WorldWideScience

Sample records for acidophile acidithiobacillus ferrooxidans

  1. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions

    Bauermeister, Anja; Rettberg, Petra; Flemming, Hans-Curt

    2014-08-01

    The question of life on Mars has been in focus of astrobiological research for several decades, and recent missions in orbit or on the surface of the planet are constantly expanding our knowledge on Martian geochemistry. For example, massive stratified deposits have been identified on Mars containing sulfate minerals and iron oxides, which suggest the existence of acidic aqueous conditions in the past, similar to acidic iron- and sulfur-rich environments on Earth. Acidophilic organisms thriving in such habitats could have been an integral part of a possibly widely extinct Martian ecosystem, but remains might possibly even exist today in protected subsurface niches. The chemolithoautotrophic strain Acidithiobacillus ferrooxidans was selected as a model organism to study the metabolic capacities of acidophilic iron-sulfur bacteria, especially regarding their ability to grow with in situ resources that could be expected on Mars. The experiments were not designed to accurately simulate Martian physical conditions (except when certain single parameters such as oxygen partial pressure were considered), but rather the geochemical environment that can be found on Mars. A. ferrooxidans could grow solely on the minerals contained in synthetic Mars regolith mixtures with no added nutrients, using either O2 as an external electron acceptor for iron oxidation, or H2 as an external electron donor for iron reduction, and thus might play important roles in the redox cycling of iron on Mars. Though the oxygen partial pressure of the Martian atmosphere at the surface was not sufficient for detectable iron oxidation and growth of A. ferrooxidans during short-term incubation (7 days), alternative chemical O2-generating processes in the subsurface might yield microhabitats enriched in oxygen, which principally are possible under such conditions. The bacteria might also contribute to the reductive dissolution of Fe3+-containing minerals like goethite and hematite, which are

  2. Characterization of Extreme Acidophile Bacteria (Acidithiobacillus ferrooxidans) Bioleaching Copper from Flexible PCB by ICP-AES

    Weihua Gu; Jianfeng Bai; Jue Dai; Chenglong Zhang; Wenyi Yuan; Jingwei Wang; Pengcheng Wang; Xin Zhao

    2014-01-01

    In order to improve copper leaching efficiency from the flexible printed circuit board (PCB) by Acidithiobacillus ferrooxidans, it is necessary to quantitatively measure the bacteria bioleaching copper under extreme acidic condition from flexible PCB. The inductively coupled plasma-atomic emission spectroscopy (ICP-AES) is a very accurate way to analyze metals in solution; this paper investigated the optimal conditions for copper bioleaching by Acidithiobacillus ferrooxidans from flexible PCB...

  3. Purification and characterization of sulfide:quinone oxidoreductase from an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans.

    Wakai, Satoshi; Tsujita, Mizuho; Kikumoto, Mei; Manchur, Mohammed A; Kanao, Tadayoshi; Kamimura, Kazuo

    2007-11-01

    Sulfide:quinone oxidoreductase (SQR) was purified from membrane of acidophilic chemolithotrophic bacterium Acidithiobacillus ferrooxidans NASF-1 cells grown on sulfur medium. It was composed of a single polypeptide with an apparent molecular mass of 47 kDa. The apparent K(m) values for sulfide and ubiquinone were 42 and 14 muM respectively. The apparent optimum pH for the SQR activity was about 7.0. A gene encoding a putative SQR of A. ferrooxidans NASF-1 was cloned and sequenced. The gene was expressed in Escherichia coli as a thioredoxin-fusion protein in inclusion bodies in an inactive form. A polyclonal antibody prepared against the recombinant protein reacted immunologically with the purified SQR. Western blotting analysis using the antibody revealed an increased level of SQR synthesis in sulfur-grown A. ferrooxidans NASF-1 cells, implying the involvement of SQR in elemental sulfur oxidation in sulfur-grown A. ferrooxidans NASF-1 cells. PMID:17986789

  4. Characterization of Extreme Acidophile Bacteria (Acidithiobacillus ferrooxidans Bioleaching Copper from Flexible PCB by ICP-AES

    Weihua Gu

    2014-01-01

    Full Text Available In order to improve copper leaching efficiency from the flexible printed circuit board (PCB by Acidithiobacillus ferrooxidans, it is necessary to quantitatively measure the bacteria bioleaching copper under extreme acidic condition from flexible PCB. The inductively coupled plasma-atomic emission spectroscopy (ICP-AES is a very accurate way to analyze metals in solution; this paper investigated the optimal conditions for copper bioleaching by Acidithiobacillus ferrooxidans from flexible PCB through ICP-AES. The conditions included particle size of flexible PCB powder, quantity of flexible PCB powder, initial pH of culture medium, bacteria inoculation, bacteria activation time, and quantity of FeSO4·7H2O. Prior to ICP-AES measurement, culture solution was digested by aqua regia. The experimental results demonstrated that flexible PCB contained one main metal (copper; this was associated with the structure of flexible PCB. The optimization conditions were in 50 mL medium, flexible PCB 10 g/L, particle size of flexible PCB 0.42~0.84 mm, culture medium initial pH 2.5, bacteria inoculation 5%, bacteria activation time 5 d, and quantity of FeSO4·7H2O 30 g/L. Under the optimization condition, the leaching rate of copper was 90.10%, which was 42.4% higher than the blank group. For the ICP-AES determination, it reached a conclusion that the best corresponding wavelength (nm of copper will be 224.7 (nm.

  5. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans

    Holmes David S

    2009-08-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans gains energy from the oxidation of ferrous iron and various reduced inorganic sulfur compounds at very acidic pH. Although an initial model for the electron pathways involved in iron oxidation has been developed, much less is known about the sulfur oxidation in this microorganism. In addition, what has been reported for both iron and sulfur oxidation has been derived from different A. ferrooxidans strains, some of which have not been phylogenetically characterized and some have been shown to be mixed cultures. It is necessary to provide models of iron and sulfur oxidation pathways within one strain of A. ferrooxidans in order to comprehend the full metabolic potential of the pangenome of the genus. Results Bioinformatic-based metabolic reconstruction supported by microarray transcript profiling and quantitative RT-PCR analysis predicts the involvement of a number of novel genes involved in iron and sulfur oxidation in A. ferrooxidans ATCC23270. These include for iron oxidation: cup (copper oxidase-like, ctaABT (heme biogenesis and insertion, nuoI and nuoK (NADH complex subunits, sdrA1 (a NADH complex accessory protein and atpB and atpE (ATP synthetase F0 subunits. The following new genes are predicted to be involved in reduced inorganic sulfur compounds oxidation: a gene cluster (rhd, tusA, dsrE, hdrC, hdrB, hdrA, orf2, hdrC, hdrB encoding three sulfurtransferases and a heterodisulfide reductase complex, sat potentially encoding an ATP sulfurylase and sdrA2 (an accessory NADH complex subunit. Two different regulatory components are predicted to be involved in the regulation of alternate electron transfer pathways: 1 a gene cluster (ctaRUS that contains a predicted iron responsive regulator of the Rrf2 family that is hypothesized to regulate cytochrome aa3 oxidase biogenesis and 2 a two component sensor-regulator of the RegB-RegA family that may respond to the redox state of the quinone pool

  6. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, Carbon fixation in A. ferrooxidans

    Esparza Mario

    2010-08-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is chemolithoautotrophic γ-proteobacterium that thrives at extremely low pH (pH 1-2. Although a substantial amount of information is available regarding CO2 uptake and fixation in a variety of facultative autotrophs, less is known about the processes in obligate autotrophs, especially those living in extremely acidic conditions, prompting the present study. Results Four gene clusters (termed cbb1-4 in the A. ferrooxidans genome are predicted to encode enzymes and structural proteins involved in carbon assimilation via the Calvin-Benson-Bassham (CBB cycle including form I of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO, EC 4.1.1.39 and the CO2-concentrating carboxysomes. RT-PCR experiments demonstrated that each gene cluster is a single transcriptional unit and thus is an operon. Operon cbb1 is divergently transcribed from a gene, cbbR, encoding the LysR-type transcriptional regulator CbbR that has been shown in many organisms to regulate the expression of RubisCO genes. Sigma70-like -10 and -35 promoter boxes and potential CbbR-binding sites (T-N11-A/TNA-N7TNA were predicted in the upstream regions of the four operons. Electrophoretic mobility shift assays (EMSAs confirmed that purified CbbR is able to bind to the upstream regions of the cbb1, cbb2 and cbb3 operons, demonstrating that the predicted CbbR-binding sites are functional in vitro. However, CbbR failed to bind the upstream region of the cbb4 operon that contains cbbP, encoding phosphoribulokinase (EC 2.7.1.19. Thus, other factors not present in the assay may be required for binding or the region lacks a functional CbbR-binding site. The cbb3 operon contains genes predicted to encode anthranilate synthase components I and II, catalyzing the formation of anthranilate and pyruvate from chorismate. This suggests a novel regulatory connection between CO2 fixation and tryptophan biosynthesis. The presence of a form II Rubis

  7. Draft genome sequence of extremely acidophilic bacterium Acidithiobacillus ferrooxidans DLC-5 isolated from acid mine drainage in Northeast China

    Peng Chen

    2015-12-01

    Full Text Available Acidithiobacillus ferrooxidans type strain DLC-5, isolated from Wudalianchi in Heihe of Heilongjiang Province, China. Here, we present the draft genome of strain DLC-5 which contains 4,232,149 bp in 2745 contigs with 57.628% GC content and includes 32,719 protein-coding genes and 64 tRNA-encoding genes. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. JNNH00000000.1.

  8. Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1.

    Wakai, Satoshi; Kikumoto, Mei; Kanao, Tadayoshi; Kamimura, Kazuo

    2004-12-01

    The effects of cyanide, azide, and 2-n-Heptyl-4-hydroxy-quinoline-N-oxide (HQNO) on the oxidation of ferrous ion or elemental sulfur with Acidithiobacillus ferrooxidans NASF-1 cells grown in iron- or sulfur-medium were examined. The iron oxidation of both iron- and sulfur-grown cells was strongly inhibited by cyanide and azide, but not by HQNO. Sulfur oxidation was relatively resistant to cyanide and azide, and inhibited by HQNO. Higher sulfide oxidation, ubiquinol dehydrogenase activity, and sulfide:quinone oxidoreductase (SQR) activity were observed in sulfur-grown cells more than in iron-grown cells. Sulfide oxidation in the presence of ubiquinone with the membrane fraction was inhibited by HQNO, but not by cyanide, azide, antimycin A, and myxothiazol. The transcription of three genes, encoding an aa(3)-type cytochrome c oxidase (coxB), a bd-type ubiquinol oxidase (cydA), and an sqr, were measured by real-time reverse transcription polymerase chain reaction. The transcriptional levels of coxB and cydA genes were similar in sulfur- and iron-grown cells, but that of sqr was 3-fold higher in sulfur-grown cells than in iron-grown cells. A model is proposed for the oxidation of reduced inorganic sulfur compounds in A. ferrooxidans NASF-1 cells. PMID:15618623

  9. Bioleaching of zinc from gold ores using Acidithiobacillus ferrooxidans

    Pakawadee Kaewkannetra; Francisco Jose Garcia-Garcia; Tze Yen Chiu

    2009-01-01

    that Acidithiobacillus ferrooxidans can successfully leach zinc by as much as 6 times compared with the control experiment (without Acidithiobacillus ferrooxidans ferrooxidans). The maximum efficiency (92.3%) for microbial leaching is obtained in

  10. Magnetic properties of Acidithiobacillus ferrooxidans

    Yan, Lei; Zhang, Shuang [College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319 (China); Chen, Peng [Gansu Institute of Business and Technology, Lanzhou, 730010 (China); Wang, Weidong; Wang, Yanjie [College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319 (China); Li, Hongyu, E-mail: hekouyanlei@gmail.com [Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, 730000 (China)

    2013-10-15

    Understanding the magnetic properties of magnetotactic bacteria (MTBs) is of great interest in fields of life sciences, geosciences, biomineralization, biomagnetism, and planetary sciences. Acidithiobacillus ferrooxidans (At. ferrooxidans), obtaining energy through the oxidation of ferrous iron and various reduced inorganic sulfur compounds, can synthesize intracellular magnetite magnetosomes. However, the magnetic properties of such microorganism remain unknown. Here we used transmission electronmicroscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) assay, vibrating sample magnetometer (VSM), magneto–thermogravimetric analysis (MTGA), and low temperature magnetometry to comprehensively investigate the magnetic characteristics of At. ferrooxidans. Results revealed that each cell contained only 1 to 3 magnetite magnetosomes, which were arranged irregularly. The magnetosomes were generally in a stable single-domain (SD) state, but superparamagnetic (SP) magnetite particles were also found. The calcined bacteria exhibited a ferromagnetic behavior with a Curie Temperature of 454 °C and a coercivity of 16.36 mT. Additionally, the low delta ratio (δ{sub FC}/δ{sub ZFC} = 1.27) indicated that there were no intact magnetosome chains in At. ferrooxidans. Our results provided the new insights on the biomineralization of bacterial magnetosomes and magnetic properties of At. ferrooxidans. - Highlights: • Rock magnetic investigations carried out on At.ferrooxidans in detail. • Results indicated that each cell contained 1 to 3 scattered magnetite magnetosomes. • The magnetosomes consist of SD and SP magnetite nanoparticles. • Cells showed ferromagnetic behavior with high Curie Temperature and low δ{sub FC}/δ{sub ZFC}. • Results are useful in studying the magnetosomes biomineralization.

  11. Magnetic properties of Acidithiobacillus ferrooxidans

    Understanding the magnetic properties of magnetotactic bacteria (MTBs) is of great interest in fields of life sciences, geosciences, biomineralization, biomagnetism, and planetary sciences. Acidithiobacillus ferrooxidans (At. ferrooxidans), obtaining energy through the oxidation of ferrous iron and various reduced inorganic sulfur compounds, can synthesize intracellular magnetite magnetosomes. However, the magnetic properties of such microorganism remain unknown. Here we used transmission electronmicroscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) assay, vibrating sample magnetometer (VSM), magneto–thermogravimetric analysis (MTGA), and low temperature magnetometry to comprehensively investigate the magnetic characteristics of At. ferrooxidans. Results revealed that each cell contained only 1 to 3 magnetite magnetosomes, which were arranged irregularly. The magnetosomes were generally in a stable single-domain (SD) state, but superparamagnetic (SP) magnetite particles were also found. The calcined bacteria exhibited a ferromagnetic behavior with a Curie Temperature of 454 °C and a coercivity of 16.36 mT. Additionally, the low delta ratio (δFC/δZFC = 1.27) indicated that there were no intact magnetosome chains in At. ferrooxidans. Our results provided the new insights on the biomineralization of bacterial magnetosomes and magnetic properties of At. ferrooxidans. - Highlights: • Rock magnetic investigations carried out on At.ferrooxidans in detail. • Results indicated that each cell contained 1 to 3 scattered magnetite magnetosomes. • The magnetosomes consist of SD and SP magnetite nanoparticles. • Cells showed ferromagnetic behavior with high Curie Temperature and low δFC/δZFC. • Results are useful in studying the magnetosomes biomineralization

  12. Gene Identification and Substrate Regulation Provide Insights into Sulfur Accumulation during Bioleaching with the Psychrotolerant Acidophile Acidithiobacillus ferrivorans

    Liljeqvist, Maria; Rzhepishevska, Olena I.; Dopson, Mark

    2013-01-01

    The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus...

  13. Draft genome sequence of Acidithiobacillus ferrooxidans YQH-1

    Lei Yan

    2015-12-01

    Full Text Available Acidithiobacillus ferrooxidans YQH-1 is a moderate acidophilic bacterium isolated from a river in a volcano of Northeast China. Here, we describe the draft genome of strain YQH-1, which was assembled into 123 contigs containing 3,111,222 bp with a G + C content of 58.63%. A large number of genes related to carbon dioxide fixation, dinitrogen fixation, pH tolerance, heavy metal detoxification, and oxidative stress defense were detected. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LJBT00000000.

  14. Bioleaching of anilite by Acidithiobacillus ferrooxidans

    CHENG Hai-na; HU Yue-hua; GAO Jian; MA Heng

    2008-01-01

    In order to characterize the efficiency of copper bioleaching from anilite using pure cultures of Acidithiobacillus ferrooxidans in the absence and presence of ferrous sulphate,the experiments were carried out in shake flasks with or without 4 g/L ferrous sulphate (FeSO4·7H2O) at pH 2.0,150 r/min and 35 ℃.The tests show that Acidithiobacillus ferrooxidans is unable to attack anilite in iron-free 9K medium.Anilite is rapidly oxidized by bacterial leaching when ferrous sulphate is added.Chemical oxidation of anilite is slow compared with Acidithiobacillus ferrooxidans initiated solubilization in the presence of iron.The EDAX analysis of the surfaces of anilite confirms that sulfur coating layer is present as a reaction product on the surface of the bacterially leached mineral.

  15. Transcriptional and Functional Studies of Acidithiobacillus ferrooxidans Genes Related to Survival in the Presence of Copper▿

    Navarro, Claudio A.; Orellana, Luis H.; Mauriaca, Cecilia; Jerez, Carlos A.

    2009-01-01

    The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high copper (Cu) concentrations. This property is important for its use in biomining processes, where Cu and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of at least 10 genes that are possibly related to Cu homeostasis. Among them are three genes coding for puta...

  16. Application of Acidithiobacillus Ferrooxidans in coal flotation

    Amini, E.; Hosseini, T.R.; Oliazadeh, M.; Kolahdoozan, M. [University of Queensland, Brisbane, Qld. (Australia)

    2009-07-01

    Bioflotation is a potential method for removing pyritic sulphur from coal. Sodium cyanide is a well-known depressant for pyrite in flotation of sulphide minerals; however, for coal this reagent is unacceptable from the environmental point of view. This study investigates an alternate to sodium cyanide, Acidithiobacillus Ferrooxidans, a nonharmful bacterial reagent as a pyrite depressant. The flotation behavior of pyrite and other gangue particles using the sodium cyanide and the Ferrooxidans is compared by applying the general first-order flotation model. The kinetic parameters extracted from the model demonstrated that the modified flotation rate of pyrite was reduced, and the selectivity between coal and gangue was improved using the bacteria. These results indicate that Acidithiobacillus Ferrooxidans has potential in removing pyritic sulfur from coal.

  17. Biooxidación de sulfuros mediante cepas nativas de acidófilos compatibles con Acidithiobacillus ferrooxidans y thiooxidans, mina de oro El Zancudo, (Titiribí, Colombia Sulphide bioxidation using native Acidithiobacillus ferrooxidans and thiooxidans, related acidophile strains from "El Zancudo" gold mine (Titiribí, Colombia

    Márquez G. Marco A.

    2005-12-01

    Full Text Available El propósito de esta investigación fue evaluar a escala de laboratorio la acción de microorganismos acidófilos nativos compatibles con las especies Acidithiobacillus ferrooxidans y thiooxidans, aislados de la mina El Zancudo, Titiribí (Antioquia sobre la oxidación de sulfuros donde predominan la pirita y arsenopirita, variando las concentraciones de sustrato (8% y 16%, y el tamaño de partícula (75 um y 106 xm. Los resultados de las mediciones diarias de pH y potencial redox realizadas por un tiempo de 25 días, demuestran que hubo una actividad de oxidación eficiente y se llegó a valores de pH de 1,4 y potencial redox de 600 mV, además de encontrarse en solución niveles altos de alrededor de 20 g/L de As y 60 g/L de Fe. Por los análisis de DRX, FTIR y SEM/EDX, se evidencia la presencia de productos propios de la oxidación bacteriana, como jarosita y arsenatos de hierro, además de una corrosión inicial y avanzada en los granos de pirita y arsenopirita, respectivamente. Palabras clave: quimiolitotrofos, biolixiviación, pirita, arsenopirita, mineralogía aplicada.This investigation was aimed at a laboratory evaluation of the action of native Acidithiobacillus ferrooxidans-and thiooxidans-related acidophile micro-organism (isolated from El Zancudo gold mine in Titiribí, Colombia on the oxidation of sulphides, mainly consisting of pyrite and arsenopyrite; sulphide concentration varied from 8% to 16% and particle size from 75 um to 106 um. pH and redox potential measurement revealed efficient oxidation for each culture over a 25-day period, reaching 1,4 pH and 600 mV redox potential. 20 g/L As and 60 g/L Fe levels were reached in solution. XRD, FTIR and SEM/EDX analysis revealed the presence of bacterial oxidation products such as jarosite and iron arsenates, as well as low and high corrosion in pyrites and arsenopyrites, respectively. Key words: chemolithotrophics, bioleaching, pyrite, arsenopyrite, applied mineralogy.

  18. Periplasmic Proteins of the Extremophile Acidithiobacillus ferrooxidans: A HIGH THROUGHPUT PROTEOMICS ANALYSIS*S

    Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J; Shabanowitz, Jeffrey; Hunt, Donald F; Jerez, Carlos A.

    2007-01-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction...

  19. Arsenic Precipitation in the Bioleaching of Realgar Using Acidithiobacillus ferrooxidans

    Peng Chen; Lei Yan; Qiang Wang; Hongyu Li

    2013-01-01

    The current study investigates the characteristics of arsenic precipitation during the bioleaching of realgar. The bioleaching performance of Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans) was investigated through scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectrophotometry. SEM and XRD analyses revealed that the arsenic-adapted strain of A. ferrooxidans was more hydrophobic and showed high...

  20. Transcriptional and Functional Studies of a Cd(II)/Pb(II)-Responsive Transcriptional Regulator(CmtR) from Acidithiobacillus ferrooxidans ATCC 23270

    Zheng, Chunli; Li, Yanjun; Nie, Li; Qian, Lin; Cai, Lu; Liu, Jianshe

    2012-01-01

    The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high cadmium (Cd) concentrations. This property is important for its use in biomining processes, where Cd and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of that a Cd(II)/Pb(II)-responsive transcriptional regulator (CmtR) was possibly related to Cd homeostasis....

  1. Arsenic Precipitation in the Bioleaching of Realgar Using Acidithiobacillus ferrooxidans

    Peng Chen

    2013-01-01

    Full Text Available The current study investigates the characteristics of arsenic precipitation during the bioleaching of realgar. The bioleaching performance of Acidithiobacillus ferrooxidans BY-3 (A. ferrooxidans was investigated through scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, and Fourier transform infrared (FT-IR spectrophotometry. SEM and XRD analyses revealed that the arsenic-adapted strain of A. ferrooxidans was more hydrophobic and showed higher attachment efficiency to realgar compared with the wild strain. The arsenic precipitation using A. ferrooxidans resulted in the precipitation of an arsenic-rich compound on the surface of the bacterial cell, as shown in the TEM images. The FT-IR spectra suggested that the −OH and −NH groups were closely involved in the biosorption process. The observations above strongly suggest that the cell surface of A. ferrooxidans plays a role in the induction of arsenic tolerance during the bioleaching of realgar.

  2. Metabolomic study of Chilean biomining bacteria Acidithiobacillus ferrooxidans strain Wenelen and Acidithiobacillus thiooxidans strain Licanantay

    Martínez, Patricio; Gálvez, Sebastián; Ohtsuka, Norimasa; Budinich, Marko; Cortés, María Paz; Serpell, Cristián; Nakahigashi, Kenji; Hirayama, Akiyoshi; Tomita, Masaru; Soga, Tomoyoshi; Martínez, Servet; Maass, Alejandro; Parada, Pilar

    2012-01-01

    In this study, we present the first metabolic profiles for two bioleaching bacteria using capillary electrophoresis coupled with mass spectrometry. The bacteria, Acidithiobacillus ferrooxidans strain Wenelen (DSM 16786) and Acidithiobacillus thiooxidans strain Licanantay (DSM 17318), were sampled at different growth phases and on different substrates: the former was grown with iron and sulfur, and the latter with sulfur and chalcopyrite. Metabolic profiles were scored from planktonic and sess...

  3. Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans.

    Liljeqvist, Maria; Rzhepishevska, Olena I; Dopson, Mark

    2013-02-01

    The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus ferrivorans genome contained genes from both Acidithiobacillus ferrooxidans and Acidithiobacillus caldus encoding enzymes whose assigned functions are redundant. Transcriptional analysis revealed that the petA1 and petB1 genes (implicated in ferrous iron oxidation) were downregulated upon growth on the inorganic sulfur compound tetrathionate but were on average 10.5-fold upregulated in the presence of ferrous iron. In contrast, expression of cyoB1 (involved in inorganic sulfur compound oxidation) was decreased 6.6-fold upon growth on ferrous iron alone. Competition assays between ferrous iron and tetrathionate with Acidithiobacillus ferrivorans SS3 precultured on chalcopyrite mineral showed a preference for ferrous iron oxidation over tetrathionate oxidation. Also, pure and mixed cultures of psychrotolerant acidophiles were utilized for the bioleaching of metal sulfide minerals in stirred tank reactors at 5 and 25°C in order to investigate the fate of ferrous iron and inorganic sulfur compounds. Solid sulfur accumulated in bioleaching cultures growing on a chalcopyrite concentrate. Sulfur accumulation halted mineral solubilization, but sulfur was oxidized after metal release had ceased. The data indicated that ferrous iron was preferentially oxidized during growth on chalcopyrite, a finding with important implications for biomining in cold environments. PMID:23183980

  4. The small heat shock proteins from Acidithiobacillus ferrooxidans: gene expression, phylogenetic analysis, and structural modeling

    Ribeiro Daniela A

    2011-12-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is an acidophilic, chemolithoautotrophic bacterium that has been successfully used in metal bioleaching. In this study, an analysis of the A. ferrooxidans ATCC 23270 genome revealed the presence of three sHSP genes, Afe_1009, Afe_1437 and Afe_2172, that encode proteins from the HSP20 family, a class of intracellular multimers that is especially important in extremophile microorganisms. Results The expression of the sHSP genes was investigated in A. ferrooxidans cells submitted to a heat shock at 40°C for 15, 30 and 60 minutes. After 60 minutes, the gene on locus Afe_1437 was about 20-fold more highly expressed than the gene on locus Afe_2172. Bioinformatic and phylogenetic analyses showed that the sHSPs from A. ferrooxidans are possible non-paralogous proteins, and are regulated by the σ32 factor, a common transcription factor of heat shock proteins. Structural studies using homology molecular modeling indicated that the proteins encoded by Afe_1009 and Afe_1437 have a conserved α-crystallin domain and share similar structural features with the sHSP from Methanococcus jannaschii, suggesting that their biological assembly involves 24 molecules and resembles a hollow spherical shell. Conclusion We conclude that the sHSPs encoded by the Afe_1437 and Afe_1009 genes are more likely to act as molecular chaperones in the A. ferrooxidans heat shock response. In addition, the three sHSPs from A. ferrooxidans are not recent paralogs, and the Afe_1437 and Afe_1009 genes could be inherited horizontally by A. ferrooxidans.

  5. Transcriptional and functional studies of Acidithiobacillus ferrooxidans genes related to survival in the presence of copper.

    Navarro, Claudio A; Orellana, Luis H; Mauriaca, Cecilia; Jerez, Carlos A

    2009-10-01

    The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high copper (Cu) concentrations. This property is important for its use in biomining processes, where Cu and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of at least 10 genes that are possibly related to Cu homeostasis. Among them are three genes coding for putative ATPases related to the transport of Cu (A. ferrooxidans copA1 [copA1(Af)], copA2(Af), and copB(Af)), three genes related to a system of the resistance nodulation cell division family involved in the extraction of Cu from the cell (cusA(Af), cusB(Af), and cusC(Af)), and two genes coding for periplasmic chaperones for this metal (cusF(Af) and copC(Af)). The expression of most of these open reading frames was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cu. The putative A. ferrooxidans Cu resistance determinants were found to be upregulated when this bacterium was exposed to Cu in the range of 5 to 25 mM. These A. ferrooxidans genes conferred to Escherichia coli a greater Cu resistance than wild-type cells, supporting their functionality. The results reported here and previously published data strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cu may be due to part or all of the following key elements: (i) a wide repertoire of Cu resistance determinants, (ii) the duplication of some of these Cu resistance determinants, (iii) the existence of novel Cu chaperones, and (iv) a polyP-based Cu resistance system. PMID:19666734

  6. Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: a high throughput proteomics analysis.

    Chi, An; Valenzuela, Lissette; Beard, Simon; Mackey, Aaron J; Shabanowitz, Jeffrey; Hunt, Donald F; Jerez, Carlos A

    2007-12-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile capable of obtaining energy by oxidizing ferrous iron or sulfur compounds such as metal sulfides. Some of the proteins involved in these oxidations have been described as forming part of the periplasm of this extremophile. The detailed study of the periplasmic components constitutes an important area to understand the physiology and environmental interactions of microorganisms. Proteomics analysis of the periplasmic fraction of A. ferrooxidans ATCC 23270 was performed by using high resolution linear ion trap-FT MS. We identified a total of 131 proteins in the periplasm of the microorganism grown in thiosulfate. When possible, functional categories were assigned to the proteins: 13.8% were transport and binding proteins, 14.6% were several kinds of cell envelope proteins, 10.8% were involved in energy metabolism, 10% were related to protein fate and folding, 10% were proteins with unknown functions, and 26.1% were proteins without homologues in databases. These last proteins are most likely characteristic of A. ferrooxidans and may have important roles yet to be assigned. The majority of the periplasmic proteins from A. ferrooxidans were very basic compared with those of neutrophilic microorganisms such as Escherichia coli, suggesting a special adaptation of the chemolithoautotrophic bacterium to its very acidic environment. The high throughput proteomics approach used here not only helps to understand the physiology of this extreme acidophile but also offers an important contribution to the functional annotation for the available genomes of biomining microorganisms such as A. ferrooxidans for which no efficient genetic systems are available to disrupt genes by procedures such as homologous recombination. PMID:17911085

  7. Bioleaching of Covellite By Using Pure and Mixed Culture of Acidithiobacillus ferrooxidans and Acidithiobacillus caldus%铜蓝精矿的生物浸出

    程海娜; 胡岳华; 马恒

    2007-01-01

    采用两种嗜酸硫杆菌(嗜酸氧化亚铁硫杆菌和喜温硫杆菌)对铜蓝进行生物浸出,实验在有或没有4 g/L硫酸亚铁pH2.0、150转/分、35℃的三角瓶中进行.实验结果表明:用两种菌混合浸出的铜几乎等于嗜酸氧化亚铁硫杆菌单独浸出的铜;另外,亚铁的加入能提高铜的浸出.%Covellite oxidation was evaluated with two acidophilic thiobacilli that are important in bioleaching processes.The experiments were carried out in shake flasks in the absence and presence of 4 g/L Fe2+ (as ferrous sulphate) at pH 2.0, 150 rpm and 35 ℃. The tests showed that the copper extraction by the Acidithiobacillus ferrooxidans culture was nearly the same as that by the mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus caldus. On the other hand, additional iron clearly improved Cu leaching.

  8. Dynamic corrosion of copper-nickel sulfide by Acidithiobacillus ferrooxidans

    TONG Lin-lin; JIANG Mao-fa; YANG Hong-ying; YU Juan; FAN You-jing; ZHANG Yao

    2009-01-01

    The dynamic corrosion process of bio-oxidation of copper-nickel sulfide from Karatungk in northern Xinjiang Province of China was studied. The polished wafer of the copper-nickel sulphide was used to carry on a series of oxidation corrosion experiment by Acidithiobacillus ferrooxidans. The changes of superficial corrosion appearance and the mineral dynamic corrosion process were discovered by microscope observation. Then, the galvanic cell model was established, and the bio-oxidation activation order of typical copper-nickel sulphide minerals was ascertained as pyrrhotite>pentlandite>chalocopyrite.

  9. Biocompatibility evaluation of magnetosomes formed by Acidithiobacillus ferrooxidans

    Yan Lei [Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, 730000 (China); College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319 (China); Yue Xiaoxuan [Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, 730000 (China); Zhang Shuang [College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319 (China); Chen Peng [Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, 730000 (China); GIBT, Gansu Institute of Business and Technology, Yannan Road 18, Lanzhou, 730010 (China); Xu Zhiliang; Li Yang [Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, 730000 (China); Li Hongyu, E-mail: hekouyanlei@gmail.com [Institute of Microbiology, School of Life Sciences, Lanzhou University, Lanzhou, 730000 (China)

    2012-10-01

    Magnetite nanocrystal has been extensively used in biomedical field. Currently, an interesting alternative to synthetic magnetic Fe{sub 3}O{sub 4} nanoparticles, called magnetosome, has been found in magnetotactic bacteria. It has been reported that Acidithiobacillus ferrooxidans (At. ferrooxidans) has a potential to synthesize magnetosome. In this study, transmission electron microscope (TEM) was used to analyze the magnetite particles in At. ferrooxidans BY-3. The magnetosomes formed by this bacterium were isolated by a method combining ultracentrifugation and magnetic separation. Crystalline phase and surface functional group of the magnetosomes were investigated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), respectively. Biocompatibility of the magnetosomes was systematically evaluated at various concentrations (0.5, 1.0, 2.0 and 4.0 mg/ml). MTT test, hemolysis assay and Micronucleus Test were carried out to evaluate in vitro cytotoxicity, blood toxicity and genotoxicity of magnetosomes, respectively. Under these conditions, magnetosomes showed no cytotoxic, genotoxic and hemolytic effects up to 4.0 mg/ml indicating good biocompatibility of these biological nanoparticles. These revealed that the magnetosomes might have a potential for biotechnological and biomedical applications in the future. - Highlights: Black-Right-Pointing-Pointer The production of magnetosomes from At. ferrooxidans has been easily available. Black-Right-Pointing-Pointer Several techniques are used to characterize properties of the magnetosomes. Black-Right-Pointing-Pointer The magnetosomes have no cytotoxicity, no hemolysis activity and no genotoxicity.

  10. Biocompatibility evaluation of magnetosomes formed by Acidithiobacillus ferrooxidans

    Magnetite nanocrystal has been extensively used in biomedical field. Currently, an interesting alternative to synthetic magnetic Fe3O4 nanoparticles, called magnetosome, has been found in magnetotactic bacteria. It has been reported that Acidithiobacillus ferrooxidans (At. ferrooxidans) has a potential to synthesize magnetosome. In this study, transmission electron microscope (TEM) was used to analyze the magnetite particles in At. ferrooxidans BY-3. The magnetosomes formed by this bacterium were isolated by a method combining ultracentrifugation and magnetic separation. Crystalline phase and surface functional group of the magnetosomes were investigated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), respectively. Biocompatibility of the magnetosomes was systematically evaluated at various concentrations (0.5, 1.0, 2.0 and 4.0 mg/ml). MTT test, hemolysis assay and Micronucleus Test were carried out to evaluate in vitro cytotoxicity, blood toxicity and genotoxicity of magnetosomes, respectively. Under these conditions, magnetosomes showed no cytotoxic, genotoxic and hemolytic effects up to 4.0 mg/ml indicating good biocompatibility of these biological nanoparticles. These revealed that the magnetosomes might have a potential for biotechnological and biomedical applications in the future. - Highlights: ► The production of magnetosomes from At. ferrooxidans has been easily available. ► Several techniques are used to characterize properties of the magnetosomes. ► The magnetosomes have no cytotoxicity, no hemolysis activity and no genotoxicity.

  11. Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans.

    Quatrini, Raquel; Jedlicki, Eugenia; Holmes, David S

    2005-12-01

    Commercial bioleaching of copper and the biooxidation of gold is a cost-effective and environmentally friendly process for metal recovery. A partial genome sequence of the acidophilic, bioleaching bacterium Acidithiobacillus ferrooxidans is available from two public sources. This information has been used to build preliminary models that describe how this microorganism confronts unusually high iron loads in the extremely acidic conditions (pH 2) found in natural environments and in bioleaching operations. A. ferrooxidans contains candidate genes for iron uptake, sensing, storage, and regulation of iron homeostasis. Predicted proteins exhibit significant amino acid similarity with known proteins from neutrophilic organisms, including conservation of functional motifs, permitting their identification by bioinformatics tools and allowing the recognition of common themes in iron transport across distantly related species. However, significant differences in amino acid sequence were detected in pertinent domains that suggest ways in which the periplasmic and outer membrane proteins of A. ferrooxidans maintain structural integrity and relevant protein-protein contacts at low pH. Unexpectedly, the microorganism also contains candidate genes, organized in operon-like structures that potentially encode at least 11 siderophore systems for the uptake of Fe(III), although it does not exhibit genes that could encode the biosynthesis of the siderophores themselves. The presence of multiple Fe(III) uptake systems suggests that A. ferrooxidans can inhabit aerobic environments where iron is scarce and where siderophore producers are present. It may also help to explain why it cannot tolerate high Fe(III) concentrations in bioleaching operations where it is out-competed by Leptospirillum species. PMID:15895264

  12. New copper resistance determinants in the extremophile acidithiobacillus ferrooxidans: a quantitative proteomic analysis.

    Almárcegui, Rodrigo J; Navarro, Claudio A; Paradela, Alberto; Albar, Juan Pablo; von Bernath, Diego; Jerez, Carlos A

    2014-02-01

    Acidithiobacillus ferrooxidans is an extremophilic bacterium used in biomining processes to recover metals. The presence in A. ferrooxidans ATCC 23270 of canonical copper resistance determinants does not entirely explain the extremely high copper concentrations this microorganism is able to stand, suggesting the existence of other efficient copper resistance mechanisms. New possible copper resistance determinants were searched by using 2D-PAGE, real time PCR (qRT-PCR) and quantitative proteomics with isotope-coded protein labeling (ICPL). A total of 594 proteins were identified of which 120 had altered levels in cells grown in the presence of copper. Of this group of proteins, 76 were up-regulated and 44 down-regulated. The up-regulation of RND-type Cus systems and different RND-type efflux pumps was observed in response to copper, suggesting that these proteins may be involved in copper resistance. An overexpression of most of the genes involved in histidine synthesis and several of those annotated as encoding for cysteine production was observed in the presence of copper, suggesting a possible direct role for these metal-binding amino acids in detoxification. Furthermore, the up-regulation of putative periplasmic disulfide isomerases was also seen in the presence of copper, suggesting that they restore copper-damaged disulfide bonds to allow cell survival. Finally, the down-regulation of the major outer membrane porin and some ionic transporters was seen in A. ferrooxidans grown in the presence of copper, indicating a general decrease in the influx of the metal and other cations into the cell. Thus, A. ferrooxidans most likely uses additional copper resistance strategies in which cell envelope proteins are key components. This knowledge will not only help to understand the mechanism of copper resistance in this extreme acidophile but may help also to select the best fit members of the biomining community to attain more efficient industrial metal leaching

  13. Cloning, expression and bioinformatics analysis of ATP sulfurylase from Acidithiobacillus ferrooxidans ATCC 23270 in Escherichia coli

    Jaramillo, Michael L; Abanto, Michel; Quispe, Ruth L; Calderón, Julio; del Valle, Luís J; Talledo, Miguel; Ramírez, Pablo

    2012-01-01

    Molecular studies of enzymes involved in sulfite oxidation in Acidithiobacillus ferrooxidans have not yet been developed, especially in the ATP sulfurylase (ATPS) of these acidophilus tiobacilli that have importance in biomining. This enzyme synthesizes ATP and sulfate from adenosine phosphosulfate (APS) and pyrophosphate (PPi), final stage of the sulfite oxidation by these organisms in order to obtain energy. The atpS gene (1674 bp) encoding the ATPS from Acidithiobacillus ferrooxidans ATCC ...

  14. Stochastic simulation of growth curves of Acidithiobacillus ferrooxidans

    YANG Yu; PENG Hong; QIU Guan-zhou; LIU Jian-she; HU Yue-hua

    2006-01-01

    To reveal the low growth rate of Acidithiobacillus ferrooxidans, a stochastic growth model was proposed to analyze growth curves of these bacteria in a batch culture. An algorithm was applied to simulate the bacteria population during lag and exponential phase. The results show that the model moderately fits the experimental data.Further, the mean growth constant (K) of growth curves is obtained by fitting the logarithm of the simulating population data versus the generation numbers with the different initial population number (N0) and initial mean activity of population (A0). When N0 is 300 and 700 respectively, the discrepancy of K value is only 0.91%, however, A0 is 0.34 and 0.38 respectively, the discrepancy of K value is 19.53%. It suggests that the effect of A0 on the lag phase exceeds N0, though both parameters could shorten the lag phase by increasing their values.

  15. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications

    Blake Robert

    2008-12-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining. It is a chemolithoautrophic, γ-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1–2 and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed system for genetic manipulation has prevented thorough exploration of its physiology. Also, confusion has been caused by prior metabolic models constructed based upon the examination of multiple, and sometimes distantly related, strains of the microorganism. Results The genome of the type strain A. ferrooxidans ATCC 23270 was sequenced and annotated to identify general features and provide a framework for in silico metabolic reconstruction. Earlier models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and amino acid metabolism are confirmed and extended. Initial models are presented for central carbon metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen fixation, stress responses, DNA repair, and metal and toxic compound fluxes. Conclusion Bioinformatics analysis provides a valuable platform for gene discovery and functional prediction that helps explain the activity of A. ferrooxidans in industrial bioleaching and its role as a primary producer in acidic environments. An analysis of the genome of the type strain provides a coherent view of its gene content and metabolic potential.

  16. Genome wide identification of Acidithiobacillus ferrooxidans (ATCC 23270) transcription factors and comparative analysis of ArsR and MerR metal regulators.

    Hödar, Christian; Moreno, Pablo; di Genova, Alex; Latorre, Mauricio; Reyes-Jara, Angélica; Maass, Alejandro; González, Mauricio; Cambiazo, Verónica

    2012-02-01

    Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophilic bacterium that obtains its energy from the oxidation of ferrous iron, elemental sulfur, or reduced sulfur minerals. This capability makes it of great industrial importance due to its applications in biomining. During the industrial processes, A. ferrooxidans survives to stressing circumstances in its environment, such as an extremely acidic pH and high concentration of transition metals. In order to gain insight into the organization of A. ferrooxidans regulatory networks and to provide a framework for further studies in bacterial growth under extreme conditions, we applied a genome-wide annotation procedure to identify 87 A. ferrooxidans transcription factors. We classified them into 19 families that were conserved among diverse prokaryotic phyla. Our annotation procedure revealed that A. ferrooxidans genome contains several members of the ArsR and MerR families, which are involved in metal resistance and detoxification. Analysis of their sequences revealed known and potentially new mechanism to coordinate gene-expression in response to metal availability. A. ferrooxidans inhabit some of the most metal-rich environments known, thus transcription factors identified here seem to be good candidates for functional studies in order to determine their physiological roles and to place them into A. ferrooxidans transcriptional regulatory networks. PMID:21830017

  17. Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus

    Stefanie eMangold

    2011-02-01

    Full Text Available Given the challenges to life at low pH, an analysis of inorganic sulfur compound oxidation was initiated in the chemolithoautotrophic extremophile Acidithiobacillus caldus. A. caldus is able to metabolize elemental sulfur and a broad range of inorganic sulfur compounds. It has been implicated in the production of environmentally damaging acidic solutions as well as participating in industrial bioleaching operations where it forms part of microbial consortia used for the recovery of metal ions. Based upon the recently published A. caldus type strain genome sequence, a bioinformatic reconstruction of elemental sulfur and inorganic sulfur compound metabolism predicted genes included: sulfide quinone reductase (sqr, tetrathionate hydrolase (tth, two sox gene clusters potentially involved in thiosulfate oxidation (soxABXYZ, sulfur oxygenase reductase (sor, and various electron transport components. RNA transcript profiles by semi-quantitative reverse transcription PCR suggested up-regulation of sox genes in the presence of tetrathionate. Extensive gel based proteomic comparisons of total soluble and membrane enriched protein fractions during growth on elemental sulfur and tetrathionate identified differential protein levels from the two Sox clusters as well as several chaperone and stress proteins up-regulated in the presence of elemental sulfur. Proteomics results also suggested the involvement of heterodisulfide reductase (HdrABC in A. caldus inorganic sulfur compound metabolism. A putative new function of Hdr in acidophiles is discussed. Additional proteomic analysis evaluated protein expression differences between cells grown attached to solid, elemental sulfur versus planktonic cells. This study has provided insights into sulfur metabolism of this acidophilic chemolithotroph and gene expression during attachment to solid elemental sulfur.

  18. Synergy between Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the Bioleaching Process of Copper.

    Zheng, Xuecheng; Li, Dongwei

    2016-01-01

    This study investigates the synergy of Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the bioleaching process of copper. The results showed that additional R. phaseoli could increase leaching rate and cell number of A. ferrooxidans. When the initial cell number ratio between A. ferrooxidans and R. phaseoli was 2 : 1, A. ferrooxidans attained the highest final cell number of approximately 2 × 10(8) cells/mL and the highest copper leaching rate of 29%, which is 7% higher than that in the group with A. ferrooxidans only. R. phaseoli may use metabolized polysaccharides from A. ferrooxidans, and organic acids could chelate or precipitate harmful heavy metals to reduce their damage on A. ferrooxidans and promote its growth. Organic acids could also damage the mineral lattice to increase the leaching effect. PMID:26942203

  19. Synergy between Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the Bioleaching Process of Copper

    Xuecheng Zheng

    2016-01-01

    Full Text Available This study investigates the synergy of Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the bioleaching process of copper. The results showed that additional R. phaseoli could increase leaching rate and cell number of A. ferrooxidans. When the initial cell number ratio between A. ferrooxidans and R. phaseoli was 2 : 1, A. ferrooxidans attained the highest final cell number of approximately 2 × 108 cells/mL and the highest copper leaching rate of 29%, which is 7% higher than that in the group with A. ferrooxidans only. R. phaseoli may use metabolized polysaccharides from A. ferrooxidans, and organic acids could chelate or precipitate harmful heavy metals to reduce their damage on A. ferrooxidans and promote its growth. Organic acids could also damage the mineral lattice to increase the leaching effect.

  20. Synergy between Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the Bioleaching Process of Copper

    Xuecheng Zheng; Dongwei Li

    2016-01-01

    This study investigates the synergy of Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the bioleaching process of copper. The results showed that additional R. phaseoli could increase leaching rate and cell number of A. ferrooxidans. When the initial cell number ratio between A. ferrooxidans and R. phaseoli was 2 : 1, A. ferrooxidans attained the highest final cell number of approximately 2 × 108 cells/mL and the highest copper leaching rate of 29%, which is 7% higher than that in th...

  1. ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillus ferrooxidans.

    Bustamante, Paula; Covarrubias, Paulo C; Levicán, Gloria; Katz, Assaf; Tapia, Pablo; Holmes, David; Quatrini, Raquel; Orellana, Omar

    2012-01-01

    Integrative conjugative elements (ICEs) are self-transferred mobile genetic elements that contribute to horizontal gene transfer. An ICE (ICEAfe1) was identified in the genome of Acidithiobacillus ferrooxidans ATCC 23270. Excision of the element and expression of relevant genes under normal and DNA-damaging growth conditions was analyzed. Bioinformatic tools and DNA amplification methods were used to identify and to assess the excision and expression of genes related to the mobility of the element. Both basal and mitomycin C-inducible excision as well as expression and induction of the genes for integration/excision are demonstrated, suggesting that ICEAfe1 is an actively excising SOS-regulated mobile genetic element. The presence of a complete set of genes encoding self-transfer functions that are induced in response to DNA damage caused by mitomycin C additionally suggests that this element is capable of conjugative transfer to suitable recipient strains. Transfer of ICEAfe1 may provide selective advantages to other acidophiles in this ecological niche through dissemination of gene clusters expressing transfer RNAs, CRISPRs, and exopolysaccharide biosynthesis enzymes, probably by modification of translation efficiency, resistance to bacteriophage infection and biofilm formation, respectively. These data open novel avenues of research on conjugative transformation of biotechnologically relevant microorganisms recalcitrant to genetic manipulation. PMID:23486178

  2. Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling

    R. Quatrini; C. Appia-Ayme; Y. Denis; J. Ratouchniak; F. Veloso; J. Valdes; C. Lefimil; S. Silver; F. Roberto; O. Orellana; F. Denizot; E. Jedlicki; D. Holmes; V. Bonnefoy

    2006-09-01

    Acidithiobacillus ferrooxidans is a well known acidophilic, chemolithoautotrophic, Gram negative, bacterium involved in bioleaching and acid mine drainage. In aerobic conditions, it gains energy mainly from the oxidation of ferrous iron and/or reduced sulfur compounds present in ores. After initial oxidation of the substrate, electrons from ferrous iron or sulfur enter respiratory chains and are transported through several redox proteins to oxygen. However, the oxidation of ferrous iron and reduced sulfur compounds has also to provide electrons for the reduction of NAD(P) that is subsequently required for many metabolic processes including CO2 fixation. To help to unravel the enzymatic pathways and the electron transfer chains involved in these processes, a genome-wide microarray transcript profiling analysis was carried out. Oligonucleotides corresponding to approximately 3000 genes of the A. ferrooxidans type strain ATCC23270 were spotted onto glass-slides and hybridized with cDNA retrotranscribed from RNA extracted from ferrous iron and sulfur grown cells. The genes which are preferentially transcribed in ferrous iron conditions and those preferentially transcribed in sulfur conditions were analyzed. The expression of a substantial number of these genes has been validated by real-time PCR, Northern blot hybridization and/or immunodetection analysis. Our results support and extend certain models of iron and sulfur oxidation and highlight previous observations regarding the possible presence of alternate electron pathways. Our findings also suggest ways in which iron and sulfur oxidation may be co-ordinately regulated. An accompanying paper (Appia-Ayme et al.) describes results pertaining to other metabolic functions.

  3. Cytoplasmic membrane response to copper and nickel in Acidithiobacillus ferrooxidans.

    Mykytczuk, N C S; Trevors, J T; Ferroni, G D; Leduc, L G

    2011-03-20

    Metal tolerance has been found to vary among Acidithiobacillus ferrooxidans strains and this can impact the efficiency of biomining practices. To explain observed strain variability for differences in metal tolerance we examined the effects of Cu(2+) and Ni(2+) concentrations (1-200 mM) on cytoplasmic membrane properties of two A. ferrooxidans type strains (ATCC 23270 and 19859) and four strains isolated from AMD water around Sudbury, Ontario, Canada. Growth rate, membrane fluidity and phase, determined from the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH), and fatty acid profiles indicated that three different modes of adaptation were present and could separate between strains showing moderate, or high metal tolerance from more sensitive strains. To compensate for the membrane ordering effects of the metals, significant remodelling of the membrane was used to either maintain homeoviscous adaptation in the moderately tolerant strains or to increase membrane fluidity in the sensitive strains. Shifts in the gel-to-liquid crystalline transition temperature in the moderately tolerant strains led to multiple phase transitions, increasing the potential for phase separation and compromised membrane integrity. The metal-tolerant strain however, was able to tolerate increases in membrane order without significant compensation via fatty acid composition. Our multivariate analyses show a common adaptive response which involves changes in the abundant 16:0 and 18:1 fatty acids. However, fatty acid composition and membrane properties showed no difference in response to either copper or nickel suggesting that adaptive response was non-specific and tolerance dependent. We demonstrate that strain variation can be evaluated using differences in membrane properties as intrinsic determinants of metal susceptibility. PMID:20630730

  4. Heat and phosphate starvation effects on the proteome, morphology and chemical composition of the biomining bacteria Acidithiobacillus ferrooxidans.

    Ribeiro, Daniela A; Maretto, Danilo A; Nogueira, Fábio C S; Silva, Márcio J; Campos, Francisco A P; Domont, Gilberto B; Poppi, Ronei J; Ottoboni, Laura M M

    2011-06-01

    Acidithiobacillus ferrooxidans is a Gram negative, acidophilic, chemolithoautotrophic bacterium that plays an important role in metal bioleaching. During bioleaching, the cells are subjected to changes in the growth temperature and nutrients starvation. The aim of this study was to gather information about the response of the A.ferrooxidans Brazilian strain LR to K2HPO4 starvation and heat stress through investigation of cellular morphology, chemical composition and differential proteome. The scanning electron microscopic results showed that under the tested stress conditions, A. ferrooxidans cells became elongated while the Fourier transform infrared spectroscopy (FT-IR) analysis showed alterations in the wavenumbers between 850 and 1,275 cm(-1), which are related to carbohydrates, phospholipids and phosphoproteins. These findings indicate that the bacterial cell surface is affected by the tested stress conditions. A proteomic analysis, using 2-DE and tandem mass spectrometry, enabled the identification of 44 differentially expressed protein spots, being 30 due to heat stress (40°C) and 14 due to K2HPO4 starvation. The identified proteins belonged to 11 different functional categories, including protein fate, energy metabolism and cellular processes. The upregulated proteins were mainly from protein fate and energy metabolism categories. The obtained results provide evidences that A. ferrooxidans LR responds to heat stress and K2HPO4 starvation by inducing alterations in cellular morphology and chemical composition of the cell surface. Also, the identification of several proteins involved in protein fate suggests that the bacteria cellular homesostasis was affected. In addition, the identification of proteins from different functional categories indicates that the A. ferrooxidans response to higher than optimal temperatures and phosphate starvation involves global changes in its physiology. PMID:25187146

  5. Metabolomic study of Chilean biomining bacteria Acidithiobacillus ferrooxidans strain Wenelen and Acidithiobacillus thiooxidans strain Licanantay.

    Martínez, Patricio; Gálvez, Sebastián; Ohtsuka, Norimasa; Budinich, Marko; Cortés, María Paz; Serpell, Cristián; Nakahigashi, Kenji; Hirayama, Akiyoshi; Tomita, Masaru; Soga, Tomoyoshi; Martínez, Servet; Maass, Alejandro; Parada, Pilar

    2013-02-01

    In this study, we present the first metabolic profiles for two bioleaching bacteria using capillary electrophoresis coupled with mass spectrometry. The bacteria, Acidithiobacillus ferrooxidans strain Wenelen (DSM 16786) and Acidithiobacillus thiooxidans strain Licanantay (DSM 17318), were sampled at different growth phases and on different substrates: the former was grown with iron and sulfur, and the latter with sulfur and chalcopyrite. Metabolic profiles were scored from planktonic and sessile states. Spermidine was detected in intra- and extracellular samples for both strains, suggesting it has an important role in biofilm formation in the presence of solid substrate. The canonical pathway for spermidine synthesis seems absent as its upstream precursor, putrescine, was not present in samples. Glutathione, a catalytic activator of elemental sulfur, was identified as one of the most abundant metabolites in the intracellular space in A. thiooxidans strain Licanantay, confirming its participation in the sulfur oxidation pathway. Amino acid profiles varied according to the growth conditions and bioleaching species. Glutamic and aspartic acid were highly abundant in intra- and extracellular extracts. Both are constituents of the extracellular matrix, and have a probable role in cell detoxification. This novel metabolomic information validates previous knowledge from in silico metabolic reconstructions based on genomic sequences, and reveals important biomining functions such as biofilm formation, energy management and stress responses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-012-0443-3) contains supplementary material, which is available to authorized users. PMID:23335869

  6. Transcriptional and functional studies of a Cd(II)/Pb(II)-responsive transcriptional regulator(CmtR) from Acidithiobacillus ferrooxidans ATCC 23270.

