WorldWideScience

Sample records for acidophilic heterotrophic bacteria

  1. Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria

    Johnson, D. Barrie; McGinness, Stephen

    1991-01-01

    Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was note...

  2. Acidophilic, Heterotrophic Bacteria of Acidic Mine Waters

    Wichlacz, Paul L.; Unz, Richard F.

    1981-01-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and ...

  3. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  4. Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals.

    Beolchini, Francesca; Dell'Anno, Antonio; De Propris, Luciano; Ubaldini, Stefano; Cerrone, Federico; Danovaro, Roberto

    2009-03-01

    This study deals with bioremediation treatments of dredged sediments contaminated by heavy metals based on the bioaugmentation of different bacterial strains. The efficiency of the following bacterial consortia was compared: (i) acidophilic chemoautotrophic, Fe/S-oxidising bacteria, (ii) acidophilic heterotrophic bacteria able to reduce Fe/Mn fraction, co-respiring oxygen and ferric iron and (iii) the chemoautotrophic and heterotrophic bacteria reported above, pooled together, as it was hypothesised that the two strains could cooperate through a mutual substrate supply. The effect of the bioremediation treatment based on the bioaugmentation of Fe/S-oxidising strains alone was similar to the one based only on Fe-reducing bacteria, and resulted in heavy-metal extraction yields typically ranging from 40% to 50%. The efficiency of the process based only upon autotrophic bacteria was limited by sulphur availability. However, when the treatment was based on the addition of Fe-reducing bacteria and the Fe/S oxidizing bacteria together, their growth rates and efficiency in mobilising heavy metals increased significantly, reaching extraction yields >90% for Cu, Cd, Hg and Zn. The additional advantage of the new bioaugmentation approach proposed here is that it is independent from the availability of sulphur. These results open new perspectives for the bioremediation technology for the removal of heavy metals from highly contaminated sediments. PMID:19118863

  5. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    David Barrie Johnson

    2012-09-01

    Full Text Available Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30 ˚C, with a corresponding culture doubling time of 9 hours. The isolates displayed similar tolerance (10-50 mM to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC. Glycolic acid was identified as a significant component (12- 14% of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within three days. Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella, and mannitol and glucose (Euglena. These were rapidly metabolised by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp. though only fructose was utilised by the more fastidious heterotroph Acidocella aromatica. The significance of algae in promoting the growth of iron- (and sulfate- reducing heterotrophic acidophiles that are important in remediating mine-impacted waters is discussed.

  6. Grazing of acidophilic bacteria by a flagellated protozoan.

    McGinness, S; Johnson, D B

    1992-01-01

    A biflagellated protozoan was isolated from an acidic drainage stream located inside a disused pyrite mine. The stream contained copious amounts of "acid streamer" bacterial growths, and the flagellate was observed in situ apparently grazing the streamer bacteria. The protozoan was obligately acidophilic, growing between pH 1.8 and 4.5, but not at pH 1.6 or 5.0, with optimum growth between pH 3 and 4. It was highly sensitive to copper, molybdenum, silver, and uranium, but tolerated ferrous and ferric iron up to 50 and 25 mM, respectively. In the laboratory, the protozoan was found to graze a range of acidophilic bacteria, including the chemolithotrophs Thiobacillus ferrooxidans, Leptospirillum ferrooxidans, and the heterotroph Acidiphilium cryptum. Thiobacillus thiooxidans and Thiobacillus acidophilus were not grazed. Filamentous growth of certain acidophiles afforded some protection against being grazed by the flagellate. In mixed cultures of T. ferrooxidans and L. ferrooxidans, the protozoan isolate displayed preferential grazing of the former. The possibility of using acidophilic protozoa as a means of controlling bacteria responsible for the production of acid mine drainage is discussed. PMID:24192830

  7. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    DavidBarrieJohnson

    2012-01-01

    Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30 ˚C, with a corresponding culture doubling time of 9 hours. The isolates displayed similar tolerance (10-50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled wi...

  8. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

    Jeremic, Sanja; Beškoski, Vladimir P; Djokic, Lidija; Vasiljevic, Branka; Vrvić, Miroslav M; Avdalović, Jelena; Gojgić Cvijović, Gordana; Beškoski, Latinka Slavković; Nikodinovic-Runic, Jasmina

    2016-05-01

    Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu(2+), Cd(2+) and Cr(6+) and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria- Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions. PMID:26942859

  9. PCR-mediated detection of acidophilic, bioleaching-associated bacteria.

    De Wulf-Durand, P; Bryant, L J; Sly, L I

    1997-01-01

    The detection of acidophilic microorganisms from mining environments by culture methods is time consuming and unreliable. Several PCR approaches were developed to amplify small-subunit rRNA sequences from the DNA of six bacterial phylotypes associated with acidic mining environments, permitting the detection of the target DNA at concentrations as low as 10 fg.

  10. Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria.

    Ňancucheo, Ivan; Rowe, Owen F; Hedrich, Sabrina; Johnson, D Barrie

    2016-05-01

    Growth media have been developed to facilitate the enrichment and isolation of acidophilic and acid-tolerant sulfate-reducing bacteria (aSRB) from environmental and industrial samples, and to allow their cultivation in vitro The main features of the 'standard' solid and liquid devised media are as follows: (i) use of glycerol rather than an aliphatic acid as electron donor; (ii) inclusion of stoichiometric concentrations of zinc ions to both buffer pH and to convert potentially harmful hydrogen sulphide produced by the aSRB to insoluble zinc sulphide; (iii) inclusion of Acidocella aromatica (an heterotrophic acidophile that does not metabolize glycerol or yeast extract) in the gel underlayer of double layered (overlay) solid media, to remove acetic acid produced by aSRB that incompletely oxidize glycerol and also aliphatic acids (mostly pyruvic) released by acid hydrolysis of the gelling agent used (agarose). Colonies of aSRB are readily distinguished from those of other anaerobes due to their deposition and accumulation of metal sulphide precipitates. Data presented illustrate the effectiveness of the overlay solid media described for isolating aSRB from acidic anaerobic sediments and low pH sulfidogenic bioreactors. PMID:27036143

  11. Heterotrophic bacteria in drinking water distribution system: a review.

    Chowdhury, Shakhawat

    2012-10-01

    The microbiological quality of drinking water in municipal water distribution systems (WDS) depends on several factors. Free residual chlorine and/or chloramines are typically used to minimize bacterial recontamination and/or regrowth in WDS. Despite such preventive measures, regrowth of heterotrophic (HPC) and opportunistic bacteria in bulk water and biofilms has yet to be controlled completely. No approach has shown complete success in eliminating biofilms or HPC bacteria from bulk water and pipe surfaces. Biofilms can provide shelter for pathogenic bacteria and protect these bacteria from disinfectants. Some HPC bacteria may be associated with aesthetic and non-life threatening diseases. Research to date has achieved important success in understanding occurrence and regrowth of bacteria in bulk water and biofilms in WDS. To achieve comprehensive understanding and to provide efficient control against bacteria regrowth, future research on bacteria regrowth dynamics and their implications is warranted. In this study, a review was performed on the literature published in this area. The findings and limitations of these papers are summarized. Occurrences of bacteria in WDS, factors affecting bacteria regrowth in bulk water and biofilms, bacteria control strategies, sources of nutrients, human health risks from bacterial exposure, modelling of bacteria regrowth and methods of bacteria sampling and detection and quantification are investigated. Advances to date are noted, and future research needs are identified. Finally, research directions are proposed to effectively control HPC and opportunistic bacteria in bulk water and biofilms in WDS. PMID:22076103

  12. Heterotrophic bacteria associated with Varroa destructor mite

    Vanikova, Slavomira; Noskova, Alzbeta; Pristas, Peter; Judova, Jana; Javorsky, Peter

    2015-01-01

    International audience Varroa bee hive attack is a serious and common problem in bee keeping. In our work, an ecto-microflora of Varroa destructor mites was characterised as a potential source of bacterial bee diseases. Using a cultivation approach, a variable population of bacteria was isolated from the body surface of Varroa mites with frequency of about 150 cfu per mite individual. Nine studied isolates were classified to four genera and six species by a combination of matrix-assisted l...

  13. A comparative effect of 3 disinfectants on heterotrophic bacteria, iron bacteria and sulfate-reducing bacteria

    2006-01-01

    The disinfection effect of chlorine dioxide, chlorine and their mixture on heterotrophic bacteria, iron bacteria and sulfate-reducing bacteria in circulating cooling water was studied. The results of the test indicated that high purity chlorine dioxide was the most effective biocide in the 3 disinfectants, and with a dosage of 0.5mg/L, chlorine dioxide could obtain perfect effect. High purity chloride dioxide could have the excellent effect with the pH value of 6 to 10, and could keep it within 72 h. Chlorine and their mixture couldn't reach the effect of chlorine dioxide.

  14. Interactions of Methylotrophs with Plants and Other Heterotrophic Bacteria

    Hiroyuki Iguchi; Hiroya Yurimoto; Yasuyoshi Sakai

    2015-01-01

    Methylotrophs, which can utilize methane and/or methanol as sole carbon and energy sources, are key players in the carbon cycle between methane and CO2, the two most important greenhouse gases. This review describes the relationships between methylotrophs and plants, and between methanotrophs (methane-utilizers, a subset of methylotrophs) and heterotrophic bacteria. Some plants emit methane and methanol from their leaves, and provide methylotrophs with habitats. Methanol-utilizing methylotrop...

  15. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.

    Navarro, Claudio A; von Bernath, Diego; Jerez, Carlos A

    2013-01-01

    Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI), which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each of these

  16. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria

    Ňancucheo, Ivan; Johnson, D. Barrie

    2011-01-01

    Summary Two continuous‐flow bench‐scale bioreactor systems populated by mixed communities of acidophilic sulfate‐reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor p...

  17. Enhanced bioleaching on attachment of indigenous acidophilic bacteria to pyrite surface

    Wi, D. W.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    In recent years, bioleaching has been widely applied on an industrial scale due to the advantages of low cost and environment friendliness. The direct contact mechanism of bioleaching assumes the action of a metal sulfide-attached cell oxidizing the mineral by an enzyme system with oxygen to sulfate and metal cations. Fundamental surface properties of sulfide particles and leaching-bacteria in bioleaching play the key role in the efficiency of this process. The aim of this work is to investigate of direct contact bioleaching mechanism on pyrite through attachment properties between indigenous acidophilic bacteria and pyrite surfaces. The bacteria were obtained from sulfur hot springs, Hatchobaru thermal electricity plant in Japan. And pyrite was collected from mine waste from Gwang-yang abandoned gold mines, Korea. In XRD analyses of the pyrite, x-ray diffracted d-value belong to pyrite was observed. The indigenous acidophilic bacteria grew well in a solution and over the course of incubation pH decreased and Eh increased. In relation to a bacterial growth-curve, the lag phase was hardly shown while the exponential phase was very fast. Bioleaching experiment result was showed that twenty days after the indigenous acidophilic bacteria were inoculated to a pyrite-leaching medium, the bacterial sample had a greater concentration of Fe and Zn than within the control sample. In SEM-EDS analyses, rod-shaped bacteria and round-shaped microbes were well attached to the surface of pyrite. The size of the rod-shaped bacteria ranged from 1.05~1.10 ? to 4.01~5.38 ?. Round-shaped microbes were more than 3.0 ? in diameter. Paired cells of rod-shaped bacteria were attached to the surface of pyrite linearly.

  18. Characterization of bacteria acidophilic in samples of water coming into a region that suffers influence of uranium mine in Caldas (MG)

    The fundamental condition for the bioleaching of the uranium ore is the presence of metallic sulfide such as pyrite associated with the ore, which is found in the ore and in the waste at the Unidade de Tratamento de Minerio (UTM) of Pocos de Caldas, State of Minas Gerais, Brazil. The present study aims to determine the chemical and microbiological characteristics in effluents of uranium mining from the UTM and in Antas dam, which receives treated effluents from the UTM. Water samples were collected Pit Mine (CM), located within the UTM facilities and from site 41 (Antas dam) in July and October 2008. We verified low pH values in water samples from CM (3.7) in comparison to the ones found at site 41 (6.65). There was a higher medium density value of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and heterotrophic acidophilic bacteria in water samples at site CM compared to the values recorded from samples at site 41. Medium values of Fe2+, uranium and zinc in samples from the site CM were higher than at site 41. The concentration of fluoride (68.5 mL-l) and manganese (2.34 mL-1) in water samples from site 41 were above the limits fixed for water bodies in Resolution CONAMA 357. The relative seasonal variation of some variables observed at site CM (low pH values, high densities of Acidithiobacillus sp. and heterotrophic acidophilic bacteria) shows that this site is one of the main sites of occurrence of acid mine drainage and action of bioleaching bacteria at UTM. (author)

  19. Characterization of bacteria acidophilic in samples of water coming into a region that suffers influence of uranium mine in Caldas (MG)

    Campos, Michelle B.; Ferrari, Carla R.; Roque, Claudio V.; Ronqui, Leilane B.; Nascimento, Marcos R.L. do; Rodgher, Suzelei; Azevedo, Heliana [Laboratorio de Pocos de Caldas (LAPOC-CNEN/MG), MG (Brazil)], e-mail: michelle_borato@hotmail.com, e-mail: carlarolimferrari@yahoo.com.br, e-mail: cvroque@cnen.gov.br, e-mail: leilanebio@yahoo.com.br, e-mail: pmarcos@cnen.gov.br, e-mail: surodgher@uol.com.br, e-mail: hgomes@cnen.gov.br

    2009-07-01

    The fundamental condition for the bioleaching of the uranium ore is the presence of metallic sulfide such as pyrite associated with the ore, which is found in the ore and in the waste at the Unidade de Tratamento de Minerio (UTM) of Pocos de Caldas, State of Minas Gerais, Brazil. The present study aims to determine the chemical and microbiological characteristics in effluents of uranium mining from the UTM and in Antas dam, which receives treated effluents from the UTM. Water samples were collected Pit Mine (CM), located within the UTM facilities and from site 41 (Antas dam) in July and October 2008. We verified low pH values in water samples from CM (3.7) in comparison to the ones found at site 41 (6.65). There was a higher medium density value of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and heterotrophic acidophilic bacteria in water samples at site CM compared to the values recorded from samples at site 41. Medium values of Fe{sup 2+}, uranium and zinc in samples from the site CM were higher than at site 41. The concentration of fluoride (68.5 mL{sup -l}) and manganese (2.34 mL{sup -1}) in water samples from site 41 were above the limits fixed for water bodies in Resolution CONAMA 357. The relative seasonal variation of some variables observed at site CM (low pH values, high densities of Acidithiobacillus sp. and heterotrophic acidophilic bacteria) shows that this site is one of the main sites of occurrence of acid mine drainage and action of bioleaching bacteria at UTM. (author)

  20. Interactions of Methylotrophs with Plants and Other Heterotrophic Bacteria

    Hiroyuki Iguchi

    2015-04-01

    Full Text Available Methylotrophs, which can utilize methane and/or methanol as sole carbon and energy sources, are key players in the carbon cycle between methane and CO2, the two most important greenhouse gases. This review describes the relationships between methylotrophs and plants, and between methanotrophs (methane-utilizers, a subset of methylotrophs and heterotrophic bacteria. Some plants emit methane and methanol from their leaves, and provide methylotrophs with habitats. Methanol-utilizing methylotrophs in the genus Methylobacterium are abundant in the phyllosphere and have the ability to promote the growth of some plants. Methanotrophs also inhabit the phyllosphere, and methanotrophs with high methane oxidation activities have been found on aquatic plants. Both plant and environmental factors are involved in shaping the methylotroph community on plants. Methanotrophic activity can be enhanced by heterotrophic bacteria that provide growth factors (e.g., cobalamin. Information regarding the biological interaction of methylotrophs with other organisms will facilitate a better understanding of the carbon cycle that is driven by methylotrophs.

  1. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect.

    Mishra, Debaraj; Kim, Dong J; Ralph, David E; Ahn, Jong G; Rhee, Young H

    2008-04-15

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO3. Bioleach residues were characterized by EDX and XRD. PMID:17825485

  2. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    Mishra, Debaraj [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Dong J. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of)], E-mail: djkim@kigam.re.kr; Ralph, David E. [AJ Parker CRC for Hydrometallurgy, Murdoch University, South Street Murdoch, Perth 6153 (Australia); Ahn, Jong G. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Rhee, Young H. [Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2008-04-15

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO{sub 3}. Bioleach residues were characterized by EDX and XRD.

  3. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO3. Bioleach residues were characterized by EDX and XRD

  4. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at −1 was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process

  5. Widespread Production of Extracellular Superoxide by Heterotrophic Bacteria

    Diaz, Julia M.; Hansel, Colleen M.; Voelker, Bettina M.; Mendes, Chantal M.; Andeer, Peter F.; Zhang, Tong

    2013-06-01

    Superoxide and other reactive oxygen species (ROS) originate from several natural sources and profoundly influence numerous elemental cycles, including carbon and trace metals. In the deep ocean, the permanent absence of light precludes currently known ROS sources, yet ROS production mysteriously occurs. Here, we show that taxonomically and ecologically diverse heterotrophic bacteria from aquatic and terrestrial environments are a vast, unrecognized, and light-independent source of superoxide, and perhaps other ROS derived from superoxide. Superoxide production by a model bacterium within the ubiquitous Roseobacter clade involves an extracellular oxidoreductase that is stimulated by the reduced form of nicotinamide adenine dinucleotide (NADH), suggesting a surprising homology with eukaryotic organisms. The consequences of ROS cycling in immense aphotic zones representing key sites of nutrient regeneration and carbon export must now be considered, including potential control of carbon remineralization and metal bioavailability.

  6. Effect of adaptation and pulp density on bioleaching of mine waste using indigenous acidophilic bacteria

    Cho, K.; Kim, B.; Lee, D.; Choi, N.; Park, C.

    2011-12-01

    Adaptation to environment is a natural phenomena that takes place in many animals, plants and microorganisms. These adapted organisms achieve stronger applicability than unadapted organisms after habitation in a specific environment for a long time. In the biohydrometallurgical industry, adaptation to special environment conditions by selective culturing is the most popular method for improving bioleaching activity of strains-although that is time consuming. This study investigated the influence of the bioleaching efficiency of mine waste under batch experimental conditions (adaptation and pulp density) using the indigenous acidophilic bacteria collected from acid mine drainage in Go-seong and Yeon-hwa, Korea. We conducted the batch experiments at the influences of parameters, such as the adaptation of bacteria and pulp density of the mine waste. In the adaptation case, the value of pH in 1'st adaptation bacteria sample exhibited lower than in 2'nd adaptation bacteria sample. And the content of both Cu and Zn at 1'st adaptation bacteria sample appeared lower than at 2'nd adaptation bacteria sample. In the SEM analysis, the rod-shaped bacteria with 1μm in length were observed on the filter paper (pore size - 0.45μm). The results of pulp density experiments revealed that the content of both Cu and Zn increased with increasing pulp density, since the increment of pulp density resulted in the enhancement of bioleaching capacity.

  7. BACTERIOLOGICAL PROPERTIES OF MARINE WATER IN ADRIATIC FISH FARMS: ENUMERATION OF HETEROTROPHIC BACTERIA

    Emin Teskeredžić

    2012-12-01

    Full Text Available Aquaculture is currently one of the fastest growing food production sectors in the world. Increase in nutrients and organic wastes lead to general deterioration of water quality. The problem of water quality is associated with both physical and chemical factors, as well as microbiological water quality. Heterotrophic bacteria play an important role in the process of decomposition of organic matter in water environment and indicate eutrophication process. Here we present our experience and knowledge on bacterial properties of marine water in the Adriatic fish farms with European sea bass (Dicentrarchus labrax L., 1758, with an emphasis on enumeration of heterotrophic bacteria in marine water. We applied two temperatures of incubation, as well as two methods for enumeration of heterotrophic bacteria: substrate SimPlate® test and spread plate method on conventional artificial media (Marine agar and Tryptic Soy agar with added NaCl. The results of analysis of bacteriological properties of marine water in the Adriatic fish farms showed that enumeration of heterotrophic bacteria in marine water depends on the applied incubation temperature and media for enumeration. At the same time, the incubation temperature of 22C favours more intense growth of marine heterotrophic bacteria, whereas a SimPlate test gives higher values of heterotrophic bacteria. Volatile values of heterotrophic bacteria during this research indicate a possible deterioration of microbiological water quality in the Adriatic fish farms and a need for regular monitoring of marine water quality.

  8. Diversity of chemotactic heterotrophic bacteria associated with arctic cyanobacteria.

    Prasad, Sathish; Pratibha, Mambatta Shankaranarayanan; Manasa, Poorna; Buddhi, Sailaja; Begum, Zareena; Shivaji, Sisinthy

    2013-01-01

    The abundance and diversity of chemotactic heterotrophic bacteria associated with Arctic cyanobacteria was determined. The viable numbers ranged between 10(4) and 10(6) cell g(-1) cyanobacterial biomass. A total of 112 morphotypes, representing 22 phylotypes based on their 16S rRNA sequence similarity were isolated from the samples. All the phylotypes were Gram-negative with affiliation to the proteobacterial and bacteroidetes divisions. Among the 22 phylotypes, 14 were chemotactic to glucose. Majority of the phylotypes were psychrotolerant showing growth up to 30 °C. Representatives of Alphaproteobacteria, the genus Flavobacterium and the gammaproteobacterial Alcanivorax sp, were psychrophilic with growth at or below 18 °C. A significant percentage of phylotypes were pigmented (~68 %), rich in unsaturated membrane fatty acids and tolerated pH values and NaCl concentrations between 5.0-8.0 and 0.15-1.0 M, respectively. The percentages of phylotypes producing extracellular cold-active enzymes at 4 °C were amylase (18.18 %), lipase and urease (45.45 %), caseinase (59.09 %) and gelatinase (31.8 %). PMID:23053490

  9. Effect of physical characteristics on bioleaching using indigenous acidophilic bacteria for recovering the valuable resources

    Wi, D.; Kim, B.; Cho, K.; Choi, N.; Park, C.

    2011-12-01

    Bioleaching technology which is based on the ability of bacteria to transform solid compounds into soluble or extractable elements that can be recovered, has developed rapidly in recent decades for its advantages, such as mild reaction, low energy consumption, simple process, environmentally friendly and suitable for low-grade mine tailing and residues. This study investigated the bioleaching efficiency of copper matte under batch experimental conditions (various mineral particle size) using the indigenous acidophilic bacteria collected from acidic hot spring in Hatchnobaru, Japan. We conducted the batch experiments at three different mineral particle sizes: 0.06, 0.16 and 1.12mm. The results showed that the pH in the bacteria inoculating sample increased than initial condition, possibly due to buffer effects by phosphate ions in growth medium. After 22 days from incubation the leached accumulation content of Cu was 0.06 mm - 1,197 mg/L, 0.16 mm - 970 mg/L and 1.12 mm - 704 mg/L. Additionally, through SEM analysis we found of gypsum formed crystals which coated the copper matte surface 6 days after inoculation in 1.12mm case. This study informs basic knowledge when bacteria apply to eco-/economic resources utilization studies including the biomining and the recycling of mine waste system.

  10. Sunlight modulates the relative importance of heterotrophic bacteria and picophytoplankton in DMSP-sulphur uptake.

    Ruiz-González, Clara; Simó, Rafel; Vila-Costa, Maria; Sommaruga, Rubén; Gasol, Josep M.

    2011-01-01

    There is a large body of evidence supporting a major role of heterotrophic bacteria in dimethylsulphoniopropionate (DMSP) utilisation as a source of reduced sulphur. However, a role for phototrophic microorganisms has been only recently described and little is known about their contribution to DMSP consumption and the potential modulating effects of sunlight. In an attempt to ascertain the relative quantitative roles of heterotrophic bacteria and picophytoplankton in the osmoheterotrophic upt...

  11. Dynamics of pollution-indicator and heterotrophic bacteria in sewage treatment lagoons.

    Legendre, P.; Baleux, B; Troussellier, M.

    1984-01-01

    The spatio-temporal dynamics of pollution-indicator bacteria and aerobic heterotrophic bacteria were studied in the sewage treatment lagoons of an urban wastewater center after 26 months of biweekly sampling at eight stations in these lagoons. Robust statistical methods of time-series analysis were used to study successional steps (through chronological clustering) and rhythmic behavior through time (through contingency periodogram). The aerobic heterotrophic bacterial community showed two ty...

  12. Heterotrophic bacteria in soils of Larsemann Oasis of East Antarctica

    Churilin, Nikita; Soina, Vera

    2015-04-01

    The study of diversity and functional state of microorganisms in subsurface rocks layers, their participation in the biochemical weathering and formation of organic horizons of soils is important for understanding ecology and microorganisms in Antarctic soils. The study of cultured forms of microorganisms and their potential viability is still relevant to characterize the physiological state, biological activity and resilience of microorganisms involved in the initial soil formation. Improvement of isolation techniques of viable bacteria from the extreme habitats has a particular importance for rising the efficiency of environmental monitoring. The aim of the study was to investigate the viable heterotrophic bacteria involved in the formation of soils from wet valleys Larsemann Oasis, which is one of the warmest ice-free space of East Antarctica. Soil samples were taken from the intermountain humid valleys, where silt-gravelly substrates formed moss, algae, lichen cover. We used nutrient solutions (trypticase soy, R2A and glucose-peptone) to isolate cultured bacteria and study their morphological types in the light microscope. The total number of microorganisms was determined by fluorescent microscopy with acridine orange. SEM was used for morphological studies of bacterial communities in situ. To activate the growth processes we added into nutrient solutions various regulatory metabolites that have dose-dependence and operate at the community level. Physiological and functional conditions were determined by the duration of the lag phase and specific growth rate of bacterial communities in nutrient solutions containing various organic substrates. Soils form under protection of «stone pavement» and organisms leave the surface, so the forming organo-mineral horizon occurs inside of rock, thus the microprofile can form on both sides of the organic horizons. UV radiation, lack of moisture and strong wind are main limiting factors for microorganisms' growth in

  13. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T. [Department of Environmental and Life Science, Toyohashi University of Technology, Toyohashi 441-8580 (Japan); Hiraishi, A. [Department of Environmental and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan and Electronics-inspired Interdisciplinary Institute (EIIRIS), Toyohashi University of Technology, Toyohashi 441-8580 (Japan)

    2014-02-20

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum 'TM7' as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L{sup −1} was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  14. Impact of Storms on Heterotrophic Activity of Epilimnetic Bacteria in a Southwestern Reservoir

    Hubbard, James G.; Chrzanowski, Thomas H.

    1986-01-01

    The impact of storm conditions on the heterotrophic activity of planktonic bacteria in a southwestern reservoir was investigated. Storm events were considered as rainfall in excess of 2.5 cm in a 24-h period before sampling. Storm conditions stimulated heterotrophic activities and resulted in increased uptake rates and decreased turnover times of glutamate and acetate. Uptake rates were 45 to 75% faster immediately after storm conditions than they were during calm conditions. Activity levels appeared to return to prestorm levels within 48 h. Bacterial cell numbers did not change substantially during storm events. Cell-specific activity indicated that increases in heterotrophic activity were the result of increased activity of individual cells. Light penetration, levels of particulate organic carbon, Kt + Sn values, and population levels of attached bacteria suggest that immediate sediment loading of the reservoir or increased substrate levels could not account for abrupt increases in heterotrophic activities. PMID:16347084

  15. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities

    Denef, Vincent [University of California, Berkeley; Kalnejals, Linda [University of California, Berkeley; Muller, R [Lawrence Livermore National Laboratory (LLNL); Wilmes, P [University of California, Berkeley; Baker, Brett J. [University of California, Berkeley; Thomas, Brian [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2010-01-01

    Bacterial species concepts are controversial. More widely accepted is the need to understand how differences in gene content and sequence lead to ecological divergence. To address this relationship in ecosystem context, we investigated links between genotype and ecology of two genotypic groups of Leptospirillumgroup II bacteria in comprehensively characterized, natural acidophilic biofilm communities. These groups share 99.7% 16S rRNA gene sequence identity and 95% average amino acid identity between their orthologs. One genotypic group predominates during early colonization, and the other group typically proliferates in later successional stages, forming distinct patches tens to hundreds of micrometers in diameter. Among early colonizing populations, we observed dominance of five genotypes that differed from each other by the extent of recombination with the late colonizing type. Our analyses suggest that the specific recombinant variant within the early colonizing group is selected for by environmental parameters such as temperature, consistent with recombination as a mechanism for ecological fine tuning. Evolutionary signatures, and strain-resolved expression patterns measured via mass spectrometry based proteomics, indicate increased cobalamin biosynthesis, (de)methylation, and glycine cleavage in the late colonizer. This may suggest environmental changes within the biofilm during development, accompanied by redirection of compatible solutes from osmoprotectants toward metabolism. Across 27 communities, comparative proteogenomic analyses show that differential regulation of shared genes and expression of a small subset of the 15% of genes unique to each genotype are involved in niche partitioning. In summary, the results show how subtle genetic variations can lead to distinct ecological strategies.

  16. Impact of Storms on Heterotrophic Activity of Epilimnetic Bacteria in a Southwestern Reservoir

    Hubbard, James G; Chrzanowski, Thomas H.

    1986-01-01

    The impact of storm conditions on the heterotrophic activity of planktonic bacteria in a southwestern reservoir was investigated. Storm events were considered as rainfall in excess of 2.5 cm in a 24-h period before sampling. Storm conditions stimulated heterotrophic activities and resulted in increased uptake rates and decreased turnover times of glutamate and acetate. Uptake rates were 45 to 75% faster immediately after storm conditions than they were during calm conditions. Activity levels ...

  17. The taxonomic and physiologic diversity of the acidophilic bacteria of the genus Thiobacillus used in ores solubilization processes

    Carmen Mădălina Cişmaşiu

    2010-01-01

    Full Text Available The development of biotechnological processes, based mainly on the activity of the acidophilic chemolithotrophic, proved their efficiency in recovering metals from sulphides ores and mining drains and in bioremediation of the polluted environment with residual inorganic substances, like the heavy metals ions and their compounds.Due to the influence of the physical-chemical factors on the development and the metabolic activity of the microorganism’s present in the industrial effluents, the study of these parameters was imposed for raising the efficiency of the processes of adsorption and biosolubilization of the metallic ions. A special importance for using bacteria of the genus Acidithiobacillus in the biosolubilization processes of heavy metals from acid mine tailings is represented by the resistance of these bacteria to high concentrations of metal ions.The experiments prove a strong relationship between the acidity of the medium and the behaviour of the acidophilic chemolithotrophic bacteria. The comparative analyses regarding the influence of metallic ions (Cu2+, Zn2+ and Fe2+ on the physiologic diversity of the Acidithiobacillus populations, isolated from the mining sites, demonstrated the higher resistance of these bacteria to higher concentrations of metallic ions.

  18. Interspecific interactions of heterotrophic bacteria during chitin degradation

    Jagmann, Nina

    2012-01-01

    In their natural habitats, bacteria live in multi-species microbial communities and are, thus, constantly interacting with bacteria of other phylogenetic groups. In order to prevail in these interspecific interactions, such as the competition for nutrients, bacteria have developed numerous strategies. During the degradation of polymers such interspecific interactions are likely to occur, because degradation starts as an extracellular process. In one possible interaction scenario, investor bac...

  19. Growth rates and production of heterotrophic bacteria and phytoplankton in the North Pacific subtropical gyre

    Jones, David R.; Karl, David M.; Laws, Edward A.

