limitation on the uses and design of ocular devices, such as intraocular lenses, posterior contact lenses, scleral buckles, conjunctival plugs, lacrimal intubation devices and orbital implants. In the absence of abiotic materials, biofilms have been observed on the capsule, and in the corneal stroma. As the evidence for the involvement of microbial biofilms in many ocular infections has become compelling, developing new strategies to prevent their formation or to eradicate them at the site of infection, has become a priority.

  2. Raman mapping of intact biofilms on stainless steel surfaces

    Nguyen, Julie K.; Heighton, Lynne; Xu, Yunfeng; Nou, Xiangwu; Schmidt, Walter F.

    2016-05-01

    Many issues occur when microbial bacteria contaminates human food or water; it can be dangerous to the public. Determining how the microbial are growing, it can help experts determine how to prevent the outbreaks. Biofilms are a tightly group of microbial cells that grow on living surfaces or surrounding themselves. Though biofilms are not necessarily uniform; when there are more than one type of microbial bacteria that are grown, Raman mapping is performed to determine the growth patterns. Depending on the type of microbial bacteria, they can grow in various patterns such as symmetrical or scattered on the surface. The biofilms need to be intact in order to preclude and potentially figuring out the relative intensity of different components in a biofilm mixture. In addition, it is important to determine whether one biofilms is a substrate for another biofilm to be detected. For example, it is possible if layer B appears above layer A, but layer A doesn't appear above layer B. In this case, three types of biofilms that are grown includes Listeria(L), Ralstonia(R), and a mixture of the two (LR). Since microbe deposits on metal surfaces are quite suitable, biofilms were grown on stainless steel surface slides. Each slide was viewed under a Raman Microscope at 100X and using a 532nm laser to provide great results and sharp peaks. The mapping of the laser helps determine how the bacteria growth, at which intensity the bacteria appeared in order to identify specific microbes to signature markers on biofilms.

  3. Uranium Immobilization by Sulfate-reducing Biofilms

    Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI) was continuously fed into the reactor for 32 weeks at a concentration of 126 ?M. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite

  4. A proton shelter inspired by the sugar coating of acidophilic archaea

    Xiumei Wang; Bei’er Lv; Guixin Cai; Long Fu; Yuanzi Wu; Xiang Wang; Bin Ren; Hongwei Ma

    2012-01-01

    The acidophilic archaeons are a group of single-celled microorganisms that flourish in hot acid springs (usually pH < 3) but maintain their internal pH near neutral. Although there is a lack of direct evidence, the abundance of sugar modifications on the cell surface has been suggested to provide the acidophiles with protection against proton invasion. In this study, a hydroxyl (OH)-rich polymer brush layer was prepared to mimic the OH-rich sugar coating. Using a novel pH-sensitive dithioacet...

  5. Mechanism and risk factors of oral biofilm formation

    Ewa Pasich

    2013-08-01

    Full Text Available Recent microbiological investigations completely changed our understanding of the role of biofilm in the formation of the mucosal immune barrier and in pathogenesis of chronic inflammation of bacterial etiology. It is now clear that formation of bacterial biofilm on dental surfaces is characteristic for existence of oral microbial communities. It has also been proved that uncontrolled biofilms on dental tissues, as well as on different biomaterials (e.g. orthodontic appliances, are the main cause of dental diseases such as dental caries and periodontitis.The aim of this paper is to explain mechanisms and consequences of orthodontic biofilm formation. We will discuss current opinions on the influence of different biomaterials employed for orthodontic treatment in biofilm formation and new strategies employed in prevention and elimination of oral biofilm (“dental plaque”.

  6. Novel strategies against Candida biofilms: interest of synthetic compounds.

    Girardot, Marion; Imbert, Christine

    2016-01-01

    A biofilm is a consortium of microbial cells that are attached to a substratum or an interface. It should be considered a reservoir that may induce serious infections. Indeed, Candidaspp. biofilms may be involved in the persistence or worsening of some chronic inflammatory diseases as well as in systemic infections, which may lead to high morbidity and mortality rates. New strategies are currently being explored, utilizing several synthetic compounds to prevent or fight these Candida biofilms. This article focuses on active synthetic compounds classified with regards to their modes of action: inhibition of early adherence phase, inhibition or control of biofilm maturation and finally elimination of already formed biofilms. Some of them show promise in fighting biofilm. PMID:26673571

  7. The effects of silver nanoparticles on intact wastewater biofilms

    Zhiya eSheng

    2015-07-01

    Full Text Available Silver nanoparticles (Ag-NPs have strong antibacterial properties, which may adversely affect biological wastewater treatment processes. To determine the overall effect, intact biofilm samples were collected from the rotating biological contactor (RBC at the local wastewater treatment plant and treated with 200 mg Ag/L Ag-NPs for 24 h. The biofilm uptake of Ag-NPs was monitored with transmission electron microscopy (TEM. Forty-five min after Ag-NP application, Ag-NPs were seen in the biofilm extracellular polymeric substances (EPS. After 24 h, Ag-NPs had entered certain microbial cells, while other cells contained no observable Ag-NPs. Some cells were dying after the uptake of Ag-NPs. However, there was no significant reduction in cultivable bacteria in the biofilms, based on heterotrophic plate counts (HPC. While this may indicate that wastewater biofilms are highly resistant to Ag-NPs, the HPC represents only a small portion of the total microbial population. To further investigate the effects of Ag-NPs, a GeoChip microarray was used to directly detect changes in the functional gene structure of the microbial community in the biofilm. A clear decrease (34.6% decrease in gene number in gene diversity was evident in the GeoChip analysis. However, the complete loss of any specific gene was rare. Some gene families present in both treated and untreated biofilms. However, this doesn’t necessarily mean that there was no change in these families. Signal intensity decreased in certain variants in each family while other variants increased to compensate the effects of Ag-NPs. The results indicate that Ag-NP treatment decreased microbial community diversity but did not significantly affect the microbial community function. This provides direct evidence for the functional redundancy of microbial community in engineered ecosystems such as wastewater biofilms.

  8. Influence of culture conditions on Escherichia coli O157:H7 biofilm formation by atomic force microscopy

    Biofilms are complex microbial communities that are resistant against attacks by bacteriophages and removal by drugs and chemicals. In this study, biofilms of Escherichia coli O157:H7, a bacterial pathogen, were investigated using atomic force microscopy (AFM) in terms of the dynamic transition of morphology and surface properties of bacterial cells over the development of biofilms. The physical and topographical properties of biofilms are different, depending on nutrient availability. Compared to biofilms formed in a high nutrient medium, biofilms form faster and a higher number of bacterial cells were recovered on glass surface in a low nutrient medium. We demonstrate that AFM can obtain high-resolution images and the elastic information about biofilms. As E. coli biofilm becomes mature, the magnitude of the force between a tip and the surface of the biofilm gets stronger, suggesting that extracellular polymeric substances (EPSs), sticky components of biofilms, accumulate over the surface of cells upon the initial attachment of bacterial cells to surfaces

  9. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    Ling, Fangqiong

    2013-01-01

    This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, the biofilms were subjected to chloramination for 8 more weeks at concentrations of 7.5±1.4 to 9.1±0.4 mg Cl2 L-1. Control reactors received no disinfection during the development of biofilms. Confocal laser scanning microscopy and image analysis indicated that chloramination could lead to 81.4-83.5% and 86.3-95.6% reduction in biofilm biomass and thickness, respectively, but could not eliminate biofilm growth. 16S rRNA gene terminal restriction fragment length polymorphism analysis indicated that microbial community structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant populations, whereas natural development leads to the selection of members of Nitrospira and Bacteroidetes as dominant biofilm populations. Overall, chloramination treatment could alter the growth of multi-species biofilms on the PVC surface, shape the biofilm architecture, and select a certain microbial community that can survive or proliferate under chloramination.

  10. Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection

    Ma, Hongyan; Bryers, James D.

    2012-01-01

    Biofilms cause much of all human microbial infections. Attempts to eradicate biofilm-based infections rely on disinfectants and antibiotics. Unfortunately, biofilm bacteria are significantly less responsive to antibiotic stressors than their planktonic counterparts. Sublethal doses of antibiotics can actually enhance biofilm formation. Here, we have developed a non-invasive microscopic image analyses to quantify plasmid conjugation within a developing biofilm. Corroborating destructive sample...

  11. STABILITY AND CHANGE IN ESTUARINE BIOFILM BACTERIAL COMMUNITY DIVERSITY

    Biofilms develop on all surfaces in aquatic environments and are defined as matrix-enclosed microbial populations adherent to each other and/or surfaces (1, 31). A substantial part of the microbial activity in nature is associated with surfaces (12). Surface association (biofou...

  12. Development of Spatial Distribution Patterns by Biofilm Cells

    Haagensen, Janus Anders Juul; Hansen, Susse Kirkelund; Bak Christensen, Bjarke;

    2015-01-01

    Confined spatial patterns of microbial distribution are prevalent in nature, such as in microbial mats, soil communities, and water stream biofilms. The symbiotic two-species consortium of Pseudomonas putida and Acinetobacter sp. C6, originally isolated from a creosote-polluted aquifer, has evolved......, as well as the ecology of engineered communities that have the potential for enhanced and sustainable bioprocessing capacity....

  13. Anti-Biofilm Compounds Derived from Marine Sponges

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  14. Kinetic modeling and microbial assessment by fluorescent in situ hybridization in anaerobic sequencing batch biofilm reactors treating sulfate-rich wastewater

    A. J. Silva

    2011-06-01

    Full Text Available This paper reports the results of applying anaerobic sequencing batch biofilm reactors (AnSBBR for treating sulfate-rich wastewater. The reactor was filled with polyurethane foam matrices or with eucalyptus charcoal, used as the support for biomass attachment. Synthetic wastewater was prepared with two ratios between chemical oxygen demand (COD and sulfate concentration (COD/SO4(2- of 0.4 and 3.2. For a COD/SO4(2- ratio of 3.2, the AnSBBR performance was influenced by the support material used; the average levels of organic matter removal were 67% and 81% in the reactors filled with polyurethane foam and charcoal, respectively, and both support materials were associated with similar levels of sulfate reduction (above 90%. In both reactors, sulfate-reducing bacteria (SRB represented more than 65% of the bacterial community. The kinetic model indicated equilibrium between complete- and incomplete-oxidizing SRB in the reactor filled with polyurethane foam and predominantly incomplete-oxidizing SRB in the reactor filled with charcoal. Methanogenic activity seems to have been the determining factor to explain the better performance of the reactor filled with charcoal to remove organic matter at a COD/SO4(2- ratio of 3.2. For a COD/SO4(2- ratio of 0.4, low values of sulfate reduction (around 32% and low reaction rates were observed as a result of the small SRB population (about 20% of the bacterial community. Although the support material did not affect overall performance for this condition, different degradation pathways were observed; incomplete oxidation of organic matter by SRB was the main kinetic pathway and methanogenesis was negligible in both reactors.

  15. Implications of Biofilm Formation on Urological Devices

    Cadieux, Peter A.; Wignall, Geoffrey R.; Carriveau, Rupp; Denstedt, John D.

    2008-09-01

    Despite millions of dollars and several decades of research targeted at their prevention and eradication, biofilm-associated infections remain the major cause of urological device failure. Numerous strategies have been aimed at improving device design, biomaterial composition, surface properties and drug delivery, but have been largely circumvented by microbes and their plethora of attachment, host evasion, antimicrobial resistance, and dissemination strategies. This is not entirely surprising since natural biofilm formation has been going on for millions of years and remains a major part of microorganism survival and evolution. Thus, the fact that biofilms develop on and in the biomaterials and tissues of humans is really an extension of this natural tendency and greatly explains why they are so difficult for us to combat. Firstly, biofilm structure and composition inherently provide a protective environment for microorganisms, shielding them from the shear stress of urine flow, immune cell attack and some antimicrobials. Secondly, many biofilm organisms enter a metabolically dormant state that renders them tolerant to those antibiotics and host factors able to penetrate the biofilm matrix. Lastly, the majority of organisms that cause biofilm-associated urinary tract infections originate from our own oral cavity, skin, gastrointestinal and urogenital tracts and therefore have already adapted to many of our host defenses. Ultimately, while biofilms continue to hold an advantage with respect to recurrent infections and biomaterial usage within the urinary tract, significant progress has been made in understanding these dynamic microbial communities and novel approaches offer promise for their prevention and eradication. These include novel device designs, antimicrobials, anti-adhesive coatings, biodegradable polymers and biofilm-disrupting compounds and therapies.

  16. The Biofilm Challenge

    Alhede, Maria; Alhede, Morten

    2014-01-01

    The concept of biofilms has emerged in the clinical setting during the last decade. Infections involving biofilms have been documented in all parts of the human body, and it is currently believed that the presence of biofilm-forming bacteria is equivalent to chronic infection. A quick Pubmed search...... reveals the significance of biofilms, as evidenced by a dramatic increase in scientific publications on the topic, as well as in publications concerning wounds with biofilms, which reached 600 publications in 2013. Judged from the number of publications, it appears that biofilms play a significant role in...... wounds. However, the impact of biofilms is often debated, because infected wounds were also treated before the concept of biofilms was coined. In this short review, we will address the significance of biofilms and their role in wounds, and discuss the future tasks of the biofilm challenge....

  17. Conservation of acquired morphology and community structure in aged biofilms after facing environmental stress.

    Saur, T; Escudié, R; Santa-Catalina, G; Bernet, N; Milferstedt, K

    2016-01-01

    The influence of growth history on biofilm morphology and microbial community structure is poorly studied despite its important role for biofilm development. Here, biofilms were exposed to a change in hydrodynamic conditions at different growth stages and we observed how biofilm age affected the change in morphology and bacterial community structure. Biofilms were developed in two bubble column reactors, one operated under constant shear stress and one under variable shear stress. Biofilms were transferred from one reactor to the other at different stages in their development by withdrawing and inserting the support medium from one reactor to the other. The developments of morphology and microbial community structure were followed by image analysis and molecular tools. When transferred early in biofilm development, biofilms adapted to the new hydrodynamic conditions and adopted features of the biofilm already developed in the receiving reactor. Biofilms transferred at a late state of biofilm development continued their initial trajectories of morphology and community development even in a new environment. These biofilms did not immediately adapt to their new environment and kept features acquired during their early growth phase, a property we called memory effect. PMID:26492343

  18. In Situ Biomineralization and Particle Deposition Distinctively Mediate Biofilm Susceptibility to Chlorine.

    Li, Xiaobao; Chopp, David L; Russin, William A; Brannon, Paul T; Parsek, Matthew R; Packman, Aaron I

    2016-05-15

    Microbial biofilms and mineral precipitation commonly co-occur in engineered water systems, such as cooling towers and water purification systems, and both decrease process performance. Microbial biofilms are extremely challenging to control and eradicate. We previously showed that in situ biomineralization and the precipitation and deposition of abiotic particles occur simultaneously in biofilms under oversaturated conditions. Both processes could potentially alter the essential properties of biofilms, including susceptibility to biocides. However, the specific interactions between mineral formation and biofilm processes remain poorly understood. Here we show that the susceptibility of biofilms to chlorination depends specifically on internal transport processes mediated by biomineralization and the accumulation of abiotic mineral deposits. Using injections of the fluorescent tracer Cy5, we show that Pseudomonas aeruginosa biofilms are more permeable to solutes after in situ calcite biomineralization and are less permeable after the deposition of abiotically precipitated calcite particles. We further show that biofilms are more susceptible to chlorine killing after biomineralization and less susceptible after particle deposition. Based on these observations, we found a strong correlation between enhanced solute transport and chlorine killing in biofilms, indicating that biomineralization and particle deposition regulate biofilm susceptibility by altering biocide penetration into the biofilm. The distinct effects of in situ biomineralization and particle deposition on biocide killing highlight the importance of understanding the mechanisms and patterns of biomineralization and scale formation to achieve successful biofilm control. PMID:26944848

  19. The Relationship of Bacterial Biofilms and Capsular Contracture in Breast Implants.

    Ajdic, Dragana; Zoghbi, Yasmina; Gerth, David; Panthaki, Zubin J; Thaller, Seth

    2016-03-01

    Capsular contracture is a common sequelae of implant-based breast augmentation. Despite its prevalence, the etiology of capsular contracture remains controversial. Numerous studies have identified microbial biofilms on various implantable materials, including breast implants. Furthermore, biofilms have been implicated in subclinical infections associated with other surgical implants. In this review, we discuss microbial biofilms as a potential etiology of capsular contracture. The review also outlines the key diagnostic modalities available to identify the possible infectious agents found in biofilm, as well as available preventative and treatment measures. PMID:26843099

  20. Prediction of Biofilm Inhibiting Peptides: An In silico Approach

    Gupta, Sudheer; Sharma, Ashok K.; Jaiswal, Shubham K.; Sharma, Vineet K.