    Zheng, Chunli; Li, Yanjun; Nie, Li; Qian, Lin; Cai, Lu; Liu, Jianshe

    2012-08-01

    The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high cadmium (Cd) concentrations. This property is important for its use in biomining processes, where Cd and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of that a Cd(II)/Pb(II)-responsive transcriptional regulator (CmtR) was possibly related to Cd homeostasis. The expression of the CmtR was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cd. The putative A. ferrooxidans Cd resistance determinant was found to be upregulated when this bacterium was exposed to Cd in the range of 15-30 mM. The CmtR from A. ferrooxidans was cloned and expressed in Escherichia coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. UV-Vis spectroscopic measurements showed that the reconstruction CmtR was able to bind Cd(II) forming Cd(II)-CmtR complex in vitro. The sequence alignment and molecular modeling showed that the crucial residues for CmtR binding were likely to be Cys77, Cys112, and Cys121. The results reported here strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cd including the Cd(II)/Pb(II)-responsive transcriptional regulator. PMID:22555344

  7. Bioleaching of two different types of chalcopyrite by Acidithiobacillus ferrooxidans

    Dong, Ying-bo; Lin, Hai; Fu, Kai-bin; Xu, Xiao-fang; Zhou, Shan-shan

    2013-02-01

    Two different types of chalcopyrite (pyritic chalcopyrite and porphyry chalcopyrite) were bioleached with Acidithiobacillus ferrooxidans ATF6. The bioleaching of the pyritic chalcopyrite and porphyry chalcopyrite is quite different. The copper extraction reaches 46.96% for the pyritic chalcopyrite after 48-d leaching, but it is only 14.50% for the porphyry chalcopyrite. Proper amounts of initial ferrous ions can improve the efficiency of copper extraction for the two different types of chalcopyrite. The optimum dosage of ferrous ions for the pyritic chalcopyrite and porphyry chalcopyrite is different. The adsorption of ATF6 on the pyritic chalcopyrite and porphyry chalcopyrite was also studied in this paper. It is found that ATF6 is selectively adsorbed by the two different types of chalcopyrite; the higher adsorption onto the pyritic chalcopyrite than the porphyry chalcopyrite leads to the higher copper dissolution rate of the pyritic chalcopyrite. In addition, the zeta-potential of chalcopyrite before and after bioleaching further confirms that ATF6 is more easily adsorbed onto the pyritic chalcopyrite.

  8. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    Alvaro Banderas; Nicolas Guiliani

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinforma...

  9. Comparison Analysis of Coal Biodesulfurization and Coal’s Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Fen-Fen Hong; Huan He; Jin-Yan Liu; Xiu-Xiang Tao; Lei Zheng; Yi-Dong Zhao

    2013-01-01

    Acidithiobacillus ferrooxidans (A. ferrooxidans) was applied in coal biodesulfurization and coal’s pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal’s pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal’s pyrite bioleaching rate was 72.0%. SEM micrographs...

  10. Purification and biochemical characterization of the F1-ATPase from Acidithiobacillus ferrooxidans NASF-1 and analysis of the atp operon.

    Wakai, Satoshi; Ohmori, Asami; Kanao, Tadayoshi; Sugio, Tsuyoshi; Kamimura, Kazuo

    2005-10-01

    ATPase was purified 51-fold from a chemoautotrophic, obligately acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. The purified ATPase showed the typical subunit pattern of the F1-ATPase on a polyacrylamide gel containing sodium dodecyl sulfate, with 5 subunits of apparent molecular masses of 55, 50, 33, 20, and 18 kDa. The enzyme hydrolyzed ATP, GTP, and ITP, but neither UTP nor ADP. The K(m) value for ATP was 1.8 mM. ATPase activity was optimum at pH 8.5 at 45 degrees C, and was activated by sulfite. Azide strongly inhibited the enzyme activity, whereas the enzyme was relatively resistant to vanadate, nitrate, and N,N'-dicyclohexylcarbodiimide. The genes encoding the subunits for the F1F(O)-ATPase from A. ferrooxidans NASF-1 were cloned as three overlapping fragments by PCR cloning and sequenced. The molecular masses of the alpha, beta, gamma, delta, and epsilon subunits of the F1 portion were deduced from the amino acid sequences to be 55.5, 50.5, 33.1, 19.2, and 15.1 kDa, respectively. PMID:16244438

  11. A genomic island provides Acidithiobacillus ferrooxidans ATCC 53993 additional copper resistance: a possible competitive advantage.

    Orellana, Luis H; Jerez, Carlos A

    2011-11-01

    There is great interest in understanding how extremophilic biomining bacteria adapt to exceptionally high copper concentrations in their environment. Acidithiobacillus ferrooxidans ATCC 53993 genome possesses the same copper resistance determinants as strain ATCC 23270. However, the former strain contains in its genome a 160-kb genomic island (GI), which is absent in ATCC 23270. This GI contains, amongst other genes, several genes coding for an additional putative copper ATPase and a Cus system. A. ferrooxidans ATCC 53993 showed a much higher resistance to CuSO(4) (>100 mM) than that of strain ATCC 23270 (biomining operations. PMID:21789491

  12. Copper Ions Stimulate Polyphosphate Degradation and Phosphate Efflux in Acidithiobacillus ferrooxidans

    Alvarez, Sergio; Jerez, Carlos A.

    2004-01-01

    For some bacteria and algae, it has been proposed that inorganic polyphosphates and transport of metal-phosphate complexes could participate in heavy metal tolerance. To test for this possibility in Acidithiobacillus ferrooxidans, a microorganism with a high level of resistance to heavy metals, the polyphosphate levels were determined when the bacterium was grown in or shifted to the presence of a high copper concentration (100 mM). Under these conditions, cells showed a rapid decrease in pol...

  13. Bioleaching of Primary Nickel Ore Using Acidithiobacillus ferrooxidans LR Cells Immobilized in Glass Beads

    Ellen Cristine Giese; Patrícia Morgado Vaz

    2015-01-01

    Sulphide minerals are one of the most important sources of value metals. For several years, a large number of hydrometallurgical and biotechnological processes have been developed to leach low-grade sulphide ores and the conditions are well established. However, the management of microorganisms in the bioleaching process is not easy to handle. In this paper, the use of immobilized cells of Acidithiobacillus ferrooxidans LR in glass beads in bioleaching of primary nickel ore was evaluated. The...

  14. Immobilization of Arsenite and Ferric Iron by Acidithiobacillus ferrooxidans and Its Relevance to Acid Mine Drainage

    Duquesne, K.; Lebrun, S.; Casiot, C.; Bruneel, O.; Personné, J.-C.; LeBlanc, M.; Elbaz-Poulichet, F.; Morin, G.; Bonnefoy, V.

    2003-01-01

    Weathering of the As-rich pyrite-rich tailings of the abandoned mining site of Carnoulès (southeastern France) results in the formation of acid waters heavily loaded with arsenic. Dissolved arsenic present in the seepage waters precipitates within a few meters from the bottom of the tailing dam in the presence of microorganisms. An Acidithiobacillus ferrooxidans strain, referred to as CC1, was isolated from the effluents. This strain was able to remove arsenic from a defined synthetic medium ...

  15. Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis

    Jedlicki Eugenia; Veloso Felipe; Valdés Jorge; Holmes David

    2003-01-01

    Abstract Background Acidithiobacillus ferrooxidans is a gamma-proteobacterium that lives at pH2 and obtains energy by the oxidation of sulfur and iron. It is used in the biomining industry for the recovery of metals and is one of the causative agents of acid mine drainage. Effective tools for the study of its genetics and physiology are not in widespread use and, despite considerable effort, an understanding of its unusual physiology remains at a rudimentary level. Nearly complete genome sequ...

  16. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications

    Blake Robert; Tettelin Herve; Dodson Robert J; Quatrini Raquel; Pedroso Inti; Valdés Jorge; Eisen Jonathan A; Holmes David S

    2008-01-01

    Abstract Background Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining). It is a chemolithoautrophic, γ-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1–2) and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and ...

  17. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans

    López Alejandro; Pereyra Benito; Esperón Margarita; Makita Mario; Orrantia Erasmo

    2004-01-01

    Abstract Background Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. This technology has been proved to be cheaper, more efficient and environmentally friendly than roasting and high pressure moisture heating processes. So far the most studied microorganism in bioleaching is Acidithiobacillus ferrooxidans. There are a few studies about the benefit of metals of low value through bioleaching. ...

  18. Visualisation of the interaction between Acidithiobacillus ferrooxidans and oil shale by atomic force microscopy

    Milić Jelena S.

    2012-01-01

    Full Text Available This study visually documents the mechanical contact and interaction between the bacterial cells of two biogeocenotically different strains of Acidithiobacillus ferrooxidans (At. ferrooxidans and oil shale containing pyrite. Atomic force microscopy (AFM imaging was used to visualise initial interaction between the microorganisms and the surface minerals of an oil shale and to evaluate bacterial effects in the first hours of the bioleaching process. Acidithiobacillus ferrooxidans was attached to the shale surface already after 2 h, and after 48 h, numerous cells covered the surface with a biofilm. After 5 day incubation with At. ferrooxidans, AFM imaging revealed ellipsoid etched pits that represent footprints left by detached cells. Combining AFM surface imaging and leaching analysis following bacterial colonisation of oil shale layers demonstrates that an initial attachment to the surface is necessary for the leaching and that later on, once a sufficient concentration of Fe2+ ions in the solution is achieved, cells detach to become free cells, and leaching occurs primarily by the Fe3+. This experiment confirmed that microorganisms isolated from sites in which a particular substrate is found will demonstrate stronger binding to that substrate.

  19. Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans.

    Zhu, Jianyu; Wang, Qianfen; Zhou, Shuang; Li, Qian; Gan, Min; Jiang, Hao; Qin, Wenqing; Liu, Xueduan; Hu, Yuehua; Qiu, Guanzhou

    2015-02-01

    This paper presents a study on the relation between bacterial adhesion force and bioleaching rate of chalcopyrite, which sheds light on the influence of interfacial interaction on bioleaching behavior. In our research, Acidithiobacillus ferrooxidans (A. ferrooxidans) were adapted to grow with FeSO4 · 7H2O, element sulfur or chalcopyrite. Then, surface properties of Acidithiobacillus ferrooxidans and chalcopyrite were analyzed by contact angle, zeta potential and Fourier transform infrared spectroscopy (FTIR). Adhesion force between bacteria and chalcopyrite was measured by atomic force microscopy (AFM). Attachment and bioleaching behaviors were also monitored. The results showed that A. ferrooxidans adapted with chalcopyrite exhibited the strongest adhesion force to chalcopyrite and the highest bioleaching rate. Culture adapted with sulfur bacteria took second place and FeSO4 · 7H2O-adapted bacteria were the lowest. Bioleaching rate and bacterial attachment capacity were positively related to bacterial adhesion force, which is affected by the nature of energy source. According to this work, the attachment of bacteria to chalcopyrite surface is one of the most important aspects that influence the bioleaching process of chalcopyrite. PMID:25511439

  20. Cloning, expression and bioinformatics analysis of ATP sulfurylase from Acidithiobacillus ferrooxidans ATCC 23270 in Escherichia coli.

    Jaramillo, Michael L; Abanto, Michel; Quispe, Ruth L; Calderón, Julio; Del Valle, Luís J; Talledo, Miguel; Ramírez, Pablo

    2012-01-01

    Molecular studies of enzymes involved in sulfite oxidation in Acidithiobacillus ferrooxidans have not yet been developed, especially in the ATP sulfurylase (ATPS) of these acidophilus tiobacilli that have importance in biomining. This enzyme synthesizes ATP and sulfate from adenosine phosphosulfate (APS) and pyrophosphate (PPi), final stage of the sulfite oxidation by these organisms in order to obtain energy. The atpS gene (1674 bp) encoding the ATPS from Acidithiobacillus ferrooxidans ATCC 23270 was amplified using PCR, cloned in the pET101-TOPO plasmid, sequenced and expressed in Escherichia coli obtaining a 63.5 kDa ATPS recombinant protein according to SDS-PAGE analysis. The bioinformatics and phylogenetic analyses determined that the ATPS from A. ferrooxidans presents ATP sulfurylase (ATS) and APS kinase (ASK) domains similar to ATPS of Aquifex aeolicus, probably of a more ancestral origin. Enzyme activity towards ATP formation was determined by quantification of ATP formed from E. coli cell extracts, using a bioluminescence assay based on light emission by the luciferase enzyme. Our results demonstrate that the recombinant ATP sulfurylase from A. ferrooxidans presents an enzymatic activity for the formation of ATP and sulfate, and possibly is a bifunctional enzyme due to its high homology to the ASK domain from A. aeolicus and true kinases. PMID:23055613

  1. Improved dewatering of CEPT sludge by biogenic flocculant from Acidithiobacillus ferrooxidans.

    Wong, Jonathan W C; Murugesan, Kumarasamy; Yu, Shuk Man; Kurade, Mayur B; Selvam, Ammaiyappan

    2016-01-01

    Bioleaching using an iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, and its biogenic flocculants was evaluated to improve the dewaterability of chemically enhanced primary treatment (CEPT) sewage sludge. CEPT sludge in flasks was inoculated with A. ferrooxidans culture, medium-free cells and the cell-free culture filtrate with and without the energy substance Fe(2+), and periodically the sludge samples were analysed for the dewaterability. This investigation proves that bioleaching effectively improved the sludge dewaterability as evidenced from drastic reduction in capillary suction time (≤20 seconds) and specific resistance to filtration (≥90%); however, it requires an adaptability period of 1-2 days. On the other hand, the biogenic flocculant produced by A. ferrooxidans greatly decreased the time-to-filtration and facilitated the dewaterability within 4 h. Results indicate that rapid dewatering of CEPT sludge by biogenic flocculants provides an opportunity to replace the synthetic organic polymer for dewatering. PMID:26901727

  2. Global transcriptional responses of Acidithiobacillus ferrooxidans Wenelen under different sulfide minerals.

    Latorre, Mauricio; Ehrenfeld, Nicole; Cortés, María Paz; Travisany, Dante; Budinich, Marko; Aravena, Andrés; González, Mauricio; Bobadilla-Fazzini, Roberto A; Parada, Pilar; Maass, Alejandro

    2016-01-01

    In order to provide new information about the adaptation of Acidithiobacillus ferrooxidans during the bioleaching process, the current analysis presents the first report of the global transcriptional response of the native copper mine strain Wenelen (DSM 16786) oxidized under different sulfide minerals. Microarrays were used to measure the response of At. ferrooxidans Wenelen to shifts from iron supplemented liquid cultures (reference state) to the addition of solid substrates enriched in pyrite or chalcopyrite. Genes encoding for energy metabolism showed a similar transcriptional profile for the two sulfide minerals. Interestingly, four operons related to sulfur metabolism were over-expressed during growth on a reduced sulfur source. Genes associated with metal tolerance (RND and ATPases type P) were up-regulated in the presence of pyrite or chalcopyrite. These results suggest that At. ferrooxidans Wenelen presents an efficient transcriptional system developed to respond to environmental conditions, namely the ability to withstand high copper concentrations. PMID:26476161

  3. Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect.

    Yang, Yuankun; Chen, Shu; Li, Shicheng; Chen, Mengjun; Chen, Haiyan; Liu, Bijun

    2014-03-10

    In this paper, H(+) consumption and metal recovery, during the process of bioleaching waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans (A. ferrooxidans), were discussed in detail. When the WPCBs concentration was 15g/L, Cu (96.8%), Zn (83.8%), and Al (75.4%) were recovered after 72h by A. ferrooxidans. Experimental results indicated that metal recovery rate was significantly influenced by acid. Based on experimental results, the kinetics of the H(+) consumption and metal recovery on bioleaching WPCBs were represented by reaction kinetic equations. The kinetic of H(+) consumption could be described by the second-order kinetic model. The metal recovery belongs to the second-order model with adding acid, which was changed to the shrinking core model with precipitate production. PMID:24445171

  4. Mineral respiration under extreme acidic conditions: from a supramolecular organization to a molecular adaptation in Acidithiobacillus ferrooxidans.

    Roger, Magali; Castelle, Cindy; Guiral, Marianne; Infossi, Pascale; Lojou, Elisabeth; Giudici-Orticoni, Marie-Thérèse; Ilbert, Marianne

    2012-12-01

    Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotrophic Gram-negative bacterium that can derive energy from the oxidation of ferrous iron at pH 2 using oxygen as electron acceptor. The study of this bacterium has economic and fundamental biological interest because of its use in the industrial extraction of copper and uranium from ores. For this reason, its respiratory chain has been analysed in detail in recent years. Studies have shown the presence of a functional supercomplex that spans the outer and the inner membranes and allows a direct electron transfer from the extracellular Fe2+ ions to the inner membrane cytochrome c oxidase. Iron induces the expression of two operons encoding proteins implicated in this complex as well as in the regeneration of the reducing power. Most of these are metalloproteins that have been characterized biochemically, structurally and biophysically. For some of them, the molecular basis of their adaptation to the periplasmic acidic environment has been described. Modifications in the metal surroundings have been highlighted for cytochrome c and rusticyanin, whereas, for the cytochrome c oxidase, an additional partner that maintains its stability and activity has been demonstrated recently. PMID:23176476

  5. Cytoplasmic CopZ-Like Protein and Periplasmic Rusticyanin and AcoP Proteins as Possible Copper Resistance Determinants in Acidithiobacillus ferrooxidans ATCC 23270.

    Navarro, Claudio A; von Bernath, Diego; Martínez-Bussenius, Cristóbal; Castillo, Rodrigo A; Jerez, Carlos A

    2016-02-01

    Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium. PMID:26637599

  6. Draft genome sequence of the extremely acidophilic biomining bacterium Acidithiobacillus thiooxidans ATCC 19377 provides insights into the evolution of the Acidithiobacillus genus.

    Valdes, Jorge; Ossandon, Francisco; Quatrini, Raquel; Dopson, Mark; Holmes, David S

    2011-12-01

    Acidithiobacillus thiooxidans is a mesophilic, extremely acidophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and inorganic sulfur compounds. Here we present the draft genome sequence of A. thiooxidans ATCC 19377, which has allowed the identification of genes for survival and colonization of extremely acidic environments. PMID:22123759

  7. Draft Genome Sequence of the Extremely Acidophilic Biomining Bacterium Acidithiobacillus thiooxidans ATCC 19377 Provides Insights into the Evolution of the Acidithiobacillus Genus

    Valdes, Jorge; Ossandon, Francisco; Quatrini, Raquel; Dopson, Mark; Holmes, David S.

    2011-01-01

    Acidithiobacillus thiooxidans is a mesophilic, extremely acidophilic, chemolithoautotrophic gammaproteobacterium that derives energy from the oxidation of sulfur and inorganic sulfur compounds. Here we present the draft genome sequence of A. thiooxidans ATCC 19377, which has allowed the identification of genes for survival and colonization of extremely acidic environments.

  8. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation.

    Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E

    2012-08-24

    Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation. PMID:22920540

  9. Engineering the iron-oxidizing chemolithoautotroph Acidithiobacillus ferrooxidans for biochemical production.

    Kernan, Timothy; Majumdar, Sudipta; Li, Xiaozheng; Guan, Jingyang; West, Alan C; Banta, Scott

    2016-01-01

    There is growing interest in developing non-photosynthetic routes for the conversion of CO2 to fuels and chemicals. One underexplored approach is the transfer of energy to the metabolism of genetically modified chemolithoautotrophic bacteria. Acidithiobacillus ferrooxidans is an obligate chemolithoautotroph that derives its metabolic energy from the oxidation of iron or sulfur at low pH. Two heterologous biosynthetic pathways have been expressed in A. ferrooxidans to produce either isobutyric acid or heptadecane from CO2 and the oxidation of Fe(2+). A sevenfold improvement in productivity of isobutyric acid was obtained through improved media formulations in batch cultures. Steady-state efficiencies were lower in continuous cultures, likely due to ferric inhibition. If coupled to solar panels, the photon-to-fuel efficiency of this proof-of-principle process approaches estimates for agriculture-derived biofuels. These efforts lay the foundation for the utilization of this organism in the exploitation of electrical energy for biochemical synthesis. PMID:26174759

  10. Bioleaching of Primary Nickel Ore Using Acidithiobacillus ferrooxidans LR Cells Immobilized in Glass Beads

    Ellen Cristine Giese

    2015-06-01

    Full Text Available Sulphide minerals are one of the most important sources of value metals. For several years, a large number of hydrometallurgical and biotechnological processes have been developed to leach low-grade sulphide ores and the conditions are well established. However, the management of microorganisms in the bioleaching process is not easy to handle. In this paper, the use of immobilized cells of Acidithiobacillus ferrooxidans LR in glass beads in bioleaching of primary nickel ore was evaluated. The column experiments inoculated with immobilized cells of A. ferrooxidans LR showed the same efficiency than the conventional method using free cells and is promising for application on a larger scale as it ensuring integrity and activity of biomining microorganisms and reduce process costs. DOI: http://dx.doi.org/10.17807/orbital.v7i2.698 

  11. Formation of jarosite during Fe{sup 2+} oxidation by Acidithiobacillus ferrooxidans

    Daoud, J.; Karamanev, D. [University of Western Ontario, London, ON (Canada). Dept. of Chemical & Biochemical Engineering

    2006-07-15

    Jarosite precipitation is a very important phenomenon that is observed in many bacterial cultures. In many applications involving Acidithiobacillus ferrooxidans, like coal desulphurization and bioleaching, it is crucial to minimize jarosite formation in order to increase efficiency. The formation of jarosite during the oxidation of ferrous iron by free suspended cells of A. ferrooxidans was studied. The process was studied as a function of time, pH and temperature. The main parameter affecting the jarosite formation was pH. Several experiments yielded results showing oxidation rates as high as 0.181-0.194 g/L h, with low jarosite precipitation of 0.0125-0.0209 g at conditions of pH 1.6-1.7 with an operating temperature of 35{sup o} C.

  12. Ferrous Sulphate Oxidation Using Acidithiobacillus Ferrooxidans Cells Immobilized in Ceramic Beads

    Junfeng, Y.; Guoliang, L.; Wei, C.

    2007-01-01

    The immobilization of Acidithiobacillus ferrooxidans cells on ceramic beads as carrier is described. The effects of ferrous ion concentration and dilution on the kinetics of ferrous ion oxidation in a packed-bed bioreactor were studied. In a medium containing 13.91 g of ferrous ion per litre, the fastest oxidation rate was 4.21 g L–1 at a dilution rate of 0.8 h–1. The corresponding conversion was X = 70 %. At ferrous ion mass concentrations greater than = 8.34 g L–1 and dilution rates greate...

  13. Bio-oxidation of galena particles by Acidithiobacillus ferrooxidans

    Lei Jiang; Huaiyang Zhou; Xiaotong Peng; Zhonghao Ding

    2008-01-01

    This paper deals with the bio-oxidation of galena particles (-80 meshes) usingAcidithiobacillusferrooxidans and compares it with Fe3+ oxidation. Experimental results show that, at least, 0.00197 mol galena was leached from 100mL pulp (density of 3.8%) with 39 days' bio-oxidation, as compared to 0.00329 mol galena by Fe3+ with 9 days' oxidation. Because Fe3+ was constantly consumed, leaching by F3+e almost stopped after 9 days. Large amounts of lead sulfate were detected in both bio-oxidation and Fe3+ oxidation of galena. A. ferrooxidans followed a unique growth pattern during the bio-oxidation of galena. In the initial 15 days, the bacteria attached themselves to the galena surface with the formation of erosion pits similar in shape and length to those of the bacteria, and there were hardly any bacteria suspended in the solution. After 15 days, suspended bacteria increased. It is thus suggested that A. ferrooxidans may directly oxidize galena.

  14. Use of Walnut Shell Powder to Inhibit Expression of Fe2+-Oxidizing Genes of Acidithiobacillus Ferrooxidans

    Yuhui Li

    2016-04-01

    Full Text Available Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe2+ or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD. This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe2+ oxidization and H+ production were evaluated. Second, the chemical constituents of walnut shell were isolated to determine the active ingredient(s. Third, the expression of Fe2+-oxidizing genes and rus operon genes was investigated using real-time polymerase chain reaction. Finally, growth curves were plotted, and a bioleaching experiment was performed to confirm the active ingredient(s in walnut shells. The results indicated that both walnut shell powder and the phenolic fraction exert high inhibitory effects on Fe2+ oxidation and H+ production by A. ferrooxidans cultured in standard 9K medium. The phenolic components exert their inhibitory effects by down-regulating the expression of Fe2+-oxidizing genes and rus operon genes, which significantly decreased the growth of A. ferrooxidans. This study revealed walnut shell powder to be a promising substance for controlling AMD.

  15. Use of Walnut Shell Powder to Inhibit Expression of Fe(2+)-Oxidizing Genes of Acidithiobacillus Ferrooxidans.

    Li, Yuhui; Liu, Yehao; Tan, Huifang; Zhang, Yifeng; Yue, Mei

    2016-01-01

    Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe(2+) or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD). This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe(2+) oxidization and H⁺ production were evaluated. Second, the chemical constituents of walnut shell were isolated to determine the active ingredient(s). Third, the expression of Fe(2+)-oxidizing genes and rus operon genes was investigated using real-time polymerase chain reaction. Finally, growth curves were plotted, and a bioleaching experiment was performed to confirm the active ingredient(s) in walnut shells. The results indicated that both walnut shell powder and the phenolic fraction exert high inhibitory effects on Fe(2+) oxidation and H⁺ production by A. ferrooxidans cultured in standard 9K medium. The phenolic components exert their inhibitory effects by down-regulating the expression of Fe(2+)-oxidizing genes and rus operon genes, which significantly decreased the growth of A. ferrooxidans. This study revealed walnut shell powder to be a promising substance for controlling AMD. PMID:27144574

  16. Use of Walnut Shell Powder to Inhibit Expression of Fe2+-Oxidizing Genes of Acidithiobacillus Ferrooxidans

    Li, Yuhui; Liu, Yehao; Tan, Huifang; Zhang, Yifeng; Yue, Mei

    2016-01-01

    Acidithiobacillus ferrooxidans is a Gram-negative bacterium that obtains energy by oxidizing Fe2+ or reduced sulfur compounds. This bacterium contributes to the formation of acid mine drainage (AMD). This study determined whether walnut shell powder inhibits the growth of A. ferrooxidans. First, the effects of walnut shell powder on Fe2+ oxidization and H+ production were evaluated. Second, the chemical constituents of walnut shell were isolated to determine the active ingredient(s). Third, the expression of Fe2+-oxidizing genes and rus operon genes was investigated using real-time polymerase chain reaction. Finally, growth curves were plotted, and a bioleaching experiment was performed to confirm the active ingredient(s) in walnut shells. The results indicated that both walnut shell powder and the phenolic fraction exert high inhibitory effects on Fe2+ oxidation and H+ production by A. ferrooxidans cultured in standard 9K medium. The phenolic components exert their inhibitory effects by down-regulating the expression of Fe2+-oxidizing genes and rus operon genes, which significantly decreased the growth of A. ferrooxidans. This study revealed walnut shell powder to be a promising substance for controlling AMD. PMID:27144574

  17. Comparative genomic analysis of Acidithiobacillus ferrooxidans strains using the A. ferrooxidans ATCC 23270 whole-genome oligonucleotide microarray.

    Luo, Hailang; Shen, Li; Yin, Huaqun; Li, Qian; Chen, Qijiong; Luo, Yanjie; Liao, Liqin; Qiu, Guanzhou; Liu, Xueduan

    2009-05-01

    Acidithiobacillus ferrooxidans is an important microorganism used in biomining operations for metal recovery. Whole-genomic diversity analysis based on the oligonucleotide microarray was used to analyze the gene content of 12 strains of A. ferrooxidans purified from various mining areas in China. Among the 3100 open reading frames (ORFs) on the slides, 1235 ORFs were absent in at least 1 strain of bacteria and 1385 ORFs were conserved in all strains. The hybridization results showed that these strains were highly diverse from a genomic perspective. The hybridization results of 4 major functional gene categories, namely electron transport, carbon metabolism, extracellular polysaccharides, and detoxification, were analyzed. Based on the hybridization signals obtained, a phylogenetic tree was built to analyze the evolution of the 12 tested strains, which indicated that the geographic distribution was the main factor influencing the strain diversity of these strains. Based on the hybridization signals of genes associated with bioleaching, another phylogenetic tree showed an evolutionary relationship from which the co-relation between the clustering of specific genes and geochemistry could be observed. The results revealed that the main factor was geochemistry, among which the following 6 factors were the most important: pH, Mg, Cu, S, Fe, and Al. PMID:19483787

  18. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.

    Li, Xiaozheng; Mercado, Roel; Kernan, Timothy; West, Alan C; Banta, Scott

    2014-10-01

    Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that is important in biomining and other biotechnological operations. The cells are able to oxidize inorganic iron, but the insolubility and product inhibition by Fe(3+) complicates characterization of these cultures. Here we explore the growth kinetics of A. ferrooxidans in iron-based medium in a pH range from 1.6 to 2.2. It was found that as the pH was increased from 1.6 to 2.0, the maintenance coefficient decreased while both the growth kinetics and maximum cell yield increased in the precipitate-free, low Fe(2+) concentration medium. In higher iron media a similar trend was observed at low pH, but the formation of precipitates at higher pH (2.0) hampered cell growth and lowered the specific growth rate and maximum cell yield. In order to eliminate ferric precipitates, chelating agents were introduced into the medium. Citric acid was found to be relatively non-toxic and did not appear to interfere with iron oxidation at a maximum concentration of 70 mM. Inclusion of citric acid prevented precipitation and A. ferrooxidans growth parameters resumed their trends as a function of pH. The addition of citrate also decreased the apparent substrate saturation constant (KS ) indicating a reduction in the competitive inhibition of growth by ferric ions. These results indicate that continuous cultures of A. ferrooxidans in the presence of citrate at elevated pH will enable enhanced cell yields and productivities. This will be critical as these cells are used in the development of new biotechnological applications such as electrofuel production. PMID:24771134

  19. Comparison Analysis of Coal Biodesulfurization and Coal’s Pyrite Bioleaching with Acidithiobacillus ferrooxidans

    Fen-Fen Hong

    2013-01-01

    Full Text Available Acidithiobacillus ferrooxidans (A. ferrooxidans was applied in coal biodesulfurization and coal’s pyrite bioleaching. The result showed that A. ferrooxidans had significantly promoted the biodesulfurization of coal and bioleaching of coal’s pyrite. After 16 days of processing, the total sulfur removal rate of coal was 50.6%, and among them the removal of pyritic sulfur was up to 69.9%. On the contrary, after 12 days of processing, the coal’s pyrite bioleaching rate was 72.0%. SEM micrographs showed that the major pyrite forms in coal were massive and veinlets. It seems that the bacteria took priority to remove the massive pyrite. The sulfur relative contents analysis from XANES showed that the elemental sulfur (28.32% and jarosite (18.99% were accumulated in the biotreated residual coal. However, XRD and XANES spectra of residual pyrite indicated that the sulfur components were mainly composed of pyrite (49.34% and elemental sulfur (50.72% but no other sulfur contents were detected. Based on the present results, we speculated that the pyrite forms in coal might affect sulfur biooxidation process.

  20. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    Alvaro Banderas

    2013-08-01

    Full Text Available The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS, we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process.

  1. Zinc bioleaching from an iron concentrate using Acidithiobacillus ferrooxidans strain from Hercules Mine of Coahuila, Mexico

    Núñez-Ramírez, Diola Marina; Solís-Soto, Aquiles; López-Miranda, Javier; Pereyra-Alférez, Benito; Rutiaga-Quiñónes, Miriam; Medina-Torres, Luis; Medrano-Roldán, Hiram

    2011-10-01

    The iron concentrate from Hercules Mine of Coahuila, Mexico, which mainly contained pyrite and pyrrhotite, was treated by the bioleaching process using native strain Acidithiobacillus ferrooxidans ( A. ferrooxidans) to determine the ability of these bacteria on the leaching of zinc. The native bacteria were isolated from the iron concentrate of the mine. The bioleaching experiments were carried out in shake flasks to analyze the effects of pH values, pulp density, and the ferrous sulfate concentration on the bioleaching process. The results obtained by microbial kinetic analyses for the evaluation of some aspects of zinc leaching show that the native bacteria A. ferrooxidans, which is enriched with a 9K Silverman medium under the optimum conditions of pH 2.0, 20 g/L pulp density, and 40 g/L FeSO4, increases the zinc extraction considerably observed by monitoring during15 d, i.e., the zinc concentration has a decrease of about 95% in the iron concentrate.

  2. Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage.

    Duquesne, K; Lebrun, S; Casiot, C; Bruneel, O; Personné, J-C; Leblanc, M; Elbaz-Poulichet, F; Morin, G; Bonnefoy, V

    2003-10-01

    Weathering of the As-rich pyrite-rich tailings of the abandoned mining site of Carnoulès (southeastern France) results in the formation of acid waters heavily loaded with arsenic. Dissolved arsenic present in the seepage waters precipitates within a few meters from the bottom of the tailing dam in the presence of microorganisms. An Acidithiobacillus ferrooxidans strain, referred to as CC1, was isolated from the effluents. This strain was able to remove arsenic from a defined synthetic medium only when grown on ferrous iron. This A. ferrooxidans strain did not oxidize arsenite to arsenate directly or indirectly. Strain CC1 precipitated arsenic unexpectedly as arsenite but not arsenate, with ferric iron produced by its energy metabolism. Furthermore, arsenite was almost not found adsorbed on jarosite but associated with a poorly ordered schwertmannite. Arsenate is known to efficiently precipitate with ferric iron and sulfate in the form of more or less ordered schwertmannite, depending on the sulfur-to-arsenic ratio. Our data demonstrate that the coprecipitation of arsenite with schwertmannite also appears as a potential mechanism of arsenite removal in heavily contaminated acid waters. The removal of arsenite by coprecipitation with ferric iron appears to be a common property of the A. ferrooxidans species, as such a feature was observed with one private and three collection strains, one of which was the type strain. PMID:14532077

  3. Bioinformatic prediction of gene functions regulated by quorum sensing in the bioleaching bacterium Acidithiobacillus ferrooxidans.

    Banderas, Alvaro; Guiliani, Nicolas

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinformatic approach was used to infer possible AfeR direct targets based on the particular palindromic features of the AfeR binding site. A set of Hidden Markov Models designed to maintain palindromic regions and vary non-palindromic regions was used to screen for putative binding sites. By annotating the context of each predicted binding site (PBS), we classified them according to their positional coherence relative to other putative genomic structures such as start codons, RNA polymerase promoter elements and intergenic regions. We further used the Multiple EM for Motif Elicitation algorithm (MEME) to further filter out low homology PBSs. In summary, 75 target-genes were identified, 34 of which have a higher confidence level. Among the identified genes, we found afeR itself, zwf, genes encoding glycosyltransferase activities, metallo-beta lactamases, and active transport-related proteins. Glycosyltransferases and Zwf (Glucose 6-phosphate-1-dehydrogenase) might be directly involved in polysaccharide biosynthesis and attachment to minerals by At. ferrooxidans cells during the bioleaching process. PMID:23959118

  4. Immobilization of Arsenite and Ferric Iron by Acidithiobacillus ferrooxidans and Its Relevance to Acid Mine Drainage

    Duquesne, K.; Lebrun, S.; Casiot, C.; Bruneel, O.; Personné, J.-C.; Leblanc, M.; Elbaz-Poulichet, F.; Morin, G.; Bonnefoy, V.

    2003-01-01

    Weathering of the As-rich pyrite-rich tailings of the abandoned mining site of Carnoulès (southeastern France) results in the formation of acid waters heavily loaded with arsenic. Dissolved arsenic present in the seepage waters precipitates within a few meters from the bottom of the tailing dam in the presence of microorganisms. An Acidithiobacillus ferrooxidans strain, referred to as CC1, was isolated from the effluents. This strain was able to remove arsenic from a defined synthetic medium only when grown on ferrous iron. This A. ferrooxidans strain did not oxidize arsenite to arsenate directly or indirectly. Strain CC1 precipitated arsenic unexpectedly as arsenite but not arsenate, with ferric iron produced by its energy metabolism. Furthermore, arsenite was almost not found adsorbed on jarosite but associated with a poorly ordered schwertmannite. Arsenate is known to efficiently precipitate with ferric iron and sulfate in the form of more or less ordered schwertmannite, depending on the sulfur-to-arsenic ratio. Our data demonstrate that the coprecipitation of arsenite with schwertmannite also appears as a potential mechanism of arsenite removal in heavily contaminated acid waters. The removal of arsenite by coprecipitation with ferric iron appears to be a common property of the A. ferrooxidans species, as such a feature was observed with one private and three collection strains, one of which was the type strain. PMID:14532077

  5. Ex-situ bioremediation of U(VI from contaminated mine water using Acidithiobacillus ferrooxidans strains

    Maria eRomero-Gonzalez

    2016-05-01

    Full Text Available The ex-situ bioremoval of U(VI from contaminated water using Acidithiobacillus ferrooxidans strain 8455 and 13538 was studied under a range of pH and uranium concentrations. The effect of pH on the growth of bacteria was evaluated across the range 1.5 – 4.5 pH units. The respiration rate of At. ferrooxidans at different U(VI concentrations was quantified as a measure of the rate of metabolic activity over time using an oxygen electrode. The biosorption process was quantified using a uranyl nitrate solution, U-spiked growth media and U-contaminated mine water. The results showed that both strains of At. ferrooxidans are able to remove U(VI from solution at pH 2.5 – 4.5, exhibiting a buffering capacity at pH 3.5. The respiration rate of the micro-organism was affected at U(VI concentration of 30 mg L-1. The kinetics of the sorption fitted a pseudo-first order equation, and depended on the concentration of U(VI. The KD obtained from the biosorption experiments indicated that strain 8455 is more efficient for the removal of U(VI. A bioreactor designed to treat a solution of 100 mg U(VI L-1 removed at least 50% of the U(VI in water. The study demonstrated that At. ferrooxidans can be used for the ex-situ bioremediation of U(VI contaminated mine water.

  6. RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans.

    Christel, Stephan; Fridlund, Jimmy; Buetti-Dinh, Antoine; Buck, Moritz; Watkin, Elizabeth L; Dopson, Mark

    2016-04-01

    Acidithiobacillus ferrivoransis an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals.Acidithiobacillus ferrivoransobtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing ofAt. ferrivoransRNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by thetetH1gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase (doxDAgenes). However, a lack of heme-binding sites insoxXsuggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase (hdrgenes) rather than sulfur oxygenase reductase (sor). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving thesatgene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknownAt. ferrivoranstetrathionate metabolic pathway that is important in biomining. PMID:26956550

  7. Amenability of low-grade uranium towards column bioleaching by acidithiobacillus ferrooxidans

    R and D studies were carried out at NML using Acidithiobacillus ferrooxidans (Ac.Tf) in column for the bio-recovery of uranium from the low-grade uranium ore containing 0.024% U3O8 of Turamdih mines, Singhbhum. A recovery of 55.48% uranium was obtained in bio-leaching as against ∼ 44.9% in sterile control in 30 days at 1.7 pH in a column containing 2.5kg ore of particle size mainly in the range 5-1mm. In the large scale column, leaching with 80kg ore of particle size ∼ 0.5cm, uranium bio-recovery was found to be 69.8% in comparison to a recovery of 55% in control set at 1.7 pH in 50 days. The uranium recoveries followed indirect leaching mechanism. (author)

  8. Study of Acidithiobacillus ferrooxidans and enzymatic bio-Fenton process-mediated corrosion of copper-nickel alloy.

    Jadhav, U; Hocheng, H

    2016-10-01

    This study presents the corrosion behavior of the copper-nickel (Cu-Ni) alloy in the presence of Acidithiobacillus ferrooxidans (A. ferrooxidans) and glucose oxidase (GOx) enzyme. In both the cases ferric ions played an important role in weight loss and thereby to carry out the corrosion of the Cu-Ni alloy. A corrosion rate of 0.6 (±0.008), 2.11 (±0.05), 3.69 (±0.26), 0.7 (±0.006) and 0.08 (±0.002) mm/year was obtained in 72 h using 9K medium with ferrous sulfate, A. ferrooxidans culture supernatant, A. ferrooxidans cells, GOx enzyme and hydrogen peroxide (H2O2) solution respectively. The scanning electron microscopy (SEM) micrographs showed that a variable extent of corrosion was caused by 9K medium with ferrous sulfate, GOx and A. ferrooxidans cells. An arithmetic average surface roughness (Ra) of 174.78 nm was observed for the control work-piece using optical profilometer. The change in Ra was observed with the treatment of the Cu-Ni alloy using various systems. The Ra for 9K medium with ferrous sulfate, GOx and A. ferrooxidans cells was 374.54, 607.32 and 799.48 nm, respectively, after 24 h. These results suggest that A. ferrooxidans cells were responsible for more corrosion of the Cu-Ni alloy than other systems used. PMID:26930447

  9. Column bioleaching copper and its kinetics of waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans.

    Chen, Shu; Yang, Yuankun; Liu, Congqiang; Dong, Faqin; Liu, Bijun

    2015-12-01

    Application of bioleaching process for metal recovery from electronic waste has received an increasing attention in recent years. In this work, a column bioleaching of copper from waste printed circuit boards (WPCBs) by Acidithiobacillus ferrooxidans has been investigated. After column bioleaching for 28d, the copper recovery reached at 94.8% from the starting materials contained 24.8% copper. Additionally, the concentration of Fe(3+) concentration varied significantly during bioleaching, which inevitably will influence the Cu oxidation, thus bioleaching process. Thus the variation in Fe(3+) concentration should be taken into consideration in the conventional kinetic models of bioleaching process. Experimental results show that the rate of copper dissolution is controlled by external diffusion rather than internal one because of the iron hydrolysis and formation of jarosite precipitates at the surface of the material. The kinetics of column bioleaching WPCBs remains unchanged because the size and morphology of precipitates are unaffected by maintaining the pH of solution at 2.25 level. In bioleaching process, the formation of jarosite precipitate can be prevented by adding dilute sulfuric acid and maintaining an acidic condition of the leaching medium. In such way, the Fe(2)(+)-Fe(3+) cycle process can kept going and create a favorable condition for Cu bioleaching. Our experimental results show that column Cu bioleaching from WPCBs by A. ferrooxidans is promising. PMID:26196406

  10. Immobilization of Acidithiobacillus ferrooxidans on Cotton Gauze for the Bioleaching of Waste Printed Circuit Boards.

    Nie, Hongyan; Zhu, Nengwu; Cao, Yanlan; Xu, Zhiguo; Wu, Pingxiao

    2015-10-01

    The bioleaching parameters of metal concentrates from waste printed circuit boards by Acidithiobacillus ferrooxidans immobilized on cotton gauze in a two-step reactor were investigated in this study. The results indicated that an average ferrous iron oxidation rate of 0.54 g/(L·h) and a ferrous iron oxidation ratio of 96.90 % were obtained after 12 h at aeration rate of 1 L/min in bio-oxidation reactor. After 96 h, the highest leaching efficiency of copper reached 91.68 % under the conditions of the content of the metal powder 12 g/L, the retention time 6 h, and the aeration rate 1 L/min. The bioleaching efficiency of copper could be above 91.12 % under repeated continuous batch operation. Meanwhile, 95.32 % of zinc, 90.32 % of magnesium, 86.31 % of aluminum, and 59.07 % of nickel were extracted after 96 h. All the findings suggested that the recovery of metal concentrates from waste printed circuit boards via immobilization of A. ferrooxidans on cotton gauze was feasible. PMID:26239442

  11. Cr and Ni recovery during bioleaching of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans.

    Rastegar, S O; Mousavi, S M; Shojaosadati, S A

    2014-09-01

    This study determined the optimal conditions required to attain maximum metal recovery in the bioleaching process of dewatered metal-plating sludge using Acidithiobacillus ferrooxidans (A. ferrooxidans). Adaptation of this strain was carried up to 1% (w/v) of the sample. Three factors including initial pH, initial Fe(3+) concentration and pulp density were selected as the effective factors and were optimized using a central composite design of response surface methodology. An initial pH of 1, pulp density of 9 g/l and initial Fe(3+) concentration of 1g/l were determined to be optimum values by the statistical models. The highest extractions for Cr and Ni under optimal conditions were 55.6% and 58.2%, respectively. Bioleaching kinetics was investigated using a modified shrinking core model to better understand the mechanism of the leaching reaction. The model predictions indicate that the diffusion step controlled the overall dissolution kinetics and is the rate controlling step. PMID:24971945

  12. Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis

    Jedlicki Eugenia

    2003-12-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is a gamma-proteobacterium that lives at pH2 and obtains energy by the oxidation of sulfur and iron. It is used in the biomining industry for the recovery of metals and is one of the causative agents of acid mine drainage. Effective tools for the study of its genetics and physiology are not in widespread use and, despite considerable effort, an understanding of its unusual physiology remains at a rudimentary level. Nearly complete genome sequences of A. ferrooxidans are available from two public sources and we have exploited this information to reconstruct aspects of its sulfur metabolism. Results Two candidate mechanisms for sulfate uptake from the environment were detected but both belong to large paralogous families of membrane transporters and their identification remains tentative. Prospective genes, pathways and regulatory mechanisms were identified that are likely to be involved in the assimilation of sulfate into cysteine and in the formation of Fe-S centers. Genes and regulatory networks were also uncovered that may link sulfur assimilation with nitrogen fixation, hydrogen utilization and sulfur reduction. Potential pathways were identified for sulfation of extracellular metabolites that may possibly be involved in cellular attachment to pyrite, sulfur and other solid substrates. Conclusions A bioinformatic analysis of the genome sequence of A. ferrooxidans has revealed candidate genes, metabolic process and control mechanisms potentially involved in aspects of sulfur metabolism. Metabolic modeling provides an important preliminary step in understanding the unusual physiology of this extremophile especially given the severe difficulties involved in its genetic manipulation and biochemical analysis.

  13. Molecular characterization ofAcidithiobacillus ferrooxidans strains isolated from different environments by three PCR-based methods

    吴学玲; 刘莉莉; 张真真; 刘新星; 邓凡凡

    2015-01-01

    PCR-based DNA fingerprinting, REP-PCR (repetitive element PCR), RAPD (randomly amplified polymorphic DNA) and 16S rDNA sequence analyses were used to characterize 23Acidithiobacillus ferrooxidansstrains isolated from different environments. (GTG)5 and BOXA1R primer were selected for REP-PCR. Twenty arbitrary primers were used for RAPD to acquire DNA profiles fromA. ferrooxidans. Both RAPD and REP-PCR produce complex banding patterns and show good discriminatory ability in differentiating closely related strains ofA. ferrooxidans. The strains are clustered into 4 or 5 major groups and reveal genomic diversity using (GTG)5-PCR, BOX-PCR and RAPD analysis. Phylogenetic tree based on 16S rDNA sequences of 23 strains and related strains shows that they are clustered into two distinct groups. Twelve strains are highly related to a newAcidithiobacillus namedAcidithiobacillus ferrivorans. The results indicate that PCR-based methods are effective in revealing genetic diversity among A. ferrooxidans.

  14. Toxicity of select organic acids to the slightly thermophilic acidophile Acidithiobacillus caldus.

    Aston, John E; Apel, William A; Lee, Brady D; Peyton, Brent M

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 microM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 microM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids. PMID:18803441

  15. Synthesis of argentojarosite with simulated bioleaching solutions produced by Acidithiobacillus ferrooxidans.

    Mukherjee, Chiranjit; Jones, F Sandy; Bigham, Jerry M; Tuovinen, Olli H

    2016-09-01

    Argentojarosite (AgFe3(SO4)2(OH)6) is formed as a secondary phase in Ag-catalyzed bioleaching of chalcopyrite (CuFeS2), but to date very little is known about the paragenesis or characteristics of this silver-containing compound. The purpose of this study was to synthesize argentojarosite via biological oxidation of 120mM ferrous sulfate by Acidithiobacillus ferrooxidans. Because of its toxicity to A. ferrooxidans, Ag(+) (as AgNO3) was added to spent culture media (pH2) after complete oxidation of ferrous sulfate. Schwertmannite (ideally Fe8O8(OH)6(SO4)) was precipitated during the iron oxidation phase, and subsequent Ag(+) addition resulted in the formation of argentojarosite. Contact time (8h, 5d, and 14d) and Ag(+) concentration (0, 5, 20, and 40mM) were used as variables in these experiments. Synthesis of argentojarosite, schwertmannite and other mineral phases was confirmed through X-ray diffraction analysis. Additional analyses of solid-phase oxidation products included elemental composition, color and specific surface area. The sample synthesized in the presence of 40mM Ag(+) and with 14d contact time yielded an X-ray diffraction pattern of well crystallized argentojarosite, and its elemental composition closely matched the calculated Ag, Fe, and S contents of ideal argentojarosite. The color and surface area of the remaining samples were influenced by the presence of residual schwertmannite. This phase remained stable over the time course of 14d when no Ag(+) was present in the system. When equilibrations were extended to 42d, partial conversion of reference schwertmannite to goethite was noted in the absence of Ag. In the presence of 20mM or 40mM Ag over the same time course, some formation of argentojarosite was also noted. In this case, schwertmannite was the only source of Fe and SO4 for argentojarosite formation. PMID:27207050

  16. The environmental context of Acidithiobacillus ferrooxidans and its potential role as an ecosystem engineer in sulphidic mine waste

    Ebenaa, Gustav

    2001-06-01

    Microorganisms are the causative agent of the environmental problems since they catalyse the weathering of the (sulphidic) waste. The chemical oxidation alone is not fast enough to create any severe environmental problems. Acidithiobacillus ferrooxidans is thought to be a key organism in weathering of sulphide minerals. A. ferrooxidans is affected by several more or less abiotic factors. The influence of temperature, pH and nutrient deficiency as potentially limiting factors for the activity of A. ferrooxidans has been investigated. It seems that temperature has less influence on its activity, but rather reflects the origin of the bacterial isolate. An alkaline pH seems enough to hinder growth and activity. The nutrients do not seem to be a limiting factor in the studied environment. The possible regulation of the activity of A. ferrooxidans is therefore a way to, at least partly, mitigate the environmental impact from mine waste. Waste from the mining industry is the largest waste problem in Sweden. With amounts over 600 million tonnes one could easily imagine the tremendous cost involved in the abatement. The MiMi-programme, with researchers from several relevant fields, has as its aim to evaluate present and to find alternative techniques to mitigate the environmental impact from mine waste. The understanding of A. ferrooxidans and its role as an ecosystem engineer is essential both in evaluating present techniques and even more so in finding alternative abatement techniques for sulphidic mine waste.

  17. Biosorption of inorganic and organic arsenic from aqueous solution by Acidithiobacillus ferrooxidans BY-3

    The traditional techniques for removing low concentration arsenic are unsuitable. The biosorption characteristics of arsenite (iAsIII) and monomethyl arsonate (MMAV) from aqueous solution by Acidithiobacillus ferrooxidans BY-3 (At. f BY-3) were investigated as a function of pH, contact time, initial arsenic concentration, biomass dosage and temperature in this study. Results indicated that Langmuir isotherm model fitted better than Freundlich model to the equilibrium data. Analysis of kinetic data showed that the biosorption processes of both iAsIII and MMAV involved pseudo-second-order kinetics. The thermodynamic parameters such as ΔGo, ΔHo and ΔSo of the biosorption process showed that the adsorption of iAsIII and MMAV onto At. f BY-3 was feasible, spontaneous and endothermic under the examined conditions. The competitive biosorption of iAsIII and MMAV in binary mixture system was evaluated, and the results indicated that At. f BY-3 favored MMAV biosorption. Fourier-transform infrared spectroscopy (FT-IR) showed -OH and -NH groups were involved in the biosorption process.

  18. Homology modeling and evolutionary trace analysis of superoxide dismutase from extremophile Acidithiobacillus ferrooxidans

    2007-01-01

    The gene sod in Acidithiobacillus ferrooxidans may play a crucial role in its tolerance to the extremely acidic, toxic and oxidative environment of bioleaching. For insight into the anti-toxic mechanism of the bacteria, a three-dimensional (3D) molecular structure of the protein encoded by this gene was built by homology modeling techniques, refined by molecular dynamics simulations, assessed by PROFILE-3D and PROSTAT programs and its key residues were further detected by evolutionary trace analysis. Through these procedures, some trace residues were identified and spatially clustered. Among them, the residues of Asn38, Gly103 and Glu161 are randomly scattered throughout the mapped structure; interestingly, the other residues are all distinctly clustered in a subgroup near Fe atom. From these results, this gene can be confirmed at 3D level to encode the Fe-depending superoxide dismutase and subsequently play an anti-toxic role. Furthermore, the detected key residues around Fe binding site can be conjectured to be directly responsible for Fe binding and catalytic function.

  19. Full structure building and docking of NifS from extremophile Acidithiobacillus ferrooxidans

    LIU Yuan-dong; QIU Guan-zhou; WANG Hai-dong; JIANG Ying; ZHANG Cheng-gui; XIA Le-xia

    2008-01-01

    The gene iscS-2 from extremophile Acidithiobacillus ferrooxidans may play a crucial role in nitrogenase maturation. To investigate the protein encoded by this gene, a reliable integral three-dimensional molecular structure was built. The obtained structure was further used to search binding sites, carry out the flexible docking with cofactor pyridoxal 5′-phosphate(PLP) and substrate cysteine, and identify its key residues. The docking results of PLP reveal that the residues of Lys203, His100, Thr73, Ser200, His202, Asp177 and Gln180 have large interaction energies and/or hydrogen bonds fixation with PLP. The docking results of cysteine show that the amino group in cysteine is very near His100, Lys203 and PLP, and the interaction energies for cysteine with them are very big. These identified residues are in line with the experimental facts of NifS from other sources. Moreover, the four residues of Asn152, Val179, Ala102 and Met148 in the PLP docking and the two residues of Lys208 and Ala102 in the cysteine docking also have large interaction energies, which are fitly conserved in NifS from all kinds of sources but have not been identified before. According to these results, this gene encodes NifS protein, and the substrate cysteine can be effectively recruited into the active site. Furthermore, all of the above detected key residues are directly responsible for the binding and/or catalysis of PLP and cysteine.

  20. Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: Oxygen and sulfur isotope fractionation

    Thurston, R.S.; Mandernack, K.W.; Shanks, Wayne C., III

    2010-01-01

    Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (??18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ?? 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate-water oxygen isotope fractionation, ??18OSO4-H2O, of ~ 3.8??? for the anaerobic experiments. Aerobic oxidation produced apparent ??SO4-H2O values (6.4???) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. ??34SSO4 values are ~ 4??? lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in ??34SSO4 of ~- 1.5 ?? 0.2??? was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions. ?? 2009 Elsevier B.V.

  1. Fate of extracellular polymeric substances of anaerobically digested sewage sludge during pre-dewatering conditioning with Acidithiobacillus ferrooxidans culture.