    1996-10-01

    In field work conducted at 26°N, 155°W, in the North Pacific subtropical gyre, phytoplankton growth rates μp estimated from 14C labeling of chlorophyll a (chl a) averaged approximately one doubling per day in the euphotic zone (0-150 m). Microbial (microalgal plus heterotrophic bacterial) growth rates μm calculated from the incorporation of 3H-adenine into DNA were comparable to or exceeded phytoplankton growth rates at most depths in the euphotic zone. Photosynthetic rates averaged 727 mg C m -2 day -1 Phytoplankton carbon biomass, calculated from 14C labeling of chl a, averaged 7.2 mg m -3 in the euphotic zone. Vertical profiles of particulate DNA and ATP suggested that no more than 15% of particulate DNA was associated with actively growing cells. Heterotrophic bacterial carbon biomass was estimated from a two-year average at station ALOHA (22°45'N, 158°W) of flow cytometric counts of unpigmented, bacteria-size particles which bound DAPI on the assumption that 15% of the particles were actively growing cells and that heterotrophic bacterial cells contained 20 fg C cell -1 The heterotrophic bacterial carbon so calculated averaged 1.1 mg m -3 in the euphotic zone. Heterotrophic bacterial production was estimated to be 164 mg C m -2 day -1 or 23% of the calculated photosynthetic rate. Estimated heterotrophic bacterial growth rates averaged 0.97 day -1 in the euphotic zone and reached 4.7 day - at a depth of 20 m. Most heterotrophic bacterial production occurred in the upper 40 m of the euphotic zone, suggesting that direct excretion by phytoplankton, perhaps due to photorespiration or ultraviolet light effects, was a significant source of dissolved organic carbon for the bacteria.

  20. Putative N2-fixing heterotrophic bacteria associated with dinoflagellate-Cyanobacteria consortia in the low-nitrogen Indian Ocean

    Farnelid, H.; Tarangkoon, Woraporn; Hansen, Gert;

    2010-01-01

    , cloning, and sequencing. Cyanobacteria, heterotrophic bacteria and eukaryotic algae were recognized as symbionts of the heterotrophic dinoflagellates. nifH gene sequences were obtained from 23 of 37 (62%) specimens of dinoflagellates (Ornithocercus spp. and Amphisolenia spp.). Interestingly, only 2...... assemblages were often found in single host cells. This study provides the first insights into the nifH diversity of dinoflagellate symbionts and suggests a symbiotic co-existence of non-diazotrophic cyanobacteria and N2-fixing heterotrophic bacteria in heterotrophic dinoflagellates...

  1. Survey of PAC Performance for Removal of Turbidity, COD, Coliform Bacteria, Heterotrophic Bacteria from Water of Karoon River

    N Alavi Bakhtiarvand; A Takdastan; Mirzaei, A

    2011-01-01

    Backgrounds and Objectives: Selection of proper coagulants for turbidity removal and determination of effective methods to reduce coagulants dose and related costs in water treatment plants is of critical importance. The present study investigates the effect of returned sludge on improving the performance of poly-aluminum chloride (PAC) in turbidity, coliform bacteria, heterotrophic bacteria removal from drinking water during rapid mixing phase. Materials and Methods: In order to determine th...

  2. Response of Marine Microalgae, Heterotrophic Bacteria and Their Relationship to Enhanced UV-B Radiation

    ZHOU Wenli; TANG Xuexi; XIAO Hui; WANG You; WANG Renjun

    2009-01-01

    Ozone depletion in the stratosphere has enhanced solar UV-B radiation reaching the Earth surface and has brought about significant effects to marine ecosystems. The effects of enhanced UV-B radiation on marine microalgae, heterotrophic bacteria and the interaction between them are discussed. The effects on marine microalgae have been proved to occur at molecular, cellular and population levels. Enhanced UV-B radiation increases microalgal flavonoid content but decreases their chlorophyll content and pho-tosynthesis rate; this rachation induces genetic change and results in DNA damage and change of protein content. There have been fewer studies on the effects of UV-B radiation on marine heterotrophic bacteria. Establishment of a nucroalgal ecological dynamic model at population and community levels under UV-B radiation has gradually become a hotspot. The effects of enhanced UV-B radiation on microalgae communities, heterotrophic bacterial populations and interaction between them will become a focus in the near future. This paper will make an overview on the studies concerning the effects of enhanced UV-B radiation on marine microal-gae and heterotrophic bacteria and the interaction between them.

  3. Diversity and biosynthetic potential of culturable aerobic heterotrophic bacteria isolated from Magura Cave, Bulgaria

    Tomova Iva

    2013-01-01

    Full Text Available Biocapacity of bacteria inhabiting karstic caves to produce valuable biologically active compounds is still slightly investigated. A total of 46 culturable heterotrophic bacteria were isolated under aerobic conditions from the Gallery with pre-historical drawings in Magura Cave, Bulgaria. Phylogenetic analysis revealed that most of bacterial isolates aff iliated with Proteobacteria (63%, followed by Actinobacteria (10.9%, Bacteroidetes (10.9%, and Firmicutes (6.5%. A strong domination of Gram-negative bacteria (total 81% belonging to nine genera: Serratia, Pseudomonas, Enterobacter, Sphingobacterium, Stenotrophomonas, Commamonas, Acinetobacter, Obesumbacterium, and Myroides, was observed. Gram-positive isolates were represented by the genera Bacillus, Arthrobacter, and Micrococcus. One isolate showed a signif icant phylogenetic distance to the closest neighbor and could represent а novel species. Heterotrophic bacterial isolates from Magura Cave were investigated for hydrolytic enzymes production, antimicrobial and hemolytic activity. Predominance of producers of protease (87%, followed by xanthan lyase (64%, lipase (40%, β-glycosidase (40%, and phytase (21% was observed. Over 75% of the isolates demonstrated antimicrobial and hemolytic activity. The results suggest that heterotrophic bacteria isolated from Magura Cave could be a valuable source of industrially relevant psychrotolerant enzymes and bioactive metabolites. This study is a f irst report on the taxonomic composition and biological activity of culturable bacteria inhabiting a cave in Bulgaria.

  4. Distribution and nutrient limitations of heterotrophic bacteria from Yucca Mountain

    Microbiota have been recovered from diverse deep subsurface environments, including rock strata similar to those found in Yucca Mountain. Microbial processes have been shown to accelerate the corrosion of structural materials, alter rock substrates through biogeochemical cycling and production of metabolites, and may influence the transport of radionuclides. A deep subsurface geological repository has been proposed for the long-term storage of high-level nuclear waste and this presents a challenge to model the long-term stability of a such a facility, with regards to microbial abundance, distribution and activity. The aims of this research were to (1) gather background data concerning the numbers and distribution of bacteria indigenous to Yucca Mountain, (2) determine nutrient limitations of indigenous bacteria, and (3) collect isolates for further investigation. The information gleaned will be crucial to the determination of the impact of microbiota on repository integrity

  5. Role of Heterotrophic Bacteria in Marine Ecological Processes

    Ramaiah, N.

    that ubiquitous and self-regulating microbial communities provided the foundation to our understanding on the processes in marine food-web (Landry, 2001). Heterotrophy in the Marine Environment Marine heterotrophy involving all animals and many microbes is a... factors ranging from 10 to 40fg C cell-1 (Pomeroy and Joint, 1999) to figure out the carbon pool in marine bacteria. However, the consensus arrived by many recent investigations suggest an average of 11 fg C cell-1 (Landry et al 2001). In comparison...

  6. Isolation and life-cycle characterization of lytic viruses infecting heterotrophic bacteria and cyanobacteria

    Middelboe, Mathias; Chan, Amy; Bertelsen, Sif Koldborg

    2010-01-01

    , and discusses the applications and limitations of different isolation procedures. Most work on phage isolation has been carried out with aerobic heterotrophic bacteria and cyanobacteria, culturable both on agar plates and in enriched liquid cultures. The procedures presented here are limited to lytic viruses......Basic knowledge on viruses infecting heterotrophic bacteria and cyanobacteria is key to future progress in understanding the role of viruses in aquatic systems and the influence of virus–host interactions on microbial mortality, biogeochemical cycles, and genetic exchange. Such studies require...... infecting such hosts. In addition to the isolation procedures, methods for life cycle characterization (one-step growth experiments) of bacteriophages and cyanophages are described. Finally, limitations and drawbacks of the proposed methods are assessed and discussed...

  7. Antibiotic resistance in triclosan heterotrophic plate count bacteria from sewage water / Ilsé Coetzee

    Coetzee, Ilsé

    2015-01-01

    The concentration of triclosan in antiseptics, disinfectants and preservatives in products exceeds the minimal lethal levels. Extensive use of triclosan and antibiotics results in bacterial resistance to their active ingredients. The precise relationship between use and resistance, however, has been challenging to define. The aim of the study was to identify and determine antibiotic resistance profiles of triclosan tolerant heterotrophic plate count bacteria isolates from sewag...

  8. Lipid remodelling is a widespread strategy in marine heterotrophic bacteria upon phosphorus deficiency.

    Sebastián, Marta; Smith, Alastair F; González, José M; Fredricks, Helen F; Van Mooy, Benjamin; Koblížek, Michal; Brandsma, Joost; Koster, Grielof; Mestre, Mireia; Mostajir, Behzad; Pitta, Paraskevi; Postle, Anthony D; Sánchez, Pablo; Gasol, Josep M; Scanlan, David J; Chen, Yin

    2016-04-01

    Upon phosphorus (P) deficiency, marine phytoplankton reduce their requirements for P by replacing membrane phospholipids with alternative non-phosphorus lipids. It was very recently demonstrated that a SAR11 isolate also shares this capability when phosphate starved in culture. Yet, the extent to which this process occurs in other marine heterotrophic bacteria and in the natural environment is unknown. Here, we demonstrate that the substitution of membrane phospholipids for a variety of non-phosphorus lipids is a conserved response to P deficiency among phylogenetically diverse marine heterotrophic bacteria, including members of the Alphaproteobacteria and Flavobacteria. By deletion mutagenesis and complementation in the model marine bacterium Phaeobacter sp. MED193 and heterologous expression in recombinant Escherichia coli, we confirm the roles of a phospholipase C (PlcP) and a glycosyltransferase in lipid remodelling. Analyses of the Global Ocean Sampling and Tara Oceans metagenome data sets demonstrate that PlcP is particularly abundant in areas characterized by low phosphate concentrations. Furthermore, we show that lipid remodelling occurs seasonally and responds to changing nutrient conditions in natural microbial communities from the Mediterranean Sea. Together, our results point to the key role of lipid substitution as an adaptive strategy enabling heterotrophic bacteria to thrive in the vast P-depleted areas of the ocean. PMID:26565724

  9. Acquisition of useful and high ability genes for acidophilic bacteria; Kosansei saikin ni takai noryoku wo fuyosuru idenshi no kakutoku

    Senda, T.; Inoue, C.; Shinbori, Y. [Tohoku University, Sendai (Japan)

    1997-02-01

    This effort aims at the development of high-performance bacteria usable in bio-leaching in metal smelting by acquiring genes capable of realizing such. A method is used of choosing some isolated strains exhibiting high-performance traits and acquiring target genes therefrom by use of genetic engineering. Approximately 200 kinds in the aggregate of acidophilic bacteria are currently available for the study, including isolated iron-oxidizing and sulfur-oxidizing bacteria, standard species acquired for the study, and strains previously isolated by the laboratory. The bacteria are tested with respect to their Fe{sup 2+}-oxidizing rates, sulfur-oxidizing capabilities, and strength to withstand inhibiting substances (Ag{sup +}, Cl{sup -}, Mo{sup 6+}, etc.), which results in the nomination of 8 strains. The study planned to follow includes processes involving the extraction of chromosome DNAs from the 8 strains and their refinement, gene cloning by the Southern hybridization method, determination of their base sequences, determination of the difference between the strains in point of gene expression, and investigations of the relations that the results of these processes bear toward the said high-performance traits. Also under way is a study about the infuence-exerting factors revealed during the evaluation of the abilities of acidphlic bacteria. 2 refs., 2 tabs.

  10. Heterotrophic bacteria in the northern Adriatic Sea: seasonal changes and ectoenzyme profile.

    Zaccone, R; Caruso, G; Calì, C

    2002-01-01

    A seasonal study of the quantitative and qualitative distribution of heterotrophic bacterial community was carried out in the Adriatic Sea between April 1995 and January 1996, in order to evaluate its spatial and temporal variability and metabolic potential in the degradation processes of organic matter. The culturable bacteria (CFU) ranged between 0.1 and 22% of total bacterioplankton with a maximum percentage in surface samples of coastal zones. Their distribution was generally affected by the prevailing hydrological conditions. At the coastal stations about 44-75% of CFU variance could be explained by river runoff. The changes in the composition of heterotrophic bacterial community showed a seasonal succession of main bacterial groups, with a prevalence of Gram negative, non fermenting bacteria in the cold period (April-January) and an increase of Vibrionaccae and pigmented bacteria in summer. The seasonal variations were more important at the stations influenced by rivers than offshore. The bacterial community showed a greater versatility for organic polymers hydrolysis in the offshore station than in the coastal areas. Over 60% of all isolated heterotrophic bacteria expressed peptidase, lipase and phosphatase ectoenzymes activities, in all seasons and showed an increasing trend in warm period (in July October). The alpha- and beta-glucosidase potentials of bacteria were lower (20% on average) and showed different pattern during the year. These results suggest different role of the bacterial community in the decomposition of organic matter in the Adriatic Sea. Since only 20% of bacterial strains expressed glucosidase activity, carbohydrate-rich polymers such as mucilage might accumulate. PMID:12148942

  11. Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes.

    Zhang, Songhe; Han, Bing; Gu, Ju; Wang, Chao; Wang, Peifang; Ma, Yanyan; Cao, Jiashun; He, Zhenli

    2015-09-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs. PMID:25950407

  12. Health concerns of heterotrophic plate count (HPC) bacteria in dental equipment water lines.

    Allen, Martin J; Edberg, Stephen C

    2016-06-01

    There is an unsubstantiated concern as to the health relevance of HPC (heterotrophic plate count) bacteria in dental equipment waterlines. The American Dental Association (ADA) web site includes guidelines for controlling HPC populations and implies that HPC populations >500 CFU/mL as a "health" benchmark. The world-wide published literature including the United Nations fully examined this situation and concluded that HPC bacteria are not a health risk, but merely a general water quality parameter for all waters including dental water lines. This review provides documentation that the standard measurement of HPC bacteria in waters alone do not pose a health risk and the ADA already provides appropriate practices to minimize HPC bacteria in dental equipment water. PMID:27505988

  13. The ecological distributions of N, P utilizing bacteria and heterotrophic bacteria in the moderate hypoxia zone of the Changjiang Estuary

    Liu, Jingjing; Du, Ping; Zeng, Jiangning; Chen, Quanzhen; Shou, Lu; Liao, Yibo; Jiang, Zhibing

    2013-12-01

    The distributions of N utilizing bacteria (denitrifying bacteria and ammonifying bacteria), P utilizing bacteria (organic phosphobacteria and inorganic phosphobacteria) and heterotrophic bacteria in the Changjiang Estuary, and the roles of main environmental factors in distributing bacteria, are explored with observations from two cruises in June and August 2006. Comparisons between the two important periods of initial hypoxia phase (June) and developed hypoxia phase (August) show differences in both bacterial distributions and the associated main environmental factors. First, the primary group of ammonifying bacteria has larger magnitude with spatial maximum value in the hypoxic stations related to sediment in August. The phosphobacterial abundance and detection rates in August are much lower than those in June, but the denitrifying bacterial abundance becomes greater in August. However, the difference of heterotrophic bacterial abundance between June and August is not obvious. Second, main environmental factors influencing bacteria vary from initial hypoxia phase to developed hypoxia phase. Two parameters (salinity and NO3 -) in surface water and five environmental parameters (pH, salinity, PO4 3-, NO3 - and temperature) in bottom water and surface sediment play major roles in the bacterial abundance in June, while different parameter combinations (salinity and PO4 -) in surface water and different parameter combinations (DO, DOC, NO3 -, PO4 3- and pH) in bottom water and surface sediment play major roles in August. Moreover, the bottom bacteria distributions in area south of 31°N are related to the position of the Taiwan Warm Current in June. The bacterial abundance and distribution may respond to the environmental change in the hypoxia processes of initial phase and developed phase. During the hypoxia processes, the whole structure of bacterial functional groups probably turns to different states, causing the recycling of nutrient regeneration and aggravating

  14. Heterotrophic bacteria from an extremely phosphate-poor lake have conditionally reduced phosphorus demand and utilize diverse sources of phosphorus.

    Yao, Mengyin; Elling, Felix J; Jones, CarriAyne; Nomosatryo, Sulung; Long, Christopher P; Crowe, Sean A; Antoniewicz, Maciek R; Hinrichs, Kai-Uwe; Maresca, Julia A

    2016-02-01

    Heterotrophic Proteobacteria and Actinobacteria were isolated from Lake Matano, Indonesia, a stratified, ferruginous (iron-rich), ultra-oligotrophic lake with phosphate concentrations below 50 nM. Here, we describe the growth of eight strains of heterotrophic bacteria on a variety of soluble and insoluble sources of phosphorus. When transferred to medium without added phosphorus (P), the isolates grow slowly, their RNA content falls to as low as 1% of cellular dry weight, and 86-100% of the membrane lipids are replaced with amino- or glycolipids. Similar changes in lipid composition have been observed in marine photoautotrophs and soil heterotrophs, and similar flexibility in phosphorus sources has been demonstrated in marine and soil-dwelling heterotrophs. Our results demonstrate that heterotrophs isolated from this unusual environment alter their macromolecular composition, which allows the organisms to grow efficiently even in their extremely phosphorus-limited environment. PMID:26415900

  15. Sulfate-reducing bacteria from the Arabian Sea - their distribution in relation to thiosulfate-oxidising and heterotrophic bacteria

    LokaBharathi, P.A.; Chandramohan, D.

    and Tables 1-3. Water samples were collected using sterile JZ samplers. Sediment samples were collected using a Petersen's grab. Chemical and bacteriological analyses of the samples were carried out on board immediatelyaftercollection. Salinity, oxygen... in sterile sea water blanks before inoculation. Media and Technique. -Culturable aerobic heterotrophic bacteria (AB) were enumerated on nutrient agar (peptone, 5 g; beef extract, 1.5 g; yeast extract, I.S g; agar, 8 g; at pH 7.8) prepared in sea water (35%o...

  16. Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria

    Lo, I [University of California, Berkeley; Denef, Vincent [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Goltsman, Daniela [University of California, Berkeley; DiBartolo, Genevieve [U.S. Department of Energy, Joint Genome Institute; Tyson, Gene W. [University of California, Berkeley; Allen, Eric E. [University of California, Berkeley; Ram, Rachna J. [University of California, Berkeley; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Richardson, Paul [U.S. Department of Energy, Joint Genome Institute; Thelen, Michael P. [University of California, Berkeley; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2007-01-01

    Microbes comprise the majority of extant organisms, yet much remains to be learned about the nature and driving forces of microbial diversification. Our understanding of how microorganisms adapt and evolve can be advanced by genome-wide documentation of the patterns of genetic exchange, particularly if analyses target coexisting members of natural communities. Here we use community genomic data sets to identify, with strain specificity, expressed proteins from the dominant member of a genomically uncharacterized, natural, acidophilic biofilm. Proteomics results reveal a genome shaped by recombination involving chromosomal regions of tens to hundreds of kilobases long that are derived from two closely related bacterial populations. Inter-population genetic exchange was confirmed by multilocus sequence typing of isolates and of uncultivated natural consortia. The findings suggest that exchange of large blocks of gene variants is crucial for the adaptation to specific ecological niches within the very acidic, metalrich environment. Mass-spectrometry-based discrimination of expressed protein products that differ by as little as a single amino acid enables us to distinguish the behaviour of closely related coexisting organisms. This is important, given that microorganisms grouped together as a single species may have quite distinct roles in natural systems1-3 and their interactions might be key to ecosystem optimization. Because proteomic data simultaneously convey information about genome type and activity, strainresolved community proteomics is an important complement to cultivation-independent genomic (metagenomic) analysis4-6 of microorganisms in the natural environment.

  17. The direct role of aerobic heterotrophic bacteria associated with cyanobacteria in the degradation of oil compounds

    Abed, R.M.M. [Max-Planck Institute for Marine Microbiology, Bremen (Germany); Koester, J. [University of Oldenburg (Germany). Institute for Chemistry and Biology of the Marine Environment

    2005-01-01

    This study aimed at evaluating the role of cyanobacteria and their associated aerobic heterotrophic bacteria in biodegradation of petroleum compounds. We investigated the potential of ten non-axenic typical mat-forming cyanobacterial strains to degrade phenanthrene, pristane, n-octadecane, and dibenzothiophene. Five strains (Aphanothece halophyletica, Dactyolococcopsis salina, Halothece strain EPUS, Oscillatoria strain OSC, and Synechocystis strain UNIGA) were able to degrade n-alkanes. In case of the other five strains (Microcoleus chthonoplastes, Oscillatoria sp. MPI 95 OS 01, Halothece strain EPUG, Halomicronema exentricum, and Phormidium strain UNITF) alkanes were not significantly affected. Moderate changes in the concentration of the aromatic compounds were observed for three isolates only. In follow-up experiments with Oscillatoria strain OSC, we demonstrated that the cyanobacteria-associated aerobic heterotrophic bacteria were responsible for the observed biodegradation. The cyanobacteria themselves apparently do not degrade petroleum compounds, but more likely play a significant, indirect role in biodegradation by supporting the growth and activity of the actual degraders. (author)

  18. Effect of electro-stimulation on activity of heterotrophic denitrifying bacteria and denitrification performance.

    Liu, Hengyuan; Tong, Shuang; Chen, Nan; Liu, Ying; Feng, Chuanping; Hu, Qili

    2015-11-01

    The effects of electro-stimulation on heterotrophic denitrifying bacterial activity and nitrate removal were investigated using a bench-scale bio-electrochemical reactor in this study. Results showed that the maximum nitrate removal efficiency was 100% at the optimum current density of 200mA/m(2), at which low nitrite production and high ATP aggregate level were obtained. The activity of denitrifying bacteria was highest at the range densities of 200-250mA/m(2), although the terminative pH increased to 8.62 at 200mA/m(2) and 9.63 at 250mA/m(2). This demonstrates that suitable current densities could improve the activity of denitrifying bacteria. Therefore, this study provides a number of useful information to improve the bio-electrochemical reactor designs and promote the removal efficiency of pollutants. PMID:26231132

  19. Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis

    Cintia P.J. Rua

    2014-06-01

    Full Text Available Marine sponges are the oldest Metazoa, very often presenting a complex microbial consortium. Such is the case of the marine sponge Arenosclera brasiliensis, endemic to Rio de Janeiro State, Brazil. In this investigation we characterized the diversity of some of the culturable heterotrophic bacteria living in association with A. brasiliensis and determined their antimicrobial activity. The genera Endozoicomonas (N = 32, Bacillus (N = 26, Shewanella (N = 17, Pseudovibrio (N = 12, and Ruegeria (N = 8 were dominant among the recovered isolates, corresponding to 97% of all isolates. Approximately one third of the isolates living in association with A. brasiliensis produced antibiotics that inhibited the growth of Bacillus subtilis, suggesting that bacteria associated with this sponge play a role in its health.

  20. Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma.

    Caton, T M; Witte, L R; Ngyuen, H D; Buchheim, J A; Buchheim, M A; Schneegurt, M A

    2004-11-01

    The Salt Plains National Wildlife Refuge (SPNWR) near Cherokee, Oklahoma, contains a barren salt flat where Permian brine rises to the surface and evaporates under dry conditions to leave a crust of white salt. Rainfall events dissolve the salt crust and create ephemeral streams and ponds. The rapidly changing salinity and high surface temperatures, salinity, and UV exposure make this an extreme environment. The Salt Plains Microbial Observatory (SPMO) examined the soil microbial community of this habitat using classic enrichment and isolation techniques and phylogenetic rDNA studies. Rich growth media have been emphasized that differ in total salt concentration and composition. Aerobic heterotrophic enrichments were performed under a variety of conditions. Heterotrophic enrichments and dilution plates have generated 105 bacterial isolates, representing 46 phylotypes. The bacterial isolates have been characterized phenotypically and subjected to rDNA sequencing and phylogenetic analyses. Fast-growing isolates obtained from enrichments with 10% salt are predominantly from the gamma subgroup of the Proteobacteria and from the low GC Gram-positive cluster. Several different areas on the salt flats have yielded a variety of isolates from the Gram-negative genera Halomonas, Idiomarina, Salinivibrio, and Bacteroidetes. Gram-positive bacteria are well represented in the culture collection including members of the Bacillus, Salibacillus, Oceanobacillus, and Halobacillus. PMID:15696379

  1. Influence of river discharge on abundance and dissemination of heterotrophic, indicator and pathogenic bacteria along the East Coast of India.

    Prasad, V R; Srinivas, T N R; Sarma, V V S S

    2015-06-15

    In order to examine the influence of discharge from different rivers from peninsular India and urban sewage on intensity and dissemination of heterotrophic, indicator and pathogenic bacteria, a study was carried out during peak discharge period along coastal Bay of Bengal. The coastal Bay received freshwater inputs from the river Ganges while Godavari and Krishna contributed to the south. Contrasting difference in salinity, temperature, nutrients and organic matter was observed between north and south east coast of India. The highest heterotrophic, indicator and pathogenic bacterial abundance was observed in the central coastal Bay that received urban sewage from the major city. Intensity and dissemination of heterotrophic, indicator and pathogenic bacteria displayed linear relation with magnitude of discharge. The coliform load was observed up to 100km from the coast suggesting that marine waters were polluted during the monsoon season and its impact on the ecosystem needs further studies. PMID:25934433

  2. Characterization of Extreme Acidophile Bacteria (Acidithiobacillus ferrooxidans Bioleaching Copper from Flexible PCB by ICP-AES

    Weihua Gu

    2014-01-01

    Full Text Available In order to improve copper leaching efficiency from the flexible printed circuit board (PCB by Acidithiobacillus ferrooxidans, it is necessary to quantitatively measure the bacteria bioleaching copper under extreme acidic condition from flexible PCB. The inductively coupled plasma-atomic emission spectroscopy (ICP-AES is a very accurate way to analyze metals in solution; this paper investigated the optimal conditions for copper bioleaching by Acidithiobacillus ferrooxidans from flexible PCB through ICP-AES. The conditions included particle size of flexible PCB powder, quantity of flexible PCB powder, initial pH of culture medium, bacteria inoculation, bacteria activation time, and quantity of FeSO4·7H2O. Prior to ICP-AES measurement, culture solution was digested by aqua regia. The experimental results demonstrated that flexible PCB contained one main metal (copper; this was associated with the structure of flexible PCB. The optimization conditions were in 50 mL medium, flexible PCB 10 g/L, particle size of flexible PCB 0.42~0.84 mm, culture medium initial pH 2.5, bacteria inoculation 5%, bacteria activation time 5 d, and quantity of FeSO4·7H2O 30 g/L. Under the optimization condition, the leaching rate of copper was 90.10%, which was 42.4% higher than the blank group. For the ICP-AES determination, it reached a conclusion that the best corresponding wavelength (nm of copper will be 224.7 (nm.

  3. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma. PMID:19933342

  4. Survey of PAC Performance for Removal of Turbidity, COD, Coliform Bacteria, Heterotrophic Bacteria from Water of Karoon River

    N Alavi Bakhtiarvand

    2011-10-01

    Full Text Available Backgrounds and Objectives: Selection of proper coagulants for turbidity removal and determination of effective methods to reduce coagulants dose and related costs in water treatment plants is of critical importance. The present study investigates the effect of returned sludge on improving the performance of poly-aluminum chloride (PAC in turbidity, coliform bacteria, heterotrophic bacteria removal from drinking water during rapid mixing phase. Materials and Methods: In order to determine the optimal returned sludge volume injected during rapid mixing with PAC for turbidity, total coliform and hetrophic bacteria, experiments were conducted based on variables such as injected silt volume (from 0 - 125 ml, and varying turbidities from 58 - 112 NTU. At the end of each JAR experiments, remaining turbidity , microbial parameters of samples were measured . Coagulant efficiency in turbidity removal and microbial parameters were determined by Covariance, Duncan analyses and graphs were drawn by MS Excel . The results statistically showed significant among variables (P<0.05. Results: The results showed that the maximum turbidity removal efficiency of 98.92 at 30 ppm was 10 ml while the maximum turbidity removal efficiency of 98.31 at 10 ppm was 4 ml. The maximum total coliform removal efficiency  of 95.68 obtained for 10 ppm in 10 cc injected sludge volume.Conclusion: This study shows that addition of returned sludge to flash mixing can reduce the turbidity of samples.

  5. Genome Sequence of the Acidophilic Bacterium Acidocella sp. Strain MX-AZ02

    Servín-Garcidueñas, Luis E.; Garrett, Roger A.; Amils, Ricardo;

    2013-01-01

    Here, we report the draft genome sequence of Acidocella sp. strain MX-AZ02, an acidophilic and heterotrophic alphaproteobacterium isolated from a geothermal lake in western Mexico.......Here, we report the draft genome sequence of Acidocella sp. strain MX-AZ02, an acidophilic and heterotrophic alphaproteobacterium isolated from a geothermal lake in western Mexico....

  6. Characterization of Extreme Acidophile Bacteria (Acidithiobacillus ferrooxidans) Bioleaching Copper from Flexible PCB by ICP-AES

    Weihua Gu; Jianfeng Bai; Jue Dai; Chenglong Zhang; Wenyi Yuan; Jingwei Wang; Pengcheng Wang; Xin Zhao

    2014-01-01

    In order to improve copper leaching efficiency from the flexible printed circuit board (PCB) by Acidithiobacillus ferrooxidans, it is necessary to quantitatively measure the bacteria bioleaching copper under extreme acidic condition from flexible PCB. The inductively coupled plasma-atomic emission spectroscopy (ICP-AES) is a very accurate way to analyze metals in solution; this paper investigated the optimal conditions for copper bioleaching by Acidithiobacillus ferrooxidans from flexible PCB...

  7. New protocol for the rapid quantification of exopolysaccharides in continuous culture systems of acidophilic bioleaching bacteria.

    Michel, Caroline; Bény, Claire; Delorme, Fabian; Poirier, Laurence; Spolaore, Pauline; Morin, Dominique; d'Hugues, Patrick

    2009-02-01

    In this study, we investigate exopolysaccharide production by a bacterial consortium during the bioleaching of a cobaltiferrous pyrite. Whereas comparable studies have looked at exopolysaccharide production in batch systems, this study focuses on a continuous system comprising a series of four stirred bioreactors and reveals the difficulties in quantifying biomolecules in complex media such as bioleached samples. We also adapted the phenol/sulphuric acid method to take into account iron interference, thus establishing a new protocol for sugar quantification in bioleached samples characterised by low pH (1.4) and high iron concentration (2 g l(-1)). This allows sugar analysis without any prior sample preparation step; only a small amount of sample is needed (0.5 ml) and sample preparation is limited to a single filtration step. We found that free exopolysaccharides represented more than 80% of the total sugars in the bioreactors, probably because stirring creates abrasive conditions and detaches sugars bound to pyrite or bacteria and that they were produced mainly in the first two reactors where bioleaching activity was greatest. However, we could not establish any direct link between the measured exopolysaccharide concentration and bioleaching activity. Exopolysaccharides could have another role (protection against stress) in addition to that in bacterial attachment. PMID:19130051

  8. Cold-Active, Heterotrophic Bacteria from the Highly Oligotrophic Waters of Lake Vanda, Antarctica

    Nicole A. Vander Schaaf

    2015-07-01

    Full Text Available The permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica are distinctive ecosystems that consist strictly of microbial communities. In this study, water samples were collected from Lake Vanda, a stratified Dry Valley lake whose upper waters (from just below the ice cover to nearly 60 m are highly oligotrophic, and used to establish enrichment cultures. Six strains of psychrotolerant, heterotrophic bacteria were isolated from lake water samples from a depth of 50 or 55 m. Phylogenetic analyses showed the Lake Vanda strains to be species of Nocardiaceae, Caulobacteraceae, Sphingomonadaceae, and Bradyrhizobiaceae. All Lake Vanda strains grew at temperatures near or below 0 °C, but optimal growth occurred from 18 to 24 °C. Some strains showed significant halotolerance, but no strains required NaCl for growth. The isolates described herein include cold-active species not previously reported from Dry Valley lakes, and their physiological and phylogenetic characterization broadens our understanding of these limnologically unique lakes.