    2016-01-01

    Approximately 75% of microbial infections found in humans are caused by microbial biofilms. These biofilms are resistant to host immune system and most of the currently available antibiotics. Small peptides are extensively studied for their role as anti-microbial peptides, however, only a limited studies have shown their potential as inhibitors of biofilm. Therefore, to develop a unique computational method aimed at the prediction of biofilm inhibiting peptides, the experimentally validated biofilm inhibiting peptides sequences were used to extract sequence based features and to identify unique sequence motifs. Biofilm inhibiting peptides were observed to be abundant in positively charged and aromatic amino acids, and also showed selective abundance of some dipeptides and sequence motifs. These individual sequence based features were utilized to construct Support Vector Machine-based prediction models and additionally by including sequence motifs information, the hybrid models were constructed. Using 10-fold cross validation, the hybrid model displayed the accuracy and Matthews Correlation Coefficient (MCC) of 97.83% and 0.87, respectively. On the validation dataset, the hybrid model showed the accuracy and MCC value of 97.19% and 0.84, respectively. The validated model and other tools developed for the prediction of biofilm inhibiting peptides are available freely as web server at http://metagenomics.iiserb.ac.in/biofin/ and http://metabiosys.iiserb.ac.in/biofin/. PMID:27379078

  1. Environmental factors influenting species composition of acidophilous grasslands patches in agricultural landscape

    Halas, Petr

    2012-01-01

    Roč. 20, č. 1 (2012), s. 16-27. ISSN 1210-8812 Institutional support: RVO:68145535 Keywords : acidophilous grasslands * hemeroby * patch isolation * patch area * regression trees Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geonika.cz/EN/research/ENMgr/MGR_2012_01.pdf

  2. Environmental factors influencing the species composition of acidophilous grassland patches in agricultural lanscapes

    Halas, Petr

    2012-01-01

    Roč. 20, č. 1 (2012), s. 16-27. ISSN 1210-8812 Institutional research plan: CEZ:AV0Z30860518 Keywords : acidophilous grasslands * hemeroby * patch isolation * regression trees * Bohemian-Moravian Highland Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geonika.cz/CZ/CZresearch/CZMgrArchive.html

  3. Modelling of biofilm growth and its influence on CO2 and water (two-phase) flow in porous media

    Ebigbo, Anozie

    2009-01-01

    Bacterial biofilms are groups of microbial cells attached to surfaces and to each other. Cells in a biofilm are protected from adverse external conditions. In natural environments, this attached mode of growth is more successful than the suspended mode, and a major portion of microbial activity takes place at surfaces. In porous media, biofilms are used as bioreactors (e.g, in wastewater treatment) and as biobarriers (e.g., in enhanced oil recovery). They are also used in the containment and ...

  4. Biofilm Formation and Dispersal under the Influence of the Global Regulator CsrA of Escherichia coli

    Jackson, Debra W.; Suzuki, Kazushi; Oakford, Lawrence; Simecka, Jerry W.; Hart, Mark E.; Romeo, Tony

    2002-01-01

    The predominant mode of growth of bacteria in the environment is within sessile, matrix-enclosed communities known as biofilms. Biofilms often complicate chronic and difficult-to-treat infections by protecting bacteria from the immune system, decreasing antibiotic efficacy, and dispersing planktonic cells to distant body sites. While the biology of bacterial biofilms has become a major focus of microbial research, the regulatory mechanisms of biofilm development remain poorly defined and thos...

  5. In vitro modeling of host-parasite interactions: the 'subgingival' biofilm challenge of primary human epithelial cells

    Guggenheim, B; Gmür, R.; Galicia, J C; Stathopoulou, P. G.; Benakanakere, M R; Meier, A.; Thurnheer, T; Kinane, D.F.

    2009-01-01

    BACKGROUND: Microbial biofilms are known to cause an increasing number of chronic inflammatory and infectious conditions. A classical example is chronic periodontal disease, a condition initiated by the subgingival dental plaque biofilm on gingival epithelial tissues. We describe here a new model that permits the examination of interactions between the bacterial biofilm and host cells in general. We use primary human gingival epithelial cells (HGEC) and an in vitro grown biofilm, comprising n...

  6. Strategies for antimicrobial drug delivery to biofilm.

    Martin, Claire; Low, Wan Li; Gupta, Abhishek; Amin, Mohd Cairul Iqbal Mohd; Radecka, Iza; Britland, Stephen T; Raj, Prem; Kenward, Ken M A

    2015-01-01

    Biofilms are formed by the attachment of single or mixed microbial communities to a variety of biological and/or synthetic surfaces. Biofilm micro-organisms benefit from many advantages of the polymicrobial environment including increased resistance against antimicrobials and protection against the host organism's defence mechanisms. These benefits stem from a number of structural and physiological differences between planktonic and biofilm-resident microbes, but two main factors are the presence of extracellular polymeric substances (EPS) and quorum sensing communication. Once formed, biofilms begin to synthesise EPS, a complex viscous matrix composed of a variety of macromolecules including proteins, lipids and polysaccharides. In terms of drug delivery strategies, it is the EPS that presents the greatest barrier to diffusion for drug delivery systems and free antimicrobial agents alike. In addition to EPS synthesis, biofilm-based micro-organisms can also produce small, diffusible signalling molecules involved in cell density-dependent intercellular communication, or quorum sensing. Not only does quorum sensing allow microbes to detect critical cell density numbers, but it also permits co-ordinated behaviour within the biofilm, such as iron chelation and defensive antibiotic activities. Against this backdrop of microbial defence and cell density-specific communication, a variety of drug delivery systems have been developed to deliver antimicrobial agents and antibiotics to extracellular and/or intracellular targets, or more recently, to interfere with the specific mechanisms of quorum sensing. Successful delivery strategies have employed lipidic and polymeric-based formulations such as liposomes and cyclodextrins respectively, in addition to inorganic carriers e.g. metal nanoparticles. This review will examine a range of drug delivery systems and their application to biofilm delivery, as well as pharmaceutical formulations with innate antimicrobial properties

  7. The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316

    This work investigates microbially-influenced corrosion (MIC) of stainless steel AISI 316 by two sulphate-reducing bacteria, Desulfovibrio desulfuricans and a local marine isolate. The biofilm and pit morphology that developed with time were analyzed using atomic force microscopy (AFM). Electrochemical impedance spectroscopy (EIS) results were interpreted with an equivalent circuit to model the physicoelectric characteristics of the electrode/biofilm/solution interface. D. desulfuricans formed one biofilm layer on the metal surface, while the marine isolate formed two layers: a biofilm layer and a ferrous sulfide deposit layer. AFM images corroborated results from the EIS modeling which showed biofilm attachment and subsequent detachment over time

  8. Enhanced Productivity of a Lutein-Enriched Novel Acidophile Microalga Grown on Urea

    Carlos Vilchez

    2010-12-01

    Full Text Available Coccomyxa acidophila is an extremophile eukaryotic microalga isolated from the Tinto River mining area in Huelva, Spain. Coccomyxa acidophila accumulates relevant amounts of b-carotene and lutein, well-known carotenoids with many biotechnological applications, especially in food and health-related industries. The acidic culture medium (pH < 2.5 that prevents outdoor cultivation from non-desired microorganism growth is one of the main advantages of acidophile microalgae production. Conversely, acidophile microalgae growth rates are usually very low compared to common microalgae growth rates. In this work, we show that mixotrophic cultivation on urea efficiently enhances growth and productivity of an acidophile microalga up to typical values for common microalgae, therefore approaching acidophile algal production towards suitable conditions for feasible outdoor production. Algal productivity and potential for carotenoid accumulation were analyzed as a function of the nitrogen source supplied. Several nitrogen conditions were assayed: nitrogen starvation, nitrate and/or nitrite, ammonia and urea. Among them, urea clearly led to the best cell growth (~4 ´ 108 cells/mL at the end of log phase. Ammonium led to the maximum chlorophyll and carotenoid content per volume unit (220 mg·mL-1 and 35 mg·mL-1, respectively. Interestingly, no significant differences in growth rates were found in cultures grown on urea as C and N source, with respect to those cultures grown on nitrate and CO2 as nitrogen and carbon sources (control cultures. Lutein accumulated up to 3.55 mg·g-1 in the mixotrophic cultures grown on urea. In addition, algal growth in a shaded culture revealed the first evidence for an active xanthophylls cycle operative in acidophile microalgae.

  9. The membrane biofilm reactor: the natural partnership of membranes and biofilm.

    Rittmann, B E

    2006-01-01

    Many exciting new technologies for water-quality control combine microbiological processes with adsorption, advanced oxidation, a membrane or an electrode to improve performance, address emerging contaminants or capture renewable energy. An excellent example is the H2-based membrane biofilm reactor (MBfR), which delivers H2 gas to a biofilm that naturally accumulates on the outer surface of a bubbleless membrane. Autotrophic bacteria in the biofilm oxidise the H2 and use the electrons to reduce NO3-, CIO4- and other oxidised contaminants. This natural partnership of membranes and biofilm makes it possible to gain many cost, performance and simplicity advantages from using H2 as the electron donor for microbially catalysed reductions. The MBfR has been demonstrated for denitrification in drinking water; reduction of perchlorate in groundwater; reduction of selenate, chromate, trichloroethene and other emerging contaminants; advanced N removal in wastewater treatment and autotrophic total-N removal. PMID:16605035

  10. Methods to study microbial adhesion on abiotic surfaces

    Ana Meireles; Gonçalves, Ana L.; Gomes, Inês B.; Lúcia Chaves Simões; Manuel Simões

    2015-01-01

    Microbial biofilms are a matrix of cells and exopolymeric substances attached to a wet and solid surface and are commonly associated to several problems, such as biofouling and corrosion in industries and infectious diseases in urinary catheters and prosthesis. However, these cells may have several benefits in distinct applications, such as wastewater treatment processes, microbial fuel cells for energy production and biosensors. As microbial adhesion is a key step on biofilm formation, it is...

  11. Antiseptic efficacy of selected agents and tissue tolerable plasma (TTP) on C. albicans biofilms – has the biofilm maturity influence on it?

    Koban, Ina; Hübner, Nils-Olaf; Matthes, Rutger; Welk, Alexander; Kindel, Eckhard; Weltmann, Klaus-Dieter; Kramer, Axel; Kocher, Thomas

    2009-01-01

    Background: The formation of biofilms is crucial to the pathogenesis of many dental microbial infections. Oral candidosis are common and often found under removable partial dentures. Nonthermal atmospheric plasma (tissue tolerable plasma, TTP) was tested for its antimicrobial activity against different matured Candida albicans biofilms.Methods: We assessed the efficacy of selected agents (chlorhexidine, sodium hypochlorite, fluconazol) and TTP against in vitro biofilms of C. albicans grown 12...

  12. Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave

    Azua-Bustos, A.; Gonzalez-Silva, C.; Mancilla, R.A.; Salas, L.; Palma, R.E.; Wynne, J.J.; McKay, C.P.; Vicuna, R.

    2009-01-01

    Caves offer a stable and protected environment from harsh and changing outside prevailing conditions. Hence, they represent an interesting habitat for studying life in extreme environments. Here, we report the presence of a member of the ancient eukaryote red algae Cyanidium group in a coastal cave of the hyperarid Atacama Desert. This microorganism was found to form a seemingly monospecific biofilm growing under extremely low photon flux levels. Our work suggests that this species, Cyanidium sp. Atacama, is a new member of a recently proposed novel monophyletic lineage of mesophilic "cave" Cyanidium sp., distinct from the remaining three other lineages which are all thermo-acidophilic. The cave described in this work may represent an evolutionary island for life in the midst of the Atacama Desert. ?? Springer Science + Business Media, LLC 2009.

  13. The differences in the electromigration properties of biofilm-positive and biofilm-negative microorganisms

    Růžička, F.; Holá, V.; Horká, Marie

    Malinska, 2010. 21, IL6. [Central European Symposium on Industrial Microbiology and Microbial Ecology. 22.09.2010-25.09.2010, Malinska] R&D Projects: GA AV ČR IAAX00310701 Institutional research plan: CEZ:AV0Z40310501 Keywords : CIEF * S. epidermidis * biofilm formation Subject RIV: CB - Analytical Chemistry, Separation

  14. Biofilm structure and its influence on clogging in drip irrigation emitters distributing reclaimed wastewater

    YAN Dazhuang; BAI Zhihui; Mike Rowan; GU Likun; Ren Shumei; YANG Peiling

    2009-01-01

    Using reclaimed wastewater for crop irrigation is a practical alternative to discharge wastewater treatment plant effluents into surface waters.However,biofouling has been identified as a major contributor to emitter clogging in drip irrigation systems distributing reclaimed wastewater.Little is known about the biofilm structure and its influence on clogging in the drip emitter flow path.This study was first to investigate the microbial characteristics of mature biofilms present in the emitters and the effect of flow path structures on the biofilm microbial communities.The analysis of biofilm matrix structure using a scanning electron microscopy (SEM) revealed that particles in the matrix of the biofilm coupled extracellular polysaccharides (EPS) and formed sediment in the emitter flow path.Analysis of biofilm mass including protein,polysaccharide and phospholipid fatty acids (PLFAs) showed that emitter flow path style influenced biofilm community structure and diversity.The correlations of biofilm biomass and discharge reduction after 360 h irrigation were computed and suggest that PFLAs provide the best correlation coefficient.Comparatively,the emitter with the unsymmetrical dentate structure and shorter flow path (Emitter C) had the best anti-clogging capability.By optimizing the dentate structure,the internal flow pattern within the flow path could be enhanced as an important method to control the biofilm within emitter flow path.This study established electron microscope techniques and biochemical microbial analysis methods that may provide a framework for future emitter biofilm studies.

  15. Biofilm Fixed Film Systems

    Dipesh Das

    2011-09-01

    Full Text Available The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, rotating biological contactors, fluidized bed bioreactors, submerged bed biofilm reactors, biological granular activated carbon, membrane bioreactors, and immobilized cell reactors. Innovative reactors, not easily classified, are then presented, followed by a section on biofilms on sand, soil and sediment.

  16. Structural analysis of biofilms and pellets of Aspergillus niger by confocal laser scanning microscopy and cryo scanning electron microscopy.