    Murugesan, Kumarasamy; Ravindran, Balasubramani; Selvam, Ammaiyappan; Kurade, Mayur B; Yu, Shuk-Man; Wong, Jonathan W C

    2016-10-01

    This study investigated the fate of extracellular polymeric substances (EPS) of anaerobically digested saline sewage sludge during its preconditioning. Sludge was conditioned with Acidithiobacillus ferrooxidans (AF) culture for 24h in the presence and absence of Fe(2+) as an energy substrate. pH decreased from 7.24 to 3.12 during sludge conditioning process. The capillary suction time (CST) of conditioned sludge significantly decreased to 94% as compared with control within 4h of conditioning with or without Fe(2+), indicating a significant (P<0.001) improvement in sludge dewaterability. A noticeable decrease in extractable EPS was observed in conditioned sludge. The EPS contents showed a significant negative correlation with dewaterability of sludge (P<0.05). The results suggest that bioacidification treatment using A. ferrooxidans effectively improved sludge dewaterability through modification of sludge EPS. PMID:27040507

  2. Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes: case study with the extremophile Acidithiobacillus ferrooxidans

    Holmes David S

    2009-06-01

    Full Text Available Abstract Background Normalization is a prerequisite for accurate real time PCR (qPCR expression analysis and for the validation of microarray profiling data in microbial systems. The choice and use of reference genes that are stably expressed across samples, experimental conditions and designs is a key consideration for the accurate interpretation of gene expression data. Results Here, we evaluate a carefully selected set of reference genes derived from previous microarray-based transcriptional profiling experiments performed on Acidithiobacillus ferrooxidans and identify a set of genes with minimal variability under five different experimental conditions that are frequently used in Acidithiobacilli research. Suitability of these and other previously reported reference genes to monitor the expression of four selected target genes from A. ferrooxidans grown with different energy sources was investigated. Utilization of reference genes map, rpoC, alaS and era results in improved interpretation of gene expression profiles in A. ferrooxidans. Conclusion This investigation provides a validated set of reference genes for studying A. ferrooxidans gene expression under typical biological conditions and an initial point of departure for exploring new experimental setups in this microorganism and eventually in other closely related Acidithiobacilli. The information could also be of value for future transcriptomic experiments in other bacterial systems.

  3. Analysis of gene expression provides insights into the mechanism of cadmium tolerance in Acidithiobacillus ferrooxidans.

    Chen, Minjie; Li, Yanjun; Zhang, Li; Wang, Jianying; Zheng, Chunli; Zhang, Xuefeng

    2015-02-01

    Acidithiobacillus ferrooxidans plays a critical role in metal solubilization in the biomining industry, and occupies an ecological niche characterized by high acidity and high concentrations of toxic heavy metal ions. In order to investigate the possible metal resistance mechanism, the cellular distribution of cadmium was tested. The result indicated that Cd(2+) entered the cells upon initial exposure resulting in increased intracellular concentrations, followed by its excretion from the cells during subsequent growth and adaptation. Sequence homology analyses were used to identify 10 genes predicted to participate in heavy metal homeostasis, and the expression of these genes was investigated in cells cultured in the presence of increasing concentrations of toxic divalent cadmium (Cd(2+)). The results suggested that one gene (cmtR A.f ) encoded a putative Cd(2+)/Pb(2+)-responsive transcriptional regulator; four genes (czcA1 A.f , czcA2 A.f , czcB1 A.f ; and czcC1 A.f ) encoded heavy metal efflux proteins for Cd(2+); two genes (cadA1 A.f and cadB1 A.f ) encoded putative cation channel proteins related to the transport of Cd(2+). No significant enhancement of gene expression was observed at low concentrations of Cd(2+) (5 mM) and most of the putative metal resistance genes were up-regulated except cmtR A.f , cadB3 A.f ; and czcB1 A.f at higher concentrations (15 and 30 mM) according to real-time polymerase chain reaction. A model was developed for the mechanism of resistance to cadmium ions based on homology analyses of the predicted genes, the transcription of putative Cd(2+) resistance genes, and previous work. PMID:25344309

  4. Homology modeling and docking studies of IscS from extremophile Acidithiobacillus ferrooxidans

    2007-01-01

    The gene iscS-3 from Acidithiobacillus ferrooxidans may play a central role in the delivery of sulfur to a variety of metabolic pathways in this organism. For insight into the sulfur metabolic mechanism of the bacteria, an integral three-dimensional (3D) molecular structure of the protein encoded by this gene was built by homology modeling techniques, refined by molecular dynamics simulations, assessed by PROFILE-3D and PROSTAT programs and further used to search bind sites, carry out flexible docking with cofactor pyridoxal 5'-phosphate(PLP) and substrate cysteine and hereby detect its key residues. Through these procedures, the detail conformations of PLP-IscS(P-I) and cysteine-PLP-IscS(C-P-I) complexes were obtained. In P-I complex, the residues of Lys208, His106, Thr78, Ser205, His207, Asp182 and Gln185 have large interaction energies and/or hydrogen bonds fixation with PLP. In C-P-I complex, the amino group in cysteine is very near His106, Lys208 and PLP, the interaction energies for cysteine with them are very high. The above results are well consistent with those experimental facts of the homologues from other sources. Interestingly, the four residues of Glu105, Glu79, Ser203 and His180 in P-I docking and the residue of Lys213 in C-P-I docking also have great interaction energies, which are fitly conservation in IscSs from all kinds of sources but have not been identified before. From these results, this gene can be confirmed at 3D level to encode the iron-sulfur cluster assembly protein lscS and subsequently play a sulfur traffic role. Furthermore, the substrate cysteine can be presumed to be effectively recruited into the active site. Finally, the above detected key residues can be conjectured to be directly responsible for the bind and/or catalysis of PLP and cysteine.

  5. Occurrence of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in uranium mine-Caldas uranium mining and extraction plant, Brazil (CUMEP)

    The sulfated minerals present in mining areas may cause serious environmental problems due to the action of chemolithotrophic bacteria from genus Acithiobacillus, represented mainly by Acithiobacillus ferrooxidans and Acithiobacillus thiooxidans. These microorganisms are able to oxidize mineral sulfates, elementary sulfur and ferrous ion (A. ferrooxidans), as well are capable of mobilizing radionuclide as uranium to the environment. In this context, this study aimed at investigating the occurrence and the fluctuation of A. ferrooxidans and A. thiooxidans populations within the mine effluents, tailing dam and waste rocks of the Caldas Uranium Mining arid Extraction Plant (CUMEP) in Minas Gerais State - Brazil. Samples from 16 sites were evenly taken monthly in the CUMEP, during 28 months. The oxi-reduction potential, pH and temperature values were determined at the Radioecology Laboratory. The Most Probable Number technique was applied using a series of five tubes for selective counting of A. ferrooxidans and A. thiooxidans. Each sample was submitted to serial dilutions using Tween 80 and sterilized water (pH=2.0) and subsequently transferred into assay tubes containing T and K with ferrous ion and also elementary sulfur, as energy source, for detection of A. ferrooxidans and A. thiooxidans, respectively. Populations of A. ferrooxidans and A. thiooxidans presented seasonal quantitative fluctuations at the different studied sites. A. ferrooxidans showed higher or equal frequency to that observed for A. thiooxidans; as consequence, they were considered the predominant bacteria in this environment. In the majority of the sites, the highest values for the frequency and counting of A. ferrooxidans and A. thiooxidans were observed during the rainy period (October to March). The relative seasonal behavior when several variables are evaluated simultaneously indicated that, due to the high values of oxi-reduction potential, the low values of pH, the detection of the highest

  6. Estudo da oxidação dos sulfetos sintéticos molibdenita (MoS2) e covelita (CuS) por Acidithiobacillus ferrooxidans via respirometria celular Oxidation study of the synthetic sulfides molybdenite (MoS2) and covellite (CuS) by Acidithiobacillus ferrooxidans using respirometric experiments

    Wilmo E. Francisco Junior; Denise Bevilaqua; Oswaldo Garcia Júnior

    2009-01-01

    This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry...

  7. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans

    López Alejandro

    2004-10-01

    Full Text Available Abstract Background Bioleaching is a process that has been used in the past in mineral pretreatment of refractory sulfides, mainly in the gold, copper and uranium benefit. This technology has been proved to be cheaper, more efficient and environmentally friendly than roasting and high pressure moisture heating processes. So far the most studied microorganism in bioleaching is Acidithiobacillus ferrooxidans. There are a few studies about the benefit of metals of low value through bioleaching. From all of these, there are almost no studies dealing with complex minerals containing arsenopyrite (FeAsS. Reduction and/or elimination of arsenic in these ores increase their value and allows the exploitation of a vast variety of minerals that today are being underexploited. Results Arsenopyrite was totally oxidized. The sum of arsenic remaining in solution and removed by sampling represents from 22 to 33% in weight (yield of the original content in the mineral. The rest of the biooxidized arsenic form amorphous compounds that precipitate. Galena (PbS was totally oxidized too, anglesite (PbSO4 formed is virtually insoluble and remains in the solids. The influence of seven factors in a batch process was studied. The maximum rate of arsenic dissolution in the concentrate was found using the following levels of factors: small surface area of particle exposure, low pulp density, injecting air and adding 9 K medium to the system. It was also found that ferric chloride and carbon dioxide decreased the arsenic dissolution rate. Bioleaching kinetic data of arsenic solubilization were used to estimate the dilution rate for a continuous culture. Calculated dilution rates were relatively small (0.088–0.103 day-1. Conclusion Proper conditions of solubilization of arsenic during bioleaching are key features to improve the percentage (22 to 33% in weight of arsenic removal. Further studies are needed to determine other factors that influence specifically the

  8. Biooxidación de concentrados de arsenopirita por Acidithiobacillus ferrooxidans en erlenmeyer agitados

    Juan David Ospina

    2012-03-01

    Full Text Available Normal 0 21 false false false ES-CO X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Título en ingles: Biooxidation of arsenopyrite concentrates by Acidithiobacillus ferrooxidans in shake flasks Resumen Se evaluó el proceso de biooxidación de concentrados de arsenopirita por A. ferrooxidans ATCC 23270, previa adaptación de los microorganismos al mineral y dos tamaños de partícula, pasante malla Tyler 200 (~75μm y 325 (~45μm. También, se determinó el grado de concentración del mineral mediante DRX y MOLPP/LR, bajo norma ASTM D 2799 de 2009. Los microorganismos fueron adaptados mediante disminución gradual, en etapas sucesivas, de sulfato ferroso y posterior aumento en el contenido de arsenopirita. Finalmente, se llevó a cabo el proceso de biooxidación del mineral sin adición de Fe2+. Después de treinta días de proceso, la disolución de arsénico para la malla Tyler 200 fue de 7550 mgL-1 (18,7% y para la malla Tyler 325 fue de 2850 mgL-1 (7,1%. Por otra parte, la curva de crecimiento bacteriano mostró que entre los días 6 y 21 de proceso la población bacteriana promedio fue de 1,70x108 cel.mL‐1 y de 8,00x107 cel.mL‐1 para las mallas Tyler 200 y 325, respectivamente. Por lo tanto, el tamaño de partícula jugó un papel fundamental en la cinética de adaptación de

  9. Effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans during chalcopyrite bioleaching

    Yu, Run-lan; Liu, Jing; Tan, Jian-xi; Zeng, Wei-min; Shi, Li-juan; Gu, Guo-hua; Qin, Wen-qing; Qiu, Guan-zhou

    2014-04-01

    The pH value plays an important role in the bioleaching of sulphide minerals. The effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans was investigated in different phases of bacterial growth during chalcopyrite bioleaching. It is found that extracellular polysaccharide secretion from the cells attached to chalcopyrite is more efficiently than that of the free cells in the bioleaching solution. Three factors, pH values, the concentration of soluble metal ions, and the bacterial growth and metabolism, affect extracellular polysaccharide secretion in the free cells, and are related to the bacterial growth phase. Extracellular polysaccharide secretion from the attached cells is mainly dependent on the pH value of the bacterial culture.

  10. Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part I: Flask experiments

    S.M. Mousavi; S. Yaghmaei; F. Salimi; A. Jafari [Sharif University of Technology, Tehran (Iran). Department of Chemical and Petroleum Engineering

    2006-12-15

    Biological oxidation of ferrous sulfate by Acidithiobacillus ferrooxidans has proved to be a significant step in the bioleaching of sulfide minerals and the treatment of acid mine drainage. The same bioreaction also has beneficial applications in the desulphurization of coal and removal of hydrogen sulfide from gaseous effluents. In this research, the effects of some process variables such as pH, temperature, elemental sulfur, amount of initial ferrous and magnesium ions on oxidation of ferrous sulfate by a native A. ferrooxidans, which was isolated from a chalcopyrite concentrate, were investigated. All experiments carried out in shake flasks at 33{sup o}C that was obtained as optimum temperature for the specific bacterial growth rate. The optimum range of pH for the maximum growth of the cells and effective biooxidation of ferrous sulfate varied from 2 to 2.3. The maximum biooxidation rate was achieved 1.2 g/L h in a culture initially containing 20.2 g/L Fe{sup 2+}. Mg{sup 2+} from 20 mg/L to 120 mg/L did not have any effect on the efficiency of the process, while the presence of elemental sulfur had negative effect on the biooxidation. 16 refs., 8 figs.

  11. The Chemolithoautotroph Acidithiobacillus ferrooxidans Can Survive under Phosphate-Limiting Conditions by Expressing a C-P Lyase Operon That Allows It To Grow on Phosphonates▿ †

    Vera, Mario; Pagliai, Fernando; Guiliani, Nicolas; Jerez, Carlos A.

    2008-01-01

    The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans is of great importance in biomining operations. During the bioleaching of ores, microorganisms are subjected to a variety of environmental stresses and to the limitations of some nutrients, such as inorganic phosphate (Pi), which is an essential component for all living cells. Although the primary source of phosphorus for microorganisms is Pi, some bacteria are also able to metabolize Pi esters (with a C-O-P bond) and phosphon...

  12. Characterization of a novel thiosulfate dehydrogenase from a marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH.

    Sharmin, Sultana; Yoshino, Eriko; Kanao, Tadayoshi; Kamimura, Kazuo

    2016-01-01

    A marine acidophilic sulfur-oxidizing bacterium, Acidithiobacillus thiooxidans strain SH, was isolated to develop a bioleaching process for NaCl-containing sulfide minerals. Because the sulfur moiety of sulfide minerals is metabolized to sulfate via thiosulfate as an intermediate, we purified and characterized the thiosulfate dehydrogenase (TSD) from strain SH. The enzyme had an apparent molecular mass of 44 kDa and was purified 71-fold from the solubilized membrane fraction. Tetrathionate was the product of the TSD-oxidized thiosulfate and ferricyanide or ubiquinone was the electron acceptor. Maximum enzyme activity was observed at pH 4.0, 40 °C, and 200 mM NaCl. To our knowledge, this is the first report of NaCl-stimulated TSD activity. TSD was structurally different from the previously reported thiosulfate-oxidizing enzymes. In addition, TSD activity was strongly inhibited by 2-heptyl-4-hydroxy-quinoline N-oxide, suggesting that the TSD is a novel thiosulfate:quinone reductase. PMID:26393925

  13. Construction of conjugative gene transfer system between E. coli and moderately thermophilic, extremely acidophilic Acidithiobacillus caldus MTH-04.

    Liu, Xiangmei; Lin, Jianqun; Zhang, Zheng; Bian, Jiang; Zhao, Qing; Liu, Ying; Lin, Jianqiang; Yan, Wangming

    2007-01-01

    A genetic transfer system for introducing foreign genes to biomining microorganisms is urgently needed. Thus, a conjugative gene transfer system was investigated for a moderately thermophilic, extremely acidophilic biomining bacterium, Acidithiobacillus caldus MTH-04. The broad-host-range IncP plasmids RP4 and R68.45 were transferred directly into A. caldus MTH-04 from Escherichia coli by conjugation at relatively high frequencies. Additionally the broad-host-range IncQ plasmids pJRD215, pVLT33, and pVLT35 were also transferred into A. caldus MTH-04 with the help of plasmid RP4 or strains with plasmid RP4 integrated into their chromosome, such as E. coli SM10. The Km(r) and Sm(r) selectable markers from these plasmids were successfully expressed in A. caldus MTH-04. Futhermore, the IncP and IncQ plasmids were transferred back into E. coli cells from A. caldus MTH-04, thereby confirming the initial transfer of these plasmids from E. coli to A. caldus MTH-04. All the IncP and IncQ plasmids studied were stable in A. caldus MTH-04. Consequently, this development of a conjugational system for A. caldus MTH-04 will greatly facilitate its genetic study. PMID:18051368

  14. Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite, chalcopyrite, low-grade ore and quartz in a packed column reactor.

    Africa, Cindy-Jade; van Hille, Robert P; Harrison, Susan T L

    2013-02-01

    The attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum spp. grown on ferrous medium or adapted to a pyrite mineral concentrate to four mineral substrata, namely, chalcopyrite and pyrite concentrates, a low-grade chalcopyrite ore (0.5 wt%) and quartzite, was investigated. The quartzite represented a typical gangue mineral and served as a control. The attachment studies were carried out in a novel particle-coated column reactor. The saturated reactor containing glass beads, which were coated with fine mineral concentrates, provided a quantifiable surface area of mineral concentrate and maintained good fluid flow. A. ferrooxidans and Leptospirillum spp. had similar attachment characteristics. Enhanced attachment efficiency occurred with bacteria grown on sulphide minerals relative to those grown on ferrous sulphate in an ore-free environment. Selective attachment to sulphide minerals relative to gangue materials occurred, with mineral adapted cultures attaching to the minerals more efficiently than ferrous grown cultures. Mineral-adapted cultures showed highest levels of attachment to pyrite (74% and 79% attachment for A. ferrooxidans and L. ferriphilum, respectively). This was followed by attachment of mineral-adapted cultures to chalcopyrite (63% and 58% for A. ferrooxidans and L. ferriphilum, respectively). A. ferrooxidans and L. ferriphilum exhibited lower levels of attachment to low-grade ore and quartz relative to the sulphide minerals. PMID:22410741

  15. Estudo da oxidação dos sulfetos sintéticos molibdenita (MoS2 e covelita (CuS por Acidithiobacillus ferrooxidans via respirometria celular Oxidation study of the synthetic sulfides molybdenite (MoS2 and covellite (CuS by Acidithiobacillus ferrooxidans using respirometric experiments

    Wilmo E. Francisco Junior

    2009-01-01

    Full Text Available This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe3+ did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations.

  16. Acidithiobacillus ferriphilus sp. nov., a facultatively anaerobic iron- and sulfur-metabolizing extreme acidophile.

    Falagán, Carmen; Johnson, D Barrie

    2016-01-01

    The genus Acidithiobacillus includes three species that conserve energy from the oxidation of ferrous iron, as well as reduced sulfur, to support their growth. Previous work, based on multi-locus sequence analysis, identified a fourth group of iron- and sulfur-oxidizing acidithiobacilli as a potential distinct species. Eleven strains of 'Group IV' acidithiobacilli, isolated from different global locations, have been studied. These were all shown to be obligate chemolithotrophs, growing aerobically by coupling the oxidation of ferrous iron or reduced sulfur (but not hydrogen) to molecular oxygen, or anaerobically by the oxidation of reduced sulfur coupled to ferric iron reduction. All strains were mesophilic, although some were also psychrotolerant. Strain variation was also noted in terms of tolerance to extremely low pH and to elevated concentrations of transition metals. One strain was noted to display far greater tolerance to chloride than reported for other iron-oxidizing acidithiobacilli. All of the strains were able to catalyse the oxidative dissolution of pyrite and, on the basis of some of the combined traits of some of the strains examined, it is proposed that these may have niche roles in commercial mineral bioprocessing operations, such as for low temperature bioleaching of polysulfide ores in brackish waters. The name Acidithiobacillus ferriphilus sp. nov. is proposed to accommodate the strains described, with the type strain being M20T ( = DSM 100412T = JCM 30830T). PMID:26498321

  17. Effects of pyrite bioleaching solution of Acidithiobacillus ferrooxidans on viability, differentiation and mineralization potentials of rat osteoblasts.

    Zhou, Jian; Chen, Ke-Ming; Zhi, De-Juan; Xie, Qin-Jian; Xian, Cory J; Li, Hong-Yu

    2015-12-01

    Iron pyrite, an important component of traditional Chinese medicine, has a poor solubility, bioavailability, and patient compliance due to a high dose required and associated side effects, all of which have limited its clinical applications and experimental studies on its action mechanisms in improving fracture healing. This study investigated Acidithiobacillus ferrooxidans (A.f)-bioleaching of two kinds of pyrites and examined bioactivities of the derived solutions in viability and osteogenic differentiation in rat calvarial osteoblasts. A.f bioleaching improved element contents (Fe, Mn, Zn, Cu, and Se) in the derived solutions and the solutions concentration-dependently affected osteoblast viability and differentiation. While the solutions had no effects at low concentrations and inhibited the osteoblast alkaline phosphatase (ALP) activity at high concentrations, they improved ALP activity at their optimal concentrations. The improved osteoblast differentiation and osteogenic function at optimal concentrations were also revealed by levels of ALP cytochemical staining, calcium deposition, numbers and areas of mineralized nodules formed, mRNA and protein expression levels of osteogenesis-related genes (osteocalcin, Bmp-2, Runx-2, and IGF-1), and Runx-2 nuclear translocation. Data from this study will be useful in offering new strategies for improving pyrite bioavailability and providing a mechanistic explanation for the beneficial effects of pyrite in improving bone healing. PMID:26283321

  18. Adaptación de una cepa compatible con Acidithiobacillus ferrooxidans sobre concentrados de calcopirita (CuFeS2, esfalerita (ZnS y galena (PbS

    E Mejía

    2011-08-01

    Full Text Available Adaptation of a strain Acidithiobacillus ferrooxidans compatible on concentrates of chalcopyrite (CuFeS2, sphalerite (ZnS and galena (PbSRESUMENEn este estudio se evaluó la adaptación de una cepa compatible con Acidithiobacillus ferrooxidans a altas densidades de pulpa de calcopirita, esfalerita y galena, con dos distribuciones de tamaño de partícula, -200 y -325 serie Tyler de tamices. Los microorganismos fueron adaptados por la disminución gradual de la fuente principal de energía, sulfato ferroso, y el aumento en el contenido de mineral, para finalmente realizar un subcultivo sin la adición de fuente de energía externa. La realización de subcultivos en serie resultó ser una estrategia eficaz para la adaptación a altas densidades de pulpa de esfalerita, calcopirita y galena indicando que el protocolo empleado es adecuado. Los resultados muestran que la cepa compatible con Acidithiobacillus ferrooxidans es más resistente a altas concentraciones de esfalerita, seguido por calcopirita y finalmente por galena. El tamaño de partícula juega un papel fundamental en la adaptación de los microorganismos al mineral. Palabras clave: esfalerita, calcopirita, galena, adaptación, Acidithiobacillus ferrooxidans, biolixiviación. ABSTRACTIn this study the adaptation of Acidithiobacillus ferrooxidans-like to high concentrations of chalcopyrite, sphalerite and galena were evaluated with two mineral-particle sizes: 200 and 325 Tyler mesh. The strain was adapted using two simultaneous processes. The first one consisted in a gradual decreasing of the main energy source, ferrous sulphate. The second one consisted in a gradual increasing of the mineral content. Finally, a test was made without ferrous sulphate. The serial subculturing was found to be an efficient strategy to adapt Acidithiobacillus ferrooxidans-like to higher concentrations of chalcopyrite, sphalerite and galena. This indicates that a suitable protocol was employed. The results

  19. Detection and validation of a small broad-host-range plasmid pBBR1MCS-2 for use in genetic manipulation of the extremely acidophilic Acidithiobacillus sp.

    Hao, Likai; Liu, Xiangmei; Wang, Huiyan; Lin, Jianqun; Pang, Xin; Lin, Jianqiang

    2012-09-01

    An efficient genetic system for introducing genes into biomining microorganisms is essential not only to experimentally determine the functions of genes predicted based on bioinformatic analysis, but also for their genetic breeding. In this study, a small broad-host-range vector named pBBR1MCS-2, which does not belong to the IncQ, IncW, or IncP groups, was studied for the feasibility of its use in conjugative gene transfer into extremely acidophilic strains of Acidithiobacillus. To do this, a recombinant plasmid pBBR-tac-Sm, a derivative of pBBR1MCS-2, was constructed and the streptomycin resistant gene (Sm(r)) was used as the reporter gene. Using conjugation, pBBR-tac-Sm was successfully transferred into three tested strains of Acidithiobacillus. Then we measured its transfer frequency, its stability in Acidithiobacillus cells, and the level of resistance to streptomycin of the transconjugants and compared this with the IncQ plasmid pJRD215 control. Our results indicate that pBBR1MCS-2 provides a new and useful tool in the genetic manipulation of Acidithiobacillus strains. PMID:22705922

  20. Evaluación de oxidación bacteriana de sulfuros con Acidithiobacillus ferrooxidans mediante pruebas de FTIR y difracción de rayos X Evaluating Acidithiobacillus ferrooxidans bacterial oxidation of sulphur compounds using FTIR and X-ray diffraction assays

    Ruiz Orlando

    2003-06-01

    Full Text Available Una cepa bacteriana nativa con capacidad de oxidar hierro ferroso y compuestos del azufre fue aislada a partir de efluentes y material de la mina de oro La Maruja, en el municipio de Marmato (Caldas, la cual fue identificada bioquímicamente como Acidithiobacillus ferrooxidans. Esta cepa fue evaluada en su capacidad de oxidar concentra­dos de sulfuros metálicos a dos diferentes concentraciones de pulpa y dos tamaños de partícula. Después de 15 días de biooxidación de los sulfuros se observó que, efectivamente, la bacteria mostró acción catalizadora sobre el proce­so de disolución del mineral. Palabras clave: biooxidación; biolixiviación; A. ferrooxidans; sulfuros metálicosA native bacterial strain capable of oxidising ferrous iron and sulphur compounds was isolated from effluent and material from the La Maruja gold mine in the municipality of Marmato (Caldas; this was biochemically identified as being Acidithiobacillus ferrooxidans. This strain's ability to oxidise metallic sulphide concentrates having two differ-ent pulp proportions and two particle sizes was evaluated. Sulphide bio-oxidation was observed after 15 days showing this strain's catalytic action on the mineral break-down process. Key words: bio-oxidation; bio-leaching; A. ferrooxidans; sulphides

  1. Synchrotron radiation based STXM analysis and micro-XRF mapping of differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on Fe(2+) and S(0).

    Xia, Jin-Lan; Liu, Hong-Chang; Nie, Zhen-Yuan; Peng, An-An; Zhen, Xiang-Jun; Yang, Yun; Zhang, Xiu-Li

    2013-09-01

    The differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on substrates Fe(2+) and S(0) was investigated by using synchrotron radiation based scanning transmission X-ray microscopy (STXM) imaging and microbeam X-ray fluorescence (μ-XRF) mapping. The extracellular thiol groups (SH) were first alkylated by iodoacetic acid forming Protein-SCH2COOH and then the P-SCH2COOH was marked by calcium ions forming P-SCH2COOCa. The STXM imaging and μ-XRF mapping of SH were based on analysis of SCH2COO-bonded Ca(2+). The results indicated that the thiol group content of A. ferrooxidans grown on S(0) is 3.88 times to that on Fe(2+). Combined with selective labeling of SH by Ca(2+), the STXM imaging and μ-XRF mapping provided an in situ and rapid analysis of differential expression of extracellular thiol groups. PMID:23850802

  2. Molecular cloning, sequencing, and expression of omp-40, the gene coding for the major outer membrane protein from the acidophilic bacterium Thiobacillus ferrooxidans.

    Guiliani, N; Jerez, C A

    2000-06-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. Some of the surface components of this microorganism are probably involved in adaptation to their acidic environment and in bacterium-mineral interactions. We have isolated and characterized omp40, the gene coding for the major outer membrane protein from T. ferrooxidans. The deduced amino acid sequence of the Omp40 protein has 382 amino acids and a calculated molecular weight of 40,095.7. Omp40 forms an oligomeric structure of about 120 kDa that dissociates into the monomer (40 kDa) by heating in the presence of sodium dodecyl sulfate. The degree of identity of Omp40 amino acid sequence to porins from enterobacteria was only 22%. Nevertheless, multiple alignments of this sequence with those from several OmpC porins showed several important features conserved in the T. ferrooxidans surface protein, such as the approximate locations of 16 transmembrane beta strands, eight loops, including a large external L3 loop, and eight turns which allowed us to propose a putative 16-stranded beta-barrel porin structure for the protein. These results together with the previously known capacity of Omp40 to form ion channels in planar lipid bilayers strongly support its role as a porin in this chemolithoautotrophic acidophilic microorganism. Some characteristics of the Omp40 protein, such as the presence of a putative L3 loop with an estimated isoelectric point of 7.21 allow us to speculate that this can be the result of an adaptation of the acidophilic T. ferrooxidans to prevent free movement of protons across its outer membrane. PMID:10831405

  3. Construction of small plasmid vectors for use in genetic improvement of the extremely acidophilic Acidithiobacillus caldus.

    Meng, Jianzhou; Wang, Huiyan; Liu, Xiangmei; Lin, Jianqun; Pang, Xin; Lin, Jianqiang

    2013-10-01

    The genetic improvement of biomining bacteria including Acidithiobacillus caldus could facilitate the bioleaching process of sulfur-containing minerals. However, the available vectors for use in A. caldus are very scanty and limited to relatively large broad-host-range IncQ plasmids. In this study, a set of small, mobilizable plasmid vectors (pBBR1MCS-6, pMSD1 and pMSD2) were constructed based on plasmid pBBR1MCS-2, which does not belong to the IncQ, IncW, or IncP groups. The function of the tac promoter on 5.8-kb pMSD2 was determined by inserting a kanamycin-resistant reporter gene. The resulting recombinant pMSD2-Km was successfully transferred by conjugation into A. caldus MTH-04 with transfer frequency of 1.38±0.64×10(-5). The stability and plasmid copy number of pMSD2-Km in A. caldus MTH-04 were 75±2.7% and 5-6 copies per cell, respectively. By inserting an arsABC operon into pMSD2, an arsenic-resistant recombinant pMSD2-As was constructed and transferred into A. caldus MTH-04 by conjugation. The arsenic tolerance of A. caldus MTH-04 containing pMSD2-As was obviously increased up to 45mM of NaAsO2. These vectors could be applied in genetic improvement of A. caldus as well as other bioleaching bacteria. PMID:23639949

  4. Comparación del potencial oxidativo de Acidithiobacillus ferrooxidans, en un proceso de biodesulfurización de carbón

    Maria Prada Fonseca

    2016-05-01

    Full Text Available This study aimed comparing the oxidative activity of two strains of Acidithiobacillus ferrooxidans in a desulphurization process, using a sub-bituminous coal with a high sulfur content (2.30% total sulfur: 1.06% as pyritic, 1.10% as organic and 0.14% from sulfates from “La Guacamaya” mine, located in Puerto Libertador - Cordoba, Colombia. Several assays were performed in Erlenmeyer flasks, the total iron concentration used in solution were 200 mg/L and 1200 mg/L respectively, using ferrous sulfate. The process was monitored by periodically measuring the main physicochemical factors involved (pH, Eh, cell population and iron in solution. According to the results obtained, the highest efficiency of the process was achieved by working with microorganisms compatible with Acidithiobacillus ferrooxidans and initial concentration of 1200 mg/l of ferrous sulfate, which had higher pyrite oxidation rates (Py oxidized up to 68% and the best experimental conditions in the leaching medium (pH: 1,47; Eh: 625 mV; 6.3×108 cells/mL, in comparison with the axenic culture on the same conditions (Py oxidized: 52%; pH: 1,63; Eh: 580 mV; 5.1×108cells/mL, after 12 days of experimentation.

  5. Production of Glycolic Acid by Chemolithotrophic Iron- and Sulfur-Oxidizing Bacteria and Its Role in Delineating and Sustaining Acidophilic Sulfide Mineral-Oxidizing Consortia▿

    Ñancucheo, Ivan; Johnson, D. Barrie

    2009-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacill...

  6. The chemolithoautotroph Acidithiobacillus ferrooxidans can survive under phosphate-limiting conditions by expressing a C-P lyase operon that allows it to grow on phosphonates.

    Vera, Mario; Pagliai, Fernando; Guiliani, Nicolas; Jerez, Carlos A

    2008-03-01

    The chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans is of great importance in biomining operations. During the bioleaching of ores, microorganisms are subjected to a variety of environmental stresses and to the limitations of some nutrients, such as inorganic phosphate (P(i)), which is an essential component for all living cells. Although the primary source of phosphorus for microorganisms is P(i), some bacteria are also able to metabolize P(i) esters (with a C-O-P bond) and phosphonates (with a very inert C-P bond). By using bioinformatic analysis of genomic sequences of the type strain of A. ferrooxidans (ATCC 23270), we found that as part of a Pho regulon, this bacterium has a complete gene cluster encoding C-P lyase, which is the main bacterial enzyme involved in phosphonate (Pn) degradation in other microorganisms. A. ferrooxidans was able to grow in the presence of methyl-Pn or ethyl-Pn as an alternative phosphorus source. Under these growth conditions, a great reduction in inorganic polyphosphate (polyP) levels was seen compared with the level for cells grown in the presence of P(i). By means of reverse transcription-PCR (RT-PCR), DNA macroarrays, and real-time RT-PCR experiments, it was found that A. ferrooxidans phn genes were cotranscribed and their expression was induced when the microorganism was grown in methyl-Pn as the only phosphorus source. This is the first report of phosphonate utilization in a chemolithoautotrophic microorganism. The existence of a functional C-P lyase system is a clear advantage for the survival under P(i) limitation, a condition that may greatly affect the bioleaching of ores. PMID:18203861

  7. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles.

    Pradhan, Debabrata; Mishra, Debaraj; Kim, Dong J; Ahn, Jong G; Chaudhury, G Roy; Lee, Seoung W

    2010-03-15

    Bioleaching studies were conducted to evaluate the recovery of metal values from waste petroleum catalyst using two different acidophilic microorganisms, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Various leaching parameters such as contact time, pH, oxidant concentration, pulp densities, particle size, and temperature were studied in detail. Activation energy was evaluated from Arrhenius equation and values for Ni, V and Mo were calculated in case of both the acidophiles. In both cases, the dissolution kinetics of Mo was lower than those of V and Ni. The lower dissolution kinetics may have been due to the formation of a sulfur product layer, refractoriness of MoS(2) or both. Multivariate statistical data were presented to interpret the leaching data in the present case. The significance of the leaching parameters was derived through principle component analysis and multi linear regression analyses for both iron and sulfur oxidizing bacteria. PMID:19879686

  8. Oxidation study of the synthetic sulfides molybdenite (MoS{sub 2}) and covellite (CuS) by acidithiobacillus ferrooxidants using respirometric experiments; Estudo da oxidacao dos sulfetos sinteticos molibdenita (MoS2) e covelita (CuS) por Acidithiobacillus ferrooxidans via respirometria celular

    Francisco Junior, Wilmo E. [Universidade Federal de Rondonia (UFRO), Porto Velho, RO (Brazil). Dept. de Quimica; Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Bioquimica e Tecnologia Quimica], e-mail: wilmojr@bol.com.br; Bevilaqua, Denise; Garcia Junior, Oswaldo [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Bioquimica e Tecnologia Quimica

    2009-07-01

    This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe{sup 3+} did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations. (author)

  9. Reserch Progresses in Ferrous Oxidation System of Acidithiobacillus ferrooxidans%氧化亚铁硫杆菌亚铁氧化系统的研究进展

    欧阳建平; 陈新华

    2009-01-01

    氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans)为无机化能自养菌,革兰氏阴性,能在极端酸性环境中生长.由于在生物冶金中的应用及特殊的生理学效应,该菌受到研究者的广泛关注.A.ferrooxidans能氧化亚铁、元素硫及还原态硫化物获得电子,并通过一系列电子载体将电子传递给氧生成水,同时释放能量供生命活动需要.目前对A.ferrooxidans电子传递系统的研究主要集中于亚铁氧化电子传递系统,已发现多种与亚铁氧化电子传递相关电子载体和操纵子,如电子载体铜蓝蛋白(Rustocyanin,Rus)、细胞色素C(Cytochrome C,Cyc)、细胞色素C氧化酶(Cytochrome Coxidase,Cox)、亚铁氧化酶(Iro)、细胞色素bc1复合物(cytochrome bc1 complex,bc1)等,以及rus操纵子和pet操纵子.综述了近年来有关A.ferrooxidans 亚铁氧化电子传递链相关蛋白载体,rus和pet操纵子结构与功能及表达调控等方面的研究进展.

  10. Synthesis and properties of ternary (K, NH4, H3O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions

    The purpose of this study was to synthesize a series of solid solution jarosites by biological oxidation of ferrous iron at pH 2.2–4.4 and ambient temperature in media containing mixtures of K+ (0, 1, 4, 6, 12, 31 mM) and NH4+ (6.1, 80, 160, 320 mM). The starting material was a liquid medium for Acidithiobacillus ferrooxidans comprised of 120 mM FeSO4 solution and mineral salts at pH 2.2. Following inoculation with A. ferrooxidans, the cultures were incubated in shake flasks at 22 °C. As bacteria oxidized ferrous iron, ferric iron hydrolyzed and precipitated as jarosite-group minerals (AFe3(SO4)2(OH)6) and/or schwertmannite (idealized formula Fe8O8(OH)6(SO4)·nH2O). The precipitates were characterized by X-ray diffraction (XRD), elemental analysis, and Munsell color. Schwertmannite was the dominant mineral product at low combinations of K+ (≤ 4 mM) and NH4+ (≤ 80 mM) in the media. At higher single or combined concentrations, yellowish jarosite phases were produced, and Munsell hue provided a sensitive means of detecting minor schwertmannite in the oxidation products. Although the hydrated ionic radii of K+ and NH4+ are similar, K+ greatly facilitated the formation of a jarosite phase compared to NH4+. Unit cell and cell volume calculations from refinements of the powder XRD patterns indicated that the jarosite phases produced were mostly ternary (K, NH4, H3O)-solid solutions that were also deficient in structural Fe, especially at low NH4 contents. Thus, ferric iron precipitation from the simulated bioleaching systems yielded solid solutions of jarosite with chemical compositions that were dependent on the relative concentrations of K+ and NH4+ in the synthesis media. No phase separations involving discrete, end-member K-jarosite or NH4-jarosite were detected in the un-aged precipitates. - Highlights: • Fe(III) precipitates formed in A. ferrooxidans culture solutions were characterized. • The monovalent cation concentrations and ratios were varied to

  11. Isolation of a New Broad-Host-Range IncQ-Like Plasmid, pTC-F14, from the Acidophilic Bacterium Acidithiobacillus caldus and Analysis of the Plasmid Replicon

    Gardner, Murray N.; Deane, Shelly M.; Rawlings, Douglas E

    2001-01-01

    A moderately thermophilic (45 to 50°C), highly acidophilic (pH 1.5 to 2.5), chemolithotrophic Acidithiobacillus caldus strain, f, was isolated from a biooxidation process used to treat nickel ore. Trans-alternating field electrophoresis analysis of total DNA from the A. caldus cells revealed two plasmids of approximately 14 and 45 kb. The 14-kb plasmid, designated pTC-F14, was cloned and shown by replacement of the cloning vector with a kanamycin resistance gene to be capable of autonomous re...

  12. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  13. The Study Kinetic for Growth of Acidithiobacillus ferrooxidans%嗜酸氧化亚铁硫杆菌生长动力学

    柳建设; 张艳华; 李邦梅; 谢学辉

    2006-01-01

    在确定二价铁离子为A.f生长过程中惟一限制性底物条件下,通过考察初始亚铁离子浓度、初始pH值两种影响亚铁离子氧化代谢的主要因素来研究细菌的生长特性,得到以限制性底物亚铁离子浓度为表征的细菌生长曲线.利用基于Monod方程建立的细菌生长动力学方程模型,采用Matlab软件中的Gauiss-Newton算法确定了在不同条件下细菌生长动力学参数,包括最大比生长速率μm、Monod常数K及Ro,推导出了不同条件下A.f对数期以底物Fe(Ⅱ)浓度为表征的生长动力学方程.%In order to explain kinetic behaviors of microorganisms in varied experiment conditions, growth kinetic model of Acidithiobacillus ferrooxidans (A. f) was deduced based on Monod model. The kinetic parameters (Monod constant K, max specific growth rate μm, and Ro) of this model in different initial experiment condition were obtained by Gauss-Newton algorithm. The growth law in specific initial experiment condition and variable kinetic parameters were found. According to the growth behavior law studied under different initial experiment condition, the curves describing substrates (ferrous ion concentration) law and the growth velocity equations corresponding to the different initial experiment condition were obtained.

  14. Synthesis and properties of ternary (K, NH{sub 4}, H{sub 3}O)-jarosites precipitated from Acidithiobacillus ferrooxidans cultures in simulated bioleaching solutions

    Sandy Jones, F.; Bigham, Jerry M. [School of Environment and Natural Resources, Ohio State University, 2021 Coffey Road, Columbus, OH 43210 (United States); Gramp, Jonathan P. [Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 (United States); Tuovinen, Olli H., E-mail: tuovinen.1@osu.edu [Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 (United States)

    2014-11-01

    The purpose of this study was to synthesize a series of solid solution jarosites by biological oxidation of ferrous iron at pH 2.2–4.4 and ambient temperature in media containing mixtures of K{sup +} (0, 1, 4, 6, 12, 31 mM) and NH{sub 4}{sup +} (6.1, 80, 160, 320 mM). The starting material was a liquid medium for Acidithiobacillus ferrooxidans comprised of 120 mM FeSO{sub 4} solution and mineral salts at pH 2.2. Following inoculation with A. ferrooxidans, the cultures were incubated in shake flasks at 22 °C. As bacteria oxidized ferrous iron, ferric iron hydrolyzed and precipitated as jarosite-group minerals (AFe{sub 3}(SO{sub 4}){sub 2}(OH){sub 6}) and/or schwertmannite (idealized formula Fe{sub 8}O{sub 8}(OH){sub 6}(SO{sub 4})·nH{sub 2}O). The precipitates were characterized by X-ray diffraction (XRD), elemental analysis, and Munsell color. Schwertmannite was the dominant mineral product at low combinations of K{sup +} (≤ 4 mM) and NH{sub 4}{sup +} (≤ 80 mM) in the media. At higher single or combined concentrations, yellowish jarosite phases were produced, and Munsell hue provided a sensitive means of detecting minor schwertmannite in the oxidation products. Although the hydrated ionic radii of K{sup +} and NH{sub 4}{sup +} are similar, K{sup +} greatly facilitated the formation of a jarosite phase compared to NH{sub 4}{sup +}. Unit cell and cell volume calculations from refinements of the powder XRD patterns indicated that the jarosite phases produced were mostly ternary (K, NH{sub 4}, H{sub 3}O)-solid solutions that were also deficient in structural Fe, especially at low NH{sub 4} contents. Thus, ferric iron precipitation from the simulated bioleaching systems yielded solid solutions of jarosite with chemical compositions that were dependent on the relative concentrations of K{sup +} and NH{sub 4}{sup +} in the synthesis media. No phase separations involving discrete, end-member K-jarosite or NH{sub 4}-jarosite were detected in the un-aged precipitates

  15. Effect of calcium oxide on the efficiency of ferrous ion oxidation and total iron precipitation during ferrous ion oxidation in simulated acid mine drainage treatment with inoculation of Acidithiobacillus ferrooxidans.

    Liu, Fenwu; Zhou, Jun; Jin, Tongjun; Zhang, Shasha; Liu, Lanlan

    2016-01-01

    Calcium oxide was added into ferrous ion oxidation system in the presence of Acidithiobacillus ferrooxidans at concentrations of 0-4.00 g/L. The pH, ferrous ion oxidation efficiency, total iron precipitation efficiency, and phase of the solid minerals harvested from different treatments were investigated during the ferrous ion oxidation process. In control check (CK) system, pH of the solution decreased from 2.81 to 2.25 when ferrous ions achieved complete oxidation after 72 h of Acidithiobacillus ferrooxidans incubation without the addition of calcium oxide, and total iron precipitation efficiency reached 20.2%. Efficiency of ferrous ion oxidation and total iron precipitation was significantly improved when the amount of calcium oxide added was ≤1.33 g/L, and the minerals harvested from systems were mainly a mixture of jarosite and schwertmannite. For example, the ferrous ion oxidation efficiency reached 100% at 60 h and total iron precipitation efficiency was increased to 32.1% at 72 h when 1.33 g/L of calcium oxide was added. However, ferrous ion oxidation and total iron precipitation for jarosite and schwertmannite formation were inhibited if the amount of calcium oxide added was above 2.67 g/L, and large amounts of calcium sulfate dihydrate were generated in systems. PMID:27003087

  16. The Effect of Specific Conditions on Cu, Ni, Zn and Al Recovery from PCBS Waste Using Acidophilic Bacterial Strains

    Mrážiková A.

    2016-03-01

    Full Text Available The objective of this work was to evaluate the influence of static, stirring and shaking conditions on copper, zinc, nickel and aluminium dissolution from printed circuit boards (PCBs using the mixed acidophilic bacterial culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The results revealed that static conditions were the most effective in zinc and aluminium dissolution. Zinc was removed almost completely under static conditions, whereas maximum of nickel dissolution was reached under the stirring conditions. The highest copper recovery (36% was reached under stirring conditions. The shaking conditions appeared to be the least suitable. The relative importance of these systems for the bioleaching of copper and nickel decreased in the order: stirring, static conditions, shaking.

  17. Different isotope and chemical patterns of pyrite oxidation related to lag and exponential growth phases of Acidithiobacillus ferrooxidans reveal a microbial growth strategy

    Brunner, Benjamin; Yu, Jae-Young; Mielke, Randall E.; MacAskill, John A.; Madzunkov, Stojan; McGenity, Terry J.; Coleman, Max

    2008-06-01

    The solution chemistry during the initial (slow increase of dissolved iron and sulfate) and main stage (rapid increase of dissolved iron and sulfate) of pyrite leaching by Acidithiobacillus ferrooxidans (Af) at a starting pH of 2.05 shows significant differences. During the initial stage, ferrous iron (Fe2+) is the dominant iron species in solution and the molar ratio of produced sulfate (SO42-) and total iron (Fetot) is 1.1, thus does not reflect the stoichiometry of pyrite (FeS2). During the main stage, ferric iron (Fe3+) is the dominant iron species in solution and the SO42-:Fetot ratio is with 1.9, close to the stoichiometry of FeS2. Another difference between initial and main stage is an initial trend to slightly higher pH values followed by a drop during the main stage to pH 1.84. These observations raise the question if there are different modes of bioleaching of pyrite, and if there are, what those modes imply in terms of leaching mechanisms. Different oxygen and sulfur isotope trends of sulfate during the initial and main stages of pyrite oxidation confirm that there are two pyrite bioleaching modes. The biochemical reactions during initial stage are best explained by the net reaction FeS2 + 3O2 ⇒ Fe2+ + SO42- + SO2(g). The degassing of sulfur dioxide (SO2) acts as sink for sulfur depleted in 34S compared to pyrite, and is the cause of the SO42-:Fetot ratio of 1.1 and the near constant pH. During the exponential phase, pyrite sulfur is almost quantitatively converted to sulfate, according to the net reaction FeS2 + 15/4O2 + 1/2H2O ⇒ Fe3+ + 2SO42- + H+. We hypothesize that the transition between the modes of bioleaching of pyrite is due to the impact of the accumulation of ferrous iron, which induces changes in the metabolic activity of Af and may act as an inhibitor for the oxidation of sulfur species. This transition defines a fundamental change in the growth strategy of Af. A mode, where bacteria gain energy by oxidation of elemental sulfur to

  18. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.

    Navarro, Claudio A; von Bernath, Diego; Jerez, Carlos A

    2013-01-01

    Microbial solubilizing of metals in acid environments is successfully used in industrial bioleaching of ores or biomining to extract metals such as copper, gold, uranium and others. This is done mainly by acidophilic and other microorganisms that mobilize metals and generate acid mine drainage or AMD, causing serious environmental problems. However, bioremediation or removal of the toxic metals from contaminated soils can be achieved by using the specific properties of the acidophilic microorganisms interacting with these elements. These bacteria resist high levels of metals by using a few "canonical" systems such as active efflux or trapping of the metal ions by metal chaperones. Nonetheless, gene duplications, the presence of genomic islands, the existence of additional mechanisms such as passive instruments for pH and cation homeostasis in acidophiles and an inorganic polyphosphate-driven metal resistance mechanism have also been proposed. Horizontal gene transfer in environmental microorganisms present in natural ecosystems is considered to be an important mechanism in their adaptive evolution. This process is carried out by different mobile genetic elements, including genomic islands (GI), which increase the adaptability and versatility of the microorganism. This mini-review also describes the possible role of GIs in metal resistance of some environmental microorganisms of importance in biomining and bioremediation of metal polluted environments such as Thiomonas arsenitoxydans, a moderate acidophilic microorganism, Acidithiobacillus caldus and Acidithiobacillus ferrooxidans strains ATCC 23270 and ATCC 53993, all extreme acidophiles able to tolerate exceptionally high levels of heavy metals. Some of these bacteria contain variable numbers of GIs, most of which code for high numbers of genes related to metal resistance. In some cases there is an apparent correlation between the number of metal resistance genes and the metal tolerance of each of these

  19. Bioleaching in brackish waters--effect of chloride ions on the acidophile population and proteomes of model species.

    Zammit, Carla M; Mangold, Stefanie; Jonna, Venkateswara rao; Mutch, Lesley A; Watling, Helen R; Dopson, Mark; Watkin, Elizabeth L J

    2012-01-01

    High concentrations of chloride ions inhibit the growth of acidophilic microorganisms used in biomining, a problem particularly relevant to Western Australian and Chilean biomining operations. Despite this, little is known about the mechanisms acidophiles adopt in order to tolerate high chloride ion concentrations. This study aimed to investigate the impact of increasing concentrations of chloride ions on the population dynamics of a mixed culture during pyrite bioleaching and apply proteomics to elucidate how two species from this mixed culture alter their proteomes under chloride stress. A mixture consisting of well-known biomining microorganisms and an enrichment culture obtained from an acidic saline drain were tested for their ability to bioleach pyrite in the presence of 0, 3.5, 7, and 20 g L(-1) NaCl. Microorganisms from the enrichment culture were found to out-compete the known biomining microorganisms, independent of the chloride ion concentration. The proteomes of the Gram-positive acidophile Acidimicrobium ferrooxidans and the Gram-negative acidophile Acidithiobacillus caldus grown in the presence or absence of chloride ions were investigated. Analysis of differential expression showed that acidophilic microorganisms adopted several changes in their proteomes in the presence of chloride ions, suggesting the following strategies to combat the NaCl stress: adaptation of the cell membrane, the accumulation of amino acids possibly as a form of osmoprotectant, and the expression of a YceI family protein involved in acid and osmotic-related stress. PMID:22124722

  20. Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite

    Zhou, Q.G.; Bo, F.; Bo, Z.H.; Xi, L.; Jian, G.; Fei, L.F.; Hua, C.X. [Central South University of Technology, Changsha (China)

    2007-09-15

    A moderately thermophilic and acidophilic sulfur-oxidizing bacterium named S-2, was isolated from coal heap drainage. The bacterium was motile, Gramnegative, rod-shaped, measured 0.4 to 0.6 by 1 to 2 gm, and grew optimally at 42-45{sup o}C and an initial pH of 2.5. The strain S-2 grew autotrophically by using elemental sulfur, sodium thiosulfate and potassium tetrathionate as energy sources. The strain did not use organic matter and inorganic minerals including ferrous sulfate, pyrite and chalcopyrite as energy sources. The morphological, biochemical, physiological characterization and analysis based on 16S rRNA gene sequence indicated that the strain S2 is most closely related to Acidithiobacillus caldus (> 99% similarity in gene sequence). The combination of the strain S-2 with Leptospirillum ferriphilum or Acidithiobacillus ferrooxidans in chalcopyrite bioleaching improved the copper-leaching efficiency. Scanning electron microscope (SEM) analysis revealed that the chalcopyrite surface in a mixed culture of Leptospirillum ferriphilum and Acidithiobacillus caldus was heavily etched. The energy dispersive X-ray (EDX) analysis indicated that Acidithiobacillus caldus has the potential role to enhance the recovery of copper from chalcopyrite by oxidizing the sulfur formed during the bioleaching progress.

  1. Ardrea characterisation of acidophilic micro-organisms isolated from gold mines in Marmato, Colombia

    Edna Judith Márquez F.

    2008-02-01

    Full Text Available Mineral bio-oxidation improves the extraction of valuable metals and also decreases the impact caused by mining waste; however, the interactions between the micro-organisms so involved are little known. Double-layer solid culture media techniques and amplified ribosomal DNA restriction enzyme analysis (Ardrea, using Eco72I, Eco24I, XcmI and BsaAI enzymes, were used for characterising four micro-organisms isolated from gold mines located in Marmato, Colombia. This work was aimed at better understanding of native acidophilic micro-organisms’ microbial interactions in mixed cultures. Iron and sulphur oxidising isolates revealed similar restriction patterns to those previously reported for Acidithiobacillus ferrooxidans; however, one of them exhibited different colony morphology compared to previously reported morphology. The iron non-oxidising isolate presented a restriction pattern agreeing with theoretical analysis of Acidithiobacillus thiooxidans database sequences. ARDREA proved to be a viable technique for differentiating between At. ferrooxidans and At. thiooxidans; in turn, it enabled checking isolates’ identity with their physiological traits and colony morphology.

  2. Production of glycolic acid by chemolithotrophic iron- and sulfur-oxidizing bacteria and its role in delineating and sustaining acidophilic sulfide mineral-oxidizing consortia.

    Nancucheo, Ivan; Johnson, D Barrie

    2010-01-01

    Glycolic acid was detected as an exudate in actively growing cultures of three chemolithotrophic acidophiles that are important in biomining operations, Leptospirillum ferriphilum, Acidithiobacillus (At.) ferrooxidans, and At. caldus. Although similar concentrations of glycolic acid were found in all cases, the concentrations corresponded to ca. 24% of the total dissolved organic carbon (DOC) in cultures of L. ferriphilum but only ca. 5% of the total DOC in cultures of the two Acidithiobacillus spp. Rapid acidification (to pH 1.0) of the culture medium of At. caldus resulted in a large increase in the level of DOC, although the concentration of glycolic acid did not change in proportion. The archaeon Ferroplasma acidiphilum grew in the cell-free spent medium of At. caldus; glycolic acid was not metabolized, although other unidentified compounds in the DOC pool were metabolized. Glycolic acid exhibited levels of toxicity with 21 strains of acidophiles screened similar to those of acetic acid. The most sensitive species were chemolithotrophs (L. ferriphilum and At. ferrivorans), while the most tolerant species were chemoorganotrophs (Acidocella, Acidobacterium, and Ferroplasma species), and the ability to metabolize glycolic acid appeared to be restricted (among acidophiles) to Firmicutes (chiefly Sulfobacillus spp.). Results of this study help explain why Sulfobacillus spp. rather than other acidophiles are the main organic carbon-degrading bacteria in continuously fed stirred tanks used to bioprocess sulfide mineral concentrates and also why temporary cessation of pH control in these systems, resulting in rapid acidification, often results in a plume of the archaeon Ferroplasma. PMID:19933342

  3. Molecular genetics of Thiobacillus ferrooxidans.

    Rawlings, D E; Kusano, T

    1994-01-01

    Thiobacillus ferrooxidans is a gram-negative, highly acidophilic (pH 1.5 to 2.0), autotrophic bacterium that obtains its energy through the oxidation of ferrous iron or reduced inorganic sulfur compounds. It is usually dominant in the mixed bacterial populations that are used industrially for the extraction of metals such as copper and uranium from their ores. More recently, these bacterial consortia have been used for the biooxidation of refractory gold-bearing arsenopyrite ores prior to the...