  9. Heterotrophic bacteria from brackish water of the southern Baltic Sea: biochemical and molecular identification and characterisation

    Agnieszka Cabaj

    2006-12-01

    Full Text Available Six bacterial strains isolated from the surface water of thesouthern Baltic Sea were described on the basis of their morphological,physiological and biochemical features, and were classified onthe basis of 16S rDNA sequence analysis. Comparative analysesof the 16S rDNA sequences of five of the six bacterial strainsexamined displayed a ≥98% similarity to the sequences availablein the NCBI GenBank. The 16S rDNA sequence of strain 2 sharedonly a 96% similarity with other published sequences, whichsuggests that this is a new, hitherto unknown species. The isolatedheterotrophic bacteria belong to the families Bacillaceae(strain 1, Flexibacteriaceae (strain 2, Sphingomonadaceae(strains 3, 5, Micrococcaceae (strain 4 and Aurantimonadaceae(strain 6.    This is the first study in which the polyphasic approach hasbeen applied to the identification of heterotrophic bacteriafrom the brackish waters of the Gulf of Gdańsk and Gdańsk Deep.

  10. Analysis the Existence of Heterotrophic Bacteria in Active Water Desalination Plant Output of Kashan City, Iran

    Hosseindoost Gh. MSc,

    2015-12-01

    Full Text Available Aims One of the consequences of taking ground water into surface is changing its chemical quality, specially increasing the concentration of dissolved salts. This research was performed in order to analyze growth possibility of heterotrophic bacteria in the membrane of active desalination plants in Kashan City, Iran. Instrument & Methods This descriptive cross-sectional study was done on water output of 20 active desalination plants in 2013 in Kashan City, Iran and 200 specimens of input and output water was randomly extracted from desalination plants. Awareness and education level of system operators, filter changing intervals, HPC of input and output water and chlorine concentration of input and output water were measured and recorded. Obtained data were analyzed statistically with SPSS 18 software using one-way ANOVA, Chi-square, McNemar and one-sample T tests. Findings There was a significant relation between the interval time and output HPC level of the plants (p0.05. The mean concentration of chlorine in samples of 20 desalination plants was 0.76±0.44mg/l in input water and 0.64±0.52mg/l in output water (p>0.05. Level of awareness had significant relation with the output water pollution with HPC (p0.05. Conclusion The mean level of HPC

  11. Distribution of heterotrophic bacteria in the vicinity of Madras Atomic Power Station, Kalpakkam (east coast of India)

    Heterotrophic bacteria play an important role in nutrient cycling in the marine environments. In this investigation culturable aerobic heterotrophic bacteria (CAHB) from various locations of the Madras Atomic Power Station (MAPS) cooling circuit as well as the coastal waters were monitored. Three different CAHB isolates isolated from mixing zone, out fall, and jetty were categorised respectively as HMZ1, HOF1, and HJN1. The results indicated that CAHB counts were higher at stations away from the mixing zone. The variations noted were in the order of 1-2 magnitudes. The three isolates showed similar response in their growth patterns when incubated at different temperatures. The influence of temperature on the growth of CAHB isolates showed that the log phase was shortened at higher temperatures. Furthermore the strains when incubated at 47 degC failed to grow. The number of CAHB were less in the thermal plume region followed by mixing zone. (author)

  12. The acidophilic microorganisms diversity present in lignite and pit coal from Paroseni, Halânga, Turceni mines

    Carmen Madalina CISMASIU

    2009-11-01

    Full Text Available Pollution from coal combustion is the largest problem in the current use of coal and the biggest constraint on the increased use of coal. When these fossil fuels are combusted, sulphur-di-oxide is released into the atmosphere causing acid rains which dissolves buildings, kills forest. Knowing the physiological groups of microorganisms present in the coal samples has an ecological importance, completing the knowledge in the field of the microorganism’s ecology and a practical importance, being a source of new microorganisms with biotechnological potential. The microbial communities evidenced in such sites include both groups of chemolithotrophic microorganisms involved in the metals biosolubilization processes and groups of heterotrophic microorganisms involved in the processes of bioaccumulation or biofixation of metallic ions. In this context, this paper presents the study regarding the main physiological groups of microorganisms present in the pit coal and lignite samples after the industrial processing of coal. The results revealed that the microorganisms belonging to the following physiological groups: aerobic heterotrophic acidophilic bacteria, strictly anaerobic heterotrophic (sulphur-reducing, nitrifying bacteria (nitrite and nitrate bacteria, denitrifying bacteria and acidophilic chemolithotrophic bacteria on Fe2+, on S0 and on S2O3.

  13. Characterization and exploitation of a marine microbial culture collection: – a special focus on carotenoid producing heterotrophic bacteria

    Stafsnes, Marit Hallvardsdotter

    2013-01-01

    Marine microorganisms are regarded promising sources of bioactive molecules. For this reason, a marine heterotrophic bacterial collection from the sea surface microlayer had been established intending to identify molecules with potential commercial interest. To exploit this bacterial collection, rational screening procedures have to be developed. A high-throughput LC-MS protocol was established for screening of pigmented bacteria, rapidly characterizing the UV/Vis properties of the pigments. ...

  14. [Characterization of communities of heterotrophic bacteria associated with healthy and diseased corals in Nha Trang Bay (Vietnam)].

    Beleneva, I A; Dautova, T I; Zhukova, N V

    2005-01-01

    A comparative investigation of the heterotrophic microflora of 11 species of healthy corals and of white-band-diseased and yellow-band-diseased corals inhabiting the reefs of Nha Trang Bay (Vietnam), which has been exposed to anthropogenic impact, was performed. Fifty-nine strains of heterotrophic bacteria isolated on Y/K and Endo media were investigated and characterized. All the isolates were identified at the genus level by consideration of the results of analysis of their phenotypic properties, determination of the molar percent of G+C bases in their DNA, and the composition of fatty acids of their lipids. In the composition of the microflora of tissues of healthy corals, gamma-proteobacteria prevailed, with halomonads being dominant among them. In addition, the gram-negative bacteria included Pseudomonas and Vibrio spp., members of the Cytophaga-Flavobacterium-Bacteroides (CFB) phylogenetic cluster, and Moraxella sp. The gram-positive bacteria revealed included Bacillus, Staphylococcus, Halococcus, and Micrococcus spp., and coryneform bacteria. In the composition of the microflora of the tissues of affected corals, bacteria of the family Enterobacteriaceae and of the genera Planococcus and Arthrobacter, which were not revealed in healthy hydrobionts, were found. The anthropogenic impact is not the sole factor determining the infection of corals. PMID:16315986

  15. Biogeochemistry and Genetic Potential related to Denitrification of Heterotrophic Bacteria isolated from Lake Vida Cryobrine

    Trubl, G.; Kuhn, E.; Ichimura, A.; Fritsen, C. H.; Murray, A. E.

    2012-12-01

    Lake Vida, one of the largest lakes in McMurdo Dry Valleys, Antarctica, is a thick block of ice permeated by brine channels below 16 m that contain the highest levels of nitrous oxide (N2O) that have been reported from a terrestrial environment (86.6 ± 5.9 μM). The subzero -13.4oC brine (18% salinity) has an unusual geochemistry with high levels of iron, dissolved organic carbon, nitrate, and ammonium. A number of heterotrophic bacteria were cultivated from this unusual, extreme ecosystem that has been isolated for at least three thousand years. The aim of this research was to phylogenetically characterize the bacterial isolates (using 16S ribosomal RNA analysis) and investigate their denitrifying abilities and genetic potential related to key reactions in the denitrification cycle. Fifteen phylotypes were isolated from Lake Vida brine among three phyla: Gammaproteobacteria, Actinobacteria, and Firmicutes. Based on the 16S ribosomal RNA analysis, Marinobacter was the most abundant (56%) genus identified among the 57 isolates. The other isolates were related to the genera Psychrobacter, Exiguobacterium, Kocuria, and Microbacterium. Representatives of each phylotype were characterized and verified for: (1) Nitrate (NO3-) reduction to either N2O or dinitrogen (N2) by Gas Chromatography; (2) presence of the genes nirK or nirS for NO3- reduction and nosZ for nitric oxide (NO) reduction by polymerase chain reaction (PCR); and (3) growth response to salinity and temperature gradients. Thirty five of the Lake Vida isolates produced either N2O or N2 coupled to cell growth. All 57 isolates have grown across a 32°C temperature range (-10°C to 22°C) and 54 isolates were halotolerant bacteria (growing in 0% to 16% salinity), while the last three isolates were halophilic. Electron microscopy revealed membrane vesicles and extracellular polymeric substances (EPS) around the Lake Vida isolates, which may be a survival adaptation. Investigating the denitrification and other

  16. Coupling of heterotrophic bacteria to phytoplankton bloom development at different pCO2 levels: a mesocosm study

    R. Thyrhaug

    2008-07-01

    Full Text Available The predicted rise in anthropogenic CO2 emissions will increase CO2 concentrations and decrease seawater pH in the upper ocean. Recent studies have revealed effects of pCO2 induced changes in seawater chemistry on a variety of marine life forms, in particular calcifying organisms. To test whether the predicted increase in pCO2 will directly or indirectly (via changes in phytoplankton dynamics affect abundance, activities, and community composition of heterotrophic bacteria during phytoplankton bloom development, we have aerated mesocosms with CO2 to obtain triplicates with three different partial pressures of CO2 (pCO2: 350 μatm (1×CO2, 700 μatm (2×CO2 and 1050 μatm (3×CO2. The development of a phytoplankton bloom was initiated by the addition of nitrate and phosphate. In accordance to an elevated carbon to nitrogen drawdown at increasing pCO2, bacterial production (BPP of free-living and attached bacteria as well as cell-specific BPP (csBPP of attached bacteria were related to the C:N ratio of suspended matter. These relationships significantly differed among treatments. However, bacterial abundance and activities were not statistically different among treatments. Solely community structure of free-living bacteria changed with pCO2 whereas that of attached bacteria seemed to be independent of pCO2 but tightly coupled to phytoplankton bloom development. Our findings imply that changes in pCO2, although reflected by changes in community structure of free-living bacteria, do not directly affect bacterial activity. Furthermore, bacterial activity and dynamics of heterotrophic bacteria, especially of attached bacteria, were tightly correlated to phytoplankton development and, hence, may also potentially depend on changes in pCO2.

  17. Influence of Asellus aquaticus on Escherichia coli, Klebsiella pneumoniae, Campylobacter jejuni and naturally occurring heterotrophic bacteria in drinking water

    Christensen, Sarah Christine; Nissen, Erling; Arvin, Erik;

    2012-01-01

    . aquaticus on microbial water quality in non-chlorinated drinking water in controlled laboratory experiments. Pure cultures of the indicator organisms Escherichia coli and Klebsiella pneumoniae and the pathogen Campylobacter jejuni as well as naturally occurring heterotrophic drinking water bacteria...... (measured as heterotrophic plate counts, HPC) were investigated in microcosms at 7 °C, containing non-sterilised drinking water, drinking water sediment and A. aquaticus collected from a non-chlorinated ground water based drinking water supply system. Concentrations of E. coli, K. pneumoniae and C. jejuni......Water lice, Asellus aquaticus (isopoda), frequently occur in drinking water distribution systems where they are a nuisance to consumers and water utilities. Whether they are solely an aesthetic problem or also affect the microbial water quality is a matter of interest. We studied the influence of A...

  18. Growth of legionella and other heterotrophic bacteria in a circulating cooling water system exposed to ultraviolet irradiation

    The effect of ultraviolet irradiation on the growth and occurrence of legionella and other heterotrophic bacteria in a circulating cooling water system was studied. Water of the reservoir was circulated once in 28 h through a side-stream open channel u.v. radiator consisting of two lamps. Viable counts of legionellas and heterotrophic bacteria in water immediately after the u.v. treatment were 0-12 and 0.7-1.2% of those in the reservoir, respectively. U.v. irradiation increased the concentration of easily assimilable organic carbon. In the u.v. irradiated water samples incubated in the laboratory the viable counts of heterotropic bacteria reached the counts in reservoir water within 5 d. The increase in viable counts was mainly due to reactivation of bacterial cells damaged by u.v. light, not because of bacterial multiplication. Despite u.v. irradiation the bacterial numbers in the reservoir water, including legionellas, did not decrease during the experimental period of 33 d. The main growth of bacteria in the reservoir occurred in biofilm and sediment, which were never exposed to u.v. irradiation. (Author)

  19. Synechococcus growth in the ocean may depend on the lysis of heterotrophic bacteria

    Weinbauer, M.G.; Bonilla-Findji, O.; Chan, A.M.; Dolan, J. R.; Short, S.M.; Šimek, Karel; Wilhelm, S. W.; Suttle, C.A.

    2011-01-01

    Roč. 33, č. 10 (2011), s. 1465-1476. ISSN 0142-7873 R&D Projects: GA ČR(CZ) GA206/08/0015 Institutional research plan: CEZ:AV0Z60170517 Keywords : viruses * growth control of cyanobacteria * heterotrophic bacterioplankton Subject RIV: EE - Microbiology, Virology Impact factor: 2.079, year: 2011

  20. Genomics and Ecophysiology of Heterotrophic Nitrogen-Fixing Bacteria Isolated from Estuarine Surface Water

    Bentzon-Tilia, Mikkel; Severin, Ina; Hansen, Lars H.; Riemann, Lasse

    2015-01-01

    The ability to reduce atmospheric nitrogen (N2) to ammonia, known as N2 fixation, is a widely distributed trait among prokaryotes that accounts for an essential input of new N to a multitude of environments. Nitrogenase reductase gene (nifH) composition suggests that putative N2-fixing heterotrophic organisms are widespread in marine bacterioplankton, but their autecology and ecological significance are unknown. Here, we report genomic and ecophysiology data in relation to N2 fixation by thre...

  1. Densities, cellulases, alginate and pectin lyases of luminous and other heterotrophic bacteria associated with marine algae

    Ramaiah, N.; Chandramohan, D.

    Epiphytic luminous and non-luminous bacteria were determined quantitatively for eight intertidal algal species from rocky beaches of Goa and Lakshadweep coral reef lagoon. Luminous bacteria were present on all eight algal species and contributed 2...

  2. Improved methods for the enumeration of heterotrophic bacteria in bottled mineral waters

    Ramalho, Rita; Cunha, Joaquim; Teixeira, Paula; Paul A. Gibbs

    2001-01-01

    At this time the European Union regulations require that the heterotrophic plate counts (HPC) of mineral waters be assessed at two recovery temperatures: 22°C for 72 h and 37°C for 24 h. This procedure is time consuming and expensive. Development of new rapid methods for microbiological assessment of the microbial flora in the bottled water is an industry-driven need. The objectives of this work were to develop a method for the HPC that utilises only one recovery temperature and one incuba...

  3. Abundance of general aerobic heterotrophic bacteria in the Bering Sea and Chukchi Sea and their adaptation to temperature

    陈皓文; 高爱国; 孙海青; 矫玉田

    2004-01-01

    The abundance of general aerobic heterotrophic bacteria(GAB) from the water and sediment in the Bering Sea and the Chukchi Sea was determined by using petri dish cultivation and counting method. The abundance of GAB among the different sea areas, sampling sites, layers of sediments surveyed and adaptability to differential temperatures was studied. The result obtained showed that: the occurrence percentage of GAB in the surface water was higher than that in sediment, but the abundance was only 0.17% of sediment. The occurrence percentage of GAB in surficial layer of sediment was higher than that in the other layers. The occurrence percentage of GAB in surficial layer of sediment was higher than that in the other layers. The occurrence percentage, abundance and its variation of GAB in the Bering Sea were higher than that in the Chukchi Sea respectively. The average value of the abundance of GAB in sediment showed a trend: roughly higher in the lower latitudinal area than higher latitude. The results from temperature test mean that: the majority of bacteria tested were cold -adapted ones, minority might be mesophilic bacteria. The results indicated that, Arctic ocean bacteria had a stronger adaptability to environmental temperature.

  4. Relatively high antibiotic resistance among heterotrophic bacteria from arctic fjord sediments than water - Evidence towards better selection pressure in the fjord sediments

    Hatha, A. A. Mohamed; Neethu, C. S.; Nikhil, S. M.; Rahiman, K. M. Mujeeb; Krishnan, K. P.; Saramma, A. V.

    2015-12-01

    The objective of this study was to determine the prevalence of antibiotic resistance among aerobic heterotrophic bacteria and coliform bacteria from water and sediment of Kongsfjord. The study was based on the assumption that arctic fjord environments are relatively pristine and offer very little selection pressure for drug resistant mutants. In order to test the hypothesis, 200 isolates belonging to aerobic heterotrophic bacteria and 114 isolates belonging to coliforms were tested against 15 antibiotics belonging to 5 different classes such as beta lactams, aminoglycosides, quinolones, sulpha drugs and tetracyclines. Resistance to beta lactam and extended spectrum beta lactam (ESBL) antibiotics was considerably high and they found to vary significantly (p antibiotic resistance against ESBL's extent and diversity of antibiotic resistance (as revealed by multiple antibiotic resistance index and resistance patterns), was high in the aerobic heterotrophic bacteria. Most striking observation was that isolates from fjord sediments (both heterotrophic bacteria and coliforms) in general showed relatively high prevalence of antibiotic resistance against most of the antibiotics tested, indicating to better selection pressure for drug resistance mutants in the fjord sediments.

  5. The Biology of Heterotrophic N2-fixing Bacteria in Marine and Estuarine Waters

    Bentzon-Tilia, Mikkel

    Biological nitrogen (N)2 fixation is of paramount importance for marine N cycling and for life in the oceans in general. It represents the sole mechanism by which microorganisms can channel inert atmospheric N2 gas into biomass and hence it may fuel a significant fraction of primary production in...... cyanobacterial endosymbionts of diatoms, and recently also unicellular cyanobacteria, have been considered the dominant marine diazotrophs. However, phylogenetic analyses of the functional genes involved in N2 fixation seem to suggest that heterotrophic N2-fixing organisms are present and active in various...... marine systems as well. Their role and ecological significance is, however currently unknown. By combining in situ analyses of the distribution and activity of diazotrophs in various marine environments with culture-­based examinations of the potential of N2 fixation and its regulation in representative...

  6. Influence of river discharge on abundance and dissemination of heterotrophic, indicator and pathogenic bacteria along the east coast of India

    Prasad, V.R.; Srinivas, T.N.R.; Sarma, V.V.S.S.

    and south east coast of India. The highest heterotrophic, indicator and pathogenic bacterial abundance was observed in the central coastal Bay that received urban sewage from the major city. Intensity and dissemination of heterotrophic, indicator...

  7. A mineralogical characterization of biogenic calcium carbonates precipitated by heterotrophic bacteria isolated from cryophilic polar regions.

    Ronholm, J; Schumann, D; Sapers, H M; Izawa, M; Applin, D; Berg, B; Mann, P; Vali, H; Flemming, R L; Cloutis, E A; Whyte, L G

    2014-11-01

    Precipitation of calcium carbonate (CaCO3(s) ) can be driven by microbial activity. Here, a systematic approach is used to identify the morphological and mineralogical characteristics of CaCO3(s) precipitated during the heterotrophic growth of micro-organisms isolated from polar environments. Focus was placed on establishing mineralogical features that are common in bioliths formed during heterotrophic activity, while in parallel identifying features that are specific to bioliths precipitated by certain microbial phylotypes. Twenty microbial isolates that precipitated macroscopic CaCO3(s) when grown on B4 media supplemented with calcium acetate or calcium citrate were identified. A multimethod approach, including scanning electron microscopy, high-resolution transmission electron microscopy, and micro-X-ray diffraction (μ-XRD), was used to characterize CaCO3(s) precipitates. Scanning and transmission electron microscopy showed that complete CaCO3(s) crystal encrustation of Arthrobacter sp. cells was common, while encrustation of Rhodococcus sp. cells did not occur. Several euhedral and anhedral mineral formations including disphenoid-like epitaxial plates, rhomboid-like aggregates with epitaxial rhombs, and spherulite aggregates were observed. While phylotype could not be linked to specific mineral formations, isolates tended to precipitate either euhedral or anhedral minerals, but not both. Three anhydrous CaCO3(s) polymorphs (calcite, aragonite, and vaterite) were identified by μ-XRD, and calcite and aragonite were also identified based on TEM lattice-fringe d value measurements. The presence of certain polymorphs was not indicative of biogenic origin, although several mineralogical features such as crystal-encrusted bacterial cells, or casts of bacterial cells embedded in mesocrystals are an indication of biogenic origin. In addition, some features such as the formation of vaterite and bacterial entombment appear to be linked to certain phylotypes. Identifying

  8. Interactions between marine snow and heterotrophic bacteria: aggregate formation and microbial dynamics

    Grossart, H.P.; Kiørboe, Thomas; Tang, K.W.;

    2006-01-01

    bacteria depended on phytoplankton growth and aggregation dynamics. The community composition of especially attached bacteria significantly differed between the 2 algal cultures. Our study suggests that phytoplankton aggregation and vertical fluxes are closely linked to interactions between the marine...... well as abundance, colonization behaviour, and community composition of bacteria during the growth of 2 marine diatoms (Thalassiosira weissflogii and Navicula sp.) under axenic and non-axenic conditions. Community composition of free-living and attached bacteria during phytoplankton growth and...... aggregation was studied by amplification of 16S rRNA gene fragments and denaturing gradient gel electrophoresis (DGGE). Our results show that the presence of bacteria was a prerequisite for aggregation of T. weissflogii but not of Navicula sp. Occurrences of distinct populations of free-living and attached...

  9. Seasonal variations of virus- and nanoflagellate-mediated mortality of heterotrophic bacteria in the coastal ecosystem of subtropical western Pacific

    A. Y. Tsai

    2013-05-01

    Full Text Available Since viral lysis and nanoflagellate grazing differ in their impact on the aquatic food web, it is important to assess the relative importance of both bacterial mortality factors. In this study, an adapted version of the modified dilution method was applied to simultaneously estimate the impact of both virus and nanoflagellate grazing on the mortality of heterotrophic bacteria. A series of experiments was conducted monthly from April to December 2011 and April to October 2012. The growth rates of bacteria we measured ranged from 0.078 h−1 (April 2011 to 0.42 h−1 (September 2011, indicating that temperature can be important in controlling the seasonal variations of bacterial growth. Furthermore, it appeared that seasonal changes in nanoflagellate grazing and viral lysis could account for 34% to 68% and 13% to 138% of the daily removal of bacterial production, respectively. We suggest that nanoflagellate grazing might play a key role in controlling bacterial biomass and might exceed the impact of viral lysis during the summer period (July to August because of the higher abundance of nanoflagellates at that time. Viral lysis, on the other hand, was identified as the main cause of bacterial mortality between September and December. Based on these findings in this study, the seasonal variations in bacterial abundance we observed can be explained by a scenario in which both growth rates and loss rates (grazing + viral lysis influence the dynamics of the bacteria community.

  10. Heterotrophic Fe-Oxidizing Bacteria Associated With Basalt Surfaces Supporting Life On Vailulu'u Seamount, American Samoa

    Haucke, L.; Templeton, A.; Bailey, B.; Tebo, B.; Staudigel, H.

    2005-12-01

    Fe, the fourth-most abundant element in the Earth's crust, is also one of the most biologically essential ones. The reduced form, Fe(II), is often considered to be biologically limiting as a result of its low solubility and rapid chemical oxidation to Fe(III)(hydr)oxides at circumneutral pH. The alteration of basaltic glass, enriched in Fe(II), however, provides an abundant supply of reduced iron and, thus, has a major influence on local ocean chemistry and Fe bioavailability. Despite the fact that chemical Fe(II) oxidation takes place very rapidly, we demonstrate that alteration processes of freshly formed basaltic glass can be crucially enhanced by microbial activity.Cultivation of bacteria from basalt surfaces collected from two active submarine volcanoes, Loihi (Hawaii) and Vailulu'u (American Samoa) show a large number of heterotrophic bacteria capable of oxidizing Fe(II) and that these bacteria. not only enhance basalt dissolution but also play a major role in precipitating large amounts of thick Fe(hydr)oxides mats on Vailulu'u Seamount, particularly in the vicinity of low temperature hydrothermal vents. These mats contain substantial quantities of organic carbon that may serve as food sources for some of the macrobiological life on Vailulu'u Seamount. This very prominently includes a substantial population of eels that is found in close spatial association with up to 1m thick Fe oxide/microbial mat at Nafanua volcano, a recent volcanic cone that grew from the crater floor of the seamount. Microbial community analysis on different substrates ranging from basalt surfaces to microbial mats were performed on specially designed culturing media for detection and isolation of heterotrophic bacteria capable of Fe(II)-oxidation. Clone libraries from microbial mats originating from an eel dominated area of Vailulu'u crater are being compared to libraries made from eel guts in order to provide information to what extent these mats are being used as a food source in

  11. Model-based evaluation of ferrous iron oxidation by acidophilic bacteria in chemostat and biofilm airlift reactors.

    Ebrahimi, Sirous; Faraghi, Neda; Hosseini, Maryam

    2015-10-01

    This article presents a model-based evaluation of ferrous iron oxidation in chemostat and biofilm airlift reactors inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria. The competition between the two types of bacteria in the chemostat and in the biofilm airlift reactors together with the distribution of both bacteria along the biofilm thickness at different time sections has been studied. The bacterial distribution profiles along the biofilm in the airlift reactor at different time scales show that in the beginning A. ferrooxidans bacteria are dominant, but when the reactor operates for a long time the desirable L. ferrooxidans species outcompete A. ferrooxidans as a result of the low Fe(2+) and high Fe(3+) concentrations. The results obtained from the simulation were compared with the experimental data of continuously operated internal loop airlift biofilm reactor. The model results are in good agreement with the experimental results. PMID:26264929

  12. Quantification of kinetic parameters for heterotrophic bacteria via respirometry in a hybrid reactor.

    Trapani, Daniele Di; Mannina, Giorgio; Torregrossa, Michele; Viviani, Gaspare

    2010-01-01

    Over the last decade new technologies are emerging even more for wastewater treatment. Among the new technologies, a recent possible solution regards Moving Bed Biofilm Reactors (MBBRs) that represent an effective alternative to conventional processes. More specifically such systems consist in the introduction of plastic elements inside the aerobic reactor as carrier material for the growth of attached biomass. Recently, one of the mostly used alternatives is to couple the Moving Bed Biofilm Reactor (MBBR) process with the conventional activated sludge process, and the resulting process is usually called HMBBR (Hybrid MBBR). In the MBBR process the biofilm grows attached on small plastic elements that are kept in constant motion throughout the entire volume of the reactor. Indeed, in such a system, a competition between the two biomasses, suspended and attached, can arise for the availability of the substrates, leading, as a consequence, to a modification in the biokinetic parameters of the two biomasses, compared to that of a pure suspended or attached biomass process. This paper presents the first results of a study aimed at estimating the kinetic heterotrophic constants in a HMBBR pilot plant using respirometric techniques. The pilot plant was built at the Acqua dei Corsari (Palermo) wastewater treatment plant and consisted of two parallel lines realized in a pre-anoxic scheme, in one of which the carrier material was added to the aerobic reactor with a filling ratio of 30%. PMID:20371934

  13. Virioplankton in the Kara Sea: The impact of viruses on mortality of heterotrophic bacteria

    Kopylov, A. I.; Sazhin, A. F.; Zabotkina, E. A.; Romanova, N. D.

    2015-07-01

    Studies were conducted in shallow and deepwater areas of the Kara Sea. The abundance of bacteria ( N B ) and the abundance of viruses ( N V ) ranged within (19.4-2215.1) × 103 cells/ml and (97.6-5796.8) × 103 particles/ml, respectively. The virus to bacteria ratio varied from 1.4 to 29.1. A positive correlation was found between N B and N V ( R = 0.87, n = 45, p = 0.05. Using electron transmission microscopy it was detected that the frequency of visibly infected cells of bacteria (FVIC) varied from 0.2 to 1.9% of N B . The maximum values of FVIC were recorded in the estuary of the Yenisei River. The infected cells of bacteria contained from 4 to 127 (an average of 12) phages/cell of mature viruses. Virus-mediated mortality of bacteria was 0.5% and varied from 1.4 to 16.1% of the total mortality of bacterioplankton. This indicates a minor role of viruses in the control of overabundance and production of bacterioplankton in the Kara Sea during the surveyed period.

  14. Differential utilization patterns of dissolved organic phosphorus compounds by heterotrophic bacteria in two mountain lakes.

    Rofner, Carina; Sommaruga, Ruben; Pérez, María Teresa

    2016-09-01

    Although phosphorus limitation is common in freshwaters and bacteria are known to use dissolved organic phosphorus (DOP), little is known about how efficiently DOP compounds are taken up by individual bacterial taxa. Here, we assessed bacterial uptake of three model DOP substrates in two mountain lakes and examined whether DOP uptake followed concentration-dependent patterns. We determined bulk uptake rates by the bacterioplankton and examined bacterial taxon-specific substrate uptake patterns using microautoradiography combined with catalyzed reporter deposition-fluorescence in situ hybridization. Our results show that in the oligotrophic alpine lake, bacteria took up ATP, glucose-6-phosphate and glycerol-3-phosphate to similar extents (mean 29.7 ± 4.3% Bacteria), whereas in the subalpine mesotrophic lake, ca. 40% of bacteria took up glucose-6-phosphate, but only ∼20% took up ATP or glycerol-3-phosphate. In both lakes, the R-BT cluster of Betaproteobacteria (lineage of genus Limnohabitans) was over-represented in glucose-6-phosphate and glycerol-3-phosphate uptake, whereas AcI Actinobacteria were under-represented in the uptake of those substrates. Alphaproteobacteria and Bacteroidetes contributed to DOP uptake proportionally to their in situ abundance. Our results demonstrate that R-BT Betaproteobacteria are the most active bacteria in DOP acquisition, whereas the abundant AcI Actinobacteria may either lack high affinity DOP uptake systems or have reduced phosphorus requirements. PMID:27312963

  15. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden

    Dey Satarupa; A. K. Paul

    2013-01-01

    Microbiological analysis of overburden samples collected from chromite mining areas of Orissa, India revealed that they are rich in microbial density as well as diversity and dominated by Gram-negative (58%) bacteria. The phenotypically distinguishable bacterial isolates (130) showed wide degree of tolerance to chromium (2–8 mM) when tested in peptone yeast extract glucose agar medium. Isolates (92) tolerating 2 mM chromium exhibited different degrees of Cr+6 reducing activity in chemically d...

  16. Cycling of DOC and DON by Novel Heterotrophic and Photoheterotrophic Bacteria in the Ocean: Final Report

    Kirchman, David L

    2008-12-09

    The flux of dissolved organic matter (DOM) through aquatic bacterial communities is a major process in carbon cycling in the oceans and other aquatic systems. Our work addressed the general hypothesis that the phylogenetic make-up of bacterial communities and the abundances of key types of bacteria are important factors influencing the processing of DOM in aquatic ecosystems. Since most bacteria are not easily cultivated, the phylogenetic diversity of these microbes has to be assessed using culture-independent approaches. Even if the relevant bacteria were cultivated, their activity in the lab would likely differ from that under environmental conditions. This project found variation in DOM uptake by the major bacterial groups found in coastal waters. In brief, the data suggest substantial differences among groups in the use of high and molecular weight DOM components. It also made key discoveries about the role of light in affecting this uptake especially by cyanobacteria. In the North Atlantic Ocean, for example, over half of the light-stimulated uptake was by the coccoid cyanobacterium, Prochlorococcus, with the remaining uptake due to Synechococcus and other photoheterotrophic bacteria. The project also examined in detail the degradation of one organic matter component, chitin, which is often said to be the second most abundant compound in the biosphere. The findings of this project contribute to our understanding of DOM fluxes and microbial dynamics supported by those fluxes. It is possible that these findings will lead to improvements in models of the carbon cycle that have compartments for dissolved organic carbon (DOC), the largest pool of organic carbon in the oceans.