    Villena, G K; Fujikawa, T; Tsuyumu, S; Gutiérrez-Correa, M

    2010-03-01

    Biomass organization of Aspergillus niger biofilms and pellets stained with fluorescein isothiocyanate were analyzed by means of confocal laser scanning microscopy and detectable differences between both types of growth were found. Three-dimensional surface plot analysis of biofilm structure revealed interstitial voids and vertical growth compared with pellets. Growth was lower in biofilm and according to fluorescence profile obtained, biomass density increased at the surface (0-20 microm). However, a decrease in fluorescence intensity was observed through optical sections of pellets even though growth was significantly higher than biofilms. Cryo scanning electron microscopy also showed structural differences. While biofilms showed a spatially ordered mycelium and well structured hyphal channels, pellets were characterized by an entangled and notoriously compacted mycelium. These findings revealed common structural characteristics between A. niger biofilms and those found in other microbial biofilms. Thus, biofilm microstructure may represent a key determinant of biofilm growth and physiology of filamentous fungi. PMID:19919894

  17. An optical microfluidic platform for spatiotemporal biofilm treatment monitoring

    Kim, Young Wook; Mosteller, Matthew P.; Subramanian, Sowmya; Meyer, Mariana T.; Bentley, William E.; Ghodssi, Reza

    2016-01-01

    Bacterial biofilms constitute in excess of 65% of clinical microbial infections, with the antibiotic treatment of biofilm infections posing a unique challenge due to their high antibiotic tolerance. Recent studies performed in our group have demonstrated that a bioelectric effect featuring low-intensity electric signals combined with antibiotics can significantly improve the efficacy of biofilm treatment. In this work, we demonstrate the bioelectric effect using sub-micron thick planar electrodes in a microfluidic device. This is critical in efforts to develop microsystems for clinical biofilm infection management, including both in vivo and in vitro applications. Adaptation of the method to the microscale, for example, can enable the development of localized biofilm infection treatment using microfabricated medical devices, while augmenting existing capabilities to perform biofilm management beyond the clinical realm. Furthermore, due to scale-down of the system, the voltage requirement for inducing the electric field is reduced further below the media electrolysis threshold. Enhanced biofilm treatment using the bioelectric effect in the developed microfluidic device elicited a 56% greater reduction in viable cell density and 26% further decrease in biomass growth compared to traditional antibiotic therapy. This biofilm treatment efficacy, demonstrated in a micro-scale device and utilizing biocompatible voltage ranges, encourages the use of this method for future clinical biofilm treatment applications.

  18. Control of Biofilms with the Fatty Acid Signaling Molecule cis-2-Decenoic Acid

    Cláudia N. H. Marques

    2015-11-01

    Full Text Available Biofilms are complex communities of microorganisms in organized structures attached to surfaces. Importantly, biofilms are a major cause of bacterial infections in humans, and remain one of the most significant challenges to modern medical practice. Unfortunately, conventional therapies have shown to be inadequate in the treatment of most chronic biofilm infections based on the extraordinary innate tolerance of biofilms to antibiotics. Antagonists of quorum sensing signaling molecules have been used as means to control biofilms. QS and other cell-cell communication molecules are able to revert biofilm tolerance, prevent biofilm formation and disrupt fully developed biofilms, albeit with restricted effectiveness. Recently however, it has been demonstrated that Pseudomonas aeruginosa produces a small messenger molecule cis-2-decenoic acid (cis-DA that shows significant promise as an effective adjunctive to antimicrobial treatment of biofilms. This molecule is responsible for induction of the native biofilm dispersion response in a range of Gram-negative and Gram-positive bacteria and in yeast, and has been shown to reverse persistence, increase microbial metabolic activity and significantly enhance the cidal effects of conventional antimicrobial agents. In this manuscript, the use of cis-2-decenoic acid as a novel agent for biofilm control is discussed. Stimulating the biofilm dispersion response as a novel antimicrobial strategy holds significant promise for enhanced treatment of infections and in the prevention of biofilm formation.

  19. Microbial Communities and a Novel Symbiotic Interaction in Extremely Acidic Mine Drainage at Iron Mountain, California

    Baker, B. J.; Banfield, J. F.

    2002-12-01

    Culture-independent studies of microbial communities in the acid mine drainage (AMD) system associated with the Richmond ore body at Iron Mountain, CA, demonstrated that the total number of prokaryote lineages is small compared to other environments. Phylogenetic analyses of 232 small subunit ribosomal RNA (rRNA) genes from six clone libraries revealed some novel lines of descent. Many of the novel clones were from libraries constructed from subaerial biofilms associated with fine grained pyrite. The clones form several distinct groups within the order Thermoplasmatales and are most closely related to Ferroplasma spp. and Thermoplasma spp. Another novel group detected in a pH 1.4 pool and a pH 0.8 biofilm falls within the Rickettsiales (alpha-proteobacteria and related to mitochondria) and is most closely related to a-proteobacterial endosymbionts of Acanthamoeba spp. An oligonucleotide rRNA probe designed to target alpha-proteobacteria revealed that these are protist endosymbionts, and that they are associated with a small percentage (2%) of the total eukaryotes in samples from the Richmond mine. Measurements of the internal pH of these protists show that their cytosol is close to neutral. Thus, protists provide a habitat within the AMD system that is at least 5 pH units less acidic than the surroundings. The uncultured AMD endosymbionts have a conserved 273 nucleotide intervening sequence (IVS) in the variable V1 region of their 16S rRNA gene. The IVS does not match any sequence in current databases, but predicted secondary structure form well defined stem loops. The discovery of inserts within a highly conserved gene is extremely rare. At present we have not identified the protist host. However, it is interesting to note that protists previously shown to have a-proteobacterial endosymbionts possess 18S rRNA genes that contain both IVSs and group I introns. The possibility that the IVS in the AMD bacteria is a result of extensive genetic exchange between a

  20. Three-Dimensional Stratification of Bacterial Biofilm Populations in a Moving Bed Biofilm Reactor for Nitritation-Anammox

    Robert Almstrand

    2014-01-01

    Full Text Available Moving bed biofilm reactors (MBBRs are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers.

  1. Evaluation of leguminous lectins activities against bacterial biofilm formation

    Carneiro, Victor Alves; Cavalcante, Theodora Thays Arruda; Teixeira, Edson Holanda; Cavada, Benildo Sousa; Oliveira, Rosário; Henriques, Mariana; Pereira, Maria Olívia

    2010-01-01

    Biofilms are composed by microbial cells that are irreversibly associated with a surface and enclosed in a matrix of polymeric material. Lectins are sugar binding proteins of non immune origin that agglutinate cells and ⁄ or precipitate glycoconjugate molecules. Due to their capacity to bind and recognize specific carbohydrates, lectins can be a potent tool in biofilm studies. The search for potential phytochemicals as anti-biofilm agents has become an active area of research, and these protei...

  2. Initial Phases of Biofilm Formation in Shewanella oneidensis MR-1

    Thormann, Kai M; Saville, Renée M.; Shukla, Soni; Pelletier, Dale A.; Spormann, Alfred M.

    2004-01-01

    Shewanella oneidensis MR-1 is a facultative Fe(III)- and Mn(IV)-reducing microorganism and serves as a model for studying microbially induced dissolution of Fe or Mn oxide minerals as well as biogeochemical cycles. In soil and sediment environments, S. oneidensis biofilms form on mineral surfaces and are critical for mediating the metabolic interaction between this microbe and insoluble metal oxide phases. In order to develop an understanding of the molecular basis of biofilm formation, we in...

  3. Biofilm mediated decontamination of pollutants from the environment

    Arindam Mitra; Suman Mukhopadhyay

    2016-01-01

    In this review, we highlight beneficial use of microbial biofilms in remediation of environmental pollutants by bioremediation. Bioremediation is an environment friendly, cost effective, sustainable technology that utilizes microbes to decontaminate and degrade a wide variety of pollutants into less harmful products. Relative to free-floating planktonic cells, microbes existing in biofilm mode are advantageous for bioremediation because of greater tolerance to pollutants, environmental stress...

  4. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis.

    Xiuchun Ge

    Full Text Available Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation.

  5. Nanoparticles for Control of Biofilms of Acinetobacter Species

    Richa Singh

    2016-05-01

    Full Text Available Biofilms are the cause of 80% of microbial infections. Acinetobacter species have emerged as multi- and pan-drug-resistant bacteria and pose a great threat to human health. These act as nosocomial pathogens and form excellent biofilms, both on biotic and abiotic surfaces, leading to severe infections and diseases. Various methods have been developed for treatment and control of Acinetobacter biofilm including photodynamic therapy, radioimmunotherapy, prophylactic vaccines and antimicrobial peptides. Nanotechnology, in the present scenario, offers a promising alternative. Nanomaterials possess unique properties, and multiple bactericidal mechanisms render them more effective than conventional drugs. This review intends to provide an overview of Acinetobacter biofilm and the significant role of various nanoparticles as anti-biofouling agents, surface-coating materials and drug-delivery vehicles for biofilm control and treatment of Acinetobacter infections.

  6. Involvement of NADH Oxidase in Biofilm Formation in Streptococcus sanguinis

    Ge, Xiuchun; Shi, Xiaoli; Shi, Limei; Liu, Jinlin; Stone, Victoria; Kong, Fanxiang; Kitten, Todd; Xu, Ping

    2016-01-01

    Biofilms play important roles in microbial communities and are related to infectious diseases. Here, we report direct evidence that a bacterial nox gene encoding NADH oxidase is involved in biofilm formation. A dramatic reduction in biofilm formation was observed in a Streptococcus sanguinis nox mutant under anaerobic conditions without any decrease in growth. The membrane fluidity of the mutant bacterial cells was found to be decreased and the fatty acid composition altered, with increased palmitic acid and decreased stearic acid and vaccenic acid. Extracellular DNA of the mutant was reduced in abundance and bacterial competence was suppressed. Gene expression analysis in the mutant identified two genes with altered expression, gtfP and Idh, which were found to be related to biofilm formation through examination of their deletion mutants. NADH oxidase-related metabolic pathways were analyzed, further clarifying the function of this enzyme in biofilm formation. PMID:26950587

  7. Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms

    Chiang, Wen-Chi; Nilsson, Martin; Jensen, Peter Østrup;

    2013-01-01

    Within recent years, it has been established that extracellular DNA is a key constituent of the matrix of microbial biofilms. In addition, it has recently been demonstrated that DNA binds positively charged antimicrobials such as aminoglycosides and antimicrobial peptides. In the present study, we...... provide evidence that extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. We show that exogenously supplemented DNA integrates into P. aeruginosa biofilms and increases their tolerance toward aminoglycosides. We provide evidence that biofilms formed by a DNA release......-deficient P. aeruginosa quorum-sensing mutant are more susceptible to aminoglycoside treatment than wild-type biofilms but become rescued from the detrimental action of aminoglycosides upon supplementation with exogenous DNA. Furthermore, we demonstrate that exposure to lysed polymorphonuclear leukocytes...

  8. Development of a high-throughput Candida albicans biofilm chip.

    Anand Srinivasan

    Full Text Available We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B. Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  9. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    Leschine, Susan

    2009-10-31

    colonizes and degrades insoluble substrates. Major accomplishments of the project include: • Development of media containing dialysis tubing (described by the manufacturer as “regenerated cellulose”) as sole carbon and energy source and a nutritive surface for the growth of cellulolytic bacteria, and development of various microscopic methods to image biofilms on dialysis tubing. • Demonstration that cultures of C. phytofermentans, an obligate anaerobe, C. uda, a facultative aerobe, and T. fusca, a filamentous aerobe, formed microbial communities on the surface of dialysis tubing, which possessed architectural features and functional characteristics typical of biofilms. • Demonstration that biofilm formation on the nutritive surface, cellulose, involves a complex developmental processes, including colonization of dialysis tubing, formation of cell clusters attached to the nutritive surface, cell morphological changes, formation of complex structures embedded in extracellular polymeric matrices, and dispersal of biofilm communities as the nutritive surface is degraded. • Determination of surface specificity and regulatory aspects of biofilm formation by C. phytofermentans, C. uda, and T. fusca. • Demonstration that biofilm formation by T. fusca forms an integral part of the life cycle of this filamentous cellulolytic bacterium, including studies on the role of mycelial pellet formation in the T. fusca life cycle and a comparison of mycelial pellets to surface-attached T. fusca biofilms. • Characterization of T. fusca biofilm EPS, including demonstration of a functional role for EPS constituents. • Correlation of T. fusca developmental life cycle and cellulase gene expression.

  10. Surface modification of materials to encourage beneficial biofilm formation

    Amreeta Sarjit

    2015-10-01

    Full Text Available Biofilms are communities of sessile microorganisms that grow and produce extrapolymeric substances on an abiotic or biotic surface. Although biofilms are often associated with negative impacts, the role of beneficial biofilms is wide and include applications in bioremediation, wastewater treatment and microbial fuel cells. Microbial adhesion to a surface, which is highly dependent on the physicochemical properties of the cells and surfaces, is an essential step in biofilm formation. Surface modification therefore represents an important way to modulate microbial attachment and ultimately biofilm formation by microorganisms. In this review different surface modification processes such as organosilane surface modification, plasma treatment, and chemical modification of carbon nanotubes, electro-oxidation and covalent-immobilization with neutral red and methylene blue molecules are outlined. The effectiveness of these modifications and their industrial applications are also discussed. There is inadequate literature on surface modification as a process to enhance beneficial biofilm formation. These methods need to be safe, economically viable, scalable and environmental friendly and their potential to fulfil these criteria for many applications has yet to be determined.

  11. [Multi-Species Biofilms in Ecology, Medicine, and Biotechnology].

    Nozhevnikova, A N; Botchkova, E A; Plakunov, V K

    2015-01-01

    The structure, composition, and developmental patterns of multi-species biofilms are analyzed, as well as the mechanisms of interaction of their microbial components. The main methodological approaches used for analysis of multi-species biofilms, including omics technologies, are characterized. Environmental communities (cyanobacterial mats and methanotrophic communities), as well as typical multi-species communities of medical importance (oral cavity, skin, and gut microbiomes) are described. A special section deals with the role of multi-species biofilms in such biotechnological processes as wastewater treatment, heavy metal removal, corrosion control, and environmental bioremediation. PMID:26964353

  12. Correlative Imaging of Structural and Elemental Composition of Bacterial Biofilms

    Synchrotron-based phase contrast tomography (holotomography) and scanning hard X-ray fluorescence microscopy (SXFM) are combined to characterize the three-dimensional (3D) structural and corresponding elemental distribution of bacterial biofilms of Pseudomonas aeruginosa. Samples were fixed without contrast agents or microtomal sectioning. Within an intact microbial community single bacteria are clearly resolved, and their morphology can be directly visualized together with the elemental content. Such 3D set of complementary information at cellular level is essential for gaining a deeper understanding of biofilm evolution aiming to develop potential strategies on biofilm growth control and prevention

  13. Correlative Imaging of Structural and Elemental Composition of Bacterial Biofilms

    Yang, Y.; Heine, R.; Xu, F.; Suhonen, H.; Helfen, L.; Rosenhahn, A.; Gorniak, T.; Kirchen, S.; Schwartz, T.; Baumbach, T.

    2013-10-01

    Synchrotron-based phase contrast tomography (holotomography) and scanning hard X-ray fluorescence microscopy (SXFM) are combined to characterize the three-dimensional (3D) structural and corresponding elemental distribution of bacterial biofilms of Pseudomonas aeruginosa. Samples were fixed without contrast agents or microtomal sectioning. Within an intact microbial community single bacteria are clearly resolved, and their morphology can be directly visualized together with the elemental content. Such 3D set of complementary information at cellular level is essential for gaining a deeper understanding of biofilm evolution aiming to develop potential strategies on biofilm growth control and prevention.

  14. Biofilm Fixed Film Systems

    Dipesh Das; Yung-Tse Hung; Charles Moretti; Hasibul Hasan; Harvey Gullicks

    2011-01-01

    The work reviewed here was published between 2008 and 2010 and describes research that involved aerobic and anoxic biofilm treatment of water pollutants. Biofilm denitrification systems are covered when appropriate. References catalogued here are divided on the basis of fundamental research area or reactor types. Fundamental research into biofilms is presented in two sections, Biofilm Measurement and Characterization and Growth and Modeling. The reactor types covered are: trickling filters, r...