  4. Characterization of bacteria acidophilic in samples of water coming into a region that suffers influence of uranium mine in Caldas (MG)

    Campos, Michelle B.; Ferrari, Carla R.; Roque, Claudio V.; Ronqui, Leilane B.; Nascimento, Marcos R.L. do; Rodgher, Suzelei; Azevedo, Heliana [Laboratorio de Pocos de Caldas (LAPOC-CNEN/MG), MG (Brazil)], e-mail: michelle_borato@hotmail.com, e-mail: carlarolimferrari@yahoo.com.br, e-mail: cvroque@cnen.gov.br, e-mail: leilanebio@yahoo.com.br, e-mail: pmarcos@cnen.gov.br, e-mail: surodgher@uol.com.br, e-mail: hgomes@cnen.gov.br

    2009-07-01

    The fundamental condition for the bioleaching of the uranium ore is the presence of metallic sulfide such as pyrite associated with the ore, which is found in the ore and in the waste at the Unidade de Tratamento de Minerio (UTM) of Pocos de Caldas, State of Minas Gerais, Brazil. The present study aims to determine the chemical and microbiological characteristics in effluents of uranium mining from the UTM and in Antas dam, which receives treated effluents from the UTM. Water samples were collected Pit Mine (CM), located within the UTM facilities and from site 41 (Antas dam) in July and October 2008. We verified low pH values in water samples from CM (3.7) in comparison to the ones found at site 41 (6.65). There was a higher medium density value of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and heterotrophic acidophilic bacteria in water samples at site CM compared to the values recorded from samples at site 41. Medium values of Fe{sup 2+}, uranium and zinc in samples from the site CM were higher than at site 41. The concentration of fluoride (68.5 mL{sup -l}) and manganese (2.34 mL{sup -1}) in water samples from site 41 were above the limits fixed for water bodies in Resolution CONAMA 357. The relative seasonal variation of some variables observed at site CM (low pH values, high densities of Acidithiobacillus sp. and heterotrophic acidophilic bacteria) shows that this site is one of the main sites of occurrence of acid mine drainage and action of bioleaching bacteria at UTM. (author)

  5. Characterization of bacteria acidophilic in samples of water coming into a region that suffers influence of uranium mine in Caldas (MG)

    The fundamental condition for the bioleaching of the uranium ore is the presence of metallic sulfide such as pyrite associated with the ore, which is found in the ore and in the waste at the Unidade de Tratamento de Minerio (UTM) of Pocos de Caldas, State of Minas Gerais, Brazil. The present study aims to determine the chemical and microbiological characteristics in effluents of uranium mining from the UTM and in Antas dam, which receives treated effluents from the UTM. Water samples were collected Pit Mine (CM), located within the UTM facilities and from site 41 (Antas dam) in July and October 2008. We verified low pH values in water samples from CM (3.7) in comparison to the ones found at site 41 (6.65). There was a higher medium density value of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and heterotrophic acidophilic bacteria in water samples at site CM compared to the values recorded from samples at site 41. Medium values of Fe2+, uranium and zinc in samples from the site CM were higher than at site 41. The concentration of fluoride (68.5 mL-l) and manganese (2.34 mL-1) in water samples from site 41 were above the limits fixed for water bodies in Resolution CONAMA 357. The relative seasonal variation of some variables observed at site CM (low pH values, high densities of Acidithiobacillus sp. and heterotrophic acidophilic bacteria) shows that this site is one of the main sites of occurrence of acid mine drainage and action of bioleaching bacteria at UTM. (author)

  6. Molecular genetics of Thiobacillus ferrooxidans.

    Rawlings, D E; Kusano, T

    1994-03-01

    Thiobacillus ferrooxidans is a gram-negative, highly acidophilic (pH 1.5 to 2.0), autotrophic bacterium that obtains its energy through the oxidation of ferrous iron or reduced inorganic sulfur compounds. It is usually dominant in the mixed bacterial populations that are used industrially for the extraction of metals such as copper and uranium from their ores. More recently, these bacterial consortia have been used for the biooxidation of refractory gold-bearing arsenopyrite ores prior to the recovery of gold by cyanidation. The commercial use of T. ferrooxidans has led to an increasing interest in the genetics and molecular biology of the bacterium. Initial investigations were aimed at determining whether the unique physiology and specialized habitat of T. ferrooxidans had been accompanied by a high degree of genetic drift from other gram-negative bacteria. Early genetic studies were comparative in nature and concerned the isolation of genes such as nifHDK, glnA, and recA, which are widespread among bacteria. From a molecular biology viewpoint, T. ferrooxidans appears to be a typical member of the proteobacteria. In most instances, cloned gene promoters and protein products have been functional in Escherichia coli. Although T. ferrooxidans has proved difficult to transform with DNA, research on indigenous plasmids and the isolation of the T. ferrooxidans merA gene have resulted in the development of a low-efficiency electroporation system for one strain of T. ferrooxidans. The most recent studies have focused on the molecular genetics of the pathways associated with nitrogen metabolism, carbon dioxide fixation, and components of the energy-producing mechanisms. PMID:8177170

  7. Genomics, physiology and applications of cold tolerant acidophiles

    Liljeqvist, Maria

    2012-01-01

    Psychrotolerant acidophiles have gained increasing interest because of their importance in biomining operations in environments where the temperature falls well below 10°C during large parts of the year. Acidithiobacillus ferrivorans is the only characterized acidophile with the ability to live a psychrotrophic lifestyle and is able to oxidize ferrous iron and inorganic sulfur compounds at low temperature. The A. ferrivorans SS3 genome sequence mirrors its low temperature chemolithotrophic li...

  8. Physiology and Genetics of Acidithiobacillus species : Applications for Biomining

    Rzhepishevska, Olena

    2008-01-01

    Bacteria from the genus Acidithiobacillus are often associated with biominingand acid mine drainage. Biomining utilises acidophilic, sulphur and ironoxidising microorganisms for recovery of metals from sulphidic low grade oresand concentrates. Acid mine drainage results in acidification and contaminationwith metals of soil and water emanating from the dissolution of metal sulphidesfrom deposits and mine waste storage. Acidophilic microorganisms play acentral role in these processes by catalys...

  9. Microbial leaching of marmatite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans

    WANG Jun; QIU Guan-zhou; QIN Wen-qing; ZHANG Yan-sheng

    2006-01-01

    The bioleaching of marmatite in shaken flasks was studied. After leaching for 29 days, the leaching ratio of zinc was 91%.Three kinds of bacteria, mixture-based bacteria, 9K-based bacteria and sulfur-based bacteria were used in marmatite leaching, of which the mixture-based bacteria have the best leaching result while the sulfur-based bacteria have the worst. By analyzing the leaching residue using SEM and EDXA, the marmatite leaching mechanism was discussed.

  10. Modeling of uranium bioleaching by Acidithiobacillus ferrooxidans

    Highlights: ► A mathematical model for the mesophilic bioleaching of uraninite is introduced. ► New rate expressions are used for the iron precipitation and uranium leaching rates. ► Good fits of the model are obtained, while the values of the parameters are within the range expected. ► The model can be applied to other bioleaching processes under the same conditions. - Abstract: In this paper, a mathematical model for the mesophilic bioleaching of uraninite is developed. The case of constant temperature, pH, and initial ore concentration is considered. The model is validated by comparing the calculated and measured values of uranium extraction, ferric and ferrous iron in solution, and cell concentration. Good fits of the model were obtained, while the values of the parameters were within the range expected. New rate expressions were used for the iron precipitation and uranium leaching rates. The rates of chemical leaching and ferric precipitation are related to the ratio of ferric to ferrous in solution. The fitted parameters can be considered applicable only to this study. In contrast, the model equation is general and can be applied to bioleaching under the same conditions.

  11. Grazing of acidophilic bacteria by a flagellated protozoan.

    McGinness, S; Johnson, D B

    1992-01-01

    A biflagellated protozoan was isolated from an acidic drainage stream located inside a disused pyrite mine. The stream contained copious amounts of "acid streamer" bacterial growths, and the flagellate was observed in situ apparently grazing the streamer bacteria. The protozoan was obligately acidophilic, growing between pH 1.8 and 4.5, but not at pH 1.6 or 5.0, with optimum growth between pH 3 and 4. It was highly sensitive to copper, molybdenum, silver, and uranium, but tolerated ferrous and ferric iron up to 50 and 25 mM, respectively. In the laboratory, the protozoan was found to graze a range of acidophilic bacteria, including the chemolithotrophs Thiobacillus ferrooxidans, Leptospirillum ferrooxidans, and the heterotroph Acidiphilium cryptum. Thiobacillus thiooxidans and Thiobacillus acidophilus were not grazed. Filamentous growth of certain acidophiles afforded some protection against being grazed by the flagellate. In mixed cultures of T. ferrooxidans and L. ferrooxidans, the protozoan isolate displayed preferential grazing of the former. The possibility of using acidophilic protozoa as a means of controlling bacteria responsible for the production of acid mine drainage is discussed. PMID:24192830

  12. Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process.

    Nie, Zhen-yuan; Liu, Hong-chang; Xia, Jin-lan; Yang, Yi; Zhen, Xiang-jun; Zhang, Li-Juan; Qiu, Guan-zhou

    2016-02-01

    While indirect model has been widely accepted in bioleaching, but the evidence of cell surface iron speciation has not been reported. In the present work the iron speciation on the cell surfaces of four typically acidophilic iron-oxidizing microorganism (mesophilic Acidithiobacillus ferrooxidans ATCC 23270, moderately thermophilic Leptospirillum ferriphilum YSK and Sulfobacillus thermosulfidooxidans St, and extremely thermophilic Acidianus manzaensis YN25) grown on different energy substrates (chalcopyrite, pyrite, ferrous sulfate and elemental sulfur (S(0))) were studied in situ firstly by using synchrotron-based micro- X-ray fluorescence analysis and X-ray absorption near-edge structure spectroscopy. Results showed that the cells grown on iron-containing substrates had apparently higher surface iron content than the cells grown on S(0). Both ferrous iron and ferric iron were detected on the cell surface of all tested AIOMs, and the Fe(II)/Fe(III) ratios of the same microorganism were affected by different energy substrates. The iron distribution and bonding state of single cell of A. manzaensis were then studied in situ by scanning transmission soft X-ray microscopy based on dual-energy contrast analysis and stack analysis. Results showed that the iron species distributed evenly on the cell surface and bonded with amino, carboxyl and hydroxyl groups. PMID:26645388

  13. Model-based evaluation of ferrous iron oxidation by acidophilic bacteria in chemostat and biofilm airlift reactors.

    Ebrahimi, Sirous; Faraghi, Neda; Hosseini, Maryam

    2015-10-01

    This article presents a model-based evaluation of ferrous iron oxidation in chemostat and biofilm airlift reactors inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria. The competition between the two types of bacteria in the chemostat and in the biofilm airlift reactors together with the distribution of both bacteria along the biofilm thickness at different time sections has been studied. The bacterial distribution profiles along the biofilm in the airlift reactor at different time scales show that in the beginning A. ferrooxidans bacteria are dominant, but when the reactor operates for a long time the desirable L. ferrooxidans species outcompete A. ferrooxidans as a result of the low Fe(2+) and high Fe(3+) concentrations. The results obtained from the simulation were compared with the experimental data of continuously operated internal loop airlift biofilm reactor. The model results are in good agreement with the experimental results. PMID:26264929

  14. Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidans and A. thiooxidans

    A process of uranium extraction from ore containing 3.1 % pyrite by bacterial leaching was investigated in shaken flasks during 90 days. The highest uranium recovery amounting to 85.1 % was obtained using binary mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans that was exceeding results obtained by traditional acid leaching technique up to 27 %. High uranium recovery was founded to be due to the high degree of pyrite dissolution that can be readily achieved by bacterial leaching (up to 98.0 %). (author)

  15. The Chromosomal Arsenic Resistance Genes of Thiobacillus ferrooxidans Have an Unusual Arrangement and Confer Increased Arsenic and Antimony Resistance to Escherichia coli

    Butcher, Bronwyn G.; Deane, Shelly M.; Rawlings, Douglas E.

    2000-01-01

    The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and anti...

  16. Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans

    Pal, S; Pradhan, D.; T Das; Sukla, L. B.; Chaudhury, G. Roy

    2010-01-01

    Bioleaching of uranium was carried out with Turamdih ore sample procured from Uranium Corporation of India Limited, Jaduguda. The bacterial strain that was used in the leaching experiments was isolated from the Jaduguda mine water sample. Efficiency of bioleaching was studied by varying parameters like pulp density and initial ferrous concentration as source of energy. It is observed that the efficiency of bioleaching was 49% at 10% pulp density (w/v) and initial pH 2.0. Addition of external ...

  17. Bioleaching of low-grade uranium ore using Acidithiobacillus ferrooxidans

    Bioleaching of uranium was carried out with Turamdih ore sample procured from Uranium Corporation of India Limited, Jaduguda. The bacterial strain that was used in the leaching experiments was isolated from the Jaduguda mine water sample. Efficiency of bioleaching was studied by varying parameters like pulp density and initial ferrous concentration as source of energy. It is observed that the efficiency of bioleaching was 49% at 10% pulp density (w/v) and initial pH 2.0. Addition of external has no effect on efficiency of bioleaching showing domination of direct leaching mechanism over indirect. (author)

  18. Leaching of selected heavy metals from electronic waste in the presence of the At. ferrooxidans bacteria

    J. Willner

    2012-01-01

    Purpose: This paper presents the experimental work carried out to evaluate the leaching efficiency of zinc, nickel and lead from printed circuit boards (PCBs) using biological leaching with different quantities of acidophilic bacteria as inoculum.Design/methodology/approach: Bioleaching was conducted using periodic method in Erlenmneyer flasks, with pure cultures of At. ferrooxidans. Some conditional parameters: oxidation-reduction potential, pH were taken into account.Findings: The results d...

  19. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  20. Acidithiobacillus caldus Sulfur Oxidation Model Based on Transcriptome Analysis between the Wild Type and Sulfur Oxygenase Reductase Defective Mutant

    Linxu Chen; Yilin Ren; Jianqun Lin; Xiangmei Liu; Xin Pang; Jianqiang Lin

    2012-01-01

    BACKGROUND: Acidithiobacillus caldus (A. caldus) is widely used in bio-leaching. It gains energy and electrons from oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs) for carbon dioxide fixation and growth. Genomic analyses suggest that its sulfur oxidation system involves a truncated sulfur oxidation (Sox) system (omitting SoxCD), non-Sox sulfur oxidation system similar to the sulfur oxidation in A. ferrooxidans, and sulfur oxygenase reductase (SOR). The complexity ...

  1. Recovery of Nickel and Cobalt from Laterite Tailings by Reductive Dissolution under Aerobic Conditions Using Acidithiobacillus Species.

    Marrero, J; Coto, O; Goldmann, S; Graupner, T; Schippers, A

    2015-06-01

    Biomining of sulfidic ores has been applied for almost five decades. However, the bioprocessing of oxide ores such as laterites lags commercially behind. Recently, the Ferredox process was proposed to treat limonitic laterite ores by means of anaerobic reductive dissolution (AnRD), which was found to be more effective than aerobic bioleaching by fungi and other bacteria. We show here that the ferric iron reduction mediated by Acidithiobacillus thiooxidans can be applied to an aerobic reductive dissolution (AeRD) of nickel laterite tailings. AeRD using a consortium of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans extracted similar amounts of nickel (53-57%) and cobalt (55-60%) in only 7 days as AnRD using Acidithiobacillus ferrooxidans. The economic and environmental advantages of AeRD for processing of laterite tailings comprise no requirement for an anoxic atmosphere, 1.8-fold less acid consumption than for AnRD, as well as nickel and cobalt recovered in a ferrous-based pregnant leach solution (PLS), facilitating the subsequent metal recovery. In addition, an aerobic acid regeneration stage is proposed. Therefore, AeRD process development can be considered as environmentally friendly for treating laterites with low operational costs and as an attractive alternative to AnRD. PMID:25923144

  2. Oxidation study of the synthetic sulfides molybdenite (MoS2) and covellite (CuS) by acidithiobacillus ferrooxidants using respirometric experiments

    This paper analyses the oxidation of covellite and molybdenite by Acidithiobacillus ferrooxidans strain LR using respirometric experiments. The results showed that both sulfides were oxidized by A. ferrooxidans, however, the covellite oxidation was much higher than molybdenite. Regarding the kinetic oxidation, the findings revealed that just molybdenite oxidation followed the classical Michaelis-Menten kinetic. It is probably associated with the pathway which these sulfides react to chemistry-bacterial attack, what is influenced by its electronic structures. Besides, experiments conducted in the presence of Fe3+ did not indicate alterations in molybdenite oxidation. Thus, ferric ions seem not to be essential to the sulfide oxidations. (author)

  3. Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low‐grade copper sulfide ore monitored by real‐time PCR and oligonucleotide prokaryotic acidophile microarray

    Remonsellez, Francisco; Galleguillos, Felipe; Moreno‐Paz, Mercedes; Parro, Víctor; Acosta, Mauricio; Demergasso, Cecilia

    2009-01-01

    Summary The bioleaching of metal sulfide has developed into a very important industrial process and understanding the microbial dynamic is key to advancing commercial bioleaching operations. Here we report the first quantitative description of the dynamic of active communities in an industrial bioleaching heap. Acidithiobacillus ferrooxidans was the most abundant during the first part of the leaching cycle, while the abundance of Leptospirillum ferriphilum and Ferroplasma acidiphilum increase...

  4. Improved chalcopyrite bioleaching by Acidithiobacillus sp. via direct step-wise regulation of microbial community structure.

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    A direct step-wise regulation strategy of microbial community structure was developed for improving chalcopyrite bioleaching by Acidithiobacillus sp. Specially, the initial microbial proportion between Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was controlled at 3:1 with additional 2 g/L Fe(2+) for faster initiating iron metabolism. A. thiooxidans biomass was fed via a step-wise strategy (8-12th d) with the microbial proportion 1:1 for balancing community structure and promoting sulfur metabolism in the stationary phase. A. thiooxidans proportion was further improved via another step-wise feeding strategy (14-18th d) with the microbial proportion 1:2 for enhancing sulfur metabolism and weakening jarosite passivation in the later phase. With the community structure-shift control strategy, biochemical reaction was directly regulated for creating a better balance in different phases. Moreover, the final copper ion was increased from 57.1 to 93.2 mg/L, with the productivity 2.33 mg/(Ld). The novel strategy may be valuable in optimization of similar bioleaching process. PMID:26011694

  5. The taxonomic and physiologic diversity of the acidophilic bacteria of the genus Thiobacillus used in ores solubilization processes

    Carmen Mădălina Cişmaşiu

    2010-01-01

    Full Text Available The development of biotechnological processes, based mainly on the activity of the acidophilic chemolithotrophic, proved their efficiency in recovering metals from sulphides ores and mining drains and in bioremediation of the polluted environment with residual inorganic substances, like the heavy metals ions and their compounds.Due to the influence of the physical-chemical factors on the development and the metabolic activity of the microorganism’s present in the industrial effluents, the study of these parameters was imposed for raising the efficiency of the processes of adsorption and biosolubilization of the metallic ions. A special importance for using bacteria of the genus Acidithiobacillus in the biosolubilization processes of heavy metals from acid mine tailings is represented by the resistance of these bacteria to high concentrations of metal ions.The experiments prove a strong relationship between the acidity of the medium and the behaviour of the acidophilic chemolithotrophic bacteria. The comparative analyses regarding the influence of metallic ions (Cu2+, Zn2+ and Fe2+ on the physiologic diversity of the Acidithiobacillus populations, isolated from the mining sites, demonstrated the higher resistance of these bacteria to higher concentrations of metallic ions.

  6. The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli.

    Butcher, B G; Deane, S M; Rawlings, D E

    2000-05-01

    The chromosomal arsenic resistance genes of the acidophilic, chemolithoautotrophic, biomining bacterium Thiobacillus ferrooxidans were cloned and sequenced. Homologues of four arsenic resistance genes, arsB, arsC, arsH, and a putative arsR gene, were identified. The T. ferrooxidans arsB (arsenite export) and arsC (arsenate reductase) gene products were functional when they were cloned in an Escherichia coli ars deletion mutant and conferred increased resistance to arsenite, arsenate, and antimony. Therefore, despite the fact that the ars genes originated from an obligately acidophilic bacterium, they were functional in E. coli. Although T. ferrooxidans is gram negative, its ArsC was more closely related to the ArsC molecules of gram-positive bacteria. Furthermore, a functional trxA (thioredoxin) gene was required for ArsC-mediated arsenate resistance in E. coli; this finding confirmed the gram-positive ArsC-like status of this resistance and indicated that the division of ArsC molecules based on Gram staining results is artificial. Although arsH was expressed in an E. coli-derived in vitro transcription-translation system, ArsH was not required for and did not enhance arsenic resistance in E. coli. The T. ferrooxidans ars genes were arranged in an unusual manner, and the putative arsR and arsC genes and the arsBH genes were translated in opposite directions. This divergent orientation was conserved in the four T. ferrooxidans strains investigated. PMID:10788346

  7. Sulfur Oxygenase Reductase (Sor in the Moderately Thermoacidophilic Leaching Bacteria: Studies in Sulfobacillus thermosulfidooxidans and Acidithiobacillus caldus

    Claudia Janosch

    2015-10-01

    Full Text Available The sulfur oxygenase reductase (Sor catalyzes the oxygen dependent disproportionation of elemental sulfur, producing sulfite, thiosulfate and sulfide. Being considered an “archaeal like” enzyme, it is also encoded in the genomes of some acidophilic leaching bacteria such as Acidithiobacillus caldus, Acidithiobacillus thiooxidans, Acidithiobacillus ferrivorans and Sulfobacillus thermosulfidooxidans, among others. We measured Sor activity in crude extracts from Sb. thermosulfidooxidans DSM 9293T. The optimum temperature for its oxygenase activity was achieved at 75 °C, confirming the “thermophilic” nature of this enzyme. Additionally, a search for genes probably involved in sulfur metabolism in the genome sequence of Sb. thermosulfidooxidans DSM 9293T was done. Interestingly, no sox genes were found. Two sor genes, a complete heterodisulfidereductase (hdr gene cluster, three tetrathionate hydrolase (tth genes, three sulfide quinonereductase (sqr, as well as the doxD component of a thiosulfate quinonereductase (tqo were found. Seven At. caldus strains were tested for Sor activity, which was not detected in any of them. We provide evidence that an earlier reported Sor activity from At. caldus S1 and S2 strains most likely was due to the presence of a Sulfobacillus contaminant.

  8. Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria

    Johnson, D. Barrie; McGinness, Stephen

    1991-01-01

    Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was note...

  9. Liquid-nitrogen cryopreservation of three kinds of autotrophicbioleaching bacteria

    WU Xue-ling; XIN Xiao-hong; JIANG Ying; LIANG Ren-xing; YUAN Peng; FANG Cheng-xiang

    2008-01-01

    Three kinds of autotrophic bioleaching bacteria strains,including mesophilic and acidophilic ferrous ion-oxidizing bacteria Acidithiobacillus ferrooxidans (A.ferrooxidans),mesophilic and acidophilic sulfur-oxidizing bacteria Acidithiobacillus thiooxidans (A.thiooxidans),and moderately thermophilic sulfur-oxidizing bacteria Acidianus brierleyi,were cryopreserved in liquid nitrogen and their ferrous ion- or sulfur-oxidizing activities were investigated and compared with the original ones.The results revealed that ferrous ion/sulfur oxidation activities of the strains were almost equal before and after cryopreservation.Glycerin was used as cryoprotective agent.In conclusion,liquid-nitrogen cryopreservation is a simple and effective method for autotrophic bioleaching microorganisms.

  10. Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans

    Thiobacillus thiooxidans is an acidophilic, obligately autotrophic bacterium which derives its energy by oxidizing reduced or partially reduced sulfur compounds and obtains its carbon by fixing carbon dioxide from the atmosphere. The strain is able to live in inorganic, acidic environments and is present in large numbers in coal mine drainage and in mineral ores. T. thiooxidans has been used industrially in metal leaching from mineral ores and in the microbial desulfurization of coal in combination with Thiobacillus ferrooxidans. Although T. thiooxidans has been well studied physiologically, very little is known about it genetics. The broad-host-range IncP plasmids RP4, R68.45, RP1::Tn501, and pUB307 were transferred directly to extremely acidophilic Thiobacillus thiooxidans from Escherichia coli by conjugation at frequencies of 10-5 to 10-7 per recipient. The ability of T. thiooxidans to receive and express the antibiotic resistance markers was examined. The plasmid RP4 was transferred back to E. coli from T. thiooxidans at a frequency of 1.0 x 10-3 per recipient

  11. [Construction of an engineered Acidithiobacillus caldus with high-efficiency arsenic resistance].

    Zhao, Qing; Liu, Xiang-mei; Zhan, Yang; Lin, Jian-qun; Yan, Wang-ming; Bian, Jiang; Liu, Ying

    2005-10-01

    Using the recombinant technique in vitro, a new arsenic resistance plasmid pSDRA4 was constructed by subcloning the arsenic resistance genes from plasmid pUM3 into the wide-host-range IncQ plasmid pMMB24 with the hybrid trp-lac ( tac ) promoter, and followed by deleting the regulative gene of the promoter, the lacIQ gene. Then plasmid pSDRA4 was introduced from E. coli into extremely acidophilic obligately chemolithotrophic Acidithiobacillus caldus by conjugative transfer with a frequency of( 1.444 +/- 0.797) x 10(-4), and the engineered strain of Acidithiobacillus caldus (pSDRA4) for biomining was constructed. The successful transfer demonstrates the development of a conjugational system between strains of E. coli and A. caldus. The recombinant plasmid pSDRA4 is stable in A. caldus. Compared with wild type A. caldus, the level of the arsenic resistance of A. caldus (pSDRA4) is greatly raised from 10mmol/L to 45mmol/L. PMID:16342754

  12. Leaching of selected heavy metals from electronic waste in the presence of the At. ferrooxidans bacteria

    J. Willner

    2012-12-01

    Full Text Available Purpose: This paper presents the experimental work carried out to evaluate the leaching efficiency of zinc, nickel and lead from printed circuit boards (PCBs using biological leaching with different quantities of acidophilic bacteria as inoculum.Design/methodology/approach: Bioleaching was conducted using periodic method in Erlenmneyer flasks, with pure cultures of At. ferrooxidans. Some conditional parameters: oxidation-reduction potential, pH were taken into account.Findings: The results demonstrate that a greater quantity of inoculum conduces the extraction of metals from the solid into solution only in the initial stage of the bioleaching. 57% and 51% of the available Zn and Ni were leached from PCBs in the presence of At. ferrooxidans bacteria. No Pb was detected in the leachate during bioleaching.Research limitations/implications: Further research is needed to determine the influence of various conditions and parameters on activity of microorganisms and efficiency of metals bioleaching from waste materials.Practical implications: Presented study is a continuation of research conducted on the possibility of metals recovery from waste by biological methods.Originality/value: The paper could be an interesting source of information for researchers who apply bioleaching methods.

  13. Bioflotation of pyrite with Thiobacillus ferrooxidans

    Shaoxian Song; Yimin Zhang; Shouci Lu

    2004-01-01

    Bioflotation of pyrite with bacteria Thiobacillus ferrooxidans in the presence or absence of potassium ethyl xanthate was studied on a pure pyrite through microflotation and electrophoretic light scattering measurements. The experimental results showed that in the absence of xanthate, pyrite flotation is slightly enhanced by Thiobacillus ferrooxidans. However, with xanthate as a collector, pyrite flotation is strongly depressed after being exposed to the bacteria. The longer is the time when the pyrite is exposed to the bacteria, the stronger the depression is. The mechanism of the depression might be due to the formation of the biofilms of Thiobacillus ferrooxidans on pyrite surfaces, preventing the adsorption of xanthate on pyrite surfaces in the form of dixanthogen or xanthate ions.

  14. EXAFS investigation of uranium(6) complexes formed at Acidithiobacillus ferro oxidans types

    Mining activities have brought excessive amounts of uranium into the environment. In uranium deposits a number of acidophilic chemo-litho-autotrophic bacteria have been identified which are able to oxidize sulphide minerals, elemental sulphur, ferrous iron and also (in the presence of uranium mineral) U(IV). In particular, the interaction of one representative of the group Acidithiobacillus ferro oxidans (new designation of Thiobacillus ferro oxidans) with uranium has been investigated. Uranium(VI) complex formations at the surfaces of Acidithiobacillus ferro oxidans were studied using uranium LIII-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. In all samples uranium is co-ordinated by two axial oxygen atoms (Oax) at a distance of 1.77-1.78 angstrom. The average distance between uranium and the equatorial oxygen atoms (Oeq) is 2.35 angstrom. The co-ordination number for Oeq is 5-6. In comparison to the uranium crystal structure data, the U-Oeq distance indicates a co-ordination number of the equatorial oxygen of 5. Within the experimental error, there are no differences in the U-O bond distances between samples from the three types of A. ferro oxidans investigated. The fit to the EXAFS data of samples measured as wet pastes gave the same results as for dried samples. No significant structural differences were observed for the uranium complexes formed by the eco-types of A. ferro oxidans. However, the EXAFS spectra do indicate a formation of uranium complexes which are different from those formed by Bacilli where the bond length of 2.28 angstrom indicates a co-ordination number of 4 for the equatorial oxygen atoms. (authors)

  15. Purification and some properties of ubiquinol oxidase from obligately chemolithotrophic iron-oxidizing bacterium, Thiobacillus ferrooxidans NASF-1.

    Kamimura, K; Fujii, S; Sugio, T

    2001-01-01

    Ubiquinol-oxidizing activity was detected in an acidophilic chemolithotrophic iron-oxidizing bacterium, T. ferrooxidans. The ubiquinol oxidase was purified 79-fold from plasma membranes of T. ferrooxidans NASF-1 cells. The purified oxidase is composed of two polypeptides with apparent molecular masses of 32,600 and 50,100 Da, as measured by gel electrophoresis in the presence of sodium dodecyl sulfate. The absorption spectrum of the reduced enzyme at room temperature showed big peaks at 530 and 563, and a small broad peak at 635 nm, indicating the involvement of cytochromes b and d. Characteristic peaks of cytochromes a and c were not observed in the spectrum at around 600 and 550 nm, respectively. This enzyme combined with CO, and its CO-reduced minus reduced difference spectrum showed peaks at 409 nm and 563 nm and a trough at 431 nm. These results indicated that the oxidase contained cytochrome b, but the involvement of cytochrome d was not clear. The enzyme catalyzed the oxidations of ubiquinol-2 and reduced N,N,N',N'-tetramethyl-p-phenylenediamine dihydrochloride. The ubiquinol oxidase activity was activated by the addition of albumin and lecithin to the reaction mixture and inhibited by the respiratory inhibitors KCN, HQNO, NaN3, and antimycin A1, although the enzyme was relatively resistant to KCN, and the divalent cation, Zn2+, compared with ubiquinol oxidases of E. coli. PMID:11272847

  16. A Novel Mineral Flotation Process Using Thiobacillus ferrooxidans

    Nagaoka, Toru; Ohmura, Naoya; Saiki, Hiroshi

    1999-01-01

    Oxidative leaching of metals by Thiobacillus ferrooxidans has proven useful in mineral processing. Here, we report on a new use for T. ferrooxidans, in which bacterial adhesion is used to remove pyrite from mixtures of sulfide minerals during flotation. Under control conditions, the floatabilities of five sulfide minerals tested (pyrite, chalcocite, molybdenite, millerite, and galena) ranged from 90 to 99%. Upon addition of T. ferrooxidans, the floatability of pyrite was significantly suppres...

  17. Mobilization of Thiobacillus ferrooxidans plasmids among Escherichia coli strains.

    Rawlings, D. E.; Woods, D R

    1985-01-01

    Nonconjugative Thiobacillus ferrooxidans plasmids were mobilized at high frequencies among Escherichia coli strains by the IncP plasmid RP4 and at low frequencies by the IncN plasmid R46, but not by the IncW plasmid pSa. The mobilization region of a nonconjugative T. ferrooxidans plasmid was located on a 5.3-kilobase T. ferrooxidans DNA fragment.

  18. Toxicity of Select Organic Acids to the Slightly Thermophilic Acidophile Acidithiobaccillus Caldus

    John E Aston; William A Apel; Brady D Lee; Brent M Peyton

    2009-02-01

    Acidithiobacillus caldus is a thermophilic acidophile found in commercial biomining, acid mine drainage systems, and natural environments. Previous work has characterized A. caldus as a chemolithotrophic autotroph capable of utilizing reduced sulfur compounds under aerobic conditions. Organic acids are especially toxic to chemolithotrophs in low-pH environments, where they diffuse more readily into the cell and deprotonate within the cytoplasm. In the present study, the toxic effects of oxaloacetate, pyruvate, 2-ketoglutarate, acetate, malate, succinate, and fumarate on A. caldus strain BC13 were examined under batch conditions. All tested organic acids exhibited some inhibitory effect. Oxaloacetate was observed to inhibit growth completely at a concentration of 250 µM, whereas other organic acids were completely inhibitory at concentrations of between 1,000 and 5,000 µM. In these experiments, the measured concentrations of organic acids decreased with time, indicating uptake or assimilation by the cells. Phospholipid fatty acid analyses indicated an effect of organic acids on the cellular envelope. Notable differences included an increase in cyclic fatty acids in the presence of organic acids, indicating possible instability of the cellular envelope. This was supported by field emission scanning-electron micrographs showing blebbing and sluffing in cells grown in the presence of organic acids.

  19. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment.

    Travisany, Dante; Cortés, María Paz; Latorre, Mauricio; Di Genova, Alex; Budinich, Marko; Bobadilla-Fazzini, Roberto A; Parada, Pilar; González, Mauricio; Maass, Alejandro

    2014-11-01

    Acidithiobacillus thiooxidans is a sulfur oxidizing acidophilic bacterium found in many sulfur-rich environments. It is particularly interesting due to its role in bioleaching of sulphide minerals. In this work, we report the genome sequence of At. thiooxidans Licanantay, the first strain from a copper mine to be sequenced and currently used in bioleaching industrial processes. Through comparative genomic analysis with two other At. thiooxidans non-metal mining strains (ATCC 19377 and A01) we determined that these strains share a large core genome of 2109 coding sequences and a high average nucleotide identity over 98%. Nevertheless, the presence of 841 strain-specific genes (absent in other At. thiooxidans strains) suggests a particular adaptation of Licanantay to its specific biomining environment. Among this group, we highlight genes encoding for proteins involved in heavy metal tolerance, mineral cell attachment and cysteine biosynthesis. Several of these genes were located near genetic motility genes (e.g. transposases and integrases) in genomic regions of over 10 kbp absent in the other strains, suggesting the presence of genomic islands in the Licanantay genome probably produced by horizontal gene transfer in mining environments. PMID:25148779

  20. Mechanism of arsenic tolerance and bioremoval of arsenic by Acidithiobacilus ferrooxidans

    Chandra Prabha M N

    2011-08-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 This paper reports the studies on mechanism of arsenic tolerance and bioremoval of arsenic ions (arsenite or arsenate by Acidithiobacillus ferrooxidans. Exposure of cells to arsenic ions resulted in increased cell surface hydrophobicity, decreased electrophoretic mobility and stronger adsorption affinity towards arsenopyrite. The mechanism of tolerance to arsenic ions were specific and could be attributed to the changes in specific protein expression in the outer membrane and cytosolic membrane fractions. Biosorption studies showed decrease in solution arsenic concentration only with ferrous–grown cells indicating that presence of ferric ions in the EPS was necessary for binding or entrapment of arsenic ions in the EPS. Bacterial EPS of ferrous–grown wild cells were able to uptake arsenate ions due to the strong affinity of ferric ions towards arsenate ions. Neither cells nor the ferric ions were capable of precipitating or oxidizing arsenite ions directly. Both arsenate ions and arsenite ions were co–precipitated with ferric ions formed during the growth of the bacteria.  

  1. Acidophilic, Heterotrophic Bacteria of Acidic Mine Waters

    Wichlacz, Paul L.; Unz, Richard F.

    1981-01-01

    Obligately acidophilic, heterotrophic bacteria were isolated both from enrichment cultures developed with acidic mine water and from natural mine drainage. The bacteria were grouped by the ability to utilize a number of organic acids as sole carbon sources. None of the strains were capable of chemolithotrophic growth on inorganic reduced iron and sulfur compounds. All bacteria were rod shaped, gram negative, nonencapsulated, motile, capable of growth at pH 2.6 but not at pH 6.0, catalase and ...

  2. Single and cooperative bioleaching of sphalerite by two kinds of bacteria——Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans

    XIA Le-xian; LIU Jian-she; XIAO Li; ZENG Jia; LI Ban-mei; GENG Mei-mei; QIU Guan-zhou

    2008-01-01

    A cooperative bioleaching (Acidithiobacillus ferriooxidans and Acidithiobacillus thiooxidans) and single bioleaching (Acidithiobacillus ferriooxidans or Acidithiobacillus thiooxidans) of sphalerite were investigated by X-ray diffractometry, energy dispersive spectrography and scanning electron microscopy. The experimental results show that the leaching rate of zinc in the mixed culture is higher than that in pure culture and the sterile control. In these processes, two kinds of bacteria perform different functions and play a cooperative role during leaching of sphalerite. The bioleaching action carried out by Acidithiobacillus ferriooxidans (A. ferriooxidans) is not directly performed through Fe2+ but Fe3+, and its role is to oxidize Fe2+ to Fe 3+ and maintain a high redox potential. Moreover, the addition of an appropriate concentration of ferric iron to the leaching systems is beneficial to zinc dissolution. In the leaching systems without Acidithiobacillus thiooxidans (A. thiooxidans), elemental sulfur layers are formed on mineral surface during the dissolution of zinc and block continuous leaching. Acidithiobacillus thiooxidans, however, eliminate the passivation and cause the bioleaching process to continue in the leaching systems. At the same time, protons from the bacterial oxidization of the elemental sulfur layers also accelerate the leaching of zinc.

  3. Genetically engineered acidophilic heterotrophic bacteria by bacteriophage transduction

    Ward, T.E.; Bruhn, D.F.; Bulmer, D.F.

    1989-05-10

    A bacteriophage capable of infecting acidophilic heterotrophic bacteria and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phage having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element from ore or coal. 1 fig., 1 tab.

  4. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    David Barrie Johnson

    2012-09-01

    Full Text Available Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30 ˚C, with a corresponding culture doubling time of 9 hours. The isolates displayed similar tolerance (10-50 mM to four transition metals tested. Growth of the algae in liquid media was paralleled with increasing concentrations of dissolved organic carbon (DOC. Glycolic acid was identified as a significant component (12- 14% of total DOC. Protracted incubation resulted in concentrations of glycolic acid declining in both cases, and glycolic acid added to a culture of Chlorella incubated in the dark was taken up by the alga (~100% within three days. Two monosaccharides were identified in cell-free liquors of each algal isolate: fructose and glucose (Chlorella, and mannitol and glucose (Euglena. These were rapidly metabolised by acidophilic heterotrophic bacteria (Acidiphilium and Acidobacterium spp. though only fructose was utilised by the more fastidious heterotroph Acidocella aromatica. The significance of algae in promoting the growth of iron- (and sulfate- reducing heterotrophic acidophiles that are important in remediating mine-impacted waters is discussed.

  5. THE DEPRESSION OF PYRITE FLOTATION BY THIOBACILLUS FERROOXIDANS

    2000-01-01

    The experimental studies on the microbial flotation of a pure pyrite sample using Thiobacillus ferrooxidans was conducted in the laboratory. The results indicate that Thiobacillus ferrooaidans has strong depression effect on the flotation of pyrite. Thiobacillus f errooxidans can adsorb on the surface of pyrite in a very short time (a few min. ), changing the surface from hydrophobic into hydrophilic and making the pyrite particles to lose their floatability. Therefore, Thiobacillus ferrooxidans is an effective microbial depressant of pyrite. It has also been pointed out that the depression of pyrite by Thiobacillus ferrooxidans is caused by the adsorption of the microbial colloids, but not by the oxidation effect.

  6. Metal resistance in acidophilic microorganisms and its significance for biotechnologies.

    Dopson, Mark; Holmes, David S

    2014-10-01

    Extremely acidophilic microorganisms have an optimal pH of biomining for sulfide mineral dissolution, biosulfidogenesis to produce sulfide that can selectively precipitate metals from process streams, treatment of acid mine drainage, and bioremediation of acidic metal-contaminated milieux. This review describes how acidophilic microorganisms tolerate extremely high metal concentrations in biotechnological processes and identifies areas of future work that hold promise for improving the efficiency of these applications. PMID:25104030

  7. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles

    DavidBarrieJohnson

    2012-01-01

    Two acidophilic algae, identified as strains of Chlorella protothecoides var. acidicola and Euglena mutabilis, were isolated in pure culture from abandoned copper mines in Spain and Wales and grown in pH- and temperature-controlled bioreactors. The Chlorella isolate grew optimally at pH 2.5 and 30 ˚C, with a corresponding culture doubling time of 9 hours. The isolates displayed similar tolerance (10-50 mM) to four transition metals tested. Growth of the algae in liquid media was paralleled wi...

  8. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans

    Peng, Ji-Bin; Yan, Wang-Ming; Bao, Xue-Zhen

    1994-01-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host.

  9. System-level understanding of the potential acid-tolerance components of Acidithiobacillus thiooxidans ZJJN-3 under extreme acid stress.

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    In previous study, two extremely acidophilic strains Acidithiobacillus thiooxidans ZJJN-3 (collection site: bioleaching leachate) and ZJJN-5 (collection site: bioleaching wastewater) were isolated from a typical industrial bio-heap in China. Here, we unraveled the potential acid-tolerance components of ZJJN-3 by comparing the physiological differences with ZJJN-5 under different acid stresses. The parameters used for comparison included intracellular pH (pHin), capsule morphology, fatty acid composition of cell membrane, transcription of key molecular chaperones, H(+)-ATPase activities and NAD(+)/NADH ratio. It was indicated that the acid-tolerance of A. thiooxidans ZJJN-3 was systematically regulated. Capsule first thickened and then shed off along with increased acid stress. Cell membrane maintained the intracellular stability by up-regulating the proportion of unsaturated fatty acid and cyclopropane fatty acids. Meanwhile, the transcription of key repair molecular chaperones (GrpE-DnaK-DnaJ) was up-regulated by 2.2-3.5 folds for ensuring the proper folding of peptide. Moreover, low pHin promoted ZJJN-3 to biosynthesize more H(+)-ATPase for pumping H(+) out of cells. Furthermore, the NAD(+)/NADH ratio increased due to the decreased H(+) concentration. Based on the above physiological analysis, the potential acid-tolerance components of A. thiooxidans ZJJN-3 were first proposed and it would be useful for better understanding how these extremophiles responded to the high acid stress. PMID:26264736

  10. Genomics and Metagenomics of Extreme Acidophiles in Biomining Environments

    Holmes, D. S.

    2015-12-01

    Over 160 draft or complete genomes of extreme acidophiles (pH metagenomic studies of such environments. This provides a rich source of latent data that can be exploited for understanding the biology of biomining environments and for advancing biotechnological applications. Genomic and metagenomic data are already yielding valuable insights into cellular processes, including carbon and nitrogen management, heavy metal and acid resistance, iron and sulfur oxido-reduction, linking biogeochemical processes to organismal physiology. The data also allow the construction of useful models of the ecophysiology of biomining environments and provide insight into the gene and genome evolution of extreme acidophiles. Additionally, since most of these acidophiles are also chemoautolithotrophs that use minerals as energy sources or electron sinks, their genomes can be plundered for clues about the evolution of cellular metabolism and bioenergetic pathways during the Archaean abiotic/biotic transition on early Earth. Acknowledgements: Fondecyt 1130683.

  11. PCR-mediated detection of acidophilic, bioleaching-associated bacteria.

    De Wulf-Durand, P; Bryant, L J; Sly, L I

    1997-01-01

    The detection of acidophilic microorganisms from mining environments by culture methods is time consuming and unreliable. Several PCR approaches were developed to amplify small-subunit rRNA sequences from the DNA of six bacterial phylotypes associated with acidic mining environments, permitting the detection of the target DNA at concentrations as low as 10 fg.

  12. Complete genome sequence of Acidimicrobium ferrooxidans type strain (ICPT)

    Clum, Alicia; Nolan, Matt; Lang, Elke; Glavina Del Rio, Tijana; Tice, Hope; Copeland, Alex; Cheng, Jan-Fang; Lucas, Susan; Chen, Feng; Bruce, David; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Mavrommatis, Konstantinos; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Goker, Markus; Spring, Stefan; Land, Miriam; Hauser, Loren; Chang, Yun-Juan; Jefferies, Cynthia C.; Chain, Patrick; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Lapidus, Alla

    2009-05-20

    Acidimicrobium ferrooxidans (Clark and Norris 1996) is the sole and type species of the genus, which until recently was the only genus within the actinobacterial family Acidimicrobiaceae and in the order Acidomicrobiales. Rapid oxidation of iron pyrite during autotrophic growth in the absence of an enhanced CO2 concentration is characteristic for A. ferrooxidans. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the order Acidomicrobiales, and the 2,158,157 bp long single replicon genome with its 2038 protein coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.

  13. Spatial and Temporal Analysis of the Microbial Community in the Tailings of a Pb-Zn Mine Generating Acidic Drainage ▿ †

    Huang, Li-Nan; Zhou, Wen-Hua; Hallberg, Kevin B.; Wan, Cai-Yun; Li, Jie; Shu, Wen-Sheng

    2011-01-01

    Analysis of spatial and temporal variations in the microbial community in the abandoned tailings impoundment of a Pb-Zn mine revealed distinct microbial populations associated with the different oxidation stages of the tailings. Although Acidithiobacillus ferrooxidans and Leptospirillum spp. were consistently present in the acidic tailings, acidophilic archaea, mostly Ferroplasma acidiphilum, were predominant in the oxidized zones and the oxidation front, indicating their importance to generation of acid mine drainage. PMID:21705549

  14. Pyrite Surface after Thiobacillus ferrooxidans Leaching at 30℃

    2006-01-01

    In order to investigate the effect of Thiobacillus ferrooxidans on the oxidation of pyrite, two parallel experiments, which employed H2SO4 solutions and acidic solutions inoculated with Thiobacillus ferrooxidans, were designed and carried out at 30℃. The initial pH of the two solutions was adjusted to 2.5 by dropwise addition of concentrated sulphuric acid. The surfaces of pyrite before exposure to leaching solutions and after exposure to the H2SO4 solutions and acidic solutions inoculated with Thiobacillus ferrooxidans were observed by scanning electron microscopy (SEM). There were a variety of erosion patterns by Thiobacillusferrooxidans on the bio-leached pyrite surfaces. A conclusion can be drawn that the oxidation of pyrite might have been caused by erosion of the surfaces.Attachment of the bacteria to pyrite surfaces resulted in erosion pits, leading to the oxidation of pyrite.It is possible that the direct mechanism plays the most important role in the oxidation of pyrite. The changes in iron ion concentrations of both the experimental solutions with time suggest that Thiobacillus ferrooxidans can enhance greatly the oxidation of pyrite.

  15. Isolation of thiobacillus ferrooxidans and thiobacillus thiooxidans from West Kalimantan and North Sumatera Uranium ore specimens

    Isolation of thiobacillus ferrooxidans (T. ferrooxidans) and thiobacillus thiooxidans (T. thiooxidans) from West Kalimantan and North Sumatera U ore specimens have been carried out. T. thiooxidans have the ability to oxidize sulfur to sulfate, and T. ferrooxidans oxidizes ferro iron to ferric iron. Silverman medium (9 K medium) was used as growth medium for T. ferrooxidans. Starkey medium was used as growth medium for T. thiooxidans. For fungi contamination test the medium of malt extract agar was used. Meat pepton was used for the heterotrophic microorganisms contamination test. Results of the experiment showed that isolates of T. ferrooxidans have been obtained from 3 West Kalimantan U ore specimens from 2 North Sumatera U ore specimens. T. thiooxidans have been isolated from 2 West Kalimantan U ore specimens, but none has been isolated from North Sumatera U ore specimens. T. ferrooxidans isolated from West Kalimantan and North Sumatera have been tested in different growth conditions to determine the rate of growth. (author)

  16. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes

    Rohwerder, T.; Sand, W. [Universitaet Duisburg-Essen, Biofilm Centre, Aquatic Biotechnology, Duisburg (Germany)

    2007-07-15

    The oxidation of reduced inorganic sulfur compounds to sulfuric acid is of great importance for biohydrometallurgical technologies as well as the formation of acidic (below pH 3) and often heavy metal-contaminated environments. The use of elemental sulfur as an electron donor is the predominant energy-yielding process in acidic natural sulfur-rich biotopes but also at mining sites containing sulfidic ores. Contrary to its significant role in the global sulfur cycle and its biotechnological importance, the microbial fundamentals of acidophilic sulfur oxidation are only incompletely understood. Besides giving an overview of sulfur-oxidizing acidophiles, this review describes the so far known enzymatic reactions related to elemental sulfur oxidation in acidophilic bacteria and archaea. Although generally similar reactions are employed in both prokaryotic groups, the stoichiometry of the key enzymes is different. Bacteria oxidize elemental sulfur by a sulfur dioxygenase to sulfite whereas in archaea, a sulfur oxygenase reductase is used forming equal amounts of sulfide and sulfite. In both cases, the activation mechanism of elemental sulfur is not known but highly reactive linear sulfur forms are assumed to be the actual substrate. Inhibition as well as promotion of these biochemical steps is highly relevant in bioleaching operations. An efficient oxidation can prevent the formation of passivating sulfur layers. In other cases, a specific inhibition of sulfur biooxidation may be beneficial for reducing cooling and neutralization costs. In conclusion, the demand for a better knowledge of the biochemistry of sulfur-oxidizing acidophiles is underlined. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  17. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans.

    Peng, J B; Yan, W M; Bao, X Z

    1994-07-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host. PMID:16349341

  18. Detection of Thiobacillus ferrooxidans in acid mine environments by indirect fluorescent antibody staining.

    Apel, W A; Dugan, P R; Filppi, J A; Rheins, M S

    1976-07-01

    An indirect fluorescent antibody (FA) staining technique was developed for the rapid detection of Thiobacillus ferrooxidans. The specificity of the FA stain for T. ferrooxidans was demonstrated with both laboratory and environmental samples. Coal refuse examined by scanning electron microscopy exhibited a rough, porous surface, which was characteristically covered by water-soluble crystals. Significant numbers of T. ferrooxidans were detected in the refuse pores. A positive correlation between numbers of T. ferrooxidans and acid production in coal refuse in the laboratory was demonstrated with the FA technique. PMID:61736

  19. Leaching of Pyrites of Various Reactivities by Thiobacillus ferrooxidans

    Baldi, Franco; Clark, Thomas; Pollack, S. S.; Olson, Gregory J.

    1992-01-01

    Wide variations were found in the rate of chemical and microbiological leaching of iron from pyritic materials from various sources. Thiobacillus ferrooxidans accelerated leaching of iron from all of the pyritic materials tested in shake flask suspensions at loadings of 0.4% (wt/vol) pulp density. The most chemically reactive pyrites exhibited the fastest bioleaching rates. However, at 2.0% pulp density, a delay in onset of bioleaching occurred with two of the pyrites derived from coal source...

  20. Genome Sequence of the Acidophilic Bacterium Acidocella sp. Strain MX-AZ02

    Servín-Garcidueñas, Luis E.; Garrett, Roger A.; Amils, Ricardo;

    2013-01-01

    Here, we report the draft genome sequence of Acidocella sp. strain MX-AZ02, an acidophilic and heterotrophic alphaproteobacterium isolated from a geothermal lake in western Mexico.......Here, we report the draft genome sequence of Acidocella sp. strain MX-AZ02, an acidophilic and heterotrophic alphaproteobacterium isolated from a geothermal lake in western Mexico....

  1. Comparative study on effects of Tween-80 and sodium isobutyl-xanthate on growth and sulfur-oxidizing activities of Acidithiobacillus albertensis BY-05

    ZHANG Cheng-gui; XIA Jin-lan; ZHANG Rui-yong; PENG An-an; NIE Zhen-yuan; QIU Guan-zhou

    2008-01-01

    Effects of two typical surfactants, Tween-80 and sodium isobutyl-xanthate (NaIBX), with different concentrations on the growth and sulfur-oxidizing activities of a new strain Acidithiobacillus albertensis BY-05, an acidophilic sulfur-oxidizing bacterium, were investigated. The results indicate that both surfactants can enhance the growth and sulfur-oxidizing activities of A. albertensis BY-05 only at some special concentrations, e.g., 10-4-10-8 g/L for NaIBX and lower than 10-8 g/L for Tween-80, but were inhibited and even harmful at higher concentrations. Both surfactants can not be metabolized by A. albertensis BY-05. The contact between the bacteria and the sulfur particles may be dependent upon both the extracellular substance and the surfactants, both of which provide the amphiphilic environment improving the attachment for bacteria to the sulfur particles surface. These data could be significant for enlarging the applications of both A. albertensis BY-05 and some typical surfactants for industrial bioleaching of sulfides minerals.

  2. Enrichment of mesophilic acidophiles from the Underground Copper Mine Bor

    Conić Vesna T.

    2009-01-01

    Full Text Available In this work, autotrophic growth of mesophilic acidophiles from the Underground Copper Mine Bor was performed. Two selected solution samples collected from the 'Tilva Roš' ore body were prepared in a 9K nutrient medium (Silverman and Lundgren, 1959. The first sample TR k-16 was obtained during the hole drilling of the ore body, and the second TR k-31 from the drainage channel. Two samples of 9K media (Silverman and Lundgren, 1959 were inoculated with two selected solution samples from the underground mine Tilva Roš. Inoculated culture media were incubated without prior autoclaving in the period of 6 days at a temperature of 28 ?C with purging air through the system with enough oxygen and carbon dioxide. Oxidation rate of ferrous ions in the first 3 days of incubation was 14.8 and 10.7 wt.% Fe2+/day, the next 3 days 17.3 and 13.6 and for the total period of 6 days 98.3 and 74.8 wt.% for the first and second sample, respectively, i.e. 100 wt.% with initial percentage of ferrous ion in each medium. After centrifugation of enriched samples of culture media at 3000 rpm for 5 min, a plenty of mesophilic acidophiles were determined by microscopic method. According to Karavaiko [6], in the processes of incubition for 9K nutrient solution cells number reach a value of 108 cells/cm3.

  3. Electricity generation from tetrathionate in microbial fuel cells by acidophiles

    Sulonen, Mira L.K., E-mail: mira.sulonen@tut.fi; Kokko, Marika E.; Lakaniemi, Aino-Maija; Puhakka, Jaakko A.

    2015-03-02

    Highlights: • Electricity can be generated from tetrathionate in MFCs at pH below 2.5. • Tetrathionate disproportionated to sulfate and elemental sulfur. • Biohydrometallurgical process waters contained electrochemically active bacteria. • Acidithiobacillus spp. and Ferroplasma spp. were identified from the MFCs. - Abstract: Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m{sup −2} and 13.9 mW m{sup −2} and 433 mA m{sup −2} and 17.6 mW m{sup −2}, respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2–2.5.