  17. Population dynamics of phytoplankton, heterotrophic bacteria, and viruses during the spring bloom in the western subarctic Pacific

    Suzuki, Koji; Kuwata, Akira; Yoshie, Naoki; Shibata, Akira; Kawanobe, Kyoko; Saito, Hiroaki

    2011-05-01

    We characterized the community composition of phytoplankton in the western subarctic Pacific from the pre-bloom to the decline phase of the spring bloom with special reference to decreases in the silicic acid concentration in surface waters as an index for diatom bloom development. Furthermore, responses of heterotrophic bacteria and viruses to the spring bloom were also concomitantly investigated. Under pre-bloom conditions when nutrients were abundant but the surface mixed layer depth was relatively deep, chlorophyll (Chl) a concentrations were consistently low and green algae (chlorophytes and prasinophytes), cryptophytes, and diatoms were predominant in the phytoplankton assemblages as estimated by algal pigment signatures. Together with the shallowing of the mixed layer depth and the decrease in silicic acid concentration, diatoms bloomed remarkably in the Oyashio region, though the magnitude of the bloom in the Kuroshio-Oyashio transition (hereafter Transition) region was relatively small. A total of 77 diatom species were identified, with the bloom-forming diatoms mainly consisting of Thalassiosira, Chaetoceros, and Fragilariopsis species. It has become evident that the carotenoid fucoxanthin can serve as a strong indicator of the diatom carbon biomass during the spring diatom bloom. Differences in the species richness of diatoms among stations generally enabled us to separate the Oyashio bloom stations from the Transition and the Oyashio pre-bloom stations. Relatively high values of the Shannon-Wiener index for the diatom species were also maintained during the Oyashio bloom, indicating that a wide variety of species then shared dominance. In the decline phase of the Oyashio bloom when surface nutrient concentrations decreased, senescent diatom cells increased, as inferred from the levels of chlorophyllide a. Although the cell density of heterotrophic bacteria changed little with the development of the diatom bloom, viral abundance increased toward the end

  18. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden

    Dey Satarupa

    2013-01-01

    Full Text Available Microbiological analysis of overburden samples collected from chromite mining areas of Orissa, India revealed that they are rich in microbial density as well as diversity and dominated by Gramnegative (58% bacteria. The phenotypically distinguishable bacterial isolates (130 showed wide degree of tolerance to chromium (2-8 mM when tested in peptone yeast extract glucose agar medium. Isolates (92 tolerating 2 mM chromium exhibited different degrees of Cr+6 reducing activity in chemically defined Vogel Bonner (VB broth and complex KSC medium. Three potent isolates, two belonging to Arthrobacter spp. and one to Pseudomonas sp. were able to reduce more than 50 and 80% of 2 mM chromium in defined and complex media respectively. Along with Cr+6 (MIC 8.6-17.8 mM, the isolates showed tolerance to Ni+2, Fe+3, Cu+2 and Co+2 but were extremely sensitive to Hg+2 followed by Cd+2, Mn+2 and Zn+2. In addition, they were resistant to antibiotics like penicillin, methicillin, ampicillin, neomycin and polymyxin B. During growth under shake-flask conditions, Arthrobacter SUK 1201 and SUK 1205 showed 100% reduction of 2 mM Cr+6 in KSC medium with simultaneous formation of insoluble precipitates of chromium salts. Both the isolates were also equally capable of completely reducing the Cr+6 present in mine seepage when grown in mine seepage supplemented with VB concentrate.

  19. Resistance to antibiotics in heterotrophic bacteria as a result of environmental pollution

    Maria Bartoszewic

    2014-12-01

    Full Text Available Introduction. The aim of the study was to investigate resistance to selected antibiotics in Escherichia coli and Enterococcus faecalis strains that were isolated from water collected from ten streams within the administrative boundaries of the city of Sopot. Material and methods. 114 E. coli strains and 57 E. faecalis strains were studied. Antibiotic resistance was determined by the disc diffusion method using antibiotic-impregnated discs. Results. The isolated E. coli strains were resistant to chloramphenicol (21%, cefepime (51%, tetracycline (41%, imipenem (35%, cephazoline (62% and gentamicin (90%. E. faecalis isolates showed resistance to erythromycin (75%, chloramphenicol (21% and imipenem (33%. The relationship between the level of antibiotic resistance, the origin of water sample and the level of water contamination with E. coli and Enterococcus faecalis bacteria in the investigated streams was analyzed. Conclusions. Based on the obtained results, it was determined that multi-drug resistant bacterial strains of E. coli and E. faecalis are present in the investigated surface waters.

  20. The use of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present on three mural paintings showing severe damage by microorganisms.

    Heyrman, J; Mergaert, J; Denys, R; Swings, J

    1999-12-01

    Mural paintings in Carmona (Spain), Herberstein (Austria) and Greene (Germany), showing visible deterioration by microorganisms, were sampled to investigate the biodiversity of the heterotrophic bacteria present. Four hundred twenty-eight bacterial strains were isolated from which 385 were characterized by fatty acid methyl ester analysis (FAME). The isolates were grouped into 41 clusters on the basis of their FAME profiles, 20 isolates remained ungrouped. The majority (94%) of the isolates comprised the gram-positive bacteria and the main clusters were identified as Bacillus sp., Paenibacillus sp., Micrococcus sp., Arthrobacter sp. and Staphylococcus sp. Other clusters contain nocardioform actinomycetes and gram-negative bacteria, respectively. A cluster of the latter contained extreme halotolerant bacteria isolated in Herberstein. The FAME profiles of this cluster showed a high similarity with Halomonas. PMID:10564789

  1. Production of Glycolic Acid by Chemolithotrophic Iron- and Sulfur-Oxidizing Bacteria and Its Role in Delineating and Sustaining Acidophilic Sulfide Mineral-Oxidizing Consortia▿

    Ñancucheo, Ivan; Johnson, D. Barrie

    2009-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacill...

  2. Olivine dissolution in the presence of heterotrophic bacteria (Pseudomonas reactants) extracted from Icelandic groundwater of the CO2 injection pilot site

    Shirokova, Liudmila; Pokrovsky, Oleg; Benezeth, Pascale; Gerard, Emmanuelle; Menez, Benedicte; Alfredsson, Helgi

    2010-05-01

    This work is aimed at experimental modeling of the effect of heterotrophic bacteria on dissolution of important rock-forming mineral, olivine, at the conditions of CO2 storage and sequestration. Heterotrophic aerobic gram-negative bacteria were extracted from deep underground water (HK31, 1700 m deep and, t = 25-30°C) of basaltic aquifer located within the Hellisheidi CO2 injection pilot site (Iceland). Following this sampling, we separated, using culture on nutrient agar plates, four different groups of gram-negative aerobic bacteria. The enzymatic activity of studied species has been evaluated using Biolog Ecoplates and their genetic identification was performed using 18-S RNA analysis. The optimal growth conditions of bacteria on Brain Hearth Broth nutrient have been determined as 5 to 37°C and growth media pH varied from 7.0-8.2. Culturing experiments allowed determining the optimal physico-chemical conditions for bacteria experiments in the presence of basic Ca, Mg-containing silicates. Olivine (Fo92) was chosen as typical mineral of basalt, widely considered in carbon dioxide sequestration mechanisms. Dissolution experiments were performed in constant-pH (7 to 9), bicarbonate-buffered (0.001 to 0.05 M) nutrient-diluted media in batch reactors at 0-30 bars of CO2 in the presence of various biomass of Pseudomonas reactants. The release rate of magnesium, silica and iron was measured as a function of time in the presence of live, actively growing, dead (autoclaved or glutaraldehyde-treated) cells and bacteria exometabolites. Both nutrient media diluted 10 times (to 100 mg DOC/L) and inert electrolyte (NaCl, no DOC) were used. Our preliminary results indicate that the pH and dissolved organic matter are the first-order parameters that control the element release from olivine at far from equilibrium conditions. The SEM investigation of reacted surfaces reveal formation of surface roughness with much stronger mineral alteration in the presence of live bacteria

  3. Microbial leaching of iron from pyrite by moderate thermophile chemolithotropic bacteria

    The present work was aimed at studying the bioleachability of iron from pyrite by the selected moderately thermophilic strains of acidophilic chemolithotrophic and acidophilic heterotrophic bacteria. These included Sulfobacillus thermosulfidooxidans (chemolithotroph) and an un-identified strain of acidophilic heterotroph (code 6A1TSB) isolated from local environments. As compared to inoculated flasks, dissolution of metal (due to acid leaching) was significantly low in the un-inoculated control flasks in all the experiments in ore. A decrease in the bioleaching activity was observed at the later stages of bioleaching of metal from ore. Among the strategies adopted to enhance the metal leaching rates, a mixed consortium of the metal adapted cultures of the above-mentioned bacteria was found to exhibit the maximum metal leaching efficiency. In all the flasks where high metal leaching rates were observed, concomitantly biomass production rates were also high indicating high growth rates. It showed that the metal bioleaching capability of the bacteria was associated with their growth. Pyrite contained 42% iron. (author)

  4. Cultivation and biochemical characterization of heterotrophic bacteria associated with phytoplankton bloom in the Amundsen sea polynya, Antarctica

    Choi, Seon-Bin; Kim, Jong-Geol; Jung, Man-Young; Kim, So-Jeong; Min, Ui-Gi; Si, Ok-Ja; Park, Soo-Je; Yeon Hwang, Chung; Park, Jisoo; Lee, SangHoon; Rhee, Sung-Keun

    2016-01-01

    Polynyas are a key ecosystem for carbon cycling in the Antarctic Ocean due to the intensive primary production. Most of the knowledge regarding the bacterioplankton community in the Antarctic Ocean that is responsible for re-mineralization of fixed carbon comes from metagenomic analyses. Here, the extinction-dilution method was used to obtain representative heterotrophs from a polynya in the Amundsen Sea, Antarctica, and their biochemical potential for carbon re-mineralization were assessed. All 23 strains have close relatives belonging to type strains within the following genera (number of strains; % 16S rRNA gene sequence similarity): Bizionia (4; >97.8%), Leeuwenhoekiella (1; 96.2%), Pseudoalteromonas (14; >98.5%), Pseudomonas (1; 99.4%) and Sulfitobacter (3; 100%), which were also observed in 454 pyrosequencing-based analysis of 16S rRNA gene sequences of the polynya. Although sequence reads related to Polaribacter were the most common, Polaribacter strains could only be obtained from colonies cultured on agar plates. The strain of Leeuwenhoekiella showed a prominent ability in hydrolyzing diverse esters, amides, and glycosides while the strains of Pseudoalteromonas, Polaribacter, and Bizionia showed extracellular enzyme activities only on a narrow range of amides. The strains of Leeuwenhoekiella, Pseudoalteromonas, and Sulfitobacter utilized various labile carbon sources: carbohydrates, organic acids, amino acids, and peptides. The most frequent isolates, strains of Pseudoaltermonas, showed marked differences in terms of their potential to utilize different types of labile carbon sources, which may reflect high genomic diversity. The strains of Bizionia and Pseudomonas did not utilize carbohydrates. Unique biochemical properties associated with extracellular hydrolase activities and labile carbon utilization were revealed for dominant culturable heterotrophs which gives insights into their roles in active re-mineralization of fixed carbons in polynya.

  5. Biotechnical leaching of lean ores using heterotrophic microorganisms

    After reporting briefly on leaching with Thiobacillus, it is discussed whether in those cases where thiobacilli fail to work the limits of microbial leaching are reached or still other groups of microorganisms will be suitable. In this relation the great number of carbon-heterotrophic fungi and bacteria have to be considered which are partly oligotrophic and occur e.g. in weathering biotopes of rocks and minerals and which may even include heavy metals in the dissolving processes of weathering. The active agents are, as far as is known up to now, organic acids which are produced by microorganisms and given off to the medium where they may combine with metals to form water-soluble complex compounds. In order to detect and isolate suitable strains of fungi and bacteria it will be necessary to work out a screening program which proceeds from general to special selections. Experiments to identify the active agents and the conditions of their production will have to follow. It remains still an open question whether such studies will result in technical processes. Mass production processes which are possible with the carbon-autotrophic and acidophilic thiobacilli are less probable than special processes to get hold of rare and economically valuable metals whose extraction would be difficult by other means. (orig.)

  6. Polyphasic approach to characterize heterotrophic bacteria of biofilms and patina on walls of the Suburban Bath of the Herculaneum's archaeological excavations in Italy

    Ventorino, V.; Pepe, O.; Sannino, L.; Blaiotta, G.; Palomba, S.

    2012-04-01

    Built between the walls of Herculaneum excavations, one of the world's most important archaeological sites, and the sea in the early 1st cent. AD, the Suburban Bath is one of the best thermal complexes better preserved in ancient times. The entrance opens onto a large courtyard that leads into a hallway well lit by a skylight, impluvium, with a portrait of "Apollo". From this room you can access various parts of the thermae, all beautifully preserved. A single room, mostly occupied by the pool, serving both apodyterium (dressing room) that frigidarium. Among tepidarium and frigidarium there's a room elegantly decorated with stucco and marble. The vestibule opens to the right, through a corridor, onto a waiting room with a floor in signinum opus and into a praefurnium (oven for heating). A large pool of tepidarium, connected with laconicum, a small circular room for the baths sweat, is also present. The calidarium, as usual, has a small tank for hot water and a basin for washing in cold water. Behind the calidarium is the praefurnium, an environment with the boiler for heating the bath. Although the suburban baths are well preserved, unfortunately in you can observe the development of visible microbial coatings. During the biodeterioration process, secondary colonization of wall is due to heterotrophic bacteria and fungi that induce deterioration cause structural as well as aesthetic damage such as the discoloration of materials, the formation of crusts on surfaces and the loss of material. This investigation was carried out sampling the surfaces of walls of different rooms in the Suburban Thermae according to Italian legal procedures. Depending on the samples typology, sampling was carry out using sterile nitrocellulose membranes pressed on the surface of the walls, sterile swabs or with sterile tweezers by tearing out surface material. The samples were suspended in physiological solution and immediately refrigerated until analysis. Isolated colonies grown on PCA

  7. Isolation and phylogenetic characterization of iron-sulfur-oxidizing heterotrophic bacteria indigenous to nickel laterite ores of Sulawesi, Indonesia: Implications for biohydrometallurgy

    Chaerun, Siti Khodijah; Hung, Sutina; Mubarok, Mohammad Zaki; Sanwani, Edy

    2015-09-01

    The main objective of this study was to isolate and phylogenetically identify the indigenous iron-sulfur-oxidizing heterotrophic bacteria capable of bioleaching nickel from laterite mineral ores. The bacteria were isolated from a nickel laterite mine area in South Sulawesi Province, Indonesia. Seven bacterial strains were successfully isolated from laterite mineral ores (strains SKC/S-1 to SKC/S-7) and they were capable of bioleaching of nickel from saprolite and limonite ores. Using EzTaxon-e database, the 16S rRNA gene sequences of the seven bacterial strains were subjected to phylogenetic analysis, resulting in a complete hierarchical classification system, and they were identified as Pseudomonas taiwanensis BCRC 17751 (98.59% similarity), Bacillus subtilis subsp. inaquosorum BGSC 3A28 (99.14% and 99.32% similarities), Paenibacillus pasadenensis SAFN-007 (98.95% and 99.33% similarities), Bacillus methylotrophicus CBMB 205 (99.37% similarity), and Bacillus altitudinis 41KF2b (99.37% similarity). It is noteworthy that members of the phylum Firmicutes (in particular the genus Bacillus) predominated in this study, therefore making them to have the high potential to be candidates for the bioleaching of nickel from laterite mineral ores. To our knowledge, this is the first report on the predominance of the phylum Firmicutes in the Sulawesi laterite mineral ores.

  8. Changes in the community structure of free-living heterotrophic bacteria in the open tropical Pacific Ocean in response to microalgal lysate-derived dissolved organic matter.

    Tada, Yuya; Suzuki, Koji

    2016-07-01

    Dissolved organic matter derived from phytoplankton (DOMP) can affect the bacterial biomass and community structure in aquatic ecosystems. Here, we examined the community response of free-living heterotrophic bacteria, with respect to cellular nucleic acid levels, to the DOMP lysates derived from three phytoplankton strains in the open tropical Pacific. The free amino acid (FAA) composition of each DOMP lysate differed among the microalgal strains. Terminal restriction fragment-length polymorphism analyses with 16S rRNA genes revealed that the community shifts of high nucleic acid (HNA) and low nucleic acid (LNA) bacteria varied significantly with the different DOMP lysate treatments. Furthermore, the FAA composition in DOMP lysates significantly affected the bacterial community shifts in HNA and LNA. Similarity percentage analysis using 16S rRNA gene deep-sequencing revealed that the DOMP lysates from the pelagophyte Pelagomonas calceolata caused relatively large community shifts with Alcaligenes predominating in the HNA fraction. In contrast, the DOMP lysate from the diatom Thalassiosira oceanica induced a community shift in the LNA fraction with a predominance of uncultured Actinobacteria Thus, the data indicate that the DOMP lysates from different microalgae constitute a primary factor altering the dominant bacterial groups in the open ocean. PMID:27162185

  9. Dynamics of Dissolved Organic Matter and its Bioavailability to Heterotrophic Bacteria in the Gulf of Finland, Northern Baltic Sea

    Hoikkala, Laura

    2012-01-01

    Dissolved organic matter (DOM) in surface waters originates from allochthonous and autochthonous sources, the latter of which includes exudation by phytoplankton, viral lysis of planktonic organisms and 'sloppy' feeding by zooplankton. The concentration of DOM in seawater exceeds by one to two orders of magnitude that of particulate organic matter. Thus the DOM pool may be crucial to nutrition of pelagic osmotrophs, such as bacteria and algae, which are capable of exploiting dissolved organic...

  10. Monitoring and spatial distribution of heterotrophic bacteria and fecal coliforms in the Rodrigo de Freitas Lagoon, Rio de Janeiro, Brazil

    Lutterbach Márcia T. S.

    2001-01-01

    Full Text Available The distribution of heterothrophic bacteria and fecal coliforms was monitored at four sampling stations located near the shore of the Rodrigo de Freitas Lagoon, in the city of Rio de Janeiro, Brazil. Water samples were collected, monthly from October 1994 through September 1998. The highest heterothrophic count (6.5x10 7 CFU/100mL was recorded at stations 2 and 4 during August 1998 and the lowest (10 ³ CFU/100 mL at station 3 during February 1995. With respect to fecal coliforms, the highest and lowest counts were 1.6x10 5 coliforms/100mL at station 3 during March 1997 and <1 coliform/100mL at all the stations during February 1995 and September 1997 as well as station 3 during February 1998. The data indicated a percentage increase of the microorganisms surveyed over time at all the sampling stations studied.

  11. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria

    Thomas, Dennis G.; Jaramillo Riveri, Sebastian I.; Baxter, Douglas J.; Cannon, William R.

    2014-12-15

    We have applied a new stochastic simulation approach to predict the metabolite levels, energy flow, and material flux in the different oxidative TCA cycles found in E. coli and Synechococcus sp. PCC 7002, and in the reductive TCA cycle typical of chemolithoautotrophs and phototrophic green sulfur bacteria such as Chlorobaculum tepidum. The simulation approach is based on equations of state and employs an assumption similar to that used in transition state theory. The ability to evaluate the thermodynamics of metabolic pathways allows one to understand the relationship between coupling of energy and material gradients in the environment and the selforganization of stable biological systems, and it is shown that each cycle operates in the direction expected due to its environmental niche. The simulations predict changes in metabolite levels and flux in response to changes in cofactor concentrations that would be hard to predict without an elaborate model based on the law of mass action. In fact, we show that a thermodynamically unfavorable reaction can still have flux in the forward direction when it is part of a reaction network. The ability to predict metabolite levels, energy flow and material flux should be significant for understanding the dynamics of natural systems and for understanding principles for engineering organisms for production of specialty chemicals, such as biofuels.

  12. 生物膜内自养硝化菌与异养菌竞争关系的研究进展%Progress on Competition between Autotrophic Nitrifying Bacteria and Heterotrophic Bacteria in Biofilm

    殷峻; 徐恒娟

    2013-01-01

    As one of efficient technologies in biological removal of organic matter and nitrogen,biofilm technology has been widely applied to the industrial and domestic wastewater treatment in the past decades.But during the practical wastewater treatment,insufficient and instable nitrogen removal often occurs.At present,many research mainly focused reactor performance,biofilm formation,hydrodynamics,mass transfer and reaction kinetics in the biofilm reactor.However,the competition between different microorganisms directly affects morphology,stability and conversion efficiency of biofilm.In this paper,the affecting factors were discussed,especially competition between autotrophic nitrifying bacteria and heterotrophic bacteria.Future issues were also proposed.%生物膜工艺作为一种高效的生物除碳脱氮技术,近20年来被广泛应用于工业废水和城市生活污水的生物处理.但在实际污水处理过程中,生物膜系统往往会出现脱氮效果不稳定的情况.目前大量的研究工作主要集中在系统的处理效率、生物膜形成、流体力学、传质以及反应动力学特性等方面.而生物膜内微生物之间的竞争关系直接影响到生物膜的形态、稳定性以及转化效率.本文针对生膜工艺及其影响因素对生物膜中自养硝化菌和异养菌竞争的研究进展进行了综述,并提出了值得进一步研究的内容.

  13. Domestication of Halotolerant Heterotrophic Nitrifying Bacteria and Identification of Two Isolated Strains%耐盐异养硝化菌驯化方法及分离菌株鉴定

    张培玉; 曲洋; 杨瑞霞; 郭沙沙; 于德爽

    2011-01-01

    A new method for enrichment and domestication of halotolerant heterotrophic nitrifying bacteria was studied.The enrichment and domestication were accomplished by adopting high C/N ratio, gradually reducing DO, inoculating domestic bacteria to new culture medium in log phase and increasing the proportion of sea water for culture medium.Furthermore, two trains of heterotrophic nitrifying bacteria, qy37 and gs2 were isolated from enrichment and domestication system.Based on their morphological and physiological characters, as well as their sequence analyses of the 16S rRNA gene, strain qy37 and strain gs2 were identified as Pseudomonas sp.and Halomonas sp.respectively.Fig 4, Ref 18%采用高C/N、逐渐降低DO、菌体对数生长期前期转接以及增加培养液中海水比例的方法完成了耐盐异养硝化菌的富集和驯化,并从中分离筛选出两株高效异养硝化菌qy37和gs2.通过对两株菌的形态观察、生理生化试验以及16S rRNA序列分析,确定菌株qy37和菌株gs2分别为假单胞菌属(Pseudomonas)和盐单胞菌属(Halomonas).

  14. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes

    Rohwerder, T.; Sand, W. [Universitaet Duisburg-Essen, Biofilm Centre, Aquatic Biotechnology, Duisburg (Germany)

    2007-07-15

    The oxidation of reduced inorganic sulfur compounds to sulfuric acid is of great importance for biohydrometallurgical technologies as well as the formation of acidic (below pH 3) and often heavy metal-contaminated environments. The use of elemental sulfur as an electron donor is the predominant energy-yielding process in acidic natural sulfur-rich biotopes but also at mining sites containing sulfidic ores. Contrary to its significant role in the global sulfur cycle and its biotechnological importance, the microbial fundamentals of acidophilic sulfur oxidation are only incompletely understood. Besides giving an overview of sulfur-oxidizing acidophiles, this review describes the so far known enzymatic reactions related to elemental sulfur oxidation in acidophilic bacteria and archaea. Although generally similar reactions are employed in both prokaryotic groups, the stoichiometry of the key enzymes is different. Bacteria oxidize elemental sulfur by a sulfur dioxygenase to sulfite whereas in archaea, a sulfur oxygenase reductase is used forming equal amounts of sulfide and sulfite. In both cases, the activation mechanism of elemental sulfur is not known but highly reactive linear sulfur forms are assumed to be the actual substrate. Inhibition as well as promotion of these biochemical steps is highly relevant in bioleaching operations. An efficient oxidation can prevent the formation of passivating sulfur layers. In other cases, a specific inhibition of sulfur biooxidation may be beneficial for reducing cooling and neutralization costs. In conclusion, the demand for a better knowledge of the biochemistry of sulfur-oxidizing acidophiles is underlined. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  15. Susceptibility to Heavy Metals and Characterization of Heterotrophic Bacteria Isolated from Two Hydrothermal Vent Polychaete Annelids, Alvinella pompejana and Alvinella caudata

    Jeanthon, Christian; Prieur, Daniel

    1990-01-01

    Specimens of alvinellid polychaetes and their tubes were collected in the Parigo hydrothermal vent field on the East Pacific Rise (13°N) in October and November 1987. Heterotrophic bacterial strains were isolated on metal-amended media from the tube and dorsal integument of one specimen of Alvinella pompejana, from the dorsal integument of another from the whole integument of a specimen of Alvinella caudata, and from undetermined alvinellid tubes. The strains were characterized and tested for...

  16. Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters

    Michaud, Luigi; Blancheton, Jean-paul; V. Bruni; Piedrahita, Raul

    2006-01-01

    Competition between heterotrophic and nitrifying bacteria is of major practical importance in aquaculture biofilter design and operation. This competition must be understood to minimize the negative impact of heterotrophic bacteria on an aquaculture system. On the other hand, the heterotrophic population is suspected of having a positive effect against pathogenic bacteria. Little information is available on the bacterial communities present within aquaculture systems, except for nitrifying ba...

  17. Natural Hot Spots for Gain of Multiple Resistances: Arsenic and Antibiotic Resistances in Heterotrophic, Aerobic Bacteria from Marine Hydrothermal Vent Fields

    Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren; Morais, Paula V.

    2015-01-01

    Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite...

  18. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India

    Over the past three decades heavy metal pollution has increased substantially in Cochin estuary, south west coast of India. Here we studied the distribution, diversity and enzyme expression profile of culturable microbial population along a pollution gradient. The distribution of resistance against 5 mM concentration of Zn, Co, Ni and Cu was observed among 90-100% of bacterial isolates retrieved from highly polluted Eloor, whereas it was less than 40% in Vypin and Munambam. Similarly, there was a difference in the distribution and diversity of bacterial phyla with predominance of Proteobacteria in Eloor and Firmicutes in Munambam and Vypin. We observed that 75-100% of the organisms retrieved from Eloor had low levels of expression for hydrolytic enzyme. In conclusion, the heavy metal pollution in Cochin estuary brought in reduction/adaptation in the distribution, diversity and enzyme expression profile of bacteria, which may impart adverse impacts on ecosystem functioning. - Highlights: → Substantial proliferation of heavy metal pollution in Cochin estuary. → 90-100% of bacteria were resistant against heavy metals. → Proteobacteria dominated in the hot spot sites. → Low Enzyme expression profile among microorganisms in hot spot sites. - Heavy metal pollution exerts pressure on the diversity and enzyme expression profile of estuarine bacteria.

  19. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin estuary, India

    Jose, Jiya; Giridhar, Rajesh; Anas, Abdulaziz [National Institute of Oceanography (CSIR), Regional Centre, PB 1913, Cochin, Kerala 682018 (India); Loka Bharathi, P.A. [National Institute of Oceanography (CSIR), Dona Paula, Goa 403004 (India); Nair, Shanta, E-mail: shanta@nio.org [National Institute of Oceanography (CSIR), Dona Paula, Goa 403004 (India)

    2011-10-15

    Over the past three decades heavy metal pollution has increased substantially in Cochin estuary, south west coast of India. Here we studied the distribution, diversity and enzyme expression profile of culturable microbial population along a pollution gradient. The distribution of resistance against 5 mM concentration of Zn, Co, Ni and Cu was observed among 90-100% of bacterial isolates retrieved from highly polluted Eloor, whereas it was less than 40% in Vypin and Munambam. Similarly, there was a difference in the distribution and diversity of bacterial phyla with predominance of Proteobacteria in Eloor and Firmicutes in Munambam and Vypin. We observed that 75-100% of the organisms retrieved from Eloor had low levels of expression for hydrolytic enzyme. In conclusion, the heavy metal pollution in Cochin estuary brought in reduction/adaptation in the distribution, diversity and enzyme expression profile of bacteria, which may impart adverse impacts on ecosystem functioning. - Highlights: > Substantial proliferation of heavy metal pollution in Cochin estuary. > 90-100% of bacteria were resistant against heavy metals. > Proteobacteria dominated in the hot spot sites. > Low Enzyme expression profile among microorganisms in hot spot sites. - Heavy metal pollution exerts pressure on the diversity and enzyme expression profile of estuarine bacteria.

  20. Effect of VOCs and methane in the biological oxidation of the ferrous ion by an acidophilic consortium.

    Almenglo, F; Ramírez, M; Gómez, J M; Cantero, D; Revah, S; González-Sánchez, A

    2012-01-01

    During the elimination of H2S from biogas in an aqueous ferric sulphate solution, volatile organic compounds (VOCs) and methane are absorbed and may have an effect on the subsequent biological regeneration of ferric ion. This study was conducted to investigate the effect of maximum concentrations of methane and some VOCs found in biogas on the ferrous oxidation of an acidophilic microbial consortium (FO consortium). The presence and impact of heterotrophic microorganisms on the activity of the acidophilic consortium was also evaluated. No effect on the ferrous oxidation rate was found with gas concentrations of 1500 mg toluene m(-3), 1400 mg 2-butanol m(-3) or 1250 mg 1,2-dichloroethane m(-3), nor with methane at gas concentrations ranging from 15-25% (v/v). A tenfold increase in VOCs concentrations totally inhibited the microbial activity of the FO consortium and the heterotrophs. The presence of a heterotrophic fungus may promote the autotrophic growth of the FO consortium. PMID:22629626

  1. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles.

    Pradhan, Debabrata; Mishra, Debaraj; Kim, Dong J; Ahn, Jong G; Chaudhury, G Roy; Lee, Seoung W

    2010-03-15

    Bioleaching studies were conducted to evaluate the recovery of metal values from waste petroleum catalyst using two different acidophilic microorganisms, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Various leaching parameters such as contact time, pH, oxidant concentration, pulp densities, particle size, and temperature were studied in detail. Activation energy was evaluated from Arrhenius equation and values for Ni, V and Mo were calculated in case of both the acidophiles. In both cases, the dissolution kinetics of Mo was lower than those of V and Ni. The lower dissolution kinetics may have been due to the formation of a sulfur product layer, refractoriness of MoS(2) or both. Multivariate statistical data were presented to interpret the leaching data in the present case. The significance of the leaching parameters was derived through principle component analysis and multi linear regression analyses for both iron and sulfur oxidizing bacteria. PMID:19879686

  2. Annual changes and enzyme-producing strains of heterotrophic bacteria and vibrio in oyster Crassostrea hongkongensis farmed%近江牡蛎Crassostrea hongkongensis体内细菌的周年变化及细菌产酶能力

    王瑞旋; 冯玉婷; 冯娟; 王江勇

    2012-01-01

    对近江牡蛎体内异养细菌进行1周年的监测(2010年1月~ 2010年12月),分离得到的异养菌(180株)鉴定到属,并检测产生蛋白酶、淀粉酶和脂肪酶的能力.结果显示,正常贝体内异养菌和弧菌数分别为7.3×103~ 6.6 ×104CFU/g和8.0×10~ 8.2×103 CFU/g,随机分离的菌株分属肠杆菌科的部分属Enterbacteriaceae、弧菌属Vibrio、气单胞菌属Aeromonas、假单胞菌属Pseudomonas、葡萄球菌属Staphylococcus、发光杆菌属Photobacterium、无色杆菌属Achromobacter、芽孢杆菌属Bacillus 等.产酶试验结果表明,正常贝体分泌蛋白酶和纤维素酶的菌株数量最高出现于9月份,产酶菌株比例分别高达91.7%和63.9%,分泌淀粉酶和脂肪酶菌株数量高峰出现于7月份,产酶菌株比例均达81.8%,其中15株能同时分泌这4种酶.%The quantitative and qualitative studies on the bacterial population in fanned oyster Crassostrea hongkongensis were surveyed for one year. The strains ( about 180 ) from the body of oyster were purified and identified for their genus, and the enzyme-producing ( protease, amylase, lipase and cellulase ) of the strains was measured. The results showed that the the heterotrophic bacteria and vibrio were 7. 3 ×103 ~6. 6 x 104CFU/g and 8.0×10-8.2 ×103CFU/g in heathy oysters,respectively. The 180 strains were identified as Enterbacteriaceae,Vibrio,Aeromonas,Pseudomonas,Staphylococcus,Phdtobacterium,Achromobacte,Bacillus and so on. The zymogenic experiment results showed that the crest value of strains producing protease and cellulose appeared in Sep. , and the percentage reached 91. 7% and 63. 9% ,respectively,while the peak of strains producing amylase and lipase emerged in Jul. ,and the percentage reached 81.8%. The results also showed that there were 15 strains produced the 4 enzymes simultaneously.