  15. Rheology of biofilms

    Winston, M.; Rupp, C.J.; Vinogradov, A.; Towler, B.W.; Adams, H; Stoodley, P

    2003-01-01

    The paper describes an experimental study concerning the mechanical properties of bacterial biofilms formed from the early dental plaque colonizer Streptoccocus mutans and pond water biofilms. Experiments reported in this paper demonstrate that both types of biofilms exhibit mechanical behavior similar to that of rheological fluids. The time-dependent properties of both biofilms have been modeled using the principles of viscoelasticity theory. The Burger model has been found to accurately re...

  16. Biophysics of Biofilm Infection

    Stewart, Philip S.

    2014-01-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofi...

  17. Fate of deposited cells in an aerobic binary bacterial biofilm

    A biofilm is a matrix of microbial cells and their extracellular products that is associated with a solid surface. Previous studies on biofilm development have employed only dissolved compounds as growth limiting substrates, without the influence of microbial species invading from the bulk liquid. The goal of this research project was to quantify the kinetics of processes governing suspended biomass turnover in biofilm systems, and the accompanying effects of suspended cell deposition on biofilm population dynamics. Experiments were conducted with two species of bacteria, Pseudomonas putida ATCC 11172 grown on glucose, and Hyphomicrobium ZV620 grown on methanol. Cryptic growth and particulate hydrolysis studies were evaluated, using combinations of these two bacteria, by measuring the uptake of radiolabelled cell lysis products, under batch conditions. Biofilms studies were performed to investigate bacterial deposition, continual biofilm removal by shear induced erosion, and biofilm ecology. Biofilms were developed in a flow cell reactor, under laminar flow conditions. Bacterial species were differentiated by radioactively labelling each species with their carbon substrate. A mathematical model was developed to predict the biofilm ecology of mixed cultures. The equations developed predict biofilm accumulation, as well as substrate and oxygen consumption. Results indicate that cryptic growth will occur for bacteria growing on their own species soluble lysis products and in some cases, bacteria growing on the soluble lysis products of other species. Particulate hydrolysis only occurred for Pseudomonas putida growing on Pseudomonas putida lysis products, but the lack of particulate hydrolysis occurring in the other studies may have been due to the short experimental period

  18. Bacterial Biofilm: Its Composition, Formation and Role in Human Infections

    Muhsin Jama

    2015-07-01

    Full Text Available Biofilm is an association of micro-organisms in which microbial cells adhere to each other on a living or non-living surfaces within a self-produced matrix of extracellular polymeric substance. Bacterial biofilm is infectious in nature and can results in nosocomial infections. According to National Institutes of Health (NIH about about 65% of all microbial infections, and 80% of all chronic infections are associated with biofilms. Biofilm formation is a multi-step process starting with attachment to a surface then formation of micro-colony that leads to the formation of three dimensional structure and finally ending with maturation followed by detachment. During biofilm formation many species of bacteria are able to communicate with one an-other through specific mechanism called quorum sensing. It is a system of stimulus to co-ordinate different gene expression. Bacterial biofilm is less accessible to antibiotics and human immune system and thus poses a big threat to public health because of its involvement in variety of infectious diseases. A greater understanding of bacterial biofilm is required for the de-velopment of novel, effective control strategies thus resulting improvement in patient management.

  19. Prostaglandin E2 from Candida albicans Stimulates the Growth of Staphylococcus aureus in Mixed Biofilms

    Krause, Jan; Geginat, Gernot; Tammer, Ina

    2015-01-01

    Background Previous studies showed that Staphylococcus aureus and Candida albicans interact synergistically in dual species biofilms resulting in enhanced mortality in animal models. Methodology/Principal Findings The aim of the current study was to test possible candidate molecules which might mediate this synergistic interaction in an in vitro model of mixed biofilms, such as farnesol, tyrosol and prostaglandin (PG) E2. In mono-microbial and dual biofilms of C.albicans wild type strains PGE...

  20. Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids

    Sanchez, Laura M.; Cheng, Andrew T.; Warner, Christopher J. A.; Loni Townsley; Peach, Kelly C.; Gabriel Navarro; Nicholas J Shikuma; Bray, Walter M.; Riener, Romina M.; Yildiz, Fitnat H.; Linington, Roger G.

    2016-01-01

    Biofilms are a ubiquitous feature of microbial community structure in both natural and host environments; they enhance transmission and infectivity of pathogens and provide protection from human defense mechanisms and antibiotics. However, few natural products are known that impact biofilm formation or persistence for either environmental or pathogenic bacteria. Using the combination of a novel natural products library from the fish microbiome and an image-based screen for biofilm inhibition,...

  1. Innovative Porous Media Approach in Modeling Biofilm Applications, Human Eye and Nanofluid Based Heat Pipes

    Shafahi, Maryam

    2010-01-01

    Biofilm is a dominant form of existence for bacteria in most natural and synthetic environments. Depending on the application area, they can be useful or harmful. They have a helpful influence in bioremediation, microbial enhanced oil recovery, and metal extraction. On the other hand, biofilms are damaging for water pipes, heat exchangers, submarines and body organs. Formation of biofilm within a porous matrix reduces the pore size and total empty space of the system, altering the porosity an...

  2. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

    Das, Manash C.; Padmani Sandhu; Priya Gupta; Prasenjit Rudrapaul; Utpal C. De; Prosun Tribedi; Yusuf Akhter; Surajit Bhattacharjee

    2016-01-01

    Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combin...

  3. BslA is a self-assembling bacterial hydrophobin that coats the Bacillus subtilis biofilm

    Hobley, Laura; Ostrowski, Adam; Rao, Francesco V.; Bromley, Keith M.; Porter, Michael; Prescott, Alan R.; MacPhee, Cait E.; van Aalten, Daan M F; Nicola R. Stanley-Wall

    2013-01-01

    Biofilms represent the predominant mode of microbial growth in the natural environment. Bacillus subtilis is a ubiquitous Gram-positive soil bacterium that functions as an effective plant growth-promoting agent. The biofilm matrix is composed of an exopolysaccharide and an amyloid fiber-forming protein, TasA, and assembles with the aid of a small secreted protein, BslA. Here we show that natively synthesized and secreted BslA forms surface layers around the biofilm. Biophysical analysis demon...

  4. Dendrimers and Polyamino-Phenolic Ligands: Activity of New Molecules Against Legionella pneumophila Biofilms

    Andreozzi, Elisa; Barbieri, Federica; Ottaviani, Maria F.; Giorgi, Luca; Bruscolini, Francesca; Manti, Anita; Battistelli, Michela; Sabatini, Luigia; Pianetti, Anna

    2016-01-01

    Legionnaires’ disease is a potentially fatal pneumonia caused by Legionella pneumophila, an aquatic bacterium often found within the biofilm niche. In man-made water systems microbial biofilms increase the resistance of legionella to disinfection, posing a significant threat to public health. Disinfection methods currently used in water systems have been shown to be ineffective against legionella over the long-term, allowing recolonization by the biofilm-protected microorganisms. In this stud...

  5. Pseudomonas aeruginosa biofilm infections

    Tolker-Nielsen, Tim

    2014-01-01

    use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  6. The electric picnic: synergistic requirements for exoelectrogenic microbial communities

    Kiely, Patrick D

    2011-06-01

    Characterization of the various microbial populations present in exoelectrogenic biofilms provides insight into the processes required to convert complex organic matter in wastewater streams into electrical current in bioelectrochemical systems (BESs). Analysis of the community profiles of exoelectrogenic microbial consortia in BESs fed different substrates gives a clearer picture of the different microbial populations present in these exoelectrogenic biofilms. Rapid utilization of fermentation end products by exoelectrogens (typically Geobacter species) relieves feedback inhibition for the fermentative consortia, allowing for rapid metabolism of organics. Identification of specific syntrophic processes and the communities characteristic of these anodic biofilms will be a valuable aid in improving the performance of BESs. © 2011 Elsevier Ltd.

  7. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles.

    Pradhan, Debabrata; Mishra, Debaraj; Kim, Dong J; Ahn, Jong G; Chaudhury, G Roy; Lee, Seoung W

    2010-03-15

    Bioleaching studies were conducted to evaluate the recovery of metal values from waste petroleum catalyst using two different acidophilic microorganisms, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Various leaching parameters such as contact time, pH, oxidant concentration, pulp densities, particle size, and temperature were studied in detail. Activation energy was evaluated from Arrhenius equation and values for Ni, V and Mo were calculated in case of both the acidophiles. In both cases, the dissolution kinetics of Mo was lower than those of V and Ni. The lower dissolution kinetics may have been due to the formation of a sulfur product layer, refractoriness of MoS(2) or both. Multivariate statistical data were presented to interpret the leaching data in the present case. The significance of the leaching parameters was derived through principle component analysis and multi linear regression analyses for both iron and sulfur oxidizing bacteria. PMID:19879686

  8. Performance comparison of biofilm and suspended sludge from a sequencing batch biofilm reactor treating mariculture wastewater under oxytetracycline stress.

    Zheng, Dong; Gao, Mengchun; Wang, Zhe; She, Zonglian; Jin, Chunji; Chang, Qingbo

    2016-09-01

    The performance, extracellular polymeric substances (EPS) and microbial community of a sequencing batch biofilm reactor (SBBR) were investigated in treating mariculture wastewater under oxytetracycline stress. The chemical oxygen demand and [Formula: see text]-N removal efficiencies of the SBBR decreased with the increase of oxytetracycline concentration, and no obvious [Formula: see text]-N and [Formula: see text]-N accumulation in the effluent appeared at less than 10 mg L(-1) oxytetracycline. The specific oxygen utilization rate of the suspended sludge was more than that of the biofilm at different oxytetracycline concentrations. The specific ammonium oxidation rate (SAOR) of the biofilm was more easily affected by oxytetracycline than that of the suspended sludge, whereas the effect of oxytetracycline on the specific nitrite oxidation rate (SNOR) of the biofilm was less than that of the suspended sludge. The specific nitrate reduction rate of both the biofilm and suspended sludge was higher than the sum of the SAOR and SNOR at different oxytetracycline concentrations. The protein and polysaccharide contents in the EPS of the biofilm and suspended sludge increased with the increase of oxytetracycline concentration. The appearance of oxytetracycline in the influent could affect the chemical composition of the loosely bound EPS and tightly bound EPS. The amino, carboxyl and hydroxyl groups might be involved with interaction between EPS and oxytetracycline. The denaturing gradient gel electrophoresis profiles indicated that the variation of oxytetracycline concentration in the influent could affect the microbial communities of both the biofilm and suspended sludge. PMID:26854088

  9. Occurrence of Legionella pneumophila and Hartmannella vermiformis in fresh water environments and their interactions in biofilms

    Kuiper, M.W.

    2006-01-01

    Legionella pneumophila, the causative agent of Legionnaires’ disease, is widespread in natural fresh water environments and is also frequently found in man-made water systems. Microbial biofilms and protozoa are known to play a major role in the proliferation of L. pneumophila. Biofilms provide shel

  10. A simple birth-death-migration individual-based model for biofilm development

    Mabrouk, Nabil; Deffuant, Guillaume

    2011-01-01

    Bacteria growth, detachment and surface-associated motility are recongnized to play an important role in microbial biofilm formation. In this paper we we investigate using an individual-based model how these processes interplay to yield complex biofilm spatial patterns.

  11. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria

    Ňancucheo, Ivan; Johnson, D. Barrie

    2011-01-01

    Summary Two continuous‐flow bench‐scale bioreactor systems populated by mixed communities of acidophilic sulfate‐reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor p...

  12. Metagenomic and metaproteomic analyses of Accumulibacter phosphatis enriched floccular and granular biofilm

    Barr, Jeremy J; Dutilh, Bas E; Skennerton, Connor T; Fukushima, Toshikazu; Hastie, Marcus L; Gorman, Jeffrey J; Tyson, Gene W; Bond, Philip L

    2015-01-01

    Biofilms are ubiquitous in nature, forming diverse adherent microbial communities that perform a plethora of functions. Here we operated two laboratory-scale sequencing batch reactors enriched with Candidatus Accumulibacter phosphatis (Accumulibacter) performing enhanced biological phosphorus remova

  13. Next Generation Biofilm Inhibitors for Pseudomonas aeruginosa: Synthesis and Rational Design Approaches

    Majik, M.S.; Parvatkar, P.T.

    The bacterial biofilms and the emergence of multiple drug resistance have become a major threat for current medical treatment of nosocomial infections. It has been estimated that about 65-80% of microbial infections in the developed countries...

  14. The Effect of Predators on Cholera Biofilms: If it Lyses, We Can Smash It

    Kalziqi, Arben; Bernardy, Eryn; Thomas, Jacob; Ratcliff, Will; Hammer, Brian; Yunker, Peter

    Many microbes form biofilms--dense clumps of cells and proteins--on surfaces. Biofilms are complex communities that facilitate the study of biological competition (e.g., two types of microbes may compete to form a biofilm in the same location) and interesting physics (e.g., the source of a biofilm's rigidity). Vibrio cholerae can produce biofilms which have a network-like structure--however, cholera can be genetically engineered to kill other cholera with different genotypes, which leaves behind a structureless ``slime'' rather than such a biofilm. Through mechanical creep testing of both predator-prey and non-predator populations, we found that the predator-prey population responds viscously and decreases in height with repeated compression, whereas the non-predator population responds elastically and maintains its original height. The current work suggests that cell lysis after killing disrupts biofilm formation, preventing microbial colonies from forming rigid networks.

  15. Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure

    Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimens without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process

  16. Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure

    Soleimani, Sahar, E-mail: ssoleima@connect.carleton.ca; Isgor, O. Burkan, E-mail: burkan_isgor@carleton.ca; Ormeci, Banu, E-mail: banu_ormeci@carleton.ca

    2013-11-15

    Following the reported success of biofilm applications on metal surfaces to inhibit microbiologically influenced corrosion, effectiveness and sustainability of E. coli DH5α biofilm on mortar surface to prevent microbiologically influenced concrete deterioration (MICD) are investigated. Experiments simulating microbial attack were carried out by exposing incrementally biofilm-covered mortar specimens to sulfuric acid solutions with pH ranging from 3 to 6. Results showed that calcium concentration in control reactors without biofilm was 23–47% higher than the reactors with biofilm-covered mortar. Formation of amorphous silica gel as an indication of early stages of acid attack was observed only on the control mortar specimens without biofilm. During acidification, the biofilm continued to grow and its thickness almost doubled from ∼ 30 μm before acidification to ∼ 60 μm after acidification. These results demonstrated that E. coli DH5α biofilm was able to provide a protective and sustainable barrier on mortar surfaces against medium to strong sulfuric acid attack. -- Highlights: •Effectiveness of E.coli DH5α biofilm to prevent MICD was studied. •Conditions that lead to MICD were simulated by chemical acidification. •Biofilm-covered mortar specimens were exposed to sulfuric acid solutions. •The presence of biofilm helped reduce the chemically-induced mortar deterioration. •Biofilm remained alive and continued to grow during the acidification process.

  17. Focusing on Environmental Biofilms With Variable-Pressure Scanning Electron Microscopy

    Joubert, L.; Wolfaardt, G. M.; Du Plessis, K.