  4. Electricity generation from tetrathionate in microbial fuel cells by acidophiles

    Highlights: • Electricity can be generated from tetrathionate in MFCs at pH below 2.5. • Tetrathionate disproportionated to sulfate and elemental sulfur. • Biohydrometallurgical process waters contained electrochemically active bacteria. • Acidithiobacillus spp. and Ferroplasma spp. were identified from the MFCs. - Abstract: Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m−2 and 13.9 mW m−2 and 433 mA m−2 and 17.6 mW m−2, respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2–2.5

  5. Specific dot-immunobinding assay for detection and enumeration of Thiobacillus ferrooxidans

    A specific and very sensitive dot-immunobinding assay for the detection and enumeration of the bioleaching microorganism Thiobacillus ferrooxidans was developed. Nitrocellulose spotted with samples was incubated with polyclonal antisera against whole T. ferrooxidans cells and then in 125I-labeled protein A or 125I-labeled goat antirabbit immunoglobulin G; incubation was followed by autoradiography. Since a minimum of 103 cells per dot could be detected, the method offers the possibility of simultaneous processing of numerous samples in a short time to monitor the levels of T. ferrooxidans in bioleaching operations

  6. Electrochemical behavior of chalcopyrite in presence of Thiobacillus ferrooxidans

    LI Hong-xu; QIU Guan-zhou; HU Yue-hua; CANG Da-qiang; WANG Dian-zuo

    2006-01-01

    The chalcopyrite anode dissolution behavior in the presence or absence of bacteria in 9 K media using bacteria modified powder microelectrode at 30 ℃ was studied. It is found that during the anode dissolution, many intermediate transient reactions occur accompanying with the production of chalcocite and covellite at potential between -0.075 V and -0.025 V (vs SCE). At low scanning potential between -0.1 and -0.250 V, the iron ion is released in ferrous form, but at the relative high potential up to 0.7 V, it is the ferric one. The presence of Thiobacillus ferrooxidans makes peak current increase and the initial peak potential negatively move, hinting the decomposed oxidation reaction easily occurred and especially the iron ion released and ferrous oxidation reaction enhanced. The characteristic at potential between -0.75 and -0.5 V demonstrates the Thiobacillus ferrooxidans also contributes to the element sulfur formed on the oxidation surface and removed during anode process. The added ferric in the cell could enhance the dissolution reaction, while the increased acid under pH=2 might slightly hamper the process. The anode dissolution kinetics studies show that the presence of bacteria could decease corrosion potential from 0.238 V to 0.184 V and increase the corrosion current density from 1.632 14×10-8 A/cm2 to 2.374 11×10-7A/cm2.

  7. Bioleaching of heavy metals from sewage sludge using Acidithiobacillus thiooxidans

    Wen, Ye-Ming; Lin, Hong-Yan; Wang, Qing-Ping; Chen, Zu-Liang

    2010-11-01

    Acidithiobacillus thiooxidans was isolated from sewage sludge using the incubation in the Waksman liquor medium and the inoculation in Waksman solid plate. It was found that the optimum conditions of the bioleaching included solid concentration 2%, sulfur concentration 5 gṡL-1 and cell concentration 10%. The removal efficiency of Cr, Cu, Pb and Zh in sewage sludge, which was obtained from waste treatment plant, Jinshan, Fuzhou, was 43.65%, 96.24%, 41.61% and 96.50% in the period of 4˜10 days under the optimum conditions, respectively. After processing using the proposed techniques, the heavy metals in sewage sludge did meet the requirement the standards of nation.

  8. Cloning and expression of the Thiobacillus ferrooxidans glutamine synthetase gene in Escherichia coli

    The glutamine synthetase (GS) gene glnA of Thiobacillus ferrooxidans was cloned on recombinant plasmid pMEB100 which enabled Escherichia coli glnA deletion mutants to utilize (NH4)2SO4 as the sole source of nitrogen. High levels of GS-specific activity were obtained in the E. coli glnA deletion mutants containing the T. ferrooxidans GS gene. The cloned T. ferrooxidans DNA fragment containing the glnA gene activated histidase activity in an E. coli glnA glnL glnG deletion mutant containing the Klebsiella aerogenes hut operon. Plasmid pMEB100 also enabled the E. coli glnA glnL glnG deletion mutant to utilize arginine or low levels of glutamine as the sole source of nitrogen. There was no detectable DNA homology between the T. ferrooxidans glnA gene and the E. coli glnA gene

  9. An Immunological Strategy To Monitor In Situ the Phosphate Starvation State in Thiobacillus ferrooxidans

    Varela, Patricia; Levicán, Gloria; Rivera, Francisco; Jerez, Carlos A.

    1998-01-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. During the process of ore bioleaching, the microorganisms are subjected to several stressing conditions, including the lack of some essential nutrients, which can affect the rates and yields of bioleaching. When T. ferrooxidans is starved for phosphate, the cells respond by inducing the synthesis of several proteins, some of which are outer membrane proteins of high molecular w...

  10. Specific Dot-Immunobinding Assay for Detection and Enumeration of Thiobacillus ferrooxidans

    Arredondo, Renato; Jerez, Carlos A.

    1989-01-01

    A specific and very sensitive dot-immunobinding assay for the detection and enumeration of the bioleaching microorganism Thiobacillus ferrooxidans was developed. Nitrocellulose spotted with samples was incubated with polyclonal antisera against whole T. ferrooxidans cells and then in 125I-labeled protein A or 125I-labeled goat antirabbit immunoglobulin G; incubation was followed by autoradiography. Since a minimum of 103 cells per dot could be detected, the method offers the possibility of si...

  11. Potential of Thiobacillus ferrooxidans for waste gas purification. Pt. 1

    Kinetic data of ferrous iron oxidation by Thiobacillus ferrooxidans were determined. The aim was to remove H2S (-1; pH 1.3). Due to the low pH, ferric iron precipitation and wall growth could be avoided. The maximum ferrous iron oxidation rate of submersed bacteria was 0.77 g l-1 h-1, the maximum specific growth rate about 0.12 h-1 and the yield coefficient was found to be 0.007 g g-1 Fe2+. The specific O2 demand of an exponentially growing, iron-oxidizing batch culture was 1.33 mg O2 mg-1 biomass h-1. The results indicate that a pH of 1.3 has no negative influence on the kinetics of iron oxidation and growth. (orig.)

  12. Mineral Products of Pyrrhotite Oxidation by Thiobacillus ferrooxidans.

    Bhatti, T M; Bigham, J M; Carlson, L; Tuovinen, O H

    1993-06-01

    The biological leaching of pyrrhotite (Fe(1-x)S) by Thiobacillus ferrooxidans was studied to characterize the oxidation process and to identify the mineral weathering products. The process was biphasic in that an initial phase of acid consumption and decrease in redox potential was followed by an acid-producing phase and an increase in redox potential. Elemental S was one of the first products of pyrrhotite degradation detected by X-ray diffraction. Pyrrhotite oxidation also yielded K-jarosite [KFe(3)(SO(4))(2)(OH)(6)], goethite (alpha-FeOOH), and schwertmannite [Fe(8)O(8)(OH)(6)SO(4)] as solid-phase products. Pyrrhotite was mostly depleted after 14 days, whereas impurities in the form of pyrite (cubic FeS(2)) and marcasite (orthorhombic FeS(2)) accumulated in the leach residue. PMID:16348977

  13. Electricity generation from tetrathionate in microbial fuel cells by acidophiles.

    Sulonen, Mira L K; Kokko, Marika E; Lakaniemi, Aino-Maija; Puhakka, Jaakko A

    2015-03-01

    Inorganic sulfur compounds, such as tetrathionate, are often present in mining process and waste waters. The biodegradation of tetrathionate was studied under acidic conditions in aerobic batch cultivations and in anaerobic anodes of two-chamber flow-through microbial fuel cells (MFCs). All four cultures originating from biohydrometallurgical process waters from multimetal ore heap bioleaching oxidized tetrathionate aerobically at pH below 3 with sulfate as the main soluble metabolite. In addition, all cultures generated electricity from tetrathionate in MFCs at pH below 2.5 with ferric iron as the terminal cathodic electron acceptor. The maximum current and power densities during MFC operation and in the performance analysis were 79.6 mA m(-2) and 13.9 mW m(-2) and 433 mA m(-2) and 17.6 mW m(-2), respectively. However, the low coulombic efficiency (below 5%) indicates that most of the electrons were directed to other processes, such as aerobic oxidation of tetrathionate and unmeasured intermediates. The microbial community analysis revealed that the dominant species both in the anolyte and on the anode electrode surface of the MFCs were Acidithiobacillus spp. and Ferroplasma spp. This study provides a proof of concept that tetrathionate serves as electron donor for biological electricity production in the pH range of 1.2-2.5. PMID:25463232

  14. Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms

    Mark eDopson

    2014-04-01

    Full Text Available All metals are toxic at high concentrations and consequently their intracellular concentrations must be regulated. Acidophilic microorganisms have an optimum growth pH < 3 and proliferate in natural and anthropogenic low pH environments. Some acidophiles are involved in the catalysis of sulfide mineral dissolution, resulting in high concentrations of metals in solution. Acidophiles are often described as highly metal resistant via mechanisms such as multiple and/or more efficient active resistance systems than are present in neutrophiles. However, this is not the case for all acidophiles and we contend that their growth in high metal concentrations is partially due to an intrinsic tolerance as a consequence of the environment in which they live. In this perspective, we highlight metal tolerance via complexation of free metals by sulfate ions and passive tolerance to metal influx via an internal positive cytoplasmic transmembrane potential. These tolerance mechanisms have been largely ignored in past studies of acidophile growth in the presence of metals and should be taken into account.

  15. Biofertilzers with natural phosphate, sulphur and Acidithiobacillus in a siol with low available-P

    Stamford Newton Pereira

    2003-01-01

    Full Text Available The production of mineral fertilizers is a expensive process, since it requires high energy consumption, and cannot be produced by small farmers. Laboratory assays were conducted to produce P-biofertilizers from natural phosphate (B5, B10, B15, B20, applying sulphur at different rates (5; 10; 15 and 20% inoculated with Acidithiobacillus (S* and testing increasing periods of incubation. A greenhouse experiment was carried out to evaluate the effect of the biofertilizers in a soil with low available P (Typic Fragiudult from the "Zona da Mata" of Pernambuco State, grown with yam bean (Pachyrhizus erosus in two consecutive harvests. The treatments were: Natural Phosphate (NP; biofertilizers produced in laboratory (B5, B10, B15, B20 with sulphur and Acidithiobacillus (NP+S*; natural phosphate with sulphur (20% without Acidithiobacillus (NP+S; triple super phosphate (TSP and a control without phosphorus. Plants were inoculated with a mixture of rhizobia strains (NFB 747 and NFB 748 or did not receive rhizobia inoculation. In bioassays pH and available P in the biofertilizers were analyzed. In the greenhouse experiment shoot dry matter, total N and total P in shoots, soil pH and available P were determined. Higher rates of available P were obtained in biofertilizers with sulphur and Acidithiobacillus (NP+S* and in triple super phosphate (TSP, and biofertilizers with sulphur and Acidithiobacillus (FN+S* and triple super phosphate (TSP increased plant parameters. Native rhizobia were as effective as the strains applied in inoculation. After the two harvests soil presented lower pH values and higher rates of available P when the biofertilizers B15 and B20 with sulphur and Acidithiobacillus were applied.

  16. Rate Equations and Kinetic Parameters of the Reactions Involved in Pyrite Oxidation by Thiobacillus ferrooxidans.

    Lizama, H M; Suzuki, I

    1989-11-01

    Rate equations and kinetic parameters were obtained for various reactions involved in the bacterial oxidation of pyrite. The rate constants were 3.5 muM Fe per min per FeS(2) percent pulp density for the spontaneous pyrite dissolution, 10 muM Fe per min per mM Fe for the indirect leaching with Fe, 90 muM O(2) per min per mg of wet cells per ml for the Thiobacillus ferrooxidans oxidation of washed pyrite, and 250 muM O(2) per min per mg of wet cells per ml for the T. ferrooxidans oxidation of unwashed pyrite. The K(m) values for pyrite concentration were similar and were 1.9, 2.5, and 2.75% pulp density for indirect leaching, washed pyrite oxidation by T. ferrooxidans, and unwashed pyrite oxidation by T. ferrooxidans, respectively. The last reaction was competitively inhibited by increasing concentrations of cells, with a K(i) value of 0.13 mg of wet cells per ml. T. ferrooxidans cells also increased the rate of Fe production from Fe plus pyrite. PMID:16348054

  17. A proton shelter inspired by the sugar coating of acidophilic archaea

    Xiumei Wang; Bei’er Lv; Guixin Cai; Long Fu; Yuanzi Wu; Xiang Wang; Bin Ren; Hongwei Ma

    2012-01-01

    The acidophilic archaeons are a group of single-celled microorganisms that flourish in hot acid springs (usually pH < 3) but maintain their internal pH near neutral. Although there is a lack of direct evidence, the abundance of sugar modifications on the cell surface has been suggested to provide the acidophiles with protection against proton invasion. In this study, a hydroxyl (OH)-rich polymer brush layer was prepared to mimic the OH-rich sugar coating. Using a novel pH-sensitive dithioacet...

  18. Evolution of Microbial “Streamer” Growths in an Acidic, Metal-Contaminated Stream Draining an Abandoned Underground Copper Mine

    D. Barrie Johnson

    2013-02-01

    Full Text Available A nine year study was carried out on the evolution of macroscopic “acid streamer” growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by acidophilic bacteria: two species of autotrophic iron-oxidizers (Acidithiobacillus ferrivorans and “Ferrovum myxofaciens” and a heterotrophic iron-oxidizer (a novel genus/species with the proposed name “Acidithrix ferrooxidans”. The same bacteria dominated the acid streamer communities for the entire nine year period, with the autotrophic species accounting for ~80% of the micro-organisms in the streamer growths (as determined by terminal restriction enzyme fragment length polymorphism (T-RFLP analysis. Biodiversity of the acid streamers became somewhat greater in time, and included species of heterotrophic acidophiles that reduce ferric iron (Acidiphilium, Acidobacterium, Acidocella and gammaproteobacterium WJ2 and other autotrophic iron-oxidizers (Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans. The diversity of archaea in the acid streamers was far more limited; relatively few clones were obtained, all of which were very distantly related to known species of euryarchaeotes. Some differences were apparent between the acid streamer community and planktonic-phase bacteria. This study has provided unique insights into the evolution of an extremophilic microbial community, and identified several novel species of acidophilic prokaryotes.

  19. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate

    Onysko, S.J.; Kleinmann, R.L.P.; Erickson, P.M.

    1984-07-01

    Thiobacillus ferrooxidans promote indirect oxidation of pyrite through the catalysis of the oxidation of ferrous iron to ferric iron, which is an effective oxidant of pyrite. These bacteria also may catalyze direct oxidation of pyrite by oxygen. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous iron to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage microorganisms. In this study, benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  20. Adsorption characteristics of thiobacillus ferrooxidans on surface of sulfide minerals

    LIU Jian-she; XIE Xue-hui; LI Bang-mei; DONG Qing-hai

    2005-01-01

    By using thiobacillus ferrooxidans (T.f) from Qixiashan, Hubei Province, China, the adsorption characteristics of T.f on surface of sulfide mineral were studied. The influences of adsorption time, pH value, temperature, initial inoculated concentration of bacteria, concentration of sulfide mineral powder, and variety of minerals on the adsorption characteristics were firstly investigated by using the ninhydrin colorimetric method, and the changes of contact angles and Zeta potentials of mineral surface during the bacterial adsorption were then determined. The results show that when the leaching experiments are performed for a long time from several days to a month, the maximal quantity of adsorption of T.f on the surface of pyrite is obtained under the following conditions: leaching for 20 d, pH value in range of 1-2 and temperature at 30 ℃, respectively; when the bio-leaching experiments are performed for a shorter leaching time, the maximal quantity of adsorption is obtained under the conditions: bio-leaching for 2 h, at 2.4×10 7 cell/mL of initial inoculated bacteria concentration, and at 10% of mineral powder concentration; and the adsorption quantities are different form one sulfide mineral to another, and the adsorption of T.f on the surface of sulfide minerals includes three phases: increasing phase, stationary phase and decreasing phase.

  1. Corrosion Behaviors of Steel A3 Exposed to Thiobacillus Ferrooxidans

    Jianhua LIU; Xin LIANG; Songmei LI

    2008-01-01

    The corrosion behaviors of steel A3 in synergistic action of Thiobacillus ferrooxidans (T.f) and electrochemically accelerated corrosion were studied by electrochemical, microbiology and surface analysis methods. The open circuit potential (Eocp) and electrochemical impedance spectroscopy (EIS) of the steel A3 electrodes were measured in leathen culture medium without and with T.f (simply called T.f solution in the following paper)in immersion electrode way at the time of the 2nd, 5th, 10th, 20th and 30th days, respectively. It was found that Eocp of the electrode for immersion in leathen culture medium shifted negatively with the immersion time while that for immersion in T.f solutions shifted negatively, then positively and finally negatively. On the 20th day, the corrosion of steel A3 for immersion in culture medium was in pitting initiation stage while that for immersion in T.f solutions was in pitting growth stage. It was found that the corrosion of steel A3 was accelerated by T.f. The morphology of corrosion product of steel A3 immersion in T.f solutions observed through scanning electron microscopy (SEM) transformed from solid globules to tabular plates and to spongy globules and plates.

  2. Environmental factors influenting species composition of acidophilous grasslands patches in agricultural landscape

    Halas, Petr

    2012-01-01

    Roč. 20, č. 1 (2012), s. 16-27. ISSN 1210-8812 Institutional support: RVO:68145535 Keywords : acidophilous grasslands * hemeroby * patch isolation * patch area * regression trees Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geonika.cz/EN/research/ENMgr/MGR_2012_01.pdf

  3. Environmental factors influencing the species composition of acidophilous grassland patches in agricultural lanscapes

    Halas, Petr

    2012-01-01

    Roč. 20, č. 1 (2012), s. 16-27. ISSN 1210-8812 Institutional research plan: CEZ:AV0Z30860518 Keywords : acidophilous grasslands * hemeroby * patch isolation * regression trees * Bohemian-Moravian Highland Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://www.geonika.cz/CZ/CZresearch/CZMgrArchive.html

  4. Simulation of acid mine drainage generation around Küre VMS Deposits, Northern Turkey

    Demirel, Cansu; Kurt, Mehmet Ali; Çelik Balci, Nurgül

    2015-04-01

    This study investigated comparative leaching characteristics of acidophilic bacterial strains under shifting environmental conditions at proposed two stages as formation stage or post acidic mine drainage (AMD) generation. At the first stage, initial reactions associated with AMD generation was simulated in shaking flasks containing massive pyritic chalcopyrite ore by using a pure strain Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus sp. mostly dominated by A. ferrooxidans and A. thiooxidans at 26oC. At the second stage, long term bioleaching experiments were carried out with the same strains at 26oC and 40oC to investigate the leaching characteristics of pyritic chalcopyrite ore under elevated heavy metal and temperature conditions. During the experiments, physicochemical characteristics (e.i. Eh, pH, EC) metal (Fe, Co, Cu, Zn) and sulfate concentration of the experimental solution were monitored during 180 days. Significant acid generation and sulfate release were determined during bioleaching of the ore by mixed acidophilic cultures containing both iron and sulfur oxidizers. In the early stage of the experiments, heavy metal release from the ore was caused by generation of acid due to accelerated bacterial oxidation of the ore. Generally high concentrations of Co and Cu were released into the solution from the experiments conducted by pure cultures of Acidithiobacillus ferrooxidans whereas high Zn and Fe was released into the solution from the mixed culture experiments. In the later stage of AMD generation and post AMD, chemical oxidation is accelerated causing excessive amounts of contamination, even exceeding the amounts resulted from bacterial oxidation by mixed cultures. Acidithibacillus ferrooxidans was found to be more effective in leaching Cu, Fe and Co at higher temperatures in contrary to mixed acidophiles that are more prone to operate at optimal moderate conditions. Moreover, decreasing Fe values are noted in bioleaching

  5. Identification of Thiobacillus ferrooxidans strains based on restriction fragment length polymorphism analysis of 16S rDNA.

    Kamimura, K; Wakai, S; Sugio, T

    2001-01-01

    The 16S rDNA sequences from ten strains of Thiobacillus ferrooxidans were amplified by PCR. The products were compared by performing restriction fragment length polymorphism (RFLP) analysis with restriction endonucleases Alu I, Hap II, Hha I, and Hae III. The RFLP patterns revealed that T. ferrooxidans could be distinguished from other iron- or sulphur-oxidizing bacteria such as T. thiooxidans NB1-3, T. caldus GO-1, Leptospirillum ferrooxidans and the marine iron-oxidizing bacterium strain KU2-11. The RFLP patterns obtained with Alu I, Hap II, and Hae III were the same for nine strains of T. ferrooxidans except for strain ATCC 13661. The RFLP patterns for strains NASF-1 and ATCC 13661 with Hha I were distinct from those for other T. ferrooxidans strains. The 16S rDNA sequence of T. ferrooxidans NASF-1 possessed an additional restriction site for Hha I. These results show that iron-oxidizing bacteria isolated from natural environments were rapidly identified as T. ferrooxidans by the method combining RFLP analysis with physiological analysis. PMID:11414499

  6. Enhanced Productivity of a Lutein-Enriched Novel Acidophile Microalga Grown on Urea

    Carlos Vilchez

    2010-12-01

    Full Text Available Coccomyxa acidophila is an extremophile eukaryotic microalga isolated from the Tinto River mining area in Huelva, Spain. Coccomyxa acidophila accumulates relevant amounts of b-carotene and lutein, well-known carotenoids with many biotechnological applications, especially in food and health-related industries. The acidic culture medium (pH < 2.5 that prevents outdoor cultivation from non-desired microorganism growth is one of the main advantages of acidophile microalgae production. Conversely, acidophile microalgae growth rates are usually very low compared to common microalgae growth rates. In this work, we show that mixotrophic cultivation on urea efficiently enhances growth and productivity of an acidophile microalga up to typical values for common microalgae, therefore approaching acidophile algal production towards suitable conditions for feasible outdoor production. Algal productivity and potential for carotenoid accumulation were analyzed as a function of the nitrogen source supplied. Several nitrogen conditions were assayed: nitrogen starvation, nitrate and/or nitrite, ammonia and urea. Among them, urea clearly led to the best cell growth (~4 ´ 108 cells/mL at the end of log phase. Ammonium led to the maximum chlorophyll and carotenoid content per volume unit (220 mg·mL-1 and 35 mg·mL-1, respectively. Interestingly, no significant differences in growth rates were found in cultures grown on urea as C and N source, with respect to those cultures grown on nitrate and CO2 as nitrogen and carbon sources (control cultures. Lutein accumulated up to 3.55 mg·g-1 in the mixotrophic cultures grown on urea. In addition, algal growth in a shaded culture revealed the first evidence for an active xanthophylls cycle operative in acidophile microalgae.

  7. Nucleotide sequence of the gene encoding the nitrogenase iron protein of Thiobacillus ferrooxidans

    The DNA sequence was determined for the cloned Thiobacillus ferrooxidans nifH and part of the nifD genes. The DNA chains were radiolabeled with [α-32P]dCTP (3000 Ci/mmol) or [α-35S]dCTP (400 Ci/mmol). A putative T. ferrooxidans nifH promoter was identified whose sequences showed perfect consensus with those of the Klebsiella pneumoniae nif promoter. Two putative consensus upstream activator sequences were also identified. The amino acid sequence was deduced from the DNA sequence. In a comparison of nifH DNA sequences from T. ferrooxidans and eight other nitrogen-fixing microbes, a Rhizobium sp. isolated from Parasponia andersonii showed the greatest homology (74%) and Clostridium pasteurianum (nifH1) showed the least homology (54%). In the comparison of the amino acid sequences of the Fe proteins, the Rhizobium sp. and Rhizobium japonicum showed the greatest homology (both 86%) and C. pasteurianum (nifH1 gene product) demonstrated the least homology (56%) to the T. ferrooxidans Fe protein

  8. Enumeration and Characterization of Acidophilic Microorganisms Isolated from a Pilot Plant Stirred-Tank Bioleaching Operation

    Okibe, Naoko; Gericke, Mariekie; Hallberg, Kevin B.; Johnson, D. Barrie

    2003-01-01

    Microorganisms were enumerated and isolated on selective solid media from a pilot-scale stirred-tank bioleaching operation in which a polymetallic sulfide concentrate was subjected to biologically accelerated oxidation at 45°C. Four distinct prokaryotes were isolated: three bacteria (an Acidithiobacillus caldus-like organism, a thermophilic Leptospirillum sp., and a Sulfobacillus sp.) and one archaeon (a Ferroplasma-like isolate). The relative numbers of these prokaryotes changed in the three...

  9. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria

    Ňancucheo, Ivan; Johnson, D. Barrie

    2011-01-01

    Summary Two continuous‐flow bench‐scale bioreactor systems populated by mixed communities of acidophilic sulfate‐reducing bacteria were constructed and tested for their abilities to promote the selective precipitation of transition metals (as sulfides) present in synthetic mine waters, using glycerol as electron donor. The objective with the first system (selective precipitation of copper from acidic mine water containing a variety of soluble metals) was achieved by maintaining a bioreactor p...

  10. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans

    Yin, Huaqun; Zhang, Xian; Li, Xiaoqi; He, Zhili; Liang, Yili; Guo, Xue; Hu, Qi; Xiao, Yunhua; Cong, Jing; Ma, Liyuan; Niu, Jiaojiao; Liu, Xueduan

    2014-01-01

    Background Acidithiobacillus thiooxidans (A. thiooxidans), a chemolithoautotrophic extremophile, is widely used in the industrial recovery of copper (bioleaching or biomining). The organism grows and survives by autotrophically utilizing energy derived from the oxidation of elemental sulfur and reduced inorganic sulfur compounds (RISCs). However, the lack of genetic manipulation systems has restricted our exploration of its physiology. With the development of high-throughput sequencing techno...

  11. [Recent research progress on the biomining bacteria of Acidithiobacillus caldus--a review].

    Pang, Xin; Chen, Dandan; Lin, Jianqun; Liu, Xiangmei; Lin, Jianqiang; Yan, Wangming

    2009-11-01

    Acidithiobacillus caldus (A. caldus) is one of the predominant biomining bacteria, which shows application prospect in biological metallurgy. It can enhance the biomining efficiency together with iron oxidation bacteria in mixed biomining system. Based on the published papers and our study on this bacterium, we described the research progress on it from four aspects, including the biomining mechanism, arsenic-resistant mechanism, genome study and genetic reconstruction. Furthermore, we discussed the prospects of research on A. caldus. PMID:20112666

  12. Bioleaching of pyrite by Thiobacillus ferrooxidans: fixed grains electrode to study superficial oxidized compounds

    Toniazzo, Valérie; Lazaro, Isabelle; Humbert, Bernard; Mustin, Christian

    1999-04-01

    An electrode with fixed pyrite grains on a graphite and silicon paste has been used to study the electrochemical processes at the surface of powdered pyrite during bioleaching by Thiobacillus ferrooxidans. The study of an air-oxidized pyrite shows that the fixed grains electrode (FGE) is more sensitive than the classical Carbon Paste Electrode (CPE) already used by different authors to characterize various oxides and sulfurs. On the other hand, the concommitant Raman and electrochemical analysis of autoclaved pyrite shows that the cleaned mineral FeS 2 has no electrochemical reactivity, and points out that the electrochemical response of the oxidized mineral is exclusively due to the chemical compounds present at its surface. Therefore, the electrode acts as an efficient sensor for pyrite superficial oxidized phases, which are fundamental for the biooxidation process and is consequently very well adapted for the control of the oxidation state of pyrite powder during bioleaching by Thiobacillus ferrooxidans.

  13. Effect of Applied Potentials on the Activity and Growth of Thiobacillus ferrooxidans

    Natarajan, KA

    1992-01-01

    The effect of applied DC potentials both in the positive and negative range, on the activity and growth of Thiobacillus ferrooxidans, is discussed. In general, application of positive potentials up to +1000 mV in an acid bioleaching medium was found to be detrimental to bacterial activity, while the impression of negative potentials enhanced both their activity and growth through electrochemical regeneration of ferrous ions and an increase in the biomass. Ferrous-ferric ratios in a bioleachin...

  14. Rate of Pyrite Bioleaching by Thiobacillus ferrooxidans: Results of an Interlaboratory Comparison

    Olson, Gregory J.

    1991-01-01

    Ten laboratories participated in an interlaboratory comparison of determination of bioleaching rates of a pyrite reference material. A standardized procedure and a single strain of Thiobacillus ferrooxidans were used in this study. The mean rate of bioleaching of the pyrite reference material was 12.4 mg of Fe per liter per h, with a coefficient of variation (percent relative standard deviation) of 32% as determined by eight laboratories. These results show the precision among laboratories of...

  15. Production of ferric sulphate from pyrite by thiobacillus ferrooxidans. Application to uranium ore leaching

    A process for uranium extraction by oxidizing solutions of ferric sulphate produced by T. ferrooxidans from pyrite is developed. A new counting method specific of T. ferrooxidans is designed. An uranium resistant wild strain, with oxidizing properties as high as the strain ATCC 19859, is isolated. Optimal conditions for ferric sulphate production from pyrite are defined (pH 1.8, density of the medium 1.2%, pyrite granulometry < 60 micrometers). The comparison of oxidation of 2 pyrites evidences the effect of composition and crystal type on bacterial activity. Latency period is reduced by preliminary adaptation of bacteria to pyrite, a relatively important inoculum and association of T. ferrooxidans to T. thiooxidans. Free bacteria, but not adsorbed bacteria, play an important part in pyrite oxidation, indirectly by regeneration of ferric iron and by maintaining a high redox potential. Leaching of an uranium ore column by an acidic solution of ferric iron increase not only uranium extraction yield but also to decrease acid consumption in respect to acid leaching only

  16. An immunological strategy To monitor In situ the phosphate starvation state in thiobacillus ferrooxidans

    Varela; Levican; Rivera; Jerez

    1998-12-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. During the process of ore bioleaching, the microorganisms are subjected to several stressing conditions, including the lack of some essential nutrients, which can affect the rates and yields of bioleaching. When T. ferrooxidans is starved for phosphate, the cells respond by inducing the synthesis of several proteins, some of which are outer membrane proteins of high molecular weight (70,000 to 80,000). These proteins were considered to be potential markers of the phosphate starvation state of these microorganisms. We developed a single-cell immunofluorescence assay that allowed monitoring of the phosphate starvation condition of this biomining microorganism by measuring the increased expression of the surface proteins. In the presence of low levels of arsenate (2 mM), the growth of phosphate-starved T. ferrooxidans cells was greatly inhibited compared to that of control nonstarved cells. Therefore, the determination of the phosphorus nutritional state is particularly relevant when arsenic compounds are solubilized during the bioleaching of different ores. PMID:9835593

  17. Work within the coordinated programme on bacterial leaching of uranium ores. Immunological identification of Thiobacillus ferrooxidans and Thiobacillus thiooxidans

    Little is known of the antigenic structure of Thiobacillus. In the composition of the antigens of gram negative bacteria the polysaccharide moiety endows some specificity permitting immunological identification. The report considers work on attempts to isolate the type specific component from T. thiooxidans and T ferrooxidans. The fractionation procedures presented suggest that the presence of one or a few such type specific major protein antigen fractions from both of the T. ferrooxidans and the T. thiooxidans seems to be originated from the cytoplasm of the bacteria, since it is believed that the glycoprotein fractions which was derived from the cell wall are the common antigenic fraction between the T. ferrooxidans and the T. thiooxidans, respectively. In this regard, it is of great interest that the T. ferrooxidans or the T. thiooxidans appears not to have the type-specific antigens on their LPS or polysaccharide moiety in contrast to the other gram-negative bacteria. Thus, it is strongly believed that the envelopes of these bacteria contain both glycoproteins bearing common antigenicity, since the T. ferrooxidans and the T. thiooxidans have a structually different type-specific antigen moiety according to the results polyacrylamide gel electrophoresis

  18. Enhanced bioleaching on attachment of indigenous acidophilic bacteria to pyrite surface

    Wi, D. W.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.

    2012-04-01

    In recent years, bioleaching has been widely applied on an industrial scale due to the advantages of low cost and environment friendliness. The direct contact mechanism of bioleaching assumes the action of a metal sulfide-attached cell oxidizing the mineral by an enzyme system with oxygen to sulfate and metal cations. Fundamental surface properties of sulfide particles and leaching-bacteria in bioleaching play the key role in the efficiency of this process. The aim of this work is to investigate of direct contact bioleaching mechanism on pyrite through attachment properties between indigenous acidophilic bacteria and pyrite surfaces. The bacteria were obtained from sulfur hot springs, Hatchobaru thermal electricity plant in Japan. And pyrite was collected from mine waste from Gwang-yang abandoned gold mines, Korea. In XRD analyses of the pyrite, x-ray diffracted d-value belong to pyrite was observed. The indigenous acidophilic bacteria grew well in a solution and over the course of incubation pH decreased and Eh increased. In relation to a bacterial growth-curve, the lag phase was hardly shown while the exponential phase was very fast. Bioleaching experiment result was showed that twenty days after the indigenous acidophilic bacteria were inoculated to a pyrite-leaching medium, the bacterial sample had a greater concentration of Fe and Zn than within the control sample. In SEM-EDS analyses, rod-shaped bacteria and round-shaped microbes were well attached to the surface of pyrite. The size of the rod-shaped bacteria ranged from 1.05~1.10 ? to 4.01~5.38 ?. Round-shaped microbes were more than 3.0 ? in diameter. Paired cells of rod-shaped bacteria were attached to the surface of pyrite linearly.

  19. [Leaching of Rare Earth Elements from Coal Ashes Using Acidophilic Chemolithotrophic Microbial Communities].

    Muravyov, M I; Bulaev, A G; Melamud, V S; Kondrat'eva, T F

    2015-01-01

    A method for leaching rare earth elements from coal ash in the presence of elemental sulfur using communities of acidophilic chemolithotrophic microorganisms was proposed. The optimal parameters determined for rare element leaching in reactors were as follows: temperature, 45 degrees C; initial pH, 2.0; pulp density, 10%; and the coal ash to elemental sulfur ratio, 10 : 1. After ten days of leaching, 52.0, 52.6, and 59.5% of scandium, yttrium, and lanthanum, respectively, were recovered. PMID:26263628

  20. Photochemical performance of the acidophilic red alga Cyanidium sp. in a pH gradient

    Kvíderová, Jana

    2012-01-01

    Roč. 42, č. 2-3 (2012), s. 223-234. ISSN 0169-6149. [European Workshop on Astrobiology of the European-Astrobiology-Network-Association (EANA) /11/. German Aerosp Ctr, Cologne, 11.07.2011-14.07.2011] R&D Projects: GA MŠk 1M0571 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : acidophilic red alga * pH gradient * photochemistry Subject RIV: EF - Botanics Impact factor: 1.831, year: 2012

  1. Regulation of a Novel Acidithiobacillus caldus Gene Cluster Involved in Metabolism of Reduced Inorganic Sulfur Compounds▿

    Rzhepishevska, Olena I.; Valdés, Jorge; Marcinkeviciene, Liucija; Gallardo, Camelia Algora; Meskys, Rolandas; Bonnefoy, Violaine; Holmes, David S.; Dopson, Mark

    2007-01-01

    Acidithiobacillus caldus has been proposed to play a role in the oxidation of reduced inorganic sulfur compounds (RISCs) produced in industrial biomining of sulfidic minerals. Here, we describe the regulation of a new cluster containing the gene encoding tetrathionate hydrolase (tetH), a key enzyme in the RISC metabolism of this bacterium. The cluster contains five cotranscribed genes, ISac1, rsrR, rsrS, tetH, and doxD, coding for a transposase, a two-component response regulator (RsrR and Rs...

  2. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    Mishra, Debaraj [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Dong J. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of)], E-mail: djkim@kigam.re.kr; Ralph, David E. [AJ Parker CRC for Hydrometallurgy, Murdoch University, South Street Murdoch, Perth 6153 (Australia); Ahn, Jong G. [Mineral and Material Processing Division, Korea Institute of Geosciences and Mineral Resources, Daejeon 305-350 (Korea, Republic of); Rhee, Young H. [Department of Microbiology, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2008-04-15

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO{sub 3}. Bioleach residues were characterized by EDX and XRD.

  3. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO3. Bioleach residues were characterized by EDX and XRD

  4. Iron homeostasis and responses to iron limitation in extreme acidophiles from the Ferroplasma genus.

    Potrykus, Joanna; Jonna, Venkateswara Rao; Dopson, Mark

    2011-01-01

    Extremely acidophilic archaea from the genus Ferroplasma inhabit iron-rich biomining environments and are important constituents of naturally occurring microbial consortia that catalyze the production of acid mine drainage. A combined bioinformatic, transcript profiling, and proteomic approach was used to elucidate iron homeostasis mechanisms in "F. acidarmanus" Fer1 and F. acidiphilum Y(T) . Bioinformatic analysis of the "F. acidarmanus" Fer1 genome sequence revealed genes encoding proteins hypothesized to be involved in iron-dependent gene regulation and siderophore biosynthesis; the Fhu and NRAMP cation acquisition systems; iron storage proteins; and the SUF machinery for the biogenesis of Fe-S clusters. A subset of homologous genes was identified on the F. acidiphilum Y(T) chromosome by direct PCR probing. In both strains, some of the genes appeared to be regulated in a ferrous/ferric iron-dependent manner, as indicated by RT-PCR. A detailed gel-based proteomics analysis of responses to iron depletion showed that a putative isochorismatase, presumably involved in siderophore biosynthesis, and the SufBCD system were upregulated under iron-limiting conditions. No evidence was obtained for iron sparing response during iron limitation. This study constitutes the first detailed investigation of iron homeostasis in extremely acidophilic archaea. PMID:21182194

  5. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect.

    Mishra, Debaraj; Kim, Dong J; Ralph, David E; Ahn, Jong G; Rhee, Young H

    2008-04-15

    Bioleaching of metals from hazardous spent hydro-processing catalysts was attempted in the second stage after growing the bacteria with sulfur in the first stage. The first stage involved transformation of elemental sulfur particles to sulfuric acid through an oxidation process by acidophilic bacteria. In the second stage, the acidic medium was utilized for the leaching process. Nickel, vanadium and molybdenum contained within spent catalyst were leached from the solid materials to liquid medium by the action of sulfuric acid that was produced by acidophilic leaching bacteria. Experiments were conducted varying the reaction time, amount of spent catalysts, amount of elemental sulfur and temperature. At 50 g/L spent catalyst concentration and 20 g/L elemental sulfur, 88.3% Ni, 46.3% Mo, and 94.8% V were recovered after 7 days. Chemical leaching with commercial sulfuric acid of the similar amount that produced by bacteria was compared. Thermodynamic parameters were calculated and the nature of reaction was found to be exothermic. Leaching kinetics of the metals was represented by different reaction kinetic equations, however, only diffusion controlled model showed the best correlation here. During the whole process Mo showed low dissolution because of substantiate precipitation with leach residues as MoO3. Bioleach residues were characterized by EDX and XRD. PMID:17825485

  6. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at −1 was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process

  7. Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals.

    Beolchini, Francesca; Dell'Anno, Antonio; De Propris, Luciano; Ubaldini, Stefano; Cerrone, Federico; Danovaro, Roberto

    2009-03-01

    This study deals with bioremediation treatments of dredged sediments contaminated by heavy metals based on the bioaugmentation of different bacterial strains. The efficiency of the following bacterial consortia was compared: (i) acidophilic chemoautotrophic, Fe/S-oxidising bacteria, (ii) acidophilic heterotrophic bacteria able to reduce Fe/Mn fraction, co-respiring oxygen and ferric iron and (iii) the chemoautotrophic and heterotrophic bacteria reported above, pooled together, as it was hypothesised that the two strains could cooperate through a mutual substrate supply. The effect of the bioremediation treatment based on the bioaugmentation of Fe/S-oxidising strains alone was similar to the one based only on Fe-reducing bacteria, and resulted in heavy-metal extraction yields typically ranging from 40% to 50%. The efficiency of the process based only upon autotrophic bacteria was limited by sulphur availability. However, when the treatment was based on the addition of Fe-reducing bacteria and the Fe/S oxidizing bacteria together, their growth rates and efficiency in mobilising heavy metals increased significantly, reaching extraction yields >90% for Cu, Cd, Hg and Zn. The additional advantage of the new bioaugmentation approach proposed here is that it is independent from the availability of sulphur. These results open new perspectives for the bioremediation technology for the removal of heavy metals from highly contaminated sediments. PMID:19118863

  8. Functional analysis of gapped microbial genomes: Amino acid metabolism of Thiobacillus ferrooxidans

    Selkov, Evgeni; Overbeek, Ross; Kogan, Yakov; Chu, Lien; Vonstein, Veronika; Holmes, David; Silver, Simon; Haselkorn, Robert; Fonstein, Michael

    2000-01-01

    A gapped genome sequence of the biomining bacterium Thiobacillus ferrooxidans strain ATCC23270 was assembled from sheared DNA fragments (3.2-times coverage) into 1,912 contigs. A total of 2,712 potential genes (ORFs) were identified in 2.6 Mbp (megabase pairs) of Thiobacillus genomic sequence. Of these genes, 2,159 could be assigned functions by using the WIT-Pro/EMP genome analysis system, most with a high degree of certainty. Nine hundred of the genes have been assigned roles in metabolic p...

  9. 嗜酸糖苷水解酶研究进展%Research Progress on Acidophilic Glycoside Hydrolase

    罗会颖; 姚斌; 范云六

    2013-01-01

    随着极端微生物及极端酶的广泛研究,嗜酸酶因其在极端酸性环境中具有高的酶活性和稳定性而倍受关注,并取得了较大的研究进展。嗜酸糖苷水解酶是嗜酸酶中最重要的一类,在生物能源、饲料、食品等工业中具有重要的应用前景。综述了重要嗜酸糖苷水解酶,包括嗜酸淀粉酶、嗜酸纤维素酶、嗜酸木聚糖酶和甘露聚糖酶在基因的挖掘、表达、分子改良嗜酸机制研究以及应用等方面国内外的研究进展,展望了嗜酸糖苷水解酶未来可能的研究方向和发展前景。%Extremophiles and enzymes from extremophiles are widely studied. Of them, acidophilic enzyme attracts much attention, due to its high activity and stability under extreme acidic conditions, and this research has made rapid progress. Acidophilic glycosyl hydrolase is one of the most important acidophilic enzymes, and has significant application prospect in bio-energy, animal feed, food and other industries. This paper reviewed the gene cloning, heterologous expression, molecular modification and acidophilic mechanisms of important acidophilic glycosyl hydrolases, including amylase, cellulase, xylanase, and mannanase. The research orientation and development prospects were also elucidated in this paper.

  10. Molecular Cloning, Sequencing, and Expression of omp-40, the Gene Coding for the Major Outer Membrane Protein from the Acidophilic Bacterium Thiobacillus ferrooxidans†

    Guiliani, Nicolas; Jerez, Carlos A.

    2000-01-01

    Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. Some of the surface components of this microorganism are probably involved in adaptation to their acidic environment and in bacterium-mineral interactions. We have isolated and characterized omp40, the gene coding for the major outer membrane protein from T. ferrooxidans. The deduced amino acid sequence of the Omp40 protein has 382 amino acids and a calculated molecular weight ...

  11. Examination of Lipopolysaccharide (O-Antigen) Populations of Thiobacillus ferrooxidans from Two Mine Tailings

    Southam, G.; Beveridge, T. J.

    1993-01-01

    Net acid-generating capacities of 39.74 kg of H2SO4 per ton (ca. 0.05 kg/kg) (pH 2.68) for the Lemoine copper mine tailings (closed ca. 8 years ago; located 40 km west of Chibougamau, Quebec, Canada) and 16.07 kg of H2SO4 per ton (ca. 0.02 kg/kg) (pH 3.01) for the Copper Rand tailings (in current use and 50 km distant [east] from those of Lemoine) demonstrate that these sulfide tailings can support populations of acidophilic thiobacilli. Oxidized regions in both tailings environments were rea...

  12. Dissolution kinetics of spent petroleum catalyst using sulfur oxidizing acidophilic microorganisms.

    Mishra, Debaraj; Ahn, Jong G; Kim, Dong J; Roychaudhury, G; Ralph, David E

    2009-08-15

    Bioleaching studies of spent petroleum catalyst were carried out using sulfur oxidizing, Acidithiobacillus species. Leaching studies were carried out in two-stage, in the first stage bacteria were grown and culture filtrate was used in the second stage for leaching purpose. XRD analysis of spent petroleum catalyst showed oxides of V, Fe and Al and sulfides of Mo and Ni. The leaching kinetics followed dual rate, initial faster followed by slower rate and equilibrium could be achieved within 7 days. The leaching rate of Ni and V were high compared to Mo. The low Mo leaching rate may be either due to formation of impervious sulfur layer or refractoriness of sulfides or both. The leaching kinetics followed 1st order rate. Using leaching kinetics, rate equations for dissolution process for different metal ions were evaluated. The rate determining step observed to be pore diffusion controlled. PMID:19286311

  13. Influence of uranium extractants on pyrite oxidation ability of Thiobacillus ferrooxidans

    Microbiological leaching as applied to uranium ores involves the metabolic oxidation by Thiobacillus ferrooxidans of associated pyrite to sulfuric acid and ferric sulfate. The sulfuric acid and ferric sulfate generated are effective leachings for common uranium minerals. Dissolved uranium can be recovered from the aqueous leach solutions by solvent extraction or ion exchange techniques. The present study explored the effects of potential solvent extraction reagents for uranium on pyrite oxidation ability of Thiobacillus ferrooxidans. For the solvents studied it was found that in all cases the dissolved organic matter decreased the pyrite oxidation activity of the bacteria, the surface tension of the leach solutions and the oxygen saturation concentration. The following order of inhibition was established for the solvents and modifiers studied: aliquat 336 > nonyl phenol > kerosene 140 > alamine 310 > adogen 381 > di (2-ethylhexyl) phosphoric acid > adogen 365 > tri-n-butyl phosphate > isodecanol > alamine 308 > alamine 336 > alamine 304. Suggestions to integrate solvent extraction and bacterial leaching for uranium by treating the recirculating raffinate are described. (orig.)

  14. Distribution, ecology and inhibition of Thiobacillus ferrooxidans in relation to acid drainage from Witwatersrand gold mine dumps

    The distribution and ecology of Thiobacillus ferrooxidans in gold mine dumps and possible means for its inhibition were investigated. A literature survey of the micro-ecology of mine waste dumps in various parts of the world was undertaken. A linear alkylbenzene sulphonate (LAS), NANSA 80/S, and a cetyl pyridinium chloride, Ceepryn, were tested as possible inhibitors for mine dump application. The LAS was rejected because it is poorly soluble in water and required higher concentrations than SLS for the inhibition of T.ferrooxidans. Ceepryn was an efficient inhibitor, but its efficiency was dramatically impeded in the presence of mine dump sand making it unsuitable for application on dumps. The SLS and LAS were tested against a mixed population of T.ferrooxidans from gold mine dumps and these bacteria were shown to be marginally more resistant to the inhibitors than the pure T.ferrooxidans culture. Sampling from mine dumps on the Witwatersrand suggested that the major T.ferrooxidans populations occurred in the moist sand of the drainage areas at the base of dumps, with few viable iron-oxidising bacteria located on the surfaces or in the centre of dumps. Sites of low moisture in dumps contained few or no viable bacteria. In the laboratory the bacterial viability decreased rapidly with loss of moisture from the sand. Moisture was shown to be important to bacterial activity and should be considered with respect to acid drainage control. Experimental sand columns showed that iron was leached with water from mine dump sand in the absence and presence of bacteria. In this study substrates, moisture, oxygen and carbon dioxide availability, ph, temperature, microorganisms and metal pollutants of uranium waste dumps are also covered

  15. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis.

    Tamburini, Elena; Costa, Stefania; Marchetti, Maria Gabriella; Pedrini, Paola

    2015-01-01

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60-80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa = 2·h(-1)). Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w), against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions. PMID:26295411

  16. A proton shelter inspired by the sugar coating of acidophilic archaea

    Wang, Xiumei; Lv, Bei'er; Cai, Guixin; Fu, Long; Wu, Yuanzi; Wang, Xiang; Ren, Bin; Ma, Hongwei

    2012-11-01

    The acidophilic archaeons are a group of single-celled microorganisms that flourish in hot acid springs (usually pH polymer brush layer was prepared to mimic the OH-rich sugar coating. Using a novel pH-sensitive dithioacetal molecule as a probe, we studied the proton-resisting property and found that a 10-nm-thick polymer layer was able to raise the pH from 1.0 to > 5.0, indicating that the densely packed OH-rich layer is a proton shelter. As strong evidence for the role of sugar coatings as proton barriers, this biomimetic study provides insight into evolutionary biology, and the results also could be expanded for the development of biocompatible anti-acid materials.

  17. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis

    Elena Tamburini

    2015-08-01

    Full Text Available The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60–80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w on consumed xylose in microaerophilic conditions (kLa = 2·h−1. Scaling up on 3 L fermenter, with a fed-batch strategy, the best xylitol yield was 86.84% (w/w, against a 90% of theoretical yield. The hyper-acidophilic behaviour of C. tropicalis makes this strain particularly promising for industrial application, due to the possibility to work in non-sterile conditions.

  18. Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile Ferrovum

    Sophie Roxana Ullrich

    2016-05-01

    Full Text Available Acid mine drainage (AMD, associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus Ferrovum are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of Ferrovum has proven to be extremely difficult and has so far only been successful for the designated type strain Ferrovum myxofaciens P3G. In this study, the genomes of two novel strains of Ferrovum (PN-J185 and Z-31 derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of Ferrovum sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G. Phylogenomic scrutiny suggests that the four strains represent three Ferrovum species that cluster in two groups (1 and 2. Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the F. myxofaciens strains (group 1 appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed

  19. Potentiality of Acidithiobacillus thiooxidans in Microbial Solubilization of Phosphate Mine Tailings

    S Dhakar

    2015-04-01

    Full Text Available This paper deals with the solubilization behavior of the tailings produced by the floatation of a complex low grade phosphate ore. The composition of the tailings was essentially dolomite (52.04% with minor amounts of phosphate, iron and aluminium oxides (10.4 and 0.5% respectively. The presence of these products created uncontrolled land pollution and severely affected groundwater. An initiative has been taken up for utilization of this waste to generate an eco-friendly product. First step towards this panorama is incorporation of suitable microorganisms for the biodegradation of this effluent. Sulphur oxidizing bacteria Acidithiobacillus thiooxidans produces sulphuric acid which neutralizes the dolomitic tailings and convert it into plant available forms. The solubilization activity was tested in sulphur medium with 5, 10, 15 and 20% concentration of tailings. The solubilization is graded on the basis of pH, Electrical conductivity (EC, soluble calcium and magnesium and soluble phosphate. The results from ex-situ experiments showed that the treatment with 15% tailings ended with highest solubilization. The values of pH, EC, soluble calcium and magnesium and soluble phosphate for this treatment were 4.92, 31.6 dS/m, 10.8 mL EDTA and 17.24 µg/mL respectively. Also, the results proved that sulphur oxidizing bacteria Acidithiobacillus thiooxidans is capable of solubilizing dolomitic tailings from the Jhamarkotra mines. Finally, an important factor taken into account was solubilization of residual phosphate along with dolomite in the tailings. This combined action affects the solubilization behaviour of the residue, which was also showed successfully with the assayed laboratory studies.

  20. Existence of Two Kinds of Sulfur-reducing Systems in Iron-oxidizing Bacterium Thiobacillus ferrooxidans.

    Ng, K Y; Inoue, S; Fujioka, A; Kamimura, K; Sugio, T

    1999-01-01

    Intact cells of Thiobacillus ferrooxidans NASF-1 incubated under anaerobic conditions in a reaction mixture containing 0.5% colloidal sulfur produced hydrogen sulfide (H2S) extracellularly. The amount of H2S produced by cells increased corresponding to the cell amounts and colloidal sulfur. Two activity peaks of H2S production were observed at pH 1.5 and 7.5. We tentatively called the enzyme activities pH 1.5- and pH 7.5-sulfur reducing systems, respectively. Seven strains of T. ferrooxidans tested had both the activities of pH 1.5- and pH 7.5-sulfur reducing systems, but at different levels. T. ferrooxidans NASF-1 showed the highest activity of the pH 1.5-sulfur reducing system and strain 13598 from ATCC showed the highest activity of the pH 7.5-sulfur reducing system. Further characteristics of H2S production were studied with intact cells of NASF-1. The optimum temperatures for pH 1.5- and pH 7.5-sulfur reducing systems of NASF-1 were 40°C. Hydrogen sulfide production continued for 8 days and total amounts of H2S produced at pH 7.5 and 1.5 were 832 and 620 nmol/mg protein, respectively. The pH 7.5-sulfur reducing system used only colloidal sulfur as the electron acceptor. However, the pH 1.5-sulfur reducing system used both colloidal sulfur and tetrathionate. Thiosulfate, dithionate, and sulfite could not be used as the electron acceptor for both of the sulfur reducing systems. Potassium cyanide activated by 3- fold the pH 1.5-sulfur reducing system activity at 0.5 mM but did not affect the activity of the pH 7.5-sulfur reducing system. An inhibitor of sulfite reductase, p-chloromercuribenzene sulfonic acid, did not affect either enzyme activity. Sodium molybdate and monoiodoacetic acid strongly inhibited the activity of the pH 1.5-sulfur reducing system at 1.0 mM, but not the activity of pH 7.5-sulfur reducing system. PMID:27385566

  1. Production of hydrogen sulfide from tetrathionate by the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1.

    Ng, K Y; Kamimura, K; Sugio, T

    2000-01-01

    When incubated under anaerobic conditions, five strains of Thiobacillus ferrooxidans tested produced hydrogen sulfide (H2S) from elemental sulfur at pH 1.5. However, among the strains, T. ferrooxidans NASF-1 and AP19-3 were able to use both elemental sulfur and tetrathionate as electron acceptors for H2S production at pH 1.5. The mechanism of H2S production from tetrathionate was studied with intact cells of strain NASF-1. Strain NASF-1 was unable to use dithionate, trithionate, or pentathionate as an electron acceptor. After 12 h of incubation under anaerobic conditions at 30 degrees C, 1.3 micromol of tetrathionate in the reaction mixture was decomposed, and 0.78 micromol of H2S and 0.6 micromol of trithionate were produced. Thiosulfate and sulfite were not detected in the reaction mixture. From these results, we propose that H2S is produced at pH 1.5 from tetrathionate by T. ferrooxidans NASF-1, via the following two-step reaction, in which AH2 represents an unknown electron donor in NASF-1 cells. Namely, tetrathionate is decomposed by tetrathionate-decomposing enzyme to give trithionate and elemental sulfur (S4O6(2-)-->S3O6(2-) + S(o), Eq. 1), and the elemental sulfur thus produced is reduced by sulfur reductase using electrons from AH2 to give H2S (S(o) + AH2-->H2S + A, Eq. 2). The optimum pH and temperature for H2S production from tetrathionate under argon gas were 1.5 and 30 degrees C, respectively. Under argon gas, the H2S production from tetrathionate stopped after 1 d of incubation, producing a total of 2.5 micromol of H2S/5 mg protein. In contrast, under H2 conditions, H2S production continued for 6 d, producing a total of 10.0 micromol of H2S/5 mg protein. These results suggest that electrons from H2 were used to reduce elemental sulfur produced as an intermediate to give H2S. Potassium cyanide at 0.5 mM slightly inhibited H2S production from tetrathionate, but increased that from elemental sulfur 3-fold. 2,4-Dinitrophenol at 0.05 mM, carbonylcyanide

  2. The Effect of Oxygen Supply on the Dual Growth Kinetics of Acidithiobacillus thiooxidans under Acidic Conditions for Biogas Desulfurization

    Hyeong-Kyu Namgung; JiHyeon Song

    2015-01-01

    In this study, to simulate a biogas desulfurization process, a modified Monod-Gompertz kinetic model incorporating a dissolved oxygen (DO) effect was proposed for a sulfur-oxidizing bacterial (SOB) strain, Acidithiobacillus thiooxidans, under extremely acidic conditions of pH 2. The kinetic model was calibrated and validated using experimental data obtained from a bubble-column bioreactor. The SOB strain was effective for H2S degradation, but the H2S removal efficiency dropped rapidly at DO ...