  3. Efficiency of Heterotrophic Nitrification Bacteria in Biologically Enhanced Activated Carbon Process for Treatment of Low Temperature Water%异养硝化菌生物增强活性炭处理低温水的效能

    秦雯; 李伟光; 张多英; 黄晓飞

    2013-01-01

    Biologically enhanced activated carbon (BEAC) filter columns were constructed to research the efficiency of heterotrophic nitrification bacteria Y7 and Y16 for treating low temperature water.The filter columns A,B and C were inoculated with Y7 strains,Y16 strains and Y7 + Y16 mixed bacteria,respectively,the filter column D was not inoculated as a control.The removal of NH4+-N and CODMn,the accumulation of NO2--N and NO3--N and the influence of different dissolved oxygen (DO) concentrations and filter speeds on the BEAC process were investigated at temperature of 5 ℃.The results showed that BEAC process was better than GAC process in NH4+-N removal,and the filter column C had the best removal efficiency of NH4+-N.The accumulation of NO2--N and NO3--N did not occur,and the maximum removal rates of NH4+-N and CODMn in the filter column C were 26.88% and 85.12%,respectively.Influent DO concentration had little impact on NH4+-N and CODMn removal in each filter column.Low filter speed was favorable for degradation of NH4+-N by BEAC,but not for removal of CODMn.%为研究异养硝化菌Y7和Y16对低温水的处理效果,构建生物增强活性炭(BEAC)滤柱,其中A滤柱接种Y7菌株,B滤柱接种Y16菌株,C滤柱接种Y7+ Y16混菌,以不接菌活性炭滤柱(D)作为对照.在5℃下研究了工艺对氨氮和CODMn的去除效果、亚硝酸盐氮与硝酸盐氮的积累特征以及进水DO含量和滤速对BEAC工艺运行效果的影响.结果表明,BEAC工艺对氨氮的去除效果优于GAC,其中C滤柱对氨氮的降解能力最强,运行期间并未出现硝酸盐氮与亚硝酸盐氮积累现象,启动期间对氨氮的最大去除率达到26.88%,对CODMn的最大去除率达到85.12%.进水溶解氧浓度对各滤柱去除氨氮和CODMn几乎没有影响;低滤速有利于BEAC对氨氮的降解,但对去除CODMn的影响较小.

  4. Denitrification Effect of Heterotrophic Nitrifying and Aerobic Denitrifying Bacteria Strain qy37 Immobilized in Absorbent and Entrapping Materials%菌株qy37吸附包埋固定化的脱氮效果研究

    张晨; 张培玉; 孙梦; 吴玉光

    2012-01-01

    以对异养硝化好氧反硝化菌菌株qy37固定化后的脱氮效果为考察标准,分别研究了不同的吸附、包埋固定化载体和方式对固定化脱氮效果的影响.研究结果表明:以碳纳米管、多孔陶粒、活性炭、石墨四种材料为吸附固定化载体时,纳碳纳米材料的吸附固定化脱氮效果最好,脱氮率可达94%;以海藻酸钠(SA)和聚乙烯醇(PVA)制成的SA、PVA、PVA-SA、PVA-SA-活性炭和PVA-SA-纳米材料小球为包埋固定化载体时,PVA和SA混合作为包埋剂固定效果要好于单独作为包埋剂,包埋剂PVA和添加剂SA最佳包埋比是10∶1;吸附材料作为强化剂起包埋的复合式包埋有助于提高固定化小球的稳定性和固定化效果,脱氮率提高5%.其中纳米材料作为强化剂的包埋固定化脱氮效果要优于活性炭,脱氮率可达到85%.强化剂活性炭、纳米材料最佳包埋比是5∶4.吸附固定化整体脱氮效率优于包埋固定化.%Influence of different immobilized vector and methods on the effect of immobilization was studied respectively, with denitrification effect of heterotrophic nitrifying and aerobic denitrifying bacteria Strain qy37 after immobilization as examined standard. Results showed that while using 4 kinds of material such as carbon nanotubes, porous ceramic, activated carbon and graphite as absorbent materials, effect of absorbent materials nanomaterials is the best, with nitrogen removal rate up to 94%. While using sodium alginate (SA), polyvinyl alcohol (PVA), PVA-SA, PVA-SA-activated carbon and PVA-SA-carbon nanotubes as entrapping materials, the fixed effects of PVA and SA mixed as the embedding medium are better than embedding alone, with the best embedding ratio of embedding medium PVA and additives SA as 10 : 1. Composite immobilization with the adsorbed material as an enhancer embedded contributes to the stability of immobilized beads and immobilized effect, with nitrogen removal rate

  5. Heterotrophic bacteria abundances in Rodrigo de Freitas Lagoon (Rio de Janeiro, Brazil Abundância bacteriana heterotrófica na Lagoa Rodrigo de Freitas (Rio de Janeiro, Brasil

    Alessandra M. Gonzalez

    2006-12-01

    Full Text Available The Rodrigo de Freitas Lagoon (RJ, Brazil is an important coastal ecosystem that has been submitted to an accelerated degradation process. The aim of this work was to determine the abundance and the spatial distribution of total heterotrophic (by flow cytometry and cultivated bacteria ("pour plate" method on R2A agar. Another objective was to evaluate the lagoon's influence on water quality of Ipanema and Leblon beaches. Physical and chemical data were acquired too. Sub-superficial water samples were taken monthly, from December 1999 to October 2000. On lagoon, the cultivated bacteria abundance varied from 6.9x10(5 to 5.0x10(7 CFU.100 mL-1. On Ipanema and Leblon beaches, this parameter yielded 1.4x10(5 and 2.8x10(6 CFU.100 mL-1, respectively. Total bacterial abundance varied from 2.9x10(7 to 3.2x10(7 cells.mL-1 on lagoon. On Ipanema and Leblon, this parameter yielded 8.7x10(6 and 1.1x10(7 cells.mL-1, respectively. Two sub-groups were determined with dominance of HNA cells. Samples were added latter to better understand the bacteria present on these environments. Bacterial abundance were analyzed only by flow cytometry and the results varied from 8.3x10(6 to 2.5x10(7 cells.mL-1 on lagoon. On the beach, this parameter yielded 6.9x10(6 cells. mL-1. Two bacterial sub-groups were also observed, with dominance of HNA on lagoon and LNA on the beach. The results showed that the Rodrigo de Freitas Lagoon is an eutrophic ecosystem where the bacterial populations and the physical and chemical parameters do not differ spatially. The data also confirmed that the outflow of the lagoon's polluted waters affect the sanitary conditions of Ipanema and Leblon beaches.A Lagoa Rodrigo de Freitas (RJ, Brasil é um importante ecossistema que vêm sendo submetido a um acelerado processo de degradação. O objetivo desse estudo foi determinar a abundância e a distribuição espacial das bactérias heterotróficas totais (citometria em fluxo e cultivadas ("pour plate

  6. Genomics, physiology and applications of cold tolerant acidophiles

    Liljeqvist, Maria

    2012-01-01

    Psychrotolerant acidophiles have gained increasing interest because of their importance in biomining operations in environments where the temperature falls well below 10°C during large parts of the year. Acidithiobacillus ferrivorans is the only characterized acidophile with the ability to live a psychrotrophic lifestyle and is able to oxidize ferrous iron and inorganic sulfur compounds at low temperature. The A. ferrivorans SS3 genome sequence mirrors its low temperature chemolithotrophic li...

  7. Metal resistance in acidophilic microorganisms and its significance for biotechnologies.

    Dopson, Mark; Holmes, David S

    2014-10-01

    Extremely acidophilic microorganisms have an optimal pH of biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications. PMID:25104030

  8. Liquid-nitrogen cryopreservation of three kinds of autotrophicbioleaching bacteria

    WU Xue-ling; XIN Xiao-hong; JIANG Ying; LIANG Ren-xing; YUAN Peng; FANG Cheng-xiang

    2008-01-01

    Three kinds of autotrophic bioleaching bacteria strains,including mesophilic and acidophilic ferrous ion-oxidizing bacteria Acidithiobacillus ferrooxidans (A.ferrooxidans),mesophilic and acidophilic sulfur-oxidizing bacteria Acidithiobacillus thiooxidans (A.thiooxidans),and moderately thermophilic sulfur-oxidizing bacteria Acidianus brierleyi,were cryopreserved in liquid nitrogen and their ferrous ion- or sulfur-oxidizing activities were investigated and compared with the original ones.The results revealed that ferrous ion/sulfur oxidation activities of the strains were almost equal before and after cryopreservation.Glycerin was used as cryoprotective agent.In conclusion,liquid-nitrogen cryopreservation is a simple and effective method for autotrophic bioleaching microorganisms.

  9. Viral lysis of Phaeocystis pouchetii: implications for algal population dynamics and heterotrophic C, N and P cycling

    Haaber, Jakob Brandt Borup; Middelboe, Mathias

    2009-01-01

    A model ecosystem with two autotrophic flagellates, Phaeocystis pouchetii and Rhodomonas salina, a virus specific to P. pouchetii (PpV) and bacteria and heterotrophic nanoflagellates was used to investigate effects of viral lysis on algal population dynamics and heterotrophic nitrogen and...

  10. Genomics and Metagenomics of Extreme Acidophiles in Biomining Environments

    Holmes, D. S.

    2015-12-01

    Over 160 draft or complete genomes of extreme acidophiles (pH metagenomic studies of such environments. This provides a rich source of latent data that can be exploited for understanding the biology of biomining environments and for advancing biotechnological applications. Genomic and metagenomic data are already yielding valuable insights into cellular processes, including carbon and nitrogen management, heavy metal and acid resistance, iron and sulfur oxido-reduction, linking biogeochemical processes to organismal physiology. The data also allow the construction of useful models of the ecophysiology of biomining environments and provide insight into the gene and genome evolution of extreme acidophiles. Additionally, since most of these acidophiles are also chemoautolithotrophs that use minerals as energy sources or electron sinks, their genomes can be plundered for clues about the evolution of cellular metabolism and bioenergetic pathways during the Archaean abiotic/biotic transition on early Earth. Acknowledgements: Fondecyt 1130683.

  11. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions

    Bauermeister, Anja; Rettberg, Petra; Flemming, Hans-Curt

    2014-08-01

    The question of life on Mars has been in focus of astrobiological research for several decades, and recent missions in orbit or on the surface of the planet are constantly expanding our knowledge on Martian geochemistry. For example, massive stratified deposits have been identified on Mars containing sulfate minerals and iron oxides, which suggest the existence of acidic aqueous conditions in the past, similar to acidic iron- and sulfur-rich environments on Earth. Acidophilic organisms thriving in such habitats could have been an integral part of a possibly widely extinct Martian ecosystem, but remains might possibly even exist today in protected subsurface niches. The chemolithoautotrophic strain Acidithiobacillus ferrooxidans was selected as a model organism to study the metabolic capacities of acidophilic iron-sulfur bacteria, especially regarding their ability to grow with in situ resources that could be expected on Mars. The experiments were not designed to accurately simulate Martian physical conditions (except when certain single parameters such as oxygen partial pressure were considered), but rather the geochemical environment that can be found on Mars. A. ferrooxidans could grow solely on the minerals contained in synthetic Mars regolith mixtures with no added nutrients, using either O2 as an external electron acceptor for iron oxidation, or H2 as an external electron donor for iron reduction, and thus might play important roles in the redox cycling of iron on Mars. Though the oxygen partial pressure of the Martian atmosphere at the surface was not sufficient for detectable iron oxidation and growth of A. ferrooxidans during short-term incubation (7 days), alternative chemical O2-generating processes in the subsurface might yield microhabitats enriched in oxygen, which principally are possible under such conditions. The bacteria might also contribute to the reductive dissolution of Fe3+-containing minerals like goethite and hematite, which are

  12. Carbon dynamics in highly heterotrophic subarctic thaw ponds

    Roiha, T.; Laurion, I.; Rautio, M.

    2015-07-01

    Global warming has accelerated the formation of permafrost thaw ponds in several subarctic and arctic regions. These ponds are net heterotrophic as evidenced by their greenhouse gas (GHG) supersaturation levels (CO2 and CH4), and generally receive large terrestrial carbon inputs from the thawing and eroding permafrost. We measured seasonal and vertical variations in the concentration and type of dissolved organic matter (DOM) in five subarctic thaw (thermokarst) ponds in northern Quebec, and explored how environmental gradients influenced heterotrophic and phototrophic biomass and productivity. Late winter DOM had low aromaticity indicating reduced inputs of terrestrial carbon, while the high concentration of dissolved organic carbon (DOC) suggests that some production of non-chromophoric dissolved compounds by the microbial food web took place under the ice cover. Summer DOM had a strong terrestrial signature, but was also characterized with significant inputs of algal-derived carbon, especially at the pond surface. During late winter, bacterial production was low (maximum of 0.8 mg C m-3 d-1) and was largely based on free-living bacterioplankton (58 %). Bacterial production in summer was high (up to 58 mg C m-3 d-1), dominated by particle-attached bacteria (67 %), and strongly correlated to the amount of terrestrial carbon. Primary production was restricted to summer surface waters due to strong light limitation deeper in the water column or in winter. The phototrophic biomass was equal to the heterotrophic biomass, but as the algae were mostly composed of mixotrophic species, most probably they used bacteria rather than solar energy in such shaded ponds. According to the δ13C analyses, non-algal carbon supported 51 % of winter and 37 % of summer biomass of the phantom midge larvae, Chaoborus sp., that are at the top of the trophic chain. Our results point to a strong heterotrophic energy pathway in these thaw pond ecosystems, where bacterioplankton dominates

  13. Carbon dynamics in highly heterotrophic subarctic thaw ponds

    T. Roiha

    2015-07-01

    Full Text Available Global warming has accelerated the formation of permafrost thaw ponds in several subarctic and arctic regions. These ponds are net heterotrophic as evidenced by their greenhouse gas (GHG supersaturation levels (CO2 and CH4, and generally receive large terrestrial carbon inputs from the thawing and eroding permafrost. We measured seasonal and vertical variations in the concentration and type of dissolved organic matter (DOM in five subarctic thaw (thermokarst ponds in northern Quebec, and explored how environmental gradients influenced heterotrophic and phototrophic biomass and productivity. Late winter DOM had low aromaticity indicating reduced inputs of terrestrial carbon, while the high concentration of dissolved organic carbon (DOC suggests that some production of non-chromophoric dissolved compounds by the microbial food web took place under the ice cover. Summer DOM had a strong terrestrial signature, but was also characterized with significant inputs of algal-derived carbon, especially at the pond surface. During late winter, bacterial production was low (maximum of 0.8 mg C m−3 d−1 and was largely based on free-living bacterioplankton (58 %. Bacterial production in summer was high (up to 58 mg C m−3 d−1, dominated by particle-attached bacteria (67 %, and strongly correlated to the amount of terrestrial carbon. Primary production was restricted to summer surface waters due to strong light limitation deeper in the water column or in winter. The phototrophic biomass was equal to the heterotrophic biomass, but as the algae were mostly composed of mixotrophic species, most probably they used bacteria rather than solar energy in such shaded ponds. According to the δ13C analyses, non-algal carbon supported 51 % of winter and 37 % of summer biomass of the phantom midge larvae, Chaoborus sp., that are at the top of the trophic chain. Our results point to a strong heterotrophic energy pathway in these thaw pond ecosystems, where

  14. Heterotrophic free-living and particle-bound bacterial cell size in the river Cauvery and its downstream tributaries

    T S Harsha; Sadanand M Yamakanamardi; M Mahadevaswamy

    2007-03-01

    This is the first comprehensive study on planktonic heterotrophic bacterial cell size in the river Cauvery and its important tributaries in Karnataka State, India. The initial hypothesis that the mean cell size of planktonic heterotrophic bacteria in the four tributaries are markedly different from each other and also from that in the main river Cauvery was rejected, because all five watercourses showed similar planktonic heterotrophic bacterial cell size. Examination of the correlation between mean heterotrophic bacterial cell size and environmental variables showed four correlations in the river Arkavathy and two in the river Shimsha. Regression analysis revealed that 18% of the variation in mean heterotrophic free-living bacterial cell size was due to biological oxygen demand (BOD) in the river Arkavathy, 11% due to surface water velocity (SWV) in the river Cauvery and 11% due to temperature in the river Kapila. Heterotrophic particle-bound bacterial cell size variation was 28% due to chloride and BOD in the river Arkavathy, 11% due to conductivity in the river Kapila and 8% due to calcium in the river Cauvery. This type of relationship between heterotrophic bacterial cell size and environmental variables suggests that, though the mean heterotrophic bacterial cell size was similar in all the five water courses, different sets of environmental variables apparently control the heterotrophic bacterial cell size in the various water bodies studied in this investigation. The possible cause for this environmental (bottom–up) control is discussed.

  15. Big bacteria

    Schulz, HN; Jørgensen, BB

    2001-01-01

    A small number of prokaryotic species have a unique physiology or ecology related to their development of unusually large size. The biomass of bacteria varies over more than 10 orders of magnitude, from the 0.2 mum wide nanobacteria to the largest cells of the colorless sulfur bacteria......, Thiomargarita namibiensis, with a diameter of 750 mum. All bacteria, including those that swim around in the environment, obtain their food molecules by molecular diffusion. Only the fastest and largest swimmers known, Thiovulum majus, are able to significantly increase their food supply by motility and by...... actively creating an advective flow through the entire population. Diffusion limitation generally restricts the maximal size of prokaryotic cells and provides a selective advantage for mum-sized cells at the normally low substrate concentrations in the environment. The largest heterotrophic bacteria, the...

  16. Anaerobic ferrous oxidation by heterotrophic denitrifying enriched culture.

    Wang, Ru; Zheng, Ping; Xing, Ya-Juan; Zhang, Meng; Ghulam, Abbas; Zhao, Zhi-Qing; Li, Wei; Wang, Lan

    2014-05-01

    Heterotrophic denitrifying enriched culture (DEC) from a lab-scale high-rate denitrifying reactor was discovered to perform nitrate-dependent anaerobic ferrous oxidation (NAFO). The DEC was systematically investigated to reveal their denitrification activity, their NAFO activity, and the predominant microbial population. The DEC was capable of heterotrophic denitrification with methanol as the electron donor, and autotrophic denitrification with ferrous salt as the electron donor named NAFO. The conversion ratios of ferrous-Fe and nitrate-N were 87.41 and 98.74 %, and the consumption Fe/N ratio was 2.3:1 (mol/mol). The maximum reaction velocity and half saturation constant of Fe were 412.54 mg/(l h) and 8,276.44 mg/l, and the counterparts of N were 20.87 mg/(l h) and 322.58 mg/l, respectively. The predominant bacteria were Hyphomicrobium, Thauera, and Flavobacterium, and the predominant archaea were Methanomethylovorans, Methanohalophilus, and Methanolobus. The discovery of NAFO by heterotrophic DEC is significant for the development of wastewater treatment and the biogeochemical iron cycle and nitrogen cycle. PMID:24619339

  17. Acidophilic Methanotrophic Communities from Sphagnum Peat Bogs

    Dedysh, Svetlana N.; Nicolai S. Panikov; Tiedje, James M.

    1998-01-01

    Highly enriched methanotrophic communities (>25 serial transfers) were obtained from acidic ombrotrophic peat bogs from four boreal forest sites. The enrichment strategy involved using media conditions that were associated with the highest rates of methane uptake by the original peat samples, namely, the use of diluted mineral medium of low buffering capacity, moderate incubation temperature (20°C), and pH values of 3 to 6. Enriched communities contained a mixture of rod-shaped bacteria arran...

  18. Survey on Heterotrophic Bacterial Contamination in Bottled Mineral Water by Culture Method

    Essmaeel Ghorbanalinezhad

    2014-12-01

    Full Text Available Background and Aim: This project focuses on the level of heterotrophic baceria in bottled mineral water which could be a health concern for the elderly, infants, pregnant women and immuno-compromised patients. Materials and Methods: Different brands of bottled water samples were selected randomly and evaluated for their bacteriological quality, using different specific culture media and biochemical tests. Water samples were analyzed within 24 hours of their purchase/collection. Samples were filtered with 0.45 micron and filters were plated in different media. Then media were incubated at 37˚C for 24-48 hours. Results: Morphological study and biochemical tests revealed a number of bacteria in different   brands of  bottled water. Heterotrophic bacteria(Gram positive cocci, Spore forming gram positive bacilli, non spore forming gram positive bacilli, gram negative bacilli, and gram negative coccobacilli; Pseudomonas and Stenotrophomonas counted in 70% of bottled water samples. There were no cases of fecal contamination or the presence of E.coli. Conclusions: Bottled water is not sterile and contains trace amounts of bacteria naturally present or introduced during processing. Testing drinking water for all possible pathogens is complex, time-consuming, and expensive. If only total coliform bacteria are detected in drinking water, the source is probably environmental. Since the significance of non-pathogenic heterotrophic bacteria in relation to health and diseases is not understood, there is an urgent need to establish a maximum limit for the heterotrophic count in the bottled mineral water. Growth conditions play a critical role in the recovery of heterotrophic bacteria in bottled drinking water.

  19. About the order in aerobic heterotrophic microbial communities from hydrocarbon-contaminated sites

    Becker, P.M.

    1999-01-01

    The organizational structure of communities of aerobic heterotrophic bacteria was studied by means of physiological and molecular typing of the members of arbitrary samples of isolates, ASsI. The isolate sample assay (ISA) was applied to three different hydrocarbon-polluted sites: a dry windrow pile

  20. Heterotrophic bacterial production on solid fish waste: TAN and nitrate as nitrogen source under practical RAS conditions

    Schneider, O.; Sereti, V.; Eding, E.H.; Verreth, J.A.J.

    2007-01-01

    The drumfilter effluent from a recirculation aquaculture system (RAS) can be used as substrate for heterotrophic bacteria production. This biomass can be re-used as aquatic feed. RAS effluents are rich in nitrate and low in total ammonia nitrogen (TAN). This might result in 20% lower bacteria yields

  1. Bioalteration of synthetic Fe(III)-, Fe(II)-bearing basaltic glasses and Fe-free glass in the presence of the heterotrophic bacteria strain Pseudomonas aeruginosa: Impact of siderophores

    Perez, Anne; Rossano, Stéphanie; Trcera, Nicolas; Huguenot, David; Fourdrin, Chloé; Verney-Carron, Aurélie; van Hullebusch, Eric D.; Guyot, François

    2016-09-01

    This study aims to evaluate the role of micro-organisms and their siderophores in the first steps of the alteration processes of basaltic glasses in aqueous media. In this regard, three different types of glasses - with or without iron, in the reduced Fe(II) or oxidized Fe(III) states - were prepared on the basis of a simplified basaltic glass composition. Control and Pseudomonas aeruginosa inoculated experiments were performed in a buffered (pH 6.5) nutrient depleted medium to stimulate the production of the pyoverdine siderophore. Results show that the presence of P. aeruginosa has an effect on the dissolution kinetics of all glasses as most of the calculated elemental release rates are increased compared to sterile conditions. Reciprocally, the composition of the glass in contact with P. aeruginosa has an impact on the bacterial growth and siderophore production. As an essential nutrient for this microbial strain, Fe notably appears to play a central role during biotic experiments. Its presence in the glass stimulates the bacterial growth and minimizes the synthesis of pyoverdine. Moreover the initial Fe2+/Fe3+ ratio in the glasses modulates this synthesis, as pyoverdine is not detected at all in the system in contact with Fe(III)-bearing glass. Finally, the dissolution rates appear to be correlated to siderophore concentrations as they increase with respect to sterile experiments in the order Fe(III)-bearing glass bacteria, as initial dissolution rates are increased by a factor of 3. This study attests to the essential role of siderophores in the P. aeruginosa-promoted dissolution processes of basaltic glasses as well as to the complex relationships between the nutritional potential of the glass and its dissolution rates.

  2. Ubiquity and Diversity of Heterotrophic Bacterial nasA Genes in Diverse Marine Environments

    Xuexia Jiang; Hongyue Dang; Nianzhi Jiao

    2015-01-01

    Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large ...

  3. Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community

    Parro Víctor

    2010-06-01

    acidophilic filaments are dynamic structures in which different mechanisms for biofilm formation/dispersion are operating. Specific transcriptomic fingerprints can be inferred for both planktonic and sessile cells, having the former a more active TCA cycle, while the mixed acid fermentation process dominate in the latter. The excretion of acetate may play a relevant ecological role as a source of electron donor for heterotrophic Fe3+ reducers like some Alphaproteobacteria, Acidobacterium spp. and Sulfobacillus spp., also present in the biofilm. Additionally, acetate may have a negative effect on bioleaching by inhibiting the growth of chemolithotrophic bacteria.

  4. Bioalteration of synthetic Fe(III)-, Fe(II)-bearing basaltic glasses and Fe-free glass in the presence of the heterotrophic bacteria strain Pseudomonas aeruginosa: Impact of siderophores

    Perez, Anne; Rossano, Stéphanie; Trcera, Nicolas; Huguenot, David; Fourdrin, Chloé; Verney-Carron, Aurélie; van Hullebusch, Eric D.; Guyot, François

    2016-09-01

    This study aims to evaluate the role of micro-organisms and their siderophores in the first steps of the alteration processes of basaltic glasses in aqueous media. In this regard, three different types of glasses - with or without iron, in the reduced Fe(II) or oxidized Fe(III) states - were prepared on the basis of a simplified basaltic glass composition. Control and Pseudomonas aeruginosa inoculated experiments were performed in a buffered (pH 6.5) nutrient depleted medium to stimulate the production of the pyoverdine siderophore. Results show that the presence of P. aeruginosa has an effect on the dissolution kinetics of all glasses as most of the calculated elemental release rates are increased compared to sterile conditions. Reciprocally, the composition of the glass in contact with P. aeruginosa has an impact on the bacterial growth and siderophore production. As an essential nutrient for this microbial strain, Fe notably appears to play a central role during biotic experiments. Its presence in the glass stimulates the bacterial growth and minimizes the synthesis of pyoverdine. Moreover the initial Fe2+/Fe3+ ratio in the glasses modulates this synthesis, as pyoverdine is not detected at all in the system in contact with Fe(III)-bearing glass. Finally, the dissolution rates appear to be correlated to siderophore concentrations as they increase with respect to sterile experiments in the order Fe(III)-bearing glass < Fe(II)-bearing glass < Fe-free glass. This increase is attributed to complexation reactions between siderophores and Fe or Al for Fe(II)-bearing glass or Fe-free glass, respectively. The dissolution of an Fe-free glass is significantly improved in the presence of bacteria, as initial dissolution rates are increased by a factor of 3. This study attests to the essential role of siderophores in the P. aeruginosa-promoted dissolution processes of basaltic glasses as well as to the complex relationships between the nutritional potential of the glass and

  5. Metal uptake and Fe-, Ti-oxide biomineralization by acidophilic microorganisms in mine-waste environments, Elliot Lake, Canada

    Acidic effluent containing enhanced concentrations of toxic heavy metals discharges from a cumulative total of 104 ha of mine-tailings waste in Canada. Communities of acidophilic microorganisms, specifically the unicellular alga Euglena sp. and bacteria, thrive in many of the hostile, low-pH effluent environments, which are otherwise devoid of life. The microorganisms concentrate aqueous dissolved metals onto cell walls and at intracellular sites, during the life cycle, and strongly bind metals during early diagenesis. A sequence is observed in which amorphous Fe and Ti concentrated at cell walls are progressively transformed to microcrystalline aggregates of goethite, ferrihydrite, maghemite, magnetite, haematite, lepidocrocite, and ilmenite. The bioprecipitated Ti- and Fe-oxides and oxyhydroxides act as scavengers for heavy metals such as Cu, Pb, Zn, Ni, Cd, and Th. Acidophilic microorganisms play a central role in the toxic-metal budget of mine-tailings waste by efficiently sequestering aqueous metals and by promoting nucleation of oxide minerals whose inorganic formation is kinetically inhibited, thereby retarding toxic-metal dispersion into the natural environment

  6. A novel acidophilic, thermophilic iron and sulfur-oxidizing archaeon isolated from a hot spring of tengchong, yunnan, China

    Jiannan Ding

    2011-06-01

    Full Text Available A novel thermoacidophilic iron and sulfur-oxidizing archaeon, strain YN25, was isolated from an in situ enriched acid hot spring sample collected in Yunnan, China. Cells were irregular cocci, about 0.9-1.02 µm×1.0-1.31 µm in the medium containing elemental sulfur and 1.5-2.22 µm×1.8-2.54 µm in ferrous sulfate medium. The ranges of growth and pH were 50-85 (optimum 65 and pH 1.0-6.0 (optimum 1.5-2.5. The acidophile was able to grow heterotrophically on several organic substrates, including various monosaccharides, alcohols and amino acids, though the growth on single substrate required yeast extract as growth factor. Growth occurred under aerobic conditions or via anaerobic respiration using elemental sulfur as terminal electron acceptor. Results of morphology, physiology, fatty acid analysis and analysis based on 16S rRNA gene sequence indicated that the strain YN25 should be grouped in the species Acidianus manzaensis. Bioleaching experiments indicated that this strain had excellent leaching capacity, with a copper yielding ratio up to 79.16% in 24 d. The type strain YN25 was deposited in China Center for Type Culture Collection (=CCTCCZNDX0050.

  7. Assessment of Heterotrophic Growth Supported by Soluble Microbial Products in Anammox Biofilm using Multidimensional Modeling

    Liu, Yiwen; Sun, Jing; Peng, Lai; Wang, Dongbo; Dai, Xiaohu; Ni, Bing-Jie

    2016-01-01

    Anaerobic ammonium oxidation (anammox) is known to autotrophically convert ammonium to dinitrogen gas with nitrite as the electron acceptor, but little is known about their released microbial products and how these are relative to heterotrophic growth in anammox system. In this work, we applied a mathematical model to assess the heterotrophic growth supported by three key microbial products produced by bacteria in anammox biofilm (utilization associated products (UAP), biomass associated products (BAP), and decay released substrate). Both One-dimensional and two-dimensional numerical biofilm models were developed to describe the development of anammox biofilm as a function of the multiple bacteria–substrate interactions. Model simulations show that UAP of anammox is the main organic carbon source for heterotrophs. Heterotrophs are mainly dominant at the surface of the anammox biofilm with small fraction inside the biofilm. 1-D model is sufficient to describe the main substrate concentrations/fluxes within the anammox biofilm, while the 2-D model can give a more detailed biomass distribution. The heterotrophic growth on UAP is mainly present at the outside of anammox biofilm, their growth on BAP (HetB) are present throughout the biofilm, while the growth on decay released substrate (HetD) is mainly located in the inner layers of the biofilm. PMID:27273460

  8. Deterioration study of a material for encapsulation of radioactive wastes, the Portland cement, by heterotrophic microorganisms isolated from natural media

    Soils and geologic formations selected for storage of radioactive waste storage contain microflora (nitrifying and sulfoxidizing bacteria, heterotrophic microorganisms) that can corrode cement through acidic metabolism products. Nutriments required for their development are also found in these biotopes. Corrosine effects of organic acids produced by heterotrophic microorganisms are: mass decrease, leaching (especially Ca), dissolution of portlandite crystals Ca (OH)2, increase of porosity and decrease of flexural strength. Excretion of corrosive organic acids by bacteria is promoted by high temperature and basic pH. Acidification by fungi requires also a high temperature but an acidic pH

  9. [Heterotrophic organisms and viruses in the Oka River and Cheboksary Reservoir during the abnormally hot summer of 2010].

    Kopylov, A I; Stroĭnov, Ia V; Zabotkina, E A; Romanenko, A V; Maslennikova, T S

    2013-01-01

    In July 2010, abnormally high water temperature (25-29 degrees C), as well as increased biomass and phytoplankton production caused intensive development of heterotrophic bacteria and heterotrophic nanoflagellates. It was found that the abundance, biomass, and production of heterotrophic bacterioplankton, as well as the abundance and biomass of heterotrophic nanoflagellates, and the number of planktonic viruses, which were calculated on average for the reservoir under study, turned out to be higher in the years with lower water temperature (20-23 degrees C). The virus-induced mortality of bacterioplankton in the Oka River and the Cheboksary Reservoir averaged 25.4 +/- 3.4 and 22.4 +/- 2.7% of the daily bacterioplankton production. PMID:24171319

  10. Enrichment of mesophilic acidophiles from the Underground Copper Mine Bor

    Conić Vesna T.