    2006-12-01

    Since the term biofilm has been coined almost 30 years ago, visualization has formed an integral part of investigations on microbial attachment. Electron microscopic (EM) biofilm studies, however, have been limited by the hydrated extracellular matrix which loses structural integrity with conventional preparative techniques, and under required high-vacuum conditions, resulting in a loss of information on spatial relationships and distribution of biofilm microbes. Recent advances in EM technology enable the application of Variable Pressure Scanning Electron Microscopy (VP SEM) to biofilms, allowing low vacuum and hydrated chamber atmosphere during visualization. Environmental biofilm samples can be viewed in situ, unfixed and fully hydrated, with application of gold-sputter-coating only, to increase image resolution. As the impact of microbial biofilms can be both hazardous and beneficial to man and his environment, recognition of biofilms as a natural form of microbial existence is needed to fully assess the potential role of microbial communities on technology. The integration of multiple techniques to elucidate biofilm processes has become imperative for unraveling complex phenotypic adaptations of this microbial lifestyle. We applied VP SEM as integrative technique with traditional and novel analytical techniques to (1)localize lignocellulosic microbial consortia applied for producing alternative bio-energy sources in the mining wastewater industry, (2) characterize and visualize wetland microbial communities in the treatment of winery wastewater, and (3)determine the impact of recombinant technology on yeast biofilm behavior. Visualization of microbial attachment to a lignocellulose substrate, and degradation of exposed plant tissue, gave insight into fiber degradation and volatile fatty acid production for biological sulphate removal from mining wastewater. Also, the 3D-architecture of complex biofilms developing in constructed wetlands was correlated with

  18. Evaluation of Methods for the Extraction of DNA from Drinking Water Distribution System Biofilms

    Hwang, Chiachi; Ling, Fangqiong; Andersen, Gary L.; LeChevallier, Mark W.; Liu, Wen-Tso

    2011-01-01

    While drinking water biofilms have been characterized in various drinking water distribution systems (DWDS), little is known about the impact of different DNA extraction methods on the subsequent analysis of microbial communities in drinking water biofilms. Since different DNA extraction methods have been shown to affect the outcome of microbial community analysis in other environments, it is necessary to select a DNA extraction method prior to the application of molecular tools to characteri...

  19. Significance of Microbial Communities and Interactions in Safeguarding Reactive Mine Tailings by Ecological Engineering▿†

    N̆ancucheo, Ivan; Johnson, D. Barrie

    2011-01-01

    Pyritic mine tailings (mineral waste generated by metal mining) pose significant risk to the environment as point sources of acidic, metal-rich effluents (acid mine drainage [AMD]). While the accelerated oxidative dissolution of pyrite and other sulfide minerals in tailings by acidophilic chemolithotrophic prokaryotes has been widely reported, other acidophiles (heterotrophic bacteria that catalyze the dissimilatory reduction of iron and sulfur) can reverse the reactions involved in AMD genesis, and these have been implicated in the “natural attenuation” of mine waters. We have investigated whether by manipulating microbial communities in tailings (inoculating with iron- and sulfur-reducing acidophilic bacteria and phototrophic acidophilic microalgae) it is possible to mitigate the impact of the acid-generating and metal-mobilizing chemolithotrophic prokaryotes that are indigenous to tailing deposits. Sixty tailings mesocosms were set up, using five different microbial inoculation variants, and analyzed at regular intervals for changes in physicochemical and microbiological parameters for up to 1 year. Differences between treatment protocols were most apparent between tailings that had been inoculated with acidophilic algae in addition to aerobic and anaerobic heterotrophic bacteria and those that had been inoculated with only pyrite-oxidizing chemolithotrophs; these differences included higher pH values, lower redox potentials, and smaller concentrations of soluble copper and zinc. The results suggest that empirical ecological engineering of tailing lagoons to promote the growth and activities of iron- and sulfate-reducing bacteria could minimize their risk of AMD production and that the heterotrophic populations could be sustained by facilitating the growth of microalgae to provide continuous inputs of organic carbon. PMID:21965397

  20. Quorum sensing in water and wastewater treatment biofilms.

    Feng, Lin; Wu, Zhuoying; Yu, Xin

    2013-04-01

    Fixed film processes and activated sludge processes are two main families of wastewater treatment systems which all refer to the heterogeneous microbial communities. Meanwhile, biofilms in drinking water distribution systems (DWDS) and biofouling in membrane systems are significant problems in the water and wastewater treatment which reduce the microbial quality of drinking water and limit the development of membrane system respectively. Since biofilms and quorum sensing (QS) as two microbial social behaviors have been inextricably linked, a number of studies have focused on the role of QS signaling and QS inhibition in the processes of water and wastewater treatment, which will help us engineer these biological treatment processes successfully and develop promising approaches for control of microbial adhesion, colonization and biofilm formation. This review gives a summary of recent known QS mechanisms and their role in biofilm formation for different species. Particular attentions are dedicated to the signaling molecules involved in some microbial granulation processes and the potential applications by some of their natural and synthetic analogues in the treatment of membrane biofouling. PMID:24620615

  1. The effects of Mary Rose conservation treatment on iron oxidation processes and microbial communities contributing to acid production in marine archaeological timbers.

    Joanne Preston

    Full Text Available The Tudor warship the Mary Rose has reached an important transition point in her conservation. The 19 year long process of spraying with polyethylene glycol (PEG has been completed (April 29(th 2013 and the hull is air drying under tightly controlled conditions. Acidophilic bacteria capable of oxidising iron and sulfur have been previously identified and enriched from unpreserved timbers of the Mary Rose, demonstrating that biological pathways of iron and sulfur oxidization existed potentially in this wood, before preservation with PEG. This study was designed to establish if the recycled PEG spray system was a reservoir of microorganisms capable of iron and sulfur oxidization during preservation of the Mary Rose. Microbial enrichments derived from PEG impregnated biofilm collected from underneath the Mary Rose hull, were examined to better understand the processes of cycling of iron. X-ray absorption spectroscopy was utilised to demonstrate the biological contribution to production of sulfuric acid in the wood. Using molecular microbiological techniques to examine these enrichment cultures, PEG was found to mediate a shift in the microbial community from a co-culture of Stenotrophomonas and Brevunidimonas sp, to a co-culture of Stenotrophomonas and the iron oxidising Alicyclobacillus sp. Evidence is presented that PEG is not an inert substance in relation to the redox cycling of iron. This is the first demonstration that solutions of PEG used in the conservation of the Mary Rose are promoting the oxidation of ferrous iron in acidic solutions, in which spontaneous abiotic oxidation does not occur in water. Critically, these results suggest PEG mediated redox cycling of iron between valence states in solutions of 75% PEG 200 and 50% PEG 2000 (v/v at pH 3.0, with serious implications for the future use of PEG as a conservation material of iron rich wooden archaeological artefacts.

  2. Quantifying Biofilm in Porous Media Using Rock Physics Models

    Alhadhrami, F. M.; Jaiswal, P.; Atekwana, E. A.

    2012-12-01

    Biofilm formation and growth in porous rocks can change their material properties such as porosity, permeability which in turn will impact fluid flow. Finding a non-intrusive method to quantify biofilms and their byproducts in rocks is a key to understanding and modeling bioclogging in porous media. Previous geophysical investigations have documented that seismic techniques are sensitive to biofilm growth. These studies pointed to the fact that microbial growth and biofilm formation induces heterogeneity in the seismic properties. Currently there are no rock physics models to explain these observations and to provide quantitative interpretation of the seismic data. Our objectives are to develop a new class of rock physics model that incorporate microbial processes and their effect on seismic properties. Using the assumption that biofilms can grow within pore-spaces or as a layer coating the mineral grains, P-wave velocity (Vp) and S-wave (Vs) velocity models were constructed using travel-time and waveform tomography technique. We used generic rock physics schematics to represent our rock system numerically. We simulated the arrival times as well as waveforms by treating biofilms either as fluid (filling pore spaces) or as part of matrix (coating sand grains). The preliminary results showed that there is a 1% change in Vp and 3% change in Vs when biofilms are represented discrete structures in pore spaces. On the other hand, a 30% change in Vp and 100% change in Vs was observed when biofilm was represented as part of matrix coating sand grains. Therefore, Vp and Vs changes are more rapid when biofilm grows as grain-coating phase. The significant change in Vs associated with biofilms suggests that shear velocity can be used as a diagnostic tool for imaging zones of bioclogging in the subsurface. The results obtained from this study have significant implications for the study of the rheological properties of biofilms in geological media. Other applications include

  3. Microbial coal desulfurization in an airlift bioreactor by sulfur-oxidizing bacterium Thiobacillus ferooxidans

    Ryu, H.W.; Chang, Y.K.; Kim, S.D. (Korea Advanced Institute of Science and Technology, Taejon (Republic of Korea). Dept. of Chemical Engineering and BioProcess Engineering Research Center)

    1993-12-01

    Microbial desulfurization of a domestic anthracite coal by using an acidophilic, sulfur-oxidizing bacterium, [ital Thiobacillus ferrooxidans] has been studied in an airlift slurry reactor of 12 L volume. Effects of coal slurry density and CO[sub 2] supplement on microbial pyrite removal have been evaluated. High sulfur removal rates have been obtained even for very high coal slurry densities (up to 70% w/v). About 90-95% of the sulfur in the coal could be removed in 15-20 days. The efficiency of microbial desulfurization was significantly improved with CO[sub 2] enriched air supply for high coal slurry densities. 17 refs., 5 figs.

  4. Rock physics models for constraining quantitative interpretation of ultrasonic data for biofilm growth and development

    Alhadhrami, Fathiya Mohammed

    This study examines the use of rock physics modeling for quantitative interpretation of seismic data in the context of microbial growth and biofilm formation in unconsolidated sediment. The impetus for this research comes from geophysical experiments by Davis et al. (2010) and Kwon and Ajo-Franklin et al. (2012). These studies observed that microbial growth has a small effect on P-wave velocities (VP) but a large effect on seismic amplitudes. Davis et al. (2010) and Kwon and Ajo-Franklin et al. (2012) speculated that the amplitude variations were due to a combination of rock mechanical changes from accumulation of microbial growth related features such as biofilms. A more definite conclusion can be drawn by developing rock physics models that connect rock properties to seismic amplitudes. The primary objective of this work is to provide an explanation for high amplitude attenuation due to biofilm growth. The results suggest that biofilm formation in the Davis et al. (2010) experiment exhibit two growth styles: a loadbearing style where biofilm behaves like an additional mineral grain and a non-loadbearing mode where the biofilm grows into the pore spaces. In the loadbearing mode, the biofilms contribute to the stiffness of the sediments. We refer to this style as "filler." In the non-loadbearing mode, the biofilms contribute only to change in density of sediments without affecting their strength. We refer to this style of microbial growth as "mushroom." Both growth styles appear to be changing permeability more than the moduli or the density. As the result, while the VP velocity remains relatively unchanged, the amplitudes can change significantly depending on biofilm saturation. Interpreting seismic data from biofilm growths in term of rock physics models provide a greater insight into the sediment-fluid interaction. The models in turn can be used to understand microbial enhanced oil recovery and in assisting in solving environmental issues such as creating bio

  5. Mineralogical controls on surface colonization by sulfur-metabolizing microbial communities

    Jones, A. A.; Bennett, P.

    2012-12-01

    When characterizing microbial diversity and the microbial ecosystem of the shallow subsurface the mineral matrix is generally assumed to be homogenous and unreactive. We report here experimental evidence that microorganisms colonize rock surfaces according to the rock's chemistry and the organism's metabolic requirements and tolerances. We investigated this phenomenon using laboratory biofilm reactors with both a pure culture of sulfur-oxidizing Thiothrix unzii and a mixed environmental sulfur-metabolizing community from Lower Kane, Cave, WY, USA. Reactors contained rock and mineral chips (calcite, albite, microcline, quartz, chert, Madison Limestone (ML), Madison Dolostone (MD), and basalt) amended with one of the two inoculants. Biomass of attached microorganisms on each mineral surface was quantified. The 16S rRNA of attached microbial communities were compared using Roche FLX and Titanium 454 next generation pyrosequencing. A primary controlling factor on taxonomy of attached microorganisms in both pure and mixed culture experiments was mineral buffering capacity. In mixed culture experiments acid-buffering carbonates were preferentially colonized by neutrophilic sulfur-oxidizing microorganisms (~18% to ~27% of microorganisms), while acidophilic sulfur-oxidizing microorganisms colonized non-buffering quartz exclusively (~46% of microorganisms). The nutrient content of the rock was a controlling factor on biomass accumulation, with neutrophilic organisms selecting between carbonate surfaces of equivalent buffer capacities according to the availability of phosphate. Dry biomass on ML was 17.8 ± 2.3 mg/cm2 and MD was 20.6 ± 6.8 mg/cm2; while nutrient poor calcite accumulated 2.4 ± 0.3 mg/cm2. Biomass accumulation was minimal on non-buffering nutrient-limited surfaces. These factors are countered by the competitive exclusion of some populations. A pure culture of T. unzii preferentially colonizes carbonates while a very closely related Thiothrix spp is excluded

  6. Microbial Communities and Electrochemical Performance of Titanium-Based Anodic Electrodes in a Microbial Fuel Cell

    Michaelidou, Urania; Heijne, Annemiek ter; Euverink, Gerrit Jan W.; Hamelers, Hubertus V.M.; Stams, Alfons J.M.; Geelhoed, Jeanine S.

    2011-01-01

    Four types of titanium (Ti)-based electrodes were tested in the same microbial fuel cell (MFC) anodic compartment. Their electrochemical performances and the dominant microbial communities of the electrode biofilms were compared. The electrodes were identical in shape, macroscopic surface area, and

  7. Bioleaching in brackish waters--effect of chloride ions on the acidophile population and proteomes of model species.

    Zammit, Carla M; Mangold, Stefanie; Jonna, Venkateswara rao; Mutch, Lesley A; Watling, Helen R; Dopson, Mark; Watkin, Elizabeth L J

    2012-01-01

    High concentrations of chloride ions inhibit the growth of acidophilic microorganisms used in biomining, a problem particularly relevant to Western Australian and Chilean biomining operations. Despite this, little is known about the mechanisms acidophiles adopt in order to tolerate high chloride ion concentrations. This study aimed to investigate the impact of increasing concentrations of chloride ions on the population dynamics of a mixed culture during pyrite bioleaching and apply proteomics to elucidate how two species from this mixed culture alter their proteomes under chloride stress. A mixture consisting of well-known biomining microorganisms and an enrichment culture obtained from an acidic saline drain were tested for their ability to bioleach pyrite in the presence of 0, 3.5, 7, and 20 g L(-1) NaCl. Microorganisms from the enrichment culture were found to out-compete the known biomining microorganisms, independent of the chloride ion concentration. The proteomes of the Gram-positive acidophile Acidimicrobium ferrooxidans and the Gram-negative acidophile Acidithiobacillus caldus grown in the presence or absence of chloride ions were investigated. Analysis of differential expression showed that acidophilic microorganisms adopted several changes in their proteomes in the presence of chloride ions, suggesting the following strategies to combat the NaCl stress: adaptation of the cell membrane, the accumulation of amino acids possibly as a form of osmoprotectant, and the expression of a YceI family protein involved in acid and osmotic-related stress. PMID:22124722

  8. Spatial and Temporal Analysis of the Microbial Community in the Tailings of a Pb-Zn Mine Generating Acidic Drainage ▿ †

    Huang, Li-Nan; Zhou, Wen-Hua; Hallberg, Kevin B.; Wan, Cai-Yun; Li, Jie; Shu, Wen-Sheng

    2011-01-01

    Analysis of spatial and temporal variations in the microbial community in the abandoned tailings impoundment of a Pb-Zn mine revealed distinct microbial populations associated with the different oxidation stages of the tailings. Although Acidithiobacillus ferrooxidans and Leptospirillum spp. were consistently present in the acidic tailings, acidophilic archaea, mostly Ferroplasma acidiphilum, were predominant in the oxidized zones and the oxidation front, indicating their importance to generation of acid mine drainage. PMID:21705549

  9. Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage.