  3. EPS-contact-leaching mechanism of chalcopyrite concentrates by A. ferrooxidans

    YU Run-lan; TAN Jian-xi; YANG Peng; SUN Jing; OU Yang; XIONG Jing; DAI Yun-jie

    2008-01-01

    The effect of extracelluar polymeric substances(EPS) on the bioleaching chalcopyrite concentrates in the presence of iron- and sulphur-oxidizing bacteria (A.ferrooxidans) was studied.The bacterial number,pH,redox potential,and the concentrations of Fe2+and Cu2+ ions were investigated.The leached residues were analyzed by the X-ray diffraction and FT-IR.The results indicate that the EPS makes the bacteria adhere to the chalcopyrite surface easily and it is helpful for bacteria in disadvantageous environment.At the same time,EPS film layer with Fe3+ deposits on the surface of chalcopyrite and becomes a barrier of oxygen transfer to chalcopyrite to passivate chalcopyrite,and creates the high redox potential space through concentrating Fe3+ ions to accelerate bioleaching pyrite in chalcopyrite concentrates.The results suggest that EPS formation promotes bioleaching pyrite and inhibits bioleaching chalcopyrite,especially under high potential condition.

  4. The aerobic respiratory chain of the acidophilic archaeon Ferroplasma acidiphilum: A membrane-bound complex oxidizing ferrous iron.

    Castelle, Cindy J; Roger, Magali; Bauzan, Marielle; Brugna, Myriam; Lignon, Sabrina; Nimtz, Manfred; Golyshina, Olga V; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2015-08-01

    The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far. At present, little is known about the nature or the structural and functional organization of the proteins in F. acidiphilum that impact the iron biogeochemical cycle. We combine here biochemical and biophysical techniques such as enzyme purification, activity measurements, proteomics and spectroscopy to characterize the iron oxidation pathway(s) in F. acidiphilum. We isolated two respiratory membrane protein complexes: a 850 kDa complex containing an aa3-type cytochrome oxidase and a blue copper protein, which directly oxidizes ferrous iron and reduces molecular oxygen, and a 150 kDa cytochrome ba complex likely composed of a di-heme cytochrome and a Rieske protein. We tentatively propose that both of these complexes are involved in iron oxidation respiratory chains, functioning in the so-called uphill and downhill electron flow pathways, consistent with autotrophic life. The cytochrome ba complex could possibly play a role in regenerating reducing equivalents by a reverse ('uphill') electron flow. This study constitutes the first detailed biochemical investigation of the metalloproteins that are potentially directly involved in iron-mediated energy conservation in a member of the acidophilic archaea of the genus Ferroplasma. PMID:25896560

  5. Electro-generative mechanism for simultaneous leaching of pyrite and MnO2 in presence of A. ferrooxidans

    2007-01-01

    A dual cell system was used to study the output power, output voltage, galvanic polarization of anode and cathode, and the relationship between the electric quantity(Q) and some factors, such as the dissolved Fe2+ magnitude, the time in the electrogenerative simultaneous leaching with bacteria(BEGSL) and without bacteria(EGSL). A three-electrode system was adopted to study their individual self-corrosion current, which was smaller compared with the galvanic current. The results show that the output power and voltage in BEGSL are higher than those in EGSL. The accumulated sulfur on the surface of sulfides produced in BEGSL can be oxidized by A. ferrooxidans, and the ratio of biologic electric quantity reaches 51.50% in 72 h. The first stage both in EGSL and in BEGSL is the dissolution of pyrite on the surface to ferrous ion and sulfur element, which was oxidized by A. ferrooxidans in the further procedure.

  6. Submicro-battery effect and selective bio-oxidation model of gold-bearing arsenopyrite by Thiobacillus ferrooxidans

    杨洪英; 杨立; 赵玉山; 陈刚; 吕久吉; 范有静

    2002-01-01

    Through the study by electronic probe it was found that many new cracks and holes appear on the surface of gold-bearing arsenopyrite crystal oxidized by Thiobacillus ferrooxidans, which are along with some directions. Then the selective bio-oxidation model of gold-bearing arsenopyrite was set up. The selective bio-oxidation resulting from the submicro-battery effect of gold/ arsenopyrite mineral pairs naturally forms in the gold-bearing arsenopyrite crystal. Thiobacillus ferrooxidans has priority to oxidize the place of gold-rich and oxidizes selectedly along with the crystal border, crystal face and crack. The bacteria oxidation process of gold-bearing arsenopyrite is divided into three stages: the first stage is the surface oxidation, the second stage is restraining oxidation and the third stage is the filament oxidation, bacteria oxidize along with cracks of arsenopyrite.

  7. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Experiments with a Controlled Redox Potential Indicate No Direct Bacterial Mechanism

    Fowler, T. A.; Crundwell, F. K.

    1998-01-01

    The role of Thiobacillus ferrooxidans in bacterial leaching of mineral sulfides is controversial. Much of the controversy is due to the fact that the solution conditions, especially the concentrations of ferric and ferrous ions, change during experiments. The role of the bacteria would be more easily discernible if the concentrations of ferric and ferrous ions were maintained at set values throughout the experimental period. In this paper we report results obtained by using the constant redox...

  8. Constitutive synthesis of a transport function encoded by the Thiobacillus ferrooxidans merC gene cloned in Escherichia coli.

    Kusano, T; Ji, G Y; Inoue, C; Silver, S

    1990-01-01

    Mercuric reductase activity determined by the Thiobacillus ferrooxidans merA gene (cloned and expressed constitutively in Escherichia coli) was measured by volatilization of 203Hg2+. (The absence of a merR regulatory gene in the cloned Thiobacillus mer determinant provides a basis for the constitutive synthesis of this system.) In the absence of the Thiobacillus merC transport gene, the mercury volatilization activity was cryptic and was not seen with whole cells but only with sonication-disr...

  9. Biodiversity and interactions of acidophiles: Key to understanding and optimizing microbial processing of ores and concentrates

    D.B.JOHNSON

    2008-01-01

    Mining companies have become increasingly aware of the potential of microbiological approaches for recovering base and precious metals from low-grade ores,and for remediating acidic,metal-rich wastewaters that drain from both operating and abandoned mine sites.Biological systems offer a number of environmental and (sometimes) economical advantages over conventional approaches,such as pyrometallurgy,though their application is not appropriate in every situation.Mineral processing using micro-organisms has been exploited for extracting gold,copper,uranium and cobalt,and current developments are targeting other base metals.Recently,there has been a great increase in our knowledge and understanding of both the diversity of the microbiology of biomining environments,and of how the microorganisms interact with each other.The results from laboratory experiments which have simulated both stirred tank and heap bioreactor systems have shown that microbial consortia are more robust than pure cultures of mineral-oxidizing acidophiles,and also tend to be more effective at bioleaching and bio-oxidizing ores and concentrates.The paper presented a concise review of the nature and interactions of microbial consortia that are involved in the oxidation of sulfide minerals,and how these might be adapted to meet future challenges in biomining operations.

  10. Effect of adaptation and pulp density on bioleaching of mine waste using indigenous acidophilic bacteria

    Cho, K.; Kim, B.; Lee, D.; Choi, N.; Park, C.

    2011-12-01

    Adaptation to environment is a natural phenomena that takes place in many animals, plants and microorganisms. These adapted organisms achieve stronger applicability than unadapted organisms after habitation in a specific environment for a long time. In the biohydrometallurgical industry, adaptation to special environment conditions by selective culturing is the most popular method for improving bioleaching activity of strains-although that is time consuming. This study investigated the influence of the bioleaching efficiency of mine waste under batch experimental conditions (adaptation and pulp density) using the indigenous acidophilic bacteria collected from acid mine drainage in Go-seong and Yeon-hwa, Korea. We conducted the batch experiments at the influences of parameters, such as the adaptation of bacteria and pulp density of the mine waste. In the adaptation case, the value of pH in 1'st adaptation bacteria sample exhibited lower than in 2'nd adaptation bacteria sample. And the content of both Cu and Zn at 1'st adaptation bacteria sample appeared lower than at 2'nd adaptation bacteria sample. In the SEM analysis, the rod-shaped bacteria with 1μm in length were observed on the filter paper (pore size - 0.45μm). The results of pulp density experiments revealed that the content of both Cu and Zn increased with increasing pulp density, since the increment of pulp density resulted in the enhancement of bioleaching capacity.

  11. Effect of physical characteristics on bioleaching using indigenous acidophilic bacteria for recovering the valuable resources

    Wi, D.; Kim, B.; Cho, K.; Choi, N.; Park, C.

    2011-12-01

    Bioleaching technology which is based on the ability of bacteria to transform solid compounds into soluble or extractable elements that can be recovered, has developed rapidly in recent decades for its advantages, such as mild reaction, low energy consumption, simple process, environmentally friendly and suitable for low-grade mine tailing and residues. This study investigated the bioleaching efficiency of copper matte under batch experimental conditions (various mineral particle size) using the indigenous acidophilic bacteria collected from acidic hot spring in Hatchnobaru, Japan. We conducted the batch experiments at three different mineral particle sizes: 0.06, 0.16 and 1.12mm. The results showed that the pH in the bacteria inoculating sample increased than initial condition, possibly due to buffer effects by phosphate ions in growth medium. After 22 days from incubation the leached accumulation content of Cu was 0.06 mm - 1,197 mg/L, 0.16 mm - 970 mg/L and 1.12 mm - 704 mg/L. Additionally, through SEM analysis we found of gypsum formed crystals which coated the copper matte surface 6 days after inoculation in 1.12mm case. This study informs basic knowledge when bacteria apply to eco-/economic resources utilization studies including the biomining and the recycling of mine waste system.

  12. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities

    Denef, Vincent [University of California, Berkeley; Kalnejals, Linda [University of California, Berkeley; Muller, R [Lawrence Livermore National Laboratory (LLNL); Wilmes, P [University of California, Berkeley; Baker, Brett J. [University of California, Berkeley; Thomas, Brian [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2010-01-01

    Bacterial species concepts are controversial. More widely accepted is the need to understand how differences in gene content and sequence lead to ecological divergence. To address this relationship in ecosystem context, we investigated links between genotype and ecology of two genotypic groups of Leptospirillumgroup II bacteria in comprehensively characterized, natural acidophilic biofilm communities. These groups share 99.7% 16S rRNA gene sequence identity and 95% average amino acid identity between their orthologs. One genotypic group predominates during early colonization, and the other group typically proliferates in later successional stages, forming distinct patches tens to hundreds of micrometers in diameter. Among early colonizing populations, we observed dominance of five genotypes that differed from each other by the extent of recombination with the late colonizing type. Our analyses suggest that the specific recombinant variant within the early colonizing group is selected for by environmental parameters such as temperature, consistent with recombination as a mechanism for ecological fine tuning. Evolutionary signatures, and strain-resolved expression patterns measured via mass spectrometry based proteomics, indicate increased cobalamin biosynthesis, (de)methylation, and glycine cleavage in the late colonizer. This may suggest environmental changes within the biofilm during development, accompanied by redirection of compatible solutes from osmoprotectants toward metabolism. Across 27 communities, comparative proteogenomic analyses show that differential regulation of shared genes and expression of a small subset of the 15% of genes unique to each genotype are involved in niche partitioning. In summary, the results show how subtle genetic variations can lead to distinct ecological strategies.

  13. Newly Isolated Penicillium ramulosum N1 Is Excellent for Producing Protease-Resistant Acidophilic Xylanase.

    Lin, Chaoyang; Shen, Zhicheng; Zhu, Tingheng; Qin, Wensheng

    2015-01-01

    Penicillium ramulosum N1 was isolated from decaying wood. This strain produces extracellular xylanases and cellulases. The highest activities of xylanases (250 U/ml) and carboxymethyl cellulose (CMCase; 6.5 U/ml) were produced when 1% barley straw was added as a carbon source. The optimum temperature and pH for xylanase activity was 55 and 3.0 °C, respectively. The xylanases exhibited strong protease resistance. CMCase revealed maximum activities at pH 3.0 and in the range of 60-70 °C. Filter paper activity was optimally active at pH 5.0 and 55 °C. The zymograms produced by the SDS-PAGE resolution of the crude enzymes indicated that there are four bands of protein with xylanase activity and three bands of proteins with endoglucanase. The results revealed that P. ramulosum N1 is a promising acidophilic and protease-resistant xylanase-producing microorganism that has great potential to be used in animal feed and food industry applications. PMID:26431535

  14. Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria

    Lo, I [University of California, Berkeley; Denef, Vincent [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Goltsman, Daniela [University of California, Berkeley; DiBartolo, Genevieve [U.S. Department of Energy, Joint Genome Institute; Tyson, Gene W. [University of California, Berkeley; Allen, Eric E. [University of California, Berkeley; Ram, Rachna J. [University of California, Berkeley; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Richardson, Paul [U.S. Department of Energy, Joint Genome Institute; Thelen, Michael P. [University of California, Berkeley; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2007-01-01

    Microbes comprise the majority of extant organisms, yet much remains to be learned about the nature and driving forces of microbial diversification. Our understanding of how microorganisms adapt and evolve can be advanced by genome-wide documentation of the patterns of genetic exchange, particularly if analyses target coexisting members of natural communities. Here we use community genomic data sets to identify, with strain specificity, expressed proteins from the dominant member of a genomically uncharacterized, natural, acidophilic biofilm. Proteomics results reveal a genome shaped by recombination involving chromosomal regions of tens to hundreds of kilobases long that are derived from two closely related bacterial populations. Inter-population genetic exchange was confirmed by multilocus sequence typing of isolates and of uncultivated natural consortia. The findings suggest that exchange of large blocks of gene variants is crucial for the adaptation to specific ecological niches within the very acidic, metalrich environment. Mass-spectrometry-based discrimination of expressed protein products that differ by as little as a single amino acid enables us to distinguish the behaviour of closely related coexisting organisms. This is important, given that microorganisms grouped together as a single species may have quite distinct roles in natural systems1-3 and their interactions might be key to ecosystem optimization. Because proteomic data simultaneously convey information about genome type and activity, strainresolved community proteomics is an important complement to cultivation-independent genomic (metagenomic) analysis4-6 of microorganisms in the natural environment.

  15. Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces.

    Bellenberg, Sören; Díaz, Mauricio; Noël, Nanni; Sand, Wolfgang; Poetsch, Ansgar; Guiliani, Nicolas; Vera, Mario

    2014-11-01

    Bioleaching of metal sulfides is an interfacial process where biofilm formation is considered to be important in the initial steps of this process. Among the factors regulating biofilm formation, molecular cell-to-cell communication such as quorum sensing is involved. A functional LuxIR-type I quorum sensing system is present in Acidithiobacillus ferrooxidans. However, cell-to-cell communication among different species of acidophilic mineral-oxidizing bacteria has not been studied in detail. These aspects were the scope of this study with emphasis on the effects exerted by the external addition of mixtures of synthetic N-acyl-homoserine-lactones on pure and binary cultures. Results revealed that some mixtures had inhibitory effects on pyrite leaching. Some of them correlated with changes in biofilm formation patterns on pyrite coupons. We also provide evidence that A. thiooxidans and Acidiferrobacter spp. produce N-acyl-homoserine-lactones. In addition, the observation that A. thiooxidans cells attached more readily to pyrite pre-colonized by living iron-oxidizing acidophiles than to heat-inactivated or biofilm-free pyrite grains suggests that other interactions also occur. Our experiments show that pre-cultivation conditions influence A. ferrooxidans attachment to pre-colonized pyrite surfaces. The understanding of cell-to-cell communication may consequently be used to develop attempts to influence biomining/bioremediation processes. PMID:25172572

  16. Occurrence and fluctuations of Acidithiobacillus ssp. in uranium mine effluents, Caldas, MG

    Sulphide ores that are present in mining areas can cause serious environmental problems because of the action of chemolithotrophic bacteria of the Acidithiobacillus genera, mainly A. ferroxidans and A. thiooxidans. These microorganisms are capable of oxidizing sulphide minerals, elemental sulphur and ferrous ion, possibly mobilizing radionuclides such as uranium into the environment. In this context, the present study was undertaken in order to determine the occurrence and fluctuations of populations of A. ferroxidans and A. thiooxidans in effluents from an uranium mine, part of the Ore Treatment Unit (UTM) in Caldas, MG - Brazil, analyzing samples from 9 sampling points (CM, BS, D3, 25, 27, 32, 41, 75, and 76). The results showed that the population of A. thiooxidans occurs more often (44.4%) than the population of A. ferroxidans (31.5%). In the sample points within the UTM-environment interface, points 25 and 76 were considered the most susceptible to acid mine drainage and activity of bacteria involved in metal bioleaching. The seasonal behavior of some of the variables observed at points CM, D3, and BS, when evaluated simultaneously, such as high Eh values, low pH values, the detection of greater percentages of incidence and higher counts of A. ferroxidans and A. thiooxidans, showed that these points are the main locations for the occurrence of acid mine drainage and bacterial bioleaching in the UTM and should be considered as critical points for a possible decommissioning action. (author)

  17. Occurrence and fluctuations of Acidithiobacillus ssp. in uranium mine effluents, Caldas, MG

    Campos, Michelle Burato de; Roque, Claudio Vitor; Gomes, Heliana de Azevedo [Brazilian Nuclear Energy Commission (CNEN-MG), Pocos de Caldas, MG (Brazil)]. E-mail: michelle_borato@hotmail.com; cvroque@cnen.gov.br; hgomes@cnen.gov.br

    2007-07-01

    Sulphide ores that are present in mining areas can cause serious environmental problems because of the action of chemolithotrophic bacteria of the Acidithiobacillus genera, mainly A. ferroxidans and A. thiooxidans. These microorganisms are capable of oxidizing sulphide minerals, elemental sulphur and ferrous ion, possibly mobilizing radionuclides such as uranium into the environment. In this context, the present study was undertaken in order to determine the occurrence and fluctuations of populations of A. ferroxidans and A. thiooxidans in effluents from an uranium mine, part of the Ore Treatment Unit (UTM) in Caldas, MG - Brazil, analyzing samples from 9 sampling points (CM, BS, D3, 25, 27, 32, 41, 75, and 76). The results showed that the population of A. thiooxidans occurs more often (44.4%) than the population of A. ferroxidans (31.5%). In the sample points within the UTM-environment interface, points 25 and 76 were considered the most susceptible to acid mine drainage and activity of bacteria involved in metal bioleaching. The seasonal behavior of some of the variables observed at points CM, D3, and BS, when evaluated simultaneously, such as high Eh values, low pH values, the detection of greater percentages of incidence and higher counts of A. ferroxidans and A. thiooxidans, showed that these points are the main locations for the occurrence of acid mine drainage and bacterial bioleaching in the UTM and should be considered as critical points for a possible decommissioning action. (author)

  18. Bioleaching of nickel from spent petroleum catalyst using Acidithiobacillus thiooxidans DSM- 11478.

    Sharma, Mohita; Bisht, Varsha; Singh, Bina; Jain, Pratiksha; Mandal, Ajoy K; Lal, Banwari; Sarma, Priyangshu M

    2015-06-01

    The present work deals with optimization of culture conditions and process parameters for bioleaching of spent petroleum catalyst collected from a petroleum refinery. The efficacy of Ni bioleaching from spent petroleum catalyst was determined using pure culture of Acidithiobacillus thiooxidans DSM- 11478. The culture conditions of pH, temperature and headspace volume to media volume ratio were optimized. EDX analysis was done to confirm the presence of Ni in the spent catalyst after roasting it to decoke its surface. The optimum temperature for A. thiooxidans DSM-11478 growth was found to be 32 degrees C. The enhanced recovery of nickel at very low pH was attributed to the higher acidic strength of sulfuric acid produced in the culture medium by the bacterium. During the bioleaching process, 89% of the Ni present in the catalyst waste could be successfully recovered in optimized conditions. This environment friendly bioleaching process proved efficient than the chemical method. Taking leads from the lab scale results, bioleaching in larger volumes (1, 5 and 10 L) was also performed to provide guidelines for taking up this technology for in situ industrial waste management. PMID:26155679

  19. Inhibition of microbial concrete corrosion by Acidithiobacillus thiooxidans with functionalised zeolite-A coating.

    Haile, Tesfaalem; Nakhla, George

    2009-01-01

    The inhibition of the corrosive action of Acidithiobacillus thiooxidans on concrete specimens coated by functionalised zeolite-A containing 14% zinc and 5% silver by weight was studied. Uncoated concrete specimens, epoxy-coated concrete specimens (EP), and functionalised zeolite-A coated concrete specimens with epoxy to zeolite weight ratios of 3:1 (Z1), 2:2 (Z2) and 1:3 (Z3) were studied. Specimens were characterised by x-ray powder diffraction and field emission scanning electron microscopy for the identification of corrosion products and morphological changes. Biomass growth at the conclusion of the 32-day experiments was 4, 179 and 193 mg volatile suspended solids g(-1) sulphur for the uncoated, EP and Z1 specimens, whereas that of Z2 and Z3 were negligible. In the uncoated, EP and Z1 specimens, sulphate production rates were 0.83, 9.1 and 8.8 mM SO(4)(2-) day(-1) and the specific growth rates, mu, were 0.14, 0.57 and 0.47 day(-1), respectively. The corresponding values for Z2 and Z3 were negligible due to their bacterial inhibition characteristics. PMID:18846450

  20. Regulation of a novel Acidithiobacillus caldus gene cluster involved in metabolism of reduced inorganic sulfur compounds.

    Rzhepishevska, Olena I; Valdés, Jorge; Marcinkeviciene, Liucija; Gallardo, Camelia Algora; Meskys, Rolandas; Bonnefoy, Violaine; Holmes, David S; Dopson, Mark

    2007-11-01

    Acidithiobacillus caldus has been proposed to play a role in the oxidation of reduced inorganic sulfur compounds (RISCs) produced in industrial biomining of sulfidic minerals. Here, we describe the regulation of a new cluster containing the gene encoding tetrathionate hydrolase (tetH), a key enzyme in the RISC metabolism of this bacterium. The cluster contains five cotranscribed genes, ISac1, rsrR, rsrS, tetH, and doxD, coding for a transposase, a two-component response regulator (RsrR and RsrS), tetrathionate hydrolase, and DoxD, respectively. As shown by quantitative PCR, rsrR, tetH, and doxD are upregulated to different degrees in the presence of tetrathionate. Western blot analysis also indicates upregulation of TetH in the presence of tetrathionate, thiosulfate, and pyrite. The tetH cluster is predicted to have two promoters, both of which are functional in Escherichia coli and one of which was mapped by primer extension. A pyrrolo-quinoline quinone binding domain in TetH was predicted by bioinformatic analysis, and the presence of an o-quinone moiety was experimentally verified, suggesting a mechanism for tetrathionate oxidation. PMID:17873067

  1. Culture-independent detection of 'TM7' bacteria in a streptomycin-resistant acidophilic nitrifying process

    Kurogi, T.; Linh, N. T. T.; Kuroki, T.; Yamada, T. [Department of Environmental and Life Science, Toyohashi University of Technology, Toyohashi 441-8580 (Japan); Hiraishi, A. [Department of Environmental and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan and Electronics-inspired Interdisciplinary Institute (EIIRIS), Toyohashi University of Technology, Toyohashi 441-8580 (Japan)

    2014-02-20

    Nitrification in biological wastewater treatment processes has been believed for long time to take place under neutral conditions and is inhibited under acidic conditions. However, we previously constructed acidophilic nitrifying sequencing-batch reactors (ANSBRs) being capable of nitrification at < pH 4 and harboring bacteria of the candidate phylum 'TM7' as the major constituents of the microbial community. In light of the fact that the 16S rRNA of TM7 bacteria has a highly atypical base substitution possibly responsible for resistance to streptomycin at the ribosome level, this study was undertaken to construct streptomycin-resistant acidophilic nitrifying (SRAN) reactors and to demonstrate whether TM7 bacteria are abundant in these reactors. The SRAN reactors were constructed by seeding with nitrifying sludge from an ANSBR and cultivating with ammonium-containing mineral medium (pH 4.0), to which streptomycin at a concentration of 10, 30 and 50 mg L{sup −1} was added. In all reactors, the pH varied between 2.7 and 4.0, and ammonium was completely converted to nitrate in every batch cycle. PCR-aided denaturing gradient gel electrophoresis (DGGE) targeting 16S rRNA genes revealed that some major clones assigned to TM7 bacteria and Gammaproteobacteria were constantly present during the overall period of operation. Fluorescence in situ hybridization (FISH) with specific oligonucleotide probes also showed that TM7 bacteria predominated in all SRAN reactors, accounting for 58% of the total bacterial population on average. Although the biological significance of the TM7 bacteria in the SRAN reactors are unknown, our results suggest that these bacteria are possibly streptomycin-resistant and play some important roles in the acidophilic nitrifying process.

  2. Uncovering a microbial enigma: isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium "Ferrovum myxofaciens".

    Johnson, D Barrie; Hallberg, Kevin B; Hedrich, Sabrina

    2014-01-01

    A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of "acid streamer" growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified "overlay" solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolate from an abandoned copper mine ("Ferrovum myxofaciens" strain P3G) have been elucidated. "F. myxofaciens" is an extremely acidophilic, psychrotolerant obligate autotroph that appears to use only ferrous iron as an electron donor and oxygen as an electron acceptor. It appears to use the Calvin-Benson-Bassham pathway to fix CO2 and is diazotrophic. It also produces copious amounts of extracellular polymeric materials that cause cells to attach to each other (and to form small streamer-like growth in vitro) and to different solid surfaces. "F. myxofaciens" can catalyze the oxidative dissolution of pyrite and, like many other acidophiles, is tolerant of many (cationic) transition metals. "F. myxofaciens" and related clone sequences form a monophyletic group within the Betaproteobacteria distantly related to classified orders, with genera of the family Nitrosomonadaceae (lithoautotrophic, ammonium-oxidizing neutrophiles) as the closest relatives. On the basis of the phylogenetic and phenotypic differences of "F. myxofaciens" and other Betaproteobacteria, a new family, "Ferrovaceae," and order, "Ferrovales," within the class Betaproteobacteria are proposed. "F. myxofaciens" is the first extreme acidophile to be described in the class Betaproteobacteria. PMID:24242243

  3. Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans.

    Selkov, E; Overbeek, R; Kogan, Y; Chu, L; Vonstein, V; Holmes, D; Silver, S; Haselkorn, R; Fonstein, M

    2000-03-28

    A gapped genome sequence of the biomining bacterium Thiobacillus ferrooxidans strain ATCC23270 was assembled from sheared DNA fragments (3.2-times coverage) into 1,912 contigs. A total of 2,712 potential genes (ORFs) were identified in 2.6 Mbp (megabase pairs) of Thiobacillus genomic sequence. Of these genes, 2,159 could be assigned functions by using the WIT-Pro/EMP genome analysis system, most with a high degree of certainty. Nine hundred of the genes have been assigned roles in metabolic pathways, producing an overview of cellular biosynthesis, bioenergetics, and catabolism. Sequence similarities, relative gene positions on the chromosome, and metabolic reconstruction (placement of gene products in metabolic pathways) were all used to aid gene assignments and for development of a functional overview. Amino acid biosynthesis was chosen to demonstrate the analytical capabilities of this approach. Only 10 expected enzymatic activities, of the nearly 150 involved in the biosynthesis of all 20 amino acids, are currently unassigned in the Thiobacillus genome. This result compares favorably with 10 missing genes for amino acid biosynthesis in the complete Escherichia coli genome. Gapped genome analysis can therefore give a decent picture of the central metabolism of a microorganism, equivalent to that of a complete sequence, at significantly lower cost. PMID:10737802

  4. Bioleaching of heavy metals from sewage sludge by Acidithiobacillus thiooxidans. A comparative study

    Wen, Ye-Ming; Wang, Qing-Ping; Chen, Zu-Liang [Fujian Normal Univ., Fuzhou (China). School of Environmental Science and Engineering; Tang, Caixian [La Trobe Univ., Melbourne, VIC (Australia). Dept. of Agricultural Sciences

    2012-06-15

    To understand the bioleaching of metals from sludge by Acidithiobacillus thiooxidans, the aims of this study were to evaluate the experimental conditions affecting the efficiency of removal of the metals, including solids concentration, initial pH, sulfur concentration and inoculum level were examined, and following the bioleaching mechanism was proposed. Materials and methods: A. thiooxidans were isolated from collected sludge samples containing bacteria from Fuzhou Jingshan sewage treatment plant, and identification of bacteria by sequencing the 16 s rDNA gene sequences. Conditions affecting the bioleaching and application were conducted by batch experiments. The analysis of Cr, Cu, Pb, and Zn was carried out using an atomic absorption spectrophotometer, and the pH and oxidation-reduction potential (ORP) were measured using a pH meter and an ORP meter. The results show that a high metal leaching efficiency was achieved at low solid concentrations due to decreases in buffering capacity. In addition, the best conditions of the bioleaching included 2 % (w/{nu}) solid concentration, 5.0 gL{sup -1} sulfur concentration, and 10 % ({nu}/{nu}) inoculum concentration, where the removal efficiencies of Cr, Cu, Pb, and Zn in sewage sludge was 43.6 %, 96.2 %, 41.6 %, and 96.5 %, respectively. We found that the bioleaching of Zn was governed by direct and indirect mechanisms, while the bioleaching of Cu, Pb, and Cr was mainly dominated by the bioleaching indirect mechanism. After processing with the proposed techniques, the heavy metals in the sewage sludge did meet the requirement of the national standards. (orig.)

  5. The acidophilic microorganisms diversity present in lignite and pit coal from Paroseni, Halânga, Turceni mines

    Carmen Madalina CISMASIU

    2009-11-01

    Full Text Available Pollution from coal combustion is the largest problem in the current use of coal and the biggest constraint on the increased use of coal. When these fossil fuels are combusted, sulphur-di-oxide is released into the atmosphere causing acid rains which dissolves buildings, kills forest. Knowing the physiological groups of microorganisms present in the coal samples has an ecological importance, completing the knowledge in the field of the microorganism’s ecology and a practical importance, being a source of new microorganisms with biotechnological potential. The microbial communities evidenced in such sites include both groups of chemolithotrophic microorganisms involved in the metals biosolubilization processes and groups of heterotrophic microorganisms involved in the processes of bioaccumulation or biofixation of metallic ions. In this context, this paper presents the study regarding the main physiological groups of microorganisms present in the pit coal and lignite samples after the industrial processing of coal. The results revealed that the microorganisms belonging to the following physiological groups: aerobic heterotrophic acidophilic bacteria, strictly anaerobic heterotrophic (sulphur-reducing, nitrifying bacteria (nitrite and nitrate bacteria, denitrifying bacteria and acidophilic chemolithotrophic bacteria on Fe2+, on S0 and on S2O3.

  6. Effect of VOCs and methane in the biological oxidation of the ferrous ion by an acidophilic consortium.

    Almenglo, F; Ramírez, M; Gómez, J M; Cantero, D; Revah, S; González-Sánchez, A

    2012-01-01

    During the elimination of H2S from biogas in an aqueous ferric sulphate solution, volatile organic compounds (VOCs) and methane are absorbed and may have an effect on the subsequent biological regeneration of ferric ion. This study was conducted to investigate the effect of maximum concentrations of methane and some VOCs found in biogas on the ferrous oxidation of an acidophilic microbial consortium (FO consortium). The presence and impact of heterotrophic microorganisms on the activity of the acidophilic consortium was also evaluated. No effect on the ferrous oxidation rate was found with gas concentrations of 1500 mg toluene m(-3), 1400 mg 2-butanol m(-3) or 1250 mg 1,2-dichloroethane m(-3), nor with methane at gas concentrations ranging from 15-25% (v/v). A tenfold increase in VOCs concentrations totally inhibited the microbial activity of the FO consortium and the heterotrophs. The presence of a heterotrophic fungus may promote the autotrophic growth of the FO consortium. PMID:22629626

  7. Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria.

    Ňancucheo, Ivan; Rowe, Owen F; Hedrich, Sabrina; Johnson, D Barrie

    2016-05-01

    Growth media have been developed to facilitate the enrichment and isolation of acidophilic and acid-tolerant sulfate-reducing bacteria (aSRB) from environmental and industrial samples, and to allow their cultivation in vitro The main features of the 'standard' solid and liquid devised media are as follows: (i) use of glycerol rather than an aliphatic acid as electron donor; (ii) inclusion of stoichiometric concentrations of zinc ions to both buffer pH and to convert potentially harmful hydrogen sulphide produced by the aSRB to insoluble zinc sulphide; (iii) inclusion of Acidocella aromatica (an heterotrophic acidophile that does not metabolize glycerol or yeast extract) in the gel underlayer of double layered (overlay) solid media, to remove acetic acid produced by aSRB that incompletely oxidize glycerol and also aliphatic acids (mostly pyruvic) released by acid hydrolysis of the gelling agent used (agarose). Colonies of aSRB are readily distinguished from those of other anaerobes due to their deposition and accumulation of metal sulphide precipitates. Data presented illustrate the effectiveness of the overlay solid media described for isolating aSRB from acidic anaerobic sediments and low pH sulfidogenic bioreactors. PMID:27036143

  8. Thiol/Disulfide system plays a crucial role in redox protection in the acidophilic iron-oxidizing bacterium Leptospirillum ferriphilum.

    Javiera Norambuena

    Full Text Available Thiol/disulfide systems are involved in the maintenance of the redox status of proteins and other molecules that contain thiol/disulfide groups. Leptospirillum ferriphilum DSM14647, an acidophilic bacterium that uses Fe(2+ as electron donor, and withstands very high concentrations of iron and other redox active metals, is a good model to study how acidophiles preserve the thiol/disulfide balance. We studied the composition of thiol/disulfide systems and their role in the oxidative stress response in this extremophile bacterium. Bioinformatic analysis using genomic data and enzymatic assays using protein extracts from cells grown under oxidative stress revealed that the major thiol/disulfide system from L. ferriphilum are a cytoplasmic thioredoxin system (composed by thioredoxins Trx and thioredoxin reductase TR, periplasmic thiol oxidation system (DsbA/DsbB and a c-type cytochrome maturation system (DsbD/DsbE. Upon exposure of L. ferriphilum to reactive oxygen species (ROS-generating compounds, transcriptional activation of the genes encoding Trxs and the TR enzyme, which results in an increase of the corresponding activity, was observed. Altogether these data suggest that the thioredoxin-based thiol/disulfide system plays an important role in redox protection of L. ferriphilum favoring the survival of this microorganism under extreme environmental oxidative conditions.

  9. Metal uptake and Fe-, Ti-oxide biomineralization by acidophilic microorganisms in mine-waste environments, Elliot Lake, Canada

    Acidic effluent containing enhanced concentrations of toxic heavy metals discharges from a cumulative total of 104 ha of mine-tailings waste in Canada. Communities of acidophilic microorganisms, specifically the unicellular alga Euglena sp. and bacteria, thrive in many of the hostile, low-pH effluent environments, which are otherwise devoid of life. The microorganisms concentrate aqueous dissolved metals onto cell walls and at intracellular sites, during the life cycle, and strongly bind metals during early diagenesis. A sequence is observed in which amorphous Fe and Ti concentrated at cell walls are progressively transformed to microcrystalline aggregates of goethite, ferrihydrite, maghemite, magnetite, haematite, lepidocrocite, and ilmenite. The bioprecipitated Ti- and Fe-oxides and oxyhydroxides act as scavengers for heavy metals such as Cu, Pb, Zn, Ni, Cd, and Th. Acidophilic microorganisms play a central role in the toxic-metal budget of mine-tailings waste by efficiently sequestering aqueous metals and by promoting nucleation of oxide minerals whose inorganic formation is kinetically inhibited, thereby retarding toxic-metal dispersion into the natural environment

  10. Isolation, sequence analysis, and comparison of two plasmids (28 and 29 kilobases) from the biomining bacterium Leptospirillum ferrooxidans ATCC 49879.

    Coram, Nicolette J; van Zyl, Leonardo J; Rawlings, Douglas E

    2005-11-01

    Two plasmids, of 28,878 bp and 28,012 bp, were isolated from Leptospirillum ferrooxidans ATCC 49879. Altogether, a total of 67 open reading frames (ORFs) were identified on both plasmids, of which 32 had predicted products with high homology to proteins of known function, while 11 ORFs had predicted products with homology to previously identified proteins of unknown function. Twenty-four ORFs had products with no homologues in the GenBank/NCBI database. An analysis of the ORFs and other features of the two plasmids, the first to be isolated from a bacterium of the genus Leptospirillum, is presented. PMID:16269793

  11. Isolation, Sequence Analysis, and Comparison of Two Plasmids (28 and 29 Kilobases) from the Biomining Bacterium Leptospirillum ferrooxidans ATCC 49879

    Coram, Nicolette J.; van Zyl, Leonardo J.; Rawlings, Douglas E.

    2005-01-01

    Two plasmids, of 28,878 bp and 28,012 bp, were isolated from Leptospirillum ferrooxidans ATCC 49879. Altogether, a total of 67 open reading frames (ORFs) were identified on both plasmids, of which 32 had predicted products with high homology to proteins of known function, while 11 ORFs had predicted products with homology to previously identified proteins of unknown function. Twenty-four ORFs had products with no homologues in the GenBank/NCBI database. An analysis of the ORFs and other featu...

  12. Biochemistry and Ecology of Novel Cytochromes Catalyzing Fe(II) Oxidation by an Acidophilic Microbial Community

    Singer, S. W.; Jeans, C. J.; Thelen, M. P.; Verberkmoes, N. C.; Hettich, R. C.; Chan, C. S.; Banfield, J. F.

    2007-12-01

    An acidophilic microbial community found in the Richmond Mine at Iron Mountain, CA forms abundant biofilms in extremely acidic (pHoxidation is critical to the metabolic functioning of the community, and in turn this process generates acid mine drainage, causing an environmental catastrophe. Two conspicuous novel proteins isolated from these biofilms were identified as gene products of Leptospirillum group II and were characterized as cytochromes with unique properties. Sulfuric acid extraction of biofilm samples liberated one of these proteins, a 16 kDa cytochrome with an unusual alpha-band absorption at 579 (Cyt579). Genomic sequencing of multiple biofilms indicated that several variants of Cyt579 were present in Leptospirillum strains. Intact protein MS analysis identified the dominant variants in each biofilm and documented multiple N-terminal cleavage sites for Cyt579. By combining biochemical, geochemical and microbiological data, we established that the sequence variation and N-terminal processing of Cyt579 are selected by ecological conditions. In addition to the soluble Cyt579, the second cytochrome appears as a much larger protein complex of ~210 kDa predominant in the biofilm membrane fraction, and has an alpha-band absorption at 572 nm. The 60 kDa cytochrome subunit, Cyt572, resides in the outer membrane of LeptoII, and readily oxidizes Fe(II) at low pH (0.95 - 3.0). Several genes encoding Cyt572 were localized within a recombination hotspot between two strains of LeptoII, causing a large range of variation in the sequences. Genomic sequencing and MS proteomic studies established that the variants were also selected by ecological conditions. A general mechanistic model for Fe(II) oxidation has been developed from these studies. Initial Fe(II) oxidation by Cyt572 occurs at the outer membrane. Cyt572 then transfers electrons to Cyt579, perhaps representing an initial step in energy flow to the biofilm community. Amino acid variations and post

  13. Acidophilic denitrifiers dominate the N2O production in a 100-year-old tea orchard soil.

    Huang, Ying; Long, Xi-En; Chapman, Stephen J; Yao, Huaiying

    2015-03-01

    Aerobic denitrification is the main process for high N2O production in acid tea field soil. However, the biological mechanisms for the high emission are not fully understood. In this study, we examined N2O emission and denitrifier communities in 100-year-old tea soils with four pH levels (3.71, 5.11, 6.19, and 7.41) and four nitrate concentration (0, 50, 200, and 1000 mg kg(-1) of NO3 (-)-N) addition. Results showed the highest N2O emission (10.1 mg kg(-1) over 21 days) from the soil at pH 3.71 with 1000 mg kg(-1) NO3 (-) addition. The N2O reduction and denitrification enzyme activity in the acid soils (pH pH 7.41. Moreover, TRF 78 of nirS and TRF 187 of nosZ dominated in soils of pH 3.71, suggesting an important role of acidophilic denitrifiers in N2O production and reduction. CCA analysis also showed a negative correlation between the dominant denitrifier ecotypes (nirS TRF 78, nosZ TRF 187) and soil pH. The representative sequences were identical to those of cultivated denitrifiers from acidic soils via phylogenetic tree analysis. Our results showed that the acidophilic denitrifier adaptation to the acid environment results in high N2O emission in this highly acidic tea soil. PMID:25273518

  14. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans

    NareshKumar, R. [Centre for Environmental Studies, Anna University, Chennai 600025 (India)], E-mail: nareshkrish@hotmail.com; Nagendran, R. [Centre for Environmental Studies, Anna University, Chennai 600025 (India)

    2008-08-15

    Studies were carried out to assess changes in nitrogen, phosphorus and potassium contents in soil during bioleaching of heavy metals from soil contaminated by tannery effluents. Indigenous sulfur oxidizing bacteria Acidithiobacillus thiooxidans isolated from the contaminated soil were used for bioremediation. Solubilization efficiency of chromium, cadmium, copper and zinc from soil was 88, 93, 92 and 97%, respectively. However, loss of nitrogen, phosphorus and potassium from the soil was 30, 70 and 68%, respectively. These findings indicate that despite its high potential for removal of heavy metals from contaminated soils, bioleaching results in undesirable dissolution/loss of essential plant nutrients. This aspect warrants urgent attention and detailed studies to evaluate the appropriateness of the technique for field application.

  15. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans

    Studies were carried out to assess changes in nitrogen, phosphorus and potassium contents in soil during bioleaching of heavy metals from soil contaminated by tannery effluents. Indigenous sulfur oxidizing bacteria Acidithiobacillus thiooxidans isolated from the contaminated soil were used for bioremediation. Solubilization efficiency of chromium, cadmium, copper and zinc from soil was 88, 93, 92 and 97%, respectively. However, loss of nitrogen, phosphorus and potassium from the soil was 30, 70 and 68%, respectively. These findings indicate that despite its high potential for removal of heavy metals from contaminated soils, bioleaching results in undesirable dissolution/loss of essential plant nutrients. This aspect warrants urgent attention and detailed studies to evaluate the appropriateness of the technique for field application

  16. Atuação de Acidithiobacillus na solubilização de fosfato natural em solo de tabuleiro cultivado com jacatupé (Pachyrhizus erosus Effect of Acidithiobacillus on solubilization of natural phosphate in a coastal tableland soil under yam bean (Pachyrhizus erosus crop

    N. P. Stamford

    2004-02-01

    Full Text Available Realizou-se um experimento em casa de vegetação para avaliar a atuação do enxofre (S inoculado com Acidithiobacillus na disponibilidade de fósforo (P de fosfato natural (FN, em diferentes modos de aplicação do fertilizante, em um Espodossolo Ferrocárbico Órtico, do tabuleiro costeiro da Zona da Mata de Pernambuco, cultivado com jacatupé (Pachyrhizus erosus. As plantas foram inoculadas com rizóbio (NFB 747 e NFB 748 e adicionado tratamento-controle sem inoculação com rizóbio. Os tratamentos com P foram: (1 FN revestindo o enxofre inoculado com Acidithiobacillus (FN S*, (2 FN revestido com S e com Acidithiobacillus (S* FN, (3 mistura FN com S e com Acidithiobacillus (FN + S*, (4 mistura FN com S e sem Acidithiobacillus (FN + S, (5 superfosfato triplo (ST e (6 sem aplicação de fósforo (P0. Os tratamentos foram aplicados: (a na superfície, (b em sulco 10 cm abaixo da semente, e (c em sulco 10 cm abaixo e ao lado da semente. A biomassa nodular foi maior no tratamento (FN + S* com melhor efeito quando aplicado ao lado e abaixo das sementes. O (FN + S* também aumentou a altura das plantas, a biomassa da parte aérea e das túberas e o N total da parte aérea, especialmente quando aplicado 10 cm abaixo das sementes. O P total da parte aérea foi mais elevado com (S* FN aplicado 10 cm abaixo das sementes. Os melhores teores de P no solo foram obtidos com (FN + S* e (S* FN, com efeito mais evidente quando aplicados 10 cm abaixo das sementes.A greenhouse experiment was carried out to evaluate the effect of sulphur (S inoculated with Acidithiobacillus on phosphorus (P availability from natural phosphate (NP using different fertilizer application methods on yam bean (Pachyrhizus erosus grown in a "Tableland Forest" soil (Podzol Hydromorphic dystrophic of the "Zona da Mata" in the State of Pernambuco, Brazil. Plants were inoculated with rhizobia strains (NFN 747 and NFB 748 and control treatments added without rhizobia inoculation. The P

  17. Environmental transcriptome analysis reveals physiological differences between biofilm and planktonic modes of life of the iron oxidizing bacteria Leptospirillum spp. in their natural microbial community

    Parro Víctor

    2010-06-01

    Full Text Available Abstract Background Extreme acidic environments are characterized by their high metal content and lack of nutrients (oligotrophy. Macroscopic biofilms and filaments usually grow on the water-air interface or under the stream attached to solid substrates (streamers. In the Río Tinto (Spain, brown filaments develop under the water stream where the Gram-negative iron-oxidizing bacteria Leptospirillum spp. (L. ferrooxidans and L. ferriphilum and Acidithiobacillus ferrooxidans are abundant. These microorganisms play a critical role in bioleaching processes for industrial (biominery and environmental applications (acid mine drainage, bioremediation. The aim of this study was to investigate the physiological differences between the free living (planktonic and the sessile (biofilm associated lifestyles of Leptospirillum spp. as part of its natural extremely acidophilic community. Results Total RNA extracted from environmental samples was used to determine the composition of the metabolically active members of the microbial community and then to compare the biofilm and planktonic environmental transcriptomes by hybridizing to a genomic microarray of L. ferrooxidans. Genes up-regulated in the filamentous biofilm are involved in cellular functions related to biofilm formation and maintenance, such as: motility and quorum sensing (mqsR, cheAY, fliA, motAB, synthesis of cell wall structures (lnt, murA, murB, specific proteases (clpX/clpP, stress response chaperons (clpB, clpC, grpE-dnaKJ, groESL, etc. Additionally, genes involved in mixed acid fermentation (poxB, ackA were up-regulated in the biofilm. This result, together with the presence of small organic acids like acetate and formate (1.36 mM and 0.06 mM respectively in the acidic (pH 1.8 water stream, suggests that either L. ferrooxidans or other member of the microbial community are producing acetate in the acidophilic biofilm under microaerophilic conditions. Conclusions Our results indicate that the

  18. Alicyclobacillus sp. strain CC2, a thermo-acidophilic bacterium isolated from Deception Island (Antarctica) containing a thermostable superoxide dismutase enzyme

    Daniela N. Correa-Llantén; Maximiliano J. Amenábar; Patricio A. Muñoz; María T. Monsalves; Miguel E. Castro; Jenny M.Blamey

    2014-01-01

    A gram-positive, rod-shaped, aerobic, thermo-acidophilic bacterium CC2 (optimal temperature 55℃and pH 4.0), belonging to the genus Alicyclobacillus was isolated from geothermal soil collected from“Cerro Caliente”, Deception Island, Antarctica. Owing to the harsh environmental conditions found in this territory, microorganisms are exposed to conditions that trigger the generation of reactive oxygen species (ROS). They must have an effective antioxidant defense system to deal with this oxidative stress. We focused on one of the most important enzymes: superoxide dismutase, which was partially purified and characterized. This study presents the ifrst report of a thermo-acidophilic bacterium isolated from Deception Island with a thermostable superoxide dismutase (SOD).

  19. Shift from Acetoclastic to H2-Dependent Methanogenesis in a West Siberian Peat Bog at Low pH Values and Isolation of an Acidophilic Methanobacterium Strain▿

    Kotsyurbenko, O R; Friedrich, M W; Simankova, M V; Nozhevnikova, A. N.; Golyshin, P N; Timmis, K N; Conrad, R.

    2007-01-01

    Methane production and archaeal community composition were studied in samples from an acidic peat bog incubated at different temperatures and pH values. H(2)-dependent methanogenesis increased strongly at the lowest pH, 3.8, and Methanobacteriaceae became important except for Methanomicrobiaceae and Methanosarcinaceae. An acidophilic and psychrotolerant Methanobacterium sp. was isolated using H(2)-plus-CO(2)-supplemented medium at pH 4.5.

  20. Biochemical characterization of an acidophilic β-mannanase from Gloeophyllum trabeum CBS900.73 with significant transglycosylation activity and feed digesting ability.

    Wang, Caihong; Zhang, Jiankang; Wang, Yuan; Niu, Canfang; Ma, Rui; Wang, Yaru; Bai, Yingguo; Luo, Huiying; Yao, Bin

    2016-04-15

    Acidophilic β-mannanases have been attracting much attention due to their excellent activity under extreme acidic conditions and significant industrial applications. In this study, a β-mannanase gene of glycoside hydrolase family 5, man5A, was cloned from Gloeophyllum trabeum CBS900.73, and successfully expressed in Pichia pastoris. Purified recombinant Man5A was acidophilic with a pH optimum of 2.5 and exhibited great pH adaptability and stability (>80% activity over pH 2.0-6.0 and pH 2.0-10.0, respectively). It had a high specific activity (1356 U/mg) against locust bean gum, was able to degrade galactomannan and glucomannan in a classical four-site binding mode, and catalyzed the transglycosylation of mannotetrose to mannooligosaccharides with higher degree of polymerization. Besides, it had great resistance to pepsin and trypsin and digested corn-soybean meal based diet in a comparable way with a commercial β-mannanase under the simulated gastrointestinal conditions of pigs. This acidophilic β-mannanase represents a valuable candidate for wide use in various industries, especially in the feed. PMID:26616977

  1. Leaching of zinc sulfide by Thiobacillus ferrooxidans: bacterial oxidation of the sulfur product layer increases the rate of zinc sulfide dissolution at high concentrations of ferrous ions.

    Fowler, T A; Crundwell, F K

    1999-12-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions. PMID:10583978

  2. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions

    Fowler, T. A.; Crundwell, F. K.

    1999-01-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shr...

  3. Activities of methionine-γ-lyase in the acidophilic archaeon “Ferroplasma acidarmanus” strain fer1

    Khan MA

    2013-04-01

    Full Text Available M A Khan,1 Madeline M López-Muñoz,2 Charles W Kaspar,3 Kai F Hung1 1Department of Biological Sciences, Eastern Illinois University, Charleston, IL, USA; 2Department of Biology, Universidad de Puerto Rico, Mayaguez, Puerto Rico; 3Bacteriology Department, University of Wisconsin, Madison, WI, USA Abstract: Biogeochemical processes on exposed pyrite ores result in extremely high levels of sulfuric acid at these locations. Acidophiles that thrive in these conditions must overcome significant challenges, including an environment with proton concentrations at pH 3 or below. The role of sulfur metabolism in the archaeon “Ferroplasma acidarmanus” strain fer1's ability to thrive in this environment was investigated due to its growth-dependent production of methanethiol, a volatile organic sulfur compound. Two putative sequences for methionine-γ-lyase (EC 4.4.1.11, an enzyme known to carry out α, γ-elimination on L-methionine to produce methanethiol, were identified in fer1. Bioinformatic analyses identified a conserved pyridoxal-5'-phosphate (PLP binding domain and a partially conserved catalytic domain in both putative sequences. Detection of PLP-dependent and L-methionine-dependent production of α-keto compounds and thiol groups in fer1 confirmed the presence of methionine-γ-lyase activity. Further, fer1 lysate was capable of processing related substrates, including D-methionine, L-cysteine, L-cystathionine, and L/D-homocysteine. When the two putative fer1 methionine-γ-lyase gene-coded proteins were expressed in Escherichia coli cells, one sequence demonstrated an ability to carry out α, γ-elimination activity, while the other exhibited γ-replacement activity. These fer1 methionine-γ-lyases also exhibited optimum pH, substrate specificity, and catalytic preferences that are different from methionine-γ-lyases from other organisms. These differences are discussed in the context of molecular phylogeny constructed using a maximum

  4. A Description of an Acidophilic, Iron Reducer, Geobacter sp. FeAm09 Isolated from Tropical Soils

    Healy, O.; Souchek, J.; Heithoff, A.; LaMere, B.; Pan, D.; Hollis, G.; Yang, W. H.; Silver, W. L.; Weber, K. A.

    2014-12-01

    Iron (Fe) is the fourth most abundant element in the Earth's crust and plays a significant role controlling the geochemistry in soils, sediments, and aquatic systems. As part of a study to understand microbially-catalysed iron biogeochemical cycling in tropical soils, an iron reducing isolate, strain FeAm09, was obtained. Strain FeAm09 was isolated from acidic, Fe-rich soils collected from a tropical forest (Luquillo Experimental Forest, Puerto Rico). Strain FeAm09 is a rod-shaped, motile, Gram-negative bacterium. Taxonomic analysis of the near complete 16S rRNA gene sequence revealed that strain FeAm09 is 94.7% similar to Geobacter lovleyi, placing it in the genus Geobacter within the Family Geobacteraceae in the Deltaproteobacteria. Characterization of the optimal growth conditions revealed that strain FeAm09 is a moderate acidophile with an optimal growth pH of 5.0. The optimal growth temperature was 37°C. Growth of FeAm09 was coupled to the reduction of soluble Fe(III), Fe(III)-NTA, with H2, fumarate, ethanol, and various organic acids and sugars serving as the electron donor. Insoluble Fe(III), in the form of synthetic ferrihydrite, was reduced by strain FeAm09 using acetate or H2 as the electron donor. The use of H2 as an electron donor in the presence of CO2 and absence of organic carbon and assimilation of 14C-labelled CO2 into biomass indicate that strain FeAm09 is an autotrophic Fe(III)-reducing bacterium. Together, these data describe the first acidophilic, autotrophic Geobacter species. Iron reducing bacteria were previously shown to be as abundant in tropical soils as in saturated sediments (lake-bottoms) and saturated soils (wetlands) where Fe(III) reduction is more commonly recognized as a dominant mode of microbial respiration. Furthermore, Fe(III) reduction was identified as a primary driver of carbon mineralization in these tropical soils (Dubinsky et al. 2010). In addition to mineralizing organic carbon, Geobacter sp. FeAm09 is likely to also

  5. Thermo-acidophillic biohydrogen production from rice bran de-oiled wastewater by Selectively enriched mixed culture

    D.Sivaramakrishna, D.Sreekanth, V.Himabindu, M.Lakshmi Narasu

    2010-07-01

    Full Text Available The present study focuses on the biohydrogen production in an anaerobic batch reactor operated at thermophillic (570C and acidophilic conditions (pH 6 with rice bran de-oiled wastewater (RBOW as substrate. The hydrogen generating mixed microflora was enriched from slaughter house sludge (SHS through acid treatment (pH 3-4, for 24h coupled with heat treatment (1h at 1000C to eliminate non-spore forming bacteria and to inhibit the growth of methanogenic bacteria (MB prior to inoculation in the reactor. The hydrogen production rate was maximum at 570C (1861±14ml/L-WW/d compared to 370C (651±30ml/L-ww/d. The Hydrogen yield increased with temperature from 1.1 to 2.2 molH2/mol of substrate respectively. The optimum pH range for hydrogen production in this system was observed in between 5.5 to 6. Acid-forming pathway with butyric acid as a major metabolite dominated the metabolic flow during the hydrogen production.