    2009-01-01

    Full Text Available In this work, autotrophic growth of mesophilic acidophiles from the Underground Copper Mine Bor was performed. Two selected solution samples collected from the 'Tilva Roš' ore body were prepared in a 9K nutrient medium (Silverman and Lundgren, 1959. The first sample TR k-16 was obtained during the hole drilling of the ore body, and the second TR k-31 from the drainage channel. Two samples of 9K media (Silverman and Lundgren, 1959 were inoculated with two selected solution samples from the underground mine Tilva Roš. Inoculated culture media were incubated without prior autoclaving in the period of 6 days at a temperature of 28 ?C with purging air through the system with enough oxygen and carbon dioxide. Oxidation rate of ferrous ions in the first 3 days of incubation was 14.8 and 10.7 wt.% Fe2+/day, the next 3 days 17.3 and 13.6 and for the total period of 6 days 98.3 and 74.8 wt.% for the first and second sample, respectively, i.e. 100 wt.% with initial percentage of ferrous ion in each medium. After centrifugation of enriched samples of culture media at 3000 rpm for 5 min, a plenty of mesophilic acidophiles were determined by microscopic method. According to Karavaiko [6], in the processes of incubition for 9K nutrient solution cells number reach a value of 108 cells/cm3.

  11. Fish waste management by conversion into heterotrophic bacteria biomass

    Schneider, O.

    2006-01-01

    Just as all other types of animal production, aquaculture produces waste. This waste can be managed outside the production system, comparable to terrestrial husbandry systems. However, particularly recirculation aquaculture systems (RAS) are suited to manage waste within the system. In this case, pr

  12. Degradation of alkenones by aerobic heterotrophic bacteria: Selective or not ?

    Rontani, J-F.; Harji, R.; Guasco, S.; Prahl, F.G.; Volkman, J.K.; Bhosle, N.B.; Bonin, P.

    Géochimie et d’Ecologie Marines (UMR 6117), Centre d'Océanologie de Marseille, F-13288 Marseille, France b National Institute of Oceanography (CSIR), Dona Paula – 403 004, Goa, India c College of Oceanic and Atmospheric Sciences, Oregon State University... with antibiotics. 2. Experimental 2.1. Substrate preparation for degradation studies Emiliania huxleyi strain TWP1 obtained from the Caen (France) Algobank were used as substrate for alkenone degradation. A 100 ml starter culture was transferred to flasks...

  13. Distribution of biomass of heterotrophic bacterioplankton in the Bohai Sea

    2005-01-01

    Distribution, variation and impact factors of biomass of bacterioplankton from April to May 1999in Bohai Sea were studied in DAPI method with epifluorescence microscopy. The biomass in surface waters showed a small day-night variation, varying from 0.13 to 2.51 μg/dm3 with an average of 0.84 μg/dm3. The biomass in bottom waters showed, however, a large variation, changing from 0.15 to 4.18 μg/dm3 with an average of 1.36 μg/dm3. The peak values occurred at 5 and 11 a.m. The bottom water biomass showed a significant correlation with particulate organic carbon (r=0.639, P<0.05). Heterotrophic bacterioplankton biomass was high in nearshore waters and low in offshore areas with a high biomass zone around Huanghe (Yellow) River mouth,showing the same distribution of nutrients. In vertical distribution, heterotrophic bacteria biomass in bottom waters was higher than that in surface water.

  14. Heterotrophic fixation of CO2 in soil

    Šantrůčková, Hana; Bird, M. I.; Elhottová, Dana; Novák, Jaroslav; Picek, T.; Šimek, Miloslav; Tykva, Richard

    2005-01-01

    Roč. 49, č. 2 (2005), s. 218-225. ISSN 0095-3628 R&D Projects: GA ČR(CZ) GA206/02/1036; GA AV ČR(CZ) IAA6066901 Institutional research plan: CEZ:AV0Z60660521 Keywords : heterotrophic fixation * CO2 * soil Subject RIV: EH - Ecology, Behaviour Impact factor: 2.674, year: 2005

  15. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus

    Stefanie eMangold

    2011-02-01

    Full Text Available Given the challenges to life at low pH, an analysis of inorganic sulfur compound oxidation was initiated in the chemolithoautotrophic extremophile Acidithiobacillus caldus. A. caldus is able to metabolize elemental sulfur and a broad range of inorganic sulfur compounds. It has been implicated in the production of environmentally damaging acidic solutions as well as participating in industrial bioleaching operations where it forms part of microbial consortia used for the recovery of metal ions. Based upon the recently published A. caldus type strain genome sequence, a bioinformatic reconstruction of elemental sulfur and inorganic sulfur compound metabolism predicted genes included: sulfide quinone reductase (sqr, tetrathionate hydrolase (tth, two sox gene clusters potentially involved in thiosulfate oxidation (soxABXYZ, sulfur oxygenase reductase (sor, and various electron transport components. RNA transcript profiles by semi-quantitative reverse transcription PCR suggested up-regulation of sox genes in the presence of tetrathionate. Extensive gel based proteomic comparisons of total soluble and membrane enriched protein fractions during growth on elemental sulfur and tetrathionate identified differential protein levels from the two Sox clusters as well as several chaperone and stress proteins up-regulated in the presence of elemental sulfur. Proteomics results also suggested the involvement of heterodisulfide reductase (HdrABC in A. caldus inorganic sulfur compound metabolism. A putative new function of Hdr in acidophiles is discussed. Additional proteomic analysis evaluated protein expression differences between cells grown attached to solid, elemental sulfur versus planktonic cells. This study has provided insights into sulfur metabolism of this acidophilic chemolithotroph and gene expression during attachment to solid elemental sulfur.

  16. Away from darkness: A review on the effects of solar radiation on heterotrophic bacterioplankton activity

    CLARARUIZ GONZALEZ; Gasol, Josep M.

    2013-01-01

    Heterotrophic bacterioplankton are main consumers of dissolved organic matter in aquatic ecosystems, including the sunlit upper layers of the ocean and freshwater bodies. Their well-known sensitivity to ultraviolet radiation (UVR), together with some recently discovered mechanisms bacteria have evolved to benefit from photosynthetically available radiation (PAR), suggest that natural sunlight plays a relevant, yet difficult to predict role in modulating bacterial biogeochemical functions in a...

  17. Away from darkness: a review on the effects of solar radiation on heterotrophic bacterioplankton activity

    Ruiz-González, Clara; Simó, Rafel; Sommaruga, Ruben; Gasol, Josep M.

    2013-01-01

    Heterotrophic bacterioplankton are main consumers of dissolved organic matter (OM) in aquatic ecosystems, including the sunlit upper layers of the ocean and freshwater bodies. Their well-known sensitivity to ultraviolet radiation (UVR), together with some recently discovered mechanisms bacteria have evolved to benefit from photosynthetically available radiation (PAR), suggest that natural sunlight plays a relevant, yet difficult to predict role in modulating bacterial biogeochemical functions...

  18. Factors Affecting High-Oxygen Survival of Heterotrophic Microorganisms from an Antarctic Lake

    Mikell, Alfred T.; Parker, B. C.; Gregory, E M

    1986-01-01

    We sought to determine factors relating to the survival of heterotrophic microorganisms from the high-dissolved-oxygen (HDO) waters of Lake Hoare, Antarctica. This lake contains perpetual HDO about three times that of normal saturation (40 to 50 mg liter−1). Five isolates, one yeast and four bacteria, were selected from Lake Hoare waters by growth with the membrane filter technique with oxygen added to yield dissolved concentrations 14 times that in situ, 175 mg liter−1. One bacterial isolate...

  19. Subglacial Lake Vostok (Antarctica accretion ice contains a diverse set of sequences from aquatic, marine and sediment-inhabiting bacteria and eukarya.

    Yury M Shtarkman

    Full Text Available Lake Vostok, the 7(th largest (by volume and 4(th deepest lake on Earth, is covered by more than 3,700 m of ice, making it the largest subglacial lake known. The combination of cold, heat (from possible hydrothermal activity, pressure (from the overriding glacier, limited nutrients and complete darkness presents extreme challenges to life. Here, we report metagenomic/metatranscriptomic sequence analyses from four accretion ice sections from the Vostok 5G ice core. Two sections accreted in the vicinity of an embayment on the southwestern end of the lake, and the other two represented part of the southern main basin. We obtained 3,507 unique gene sequences from concentrates of 500 ml of 0.22 µm-filtered accretion ice meltwater. Taxonomic classifications (to genus and/or species were possible for 1,623 of the sequences. Species determinations in combination with mRNA gene sequence results allowed deduction of the metabolic pathways represented in the accretion ice and, by extension, in the lake. Approximately 94% of the sequences were from Bacteria and 6% were from Eukarya. Only two sequences were from Archaea. In general, the taxa were similar to organisms previously described from lakes, brackish water, marine environments, soil, glaciers, ice, lake sediments, deep-sea sediments, deep-sea thermal vents, animals and plants. Sequences from aerobic, anaerobic, psychrophilic, thermophilic, halophilic, alkaliphilic, acidophilic, desiccation-resistant, autotrophic and heterotrophic organisms were present, including a number from multicellular eukaryotes.

  20. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation.

    Li, Rui; Feng, Chuanping; Hu, Weiwu; Xi, Beidou; Chen, Nan; Zhao, Baowei; Liu, Ying; Hao, Chunbo; Pu, Jiaoyang

    2016-02-01

    Nitrate contaminated water can be effectively treated by simultaneous heterotrophic and autotrophic denitrification (HAD). In the present study, woodchips and elemental sulfur were used as co-electron donors for HAD. It was found that ammonium salts could enhance the denitrifying activity of the Thiobacillus bacteria, which utilize the ammonium that is produced by the dissimilatory nitrate reduction to ammonium (DNRA) in the woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process. The denitrification performance of the WSHAD process (reaction constants range from 0.05485 h(-1) to 0.06637 h(-1)) is better than that of sulfur-based autotrophic denitrification (reaction constants range from 0.01029 h(-1) to 0.01379 h(-1)), and the optimized ratio of woodchips to sulfur is 1:1 (w/w). No sulfate accumulation is observed in the WSHAD process and the alkalinity generated in the heterotrophic denitrification can compensate for alkalinity consumption by the sulfur-based autotrophic denitrification. The symbiotic relationship between the autotrophic and the heterotrophic denitrification processes play a vital role in the mixotrophic environment. PMID:26650451

  1. Comparison of lysogeny (prophage induction) in heterotrophic bacterial and Synechococcus populations in the Gulf of Mexico and Mississippi River plume.

    Long, Amy; McDaniel, Lauren D; Mobberley, Jennifer; Paul, John H

    2008-02-01

    Lysogeny has been documented as a fundamental process occurring in natural marine communities of heterotrophic and autotrophic bacteria. Prophage induction has been observed to be prevalent during conditions of low host abundance, but factors controlling the process are poorly understood. A research cruise was undertaken to the Gulf of Mexico during July 2005 to explore environmental factors associated with lysogeny. Ambient physical and microbial parameters were measured and prophage induction experiments were performed in contrasting oligotrophic Gulf and eutrophic Mississippi plume areas. Three of 11 prophage induction experiments in heterotrophic bacteria (27%) demonstrated significant induction in response to Mitomycin C. In contrast, there was significant Synechococcus cyanophage induction in seven of nine experiments (77.8%). A strong negative correlation was observed between lysogeny and log-transformed activity measurements for both heterotrophic and autotrophic populations (r=-0.876, P=0.002 and r=-0.815, P=0.025, respectively), indicating that bacterioplankton with low host growth favor lysogeny. Multivariate statistical analyses indicated that ambient level of viral abundance and productivity were inversely related to heterotrophic prophage induction and both factors combined were most predictive of lysogeny (rho=0.899, P=0.001). For Synechococcus, low ambient cyanophage abundance was most predictive of lysogeny (rho=0.862, P=0.005). Abundance and productivity of heterotrophic bacteria was strongly inversely correlated with salinity, while Synechococcus was not. This indicated that heterotrophic bacterial populations were well adapted to the river plume environments, thus providing a possible explanation for differences in prevalence of lysogeny observed between the two populations. PMID:18049460

  2. AN UNUSUAL CASE REPORT OF HETEROTROPHIC PREGNANCY

    Annapurna; Meenakshi; Sneha

    2013-01-01

    ABSTRACT: BACKGROUND: Heterotrophic pregnancy is rare complication of pr egnancy in which both extra uterine (ectopic pregnancy) and intra ut erine pregnancy occur simultaneously. It may also be referred to as combined ectopic pregnancy m ultiple sited pregnancy or coincident pregnancy. CASE SUMMARY: 26 years old female presented with month of amenor rhea with complaints of pain abdomen since 3 days. She had ob stetric score of G4P3L3 with all previous 3...

  3. Heterotrophic bacterial production and metabolic balance during the VAHINE mesocosm experiment in the New Caledonia lagoon

    Van Wambeke, France; Pfreundt, Ulrike; Barani, Aude; Berthelot, Hugo; Moutin, Thierry; Rodier, Martine; Hess, Wolfgang R.; Bonnet, Sophie

    2016-06-01

    Studies investigating the fate of diazotrophs through the microbial food web are lacking, although N2 fixation can fuel up to 50 % of new production in some oligotrophic oceans. In particular, the role played by heterotrophic prokaryotes in this transfer is largely unknown. In the frame of the VAHINE (VAriability of vertical and tropHIc transfer of diazotroph derived N in the south wEst Pacific) experiment, three replicate large-volume (˜ 50 m3) mesocosms were deployed for 23 days in the new Caledonia lagoon and were intentionally fertilized on day 4 with dissolved inorganic phosphorus (DIP) to stimulate N2 fixation. We specifically examined relationships between heterotrophic bacterial production (BP) and N2 fixation or primary production, determined bacterial growth efficiency and established carbon budgets. BP was statistically higher during the second phase of the experiment (P2: days 15-23), when chlorophyll biomass started to increase compared to the first phase (P1: days 5-14). Phosphatase alkaline activity increased drastically during the second phase of the experiment, showing adaptations of microbial populations after utilization of the added DIP. Notably, among autotrophs, Synechococcus abundances increased during P2, possibly related to its capacity to assimilate leucine and to produce alkaline phosphatase. Bacterial growth efficiency based on the carbon budget (27-43 %), was notably higher than generally cited for oligotrophic environments and discussed in links with the presence of abundant species of bacteria expressing proteorhodopsin. The main fates of gross primary production (particulate + dissolved) were respiration (67 %) and export through sedimentation (17 %). BP was highly correlated with particulate primary production and chlorophyll biomass during both phases of the experiment but was slightly correlated, and only during P2 phase, with N2 fixation rates. Heterotrophic bacterial production was strongly stimulated after mineral N enrichment

  4. Rapid methods for detection of bacteria

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.; Ursin, C.; Arvin, Erik; Albrechtsen, Hans-Jørgen

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  5. Rapid methods for detection of bacteria

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.;

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  6. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    NEENA GARG

    2015-01-01

    Lactic acid bacteria (LAB) is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LA...

  7. Heterotrophic and Autotrophic Microbial Populations in Cold Perennial Springs of the High Arctic ▿ †

    Perreault, Nancy N.; Greer, Charles W.; Andersen, Dale T.; Tille, Stefanie; Lacrampe-Couloume, Georges; Lollar, Barbara Sherwood; Whyte, Lyle G.

    2008-01-01

    The saline springs of Gypsum Hill in the Canadian high Arctic are a rare example of cold springs originating from deep groundwater and rising to the surface through thick permafrost. The heterotrophic bacteria and autotrophic sulfur-oxidizing bacteria (up to 40% of the total microbial community) isolated from the spring waters and sediments were classified into four phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) based on 16S rRNA gene analysis; heterotrophic isolates were primarily psychrotolerant, salt-tolerant, facultative anaerobes. Some of the isolates contained genes for thiosulfate oxidation (soxB) and anoxygenic photosynthesis (pufM), possibly enabling the strains to better compete in these sulfur-rich environments subject to long periods of illumination in the Arctic summer. Although leucine uptake by the spring water microbial community was low, CO2 uptake was relatively high under dark incubation, reinforcing the idea that primary production by chemoautotrophs is an important process in the springs. The small amounts of hydrocarbons in gases exsolving from the springs (0.38 to 0.51% CH4) were compositionally and isotopically consistent with microbial methanogenesis and possible methanotrophy. Anaerobic heterotrophic sulfur oxidation and aerobic autotrophic sulfur oxidation activities were demonstrated in sediment slurries. Overall, our results describe an active microbial community capable of sustainability in an extreme environment that experiences prolonged periods of continuous light or darkness, low temperatures, and moderate salinity, where life seems to rely on chemolithoautotrophy. PMID:18805995

  8. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms

    Mark eDopson

    2014-04-01

    Full Text Available All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Acidophilic microorganisms have an optimum growth pH < 3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.

  9. Thermo-acidophillic biohydrogen production from rice bran de-oiled wastewater by Selectively enriched mixed culture

    Sivaramakrishna, D.; Sreekanth, D.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally Hyderabad-500 085 (India); Narasu, M. Lakshmi [Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally Hyderabad-500 085 (India)

    2010-07-01

    The present study focuses on the biohydrogen production in an anaerobic batch reactor operated at thermophillic (570C) and acidophilic conditions (pH 6) with rice bran de-oiled wastewater (RBOW) as substrate. The hydrogen generating mixed microflora was enriched from slaughter house sludge (SHS) through acid treatment (pH 3-4, for 24h) coupled with heat treatment (1h at 1000C) to eliminate non-spore forming bacteria and to inhibit the growth of methanogenic bacteria (MB) prior to inoculation in the reactor. The hydrogen production rate was maximum at 570C (1861 +- 14ml/L-WW/d) compared to 370C (651 +- 30ml/L-ww/d). The Hydrogen yield increased with temperature from 1.1 to 2.2 molH2/mol of substrate respectively. The optimum pH range for hydrogen production in this system was observed in between 5.5 to 6. Acid-forming pathway with butyric acid as a major metabolite dominated the metabolic flow during the hydrogen production.

  10. Thermo-acidophillic biohydrogen production from rice bran de-oiled wastewater by Selectively enriched mixed culture

    D.Sivaramakrishna, D.Sreekanth, V.Himabindu, M.Lakshmi Narasu

    2010-07-01

    Full Text Available The present study focuses on the biohydrogen production in an anaerobic batch reactor operated at thermophillic (570C and acidophilic conditions (pH 6 with rice bran de-oiled wastewater (RBOW as substrate. The hydrogen generating mixed microflora was enriched from slaughter house sludge (SHS through acid treatment (pH 3-4, for 24h coupled with heat treatment (1h at 1000C to eliminate non-spore forming bacteria and to inhibit the growth of methanogenic bacteria (MB prior to inoculation in the reactor. The hydrogen production rate was maximum at 570C (1861±14ml/L-WW/d compared to 370C (651±30ml/L-ww/d. The Hydrogen yield increased with temperature from 1.1 to 2.2 molH2/mol of substrate respectively. The optimum pH range for hydrogen production in this system was observed in between 5.5 to 6. Acid-forming pathway with butyric acid as a major metabolite dominated the metabolic flow during the hydrogen production.

  11. Antimicrobial Activity of Heterotrophic Bacterial Communities from the Marine Sponge Erylus discophorus (Astrophorida, Geodiidae)

    Graça, Ana Patrícia; Bondoso, Joana; Gaspar, Helena; Xavier, Joana R.; Monteiro, Maria Cândida; de la Cruz, Mercedes; Oves-Costales, Daniel; Vicente, Francisca; Lage, Olga Maria

    2013-01-01

    Heterotrophic bacteria associated with two specimens of the marine sponge Erylus discophorus were screened for their capacity to produce bioactive compounds against a panel of human pathogens (Staphylococcus aureus wild type and methicillin-resistant S. aureus (MRSA), Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter baumanii, Candida albicans and Aspergillus fumigatus), fish pathogen (Aliivibrio fischeri) and environmentally relevant bacteria (Vibrio harveyi). The sponges were collected in Berlengas Islands, Portugal. Of the 212 isolated heterotrophic bacteria belonging to Alpha- and Gammaproteobacteria, Actinobacteria and Firmicutes, 31% produced antimicrobial metabolites. Bioactivity was found against both Gram positive and Gram negative and clinically and environmentally relevant target microorganisms. Bioactivity was found mainly against B. subtilis and some bioactivity against S. aureus MRSA, V. harveyi and A. fisheri. No antifungal activity was detected. The three most bioactive genera were Pseudovibrio (47.0%), Vibrio (22.7%) and Bacillus (7.6%). Other less bioactive genera were Labrenzia, Acinetobacter, Microbulbifer, Pseudomonas, Gordonia, Microbacterium, Micrococcus and Mycobacterium, Paenibacillus and Staphylococcus. The search of polyketide I synthases (PKS-I) and nonribosomal peptide synthetases (NRPSs) genes in 59 of the bioactive bacteria suggested the presence of PKS-I in 12 strains, NRPS in 3 strains and both genes in 3 strains. Our results show the potential of the bacterial community associated with Erylus discophorus sponges as producers of bioactive compounds. PMID:24236081

  12. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae.

    Ana Patrícia Graça

    Full Text Available Heterotrophic bacteria associated with two specimens of the marine sponge Erylus discophorus were screened for their capacity to produce bioactive compounds against a panel of human pathogens (Staphylococcus aureus wild type and methicillin-resistant S. aureus (MRSA, Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter baumanii, Candida albicans and Aspergillus fumigatus, fish pathogen (Aliivibrio fischeri and environmentally relevant bacteria (Vibrio harveyi. The sponges were collected in Berlengas Islands, Portugal. Of the 212 isolated heterotrophic bacteria belonging to Alpha- and Gammaproteobacteria, Actinobacteria and Firmicutes, 31% produced antimicrobial metabolites. Bioactivity was found against both Gram positive and Gram negative and clinically and environmentally relevant target microorganisms. Bioactivity was found mainly against B. subtilis and some bioactivity against S. aureus MRSA, V. harveyi and A. fisheri. No antifungal activity was detected. The three most bioactive genera were Pseudovibrio (47.0%, Vibrio (22.7% and Bacillus (7.6%. Other less bioactive genera were Labrenzia, Acinetobacter, Microbulbifer, Pseudomonas, Gordonia, Microbacterium, Micrococcus and Mycobacterium, Paenibacillus and Staphylococcus. The search of polyketide I synthases (PKS-I and nonribosomal peptide synthetases (NRPSs genes in 59 of the bioactive bacteria suggested the presence of PKS-I in 12 strains, NRPS in 3 strains and both genes in 3 strains. Our results show the potential of the bacterial community associated with Erylus discophorus sponges as producers of bioactive compounds.

  13. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae).

    Graça, Ana Patrícia; Bondoso, Joana; Gaspar, Helena; Xavier, Joana R; Monteiro, Maria Cândida; de la Cruz, Mercedes; Oves-Costales, Daniel; Vicente, Francisca; Lage, Olga Maria

    2013-01-01

    Heterotrophic bacteria associated with two specimens of the marine sponge Erylus discophorus were screened for their capacity to produce bioactive compounds against a panel of human pathogens (Staphylococcus aureus wild type and methicillin-resistant S. aureus (MRSA), Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter baumanii, Candida albicans and Aspergillus fumigatus), fish pathogen (Aliivibrio fischeri) and environmentally relevant bacteria (Vibrio harveyi). The sponges were collected in Berlengas Islands, Portugal. Of the 212 isolated heterotrophic bacteria belonging to Alpha- and Gammaproteobacteria, Actinobacteria and Firmicutes, 31% produced antimicrobial metabolites. Bioactivity was found against both Gram positive and Gram negative and clinically and environmentally relevant target microorganisms. Bioactivity was found mainly against B. subtilis and some bioactivity against S. aureus MRSA, V. harveyi and A. fisheri. No antifungal activity was detected. The three most bioactive genera were Pseudovibrio (47.0%), Vibrio (22.7%) and Bacillus (7.6%). Other less bioactive genera were Labrenzia, Acinetobacter, Microbulbifer, Pseudomonas, Gordonia, Microbacterium, Micrococcus and Mycobacterium, Paenibacillus and Staphylococcus. The search of polyketide I synthases (PKS-I) and nonribosomal peptide synthetases (NRPSs) genes in 59 of the bioactive bacteria suggested the presence of PKS-I in 12 strains, NRPS in 3 strains and both genes in 3 strains. Our results show the potential of the bacterial community associated with Erylus discophorus sponges as producers of bioactive compounds. PMID:24236081

  14. A proton shelter inspired by the sugar coating of acidophilic archaea

    Xiumei Wang; Bei’er Lv; Guixin Cai; Long Fu; Yuanzi Wu; Xiang Wang; Bin Ren; Hongwei Ma

    2012-01-01

    The acidophilic archaeons are a group of single-celled microorganisms that flourish in hot acid springs (usually pH < 3) but maintain their internal pH near neutral. Although there is a lack of direct evidence, the abundance of sugar modifications on the cell surface has been suggested to provide the acidophiles with protection against proton invasion. In this study, a hydroxyl (OH)-rich polymer brush layer was prepared to mimic the OH-rich sugar coating. Using a novel pH-sensitive dithioacet...

  15. Distribution of biomass of heterotrophic bacterioplankton in the Bohai Sea

    Bai, Jie; Li, Kuiran; Zhang, Jing; Li, Zhengyan; Gao, Huiwang; Zhang, Haofei

    2005-12-01

    Distribution, variation and impact factors of biomass of bacterioplankton from April to May 1999 in Bohai Sea were studied in DAPI method with epifluorescence microscopy. The biomass in surface waters showed a small day-night variation, varying from 0.13 to 2.51 μg/dm3 with an average of 0.84 μg/dm3. The biomass in bottom waters showed, however, a large variation, changing from 0.15 to 4.18 μg/dm3 with an average of 1.36 μg/dm3. The peak values occurred at 5 and 11 a.m. The bottom water biomass showed a significant correlation with particulate organic carbon ( r=0.639, Pbacterioplankton biomass was high in nearshore waters and low in offshore areas with a high biomass zone around Huanghe (Yellow) River mouth, showing the same distribution of nutrients. In vertical distribution, heterotrophic bacteria biomass in bottom waters was higher than that in surface water.

  16. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    Tian, Renmao

    2014-08-29

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Simultaneous heterotrophic nitrification and aerobic denitrification by the marine origin bacterium Pseudomonas sp. ADN-42.

    Jin, Ruofei; Liu, Tianqi; Liu, Guangfei; Zhou, Jiti; Huang, Jianyu; Wang, Aijie

    2015-02-01

    Recent research has highlighted the existence of some bacteria that are capable of performing heterotrophic nitrification and have a phenomenal ability to denitrify their nitrification products under aerobic conditions. A high-salinity-tolerant strain ADN-42 was isolated from Hymeniacidon perleve and found to display high heterotrophic ammonium removal capability. This strain was identified as Pseudomonas sp. via 16S rRNA gene sequence analysis. Gene cloning and sequencing analysis indicated that the bacterial genome contains N2O reductase function (nosZ) gene. NH3-N removal rate of ADN-42 was very high. And the highest removal rate was 6.52 mg/L · h in the presence of 40 g/L NaCl. Under the condition of pure oxygen (DO >8 mg/L), NH3-N removal efficiency was 56.9 %. Moreover, 38.4 % of oxygen remained in the upper gas space during 72 h without greenhouse gas N2O production. Keeping continuous and low level of dissolved oxygen (DO <3 mg/L) was helpful for better denitrification performance. All these results indicated that the strain has heterotrophic nitrification and aerobic denitrification abilities, which guarantee future application in wastewater treatment. PMID:25432342

  18. Environmental factors influenting species composition of acidophilous grasslands patches in agricultural landscape

    Halas, Petr

    2012-01-01

    Roč. 20, č. 1 (2012), s. 16-27. ISSN 1210-8812 Institutional support: RVO:68145535 Keywords : acidophilous grasslands * hemeroby * patch isolation * patch area * regression trees Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geonika.cz/EN/research/ENMgr/MGR_2012_01.pdf

  19. Environmental factors influencing the species composition of acidophilous grassland patches in agricultural lanscapes

    Halas, Petr

    2012-01-01

    Roč. 20, č. 1 (2012), s. 16-27. ISSN 1210-8812 Institutional research plan: CEZ:AV0Z30860518 Keywords : acidophilous grasslands * hemeroby * patch isolation * regression trees * Bohemian-Moravian Highland Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geonika.cz/CZ/CZresearch/CZMgrArchive.html

  20. 海洋异养硝化菌株的快速筛选%Rapid screening of marine heterotrophic nitrobacteria

    王光玉; 孙洋洋; 陈雷; 张健

    2012-01-01

    目前尚缺乏有效地系统分离获得异养硝化菌的方法,为此,利用海洋养殖废水,采用前期自养后期异养的混养富集方法,获得具有异养脱氮能力的菌群.通过异养培养基分离获得纯菌株,利用特异性引物扩增分离菌株的氨单加氧酶(AMO)基因amoA和周质硝酸盐还原酶(NAR)亚基基因napA,快速筛选具有潜在异养硝化或异养硝化好氧反硝化能力的菌株.通过氮素转化试验确认菌株的氮代谢特性.共分离获得异养细菌22株,其中11株细菌amoA基因呈阳性,7株细菌amoA基因和napA基因同时显阳性,氮素转化试验证明9株细菌具有异养脱氮能力.%Method of mixed culture,earlier autotrophic condition and later heterotrophic condition,was used to enrich heterotrophic nitrifying bacteria and aerobic denitrifying bacteria from marine aquaculture wastewater.Heterotrophic nitrifying bacteria and aerobic denitrifying bacteria were isolated and purified by the heterotrophic culture medium.Using the special PCR primers,the bacteria were rapidly screened by amplifying Ammonia monooxygenase encoding gene(amoA) and a subunit of periplasmic nitrate reductase(NAR) encoding gene(napA).Those bacteria were identified by the denitrifying test.22 heterotrophic bacteria strains were isolated,11 strains had the amoA gene,7 strains had both of the two genes,and there were 9 strains which had nitrifying ability.

  1. Enhanced Productivity of a Lutein-Enriched Novel Acidophile Microalga Grown on Urea

    Carlos Vilchez

    2010-12-01

    Full Text Available Coccomyxa acidophila is an extremophile eukaryotic microalga isolated from the Tinto River mining area in Huelva, Spain. Coccomyxa acidophila accumulates relevant amounts of b-carotene and lutein, well-known carotenoids with many biotechnological applications, especially in food and health-related industries. The acidic culture medium (pH < 2.5 that prevents outdoor cultivation from non-desired microorganism growth is one of the main advantages of acidophile microalgae production. Conversely, acidophile microalgae growth rates are usually very low compared to common microalgae growth rates. In this work, we show that mixotrophic cultivation on urea efficiently enhances growth and productivity of an acidophile microalga up to typical values for common microalgae, therefore approaching acidophile algal production towards suitable conditions for feasible outdoor production. Algal productivity and potential for carotenoid accumulation were analyzed as a function of the nitrogen source supplied. Several nitrogen conditions were assayed: nitrogen starvation, nitrate and/or nitrite, ammonia and urea. Among them, urea clearly led to the best cell growth (~4 ´ 108 cells/mL at the end of log phase. Ammonium led to the maximum chlorophyll and carotenoid content per volume unit (220 mg·mL-1 and 35 mg·mL-1, respectively. Interestingly, no significant differences in growth rates were found in cultures grown on urea as C and N source, with respect to those cultures grown on nitrate and CO2 as nitrogen and carbon sources (control cultures. Lutein accumulated up to 3.55 mg·g-1 in the mixotrophic cultures grown on urea. In addition, algal growth in a shaded culture revealed the first evidence for an active xanthophylls cycle operative in acidophile microalgae.

  2. A Description of an Acidophilic, Iron Reducer, Geobacter sp. FeAm09 Isolated from Tropical Soils

    Healy, O.; Souchek, J.; Heithoff, A.; LaMere, B.; Pan, D.; Hollis, G.; Yang, W. H.; Silver, W. L.; Weber, K. A.