    Kock, Dagmar; Schippers, Axel

    2008-08-01

    The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 10(9) cells g(-1) dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general. PMID:18586975

  10. Quantitative Microbial Community Analysis of Three Different Sulfidic Mine Tailing Dumps Generating Acid Mine Drainage▿

    Kock, Dagmar; Schippers, Axel

    2008-01-01

    The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 109 cells g−1 dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general. PMID:18586975

  11. Biofilms in wounds: a review of present knowledge.

    Cooper, R A; Bjarnsholt, T; Alhede, M

    2014-11-01

    Following confirmation of the presence of biofilms in chronic wounds, the term biofilm became a buzzword within the wound healing community. For more than a century pathogens have been successfully isolated and identified from wound specimens using techniques that were devised in the nineteenth century by Louis Pasteur and Robert Koch. Although this approach still provides valuable information with which to help diagnose acute infections and to select appropriate antibiotic therapies, it is evident that those organisms isolated from clinical specimens with the conditions normally used in diagnostic laboratories are mainly in a planktonic form that is unrepresentative of the way in which most microbial species exist naturally. Usually microbial species adhere to each other, as well as to living and non-living surfaces, where they form complex communities surrounded by collectively secreted extracellular polymeric substances (EPS). Cells within such aggregations (or biofilms) display varying physiological and metabolic properties that are distinct from those of planktonic cells, and which contribute to their persistence. There are many factors that influence healing in wounds and the discovery of biofilms in chronic wounds has provided new insight into the reasons why. Increased tolerance of biofilms to antimicrobial agents explains the limited efficacy of antimicrobial agents in chronic wounds and illustrates the need to develop new management strategies. This review aims to explain the nature of biofilms, with a view to explaining their impact on wounds. PMID:25375405

  12. EFFECT OF ESSENTIAL OIL ON BIOFILM PRODUCTION BY DIFFERENT LISTERIA MONOCYTOGENES STRAINS

    G. Comi

    2008-12-01

    Full Text Available The effects of different essential oil (hexanal, 2-(E-hexenal, carvacrol, citron, red orange, thymol and limonene on biofilm production of some Lmonocytogenes strains are evaluated. The formation of biofilm on certain surfaces or on the food, seems to be related with cross-contamination during processing or with the contamination of the final product, with potential risk for the consumer. Many studies were done on the antimicrobial activity of essential oils and their components, but not too much is known about their capacity to influence and reduce the microbial production of biofilm. Our data showed that essential oils can inhibit or limit the biofilm production.

  13. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: Carbon and energy flow contribute to the distinct biofilm growth state

    Clark Melinda E

    2012-04-01

    extracellular fraction from biofilm cells. Conclusions Even though both the planktonic and biofilm cells were oxidizing lactate and reducing sulfate, the biofilm cells were physiologically distinct compared to planktonic growth states due to altered abundances of genes/proteins involved in carbon/energy flow and extracellular structures. In addition, average expression values for multiple rRNA transcripts and respiratory activity measurements indicated that biofilm cells were metabolically more similar to exponential-phase cells although biofilm cells are structured differently. The characterization of physiological advantages and constraints of the biofilm growth state for sulfate-reducing bacteria will provide insight into bioremediation applications as well as microbially-induced metal corrosion.

  14. Electrical spiking in bacterial biofilms

    Masi, Elisa; Ciszak, Marzena; Santopolo, Luisa; Frascella, Arcangela; Giovannetti, Luciana; Marchi, Emmanuela; Viti, Carlo; Mancuso, Stefano

    2015-01-01

    In nature, biofilms are the most common form of bacterial growth. In biofilms, bacteria display coordinated behaviour to perform specific functions. Here, we investigated electrical signalling as a possible driver in biofilm sociobiology. Using a multi-electrode array system that enables high spatio-temporal resolution, we studied the electrical activity in two biofilm-forming strains and one non-biofilm-forming strain. The action potential rates monitored during biofilm-forming bacterial gro...

  15. Antiseptic efficacy of selected agents and tissue tolerable plasma (TTP on C. albicans biofilms – has the biofilm maturity influence on it?

    Koban, Ina

    2009-12-01

    Full Text Available Background: The formation of biofilms is crucial to the pathogenesis of many dental microbial infections. Oral candidosis are common and often found under removable partial dentures. Nonthermal atmospheric plasma (tissue tolerable plasma, TTP was tested for its antimicrobial activity against different matured Candida albicans biofilms.Methods: We assessed the efficacy of selected agents (chlorhexidine, sodium hypochlorite, fluconazol and TTP against in vitro biofilms of C. albicans grown 12 h (young, 24 h and 48 h (mature in microtiter plates.Results: One minute TTP-treatment was shown to have significant effects on biofilm formation during the whole measurement period of young and mature biofilms. Only the effects of fluconazol and TTP could reduce formation of young biofilms for a longer period.Conclusions: The maturity level of biofilms influences the antiseptic efficacy of different agents. Young biofilms are very sensitive to antimicrobial effects, but they recover from it very fast. Mature biofilms show lower but long-term effects. Single plasma treatment for 1 min reduces the formation of young as well as mature biofilms. For the future physical treatment by TTP may get an alternative to chemical antisepsis.

  16. Optical Sensing of Microbial Life on Surfaces

    Fischer, M.; Triggs, G. J.; Krauss, T.F.

    2016-01-01

    The label-free detection of microbial cells attached to a surface is an active field of research. The field is driven by the need to understand and control the growth of biofilms in a number of applications, including basic research in natural environments, industrial facilities, and clinical devices, to name a few. Despite significant progress in the ability to monitor the growth of biofilms and related living cells, the sensitivity and selectivity of such sensors are still a challenge. We b...

  17. Species sorting during biofilm assembly by artificial substrates deployed in a cold seep system

    Zhang, Wei Peng

    2014-10-17

    Studies focusing on biofilm assembly in deep-sea environments are rarely conducted. To examine the effects of substrate type on microbial community assembly, biofilms were developed on different substrates for different durations at two locations in the Red Sea: in a brine pool and in nearby bottom water (NBW) adjacent to the Thuwal cold seep II. The composition of the microbial communities in 51 biofilms and water samples were revealed by classification of pyrosequenced 16S rRNA gene amplicons. Together with the microscopic characteristics of the biofilms, the results indicate a stronger selection effect by the substrates on the microbial assembly in the brine pool compared with the NBW. Moreover, the selection effect by substrate type was stronger in the early stages compared with the later stages of the biofilm development. These results are consistent with the hypotheses proposed in the framework of species sorting theory, which states that the power of species sorting during microbial community assembly is dictated by habitat conditions, duration and the structure of the source community. Therefore, the results of this study shed light on the control strategy underlying biofilm-associated marine fouling and provide supporting evidence for ecological theories important for understanding the formation of deep-sea biofilms.

  18. Bacteriophages and Biofilms

    Harper, David R; Helena M. R. T. Parracho; James Walker; Richard Sharp; Gavin Hughes; Maria Werthén; Susan Lehman; Sandra Morales

    2014-01-01

    Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this commo...

  19. In vitro modeling of host-parasite interactions: the 'subgingival' biofilm challenge of primary human epithelial cells

    Thurnheer Thomas

    2009-12-01

    Full Text Available Abstract Background Microbial biofilms are known to cause an increasing number of chronic inflammatory and infectious conditions. A classical example is chronic periodontal disease, a condition initiated by the subgingival dental plaque biofilm on gingival epithelial tissues. We describe here a new model that permits the examination of interactions between the bacterial biofilm and host cells in general. We use primary human gingival epithelial cells (HGEC and an in vitro grown biofilm, comprising nine frequently studied and representative subgingival plaque bacteria. Results We describe the growth of a mature 'subgingival' in vitro biofilm, its composition during development, its ability to adapt to aerobic conditions and how we expose in vitro a HGEC monolayer to this biofilm. Challenging the host derived HGEC with the biofilm invoked apoptosis in the epithelial cells, triggered release of pro-inflammatory cytokines and in parallel induced rapid degradation of the cytokines by biofilm-generated enzymes. Conclusion We developed an experimental in vitro model to study processes taking place in the gingival crevice during the initiation of inflammation. The new model takes into account that the microbial challenge derives from a biofilm community and not from planktonically cultured bacterial strains. It will facilitate easily the introduction of additional host cells such as neutrophils for future biofilm:host cell challenge studies. Our methodology may generate particular interest, as it should be widely applicable to other biofilm-related chronic inflammatory diseases.

  20. Host Responses to Biofilm.

    Watters, C; Fleming, D; Bishop, D; Rumbaugh, K P

    2016-01-01

    From birth to death the human host immune system interacts with bacterial cells. Biofilms are communities of microbes embedded in matrices composed of extracellular polymeric substance (EPS), and have been implicated in both the healthy microbiome and disease states. The immune system recognizes many different bacterial patterns, molecules, and antigens, but these components can be camouflaged in the biofilm mode of growth. Instead, immune cells come into contact with components of the EPS matrix, a diverse, hydrated mixture of extracellular DNA (bacterial and host), proteins, polysaccharides, and lipids. As bacterial cells transition from planktonic to biofilm-associated they produce small molecules, which can increase inflammation, induce cell death, and even cause necrosis. To survive, invading bacteria must overcome the epithelial barrier, host microbiome, complement, and a variety of leukocytes. If bacteria can evade these initial cell populations they have an increased chance at surviving and causing ongoing disease in the host. Planktonic cells are readily cleared, but biofilms reduce the effectiveness of both polymorphonuclear neutrophils and macrophages. In addition, in the presence of these cells, biofilm formation is actively enhanced, and components of host immune cells are assimilated into the EPS matrix. While pathogenic biofilms contribute to states of chronic inflammation, probiotic Lactobacillus biofilms cause a negligible immune response and, in states of inflammation, exhibit robust antiinflammatory properties. These probiotic biofilms colonize and protect the gut and vagina, and have been implicated in improved healing of damaged skin. Overall, biofilms stimulate a unique immune response that we are only beginning to understand. PMID:27571696

  1. Invasibility of resident biofilms by allochthonous communities in bioreactors.

    Bellucci, Micol; Bernet, Nicolas; Harmand, Jérôme; Godon, Jean-Jacques; Milferstedt, Kim

    2015-09-15

    Invasion of non-native species can drastically affect the community composition and diversity of engineered and natural ecosystems, biofilms included. In this study, a molecular community fingerprinting method was used to monitor the putative establishment and colonization of allochthonous consortia in resident multi-species biofilms. To do this, biofilms inoculated with tap water or activated sludge were grown for 10 days in bubble column reactors W1 and W2, and S, respectively, before being exposed to non-native microbial consortia. These consortia consisted of fresh activated sludge suspensions for the biofilms inoculated with tap water (reactors W1 and W2) and of transplanted mature tap water biofilm for the activated sludge biofilm (reactor S). The introduction of virgin, unoccupied coupons into W1 and W2 enabled us to additionally investigate the competition for new resources (space) among the resident biofilm and the allochthonous consortia. CE-SSCP revealed that after the invasion event changes were mostly observed in the abundance of the dominant species in the native biofilms rather than their composition. This suggests that the resident communities within a bioreactor immediately outcompete the allochthonous microbes and shape the microbial community assemblage on both new coupons and already colonized surfaces for the short term. However, with time, latent members of the allochthonous community might grow up affecting the diversity and composition of the original biofilms. PMID:26072021

  2. Optimal Biofilm Featues: metabolic and geometric response to multiple oxidants

    Kempes, C.; Okegbe, C.; Mears-Clarke, Z.; Follows, M. J.; Dietrich, L.

    2014-12-01

    An important challenge in understanding complex microbial mat communities is determining how groups of a single species balance metabolic requirements with the dynamics of resource supply. We have investigated this problem in the context of redox resources within a single-species bacterial biofilm. We developed a mathematical model of oxidant availability and metabolic response within biofilm features and we show that observed biofilm geometries maximize cellular reproduction and growth efficiency. Our model accurately predicts the measured distribution of two types of electron acceptors: oxygen, which is available from the environment, and phenazines, redox-active small molecules produced by the bacterium. Because our model is based on resource dynamics, we are also able to predict observed shifts in feature geometry based on changes in the availability of redox resources such as variations in the external availability of oxygen or the removal of phenazines. This analysis suggests various avenues for understanding microstructure and the evolution of spatial metabolism in microbial mats.

  3. Distribution of bacterial growth activity in flow-chamber biofilms

    Sternberg, Claus; Christensen, Bjarke B.; Johansen, Tove; Nielsen, Alex Toftgaard; Andersen, Jens Bo; Givskov, Michael Christian; Molin, Søren

    1999-01-01

    community. With the use of these reporter tools, it is demonstrated that individual cells of a toluene-degrading P. putida strain growing in a benzyl alcohol-supplemented biofilm have different levels of growth activity which develop as the biofilm gets older. Cells that eventually grow very slowly or not......In microbial communities such as those found in biofilms, individual organisms most often display heterogeneous behavior with respect to their metabolic activity, growth status, gene expression pattern, etc. In that context, a novel reporter system for monitoring of cellular growth activity has...... at all may be stimulated to restart growth if provided with a more easily metabolizable carbon source. Thus, the dynamics of biofilm growth activity has been tracked to the level of individual cells, cell clusters, and microcolonies....

  4. Contribution of hydrodynamic characteristics on the performance of an aerobic biofilm conical fluidized bed.

    Zhou, D; Bi, X T; Dong, S

    2011-01-01

    The performance of a conical fluidized bed (TFB) bioreactor, including the biofilm thickness, microbial space density, microbial cell matrix and its efficiency for COD degradation at a bed expansion ratio of 14 to 90%, was studied and compared with a cylindrical fluidized bed (CFB) bioreactor. The hydrodynamic characteristics of the TFB, especially the internal-circulation of bioparticles associated with its unique tapered geometry of the bed, created a much more uniform axial distribution of the bioparticles, leading to the formation of thinner and more compacted biofilms in the TFB compared to that in the CFB. The thinner biofilm in the TFB tended to be stable and possessed more than 6 times of microbial population density compared to the CFB. As a result, thinner biofilms in the TFB contributed to a higher COD removal efficiency, which remained at over 95% at operated expansion ratios, about 15 to 25% higher than that in the CFB. PMID:21436551

  5. Shell biofilm-associated nitrous oxide production in marine molluscs

    Heisterkamp, Ines M.; Schramm, Andreas; Larsen, Lone H.; Svenningsen, Nanna B.; Lavik, Gaute; de Beer, Dirk; Stief, Peter

    2013-01-01

    Emission of the greenhouse gas nitrous oxide (N2O) from freshwater and terrestrial invertebrates has exclusively been ascribed to N2O production by ingested denitrifying bacteria in the anoxic gut of the animals. Our study of marine molluscs now shows that also microbial biofilms on shell surfaces...

  6. Impact of nutrient composition on a degradative biofilm community

    Møller, Søren; Korber, Darren R.; Wolfaardt, Gideon M.; Molin, Søren; Caldwell, Douglas E.

    1997-01-01

    A microbial community was cultivated in flow cells with 2,4,6-trichlorobenzoic acid (2,4,6-TCB) as sole carbon and energy source and was examined with scanning confocal laser microscopy and fluorescent molecular probes. The biofilm community which developed under these conditions exhibited a char...

  7. Shewanella putrefaciens adhesion and biofilm formation on food processing surfaces

    Bagge, Dorthe; Hjelm, M.; Johansen, C.; Huber, I.; Gram, Lone

    2001-01-01

    Laboratory model systems were developed for studying Shewanella putrefaciens adhesion and biofilm formation under batch and flow conditions. S. putrefaciens plays a major role in food spoilage and may cause microbially induced corrosion on steel surfaces. S. putrefaciens bacteria suspended in...