  6. A novel acidophilic, thermophilic iron and sulfur-oxidizing archaeon isolated from a hot spring of tengchong, yunnan, China

    Jiannan Ding

    2011-06-01

    Full Text Available A novel thermoacidophilic iron and sulfur-oxidizing archaeon, strain YN25, was isolated from an in situ enriched acid hot spring sample collected in Yunnan, China. Cells were irregular cocci, about 0.9-1.02 µm×1.0-1.31 µm in the medium containing elemental sulfur and 1.5-2.22 µm×1.8-2.54 µm in ferrous sulfate medium. The ranges of growth and pH were 50-85 (optimum 65 and pH 1.0-6.0 (optimum 1.5-2.5. The acidophile was able to grow heterotrophically on several organic substrates, including various monosaccharides, alcohols and amino acids, though the growth on single substrate required yeast extract as growth factor. Growth occurred under aerobic conditions or via anaerobic respiration using elemental sulfur as terminal electron acceptor. Results of morphology, physiology, fatty acid analysis and analysis based on 16S rRNA gene sequence indicated that the strain YN25 should be grouped in the species Acidianus manzaensis. Bioleaching experiments indicated that this strain had excellent leaching capacity, with a copper yielding ratio up to 79.16% in 24 d. The type strain YN25 was deposited in China Center for Type Culture Collection (=CCTCCZNDX0050.

  7. Thermo-acidophillic biohydrogen production from rice bran de-oiled wastewater by Selectively enriched mixed culture

    Sivaramakrishna, D.; Sreekanth, D.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally Hyderabad-500 085 (India); Narasu, M. Lakshmi [Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally Hyderabad-500 085 (India)

    2010-07-01

    The present study focuses on the biohydrogen production in an anaerobic batch reactor operated at thermophillic (570C) and acidophilic conditions (pH 6) with rice bran de-oiled wastewater (RBOW) as substrate. The hydrogen generating mixed microflora was enriched from slaughter house sludge (SHS) through acid treatment (pH 3-4, for 24h) coupled with heat treatment (1h at 1000C) to eliminate non-spore forming bacteria and to inhibit the growth of methanogenic bacteria (MB) prior to inoculation in the reactor. The hydrogen production rate was maximum at 570C (1861 +- 14ml/L-WW/d) compared to 370C (651 +- 30ml/L-ww/d). The Hydrogen yield increased with temperature from 1.1 to 2.2 molH2/mol of substrate respectively. The optimum pH range for hydrogen production in this system was observed in between 5.5 to 6. Acid-forming pathway with butyric acid as a major metabolite dominated the metabolic flow during the hydrogen production.

  8. Acquisition of useful and high ability genes for acidophilic bacteria; Kosansei saikin ni takai noryoku wo fuyosuru idenshi no kakutoku

    Senda, T.; Inoue, C.; Shinbori, Y. [Tohoku University, Sendai (Japan)

    1997-02-01

    This effort aims at the development of high-performance bacteria usable in bio-leaching in metal smelting by acquiring genes capable of realizing such. A method is used of choosing some isolated strains exhibiting high-performance traits and acquiring target genes therefrom by use of genetic engineering. Approximately 200 kinds in the aggregate of acidophilic bacteria are currently available for the study, including isolated iron-oxidizing and sulfur-oxidizing bacteria, standard species acquired for the study, and strains previously isolated by the laboratory. The bacteria are tested with respect to their Fe{sup 2+}-oxidizing rates, sulfur-oxidizing capabilities, and strength to withstand inhibiting substances (Ag{sup +}, Cl{sup -}, Mo{sup 6+}, etc.), which results in the nomination of 8 strains. The study planned to follow includes processes involving the extraction of chromosome DNAs from the 8 strains and their refinement, gene cloning by the Southern hybridization method, determination of their base sequences, determination of the difference between the strains in point of gene expression, and investigations of the relations that the results of these processes bear toward the said high-performance traits. Also under way is a study about the infuence-exerting factors revealed during the evaluation of the abilities of acidphlic bacteria. 2 refs., 2 tabs.

  9. Arsenopyrite oxidation - A review

    Arsenopyrite (FeAsS) is the most common As-bearing sulfide mineral. Under oxidising conditions, such as those in mine waste systems, it breaks down to release acids of As and S into the environment, resulting in acid mine drainage with high concentrations of dissolved As. In this communication, current knowledge of arsenopyrite oxidation is reviewed based on a survey of the existing literature, which has focused on processes and reactions at the mineral surface. X-ray photoelectron spectroscopy (XPS) has shown that the oxidation of arsenopyrite in acid is more rapid than in air, water, or in alkaline solutions. Oxidation products reported by XPS include Fe(III) oxide, As(III), As(V), SO32- and SO42-. The elemental constituents of arsenopyrite oxidise at different rates, although there is no consensus as to which is the fastest or slowest to oxidise. Electrochemical studies have highlighted the formation of elemental S on the arsenopyrite surface, while XPS studies suggest that only oxy-anions of S form. Kinetic studies of arsenopyrite oxidation suggest that O2 and Fe3+ are the dominant inorganic agents causing arsenopyrite dissolution. The bacterially-mediated oxidation of arsenopyrite by acidophilic Fe- and S-oxidising bacteria such as Acidithiobacillus ferrooxidans and Acidithiobacillus caldus, is more extensive than abiotic oxidation. The literature pertaining to arsenopyrite oxidation is divided regarding the reaction stoichiometry, and the composition and layering of surface overlayers.

  10. Mathematical modelling of demineralisation of high sulphur coal by bioleaching

    Weerasekara, N.S.; Frutos, F.J.G.; Cara, J.; Lockwood, F.C. [University of London Imperial College of Science Technology & Medicine, London (United Kingdom)

    2008-02-15

    During coal combustion various toxic compounds are generated from its sulphur content. Their environmental impacts are considered to be very important. While there are various conventional preparation methods to remove the sulphur in the fuel, recent work reveals that newly-isolated micro-organisms, naturally present in coal, have the ability to reduce its sulphur content. The removal of sulphur using biological leaching involving acidophilic iron oxidising bacteria like Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans are examined and a computational technique based on computational fluid dynamics is developed to model the biological leaching of sulphur from coal. The model was validated against a pack-column experiment carried out for iron separation during 60 days. The mathematical model predicted iron separation over time is similar to experimental measurements, with an average difference of 5.5%. According to the experimental results, there was an overall reduction of 33% of pyrite, whereas the model prediction was 32%. The model results shows overall good agreement with pack-column experimental data.

  11. Existence of aa3-type ubiquinol oxidase as a terminal oxidase in sulfite oxidation of Acidithiobacillus thiooxidans.

    Sugio, Tsuyoshi; Hisazumi, Tomohiro; Kanao, Tadayoshi; Kamimura, Kazuo; Takeuchi, Fumiaki; Negishi, Atsunori

    2006-07-01

    It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an alpha-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa(3)-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 degrees C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A(1) and myxothiazol, which are inhibitors of mitochondrial bc(1) complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively. PMID:16861791

  12. Optimization of two-step bioleaching of spent petroleum refinery catalyst by Acidithiobacillus thiooxidans using response surface methodology.

    Srichandan, Haragobinda; Pathak, Ashish; Kim, Dong Jin; Lee, Seoung-Won

    2014-01-01

    A central composite design (CCD) combined with response surface methodology (RSM) was employed for maximizing bioleaching yields of metals (Al, Mo, Ni, and V) from as-received spent refinery catalyst using Acidithiobacillus thiooxidans. Three independent variables, namely initial pH, sulfur concentration, and pulp density were investigated. The pH was found to be the most influential parameter with leaching yields of metals varying inversely with pH. Analysis of variance (ANOVA) of the quadratic model indicated that the predicted values were in good agreement with experimental data. Under optimized conditions of 1.0% pulp density, 1.5% sulfur and pH 1.5, about 93% Ni, 44% Al, 34% Mo, and 94% V was leached from the spent refinery catalyst. Among all the metals, V had the highest maximum rate of leaching (Vmax) according to the Michaelis-Menten equation. The results of the study suggested that two-step bioleaching is efficient in leaching of metals from spent refinery catalyst. Moreover, the process can be conducted with as received spent refinery catalyst, thus making the process cost effective for large-scale applications. PMID:25320861

  13. Mechanism of electro-generating leaching of chalcopyrite-MnO2 in presence of Acidithiobacillus thiooxidans

    XIAO Li; LIU Jian-she; FANG Zheng; QIU Guan-zhou

    2008-01-01

    A dual cell system with chalcopyrite anode and MnO2 cathode was used to study the relations between time and such data as the electric quantity and the dissolution rates of the two minerals in the electro-generating leaching(EGL) and the bio-electro-generating leaching(BEGL),respectively.The results showed that the dissolution rates for Cu2+ and Fe2+ in BEGL were almost 2 times faster than those in EGL,and nearly 3 times for Mn2+; the electric output increased nearly by 3 times.The oxidation residue of chalcopyrite was represented by TEM and XRD,whose pattern was similar to that of the raw ore in EGL.The mechanism for leaching of CuFeS2-MnO2 in the presence of Acidithiobacillus thiooxidans was proposed as a successive reaction of two independent sub-processes for the anode.The first stage,common to both processes,is dissolution of chalcopyrite to produce Cu2+,Fe2+ and sulfur.The second stage is subsequent oxidization of sulfur only in BEGL,which is the controlling step of the process.However,the dissolution of MnO2 lasts until the reaction of chalcopyrite stops or the ores exhaust in two types of leaching.

  14. Hydrogen sulfide oxidation in novel Horizontal-Flow Biofilm Reactors dominated by an Acidithiobacillus and a Thiobacillus species.

    Gerrity, S; Kennelly, C; Clifford, E; Collins, G

    2016-09-01

    Hydrogen Sulfide (H2S) is an odourous, highly toxic gas commonly encountered in various commercial and municipal sectors. Three novel, laboratory-scale, Horizontal-Flow Biofilm Reactors (HFBRs) were tested for the removal of H2S gas from air streams over a 178-day trial at 10°C. Removal rates of up to 15.1 g [H2S] m(-3) h(-1) were achieved, demonstrating the HFBRs as a feasible technology for the treatment of H2S-contaminated airstreams at low temperatures. Bio-oxidation of H2S in the reactors led to the production of H(+) and sulfate (SO(2-)4) ions, resulting in the acidification of the liquid phase. Reduced removal efficiency was observed at loading rates of 15.1 g [H2S] m(-3) h(-1). NaHCO3 addition to the liquid nutrient feed (synthetic wastewater (SWW)) resulted in improved H2S removal. Bacterial diversity, which was investigated by sequencing and fingerprinting 16S rRNA genes, was low, likely due to the harsh conditions prevailing in the systems. The HFBRs were dominated by two species from the genus Acidithiobacillus and Thiobacillus. Nonetheless, there were significant differences in microbial community structure between distinct HFBR zones due to the influence of alkalinity, pH and SO4 concentrations. Despite the low temperature, this study indicates HFBRs have an excellent potential to biologically treat H2S-contaminated airstreams. PMID:26829048

  15. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture

    2015-01-01

    The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value) and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III) after domestication, respectively, although arsenite showed a negative effect on both strains. The cocultur...

  16. Purification and some properties of sulfur reductase from the iron-oxidizing bacterium Thiobacillus ferrooxidans NASF-1.

    Ng, K Y; Sawada, R; Inoue, S; Kamimura, K; Sugio, T

    2000-01-01

    Thiobacillus ferrooxidans strain NASF-1 grown aerobically in an Fe2+ (3%)-medium produces hydrogen sulfide (H2S) from elemental sulfur under anaerobic conditions with argon gas at pH 7.5. Sulfur reductase, which catalyzes the reduction of elemental sulfur (S0) with NAD(P)H as an electron donor to produce hydrogen sulfide (H2S) under anaerobic conditions, was purified 69-fold after 35-65% ammonium sulfate precipitation and Q-Sepharose FF, Phenyl-Toyopearl 650 ML, and Blue Sepharose FF column chromatography, with a specific activity of 57.6 U (mg protein)(-1). The purified enzyme was quite labile under aerobic conditions, but comparatively stable in the presence of sodium hydrosulfite and under anaerobic conditions, especially under hydrogen gas conditions. The purified enzyme showed both sulfur reductase and hydrogenase activities. Both activities had an optimum pH of 9.0. Sulfur reductase has an apparent molecular weight of 120,000 Da, and is composed of three different subunits (M(r) 54,000 Da (alpha), 36,000 Da (beta), and 35,000 Da (gamma)), as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This is the first report on the purification of sulfur reductase from a mesophilic and obligate chemolithotrophic iron-oxidizing bacterium. PMID:16232842

  17. A kinetic study of the depyritization of oil shale HCl-kerogen concentrate by Thiobacillus ferrooxidans at different temperatures

    OLGA CVETKOVIC

    2003-05-01

    Full Text Available The results of kinetic studies of bacterial depyritization of HCl-kerogen concentrate of Aleksinac (Serbia oil shale by the chemolithoautotrophic thionic bacteria Thiobacillus ferrooxidans under discontinuous laboratory conditions at various temperatures (0, 20, 28 and 37°C at a pH of ca. 1.5 are presented in this paper. Low pH prevents the occurrence of the precipitation of iron(III-ion hydrolysis products on the substrate particles and thereby reduces the process efficiency. Bacterial depyritization is developed as per kinetics of the first order. The activation energy which points to a successive mechanism of pyrite biooxidation, was computed from the Arrhenius plot. The biochemical kinetics indicators point to a high affinity of the bacteria toward pyrite but small values of Vmax, which are probably the result of decelerated metabolic processes due to the low pH value of the environment resp. the large difference of the pH between the external medium and the cell interior.

  18. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities.

    Golińska, Patrycja; Wypij, Magdalena; Rathod, Dnyaneshwar; Tikar, Sagar; Dahm, Hanna; Rai, Mahendra

    2016-05-01

    Biosynthesis of silver nanoparticles (AgNPs) is an eco-friendly approach by using different biological sources; for example, plants and microorganisms such as bacteria, fungi, and actinobacteria. In this report, we present the biological synthesis of silver nanoparticles (AgNPs) by acidophilic actinomycetes SL19 and SL24 strains isolated from pine forest soil (pH < 4.0). The isolates based on 16S rRNA gene sequence were identified as Pilimelia columellifera subsp. pallida. The synthesized AgNPs were characterized by visual observations of colour change from light-yellow to dark-brown. The UV-vis spectra of AgNPs were recorded at 425 and 430 nm. The AgNPs were further characterized by Nanoparticle tracking analysis (NTA), Zeta potential, Fourier transform infrared spectroscopy (FTIR) and Transmission electron microscopy (TEM). FTIR analysis revealed the presence of proteins as a capping agent. TEM analysis confirmed the formation of spherical and polydispersed NPs of 12.7 and 15.9 nm sizes. The in vitro antibacterial activity of AgNPs alone and in combination with antibiotics was evaluated against clinical bacteria viz., Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and uropathogens such as Enterobacter, S. aureus, P. aeruginosa, K. pneumoniae, and E. coli. The lowest MIC (40 μg ml(-1) ) was demonstrated by AgNPs synthesized from SL24 against E. coli. However, the AgNPs of SL19 showed lowest MIC (70 μg ml(-1) ) against S. aureus. The activity of antibiotic was enhanced, when tested in combination with silver nanoparticles synthesized from both actinobacterial strains. PMID:27151174

  19. Alicyclobacillus dauci sp. nov., a slightly thermophilic, acidophilic bacterium isolated from a spoiled mixed vegetable and fruit juice product.

    Nakano, Chisa; Takahashi, Naoto; Tanaka, Naoto; Okada, Sanae

    2015-02-01

    A novel, moderately thermophilic, acidophilic, Gram-variable, rod-shaped, endospore-forming bacterium was isolated from a spoiled mixed vegetable and fruit juice product that had the off-flavour of guaiacol. The bacterium, strain 4F(T), grew aerobically at 20-50 °C (optimum 40 °C) and pH 3.0-6.0 (optimum pH 4.0) and produced acid from glycerol, d-galactose and d-glucose. It contained menaquinone-7 (MK-7) as the major isoprenoid quinone and the DNA G+C content was 49.6 mol%. The predominant cellular fatty acids of strain 4F(T) were ω-alicyclic (ω-cyclohexane fatty acids), which are characteristic of the genus Alicyclobacillus. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain belongs to the Alicyclobacillus cluster, and is related most closely to the type strains of Alicyclobacillus acidoterrestris (97.4 % similarity) and Alicyclobacillus fastidiosus (97.3 %). Strain 4F(T) produced guaiacol from vanillic acid. It can be distinguished from related species by its acid production type and guaiacol production. On the basis of phenotypic characteristics, phylogenetic analysis and DNA-DNA relatedness values, it can be concluded that the strain represents a novel species of the genus Alicyclobacillus, for which the name Alicyclobacillus dauci sp. nov. is proposed; the type strain is 4F(T) ( = DSM 28700(T) = NBRC 108949(T) = NRIC 0938(T)). PMID:25505343

  20. Influence Of Used Bacterial Culture On Zinc And Aluminium Bioleaching From Printed Circuit Boards

    Mrazikova Anna; Marcincakova Renata; Kadukova Jana; Velgosova Oksana; Balintova Magdalena

    2015-01-01

    Bioleaching processes were used to solubilize metals (Cu, Ni, Zn and Al) from printed circuit boards (PCBs). In this study, a PCBs-adapted pure culture of Acidithiobacillus ferrooxidans, pure culture of Acidithiobacillus thiooxidans and PCBs-adapted mixed culture of A. ferrooxidans and A. thiooxidans were used for recovery of the metals. The study showed that the mixed bacterial culture has the greatest potential to dissolve metals. The maximum metal bioleaching efficiencies were found to be ...

  1. Insights on the structure and stability of Licanantase: a trimeric acid-stable coiled-coil lipoprotein from Acidithiobacillus thiooxidans

    Fernando Abarca

    2014-08-01

    Full Text Available Licanantase (Lic is the major component of the secretome of Acidithiobacillus thiooxidans when grown in elemental sulphur. When used as an additive, Lic improves copper recovery from bioleaching processes. However, this recovery enhancement is not fully understood. In this context, our aim is to predict the 3D structure of Lic, to shed light on its structure-function relationships. Bioinformatics analyses on the amino acid sequence of Lic showed a great similarity with Lpp, an Escherichia coli Lipoprotein that can form stable trimers in solution. Lic and Lpp share the secretion motif, intracellular processing and alpha helix structure, as well as the distribution of hydrophobic residues in heptads forming a hydrophobic core, typical of coiled-coil structures. Cross-linking experiments showed the presence of Lic trimers, supporting our predictions. Taking the in vitro and in silico evidence as a whole, we propose that the most probable structure for Lic is a trimeric coiled-coil. According to this prediction, a suitable model for Lic was produced using the de novo algorithm “Rosetta Fold-and-Dock”. To assess the structural stability of our model, Molecular Dynamics (MD and Replica Exchange MD simulations were performed using the structure of Lpp and a 14-alanine Lpp mutant as controls, at both acidic and neutral pH. Our results suggest that Lic was the most stable structure among the studied proteins in both pH conditions. This increased stability can be explained by a higher number of both intermonomer hydrophobic contacts and hydrogen bonds, key elements for the stability of Lic’s secondary and tertiary structure.

  2. The Effect of Oxygen Supply on the Dual Growth Kinetics of Acidithiobacillus thiooxidans under Acidic Conditions for Biogas Desulfurization

    Hyeong-Kyu Namgung

    2015-01-01

    Full Text Available In this study, to simulate a biogas desulfurization process, a modified Monod-Gompertz kinetic model incorporating a dissolved oxygen (DO effect was proposed for a sulfur-oxidizing bacterial (SOB strain, Acidithiobacillus thiooxidans, under extremely acidic conditions of pH 2. The kinetic model was calibrated and validated using experimental data obtained from a bubble-column bioreactor. The SOB strain was effective for H2S degradation, but the H2S removal efficiency dropped rapidly at DO concentrations less than 2.0 mg/L. A low H2S loading was effectively treated with oxygen supplied in a range of 2%–6%, but a H2S guideline of 10 ppm could not be met, even with an oxygen supply greater than 6%, when the H2S loading was high at a short gas retention time of 1 min and a H2S inlet concentration of 5000 ppm. The oxygen supply should be increased in the aerobic desulfurization to meet the H2S guideline; however, the excess oxygen above the optimum was not effective because of the decline in oxygen efficiency. The model estimation indicated that the maximum H2S removal rate was approximately 400 ppm/%-O2 at the influent oxygen concentration of 4.9% under the given condition. The kinetic model with a low DO threshold for the interacting substrates was a useful tool to simulate the effect of the oxygen supply on the H2S removal and to determine the optimal oxygen concentration.

  3. The effect of oxygen supply on the dual growth kinetics of Acidithiobacillus thiooxidans under acidic conditions for biogas desulfurization.

    Namgung, Hyeong-Kyu; Song, JiHyeon

    2015-02-01

    In this study, to simulate a biogas desulfurization process, a modified Monod-Gompertz kinetic model incorporating a dissolved oxygen (DO) effect was proposed for a sulfur-oxidizing bacterial (SOB) strain, Acidithiobacillus thiooxidans, under extremely acidic conditions of pH 2. The kinetic model was calibrated and validated using experimental data obtained from a bubble-column bioreactor. The SOB strain was effective for H2S degradation, but the H2S removal efficiency dropped rapidly at DO concentrations less than 2.0 mg/L. A low H2S loading was effectively treated with oxygen supplied in a range of 2%-6%, but a H2S guideline of 10 ppm could not be met, even with an oxygen supply greater than 6%, when the H2S loading was high at a short gas retention time of 1 min and a H2S inlet concentration of 5000 ppm. The oxygen supply should be increased in the aerobic desulfurization to meet the H2S guideline; however, the excess oxygen above the optimum was not effective because of the decline in oxygen efficiency. The model estimation indicated that the maximum H2S removal rate was approximately 400 ppm/%-O2 at the influent oxygen concentration of 4.9% under the given condition. The kinetic model with a low DO threshold for the interacting substrates was a useful tool to simulate the effect of the oxygen supply on the H2S removal and to determine the optimal oxygen concentration. PMID:25633028

  4. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore.

    Wakeman, Kathryn; Auvinen, Hannele; Johnson, D Barrie

    2008-11-01

    The evolution of microbial populations involved in simulated-heap leaching of a polymetallic black schist sulfide ore (from the recently-commissioned Talvivaara mine, Finland) was monitored in aerated packed bed column reactors over a period of 40 weeks. The influence of ore particle size (2-6.5 mm and 6.5-12 mm) on changes in composition of the bioleaching microflora and mineral leaching dynamics in columns was investigated and compared to fine-grain (manganese and nickel and 68% of zinc being leached within 6 weeks, though relatively little of the copper present in the ore was solubilised. The microbial consortium that emerged from the original inoculum was relatively simple in shake flasks, and was dominated by the iron-oxidizing autotroph Leptospirillum ferriphilum, with smaller numbers of Acidimicrobium ferrooxidans, Acidithiobacillus caldus and Leptospirillum ferrooxidans. Both metal recovery and (for the most part) total numbers of prokaryotes were greater in the column reactor containing the medium-grain than that containing the coarse-grain ore. The bioleaching communities in the columns displayed temporal changes in composition and differed radically from those in shake flask cultures. While iron-oxidizing chemoautotrophic bacteria were always the most numerically dominant bacteria in the medium-grain column bioreactor, there were major shifts in the most abundant species present, with the type strain of Acidithiobacillus ferrooxidans dominating in the early phase of the experiment and other bacteria (At. ferrooxidans NO37 and L. ferriphilum) dominating from week 4 to week 40. With the coarse-grain column bioreactor, similar transitions in populations of iron-oxidizing chemoautotrophs were observed, though heterotrophic acidophiles were often the most abundant bacteria found in mineral leach liquors. Four bacteria not included in the mixed culture used to inoculate the columns were detected by biomolecular techniques and three of these (all

  5. 氧化亚铁硫杆菌对金属铜的加工%BIOMACHINING OF METAL COPPEY BY THIOBACILLUS FERROOXIDANS

    李雅芹; 张德远; 吴依陶

    2000-01-01

    Thiobacillus ferrooxidans was employed in the biomachining process of metal copper(Cuo). The bacteria growth and the changes of Fe3+ concentration during machining processes have been studied. Biomachining and chemical machining have been compared.The results showed that the concentrations of bacteria and Fe3+ determine the speed of machining copper. The biomachining is more fast that chemical maching because bacteria are able to regenerate Fe3+ oxidizing copper. It was also found that the Cu2 + produced from the machining processes inhibit the growth of bacteria. Cu2+ has to be removed.

  6. [Hydrocarbon-Oxidizing potential and the genes for n-alkane biodegradation in a new acidophilic mycobacterial association from sulfur blocks].

    Ivanova, I E; Sukhacheva, M V; Kanat'eva, A Yu; Kravchenko, I K; Kurganov, A A

    2014-01-01

    Capacity of AG(S10), a new aerobic acidophilic (growing within the pH range from 1.3 to 4.5 with the optimum at 2.0-2.5) bacterial association from sulfur blocks of the Astrakhan gas-processing complex (AGC), for oxidation of hydrocarbons of various chemical structure was investigated. A broad spectrum of normal (C10-C21) and iso-alkanes, toluene, naphthalene, andphenanthrene, as well as isoprenoids resistant to microbial degradation, pristane and phytane (components of paraffin oil), and 2,2,4,4,6,8,8,-heptamethylnonane, a branched hydrocarbon, were biodegraded under acidic conditions. Microbiological investigation revealed the dominance of mycobacteria in the AGS10 association, which was confirmed by analysis of the 16S rRNA gene clone library. In the phylogenetic tree, the 16S rRNA sequences formed a branch within the cluster of slow-growing mycobacteria, with 98% homology to the closest species Mycobacterium florentinum. Genomic DNA of AG(S10) culture grown on C14-C17 n-alkanes at pH 2.5 was found to contain the genes of two hydroxylase families, alkB and Cyp 153, indicating their combined involvement in hydrocarbon biodegradation. The high hydrocarbon-oxidizing potential of the AGS10 bacterial association, indicated that further search for the genes responsible for degradation of various hydrocarbons in acidophilic mycobacteria could be promising. PMID:25941716

  7. [Effect of temperature on the rate of oxidation of pyrrhotite-rich sulfide ore flotation concentrate and the structure of the acidophilic chemolithoautotrophic microbial community].

    Moshchanetskii, P V; Pivovarova, T A; Belyi, A V; Kondrat'eva, T F

    2014-01-01

    Oxidation of flotation concentrate of a pyrrhotite-rich sulfide ore by acidophilic chemolithoautotrophic microbial communities at 35, 40, and 45 degrees C was investigated. According to the physicochemical parameters of the liquid phase of the pulp, as well as the results of analysis of the solid residue after biooxidation and cyanidation, the community developed at 40 degrees C exhibited the highest rate of oxidation. The degree of gold recovery at 35, 40, and 45 degrees C was 89.34, 94.59, and 83.25%, respectively. At 40 degrees C, the highest number of microbial cells (6.01 x 10(9) cells/mL) was observed. While temperature had very little effect on the species composition of microbial communities, except for the absence of Leptospirillum ferriphilum at 35 degrees C, the shares of individual species in the communities varied with temperature. Relatively high numbers of Sulfobacillus thermosulfidooxidans, the organism oxidizing iron and elemental sulfur at higher rates than other acidophilic chemolithotrophic species, were observed at 40 degrees C. PMID:25844443

  8. Lipase production from a novel thermo-tolerant and extreme acidophile Bacillus pumilus using palm oil as the substrate and treatment of palm oil-containing wastewater.

    Saranya, P; Sukanya Kumari, H; Prasad Rao, B; Sekaran, G

    2014-03-01

    The thermo-tolerant and extreme acidophilic microorganism Bacillus pumilus was isolated from the soil collected from a commercial edible-oil extraction industry. Optimisation of conditions for the lipase production was conducted using response surface methodology. The optimum conditions for obtaining the maximum activity (1,100 U/mL) of extremely acidic thermostable lipase were fermentation time, 96 h; pH, 1; temperature, 50 °C; and concentration of palm oil, 50 g/L. After purification, a 7.1-fold purity of lipase with specific activity of 5,173 U/mg protein was obtained. The molecular weight of the thermo-tolerant acidophilic lipase (TAL) was 55 kDa. The predominant amino acid in the TAL was glycine. The functional groups of lipase were determined by Fourier transform infrared spectroscopy. TAL exhibited enhanced activity (114 %) with dimethyl sulphoxide (20 %, v/v), and it showed a moderate activity with methanol, hexane and benzene. The optimum conditions for the treatment of palm oil in wastewater using the TAL were found to be time, 3 h; pH, 1; temperature, 50 °C with pseudo second-order kinetic constant of 1.88 × 10(-3) L mol(-1) min(-1). The Michaelis-Menten enzyme kinetic model and the nonlinear kinetic model were evaluated for the TAL. TAL established hydrolysis efficiency of 96 % for palm oil in wastewater at 50 °C. PMID:24293300

  9. Acidophilic green alga Pseudochlorella sp. YKT1 accumulates high amount of lipid droplets under a nitrogen-depleted condition at a low-pH.

    Shunsuke Hirooka

    Full Text Available Microalgal storage lipids are considered to be a promising source for next-generation biofuel feedstock. However, microalgal biodiesel is not yet economically feasible due to the high cost of production. One of the reasons for this is that the use of a low-cost open pond system is currently limited because of the unavoidable contamination with undesirable organisms. Extremophiles have an advantage in culturing in an open pond system because they grow in extreme environments toxic to other organisms. In this study, we isolated the acidophilic green alga Pseudochlorella sp. YKT1 from sulfuric acid mine drainage in Nagano Prefecture, Japan. The vegetative cells of YKT1 display the morphological characteristics of Trebouxiophyceae and molecular phylogenetic analyses indicated it to be most closely related to Pseudochlorella pringsheimii. The optimal pH and temperature for the growth of YKT1 are pH 3.0-5.0 and a temperature 20-25°C, respectively. Further, YKT1 is able to grow at pH 2.0 and at 32°C, which corresponds to the usual water temperature in the outdoors in summer in many countries. YKT1 accumulates a large amount of storage lipids (∼30% of dry weigh under a nitrogen-depleted condition at low-pH (pH 3.0. These results show that acidophilic green algae will be useful for industrial applications by acidic open culture systems.

  10. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia

    Stott Matthew B

    2008-07-01

    Full Text Available Abstract Background The phylum Verrucomicrobia is a widespread but poorly characterized bacterial clade. Although cultivation-independent approaches detect representatives of this phylum in a wide range of environments, including soils, seawater, hot springs and human gastrointestinal tract, only few have been isolated in pure culture. We have recently reported cultivation and initial characterization of an extremely acidophilic methanotrophic member of the Verrucomicrobia, strain V4, isolated from the Hell's Gate geothermal area in New Zealand. Similar organisms were independently isolated from geothermal systems in Italy and Russia. Results We report the complete genome sequence of strain V4, the first one from a representative of the Verrucomicrobia. Isolate V4, initially named "Methylokorus infernorum" (and recently renamed Methylacidiphilum infernorum is an autotrophic bacterium with a streamlined genome of ~2.3 Mbp that encodes simple signal transduction pathways and has a limited potential for regulation of gene expression. Central metabolism of M. infernorum was reconstructed almost completely and revealed highly interconnected pathways of autotrophic central metabolism and modifications of C1-utilization pathways compared to other known methylotrophs. The M. infernorum genome does not encode tubulin, which was previously discovered in bacteria of the genus Prosthecobacter, or close homologs of any other signature eukaryotic proteins. Phylogenetic analysis of ribosomal proteins and RNA polymerase subunits unequivocally supports grouping Planctomycetes, Verrucomicrobia and Chlamydiae into a single clade, the PVC superphylum, despite dramatically different gene content in members of these three groups. Comparative-genomic analysis suggests that evolution of the M. infernorum lineage involved extensive horizontal gene exchange with a variety of bacteria. The genome of M. infernorum shows apparent adaptations for existence under extremely

  11. Résilience d'une prairie subalpine acidophile au chaulage et à la fertilisation de courte durée

    Spiegelberger, T.; Deléglise, C.; DeDanieli, S.; Bernard-Brunet, C.

    2010-01-01

    / Une expérience de fertilisation a débuté en 1989 dans les Alpes françaises, sur une prairie acidophile située à 2000 m d'altitude, où de la chaux (« chaulage ») et des scories enrichies par chlorure de potassium (« fertilisation ») ont été apportés jusqu'en 1992. Depuis, aucun autre amendement n'a été appliqué. En 2007 nous avons revisité l'expérience et avons observé que le pH du sol était toujours sensiblement plus haut sur les placettes chaulées, alors que les concentrations du sol e...

  12. Specificity of pH sensitive Tc(V)-DMS for acidophilic osteoclastic bone cells: biological and cellular studies

    Bone scintigraphy is a sensitive imaging method for detecting skeletal metastases but the low specificity has decreased its oncological use. Bone scintigraphy has relied on Tc-bisphosphonate (Tc-BP) agents with affinity for the mineral phase. However, bio-functional Tc(V)-DMS agent, sensitive to acid pH of tumoral tissue has shown osteotrophic properties, in adult bone pathologies. Objectives: Basis for understanding the osteotropic character of the pH sensitive Tc(V)-DMS in bone metastasis. Methods: Studies on differential Tc(V)-DMS and Tc-BP accumulation response were carried out by acidophilic osteoclast (OC) and basophilic osteoblast (OB) cells subjected to variable pH incubation media (HEPES, 370C) and by bone tissue of Ehrlich Ascites Tumor (EAT) bearing mice, exposed to systemic NH4Cl or glucose mediated acidification (GmAc). Agents injected into tail vein and bone radioactivity analyzed. Bone metabolism markers measured in blood and urine (pH, Pi, Ca , Alp, Dpd). Acid-base regulation effect at cellular level, analyzed by using bafilomycin, amiloride, DIDS and acetazolamide inhibitors. Results: Lack of any OB response to acidification or alkalinization detected with either Tc(V)-DMS or Tc-BP agent. However, OC cells were highly sensitivity to acidification only in the presence of Tc(V)-DMS showing great radioactivity increase as the pH was lowered. This specificity also detected, in EAT bearing mice; increased bone tissue accumulation in response to systemic acidification was clearly detected upon administration of Tc(V)-DMS only under GmAc, an experimental model showing high urine excretion of deoxypyridinoline, a bone resorption marker. Conclusion: Peculiarity of multi nucleated OC cells sensitive to the environment pH and their activation in acid pH has been well known. Tc-BP agent showed lack of affinity for OC or OB cells. Specific affinity of OC cells for Tc(V)-DMS and its increased bone accumulation with the systemic pH lowering reflect the p

  13. Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus.

    Castro, Matías; Deane, Shelly M; Ruiz, Lina; Rawlings, Douglas E; Guiliani, Nicolas

    2015-01-01

    An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs) and degraded by phosphodiesterases (PDEs). We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319) that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process. PMID:25689133

  14. Diguanylate cyclase null mutant reveals that C-Di-GMP pathway regulates the motility and adherence of the extremophile bacterium Acidithiobacillus caldus.

    Matías Castro

    Full Text Available An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to sessile community-based behaviors, such as biofilm development, through different kinds of effectors. Thus, we recently started a study of the c-di-GMP pathway in several biomining bacteria including Acidithiobacillus caldus. C-di-GMP molecules are synthesized by diguanylate cyclases (DGCs and degraded by phosphodiesterases (PDEs. We previously reported the existence of intermediates involved in c-di-GMP pathway from different Acidithiobacillus species. Here, we report our work related to At. caldus ATCC 51756. We identified several putative-ORFs encoding DGC and PDE and effector proteins. By using total RNA extracted from At. caldus cells and RT-PCR, we demonstrated that these genes are expressed. We also demonstrated the presence of c-di-GMP by mass spectrometry and showed that genes for several of the DGC enzymes were functional by heterologous genetic complementation in Salmonella enterica serovar Typhimurium mutants. Moreover, we developed a DGC defective mutant strain (Δc1319 that strongly indicated that the c-di-GMP pathway regulates the swarming motility and adherence to sulfur surfaces by At. caldus. Together, our results revealed that At. caldus possesses a functional c-di-GMP pathway which could be significant for ores colonization during the bioleaching process.

  15. In situ spectroscopy on intact Leptospirillum ferrooxidans reveals that reduced cytochrome 579 is an obligatory intermediate in the aerobic iron respiratory chain

    Robert C Blake

    2012-04-01

    Full Text Available Electron transfer reactions among colored biomolecules in intact bacterial cells were monitored using an integrating cavity absorption meter that permitted the acquisition of accurate absorbance data in suspensions of cells that scatter light. The aerobic iron respiratory chain of Leptospirillum ferrooxidans was dominated by the redox status of an abundant cellular cytochrome that had an absorbance peak at 579 nanometers in the reduced state. Intracellular cytochrome 579 was reduced within the time that it took to mix a suspension of the bacteria with soluble ferrous iron at pH 1.7. Steady state turnover experiments were conducted where the initial concentrations of ferrous iron were less than or equal to that of the oxygen concentration. Under these conditions, the initial absorbance spectrum of the oxidized bacterium was always regenerated from that of the iron-reduced bacterium. The kinetics of aerobic respiration on soluble iron by intact L. ferrooxidans conformed to the Michaelis-Menten formalism, where the reduced intracellular cytochrome 579 represented the Michaelis complex whose subsequent oxidation appeared to be the rate-limiting step in the overall aerobic respiratory process. The velocity of formation of ferric iron at any time point was directly proportional to the concentration of the reduced cytochrome 579. Further, the integral over time of the concentraton of the reduced cytochrome was directly proportional to the total concentration of ferrous iron in each reaction mixture. These kinetic data obtained using whole cells were consistent with the hypothesis that reduced cytochrome 579 is an obligatory steady state intermediate in the iron respiratory chain of this bacterium. The capability of conducting visible spectroscopy in suspensions of intact cells comprises a powerful post-reductionist means to study cellular respiration in situ under physiological conditions for the organism.

  16. Cowpea nodulation, biomass yield and nutrient uptake, as affected by biofertilizers and rhizobia, in a sodic soil amended with Acidithiobacillus - doi: 10.4025/actasciagron.v35i4.16994

    Newton Pereira Stamford

    2013-05-01

    Full Text Available Sodic soils require application of amendments as gypsum and organic matter. Many types of compost have been tested in sodic soils reclamation; however, these materials often do not provide satisfactory pH reduction. A recent study reported effective effects applying mixture of gypsum and sulfur inoculated with Acidithiobacillus in sodic soils with high pH and exchangeable sodium, though the effects on plant parameters were not evaluated. The present study was conducted to verify the effects of BPK rock biofertilizers on nodulation, biomass yield and nutrient uptake in cowpea compared with mineral fertilizer after sodic soil amendment. The BPK biofertilizers and PK mineral fertilizer were applied at different rates, and plants were inoculated with effective rhizobia strains. A control that did not receive PK fertilization was included. The results indicated that gypsum and sulfur with Acidithiobacillus reduced the soil’s pH and the amount of soil exchangeable sodium. BPK rock biofertilizer increased cowpea nodulation, biomass yield and nutrient uptake. The native rhizobia in the soil exhibited effectiveness in cowpea growth; displaying similar results compared with the rhizobia inoculated plants. BPK biofertilizers may be used as alternative to mineral PK fertilizers in sodic soils after the application of gypsum and sulfur inoculated with Acidithiobacillus.

  17. Aplicação de técnicas eletroquímicas no estudo da dissolução oxidativa da covelita (CuS por Thiobacillus ferrooxidans Electrochemical techniques applied to study the oxidative dissolution of the covellite: CuS by Thiobacillus ferrooxidans

    Christiane Medina Teixeira

    2002-02-01

    Full Text Available Among the copper sulphides, chalcopyrite (CuFeS2, covellite (CuS and chalcocite (Cu2S are the most important source of minerals for copper mining industry. The acknowledge of behaviour of these sulphides related with bacterial leaching process are essential for optimization procedures. Despite of its importance, covellite has not deserved much interest of researchers regarding this matter. In this work it was studied the oxidation of covellite by the chemolithotrophic bacterium Thiobacillus ferrooxidans by using electrochemical techniques, such as open circuit potentials with the time and cyclic voltammetry. The experiments were carried out in acid medium (pH 1.8, containing or not Fe2+ as additional energy source, and in different periods of incubation; chemical controls were run in parallel. The results showed that a sulphur layer is formed spontaneously due the acid attack, covering the sulphide in the initial phase of incubation, blocking the sulphide oxidation. However, the bacterium was capable to oxidize this sulphur layer. In the presence of Fe2+ as supplemental energy source, the corrosion process was facilitated, because ocurred an indirect oxidation of covellite by Fe3+, which was produced by T. ferrooxidans oxidation of the Fe2+ added in the medium.

  18. Genomic insights into a new acidophilic, copper-resistant Desulfosporosinus isolate from the oxidized tailings area of an abandoned gold mine.

    Mardanov, Andrey V; Panova, Inna A; Beletsky, Alexey V; Avakyan, Marat R; Kadnikov, Vitaly V; Antsiferov, Dmitry V; Banks, David; Frank, Yulia A; Pimenov, Nikolay V; Ravin, Nikolai V; Karnachuk, Olga V

    2016-08-01

    Microbial sulfate reduction in acid mine drainage is still considered to be confined to anoxic conditions, although several reports have shown that sulfate-reducing bacteria occur under microaerophilic or aerobic conditions. We have measured sulfate reduction rates of up to 60 nmol S cm(-3) day(-1) in oxidized layers of gold mine tailings in Kuzbass (SW Siberia). A novel, acidophilic, copper-tolerant Desulfosporosinus sp. I2 was isolated from the same sample and its genome was sequenced. The genomic analysis and physiological data indicate the involvement of transporters and additional mechanisms to tolerate metals, such as sequestration by polyphosphates. Desulfosporinus sp. I2 encodes systems for a metabolically versatile life style. The genome possessed a complete Embden-Meyerhof pathway for glycolysis and gluconeogenesis. Complete oxidation of organic substrates could be enabled by the complete TCA cycle. Genomic analysis found all major components of the electron transfer chain necessary for energy generation via oxidative phosphorylation. Autotrophic CO2 fixation could be performed through the Wood-Ljungdahl pathway. Multiple oxygen detoxification systems were identified in the genome. Taking into account the metabolic activity and genomic analysis, the traits of the novel isolate broaden our understanding of active sulfate reduction and associated metabolism beyond strictly anaerobic niches. PMID:27222219

  19. Influence of water chemistry on the distribution of an acidophilic protozoan in an acid mine drainage system at the abandoned Green Valley coal mine, Indiana, USA

    Brake, S.S.; Dannelly, H.K.; Connors, K.A.; Hasiotis, S.T. [Indiana State University, Terre Haute, IN (United States). Dept. of Geography Geology & Anthropology

    2001-07-01

    Euglena mutabilis, a benthic photosynthetic protozoan that intracellularly sequesters Fe, is variably abundant in the main effluent channel that contains acid mine drainage (AMD) discharging from the Green Valley coal mine site in western Indiana. Samples of effluent (pH 3.0-4.6) taken from the main channel and samples of contaminated stream water (pH 3.3 to 8.0) collected from an adjacent stream were analyzed to evaluate the influence of water chemistry on E. mutabilis distribution. E. mutabilis communities were restricted to areas containing unmixed effluent with the thickest (up to 3 mm) benthic communities residing in effluent containing high concentrations of total Fe (up to 12110 mg/l), SO{sub 4}(up to 2940 mg/l), Al (up to 1846 mg/l), and Cl (up to 629 mg/l). Communities were also present, but much less abundant, in areas with effluent containing lower concentrations of these same constituents. In effluent where SO{sub 4} was most highly concentrated, E. mutabilis was largely absent, suggesting that extremely high concentrations of SO{sub 4} may have an adverse effect on this potentially beneficial Fe-mediating, acidophilic protozoan.

  20. Enhanced Cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor.

    Fang, Di; Zhou, Li-Xiang

    2007-09-01

    Bioleaching process has been demonstrated to be an effective technology in removing Cr from tannery sludge, but a large quantity of dissolved organic matter (DOM) present in tannery sludge often exhibits a marked toxicity to chemolithoautotrophic bioleaching bacteria such as Acidithiobacillus thiooxidans. The purpose of the present study was therefore to enhance Cr bioleaching efficiencies through introducing sludge DOM-degrading heterotrophic microorganism into the sulfur-based sludge bioleaching system. An acid-tolerant DOM-degrading yeast strain Brettanomyces B65 was successfully isolated from a local Haining tannery sludge and it could metabolize sludge DOM as a source of energy and carbon for growth. A combined bioleaching experiment (coupling Brettanomyces B65 and A. thiooxidans TS6) performed in an air-lift reactor indicated that the rates of sludge pH reduction and ORP increase were greatly improved, resulting in enhanced Cr solubilization. Compared with the 5 days required for maximum solubilization of Cr for the control (single bioleaching process without inoculation of Brettanomyces B65), the bioleaching period was significantly shorten to 3 days for the combined bioleaching system. Moreover, little nitrogen and phosphorous were lost and the content of Cr was below the permitted levels for land application after 3 days of bioleaching treatment. PMID:17537479

  1. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture

    Huidan Jiang

    2015-01-01

    Full Text Available The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III after domestication, respectively, although arsenite showed a negative effect on both strains. The coculture showed a stronger sulfur and ferrous ion oxidation activity when exposed to arsenite. In coculture, the pH value showed no significant difference when under 500 mM arsenite stress, and the cell number of At. thiooxidans was higher than that in pure culture benefiting from the interaction with L. ferriphilum. The expression profile showed that the arsenic efflux system in the coculture was more active than that in pure culture, indicating that there is a synergetic interaction between At. thiooxidans A01 and L. ferriphilum YSK. In addition, a model was proposed to illustrate the interaction between arsenite and the ars operon in L. ferriphilum YSK and At. thiooxidans A01. This study will facilitate the effective application of coculture in the bioleaching process by taking advantage of strain-strain communication and coordination.

  2. Effects of Arsenite Resistance on the Growth and Functional Gene Expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in Pure Culture and Coculture.

    Jiang, Huidan; Liang, Yili; Yin, Huaqun; Xiao, Yunhua; Guo, Xue; Xu, Ying; Hu, Qi; Liu, Hongwei; Liu, Xueduan

    2015-01-01

    The response of iron-oxidizing Leptospirillum ferriphilum YSK and sulfur-oxidizing Acidithiobacillus thiooxidans A01 to arsenite under pure culture and coculture was investigated based on biochemical characterization (concentration of iron ion and pH value) and related gene expression. L. ferriphilum YSK and At. thiooxidans A01 in pure culture could adapt up to 400 mM and 800 mM As(III) after domestication, respectively, although arsenite showed a negative effect on both strains. The coculture showed a stronger sulfur and ferrous ion oxidation activity when exposed to arsenite. In coculture, the pH value showed no significant difference when under 500 mM arsenite stress, and the cell number of At. thiooxidans was higher than that in pure culture benefiting from the interaction with L. ferriphilum. The expression profile showed that the arsenic efflux system in the coculture was more active than that in pure culture, indicating that there is a synergetic interaction between At. thiooxidans A01 and L. ferriphilum YSK. In addition, a model was proposed to illustrate the interaction between arsenite and the ars operon in L. ferriphilum YSK and At. thiooxidans A01. This study will facilitate the effective application of coculture in the bioleaching process by taking advantage of strain-strain communication and coordination. PMID:26064886

  3. Biotechnology for uranium extraction and environmental control

    India is looking forward to augmenting mining and extraction of uranium mineral for its nuclear energy needs. Being a radio-active mineral, mining and processing of uranium ore deposits need be carried out in an environmentally acceptable fashion. In this respect, a biotechnological approach holds great promise since it is environment-friendly, cost-effective and energy-efficient. There are several types of microorganisms which inhabit uranium ore bodies and biogenesis plays an important role in the mineralisation and transport of uranium-bearing minerals under the earth's crust. Uranium occurrences in India are only meagre and it becomes essential to tap effectively all the available resources. Uraninite and pitchblende occurring along with sulfide mineralisation such as pyrite are ideal candidates for bioleaching. Acidithiobacillus ferrooxidans present ubiquitously in the ore deposits can be isolated, cultured and utilised to bring about efficient acidic dissolution of uranium. Many such commercial attempts to extract uranium from even lean ores using acidophilic autotrophic bacteria have been made in different parts of the world. Anaerobes such a Geobacter and Sulfate Reducing Bacteria (SRB) can be effectively used in uranium mining for environmental control. Radioactive uranium mined wastes and tailing dumps can be cleaned and protected using microorganisms. In this lecture use of biotechnology in uranium extraction and bioremediation is illustrated with practical examples. Applicability of environment-friendly biotechnology for mining and extraction of uranium from Indian deposits is outlined. Commercial potentials for bioremediation in uranium-containing wastes are emphasised. (author)

  4. Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals.

    Orell, Alvaro; Navarro, Claudio A; Arancibia, Rafaela; Mobarec, Juan C; Jerez, Carlos A

    2010-01-01

    Industrial biomining processes to extract copper, gold and other metals involve the use of extremophiles such as the acidophilic Acidithiobacillus ferrooxidans (Bacteria), and the thermoacidophilic Sulfolobus metallicus (Archaea). Together with other extremophiles these microorganisms subsist in habitats where they are exposed to copper concentrations higher than 100mM. Herein we review the current knowledge on the Cu-resistance mechanisms found in these microorganisms. Recent information suggests that biomining extremophiles respond to extremely high Cu concentrations by using simultaneously all or most of the following key elements: 1) a wide repertoire of Cu-resistance determinants; 2) duplication of some of these Cu-resistance determinants; 3) existence of novel Cu chaperones; 4) a polyP-based Cu-resistance system, and 5) an oxidative stress defense system. Further insight of the biomining community members and their individual response to copper is highly relevant, since this could provide key information to the mining industry. In turn, this information could be used to select the more fit members of the bioleaching community to attain more efficient industrial biomining processes. PMID:20627124

  5. A new acidophilic endo-β-1,4-xylanase from Penicillium oxalicum: cloning, purification, and insights into the influence of metal ions on xylanase activity.

    Liao, Hanpeng; Sun, Shaowei; Wang, Pan; Bi, Wenli; Tan, Shiyong; Wei, Zhong; Mei, Xinlan; Liu, Dongyang; Raza, Waseem; Shen, Qirong; Xu, Yangchun

    2014-07-01

    A new acidophilic xylanase (XYN11A) from Penicillium oxalicum GZ-2 has been purified, identified and characterized. Synchronized fluorescence spectroscopy was used for the first time to evaluate the influence of metal ions on xylanase activity. The purified enzyme was identified by MALDI TOF/TOF mass spectrometry, and its gene (xyn11A) was identified as an open reading frame of 706 bp with a 68 bp intron. This gene encodes a mature protein of 196 residues with a predicted molecular weight of 21.3 kDa that has the 100 % identity with the putative xylanase from the P. oxalicum 114-2. The enzyme shows a structure comprising a catalytic module family 10 (GH10) and no carbohydrate-binding module family. The specific activities were 150.2, 60.2, and 72.6 U/mg for beechwood xylan, birchwood xylan, and oat spelt xylan, respectively. XYN11A exhibited optimal activity at pH 4.0 and remarkable pH stability under extremely acidic condition (pH 3). The specific activity, K m and V max values were 150.2 U/mg, 30.7 mg/mL, and 403.9 μmol/min/mg for beechwood xylan, respectively. XYN11A is a endo-β-1,4-xylanase since it release xylobiose and xylotriose as the main products by hydrolyzing xylans. The activity of XYN11A was enhanced 155 % by 1 mM Fe(2+) ions, but was inhibited strongly by Fe(3+). The reason of enhancing the xylanase activity of XYN11A with 1 mM Fe(2+) treatment may be responsible for the change of microenvironment of tryptophan residues studied by synchronous fluorescence spectrophotometry. Inhibition of the xylanase activity by Fe(3+) was first time demonstrated to associate tryptophan fluorescence quenching. PMID:24818699

  6. Acidophilic granulocytes in the gills of gilthead seabream Sparus aurata: evidence for their responses to a natural infection by a copepod ectoparasite.