    2014-12-01

    Iron (Fe) is the fourth most abundant element in the Earth's crust and plays a significant role controlling the geochemistry in soils, sediments, and aquatic systems. As part of a study to understand microbially-catalysed iron biogeochemical cycling in tropical soils, an iron reducing isolate, strain FeAm09, was obtained. Strain FeAm09 was isolated from acidic, Fe-rich soils collected from a tropical forest (Luquillo Experimental Forest, Puerto Rico). Strain FeAm09 is a rod-shaped, motile, Gram-negative bacterium. Taxonomic analysis of the near complete 16S rRNA gene sequence revealed that strain FeAm09 is 94.7% similar to Geobacter lovleyi, placing it in the genus Geobacter within the Family Geobacteraceae in the Deltaproteobacteria. Characterization of the optimal growth conditions revealed that strain FeAm09 is a moderate acidophile with an optimal growth pH of 5.0. The optimal growth temperature was 37°C. Growth of FeAm09 was coupled to the reduction of soluble Fe(III), Fe(III)-NTA, with H2, fumarate, ethanol, and various organic acids and sugars serving as the electron donor. Insoluble Fe(III), in the form of synthetic ferrihydrite, was reduced by strain FeAm09 using acetate or H2 as the electron donor. The use of H2 as an electron donor in the presence of CO2 and absence of organic carbon and assimilation of 14C-labelled CO2 into biomass indicate that strain FeAm09 is an autotrophic Fe(III)-reducing bacterium. Together, these data describe the first acidophilic, autotrophic Geobacter species. Iron reducing bacteria were previously shown to be as abundant in tropical soils as in saturated sediments (lake-bottoms) and saturated soils (wetlands) where Fe(III) reduction is more commonly recognized as a dominant mode of microbial respiration. Furthermore, Fe(III) reduction was identified as a primary driver of carbon mineralization in these tropical soils (Dubinsky et al. 2010). In addition to mineralizing organic carbon, Geobacter sp. FeAm09 is likely to also

  3. Regeneration of Phosphorus and Nitrogen by Four Species of Heterotrophic Nanoflagellates Feeding on Three Nutritional States of a Single Bacterial Strain

    Eccleston-Parry, J. D.; Leadbeater, B.

    1995-01-01

    Three physiological states of a single bacterial strain, namely, balanced, phosphorus-rich, and nitrogen-rich bacteria, were obtained by culturing a bacterial strain in chemostats under three different nutrient regimens. Each was shown to be distinctly different in elemental composition with respect to C/N/P ratio. These bacteria were fed to four species of heterotrophic nanoflagellates in batch culture grazing experiments, and the percent regeneration efficiencies of bacterium-bound nitrogen...

  4. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities.

    Golińska, Patrycja; Wypij, Magdalena; Rathod, Dnyaneshwar; Tikar, Sagar; Dahm, Hanna; Rai, Mahendra

    2016-05-01

    Biosynthesis of silver nanoparticles (AgNPs) is an eco-friendly approach by using different biological sources; for example, plants and microorganisms such as bacteria, fungi, and actinobacteria. In this report, we present the biological synthesis of silver nanoparticles (AgNPs) by acidophilic actinomycetes SL19 and SL24 strains isolated from pine forest soil (pH < 4.0). The isolates based on 16S rRNA gene sequence were identified as Pilimelia columellifera subsp. pallida. The synthesized AgNPs were characterized by visual observations of colour change from light-yellow to dark-brown. The UV-vis spectra of AgNPs were recorded at 425 and 430 nm. The AgNPs were further characterized by Nanoparticle tracking analysis (NTA), Zeta potential, Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM). FTIR analysis revealed the presence of proteins as a capping agent. TEM analysis confirmed the formation of spherical and polydispersed NPs of 12.7 and 15.9 nm sizes. The in vitro antibacterial activity of AgNPs alone and in combination with antibiotics was evaluated against clinical bacteria viz., Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and uropathogens such as Enterobacter, S. aureus, P. aeruginosa, K. pneumoniae, and E. coli. The lowest MIC (40 μg ml(-1) ) was demonstrated by AgNPs synthesized from SL24 against E. coli. However, the AgNPs of SL19 showed lowest MIC (70 μg ml(-1) ) against S. aureus. The activity of antibiotic was enhanced, when tested in combination with silver nanoparticles synthesized from both actinobacterial strains. PMID:27151174

  5. AN UNUSUAL CASE REPORT OF HETEROTROPHIC PREGNANCY

    Annapurna

    2013-06-01

    Full Text Available ABSTRACT: BACKGROUND: Heterotrophic pregnancy is rare complication of pr egnancy in which both extra uterine (ectopic pregnancy and intra ut erine pregnancy occur simultaneously. It may also be referred to as combined ectopic pregnancy m ultiple sited pregnancy or coincident pregnancy. CASE SUMMARY: 26 years old female presented with month of amenor rhea with complaints of pain abdomen since 3 days. She had ob stetric score of G4P3L3 with all previous 3 being full term normal vaginal deliveries. USG repo rt was suggestive of ectopic pregnancy and subsequently confirmed with diagnosis of ectopic pr egnancy. DISCUSSION: Most of the heterotopic pregnancies present in the first trimester as in th is case report. Once a heterotopic pregnancy is diagnosed, the next dilemma that arises is how to m anage it without harming the intrauterine pregnancy. Conclusion: Knowledge of the possibility of heterotopic pregnan cy and understanding the epidemiological risk factors associated with it are important for early diagnosis and avoiding complications.

  6. Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters

    The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification techn...

  7. The more, the merrier: heterotroph richness stimulates methanotrophic activity

    Ho, Adrian; De Roy, Karen; Thas, Olivier; De Neve, Jan; Hoefman, Sven; Vandamme, Peter; Heylen, Kim; Boon, Nico

    2014-01-01

    Although microorganisms coexist in the same environment, it is still unclear how their interaction regulates ecosystem functioning. Using a methanotroph as a model microorganism, we determined how methane oxidation responds to heterotroph diversity. Artificial communities comprising of a methanotroph and increasing heterotroph richness, while holding equal starting cell numbers were assembled. We considered methane oxidation rate as a functional response variable. Our results showed a signifi...

  8. Ozonation followed by ultraviolet irradiation provides effective bacteria inactivation in a freshwater recirculating system

    Recirculating aquaculture systems may require an internal disinfection process to control population growth of pathogens and heterotrophic bacteria. Ozonation and ultraviolet (UV) irradiation are two technologies that have been used to treat relatively large aquaculture flows, including flows withi...

  9. Quantifying the structure of the mesopelagic microbial loop from observed depth profiles of bacteria and protozoa

    T. F. Thingstad

    2004-08-01

    Full Text Available t is widely recognized that organic carbon exported to the ocean aphotic layer is significantly consumed by heterotrophic organisms such as bacteria and zooplankton in the mesopelagic layer. However, very little is known for the trophic link between bacteria and zooplankton or the structure of the microbial loop in this layer. In the northwestern Mediterranean, recent studies have shown that viruses, bacteria, heterotrophic nanoflagellates, and ciliates distribute down to 2000 m with group-specific depth-dependent decreases, and that bacterial production decreases with depth down to 1000 m. Here we show that such data can be analyzed using a simple steady-state food chain model to quantify the carbon flow from bacteria to zooplankton over the mesopelagic layer. The model indicates that a similar amount of bacterial production is allocated to viruses and heterotrophic nanoflagellates, and that heterotrophic nanoflagellates are the important remineralizers.

  10. Biomass, production, and control of heterotrophic bacterioplankton during a late phytoplankton bloom in the Amundsen Sea Polynya, Antarctica

    Hyun, Jung-Ho; Kim, Sung-Han; Yang, Eun Jin; Choi, Ayeon; Lee, Sang Hoon

    2016-01-01

    We investigated the heterotrophic bacterial biomass and production in February 2012, in four habitats (a polynya, sea-ice zone, ice shelf, and the open sea) in the Amundsen Sea to determine the spatial distribution, controlling factors, and ecological role of the bacteria during a late phytoplankton bloom by Phaeocystis antarctica. Bacterial abundance (BA) and production (BP) were highest at the center of the polynya, and both were significantly correlated with phytoplankton biomass. BP accounted for average 17% of the organic carbon produced by phytoplankton primary production (PP), which is higher than the average BP:PP ratio reported in most open ocean. The abundance of heterotrophic nanoflagellates (HNF) was correlated with the BA, and the average bacteria:HNF ratio (260) was lower than the values reported in most marine environments (400-1000), including the Ross Sea Polynya (800). Evidence for a tight coupling of bacteria and phytoplankton activities on the one hand and intense HNF grazing on bacteria on the other could be found in the high BP:PP and low bacteria:HNF ratios, respectively. Interestingly, these data were accompanied by low particulate carbon export fluxes measured during the late Phaeocystis bloom. Together, these results indicated that the microbial loop plays a significant role in the biogeochemical carbon cycle and food web processes in the Amundsen Sea Polynya.

  11. Molecular cloning, sequencing, and expression of omp-40, the gene coding for the major outer membrane protein from the acidophilic bacterium Thiobacillus ferrooxidans.

    Guiliani, N; Jerez, C A

    2000-06-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. Some of the surface components of this microorganism are probably involved in adaptation to their acidic environment and in bacterium-mineral interactions. We have isolated and characterized omp40, the gene coding for the major outer membrane protein from T. ferrooxidans. The deduced amino acid sequence of the Omp40 protein has 382 amino acids and a calculated molecular weight of 40,095.7. Omp40 forms an oligomeric structure of about 120 kDa that dissociates into the monomer (40 kDa) by heating in the presence of sodium dodecyl sulfate. The degree of identity of Omp40 amino acid sequence to porins from enterobacteria was only 22%. Nevertheless, multiple alignments of this sequence with those from several OmpC porins showed several important features conserved in the T. ferrooxidans surface protein, such as the approximate locations of 16 transmembrane beta strands, eight loops, including a large external L3 loop, and eight turns which allowed us to propose a putative 16-stranded beta-barrel porin structure for the protein. These results together with the previously known capacity of Omp40 to form ion channels in planar lipid bilayers strongly support its role as a porin in this chemolithoautotrophic acidophilic microorganism. Some characteristics of the Omp40 protein, such as the presence of a putative L3 loop with an estimated isoelectric point of 7.21 allow us to speculate that this can be the result of an adaptation of the acidophilic T. ferrooxidans to prevent free movement of protons across its outer membrane. PMID:10831405

  12. 一株海水异养硝化-好氧反硝化菌系统发育及脱氮特性%Phylogenetic analysis and nitrogen removal characteristics of a heterotrophic nitrifying-aerobic denitrifying bacteria strain from marine environment

    孙雪梅; 李秋芬; 张艳; 刘淮德; 赵俊; 曲克明

    2012-01-01

    [目的] 确定一株分离自海水的异养硝化-好氧反硝化菌的系统发育地位并探索其脱氮特性和机理,以期为解释异养硝化-好氧反硝化机理以及改进海水养殖及废水的生物脱氮工艺提供理论依据.[方法] 通过形态观察、生理生化实验和16S rRNA基因序列分析,鉴定该菌株;通过测定菌株在不同无机氮源降解测试液中的生长和脱氮效率,分析其异养硝化和好氧反硝化性能.[结果] 经鉴定该菌株属于盐单胞菌属(Halomonas);最适生长条件为盐度3%、pH 8.5、温度28℃、碳氮比10∶1,在盐度为15%的培养液中仍能生长;可以同时去除氨氮、亚硝酸氮和硝酸氮,24h时对NH4+ -N、NO2- -N、和NO3- -N的去除率可分别达到98.29%、99.07%、96.48%,3种形态无机氮同时存在时,会优先利用NH4-N,且总无机氮去除率较单一存在时更高,说明该菌株可实现同步硝化反硝化.[结论] 该分离自海水的异养硝化-好氧反硝化菌属于盐单胞菌属(Halomonas),在高盐环境中仍能生长,同时具有高效的异养硝化和好氧反硝化能力,能够独立完成脱氮的全部过程.%[Objective] We determined the phylogenetic position of a heterotrophic nitrifying-aerobic denitrifying bacterium X3, and detected its nitrogen removal characteristics for providing evidence to explain the principle of heterotrophic nitrification-aerobic denitrification and to improve the process in purification of marine-culture wastewater. [Methods] The evolutionary position of the strain was determined based on its morphological, physiological,biochemical characteristics and 16SrRNA gene sequence. The nitrification-denitrification ability of this strain was detected by detecting its nitrogen removal efficiency and growth on different inorganic nitrogen source. [Results] Strain X3 was identified as Halomonas sp. It grew optimally at salinity 3% , pH 8. 5, C:N 10:1 at 28℃ , and it could still survive at 15

  13. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor

    Zhao, Yingxin [School of Water Resources and Environment, China University of Geosciences, Beijing 100083 (China); Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058572 (Japan); Feng, Chuanping, E-mail: fengchuangping@gmail.com [School of Water Resources and Environment, China University of Geosciences, Beijing 100083 (China); Wang, Qinghong; Yang, Yingnan; Zhang, Zhenya; Sugiura, Norio [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058572 (Japan)

    2011-09-15

    Highlights: {yields} Intensified biofilm-electrode reactor using cooperative denitrification is developed. {yields} IBER combines heterotrophic and autotrophic denitrification. {yields} CO{sub 2} formed by heterotrophic denitrification is used by autotrophic bacteria. {yields} Optimum running conditions are C/N = 0.75, HRT = 8 h, and I = 40 mA. {yields} A novel degradation mechanism for cooperating denitrification process is proposed. - Abstract: An intensified biofilm-electrode reactor (IBER) combining heterotrophic and autotrophic denitrification was developed for treatment of nitrate contaminated groundwater. The reactor was evaluated with synthetic groundwater (NO{sub 3}{sup -}N50 mg L{sup -1}) under different hydraulic retention times (HRTs), carbon to nitrogen ratios (C/N) and electric currents (I). The experimental results demonstrate that high nitrate and nitrite removal efficiency (100%) were achieved at C/N = 1, HRT = 8 h, and I = 10 mA. C/N ratios were reduced from 1 to 0.5 and the applied electric current was changed from 10 to 100 mA, showing that the optimum running condition was C/N = 0.75 and I = 40 mA, under which over 97% of NO{sub 3}{sup -}N was removed and organic carbon (methanol) was completely consumed in treated water. Simultaneously, the denitrification mechanism in this system was analyzed through pH variation in effluent. The CO{sub 2} produced from the anode acted as a good pH buffer, automatically controlling pH in the reaction zone. The intensified biofilm-electrode reactor developed in the study was effective for the treatment of groundwater polluted by nitrate.

  14. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor

    Highlights: → Intensified biofilm-electrode reactor using cooperative denitrification is developed. → IBER combines heterotrophic and autotrophic denitrification. → CO2 formed by heterotrophic denitrification is used by autotrophic bacteria. → Optimum running conditions are C/N = 0.75, HRT = 8 h, and I = 40 mA. → A novel degradation mechanism for cooperating denitrification process is proposed. - Abstract: An intensified biofilm-electrode reactor (IBER) combining heterotrophic and autotrophic denitrification was developed for treatment of nitrate contaminated groundwater. The reactor was evaluated with synthetic groundwater (NO3-N50 mg L-1) under different hydraulic retention times (HRTs), carbon to nitrogen ratios (C/N) and electric currents (I). The experimental results demonstrate that high nitrate and nitrite removal efficiency (100%) were achieved at C/N = 1, HRT = 8 h, and I = 10 mA. C/N ratios were reduced from 1 to 0.5 and the applied electric current was changed from 10 to 100 mA, showing that the optimum running condition was C/N = 0.75 and I = 40 mA, under which over 97% of NO3-N was removed and organic carbon (methanol) was completely consumed in treated water. Simultaneously, the denitrification mechanism in this system was analyzed through pH variation in effluent. The CO2 produced from the anode acted as a good pH buffer, automatically controlling pH in the reaction zone. The intensified biofilm-electrode reactor developed in the study was effective for the treatment of groundwater polluted by nitrate.

  15. Bioleaching in brackish waters--effect of chloride ions on the acidophile population and proteomes of model species.

    Zammit, Carla M; Mangold, Stefanie; Jonna, Venkateswara rao; Mutch, Lesley A; Watling, Helen R; Dopson, Mark; Watkin, Elizabeth L J

    2012-01-01

    High concentrations of chloride ions inhibit the growth of acidophilic microorganisms used in biomining, a problem particularly relevant to Western Australian and Chilean biomining operations. Despite this, little is known about the mechanisms acidophiles adopt in order to tolerate high chloride ion concentrations. This study aimed to investigate the impact of increasing concentrations of chloride ions on the population dynamics of a mixed culture during pyrite bioleaching and apply proteomics to elucidate how two species from this mixed culture alter their proteomes under chloride stress. A mixture consisting of well-known biomining microorganisms and an enrichment culture obtained from an acidic saline drain were tested for their ability to bioleach pyrite in the presence of 0, 3.5, 7, and 20 g L(-1) NaCl. Microorganisms from the enrichment culture were found to out-compete the known biomining microorganisms, independent of the chloride ion concentration. The proteomes of the Gram-positive acidophile Acidimicrobium ferrooxidans and the Gram-negative acidophile Acidithiobacillus caldus grown in the presence or absence of chloride ions were investigated. Analysis of differential expression showed that acidophilic microorganisms adopted several changes in their proteomes in the presence of chloride ions, suggesting the following strategies to combat the NaCl stress: adaptation of the cell membrane, the accumulation of amino acids possibly as a form of osmoprotectant, and the expression of a YceI family protein involved in acid and osmotic-related stress. PMID:22124722

  16. Distribution and Identification of Luminous Bacteria from the Sargasso Sea

    Orndorff, S. A.; Colwell, R R

    1980-01-01

    Vibrio fischeri and Lucibacterium harveyi constituted 75 of the 83 luminous bacteria isolated from Sargasso Sea surface waters. Photobacterium leiognathi and Photobacterium phosphoreum constituted the remainder of the isolates. Luminescent bacteria were recovered at concentrations of 1 to 63 cells per 100 ml from water samples collected at depths of 160 to 320 m. Two water samples collected at the thermocline yielded larger numbers of viable, aerobic heterotrophic and luminous bacteria. Lumin...

  17. Leaching of selected heavy metals from electronic waste in the presence of the At. ferrooxidans bacteria

    J. Willner

    2012-01-01

    Purpose: This paper presents the experimental work carried out to evaluate the leaching efficiency of zinc, nickel and lead from printed circuit boards (PCBs) using biological leaching with different quantities of acidophilic bacteria as inoculum.Design/methodology/approach: Bioleaching was conducted using periodic method in Erlenmneyer flasks, with pure cultures of At. ferrooxidans. Some conditional parameters: oxidation-reduction potential, pH were taken into account.Findings: The results d...

  18. Photochemical performance of the acidophilic red alga Cyanidium sp. in a pH gradient

    Kvíderová, Jana

    2012-01-01

    Roč. 42, č. 2-3 (2012), s. 223-234. ISSN 0169-6149. [European Workshop on Astrobiology of the European-Astrobiology-Network-Association (EANA) /11/. German Aerosp Ctr, Cologne, 11.07.2011-14.07.2011] R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : acidophilic red alga * pH gradient * photochemistry Subject RIV: EF - Botanics Impact factor: 1.831, year: 2012

  19. [Leaching of Rare Earth Elements from Coal Ashes Using Acidophilic Chemolithotrophic Microbial Communities].

    Muravyov, M I; Bulaev, A G; Melamud, V S; Kondrat'eva, T F

    2015-01-01

    A method for leaching rare earth elements from coal ash in the presence of elemental sulfur using communities of acidophilic chemolithotrophic microorganisms was proposed. The optimal parameters determined for rare element leaching in reactors were as follows: temperature, 45 degrees C; initial pH, 2.0; pulp density, 10%; and the coal ash to elemental sulfur ratio, 10 : 1. After ten days of leaching, 52.0, 52.6, and 59.5% of scandium, yttrium, and lanthanum, respectively, were recovered. PMID:26263628

  20. The effects of wastewater effluent and river discharge on benthic heterotrophic production, organic biomass and respiration in marine coastal sediments

    Highlights: • High river particulate flux results in low sediment P/B due to large burrowers. • Sewage deposition results in high P/B from biomass depletion and bacterial increase. • Heterotrophic production was 56% of oxidized OC flux with 35% growth efficiency. • Production was correlated with organic/inorganic flux – biomass was not. • δ15N patterns illustrate feeding strategies of key taxa near the outfall. -- Abstract: We examine effects of high river particulate flux and municipal wastewater effluent on heterotrophic organic carbon cycling in coastal subtidal sediments. Heterotrophic production was a predictable (r2 = 0.95) proportion (56%) of oxidized OC flux and strongly correlated with organic/inorganic flux. Consistent growth efficiencies (36%) occurred at all stations. Organic biomass was correlated with total, OC and buried OC fluxes, but not oxidized OC flux. Near the river, production was modest and biomass high, resulting in low P/B. Outfall deposition resulted in depleted biomass and high bacterial production, resulting in the highest P/B. These patterns explain why this region is production “saturated”. The δ15N in outfall effluent, sediments and dominant taxa provided insight into where, and which types of organisms feed directly on fresh outfall particulates, on older, refractory material buried in sediments, or utilize chemosynthetic symbiotic bacteria. Results are discussed in the context of declining bottom oxygen conditions along the coast

  1. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia

    Stott Matthew B

    2008-07-01

    Full Text Available Abstract Background The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the Verrucomicrobia, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia. Results We report the complete genome sequence of strain V4, the first one from a representative of the Verrucomicrobia. Isolate V4, initially named "Methylokorus infernorum" (and recently renamed Methylacidiphilum infernorum is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of M. infernorum was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C1-utilization pathways compared to other known methylotrophs. The M. infernorum genome does not encode tubulin, which was previously discovered in bacteria of the genus Prosthecobacter, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping Planctomycetes, Verrucomicrobia and Chlamydiae into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the M. infernorum lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of M. infernorum shows apparent adaptations for existence under extremely

  2. Electricity generation from tetrathionate in microbial fuel cells by acidophiles

    Sulonen, Mira L.K., E-mail: mira.sulonen@tut.fi; Kokko, Marika E.; Lakaniemi, Aino-Maija; Puhakka, Jaakko A.

    2015-03-02

    Highlights: • Electricity can be generated from tetrathionate in MFCs at pH below 2.5. • Tetrathionate disproportionated to sulfate and elemental sulfur. • Biohydrometallurgical process waters contained electrochemically active bacteria. • Acidithiobacillus spp. and Ferroplasma spp. were identified from the MFCs. - Abstract: Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m{sup −2} and 13.9 mW m{sup −2} and 433 mA m{sup −2} and 17.6 mW m{sup −2}, respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2–2.5.

  3. Electricity generation from tetrathionate in microbial fuel cells by acidophiles

    Highlights: • Electricity can be generated from tetrathionate in MFCs at pH below 2.5. • Tetrathionate disproportionated to sulfate and elemental sulfur. • Biohydrometallurgical process waters contained electrochemically active bacteria. • Acidithiobacillus spp. and Ferroplasma spp. were identified from the MFCs. - Abstract: Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m−2 and 13.9 mW m−2 and 433 mA m−2 and 17.6 mW m−2, respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2–2.5

  4. Heterotrophs are key contributors to nitrous oxide production in mixed liquor under low C-to-N ratios during nitrification - batch experiments and modelling

    Domingo Felez, Carlos; Pellicer i Nàcher, Carles; Petersen, Morten S.;

    2016-01-01

    model structures have been proposed without consensus calibration procedures. Here, we present a new experimental design that was used to calibrate AOB-driven N2O dynamics of a mixed culture. Even though AOB activity was favoured with respect to HB, oxygen uptake rates indicated HB activity. Hence......Nitrous oxide (N2O), a by-product of biological nitrogen removal during wastewater treatment, is produced by ammonia-oxidizing bacteria (AOB) and heterotrophic denitrifying bacteria (HB). Mathematical models are used to predict N2O emissions, often including AOB as the main N2O producer. Several......, rigorous experimental design for calibration of autotrophic N2O production from mixed cultures is essential. The proposed N2O production pathways were examined using five alternative process models confronted with experimental data inferred. Individually, the autotrophic and heterotrophic denitrification...

  5. Responses of heterotrophic bacterial populations to pH changes in coal ash effluent

    Guthrie, R.K. (Univ. of Texas, Houston); Cherry, D.S.; Singleton, F.L.

    1978-08-01

    Total culturable heterotrophic bacteria in a coal ash basin and drainage system were monitored over a period of two years. In the first year heavy (bottom) ash was sluiced to the basin resulting in a pH of 6.5. During the second year fly ash was precipitated and added to the sluice lowering the basin pH to 4.6. Sulfate concentrations during 1975 ranged from 16 to 73 ppM (mean 33) and in 1976 from 44 to 88 ppM (mean 72). Mean annual basin temperatures were 28.8 and 26.0/sup 0/C, respectively. Approximately 1500 m in the receiving swamp below the basin, mean pH and temperature were 6.8 and 22.2/sup 0/C for the first year, and 5.4 and 22.1/sup 0/C for the second. Total culturable bacteria and diversity (colony types) were reduced at all sampling stations by 44 and 30%, respectively, whereas the percentage of the population comprised of chromagenic bacteria increased by 51% at the lower pH. Data indicated the pH had a greater effect than did water temperature when temperature was within the range of 15 to 25/sup 0/C. The predominant genera within the system in the first year were Bacillus, Sarcina, Achromobacter, Flavobacterium, and Pseudomonas. In the second year, at the lower pH, predominant genera were Pseudomonas, Flavobacterium, Chromobacterium, Bacillus, and Brevibacterium.

  6. Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma genus.

    Potrykus, Joanna; Jonna, Venkateswara Rao; Dopson, Mark

    2011-01-01

    Extremely acidophilic archaea from the genus Ferroplasma inhabit iron-rich biomining environments and are important constituents of naturally occurring microbial consortia that catalyze the production of acid mine drainage. A combined bioinformatic, transcript profiling, and proteomic approach was used to elucidate iron homeostasis mechanisms in "F. acidarmanus" Fer1 and F. acidiphilum Y(T) . Bioinformatic analysis of the "F. acidarmanus" Fer1 genome sequence revealed genes encoding proteins hypothesized to be involved in iron-dependent gene regulation and siderophore biosynthesis; the Fhu and NRAMP cation acquisition systems; iron storage proteins; and the SUF machinery for the biogenesis of Fe-S clusters. A subset of homologous genes was identified on the F. acidiphilum Y(T) chromosome by direct PCR probing. In both strains, some of the genes appeared to be regulated in a ferrous/ferric iron-dependent manner, as indicated by RT-PCR. A detailed gel-based proteomics analysis of responses to iron depletion showed that a putative isochorismatase, presumably involved in siderophore biosynthesis, and the SufBCD system were upregulated under iron-limiting conditions. No evidence was obtained for iron sparing response during iron limitation. This study constitutes the first detailed investigation of iron homeostasis in extremely acidophilic archaea. PMID:21182194

  7. Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans

    Thiobacillus thiooxidans is an acidophilic, obligately autotrophic bacterium which derives its energy by oxidizing reduced or partially reduced sulfur compounds and obtains its carbon by fixing carbon dioxide from the atmosphere. The strain is able to live in inorganic, acidic environments and is present in large numbers in coal mine drainage and in mineral ores. T. thiooxidans has been used industrially in metal leaching from mineral ores and in the microbial desulfurization of coal in combination with Thiobacillus ferrooxidans. Although T. thiooxidans has been well studied physiologically, very little is known about it genetics. The broad-host-range IncP plasmids RP4, R68.45, RP1::Tn501, and pUB307 were transferred directly to extremely acidophilic Thiobacillus thiooxidans from Escherichia coli by conjugation at frequencies of 10-5 to 10-7 per recipient. The ability of T. thiooxidans to receive and express the antibiotic resistance markers was examined. The plasmid RP4 was transferred back to E. coli from T. thiooxidans at a frequency of 1.0 x 10-3 per recipient

  8. Biology of Moderately Halophilic Aerobic Bacteria

    Nieto Gutiérrez, Joaquín José; Ventosa Ucero, Antonio; Oren, Aharon

    1998-01-01

    The moderately halophilic heterotrophic aerobic bacteria form a diverse group of microorganisms. The property of halophilism is widespread within the bacterial domain. Bacterial halophiles are abundant in environments such as salt lakes, saline soils, and salted food products. Most species keep their intracellular ionic concentrations at low levels while synthesizing or accumulating organic solutes to provide osmotic equilibrium of the cytoplasm with the surrounding medium. Complex mechanisms...

  9. Remediation of nitrate-nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic-autotrophic denitrification permeable reactive barrier with spongy iron/pine bark.

    Huang, Guoxin; Huang, Yuanying; Hu, Hongyan; Liu, Fei; Zhang, Ying; Deng, Renwei

    2015-07-01

    A novel two-layer heterotrophic-autotrophic denitrification (HAD) permeable reactive barrier (PRB) was proposed for remediating nitrate-nitrogen contaminated groundwater in an oxygen rich environment, which has a packing structure of an upstream pine bark layer and a downstream spongy iron and river sand mixture layer. The HAD PRB involves biological deoxygenation, heterotrophic denitrification, hydrogenotrophic denitrification, and anaerobic Fe corrosion. Column and batch experiments were performed to: (1) investigate the NO3(-)-N removal and inorganic geochemistry; (2) explore the nitrogen transformation and removal mechanisms; (3) identify the hydrogenotrophic denitrification capacity; and (4) evaluate the HAD performance by comparison with other approaches. The results showed that the HAD PRB could maintain constant high NO3(-)-N removal efficiency (>91%) before 38 pore volumes (PVs) of operation (corresponding to 504d), form little or even negative NO2(-)-N during the 45 PVs, and produce low NH4(+)-N after 10 PVs. Aerobic heterotrophic bacteria played a dominant role in oxygen depletion via aerobic respiration, providing more CO2 for hydrogenotrophic denitrification. The HAD PRB significantly relied on heterotrophic denitrification. Hydrogenotrophic denitrification removed 10-20% of the initial NO3(-)-N. Effluent total organic carbon decreased from 403.44mgL(-1) at PV 1 to 9.34mgL(-1) at PV 45. Packing structure had a noticeable effect on its denitrification. PMID:25747301

  10. Genomic insights into a new acidophilic, copper-resistant Desulfosporosinus isolate from the oxidized tailings area of an abandoned gold mine.

    Mardanov, Andrey V; Panova, Inna A; Beletsky, Alexey V; Avakyan, Marat R; Kadnikov, Vitaly V; Antsiferov, Dmitry V; Banks, David; Frank, Yulia A; Pimenov, Nikolay V; Ravin, Nikolai V; Karnachuk, Olga V

    2016-08-01

    Microbial sulfate reduction in acid mine drainage is still considered to be confined to anoxic conditions, although several reports have shown that sulfate-reducing bacteria occur under microaerophilic or aerobic conditions. We have measured sulfate reduction rates of up to 60 nmol S cm(-3) day(-1) in oxidized layers of gold mine tailings in Kuzbass (SW Siberia). A novel, acidophilic, copper-tolerant Desulfosporosinus sp. I2 was isolated from the same sample and its genome was sequenced. The genomic analysis and physiological data indicate the involvement of transporters and additional mechanisms to tolerate metals, such as sequestration by polyphosphates. Desulfosporinus sp. I2 encodes systems for a metabolically versatile life style. The genome possessed a complete Embden-Meyerhof pathway for glycolysis and gluconeogenesis. Complete oxidation of organic substrates could be enabled by the complete TCA cycle. Genomic analysis found all major components of the electron transfer chain necessary for energy generation via oxidative phosphorylation. Autotrophic CO2 fixation could be performed through the Wood-Ljungdahl pathway. Multiple oxygen detoxification systems were identified in the genome. Taking into account the metabolic activity and genomic analysis, the traits of the novel isolate broaden our understanding of active sulfate reduction and associated metabolism beyond strictly anaerobic niches. PMID:27222219

  11. 嗜酸糖苷水解酶研究进展%Research Progress on Acidophilic Glycoside Hydrolase

    罗会颖; 姚斌; 范云六

    2013-01-01

    随着极端微生物及极端酶的广泛研究,嗜酸酶因其在极端酸性环境中具有高的酶活性和稳定性而倍受关注,并取得了较大的研究进展。嗜酸糖苷水解酶是嗜酸酶中最重要的一类,在生物能源、饲料、食品等工业中具有重要的应用前景。综述了重要嗜酸糖苷水解酶,包括嗜酸淀粉酶、嗜酸纤维素酶、嗜酸木聚糖酶和甘露聚糖酶在基因的挖掘、表达、分子改良嗜酸机制研究以及应用等方面国内外的研究进展,展望了嗜酸糖苷水解酶未来可能的研究方向和发展前景。%Extremophiles and enzymes from extremophiles are widely studied. Of them, acidophilic enzyme attracts much attention, due to its high activity and stability under extreme acidic conditions, and this research has made rapid progress. Acidophilic glycosyl hydrolase is one of the most important acidophilic enzymes, and has significant application prospect in bio-energy, animal feed, food and other industries. This paper reviewed the gene cloning, heterologous expression, molecular modification and acidophilic mechanisms of important acidophilic glycosyl hydrolases, including amylase, cellulase, xylanase, and mannanase. The research orientation and development prospects were also elucidated in this paper.