  8. Enhanced bioleaching on attachment of indigenous acidophilic bacteria to pyrite surface

    Wi, D. W.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    In recent years, bioleaching has been widely applied on an industrial scale due to the advantages of low cost and environment friendliness. The direct contact mechanism of bioleaching assumes the action of a metal sulfide-attached cell oxidizing the mineral by an enzyme system with oxygen to sulfate and metal cations. Fundamental surface properties of sulfide particles and leaching-bacteria in bioleaching play the key role in the efficiency of this process. The aim of this work is to investigate of direct contact bioleaching mechanism on pyrite through attachment properties between indigenous acidophilic bacteria and pyrite surfaces. The bacteria were obtained from sulfur hot springs, Hatchobaru thermal electricity plant in Japan. And pyrite was collected from mine waste from Gwang-yang abandoned gold mines, Korea. In XRD analyses of the pyrite, x-ray diffracted d-value belong to pyrite was observed. The indigenous acidophilic bacteria grew well in a solution and over the course of incubation pH decreased and Eh increased. In relation to a bacterial growth-curve, the lag phase was hardly shown while the exponential phase was very fast. Bioleaching experiment result was showed that twenty days after the indigenous acidophilic bacteria were inoculated to a pyrite-leaching medium, the bacterial sample had a greater concentration of Fe and Zn than within the control sample. In SEM-EDS analyses, rod-shaped bacteria and round-shaped microbes were well attached to the surface of pyrite. The size of the rod-shaped bacteria ranged from 1.05~1.10 ? to 4.01~5.38 ?. Round-shaped microbes were more than 3.0 ? in diameter. Paired cells of rod-shaped bacteria were attached to the surface of pyrite linearly.

  9. Photochemical performance of the acidophilic red alga Cyanidium sp. in a pH gradient

    Kvíderová, Jana

    2012-01-01

    Roč. 42, č. 2-3 (2012), s. 223-234. ISSN 0169-6149. [European Workshop on Astrobiology of the European-Astrobiology-Network-Association (EANA) /11/. German Aerosp Ctr, Cologne, 11.07.2011-14.07.2011] R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : acidophilic red alga * pH gradient * photochemistry Subject RIV: EF - Botanics Impact factor: 1.831, year: 2012

  10. Management of dental unit waterline biofilms in the 21st century.

    O'Donnell, Mary J

    2011-10-01

    Dental chair units (DCUs) use water to cool and irrigate DCU-supplied instruments and tooth surfaces, and provide rinsewater during dental treatment. A complex network of interconnected plastic dental unit waterlines (DUWLs) supply water to these instruments. DUWLs are universally prone to microbial biofilm contamination seeded predominantly from microorganisms in supply water. Consequently, DUWL output water invariably becomes contaminated by high densities of microorganisms, principally Gram-negative environmental bacteria including Pseudomonas aeruginosa and Legionella species, but sometimes contain human-derived pathogens such as Staphylococcus aureus. Patients and staff are exposed to microorganisms from DUWL output water and to contaminated aerosols generated by DCU instruments. A wide variety of approaches, many unsuccessful, have been proposed to control DUWL biofilm. More recently, advances in biofilm science, chemical DUWL biofilm treatment agents, DCU design, supply water treatment and development of automated DUWL biofilm control systems have provided effective long-term solutions to DUWL biofilm control.

  11. Development and antimicrobial susceptibility studies of in vitro monomicrobial and polymicrobial biofilm models with Aspergillus fumigatus and Pseudomonas aeruginosa

    Manavathu, Elias K.; Vager, Dora L; Vazquez, Jose A

    2014-01-01

    Background Mixed microbial infections of the respiratory tracts with P. aeruginosa and A. fumigatus capable of producing biofilms are commonly found in cystic fibrosis patients. The primary objective of this study was to develop an in vitro model for P. aeruginosa and A. fumigatus polymicrobial biofilm to study the efficacy of various antimicrobial drugs alone and in combinations against biofilm-embedded cells. Simultaneous static cocultures of P. aeruginosa and sporelings were used for the d...

  12. Zinc sorption by a bacterial biofilm.

    Toner, Brandy; Manceau, Alain; Marcus, Matthew A; Millet, Dylan B; Sposito, Garrison

    2005-11-01

    Microbial biofilms are present in soils, sediments, and natural waters. They contain bioorganic metal-complexing functional groups and are thought to play an important role in metal cycling in natural and contaminated environments. In this study, the metal-complexing functional groups present within a suspension of bacterial cell aggregates embedded in extracellular polymeric substances (EPS) were identified in Zn adsorption experiments conducted at pH 6.9 with the freshwater and soil bacterium Pseudomonas putida. The adsorption data were fit with the van Bemmelen-Freundlich model. The molecular speciation of Zn within the biofilm was examined with Zn K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The Zn EXAFS data were analyzed by shell-by-shell fitting and linear least-squares fitting with reference spectra. Zinc sorption to the biofilm was attributed to predominantly Zn--phosphoryl (85 +/- 10 mol %) complexes, with a smaller contribution to sorption from carboxyl-type complexes (23 +/- 10 mol %). The results of this study spectroscopically confirm the importance of phosphoryl functional groups in Zn sorption by a bacterial biofilm at neutral pH. PMID:16294865

  13. Hydraulic resistance of biofilms

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  14. Complementary Microorganisms in Highly Corrosive Biofilms from an Offshore Oil Production Facility.

    Vigneron, Adrien; Alsop, Eric B; Chambers, Brian; Lomans, Bartholomeus P; Head, Ian M; Tsesmetzis, Nicolas

    2016-04-01

    Offshore oil production facilities are frequently victims of internal piping corrosion, potentially leading to human and environmental risks and significant economic losses. Microbially influenced corrosion (MIC) is believed to be an important factor in this major problem for the petroleum industry. However, knowledge of the microbial communities and metabolic processes leading to corrosion is still limited. Therefore, the microbial communities from three anaerobic biofilms recovered from the inside of a steel pipe exhibiting high corrosion rates, iron oxide deposits, and substantial amounts of sulfur, which are characteristic of MIC, were analyzed in detail. Bacterial and archaeal community structures were investigated by automated ribosomal intergenic spacer analysis, multigenic (16S rRNA and functional genes) high-throughput Illumina MiSeq sequencing, and quantitative PCR analysis. The microbial community analysis indicated that bacteria, particularly Desulfovibrio species, dominated the biofilm microbial communities. However, other bacteria, such as Pelobacter, Pseudomonas, and Geotoga, as well as various methanogenic archaea, previously detected in oil facilities were also detected. The microbial taxa and functional genes identified suggested that the biofilm communities harbored the potential for a number of different but complementary metabolic processes and that MIC in oil facilities likely involves a range of microbial metabolisms such as sulfate, iron, and elemental sulfur reduction. Furthermore, extreme corrosion leading to leakage and exposure of the biofilms to the external environment modify the microbial community structure by promoting the growth of aerobic hydrocarbon-degrading organisms. PMID:26896143

  15. Monitoring Microbially Influenced Corrosion

    Hilbert, Lisbeth Rischel

    Abstract Microbially influenced corrosion (MIC) of carbon steel may occur in media with microbiological activity of especially sulphate-reducing bacteria (SRB). The applicability and reliability of a number of corrosion monitoring techniques for monitoring MIC has been evaluated in experiments...... diffusional effects and unreliable corrosion rates, when biofilm and ferrous sulphide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 by electrochemical techniques. Weight loss coupons and ER are recommended as necessary basic monitoring techniques....... EIS might be used for detection of MIC as the appearance of very large capacitances can be attributed to the combined ferrous sulphide and biofilm formation. Capacitance correlates directly with sulphide concentration in sterile sulphide media. Keywords: Corrosion monitoring, carbon steel, MIC, SRB...

  16. Meningococcal biofilm formation

    Lappann, M.; Haagensen, Janus Anders Juul; Claus, H.;

    2006-01-01

    We show that in a standardized in vitro flow system unencapsulated variants of genetically diverse lineages of Neisseria meningitidis formed biofilms, that could be maintained for more than 96 h. Biofilm cells were resistant to penicillin, but not to rifampin or ciprofloxacin. For some strains......, microcolony formation within biofilms was observed. Microcolony formation in strain MC58 depended on a functional copy of the pilE gene encoding the pilus subunit pilin, and was associated with twitching of cells. Nevertheless, unpiliated pilE mutants formed biofilms showing that attachment and accumulation...... PilX alleles was identified among genetically diverse meningococcal strains. PilX alleles differed in their propensity to support autoaggregation of cells in suspension, but not in their ability to support microcolony formation within biofilms in the continuous flow system....

  17. Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil

    Wu Siva; McDonald Kent; Pandita Ragini; O'Keeffe Teresa; Kainović Aleksandra; Baum Marc M; Webster Paul

    2009-01-01

    Abstract Background Microbial biofilms represent an incompletely understood, but fundamental mode of bacterial growth. These sessile communities typically consist of stratified, morphologically-distinct layers of extracellular material, where numerous metabolic processes occur simultaneously in close proximity. Limited reports on environmental isolates have revealed highly ordered, three-dimensional organization of the extracellular matrix, which may hold important implications for biofilm ph...

  18. Terrestrial Runoff Controls the Bacterial Community Composition of Biofilms along a Water Quality Gradient in the Great Barrier Reef

    Witt, Verena; Wild, Christian; Uthicke, Sven

    2012-01-01

    16S rRNA gene molecular analysis elucidated the spatiotemporal distribution of bacterial biofilm communities along a water quality gradient. Multivariate statistics indicated that terrestrial runoff, in particular dissolved organic carbon and chlorophyll a concentrations, induced shifts of specific bacterial communities between locations and seasons, suggesting microbial biofilms could be suitable bioindicators for water quality.

  19. Attachment of Campylobacter jejuni on biofilms from two chicken houses in Thailand

    Daungjinda, M.

    2007-01-01

    Full Text Available The attachment of C. jejuni on four gram negative biofilms (FBRL-C04, FBRL-B05, FBRL-F01 and FBRL-B06 isolated from two chicken houses were studied. It was found that C. jejuni attached to biofilm of FBRL-F01 at the highest rate (4.4 logCFU/cm2 compared (P<0.05 to FBRL-C04 FBRL-B05 and FBRL-B06 (4.0 4.0 and 4.1 logCFU/cm2, respectively. Coaggregation between C. jejuni and biofilm organisms may indicate the ability of organisms to form biofilm together. Percent coaggregation between C. jejuni and biofilm organisms, FBRL-C04 and FBRL-F01 was 39.14% and 33.70%, respectively, higher (P<0.05 than thatwith FBRL-B05 and FBRL-B06 (-3.38% and 12.87%, respectively. Hydrophobicity of planktonic and biofilm cells of C. jejuni and 4 biofilm producers were measured by the microbial adhesion to hydrocarbon (MATH method using hexadecane. FBRL-B06 showed the highest (P<0.05 hydrophobicity (68.95% indicating more hydrophobic components on its cell surface. Planktonic cells had lower (P<0.05 hydrophobicity than biofilm cells. However, the degree of hydrophobicity of biofilm cells was not related to attachment of C. jejuni on biofilms.

  20. Genomic insights into a new acidophilic, copper-resistant Desulfosporosinus isolate from the oxidized tailings area of an abandoned gold mine.

    Mardanov, Andrey V; Panova, Inna A; Beletsky, Alexey V; Avakyan, Marat R; Kadnikov, Vitaly V; Antsiferov, Dmitry V; Banks, David; Frank, Yulia A; Pimenov, Nikolay V; Ravin, Nikolai V; Karnachuk, Olga V

    2016-08-01

    Microbial sulfate reduction in acid mine drainage is still considered to be confined to anoxic conditions, although several reports have shown that sulfate-reducing bacteria occur under microaerophilic or aerobic conditions. We have measured sulfate reduction rates of up to 60 nmol S cm(-3) day(-1) in oxidized layers of gold mine tailings in Kuzbass (SW Siberia). A novel, acidophilic, copper-tolerant Desulfosporosinus sp. I2 was isolated from the same sample and its genome was sequenced. The genomic analysis and physiological data indicate the involvement of transporters and additional mechanisms to tolerate metals, such as sequestration by polyphosphates. Desulfosporinus sp. I2 encodes systems for a metabolically versatile life style. The genome possessed a complete Embden-Meyerhof pathway for glycolysis and gluconeogenesis. Complete oxidation of organic substrates could be enabled by the complete TCA cycle. Genomic analysis found all major components of the electron transfer chain necessary for energy generation via oxidative phosphorylation. Autotrophic CO2 fixation could be performed through the Wood-Ljungdahl pathway. Multiple oxygen detoxification systems were identified in the genome. Taking into account the metabolic activity and genomic analysis, the traits of the novel isolate broaden our understanding of active sulfate reduction and associated metabolism beyond strictly anaerobic niches. PMID:27222219

  1. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    Mishra, Debaraj [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Dong J. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of)], E-mail: djkim@kigam.re.kr; Ralph, David E. [AJ Parker CRC for Hydrometallurgy, Murdoch University, South Street Murdoch, Perth 6153 (Australia); Ahn, Jong G. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Rhee, Young H. [Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2008-04-15

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO{sub 3}. Bioleach residues were characterized by EDX and XRD.

  2. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO3. Bioleach residues were characterized by EDX and XRD

  3. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect.

    Mishra, Debaraj; Kim, Dong J; Ralph, David E; Ahn, Jong G; Rhee, Young H

    2008-04-15

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO3. Bioleach residues were characterized by EDX and XRD. PMID:17825485

  4. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at −1 was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process

  5. Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals.

    Beolchini, Francesca; Dell'Anno, Antonio; De Propris, Luciano; Ubaldini, Stefano; Cerrone, Federico; Danovaro, Roberto

    2009-03-01

    This study deals with bioremediation treatments of dredged sediments contaminated by heavy metals based on the bioaugmentation of different bacterial strains. The efficiency of the following bacterial consortia was compared: (i) acidophilic chemoautotrophic, Fe/S-oxidising bacteria, (ii) acidophilic heterotrophic bacteria able to reduce Fe/Mn fraction, co-respiring oxygen and ferric iron and (iii) the chemoautotrophic and heterotrophic bacteria reported above, pooled together, as it was hypothesised that the two strains could cooperate through a mutual substrate supply. The effect of the bioremediation treatment based on the bioaugmentation of Fe/S-oxidising strains alone was similar to the one based only on Fe-reducing bacteria, and resulted in heavy-metal extraction yields typically ranging from 40% to 50%. The efficiency of the process based only upon autotrophic bacteria was limited by sulphur availability. However, when the treatment was based on the addition of Fe-reducing bacteria and the Fe/S oxidizing bacteria together, their growth rates and efficiency in mobilising heavy metals increased significantly, reaching extraction yields >90% for Cu, Cd, Hg and Zn. The additional advantage of the new bioaugmentation approach proposed here is that it is independent from the availability of sulphur. These results open new perspectives for the bioremediation technology for the removal of heavy metals from highly contaminated sediments. PMID:19118863

  6. The Antistaphylococcal Activity of Citropin 1.1 and Temporin A against Planktonic Cells and Biofilms Formed by Isolates from Patients with Atopic Dermatitis: An Assessment of Their Potential to Induce Microbial Resistance Compared to Conventional Antimicrobials

    Malgorzata Dawgul

    2016-05-01

    Full Text Available Staphylococcus aureus (SA colonizes the vast majority of patients with atopic dermatitis (AD. Its resistance to antibiotics and ability to form biofilms are the main origins of therapeutic complications. Endogenous antimicrobial peptides (AMPs exhibit strong activity against SA, including antibiotic resistant strains as well as bacteria existing in biofilm form. The purpose of the present work was to determine the antistaphylococcal activity of two amphibian peptides against SA isolated from patients with AD. The AMPs demonstrated permanent activity towards strains exposed to sublethal concentrations of the compounds and significantly stronger antibiofilm activity in comparison to that of conventional antimicrobials. The results suggest the potential application of amphibian AMPs as promising antistaphylococcal agents for the management of skin infections.

  7. A Technique To Quantify the Population Size and Composition of the Biofilm Component in Communities of Bacteria in the Phyllosphere

    Morris, Cindy E.; Monier, Jean-Michel; Jacques, Marie-Agnès

    1998-01-01

    The presence of microbial biofilms in the phyllosphere of terrestrial plants has recently been demonstrated, but few techniques to study biofilms associated with living plant tissues are available. Here we report a technique to estimate the proportion of the bacterial population on leaves that is assembled in biofilms and to quantitatively isolate bacteria from the biofilm and nonbiofilm (solitary) components of phyllosphere microbial communities. This technique is based on removal of bacteria from leaves by gentle washing, separation of biofilm and solitary bacteria by filtration, and disintegration of biofilms by ultrasonication. The filters used for this technique were evaluated for their nonspecific retention rates of solitary bacteria and for the efficiency of filtration for different concentrations of solitary bacteria in the presence of biofilms and other particles. The lethality and efficiency of disintegration of the sonication conditions used here were also evaluated. Isolation and quantification of bacteria by this technique is based on use of culture media. However, oligonucleotide probes, sera, or epifluorescent stains could also be used for direct characterization of the biofilm and solitary bacteria in the suspensions generated by this technique. Preliminary results from estimates of biofilm abundance in phyllosphere communities show that bacteria in biofilms constitute between about 10 and 40% of the total bacterial population on broad-leaf endive and parsley leaves. PMID:9835563

  8. Antibacterial activity of Espand (Peganum harmala alcoholic extracts against six pathogenic bacteria in planktonic and biofilm forms

    Zinab Mohsenipour

    2016-03-01

    Full Text Available Introduction: Microbial biofilms have attracted interest in recent years because they have become the most important cause of nosocomial infections. This study was aimed to examine the antibacterial activities of Peganum harmala extracts on the development of microbial biofilms and planktonic form of six pathogenic bacteria which include Staphylococcus aureus, Bacillus cereus, Streptococcus pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Materials and methods: Antimicrobial activities of the crude extracts against the planktonic form of bacteria were evaluated by using disc diffusion method, minimum inhibitory concentration (MIC and the minimum bactericidal concentration (MBC values were determined by a macrobroth dilution technique. Anti- biofilm effects of the extracts were assessed by microtiter plate method. Results: According to the results, P. harmala extracts could inhibit test bacteria in planktonic form. To inhibit biofilm formation, biofilm metabolic activity and eradication of established biofilms, efficiency of the extracts depended on concentration. The highest inhibitory effects of P. harmala extracts were observed on biofilm formation of S. aureus (90.28% also, the greatest demolish were observed on S. pneumonia biofilm (77.76%. These extracts cause dramatically decrease the metabolic activity of bacteria in biofilm structures, in this case the decrement of B. cereus were highest (69.98% compared to other tested bacteria. Discussion and conclusion: Therefore, it can be suggested that P.harmala extracts applied as antimicrobial agents against testing bacteria particularly in biofilm forms. 

  9. The effects of sodium hypochlorite on the control of inter-kingdom biofilm formation by drinking water-isolated microorganisms

    Simões, Lúcia C; Chaves, Ana F.A.; Simões, Manuel; Lima, Nelson

    2015-01-01

    Biofilms in drinking water distribution systems (DWDS) are responsible for several undesirable effects in water. One of the main drawbacks is their potential to protect pathogens from stress conditions. Microbial interactions in biofilms can benefit the survival of co existing microorganisms, including the increased resistance to antimicrobials. Chlorine disinfection is the main widespread strategy used in DWDS for microbial control. Even if new and alternative strategies are b...

  10. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting

    Zhang, Weipeng

    2015-11-28

    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of the present study sheds new light on microbial community assembly in special habitats and bridges a gap in species sorting theory.

  11. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting.

    Zhang, Weipeng; Tian, Renmao; Bo, Yang; Cao, Huiluo; Cai, Lin; Chen, Lianguo; Zhou, Guowei; Sun, Jin; Zhang, Xixiang; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan

    2016-05-01

    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep-sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of this study shed new light on microbial community assembly in special habitats and bridge a gap in species sorting theory. PMID:26614914

  12. Predictive Computer Models for Biofilm Detachment Properties in Pseudomonas aeruginosa

    Cogan, Nick G.; Harro, Janette M.; Stoodley, Paul

    2016-01-01

    ABSTRACT Microbial biofilm communities are protected against environmental extremes or clearance by antimicrobial agents or the host immune response. They also serve as a site from which microbial populations search for new niches by dispersion via single planktonic cells or by detachment by protected biofilm aggregates that, until recently, were thought to become single cells ready for attachment. Mathematically modeling these events has provided investigators with testable hypotheses for further study. Such was the case in the recent article by Kragh et al. (K. N. Kragh, J. B. Hutchison, G. Melaugh, C. Rodesney, A. E. Roberts, Y. Irie, P. Ø. Jensen, S. P. Diggle, R. J. Allen, V. Gordon, and T. Bjarnsholt, mBio 7:e00237-16, 2016, http://dx.doi.org/10.1128/mBio.00237-16), in which investigators were able to identify the differential competitive advantage of biofilm aggregates to directly attach to surfaces compared to the single-celled planktonic populations. Therefore, as we delve deeper into the properties of the biofilm mode of growth, not only do we need to understand the complexity of biofilms, but we must also account for the properties of the dispersed and detached populations and their effect on reseeding. PMID:27302761

  13. Predictive Computer Models for Biofilm Detachment Properties in Pseudomonas aeruginosa.

    Cogan, Nick G; Harro, Janette M; Stoodley, Paul; Shirtliff, Mark E

    2016-01-01

    Microbial biofilm communities are protected against environmental extremes or clearance by antimicrobial agents or the host immune response. They also serve as a site from which microbial populations search for new niches by dispersion via single planktonic cells or by detachment by protected biofilm aggregates that, until recently, were thought to become single cells ready for attachment. Mathematically modeling these events has provided investigators with testable hypotheses for further study. Such was the case in the recent article by Kragh et al. (K. N. Kragh, J. B. Hutchison, G. Melaugh, C. Rodesney, A. E. Roberts, Y. Irie, P. Ø. Jensen, S. P. Diggle, R. J. Allen, V. Gordon, and T. Bjarnsholt, mBio 7:e00237-16, 2016, http://dx.doi.org/10.1128/mBio.00237-16), in which investigators were able to identify the differential competitive advantage of biofilm aggregates to directly attach to surfaces compared to the single-celled planktonic populations. Therefore, as we delve deeper into the properties of the biofilm mode of growth, not only do we need to understand the complexity of biofilms, but we must also account for the properties of the dispersed and detached populations and their effect on reseeding. PMID:27302761

  14. The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly.

    Pepe-Ranney, Charles; Hall, Edward K

    2015-01-01

    The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P) or nitrogen (N). Therefore, C inputs have the potential to shift the competitive balance of aquatic microbial communities by increasing the resource space available to heterotrophs (more C) while decreasing the resource space available to photoautotrophs (less mineral nutrients due to increased competition from heterotrophs). To test how resource dynamics affect membership of planktonic communities and assembly of biofilm communities we amended a series of flow-through mesocosms with C to alter the availability of C among treatments. Each mesocosm was fed with unfiltered seawater and incubated with sterilized microscope slides as surfaces for biofilm formation. The highest C treatment had the highest planktonic heterotroph abundance, lowest planktonic photoautotroph abundance, and highest biofilm biomass. We surveyed bacterial 16S rRNA genes and plastid 23S rRNA genes to characterize biofilm and planktonic community membership and structure. Regardless of resource additions, biofilm communities had higher alpha diversity than planktonic communities in all mesocosms. Heterotrophic plankton communities were distinct from heterotrophic biofilm communities in all but the highest C treatment where heterotrophic plankton and biofilm communities resembled each other after 17 days. Unlike the heterotrophs, photoautotrophic plankton communities were different than photoautotrophic biofilm communities in composition in all treatments including the highest C treatment. Our results suggest that although resource amendments affect community membership and structure, microbial lifestyle (biofilm vs. planktonic) has a stronger influence on community composition. PMID:26236289

  15. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection.

    Otter, J A; Vickery, K; Walker, J T; deLancey Pulcini, E; Stoodley, P; Goldenberg, S D; Salkeld, J A G; Chewins, J; Yezli, S; Edgeworth, J D

    2015-01-01

    Microbes tend to attach to available surfaces and readily form biofilms, which is problematic in healthcare settings. Biofilms are traditionally associated with wet or damp surfaces such as indwelling medical devices and tubing on medical equipment. However, microbes can survive for extended periods in a desiccated state on dry hospital surfaces, and biofilms have recently been discovered on dry hospital surfaces. Microbes attached to surfaces and in biofilms are less susceptible to biocides, antibiotics and physical stress. Thus, surface attachment and/or biofilm formation may explain how vegetative bacteria can survive on surfaces for weeks to months (or more), interfere with attempts to recover microbes through environmental sampling, and provide a mixed bacterial population for the horizontal transfer of resistance genes. The capacity of existing detergent formulations and disinfectants to disrupt biofilms may have an important and previously unrecognized role in determining their effectiveness in the field, which should be reflected in testing standards. There is a need for further research to elucidate the nature and physiology of microbes on dry hospital surfaces, specifically the prevalence and composition of biofilms. This will inform new approaches to hospital cleaning and disinfection, including novel surfaces that reduce microbial attachment and improve microbial detachment, and methods to augment the activity of biocides against surface-attached microbes such as bacteriophages and antimicrobial peptides. Future strategies to address environmental contamination on hospital surfaces should consider the presence of microbes attached to surfaces, including biofilms. PMID:25447198

  16. Microbial interactions in building of communities

    Wright, Christopher J.; Burns, Logan H.; Jack, Alison A.; Back, Catherine R.; Dutton, Lindsay C.; Nobbs, Angela H.; Lamont, Richard J.; Jenkinson, Howard F.

    2012-01-01

    SUMMARY Establishment of a community is considered to be essential for microbial growth and survival in the human oral cavity. Biofilm communities have increased resilience to physical forces, antimicrobial agents, and nutritional variations. Specific cell-to-cell adherence processes, mediated by adhesin-receptor pairings on respective microbial surfaces, are able to direct community development. These interactions co-localize species in mutually beneficial relationships, such as streptococci, veillonellae, Porphyromonas gingivalis and Candida albicans. In transition from the planktonic mode of growth to a biofilm community, microorganisms undergo major transcriptional and proteomic changes. These occur in response to sensing of diffusible signals, such as autoinducer molecules, and to contact with host tissues or other microbial cells. Underpinning many of these processes are intracellular phosphorylation events that regulate a large number of microbial interactions relevant to community formation and development. PMID:23253299

  17. 嗜酸糖苷水解酶研究进展%Research Progress on Acidophilic Glycoside Hydrolase

    罗会颖; 姚斌; 范云六

    2013-01-01

    随着极端微生物及极端酶的广泛研究,嗜酸酶因其在极端酸性环境中具有高的酶活性和稳定性而倍受关注,并取得了较大的研究进展。嗜酸糖苷水解酶是嗜酸酶中最重要的一类,在生物能源、饲料、食品等工业中具有重要的应用前景。综述了重要嗜酸糖苷水解酶,包括嗜酸淀粉酶、嗜酸纤维素酶、嗜酸木聚糖酶和甘露聚糖酶在基因的挖掘、表达、分子改良嗜酸机制研究以及应用等方面国内外的研究进展,展望了嗜酸糖苷水解酶未来可能的研究方向和发展前景。%Extremophiles and enzymes from extremophiles are widely studied. Of them, acidophilic enzyme attracts much attention, due to its high activity and stability under extreme acidic conditions, and this research has made rapid progress. Acidophilic glycosyl hydrolase is one of the most important acidophilic enzymes, and has significant application prospect in bio-energy, animal feed, food and other industries. This paper reviewed the gene cloning, heterologous expression, molecular modification and acidophilic mechanisms of important acidophilic glycosyl hydrolases, including amylase, cellulase, xylanase, and mannanase. The research orientation and development prospects were also elucidated in this paper.

  18. Inhibitors of biofilm formation by biofuel fermentation contaminants.

    Leathers, Timothy D; Bischoff, Kenneth M; Rich, Joseph O; Price, Neil P J; Manitchotpisit, Pennapa; Nunnally, Melinda S; Anderson, Amber M

    2014-10-01

    Biofuel fermentation contaminants such as Lactobacillus sp. may persist in production facilities by forming recalcitrant biofilms. In this study, biofilm-forming strains of Lactobacillus brevis, Lactobacillus fermentum, and Lactobacillus plantarum were isolated and characterized from a dry-grind fuel ethanol plant. A variety of potential biofilm inhibitors were tested, including microbial polysaccharides, commercial enzymes, ferric ammonium citrate, liamocins, phage endolysin, xylitol, and culture supernatants from Bacillus sp. A commercial enzyme mixture (Novozyme 188) and culture supernatants from Bacillus subtilis strains ALT3A and RPT-82412 were identified as the most promising biofilm inhibitors. In biofilm flow cells, these inhibitors reduced the density of viable biofilm cells by 0.8-0.9 log cfu/cm(2). Unlike B. subtilis strain RPT-82412, B. subtilis strain ALT3A and Novozyme 188 did not inhibit planktonic growth of Lactobacillus sp. MALDI-TOF mass spectra showed the production of surfactin-like molecules by both B. subtilis strains, and the coproduction of iturin-like molecules by strain RPT-82412. PMID:25022836

  19. Cohesiveness and hydrodynamic properties of young drinking water biofilms.

    Abe, Yumiko; Skali-Lami, Salaheddine; Block, Jean-Claude; Francius, Grégory

    2012-03-15

    Drinking water biofilms are complex microbial systems mainly composed of clusters of different size and age. Atomic force microscopy (AFM) measurements were performed on 4, 8 and 12 weeks old biofilms in order to quantify the mechanical detachment shear stress of the clusters, to estimate the biofilm entanglement rate ξ. This AFM approach showed that the removal of the clusters occurred generally for mechanical shear stress of about 100 kPa only for clusters volumes greater than 200 μm3. This value appears 1000 times higher than hydrodynamic shear stress technically available meaning that the cleaning of pipe surfaces by water flushing remains always incomplete. To predict hydrodynamic detachment of biofilm clusters, a theoretical model has been developed regarding the averaging of elastic and viscous stresses in the cluster and by including the entanglement rate ξ. The results highlighted a slight increase of the detachment shear stress with age and also the dependence between the posting of clusters and their volume. Indeed, the experimental values of ξ allow predicting biofilm hydrodynamic detachment with same order of magnitude than was what reported in the literature. The apparent discrepancy between the mechanical and the hydrodynamic detachment is mainly due to the fact that AFM mechanical experiments are related to the clusters local properties whereas hydrodynamic measurements reflected the global properties of the whole biofilm. PMID:22221338

  20. Biofilms and their role in deterioration of heat exchanger performance

    Natural sources of water, whether fresh, brackish or marine, contain a host of microorganisms like bacterial, fungi, protozoa, algae and larvae of invertebrates. When such a body of water is used as a source of cooling water, it is likely that these organisms colonize and thrive on the cooling system components. Microbial film (slime) formation is primarily caused by adhesion of bacteria to surfaces. Within a water distribution system, the biofilm may act as an innoculum for colonization of the rest of the piping circuit, and provide a protective environment for the microbes enmeshed in the exopolymers. Biofilms role in deterioration of heat exchanger performance is given. 6 refs., 2 tabs., 4 figs