  12. Linking Heterotrophic Metabolism and Nutrient Uptake in Headwater Streams

    Gray, Travis Michael

    2007-01-01

    Autotrophs and heterotrophs differ in their demand, acquisition and use of materials, but fundamentally nutrient demand is inherently linked to metabolism based on the stoichiometry of biochemical reactions. The differences between these two groups of organisms confound straightforward regression approaches to quantifying the relationship between nutrient demand and metabolism at an ecosystem level. We address how nutrient demand in headwater streams changes with shifts in organic matter su...

  13. Fate of Heterotrophic Microbes in Pelagic Habitats: Focus on Populations

    Pernthaler, Jakob; Amann, Rudolf

    2005-01-01

    Major biogeochemical processes in the water columns of lakes and oceans are related to the activities of heterotrophic microbes, e.g., the mineralization of organic carbon from photosynthesis and allochthonous influx or its transport to the higher trophic levels. During the last 15 years, cultivation-independent molecular techniques have substantially contributed to our understanding of the diversity of the microbial communities in different aquatic systems. In parallel, the complexity of aqu...

  14. Nutrient and media recycling in heterotrophic microalgae cultures.

    Lowrey, Joshua; Armenta, Roberto E; Brooks, Marianne S

    2016-02-01

    In order for microalgae-based processes to reach commercial production for biofuels and high-value products such as omega-3 fatty acids, it is necessary that economic feasibility be demonstrated at the industrial scale. Therefore, process optimization is critical to ensure that the maximum yield can be achieved from the most efficient use of resources. This is particularly true for processes involving heterotrophic microalgae, which have not been studied as extensively as phototrophic microalgae. An area that has received significant conceptual praise, but little experimental validation, is that of nutrient recycling, where the waste materials from prior cultures and post-lipid extraction are reused for secondary fermentations. While the concept is very simple and could result in significant economic and environmental benefits, there are some underlying challenges that must be overcome before adoption of nutrient recycling is viable at commercial scale. Even more, adapting nutrient recycling for optimized heterotrophic cultures presents some added challenges that must be identified and addressed that have been largely unexplored to date. These challenges center on carbon and nitrogen recycling and the implications of using waste materials in conjunction with virgin nutrients for secondary cultures. The aim of this review is to provide a foundation for further understanding of nutrient recycling for microalgae cultivation. As such, we outline the current state of technology and practical challenges associated with nutrient recycling for heterotrophic microalgae on an industrial scale and give recommendations for future work. PMID:26572520

  15. Diversity and Phylogenetic Affiliations of Morphologically Conspicuous Large Filamentous Bacteria Occurring in the Pelagic Zones of a Broad Spectrum of Freshwater Habitats

    Schauer, Michael; Hahn, Martin W.

    2005-01-01

    Filamentous bacteria with a conspicuous morphology were found in the majority of the bacterioplankton samples from a variety of freshwater habitats that were studied. These heterotrophic filaments typically account for

  16. Studies on microbial population in coastal waters - I : Distribution of nitrogen-cycle bacteria in the Kumano Nada and its adjacent areas

    Sugahara, Isao; Hayashi, Koichiro; Kimura, Toshio

    1984-01-01

    The occurrence and distribution of nitrogen-cycle bacteria in the Kumano Nada and its adjacent areas were studied during 1981-1983. Heterotrophic bacteria in the water usually occurred at the level of 100-104/ml.The distribution of heterotrophic bacteria was uneven horizontally as well as vertically.The number of nitrate-reducing bacteria was in the order of 10-1-103 cells/ml, while denitrifying bacteria were in the range from 10-1 to 102cells/ml or sometimes lower than the value. The occurre...

  17. Widespread Distribution of Ability to Oxidize Manganese Among Freshwater Bacteria

    Gregory, Eileen; Staley, James T.

    1982-01-01

    Manganese-oxidizing heterotrophic bacteria were found to comprise a significant proportion of the bacterial community of Lake Washington (Seattle, Wash.) and Lake Virginia (Winter Park, Fla.). Identification of these freshwater bacteria showed that members of a variety of genera are capable of oxidizing manganese. Isolates maintained in the laboratory spontaneously lost the ability to oxidize manganese. A direct correlation was found between the presence of plasmid DNA and the ability of the ...

  18. Effects of soil moisture on the temperature sensitivity of soil heterotrophic respiration: a laboratory incubation study.

    Weiping Zhou

    Full Text Available The temperature sensitivity (Q10 of soil heterotrophic respiration (Rh is an important ecological model parameter and may vary with temperature and moisture. While Q10 generally decreases with increasing temperature, the moisture effects on Q10 have been controversial. To address this, we conducted a 90-day laboratory incubation experiment using a subtropical forest soil with a full factorial combination of five moisture levels (20%, 40%, 60%, 80%, and 100% water holding capacity--WHC and five temperature levels (10, 17, 24, 31, and 38°C. Under each moisture treatment, Rh was measured several times for each temperature treatment to derive Q10 based on the exponential relationships between Rh and temperature. Microbial biomass carbon (MBC, microbial community structure and soil nutrients were also measured several times to detect their potential contributions to the moisture-induced Q10 variation. We found that Q10 was significantly lower at lower moisture levels (60%, 40% and 20% WHC than at higher moisture level (80% WHC during the early stage of the incubation, but became significantly higher at 20%WHC than at 60% WHC and not significantly different from the other three moisture levels during the late stage of incubation. In contrast, soil Rh had the highest value at 60% WHC and the lowest at 20% WHC throughout the whole incubation period. Variations of Q10 were significantly associated with MBC during the early stages of incubation, but with the fungi-to-bacteria ratio during the later stages, suggesting that changes in microbial biomass and community structure are related to the moisture-induced Q10 changes. This study implies that global warming's impacts on soil CO2 emission may depend upon soil moisture conditions. With the same temperature rise, wetter soils may emit more CO2 into the atmosphere via heterotrophic respiration.

  19. Heterotrophic bacterial production: Relationships to biological and abiological factors in estuarine environments

    Ecotoxicological effects of creosote contamination on benthic bacterial communities in the Elizabeth River, Virginia were investigated using both structural an functional microbial parameters. Results indicated that cell specific and total heterotrophic bacterial production parameters were depressed in a dose-dependent manner with increasing sediment PAH concentrations. Toxicity effects upon production were modified by temporal trends associated with temperature as well as spatial sediment characteristics. Of the parameters employed, the tritiated thymidine production assay was found to be the most sensitive for detection of ecotoxicological effects. Bacterial abundance and production were examined during a destratification event in the lower James River, Virginia. Bacterial abundance, although significantly different between stations, did not change over the study. Bacterial production (3H-Tdr incorporation) in surface waters was significantly less during the mixed period 187 μg C·1-1· d-1 compared to the most stratified state (324μg C·1-1· d-1). Correlations between bacteria and chlorophyll were diminished during the mixed period. Total and flagellate specific grazing rates upon bacteria were reduced during the onset of destratification. Relationships between bacterial and nutrient parameters also indicated a strong influence of destratification. These results indicate that destratification changes trophic interactions within the microbial loop, which are not necessarily reflected in temporal patterns of bacterial abundance. Bacterioplankton production, and ammonium assimilation and remineralization were examined between April and August 1988 in the lower York River, Va

  20. Significance of Microbial Communities and Interactions in Safeguarding Reactive Mine Tailings by Ecological Engineering▿†

    N̆ancucheo, Ivan; Johnson, D. Barrie

    2011-01-01

    Pyritic mine tailings (mineral waste generated by metal mining) pose significant risk to the environment as point sources of acidic, metal-rich effluents (acid mine drainage [AMD]). While the accelerated oxidative dissolution of pyrite and other sulfide minerals in tailings by acidophilic chemolithotrophic prokaryotes has been widely reported, other acidophiles (heterotrophic bacteria that catalyze the dissimilatory reduction of iron and sulfur) can reverse the reactions involved in AMD genes...

  1. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-01-01

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions. PMID:26295411

  2. A proton shelter inspired by the sugar coating of acidophilic archaea

    Wang, Xiumei; Lv, Bei'er; Cai, Guixin; Fu, Long; Wu, Yuanzi; Wang, Xiang; Ren, Bin; Ma, Hongwei

    2012-11-01

    The acidophilic archaeons are a group of single-celled microorganisms that flourish in hot acid springs (usually pH polymer brush layer was prepared to mimic the OH-rich sugar coating. Using a novel pH-sensitive dithioacetal molecule as a probe, we studied the proton-resisting property and found that a 10-nm-thick polymer layer was able to raise the pH from 1.0 to > 5.0, indicating that the densely packed OH-rich layer is a proton shelter. As strong evidence for the role of sugar coatings as proton barriers, this biomimetic study provides insight into evolutionary biology, and the results also could be expanded for the development of biocompatible anti-acid materials.

  3. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  4. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis

    Elena Tamburini

    2015-08-01

    Full Text Available The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60–80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w on consumed xylose in microaerophilic conditions (kLa = 2·h−1. Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w, against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.

  5. Degradation of monomethylhydrazine by two soil bacteria

    It has been reported that three heterotrophic soil bacteria had the capacity to degrade hydrazine. One of these organisms, Achromobacter sp., degraded hydrazine to N2 gas. Furthermore, it was reported that monomethylhydrazine (MMH) in Arredondo fine sand was mineralized to CO2, and that such degradation is microbial. However, microorganisms that degrade MMH have not been reported. MMH and hydrazine are chemically similar to one another. Therefore, this study was initiated to test the capacity of the two hydrazine-degrading bacteria, Achromobacter sp. and Pseudomonas sp., to degrade MMH

  6. Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile Ferrovum

    Sophie Roxana Ullrich

    2016-05-01

    Full Text Available Acid mine drainage (AMD, associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus Ferrovum are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of Ferrovum has proven to be extremely difficult and has so far only been successful for the designated type strain Ferrovum myxofaciens P3G. In this study, the genomes of two novel strains of Ferrovum (PN-J185 and Z-31 derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of Ferrovum sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G. Phylogenomic scrutiny suggests that the four strains represent three Ferrovum species that cluster in two groups (1 and 2. Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the F. myxofaciens strains (group 1 appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed

  7. Diversity and Detection of Nitrate Assimilation Genes in Marine Bacteria

    Allen, Andrew E.; Booth, Melissa G.; Frischer, Marc E.; Verity, Peter G.; Zehr, Jonathan P.; Zani, Sabino

    2001-01-01

    A PCR approach was used to construct a database of nasA genes (called narB genes in cyanobacteria) and to detect the genetic potential for heterotrophic bacterial nitrate utilization in marine environments. A nasA-specific PCR primer set that could be used to selectively amplify the nasA gene from heterotrophic bacteria was designed. Using seawater DNA extracts obtained from microbial communities in the South Atlantic Bight, the Barents Sea, and the North Pacific Gyre, we PCR amplified and se...

  8. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    NEENA GARG

    2015-10-01

    Full Text Available Lactic acid bacteria (LAB is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LAB are used as starter culture, consortium members and bioprotective agents in food industry that improve food quality, safety and shelf life. A variety of probiotic LAB species are available including Lactobacillus acidophilus, L. bulgaricus, L. lactis, L. plantarum, L. rhamnosus, L. reuteri, L. fermentum, Bifidobacterium longum, B. breve, B. bifidum, B. esselnsis, B. lactis, B. infantis that are currently recommended for development of functional food products with health-promoting capacities.

  9. Temporal dynamics of phytoplankton and heterotrophic protists at station ALOHA

    Pasulka, Alexis L.; Landry, Michael R.; Taniguchi, Darcy A. A.; Taylor, Andrew G.; Church, Matthew J.

    2013-09-01

    Pico- and nano-sized autotrophic and heterotrophic unicellular eukaryotes (protists) are an important component of open-ocean food webs. To date, however, no direct measurements of cell abundance and biomass of these organisms have been incorporated into our understanding of temporal variability in the North Pacific Subtropical Gyre (NPSG). Based primarily on epifluoresence microscopy augmented with flow cytometry, we assessed the abundance and biomass of autotrophs and heterotrophic protists at Station ALOHA between June 2004 and January 2009. Autotrophic eukaryotes (A-EUKS) were more abundant in both the upper euphotic zone and deep chlorophyll maximum layer (DCML) during winter months, driven mostly by small flagellates. A higher ratio of A-EUKS to heterotrophic protists (A:H ratio) and a structural shift in A-EUKS to smaller cells during the winter suggests a seasonal minimum in grazing pressure. Although Prochlococcus spp. comprised between 30% and 50% of autotrophic biomass in both the upper and lower euphotic zone for most of the year, the community structure and seasonality of nano- and micro-phytoplankon differed between the two layers. In the upper layer, Trichodesmium spp. was an important contributor to total biomass (20-50%) in the late summer and early fall. Among A-EUKS, prymnesiophytes and other small flagellates were the dominant contributors to total biomass in both layers regardless of season (10-20% and 13-39%, respectively). Based on our biomass estimates, community composition was less seasonally variable in the DCML relative to the upper euphotic zone. In surface waters, mean estimates of C:Chl a varied with season—highest in the summer and lowest in the winter (means=156±157 and 89±32, respectively); however, there was little seasonal variability of C:Chl a in the DCML (100 m mean=29.9±9.8). Biomass of heterotrophic protists peaked in the summer and generally declined monotonically with depth without a deep maximum. Anomalous patterns

  10. Gene Identification and Substrate Regulation Provide Insights into Sulfur Accumulation during Bioleaching with the Psychrotolerant Acidophile Acidithiobacillus ferrivorans

    Liljeqvist, Maria; Rzhepishevska, Olena I.; Dopson, Mark

    2013-01-01

    The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus...

  11. Genomics and ecophysiology of heterotrophic nitrogen fixing bacteria isolated from estuarine surface water

    Bentzon-Tilia, Mikkel; Severin, Ina; Hansen, Lars H.;

    2015-01-01

    stutzeri strain BAL361 and Raoultella ornithinolytica strain BAL286, which are gammaproteobacteria, and Rhodopseudomonas palustris strain BAL398, an alphaproteobacterium. Genome sequencing revealed that all were metabolically versatile and that the gene clusters encoding the N2 fixation complex varied in...... length and complexity between isolates. All three isolates could sustain growth by N2 fixation in the absence of reactive N, and this fixation was stimulated by low concentrations of oxygen in all three organisms (≈4 to 40 μmol O2 liter-1). P. stutzeri BAL361 did, however, fix N at up to 165 μmol O2...

  12. The uptake of organic compounds by heterotrophic bacteria in relation to growth rate

    Sepers, Antonie B.j.

    1982-01-01

    The adaptation of a psychrophilic, marine vibrio (Ant-300), previously cultured in rich medium, to short term starvation conditions shows definite morphological changes (particularly a more vibrio-shaped morphology) and flagellum synthesis. Motility and the capacity for positive chemotaxis towards a variety of compounds (amino acids, sugars, alcohols, organic aeids) occur concurrently with the morphological changes induced by starvation. Positive chemotaxis is dependent on the duration of the...

  13. Microbial communities of recirculating aquaculture facilities: interaction between heterotrophic and autotrophic bacteria and the system itself

    Michaud, Luigi

    2007-01-01

    Les systèmes d'aquaculture en circuit recirculé (Recirculating Aquaculture Systems, RAS) peuvent être considérés comme une alternative à la technologie de l'aquaculture en milieu ouvert et en bassins (en consommant moins d'eau pour un même rendement de production) ou peuvent être intégrés dans une chaîne de production avec des systèmes d'enclos en filet. L'intérêt des RAS est dû à leurs avantages intrinsèques comme la réduction des besoins en surface et en eau, le haut niveau de contrôle e...

  14. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron.

    Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2015-08-01

    The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma. PMID:25896560

  15. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms

    Okabe, Satoshi; Kindaichi, Tomonori; Ito, Tsukasa

    2005-01-01

    The cross-feeding of microbial products derived from 14C-labeled nitrifying bacteria to heterotrophic bacteria coexisting in an autotrophic nitrifying biofilm was quantitatively analyzed by using microautoradiography combined with fluorescence in situ hybridization (MAR-FISH). After only nitrifying bacteria were labeled with [14C] bicarbonate, biofilm samples were incubated with and without NH4+ as a sole energy source for 10 days. The transfer of 14C originally incorporated into nitrifying b...

  16. Ubiquity and diversity of heterotrophic bacterial nasA genes in diverse marine environments.

    Xuexia Jiang

    Full Text Available Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB. In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III. Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating

  17. Effects of intense agricultural practices on heterotrophic processes in streams

    In developed countries, changes in agriculture practices have greatly accelerated the degradation of the landscape and the functioning of adjacent aquatic ecosystems. Such alteration can in turn impair the services provided by aquatic ecosystems, namely the decomposition of organic matter, a key process in most small streams. To study this alteration, we recorded three measures of heterotrophic activity corresponding to microbial hydrolasic activity (FDA hydrolysis) and leaf litter breakdown rates with (kc) and without invertebrates (kf) along a gradient of contrasted agricultural pressures. Hydrolasic activity and kf reflect local/microhabitat conditions (i.e. nutrient concentrations and organic matter content of the sediment) but not land use while kc reflects land-use conditions. kc, which is positively correlated with the biomass of Gammaridae, significantly decreased with increasing agricultural pressure, contrary to the taxonomic richness and biomass of Trichoptera and Plecoptera. Gammaridae may thus be considered a key species for organic matter recycling in agriculture-impacted streams. - This study highlights the consequences of intensive agricultural practices on heterotrophic processes in streams along a strong gradient of perturbation

  18. Bacteria in non-woven textile filters for domestic wastewater treatment.

    Spychała, Marcin; Starzyk, Justyna

    2015-01-01

    The objective of this study was preliminary identification of heterotrophic and ammonia oxidizing bacteria (AOB) cell concentration in the cross-sectional profile of geotextile filters for wastewater treatment. Filters of thicknesses 3.6 and 7.2 mm, made of non-woven textile TS20, were supplied with septic tank effluent and intermittently dosed and filtered under hydrostatic pressure. The cumulative loads of chemical oxygen demand (COD) and total solids were about 1.36 and 1.06 kg/cm2, respectively. The filters under analysis reached a relatively high removal efficiency for organic pollution 70-90% for biochemical oxygen demand (BOD5) and 60-85% for COD. The ammonia nitrogen removal efficiency level proved to be unstable (15-55%). Biomass samples for dry mass identification were taken from two regions: continuously flooded with wastewater and intermittently flooded with wastewater. The culturable heterotrophic bacteria were determined as colony-forming units (CFUs) on microbiological-selective media by means of the plate method. AOB and nitrite oxidizing bacteria (NOB) were examined using the FISH technique. A relatively wide range of heterotrophic bacteria was observed from 7.4×10(5)/cm2 to 3.8×10(6)/cm2 in geotextile layers. The highest concentration of heterotrophic bacteria (3.8×10(6)/cm2) was observed in the first layer of the textile filter. AOB were identified occasionally--about 8-15% of all bacteria colonizing the last filter layer, but occasionally much higher concentrations and ammonia nitrogen efficiency were achieved. Bacteria oxidizing nitrite to nitrate were not observed. The relation of total and organic fraction of biomass to culturable heterotrophic bacteria was also found. PMID:25318829

  19. [Leaching of ores with heterotrophic microorganisms. Development of a screening method].

    Klages, D; Meyer, I; Schwartz, W; Näveke, R

    1981-01-01

    Besides leaching of sulfide ores with thiobacilli, a second way of microbial leaching is tested with carbon-heterotrophic fungi and bacteria for those types of ores, where thiobacilli fail to work. The active agents are metabolic products, f. i. organic acids, which are released into the medium producing water soluble compounds with heavy metals. A screening method is described for recognizing active strains in samples of soil, metal-containing sites, mining heaps and other biocoenoses, using the dilution method in plates with different media. The critical signs of supposed leaching activity are halo formations around growing colonies in turbid agar media with suspended particles of Ca carbonate or Ca phosphates of low solubility, and in a second group of experiments with insoluble compounds of heavy metals, f. i. oxides. The leaching activity was tested with metal compounds suspended in liquid media and inoculated with active strains of the screening program. First results were reached with oxides of copper (CuO), uranium (U3O8) and an uranium-containing phosphorite. PMID:7039150

  20. Metabolic engineering of Cupriavidus necator for heterotrophic and autotrophic alka(e)ne production.

    Crépin, Lucie; Lombard, Eric; Guillouet, Stéphane E

    2016-09-01

    Alkanes of defined carbon chain lengths can serve as alternatives to petroleum-based fuels. Recently, microbial pathways of alkane biosynthesis have been identified and enabled the production of alkanes in non-native producing microorganisms using metabolic engineering strategies. The chemoautotrophic bacterium Cupriavidus necator has great potential for producing chemicals from CO2: it is known to have one of the highest growth rate among natural autotrophic bacteria and under nutrient imbalance it directs most of its carbon flux to the synthesis of the acetyl-CoA derived polymer, polyhydroxybutyrate (PHB), (up to 80% of intracellular content). Alkane synthesis pathway from Synechococcus elongatus (2 genes coding an acyl-ACP reductase and an aldehyde deformylating oxygenase) was heterologously expressed in a C. necator mutant strain deficient in the PHB synthesis pathway. Under heterotrophic condition on fructose we showed that under nitrogen limitation, in presence of an organic phase (decane), the strain produced up to 670mg/L total hydrocarbons containing 435mg/l of alkanes consisting of 286mg/l of pentadecane, 131mg/l of heptadecene, 18mg/l of heptadecane, and 236mg/l of hexadecanal. We report here the highest level of alka(e)nes production by an engineered C. necator to date. We also demonstrated the first reported alka(e)nes production by a non-native alkane producer from CO2 as the sole carbon source. PMID:27212691

  1. Heterotrophic bacterial production: Relationships to biological and abiological factors in estuarine environments

    Koepfler, E.T.

    1989-01-01

    Ecotoxicological effects of creosote contamination on benthic bacterial communities in the Elizabeth River, Virginia were investigated using both structural an functional microbial parameters. Results indicated that cell specific and total heterotrophic bacterial production parameters were depressed in a dose-dependent manner with increasing sediment PAH concentrations. Toxicity effects upon production were modified by temporal trends associated with temperature as well as spatial sediment characteristics. Of the parameters employed, the tritiated thymidine production assay was found to be the most sensitive for detection of ecotoxicological effects. Bacterial abundance and production were examined during a destratification event in the lower James River, Virginia. Bacterial abundance, although significantly different between stations, did not change over the study. Bacterial production ({sup 3}H-Tdr incorporation) in surface waters was significantly less during the mixed period 187 {mu}g C{center dot}1-1{center dot} d{sup {minus}1} compared to the most stratified state (324{mu}g C{center dot}1-1{center dot} d{sup {minus}1}). Correlations between bacteria and chlorophyll were diminished during the mixed period. Total and flagellate specific grazing rates upon bacteria were reduced during the onset of destratification. Relationships between bacterial and nutrient parameters also indicated a strong influence of destratification. These results indicate that destratification changes trophic interactions within the microbial loop, which are not necessarily reflected in temporal patterns of bacterial abundance. Bacterioplankton production, and ammonium assimilation and remineralization were examined between April and August 1988 in the lower York River, Va.

  2. Ardrea characterisation of acidophilic micro-organisms isolated from gold mines in Marmato, Colombia

    Edna Judith Márquez F.

    2008-02-01

    Full Text Available Mineral bio-oxidation improves the extraction of valuable metals and also decreases the impact caused by mining waste; however, the interactions between the micro-organisms so involved are little known. Double-layer solid culture media techniques and amplified ribosomal DNA restriction enzyme analysis (Ardrea, using Eco72I, Eco24I, XcmI and BsaAI enzymes, were used for characterising four micro-organisms isolated from gold mines located in Marmato, Colombia. This work was aimed at better understanding of native acidophilic micro-organisms’ microbial interactions in mixed cultures. Iron and sulphur oxidising isolates revealed similar restriction patterns to those previously reported for Acidithiobacillus ferrooxidans; however, one of them exhibited different colony morphology compared to previously reported morphology. The iron non-oxidising isolate presented a restriction pattern agreeing with theoretical analysis of Acidithiobacillus thiooxidans database sequences. ARDREA proved to be a viable technique for differentiating between At. ferrooxidans and At. thiooxidans; in turn, it enabled checking isolates’ identity with their physiological traits and colony morphology.

  3. Toxicity of select organic acids to the slightly thermophilic acidophile Acidithiobacillus caldus.

    Aston, John E; Apel, William A; Lee, Brady D; Peyton, Brent M

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 microM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 microM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids. PMID:18803441

  4. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  5. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans.

    Christel, Stephan; Fridlund, Jimmy; Buetti-Dinh, Antoine; Buck, Moritz; Watkin, Elizabeth L; Dopson, Mark

    2016-04-01

    Acidithiobacillus ferrivoransis an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals.Acidithiobacillus ferrivoransobtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing ofAt. ferrivoransRNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by thetetH1gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites insoxXsuggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving thesatgene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknownAt. ferrivoranstetrathionate metabolic pathway that is important in biomining. PMID:26956550

  6. Biodiversity and interactions of acidophiles: Key to understanding and optimizing microbial processing of ores and concentrates

    D.B.JOHNSON

    2008-01-01

    Mining companies have become increasingly aware of the potential of microbiological approaches for recovering base and precious metals from low-grade ores,and for remediating acidic,metal-rich wastewaters that drain from both operating and abandoned mine sites.Biological systems offer a number of environmental and (sometimes) economical advantages over conventional approaches,such as pyrometallurgy,though their application is not appropriate in every situation.Mineral processing using micro-organisms has been exploited for extracting gold,copper,uranium and cobalt,and current developments are targeting other base metals.Recently,there has been a great increase in our knowledge and understanding of both the diversity of the microbiology of biomining environments,and of how the microorganisms interact with each other.The results from laboratory experiments which have simulated both stirred tank and heap bioreactor systems have shown that microbial consortia are more robust than pure cultures of mineral-oxidizing acidophiles,and also tend to be more effective at bioleaching and bio-oxidizing ores and concentrates.The paper presented a concise review of the nature and interactions of microbial consortia that are involved in the oxidation of sulfide minerals,and how these might be adapted to meet future challenges in biomining operations.

  7. Newly Isolated Penicillium ramulosum N1 Is Excellent for Producing Protease-Resistant Acidophilic Xylanase.

    Lin, Chaoyang; Shen, Zhicheng; Zhu, Tingheng; Qin, Wensheng

    2015-01-01

    Penicillium ramulosum N1 was isolated from decaying wood. This strain produces extracellular xylanases and cellulases. The highest activities of xylanases (250 U/ml) and carboxymethyl cellulose (CMCase; 6.5 U/ml) were produced when 1% barley straw was added as a carbon source. The optimum temperature and pH for xylanase activity was 55 and 3.0 °C, respectively. The xylanases exhibited strong protease resistance. CMCase revealed maximum activities at pH 3.0 and in the range of 60-70 °C. Filter paper activity was optimally active at pH 5.0 and 55 °C. The zymograms produced by the SDS-PAGE resolution of the crude enzymes indicated that there are four bands of protein with xylanase activity and three bands of proteins with endoglucanase. The results revealed that P. ramulosum N1 is a promising acidophilic and protease-resistant xylanase-producing microorganism that has great potential to be used in animal feed and food industry applications. PMID:26431535

  8. Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process.

    Nie, Zhen-yuan; Liu, Hong-chang; Xia, Jin-lan; Yang, Yi; Zhen, Xiang-jun; Zhang, Li-Juan; Qiu, Guan-zhou

    2016-02-01

    While indirect model has been widely accepted in bioleaching, but the evidence of cell surface iron speciation has not been reported. In the present work the iron speciation on the cell surfaces of four typically acidophilic iron-oxidizing microorganism (mesophilic Acidithiobacillus ferrooxidans ATCC 23270, moderately thermophilic Leptospirillum ferriphilum YSK and Sulfobacillus thermosulfidooxidans St, and extremely thermophilic Acidianus manzaensis YN25) grown on different energy substrates (chalcopyrite, pyrite, ferrous sulfate and elemental sulfur (S(0))) were studied in situ firstly by using synchrotron-based micro- X-ray fluorescence analysis and X-ray absorption near-edge structure spectroscopy. Results showed that the cells grown on iron-containing substrates had apparently higher surface iron content than the cells grown on S(0). Both ferrous iron and ferric iron were detected on the cell surface of all tested AIOMs, and the Fe(II)/Fe(III) ratios of the same microorganism were affected by different energy substrates. The iron distribution and bonding state of single cell of A. manzaensis were then studied in situ by scanning transmission soft X-ray microscopy based on dual-energy contrast analysis and stack analysis. Results showed that the iron species distributed evenly on the cell surface and bonded with amino, carboxyl and hydroxyl groups. PMID:26645388

  9. Interaction between Chlorella vulgaris and bacteria:interference and resource competition

    QU Liang; WANG Renjun; ZHAO Peng; CHEN Ruinan; ZHOU Wenli; TANG Liuqing; TANG Xuexi

    2014-01-01

    Research of interaction mechanism between Chlorella vulgaris and two bacterial strains (Z-QD08 and Z-QS01) were conducted under laboratory conditions. Growth rates of bacteria and C. vulgaris were tested under co-culture conditions to evaluate the effects of concentrations of C. vulgaris and bacteria on their interactions. To test whether the availability of inorganic nutrients, vitamins and trace metals affects the interactions between C. vulgaris and bacteria, experiments were performed with or without the culture medium filtrate of C. vulgaris or bacteria. The results showed that the growth of C. vulgaris was promot-ed at low concentrations of bacteria (5×106 cells/ml), and expressed a positive correlation with the bacteria density, whereas opposite trend was observed for treatments with high bacteria density (10×106 cells/ml and 20×106 cells/ml). The growth rate of bacteria decreased with the increasing concentrations of C. vul-garis. The growth of bacteria Z-QD08 was inhibited by C. vulgaris through interference competition, while the mechanism for interaction between bacteria Z-QS01 and C. vulgaris was resource competition. The influence of cell density on the interaction between microalgae and bacteria was also discussed. These ex-periments confirm some elements of published theory on interactions between heterotrophic bacteria and microalgae and suggest that heterotrophic bacteria play an important role in the development of blooms in natural waters.

  10. Production Response and Digestive Enzymatic Activity of the Pacific White Shrimp Litopenaeus vannamei (Boone, 1931 Intensively Pregrown in Microbial Heterotrophic and Autotrophic-Based Systems

    Manuel J. Becerra-Dórame

    2012-01-01

    Full Text Available Shrimp postlarvae were reared into different microcosm systems without water exchange; a traditional system based on simple fertilization to improve microalgae concentration (control, an autotrophic system (AS based on the promotion of biofloc and biofilm by the addition of fertilizer and artificial substrates and a heterotrophic system (HS based on the promotion of heterotrophic bacteria by the addition of nitrogenous and carbonaceous sources and artificial substrates. Better growth performance and survival were registered in shrimp from the AS and HS compared to the control. Feed conversion ratios were below 0.7 for all treatments, but AS and HS were significantly lower than the control. Regarding digestive performance, no significant differences were observed for trypsin, amylase and lipase activities among AS and control shrimp; however, shrimp from HS showed a higher trypsin and amylase activities, suggesting a higher digestive activity caused by the presence of microbial bioflocs. The presence of biofilm and bioflocs composed by either autotrophic or heterotrophic organisms in combination with formulated feed improved the growth performance and survival of shrimp. Apparently, such combination fits the nutritional requirements of shrimp.