    Lui, Alice; Manera, Maurizio; Giari, Luisa; Mulero, Victoriano; Dezfuli, Bahram Sayyaf

    2013-09-01

    Immunohistochemical and ultrastructural studies were conducted on the gills of gilthead seabream, Sparus aurata L., naturally infected with the copepod ectoparasite Ergasilus lizae (Krøyer, 1863) in order to assess pathology and the host immune cell response. Gills of 56 gilthead seabream were screened for ectoparasites; 36 specimens (64.3%) harbored E. lizae. Intensity of infection was 32.7 ± 8.7 (mean ± SE). Pathological alterations to the gills of the host were more pronounced in close proximity to the copepod site of attachment. The parasite attached to the gills by means of its modified second antennae, occluded the arteries, provoked epithelial hyperplasia and hemorrhages and most often caused lamellar disruption. Numerous granular cells were encountered near the site of E. lizae attachment. In both infected and uninfected gills, the granular cells lay within the filaments and frequently occurred within the connective tissue inside and outside the blood vessels of the filaments. The type of granular cell was identified by immunohistochemical staining by using the monoclonal antibody G7 (mAb G7), which specifically recognizes acidophilic granulocytes (AGs) of S. aurata and with an anti-histamine antibody (as a marker for mast cells, MCs) on sections from 13 uninfected gills and 21 parasitized gills. The use of mAb G7 revealed that, in gills harboring copepods, the number of G7-positive cells (i.e., AGs; 32.9 ± 3.9, mean number of cells per 45,000 μm2 ± SE) was significantly higher than the density of the same cells in uninfected gills (15.3 ± 3.8; ANOVA, P < 0.05). Few histamine-positive granular cells (i.e., MCs) were found in the uninfected and parasitized gills. Here, we show, for the first time in S. aurata infected gills, that AGs rather than MCs are recruited and involved in the response to E. lizae infection in seabream. PMID:23644766

  7. Effects of ferrous sulfate, inoculum history, and anionic form on lead, zinc, and copper toxicity to Acidithiobacillus caldus strain BC13

    John E. Aston; William A. Apel; Brady D. Lee; Brent M. Peyton

    2010-12-01

    The current study reports the single and combined toxicities of Pb, Zn, and Cu to Acidithiobacillus caldus strain BC13. The observed half-maximal inhibitory concentrations (IC50),?±?95% confidence intervals, for Pb, Zn, and Cu were 0.9?±?0.1?mM, 39?±?0.5?mM, and 120?±?8?mM, respectively. The observed minimum inhibitory concentrations (MIC) for Pb, Zn, and Cu were 7.5?mM, 75?mM, and 250?mM, respectively. When metals were presented in binary mixtures, the toxicities were less than additive. For example, when 50% of the Pb MIC and 50% of the Cu MIC were presented together, the specific growth rate was inhibited by only 59?±?3%, rather than 100%. In addition, the presence of ferrous iron in the growth media decreased Pb and Zn toxicity to A. caldus strain BC13. The importance of inoculum history was evaluated by pre-adapting cultures through subsequent transfers in the presence of Pb, Zn, and Cu at their respective IC50s. After pre-adaptation, cultures had specific growth rates 39?±?11, 32?±?7, and 28?±?12% higher in the presence of Pb, Zn, and Cu IC50s, respectively, compared with cultures that had not been pre-adapted. In addition, when cells exposed to the MICs of Pb, Zn, and Cu were harvested, washed, and re-inoculated into fresh, metal-free medium, they grew, showing that the cells remained viable with little residual toxicity. Finally, metal chlorides showed more toxicity than metal sulfates, and studies using sodium chloride or a mixture of metal sulfates and sodium chloride suggested that this was attributable to an additive combination of the metal and chloride toxicities. Environ. Toxicol. Chem. 2010;29:2669–2675. © 2010 SETAC

  8. An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus.

    Tuffin, I Marla; de Groot, Peter; Deane, Shelly M; Rawlings, Douglas E

    2005-09-01

    A transposon, TnAtcArs, that carries a set of arsenic-resistance genes was isolated from a strain of the moderately thermophilic, sulfur-oxidizing, biomining bacterium Acidithiobacillus caldus. This strain originated from a commercial plant used for the bio-oxidation of gold-bearing arsenopyrite concentrates. Continuous selection for arsenic resistance over many years had made the bacterium resistant to high concentrations of arsenic. Sequence analysis indicated that TnAtcArs is 12 444 bp in length and has 40 bp terminal inverted repeat sequences and divergently transcribed resolvase and transposase genes that are related to the Tn21-transposon subfamily. A series of genes consisting of arsR, two tandem copies of arsA and arsD, two ORFs (7 and 8) and arsB is situated between the resolvase and transposase genes. Although some commercial strains of At. caldus contained the arsDA duplication, when transformed into Escherichia coli, the arsDA duplication was unstable and was frequently lost during cultivation or if a plasmid containing TnAtcArs was conjugated into a recipient strain. TnAtcArs conferred resistance to arsenite and arsenate upon E. coli cells. Deletion of one copy of arsDA had no noticeable effect on resistance to arsenite or arsenate in E. coli. ORFs 7 and 8 had clear sequence similarity to an NADH oxidase and a CBS-domain-containing protein, respectively, but their deletion did not affect resistance to arsenite or arsenate in E. coli. TnAtcArs was actively transposed in E. coli, but no increase in transposition frequency in the presence of arsenic was detected. Northern hybridization and reporter gene studies indicated that although ArsR regulated the 10 kb operon containing the arsenic-resistance genes in response to arsenic, ArsR had no effect on the regulation of genes associated with transposition activity. PMID:16151213

  9. Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13

    John E. Aston; William A. Apel; Brady D. Lee; Brent M. Peyton

    2010-12-01

    This study describes the effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13 with a Langmuir model. Copper exhibited the highest loading capacity, 4.76 ± 0.28 mmol g-1, to viable cells at pH 5.5. The highest kL (binding-site affinity) observed was 61.2 ± 3.0 L mmol-1 to dehydrated cells at pH 4.0. The pHs that maximized loading capacities and binding-site affinities were generally between 4.0 and 5.5, where the sum of free-proton and complexed-metal concentrations was near a minimum. Of additional importance, lead, zinc, and copper sorbed to viable cells at pH values as low as 1.5. Previous studies with other acidithiobacilli did not measure viable-cell sorption below pH 4.0. In separate experiments, desorption studies showed that far less copper was recovered from viable cells than any other metal or cell condition, suggesting that uptake may play an important role in copper sorption by At. caldus strain BC13. To reflect an applied system, the sorption of metal mixtures was also studied. In these experiments, lead, zinc, and copper sorption from a tertiary mixture were 40.2 ± 4.3%, 28.7 ± 3.8%, and 91.3 ± 3.0%, respectively, of that sorbed in single-metal systems.

  10. Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13

    Research highlights: →At. caldus sorbs lead, zinc, and copper across a range of pH and temperature. →At. caldus shows a relatively high sorption capacity for zinc and copper at low pH. → Lead, zinc, and copper sorption decreases in tertiary mixtures. → Copper appears to sorb via a different mechanism(s) than lead or zinc. - Abstract: This study describes the effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13 with a Langmuir model. Copper exhibited the highest loading capacity, 4.76 ± 0.28 mmol g-1, to viable cells at pH 5.5. The highest kL (binding-site affinity) observed was 61.2 ± 3.0 L mmol-1 to dehydrated cells at pH 4.0. The pHs that maximized loading capacities and binding-site affinities were generally between 4.0 and 5.5, where the sum of free-proton and complexed-metal concentrations was near a minimum. Of additional importance, lead, zinc, and copper sorbed to viable cells at pH values as low as 1.5. Previous studies with other acidithiobacilli did not measure viable-cell sorption below pH 4.0. In separate experiments, desorption studies showed that far less copper was recovered from viable cells than any other metal or cell condition, suggesting that uptake may play an important role in copper sorption by At. caldus strain BC13. To reflect an applied system, the sorption of metal mixtures was also studied. In these experiments, lead, zinc, and copper sorption from a tertiary mixture were 40.2 ± 4.3%, 28.7 ± 3.8%, and 91.3 ± 3.0%, respectively, of that sorbed in single-metal systems.

  11. Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility

    Nieto Pamela A

    2008-11-01

    Full Text Available Abstract Background Iron is an essential nutrient but can be toxic at high intracellular concentrations and organisms have evolved tightly regulated mechanisms for iron uptake and homeostasis. Information on iron management mechanisms is available for organisms living at circumneutral pH. However, very little is known about how acidophilic bacteria, especially those used for industrial copper bioleaching, cope with environmental iron loads that can be 1018 times the concentration found in pH neutral environments. This study was motivated by the need to fill this lacuna in knowledge. An understanding of how microorganisms thrive in acidic ecosystems with high iron loads requires a comprehensive investigation of the strategies to acquire iron and to coordinate this acquisition with utilization, storage and oxidation of iron through metal responsive regulation. In silico prediction of iron management genes and Fur regulation was carried out for three Acidithiobacilli: Acidithiobacillus ferrooxidans (iron and sulfur oxidizer A. thiooxidans and A. caldus (sulfur oxidizers that can live between pH 1 and pH 5 and for three strict iron oxidizers of the Leptospirillum genus that live at pH 1 or below. Results Acidithiobacilli have predicted FeoB-like Fe(II and Nramp-like Fe(II-Mn(II transporters. They also have 14 different TonB dependent ferri-siderophore transporters of diverse siderophore affinity, although they do not produce classical siderophores. Instead they have predicted novel mechanisms for dicitrate synthesis and possibly also for phosphate-chelation mediated iron uptake. It is hypothesized that the unexpectedly large number and diversity of Fe(III-uptake systems confers versatility to this group of acidophiles, especially in higher pH environments (pH 4–5 where soluble iron may not be abundant. In contrast, Leptospirilla have only a FtrI-Fet3P-like permease and three TonB dependent ferri-dicitrate siderophore systems. This paucity of iron

  12. Influences of Extracellular Polymeric Substances on the Dewaterability of Sewage Sludge during Bioleaching

    Zhou, Jun; Zheng, Guanyu; Zhang, Xueying; Zhou, Lixiang

    2014-01-01

    Extracellular polymeric substances (EPS) play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system), the capillary suction time (CST) of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better t...

  13. Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria

    Navarrete, Jesica U.; Cappelle, Ian J.; Schnittker, Kimberlin; Borrok, David M.

    2013-04-01

    Bioleaching has been suggested as an alternative to traditional mining techniques in extraterrestrial environments because it does not require extensive infrastructure and bulky hardware. In situ bioleaching of silicate minerals, such as those found on the moon or Mars, has been proposed as a feasible alternative to traditional extraction techniques that require either extreme heat and/or substantial chemical treatment. In this study, we investigated the biotic and abiotic leaching of basaltic rocks (analogues to those found on the moon and Mars) and the mineral ilmenite (FeTiO3) in aqueous environments under acidic (pH ˜ 2.5) and circumneutral pH conditions. The biological leaching experiments were conducted using Acidithiobacillus ferrooxidans, an iron (Fe)-oxidizing bacteria, and Pseudomonas mendocina, an Fe-scavenging bacteria. We found that both strains were able to grow using the Fe(II) derived from the tested basaltic rocks and ilmenite. Although silica leaching rates were the same or slightly less in the bacterial systems with A. ferrooxidans than in the abiotic control systems, the extent of Fe, Al and Ti released (and re-precipitated in new solid phases) was actually greater in the biotic systems. This is likely because the Fe(II) leached from the basalt was immediately oxidized by A. ferrooxidans, and precipitated into Fe(III) phases which causes a change in the equilibrium of the system, i.e. Le Chatelier's principle. Iron(II) in the abiotic experiment was allowed to build up in solution which led to a decrease in its overall release rate. For example, the percentage of Fe, Al and Ti leached (dissolved + reactive mineral precipitates) from the Mars simulant in the A. ferrooxidans experimental system was 34, 41 and 13% of the total Fe, Al and Ti in the basalt, respectively, while the abiotic experimental system released totals of only 11, 25 and 2%. There was, however, no measurable difference in the amounts of Fe and Ti released from ilmenite in the

  14. AcEST: BP921780 [AcEST

    Full Text Available YMU001_000154_A11 519 Adiantum capillus-veneris mRNA. clone: YMU001_000154_A11. BP921780 CL1628C ... ve OS=Acidithiobacillus ferrooxidans ATCC 23270 GN=AFE _0789 PE=4 SV=1 Length = 357 Score = 33.1 bits (74) ...

  15. AcEST: BP918094 [AcEST

    Full Text Available YMU001_000109_E06 521 Adiantum capillus-veneris mRNA. clone: YMU001_000109_E06. BP918094 CL4063C ... in OS=Acidithiobacillus ferrooxidans ATCC 23270 GN=AFE _2097 PE=4 SV=1 Length = 434 Score = 33.1 bits (74) ...

  16. AcEST: BP914678 [AcEST

    Full Text Available YMU001_000061_F10 477 Adiantum capillus-veneris mRNA. clone: YMU001_000061_F10. BP914678 - Show ... in OS=Acidithiobacillus ferrooxidans ATCC 23270 GN=AFE _3280 PE=4 SV=1 Length = 183 Score = 33.9 bits (76) ...

  17. AcEST: DK955232 [AcEST

    Full Text Available TST39A01NGRL0022_I18 555 Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0022_I18. 5' end seq ... ve OS=Acidithiobacillus ferrooxidans ATCC 23270 GN=AFE _1642 PE=4 SV=1 Length = 589 Score = 37.4 bits (85) ...

  18. AcEST: BP912958 [AcEST

    Full Text Available YMU001_000024_G08 493 Adiantum capillus-veneris mRNA. clone: YMU001_000024_G08. BP912958 - Show ... in OS=Acidithiobacillus ferrooxidans ATCC 23270 GN=AFE _1393 PE=4 SV=1 Length = 176 Score = 34.3 bits (77) ...

  19. AcEST: DK958674 [AcEST

    Full Text Available TST39A01NGRL0002_K02 671 Adiantum capillus-veneris mRNA. clone: TST39A01NGRL0002_K02. 5' end seq ... se OS=Acidithiobacillus ferrooxidans ATCC 23270 GN=AFE _2021 PE=4 SV=1 Length = 811 Score = 45.8 bits (107 ...

  20. AcEST: BP914018 [AcEST

    Full Text Available YMU001_000038_H10 551 Adiantum capillus-veneris mRNA. clone: YMU001_000038_H10. BP914018 CL2047C ... in OS=Acidithiobacillus ferrooxidans ATCC 23270 GN=AFE _1338 PE=4 SV=1 Length = 347 Score = 33.5 bits (75) ...

  1. AcEST: DK944293 [AcEST

    Full Text Available YMU02A01NGRL0005_J10 746 Adiantum capillus-veneris mRNA. clone: YMU02A01NGRL0005_J10. 5' end seq ... in OS=Acidithiobacillus ferrooxidans ATCC 23270 GN=AFE _0749 PE=4 SV=1 Length = 617 Score = 65.1 bits (157 ...

  2. GenBank blastx search result: AK242773 [KOME

    Full Text Available AK242773 J090053L15 AB206839.1 AB206839 Acidithiobacillus ferrooxidans atpI, atpB, atpE, atpF, atpH, atp...A, atpG, atpD, atpC genes for hypothetical protein, a subunit of F1F0-ATP synthase, c s

  3. GenBank blastx search result: AK105071 [KOME

    Full Text Available AK105071 001-045-C11 AB206839.1 Acidithiobacillus ferrooxidans atpI, atpB, atpE, atpF, atpH, atpA, atpG, atp...D, atpC genes for hypothetical protein, a subunit of F1F0-ATP synthase, c subunit o

  4. Generation of acid mine drainage around the Karaerik copper mine (Espiye, Giresun, NE Turkey): implications from the bacterial population in the Acısu effluent.

    Sağlam, Emine Selva; Akçay, Miğraç; Çolak, Dilşat Nigar; İnan Bektaş, Kadriye; Beldüz, Ali Osman

    2016-09-01

    The Karaerik Cu mine is a worked-out deposit with large volumes of tailings and slags which were left around the mine site without any protection. Natural feeding of these material and run-off water from the mineralised zones into the Acısu effluent causes a serious environmental degradation and creation of acid mine drainage (AMD) along its entire length. This research aims at modelling the formation of AMD with a specific attempt on the characterisation of the bacterial population in association with AMD and their role on its occurrence. Based on 16SrRNA analyses of the clones obtained from a composite water sample, the bacterial community was determined to consist of Acidithiobacillus ferrivorans, Ferrovum myxofaciens, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans as iron-oxidising bacteria, Acidocella facilis, Acidocella aluminiidurans, Acidiphilium cryptum and Acidiphilium multivorum as iron-reducing bacteria, and Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidiphilium cryptum as sulphur-oxidising bacteria. This association of bacteria with varying roles was interpreted as evidence of a concomitant occurrence of sulphur and iron cycles during the generation of AMD along the Acısu effluent draining the Karaerik mine. PMID:27338270

  5. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching.

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2015-09-01

    The community succession mechanism of Acidithiobacillus sp. coupling with adaptive evolution of adsorption performance were systematically investigated. Specifically, the μmax of attached and free cells was increased and peak time was moved ahead, indicating both cell growth of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was promoted. In the mixed strains system, the domination courses of A. thiooxidans was dramatically shortened from 22th day to 15th day, although community structure finally approached to the normal system. Compared to A. ferrooxidans, more positive effects of adaptive evolution on cell growth of A. thiooxidans were shown in either single or mixed strains system. Moreover, higher concentrations of sulfate and ferric ions indicated that both sulfur and iron metabolism was enhanced, especially of A. thiooxidans. Consistently, copper ion production was improved from 65.5 to 88.5 mg/L. This new adaptive evolution and community succession mechanism may be useful for guiding similar bioleaching processes. PMID:25978855

  6. Insights to the effects of free cells on community structure of attached cells and chalcopyrite bioleaching during different stages.

    Feng, Shoushuai; Yang, Hailin; Wang, Wu

    2016-01-01

    The effects of free cells on community structure of attached cells and chalcopyrite bioleaching by Acidithiobacillus sp. during different stages were investigated. The attached cells of Acidithiobacillus thiooxidans owned the community advantage from 14thd to the end of bioprocess in the normal system. The community structure of attached cells was greatly influenced in the free cells-deficient systems. Compared to A. thiooxidans, the attached cells community of Acidithiobacillus ferrooxidans had a higher dependence on its free cells. Meanwhile, the analysis of key biochemical parameters revealed that the effects of free cells on chalcopyrite bioleaching in different stages were diverse, ranging from 32.8% to 64.3%. The bioleaching contribution of free cells of A. ferrooxidans in the stationary stage (8-14thd) was higher than those of A. thiooxidans, while the situation was gradually reversed in the jarosite passivation inhibited stage (26-40thd). These results may be useful in guiding chalcopyrite bioleaching. PMID:26492170

  7. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite

    E. Romo

    2013-01-01

    Full Text Available The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control.

  8. Reconstitution of supramolecular organization involved in energy metabolism at electrochemical interfaces for biosensing and bioenergy production.

    Roger, M; de Poulpiquet, A; Ciaccafava, A; Ilbert, M; Guiral, M; Giudici-Orticoni, M T; Lojou, E

    2014-02-01

    How the redox proteins and enzymes involved in bioenergetic pathways are organized is a relevant fundamental question, but our understanding of this is still incomplete. This review provides a critical examination of the electrochemical tools developed in recent years to obtain knowledge of the intramolecular and intermolecular electron transfer processes involved in metabolic pathways. Furthermore, better understanding of the electron transfer processes associated with energy metabolism will provide the basis for the rational design of biotechnological devices such as electrochemical biosensors, enzymatic and microbial fuel cells, and hydrogen production factories. Starting from the redox complexes involved in two relevant bacterial chains, i.e., from the hyperthermophile Aquifex aeolicus and the acidophile Acidithiobacillus ferrooxidans, examination of protein-protein interactions using electrochemistry is first reviewed, with a focus on the orientation of a protein on an electrochemical interface mimic of a physiological interaction between two partners. Special attention is paid to current research in the electrochemistry of essential membrane proteins, which is one mandatory step toward the understanding of energy metabolic pathways. The complex and challenging architectures built to reconstitute a membrane-like environment at an electrode are especially considered. The role played by electrochemistry in the attempt to consider full bacterial metabolism is finally emphasized through the study of whole cells immobilized at electrodes as suspensions or biofilms. Before the performances of biotechnological devices can be further improved to make them really attractive, questions remain to be addressed in this particular field of research. We discuss the bottlenecks that need to be overcome in the future. PMID:24292430

  9. Structure/function relationship of the rusticyanin among thiobacillus ferroxidans: from the fermenter to the crystal; Relations structure/fonction de la rusticyanine chez thiobacillus ferrooxidans: du fermenteur au cristal

    Nunzi, F.

    1996-09-23

    The commercial extraction of copper and uranium from ores by microbial leaching turns to account the iron oxidation capacity of Thiobacillus ferroxidans. The iron oxidation involves an electron transport chain localized in the peri-plasmic space of the cell. The aim of our work is to study the structure-function relationships of rusticyanin, the most important component of this respiratory chain. Rusticyanin is a blue copper protein and has been characterized from a new strain of Thilbacillus ferrooxidans. A preliminary electrochemical study has been made with a new modified-gold electrode and we have examined, in particular, the pH dependence of the high redox potential of rusticyanin. Its amino acid sequence has been determined and a comparison with two other rusticyanin sequences, isolated from different strains, shows a high degree of homology. A structural alignment with six other blue copper proteins allows to propose four residues as copper ligands, His 84, Cys 138, His 143 and Met 148. The supposed factors responsible for the high redox potential of rusticyanin are discussed. (author)

  10. Estudo da dissolução oxidativa microbiológica de uma complexa amostra mineral contendo pirita (FeS2, Pirrotita (Fe1-xS e Molibdenita (MoS2 Microbiological oxidative dissolution of a complex mineral sample containing pyrite (FeS2, pyrrotite (Fe1-xS and molybdenite (MoS2

    Wilmo E. Francisco Jr

    2007-10-01

    Full Text Available This work aims to study the oxidation of a complex molybdenite mineral which contains pyrite and pyrrotite, by Acidithiobacillus ferrooxidans. This study was performed by respirometric essays and bioleaching in shake flasks. Respirometric essays yielded the kinetics of mineral oxidation. The findings showed that sulfide oxidation followed classical Michaelis-Menten kinetics. Bioleaching in shake flasks allowed evaluation of chemical and mineralogical changes resulting from sulfide oxidation. The results demonstrated that pyrrotite and pyrite were completely oxidized in A. ferrooxidans cultures whereas molybdenite was not consumed. These data indicated that molybdenite was the most recalcitrant sulfide in the sample.

  11. Repetitive sequence based polymerase chain reaction to differentiate close bacteria strains in acidic sites

    XIE Ming; YIN Hua-qun; LIU Yi; LIU Jie; LIU Xue-duan

    2008-01-01

    To study the diversity of bacteria strains newly isolated from several acid mine drainage(AMD) sites in China,repetitive sequence based polymerase chain reaction (rep-PCR),a well established technology for diversity analysis of closely related bacteria strains,was conducted on 30 strains of bacteria Leptospirillum ferriphilium,8 strains of bacteria Acidithiobacillus ferrooxidans,as well as the Acidithiobacillus ferrooxidans type strain ATCC (American Type Culture Collection) 23270.The results showed that,using ERIC and BOX primer sets,rep-PCR produced highly discriminatory banding patterns.Phylogenetic analysis based on ERIC-PCR banding types was made and the results indicated that rep-PCR could be used as a rapid and highly discriminatory screening technique in studying bacterial diversity,especially in differentiating bacteria within one species in AMD.

  12. Influence Of Used Bacterial Culture On Zinc And Aluminium Bioleaching From Printed Circuit Boards

    Mrazikova Anna

    2015-06-01

    Full Text Available Bioleaching processes were used to solubilize metals (Cu, Ni, Zn and Al from printed circuit boards (PCBs. In this study, a PCBs-adapted pure culture of Acidithiobacillus ferrooxidans, pure culture of Acidithiobacillus thiooxidans and PCBs-adapted mixed culture of A. ferrooxidans and A. thiooxidans were used for recovery of the metals. The study showed that the mixed bacterial culture has the greatest potential to dissolve metals. The maximum metal bioleaching efficiencies were found to be 100, 92, 89 and 20% of Cu, Ni, Zn and Al, respectively. The mixed culture revealed higher bacterial stability. The main factor responsible for high metal recovery was the ability of the mixed culture to maintain the low pH during the whole process. The pure culture of A. thiooxidans had no significant effect on metal bioleaching from PCBs.

  13. Effect of Cu2+ ions on bioleaching of marmatite

    CHEN Song; QIN Wen-qing; QIU Guan-zhou

    2008-01-01

    The effect of Cu2+ ions on bioleaching of marmatite was investigated through shake leaching experiments.The bacteria inoculated are a mixed culture of Acidithiobacillus ferrooxidans,Acidithiobacillus thiooxidans and Lepthospirillum ferrooxidans.The results show that zinc is selectively leached,and the addition of appropriate content of Cu2+ ions has positive effect on the bioleaching of marmatite.SEM and EDX analyses of the leaching residue reveal that a product layer composed of iron sulfide,elemental sulfur and jarosite forms on the mineral surface.The biooxidation of elemental sulfur is catalyzed by the Cu2+ ions,which eliminate the barrier to bioleaching of marmatite and keep low pH value.With the addition of 0.5 g/L Cu2+ ions,the maximum zinc extraction rate reaches 73% after 23 d at the temperature of 30 ℃ with the pulp density of 10%,while that of iron is only about 10%.

  14. Cross-Comparison of Leaching Strains Isolated from Two Different Regions: Chambishi and Dexing Copper Mines

    Baba Ngom

    2014-01-01

    Full Text Available A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa and Dexing copper mine (China, Asia, was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains.

  15. Acidophilic Methanotrophic Communities from Sphagnum Peat Bogs

    Dedysh, Svetlana N.; Nicolai S. Panikov; Tiedje, James M.

    1998-01-01

    Highly enriched methanotrophic communities (>25 serial transfers) were obtained from acidic ombrotrophic peat bogs from four boreal forest sites. The enrichment strategy involved using media conditions that were associated with the highest rates of methane uptake by the original peat samples, namely, the use of diluted mineral medium of low buffering capacity, moderate incubation temperature (20°C), and pH values of 3 to 6. Enriched communities contained a mixture of rod-shaped bacteria arran...

  16. Estudo da dissolução oxidativa microbiológica de uma complexa amostra mineral contendo pirita (FeS2), Pirrotita (Fe1-xS) e Molibdenita (MoS2) Microbiological oxidative dissolution of a complex mineral sample containing pyrite (FeS2), pyrrotite (Fe1-xS) and molybdenite (MoS2)

    Wilmo E. Francisco Jr; Denise Bevilaqua; Oswaldo Garcia Jr

    2007-01-01

    This work aims to study the oxidation of a complex molybdenite mineral which contains pyrite and pyrrotite, by Acidithiobacillus ferrooxidans. This study was performed by respirometric essays and bioleaching in shake flasks. Respirometric essays yielded the kinetics of mineral oxidation. The findings showed that sulfide oxidation followed classical Michaelis-Menten kinetics. Bioleaching in shake flasks allowed evaluation of chemical and mineralogical changes resulting from sulfide oxidation. ...

  17. Influence of physical and chemical factors on biological leaching process of copper from printed circuit boards

    Willner, J

    2013-01-01

    The article presents the results of the research regarding the biological leaching of this metal from electronic wastes components in the form of printed circuit boards. The purpose of the study was to evaluate the influence of some physical and chemical factors (e.g. pH, oxidation-reduction potential) on bioleaching process and efficiency of copper transfer from solid phase into solution. Bioleaching experiments were carried out with pure cultures of Acidithiobacillus ferrooxidans. The obtai...

  18. Bacterial leaching of Pb -metallurgical wastes

    Fečko, Peter; Janáková, Iva; Pertile, Eva; Kulová, Eliška

    2011-01-01

    The aim of this paper is verification of application of bacterial leaching and calcination to recover heavy metals from metallurgical wastes - matte from metallurgical plant Kovohute Pribram. For bacterial leaching a pure bacterial culture of Acidithiobacillus ferrooxidans was used. For a verification test an original sample of matte and matte from 2004 year were used. This paper further shows changes in the samples after bacterial leaching and after calcination. The paper results...

  19. COPPER LEACHING FROM WASTE ELECTRIC CABLES BY BIOHYDROMETALLURGY

    Lambert, Fanny; Bastin, David; GAYDARDZHIEV, Stoyan; Léonard, Grégoire

    2015-01-01

    This study examines the leaching of copper from waste electric cables by chemical leaching and leaching catalysed by Acidithiobacillus ferrooxidans in terms of leaching kinetics and reagents consumption. Operational parameters such as the nature of the oxidant (Fe3+, O2), the initial ferric iron concentration (0-10 g/L) and the temperature (21-50°C) were identified to have an important influence on the degree of copper solubilisation. At optimal process conditions, copper extraction above 90%...

  20. Evolution of Microbial “Streamer” Growths in an Acidic, Metal-Contaminated Stream Draining an Abandoned Underground Copper Mine

    D. Barrie Johnson; Hallberg, Kevin B.; Laura Rocchetti; Kris Coupland; Rowe, Owen F.; Catherine M. Kay

    2013-01-01

    A nine year study was carried out on the evolution of macroscopic “acid streamer” growths in acidic, metal-rich mine water from the point of construction of a new channel to drain an abandoned underground copper mine. The new channel became rapidly colonized by acidophilic bacteria: two species of autotrophic iron-oxidizers (Acidithiobacillus ferrivorans and “Ferrovum myxofaciens”) and a heterotrophic iron-oxidizer (a novel genus/species with the propos...

  1. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations

    Ehrenfeld Nicole

    2008-12-01

    Full Text Available Abstract Background Carbon and nitrogen fixation are essential pathways for autotrophic bacteria living in extreme environments. These bacteria can use carbon dioxide directly from the air as their sole carbon source and can use different sources of nitrogen such as ammonia, nitrate, nitrite, or even nitrogen from the air. To have a better understanding of how these processes occur and to determine how we can make them more efficient, a comparative genomic analysis of three bioleaching bacteria isolated from mine sites in Chile was performed. This study demonstrated that there are important differences in the carbon dioxide and nitrogen fixation mechanisms among bioleaching bacteria that coexist in mining environments. Results In this study, we probed that both Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans incorporate CO2 via the Calvin-Benson-Bassham cycle; however, the former bacterium has two copies of the Rubisco type I gene whereas the latter has only one copy. In contrast, we demonstrated that Leptospirillum ferriphilum utilizes the reductive tricarboxylic acid cycle for carbon fixation. Although all the species analyzed in our study can incorporate ammonia by an ammonia transporter, we demonstrated that Acidithiobacillus thiooxidans could also assimilate nitrate and nitrite but only Acidithiobacillus ferrooxidans could fix nitrogen directly from the air. Conclusion The current study utilized genomic and molecular evidence to verify carbon and nitrogen fixation mechanisms for three bioleaching bacteria and provided an analysis of the potential regulatory pathways and functional networks that control carbon and nitrogen fixation in these microorganisms.

  2. Leaching of Copper Ore by Thiobacillus Ferrooxidans.

    Lennox, John; Biaha, Thomas

    1991-01-01

    A quantitative laboratory exercise based upon the procedures copper manufacturers employ to increase copper production is described. The role of chemoautotrophic microorganisms in biogeologic process is emphasized. Safety considerations when working with bacteria are included. (KR)

  3. Astrobiological Significance of Microbial Extremophiles

    Pikuta, Elena V.; Hoover, Richard B.

    2007-01-01

    The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath and the ice crusts of icy moons of Jupiter and Saturn. The importance of study alkaliphilic microorganisms for astrobiology was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 "nanofossils" were to small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology. The study of halophilic microorganisms was started from work with saline soils and lakes, and one of the record of good growth for Haloferax mediterranei was shown at 30 percent NaC1. Although alkali-tolerant nitrifying bacteria had previously been reported, the first described alkaliphilic microorganism was the bacterium Streptococcus faecalis. Halophilic and alkaliphilic forms are relevant to conditions that might be found in closed impact basins and craters on Mars filled with evaporite deposits. The first obligately acidophilic bacterium described was Acidithiobacillus ferrooxydans (formally Thiobacillus ferrooxidans). Later thermophilic lithotrophic acidophiles were found, and the hyperacidophilic moderately thermophilic species of the genus Picrophilus were found to grow at negative p

  4. Influence of organics and silica on Fe(II) oxidation rates and cell-mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox - Implications for Fe(II) oxidation in ancient oceans

    Gauger, Tina; Byrne, James M.; Konhauser, Kurt O.; Obst, Martin; Crowe, Sean; Kappler, Andreas

    2016-06-01

    Most studies on microbial phototrophic Fe(II) oxidation (photoferrotrophy) have focused on purple bacteria, but recent evidence points to the importance of green-sulfur bacteria (GSB). Their recovery from modern ferruginous environments suggests that these photoferrotrophs can offer insights into how their ancient counterparts grew in Archean oceans at the time of banded iron formation (BIF) deposition. It is unknown, however, how Fe(II) oxidation rates, cell-mineral aggregate formation, and Fe-mineralogy vary under environmental conditions reminiscent of the geological past. To address this, we studied the Fe(II)-oxidizer Chlorobium ferrooxidans KoFox, a GSB living in co-culture with the heterotrophic Geospirillum strain KoFum. We investigated the mineralogy of Fe(III) metabolic products at low/high light intensity, and in the presence of dissolved silica and/or fumarate. Silica and fumarate influenced the crystallinity and particle size of the produced Fe(III) minerals. The presence of silica also enhanced Fe(II) oxidation rates, especially at high light intensities, potentially by lowering Fe(II)-toxicity to the cells. Electron microscopic imaging showed no encrustation of either KoFox or KoFum cells with Fe(III)-minerals, though weak associations were observed suggesting co-sedimentation of Fe(III) with at least some biomass via these aggregates, which could support diagenetic Fe(III)-reduction. Given that GSB are presumably one of the most ancient photosynthetic organisms, and pre-date cyanobacteria, our findings, on the one hand, strengthen arguments for photoferrotrophic activity as a likely mechanism for BIF deposition on a predominantly anoxic early Earth, but, on the other hand, also suggest that preservation of remnants of Fe(II)-oxidizing GSB as microfossils in the rock record is unlikely.

  5. Microbiological oxidative dissolution of a complex mineral sample containing pyrite (FeS{sub 2}), pyrrotite (Fe{sub 1-x}S) and molybdenite (MoS{sub 2}); Estudo da dissolucao oxidativa microbiologica de uma complexa amostra mineral contendo pirita (FeS{sub 2}), Pirrotita (Fe{sub 1-x}S) e Molibdenita (MoS{sub 2})

    Francisco Junior, Wilmo E.; Bevilaqua, Denise; Garcia Junior, Oswaldo [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Bioquimica e Tecnologia Quimica]. E-mail: wilmojr@bol.com.br

    2007-09-15

    This work aims to study the oxidation of a complex molybdenite mineral which contains pyrite and pyrrotite, by Acidithiobacillus ferroxidans. This study was performed by respirometric essays and bioleaching in shake flasks. Respirometric essays yielded the kinetics of mineral oxidation. The findings showed that sulfide oxidation followed classical Michaelis-Menten kinetics. Bioleaching in shake flasks allowed evaluation of chemical and mineralogical changes resulting from sulfide oxidation. The results demonstrated that pyrrotite and pyrite were completely oxidized in A. ferrooxidans cultures whereas molybdenite was not consumed. These data indicated that molybdenite was the most recalcitrant sulfide in the sample. (author)

  6. Influence of physical and chemical factors on biological leaching process of copper from printed circuit boards

    J. Willner

    2013-04-01

    Full Text Available The article presents the results of the research regarding the biological leaching of this metal from electronic wastes components in the form of printed circuit boards. The purpose of the study was to evaluate the influence of some physical and chemical factors (e.g. pH, oxidation-reduction potential on bioleaching process and efficiency of copper transfer from solid phase into solution. Bioleaching experiments were carried out with pure cultures of Acidithiobacillus ferrooxidans. The obtained results were discussed.

  7. Extracellular polymeric bacterial coverages as minimal surfaces

    Saa, A; Saa, Alberto; Teschke, Omar

    2005-01-01

    Surfaces formed by extracellular polymeric substances enclosing individual and some small communities of {\\it Acidithiobacillus ferrooxidans} on plates of hydrophobic silicon and hydrophilic mica are analyzed by means of atomic force microscopy imaging. Accurate nanoscale descriptions of such coverage surfaces are obtained. The good agreement with the predictions of a rather simple but realistic theoretical model allows us to conclude that they correspond, indeed, to minimal area surfaces enclosing a given volume associated with the encased bacteria. This is, to the best of our knowledge, the first shape characterization of the coverage formed by these biomolecules, with possible applications to the study of biofilms.

  8. Escalado de un proceso de biooxidación de residuos de minería ricos en sulfuros usando reactores de tanque agitado

    MUÑOZ ECHEVERRI, LAURA MARÍA

    2015-01-01

    Resumen: En este trabajo se presenta el escalado y evaluación del proceso de biooxidación de un residuo de minería aurífera (proveniente de la mina La Maruja, Marmato-Caldas), desde una escala de laboratorio hasta un nivel de planta piloto en reactores de tanque agitado. Para procurar el éxito del escalado, se realizó una caracterización mineralógica inicial del residuo y una adaptación del agente biológico, Acidithiobacillus ferrooxidans, al mineral. A escala de laboratorio se determinó el n...

  9. Microbiological oxidative dissolution of a complex mineral sample containing pyrite (FeS2), pyrrotite (Fe1-xS) and molybdenite (MoS2)

    This work aims to study the oxidation of a complex molybdenite mineral which contains pyrite and pyrrotite, by Acidithiobacillus ferroxidans. This study was performed by respirometric essays and bioleaching in shake flasks. Respirometric essays yielded the kinetics of mineral oxidation. The findings showed that sulfide oxidation followed classical Michaelis-Menten kinetics. Bioleaching in shake flasks allowed evaluation of chemical and mineralogical changes resulting from sulfide oxidation. The results demonstrated that pyrrotite and pyrite were completely oxidized in A. ferrooxidans cultures whereas molybdenite was not consumed. These data indicated that molybdenite was the most recalcitrant sulfide in the sample. (author)

  10. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

    Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun

    2013-10-01

    Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.

  11. Familial relationships in hyperthermo- and acidophilic archaeal viruses

    Happonen, Lotta Johanna; Redder, Peter; Peng, Xu;

    2010-01-01

    Archaea often live in extreme, harsh environments such as acidic hot springs and hypersaline waters. To date, only two icosahedrally symmetric, membrane-containing archaeal viruses, SH1 and Sulfolobus turreted icosahedral virus (STIV), have been described in detail. We report the sequence and thr...

  12. Microbial coal desulfurization in an airlift bioreactor by sulfur-oxidizing bacterium Thiobacillus ferooxidans

    Ryu, H.W.; Chang, Y.K.; Kim, S.D. (Korea Advanced Institute of Science and Technology, Taejon (Republic of Korea). Dept. of Chemical Engineering and BioProcess Engineering Research Center)

    1993-12-01

    Microbial desulfurization of a domestic anthracite coal by using an acidophilic, sulfur-oxidizing bacterium, [ital Thiobacillus ferrooxidans] has been studied in an airlift slurry reactor of 12 L volume. Effects of coal slurry density and CO[sub 2] supplement on microbial pyrite removal have been evaluated. High sulfur removal rates have been obtained even for very high coal slurry densities (up to 70% w/v). About 90-95% of the sulfur in the coal could be removed in 15-20 days. The efficiency of microbial desulfurization was significantly improved with CO[sub 2] enriched air supply for high coal slurry densities. 17 refs., 5 figs.

  13. Bioleaching of hexavalent chromium from soils using acidithiobacillus thiooxidans

    Fonseca, Bruna; Rodrigues, Joana; Queiroz, A.M.; Tavares, Teresa

    2010-01-01

    The continuous and growing degradation of the environment, due to several anthropogenic activities, is a main concern of the scientific community. Consequently, the development of low cost techniques to clean air, water and soils are under intense investigation. In this study, the focused problem is the soil contamination by hexavalent chromium, which is known for its several industrial applications - production of stainless steel, textile dyes, wood preservation and leather tanning - its hig...

  14. Bioleaching of multiple heavy metals from contaminated sediment by mesophile consortium.

    Gan, Min; Zhou, Shuang; Li, Mingming; Zhu, Jianyu; Liu, Xinxing; Chai, Liyuan

    2015-04-01

    A defined mesophile consortium including Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirilum ferriphilum was applied in bioleaching sediments contaminated with multiple heavy metals. Flask experiments showed that sulfur favored the acidification in the early stage while pyrite led to a great acidification potential in the later stage. An equal sulfur/pyrite ratio got the best acidification effect. Substrate utilization started with sulfur in the early stage, and then the pH decline and the community shift give rise to the utilization of pyrite. Solubilization efficiency of Zn, Cu, Mn, and Cd reached 96.1, 93.3, 92.13, and 87.65%, respectively. Bioleaching efficiency of other elements (As, Hg, Pb) was not more than 30%. Heavy metal solubilization was highly negatively correlated with pH variation. Logistic models were well fitted with the solubilization efficiency, which can be used to predict the bioleaching process. The dominant species in the early stage of bioleaching were A. ferrooxidans and A. thiooxidans, and the abundance of L. ferriphilum increased together with pyrite utilization and pH decline. PMID:25384695

  15. The passivation of pyrrhotite by surface coating.

    Cai, Mei-Fang; Dang, Zhi; Chen, Yu-Wei; Belzile, Nelson

    2005-11-01

    The potential of triethylenetetramine (TETA) to inhibit the oxidation of three pyrrhotites, Garson, McCreedy and Po-97 has been studied systematically and confirmed by comparing the release of Fe and SO4(2-) from samples with and without coating treatment. Each sample, original or coated by TETA, was exposed to oxygen, 1 x 10(-3) M FeCl3, and Acidithiobacillus ferrooxidans, respectively, for specific oxidation periods. Both abiotic and biotic oxidation of samples treated by this passivating agent has been reduced significantly in this study. Under the aerobic condition, lower concentrations of ferric, total Fe or SO4(2-) were obtained from the coated samples than those from the uncoated samples. In the presence of 1 x 10(-3) M FeCl3 at 30 degrees C, TETA was able to reduce oxidation rates of Garson, McCreedy and Po-97 by 83%, 79%, and 81% (based on Fe release), respectively. A higher pH, lower Eh, and lower concentrations of total Fe and SO4(2-) were also observed in the biotic oxidation of coated Garson by Acidithiobacillus ferrooxidans. The protection of pyrrhotite surface from oxidant attack by TETA barrier and the alkaline property of this coating agent can be used to interpret the inhibition of oxidation. PMID:16219502

  16. Microbial life in volcanic/geothermal areas: how soil geochemistry shapes microbial communities

    Gagliano, Antonina Lisa; D'Alessandro, Walter; Franzetti, Andrea; Parello, Francesco; Tagliavia, Marcello; Quatrini, Paola

    2015-04-01

    Extreme environments, such as volcanic/geothermal areas, are sites of complex interactions between geosphere and biosphere. Although biotic and abiotic components are strictly related, they were separately studied for long time. Nowadays, innovative and interdisciplinary approaches are available to explore microbial life thriving in these environments. Pantelleria island (Italy) hosts a high enthalpy geothermal system characterized by high CH4 and low H2S fluxes. Two selected sites, FAV1 and FAV2, located at Favara Grande, the main exhalative area of the island, show similar physical conditions with a surface temperature close to 60° C and a soil gas composition enriched in CH4, H2 and CO2. FAV1 soil is characterized by harsher conditions (pH 3.4 and 12% of H2O content); conversely, milder conditions were recorded at site FAV2 (pH 5.8 and 4% of H2O content). High methanotrophic activity (59.2 nmol g-1 h-1) and wide diversity of methanotrophic bacteria were preliminary detected at FAV2, while no activity was detected at FAV1(1). Our aim was to investigate how the soil microbial communities of these two close geothermal sites at Pantelleria island respond to different geochemical conditions. Bacterial and Archaeal communities of the sites were investigated by MiSeq Illumina sequencing of hypervariable regions of the 16S rRNA gene. More than 33,000 reads were obtained for Bacteria and Archaea from soil samples of the two sites. At FAV1 99% of the bacterial sequences were assigned to four main phyla (Proteobacteria, Firmicutes, Actinobacteria and Chloroflexi). FAV2 sequences were distributed in the same phyla with the exception of Chloroflexi that was represented below 1%. Results indicate a high abundance of thermo-acidophilic chemolithotrophs in site FAV1 dominated by Acidithiobacillus ferrooxidans (25%), Nitrosococcus halophilus (10%), Alicyclobacillus spp. (7%) and the rare species Ktedonobacter racemifer (11%). The bacterial community at FAV2 soil is dominated by

  17. Bioleaching of uranium in batch stirred tank reactor: Process optimization using Box–Behnken design

    Highlights: ► High amount of uranium recovery achieved using Acidithiobacillus ferrooxidans. ► ANOVA shows individual variables and their squares are statistically significant. ► The model can accurately predict the behavior of uranium recovery. ► The model shows that pulp density has the greatest effect on uranium recovery. - Abstract: To design industrial reactors, it is important to identify and optimize the effective parameters of the process. Therefore, in this study, a three-level Box–Behnken factorial design was employed combining with a response surface methodology to optimize pulp density, agitation speed and aeration rate in uranium bioleaching in a stirred tank reactor using a pure native culture of Acidithiobacillus ferrooxidans. A mathematical model was then developed by applying the least squares method using the software Minitab Version 16.1.0. The second order model represents the uranium recovery as a function of pulp density, agitation speed and aeration rate. An analysis of variance was carried out to investigate the effects of individual variables and their combined interactive effects on uranium recovery. The results showed that the linear and quadratic terms of variables were statistically significant whilst the interaction terms were statistically insignificant. The model estimated that a maximum uranium extraction (99.99%) could be obtained when the pulp density, agitation speed and aeration rate were set at optimized values of 5.8% w/v, 510 rpm and 250 l/h, respectively. A confirmatory test at the optimum conditions resulted in a uranium recovery of 95%, indicating a marginal error of 4.99%. Furthermore, control tests were performed to demonstrate the effect of A. ferrooxidans in uranium bioleaching process and showed that the addition of this microorganism greatly increases the uranium recovery

  18. A Comparative Study of the Microbial Communities Between the Mineral Surface and the Bioleaching Solution Using the Microarray Method

    GAO Jian; KANG Jian

    2011-01-01

    In order to explore the bioleaching mechanism and improve the bioleaching efficiency,the microbial community in the bioleaching solution was compared with that on the surface of minerals based on the microarray analysis.Meanwhile,the elements composition in the bioleaching solution was analyzed using the ICP-AES method.Results showed that there was a high concentration of S and Cu in the leaching solution which up to 2380 mg/L and 1378 mg/L,respectively,after continuously bioleaching of copper-ore concentrate for 30 days by a mixed culture associated with 12 species of bioleaching microorganisms.Based on the data of microarray,the total of cell number in the surface of minerals was far higher than that in the bioleaching solution.Furthermore,the dominant communities on the surface of minerals,such as Acidithiobacillus ferrooxidans,Acidithiobacillus thiooxidans and Acidithiobacillus caldus,were similar to that in the bioleaching solution.However,the relative level of some bacteria,such as Sulfobacillus acidophilus and Sulfobacillus thermosulfidooxidans,showed great discrepancy with lower presence in the bioleaching solution with respect to the mineral surface.

  19. Investigation of the microbial diversity of an extremely acidic, metal-rich water body (Lake Robule, Bor, Serbia

    Stanković Srđan

    2014-01-01

    Full Text Available An investigation of the microbial diversity of the extremely acidic, metal-rich Lake Robule was carried out using culture-dependant and culture-independent (T-RFLP methods, and the ability of indigenous bacteria from the lake water to leach copper from a mineral concentrate was tested. T-RFLP analysis revealed that the dominant bacteria in lake water samples were the obligate heterotroph Acidiphilium cryptum (~50% of total bacteria and the iron-oxidizing autotroph Leptospirillum ferrooxidans (~40% The iron/sulfur-oxidizing autotroph Acidithiobacillus ferrooxidans had been reported to be the most abundant bacteria in the lake in an earlier study by other authors, but it was not detected in the present study using T-RFLP. Although it was isolated on solid media and detected in enrichment (bioleaching cultures. The presence of the two bacterial species detected by T-RFLP (L. ferrooxidans and A. cryptum was also confirmed by cultivation on solid media. The presence and relative abundance of bacteria inhabiting Lake Robule was explained by the physiological characteristics of the bacteria and the physico-chemical characteristics of the lake water. [Projekat Ministarstva nauke Republike Srbije, br. 176016 i br.173048

  20. Influence of ferrous ions on extracellular polymeric substances content and sludge dewaterability during bioleaching.

    Wong, Jonathan W C; Zhou, Jun; Kurade, Mayur B; Murugesan, Kumarasamy

    2015-03-01

    Pretreatment of activated sludge with sulfuric acid and bioleaching using Acidithiobacillus ferrooxidans along with addition of Fe(2+) on sludge dewaterability was investigated. The sludge dewatering efficiency in terms of capillary suction time (CST) and specific resistant to filtration (SRF) was increased with a decrease in sludge pH. A pH of 2.67 was found to be optimum for dewatering, at which 81% and 63% reduction of CST and SRF were achieved, respectively. The dewaterability of sludge was enhanced after the addition of Fe(2+) and A. ferrooxidans. Ideal concentration of Fe(2+) was 2 g/L for sludge dewaterability, which showed 96% and 88% reduction in CST and SRF, respectively. In the control sludge, maximum part of the biopolymeric macromolecules was contributing by the tightly bound extracellular polymeric substances (TB-EPS). At optimum Fe(2+) concentration, total EPS was reduced by 73%, enhancing sludge dewaterability. Bioleaching conducted by A. ferrooxidans could solubilized 88% Cu and 99% Zn within 120 h. PMID:25528607

  1. Interactions of the metal tolerant heterotrophic microorganisms and iron oxidizing autotrophic bacteria from sulphidic mine environment during bioleaching experiments.

    Jeremic, Sanja; Beškoski, Vladimir P; Djokic, Lidija; Vasiljevic, Branka; Vrvić, Miroslav M; Avdalović, Jelena; Gojgić Cvijović, Gordana; Beškoski, Latinka Slavković; Nikodinovic-Runic, Jasmina

    2016-05-01

    Iron and sulfur oxidizing chemolithoautotrophic acidophilic bacteria, such as Acidithiobacillus species, hold the dominant role in mine environments characterized by low pH values and high concentrations of reduced sulfur and iron compounds, such as ores, rocks and acid drainage waters from mines. On the other hand, heterotrophic microorganisms, especially their biofilms, from these specific niches are receiving increased attention, but their potential eco-physiological roles have not been fully understood. Biofilms are considered a threat to human health, but biofilms also have beneficial properties as they are deployed in waste recycling and bioremediation systems. We have analyzed interactions of the metal tolerant heterotrophic microorganisms in biofilms with iron oxidizing autotrophic bacteria both from the sulphidic mine environment (copper mine Bor, Serbia). High tolerance to Cu(2+), Cd(2+) and Cr(6+) and the presence of genetic determinants for the respective metal tolerance and biofilm-forming ability was shown for indigenous heterotrophic bacteria that included strains of Staphylococcus and Rhodococcus. Two well characterized bacteria- Pseudomonas aeruginosa PAO1 (known biofilm former) and Cupriavidus metallidurans CH34 (known metal resistant representative) were also included in the study. The interaction and survivability of autotrophic iron oxidizing Acidithiobacillus bacteria and biofilms of heterotrophic bacteria during co-cultivation was revealed. Finally, the effect of heterotrophic biofilms on bioleaching process with indigenous iron oxidizing Acidithiobacillus species was shown not to be inhibitory under in vitro conditions. PMID:26942859

  2. Thiobacillus cuprinus sp. nov., a Novel Facultatively Organotrophic Metal-Mobilizing Bacterium.

    Huber, H; Stetter, K O

    1990-02-01

    Five strains of mesophilic, facultatively organotrophic, ore-leaching eubacteria were isolated from solfatara fields in Iceland and a uranium mine in the Federal Republic of Germany. The new organisms are aerobic gram-negative rods. They can use sulfidic ores or elemental sulfur as sole energy source, indicating that they belong to the genus Thiobacillus. Alternatively, they grow on organic substrates such as yeast extract, peptone, and pyruvate. In contrast to the other leaching bacteria known so far, the new isolates are unable to oxidize ferrous iron. They consist of extreme and moderate acidophiles growing optimally at pH 3 and 4, respectively. The extreme acidophiles showed leaching characteristics similar to those shown by Thiobacillus ferrooxidans, while the moderate acidophiles exhibited a pronounced preference for copper leaching on some chalcopyrite ores. The G+C content of the DNA is between 66 and 69 mol%, depending on the isolate. In DNA-DNA hybridization experiments, the new strains showed homologies among each other of >70%, indicating that they belong to the same species. No significant DNA homology to Thiobacillus reference strains was detectable. Therefore, the new isolates represent a new species of Thiobacillus, which we name Thiobacillus cuprinus. Isolate Hö5 is designated as the type strain (DSM 5495). PMID:16348110

  3. Fe2+ oxidation rate drastically affect the formation and phase of secondary iron hydroxysulfate mineral occurred in acid mine drainage

    During the processes of secondary iron hydroxysulfate mineral formation, Fe2+ ion was oxidized by the following three methods: (1) biooxidation treatment by Acidithiobacillus ferrooxidans (A. ferrooxidans); (2) rapid abiotic oxidation of Fe2+ with H2O2 (rapid oxidation treatment); (3) slow abiotic oxidation of Fe2+ with H2O2 (slow oxidation treatment). X-ray diffraction (XRD) patterns, element composition, precipitate weight and total Fe removal efficiency were analyzed. The XRD patterns and element composition of precipitates synthesized through the biooxidation and the slow oxidation treatments well coincide with those of potassium jarosite, while precipitates formed at the initial stage of incubation in the rapid oxidation treatment showed a similar XRD pattern to schwertmannite. With the ongoing incubation, XRD patterns and element composition of the precipitates that occurred in the rapid oxidation treatment were gradually close to those in the biooxidation and the slow oxidation treatments. Due to the inhibition of A. ferrooxidans itself and its extracellular polymeric substances (EPS) in aggregation of precipitates, the amount of precipitates and soluble Fe removal efficiency were lower in the biooxidation treatment than in the slow oxidation treatment. Therefore, it is concluded that Fe2+ oxidation rate can greatly affect the mineral phase of precipitates, and slow oxidation of Fe2+ is helpful in improving jarosite formation. - Highlights: ► Slow oxidation of Fe2+ is helpful in jarosite formation. ► The already-formed schwertmannite can be gradually transformed to jarosite. ► Precipitates formation can be inhibited probably by EPS from A. ferrooxidans.

  4. Biolixiviação de cobre de sucata eletrônica Bioleaching of copper from electronic scrap

    Luciana Harue Yamane

    2011-09-01

    Full Text Available O presente trabalho investigou a influência da suplementação de ferro e da adaptação bacteriana sobre a biolixiviação de cobre de placas de circuito impresso usando a bactéria Acidithiobacillusferrooxidans-LR. Placas de circuito impresso de computadores obsoletos foram mecanicamente processadas através de cominuição seguida de separação magnética. A bactéria Acidithiobacillusferrooxidans-LR foi crescida e adaptada à presença de amostras de placas de circuito impresso cominuídas. Um estudo de frascos agitados foi realizado usando um shaker a 30ºC e 185 rpm. Os parâmetros analisados foram pH, concentração de íon ferroso e concentração de metais (ICP-OES. Os resultados demonstram que o processo de adaptação bacteriana aumentou a taxa de extração de cobre. A biolixiviação com Acidithiobacillusferrooxidans-LR adaptada lixiviou 56% do cobre das placas de circuito impresso (fração não-magnética no meio suplementado pelo íon ferroso após 30 dias.The present work investigated the influence of ferrous iron supplementation on bioleaching to recover copper from printed circuit boards using Acidithiobacillus ferrooxidans-LR bacteria. Printed wiring boards from obsolete computers were mechanically processed through cominution followed by magnetic separation. The Acidithiobacillus ferrooxidans-LR bacteria were grown and adapted in the presence of printed wiring board samples. A shake flask study was carried out on the printed circuit board samples using a rotary shaker at 30ºC and 185 rpm. The analyzed parameters were: the pH of the medium, the initial ferrous iron concentration and the metal concentrations (ICP-OES. The results showed that the bacterial adaptation process enhanced the copper extraction rate. The bioleaching with adapted Acidithiobacillus ferrooxidans-LR leached out 56% of the copper from printed circuit boards (non-magnetic fraction with the medium being supplemented by ferrous iron after 30 days.

  5. Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage.

    Kock, Dagmar; Schippers, Axel

    2008-08-01

    The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 10(9) cells g(-1) dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general. PMID:18586975

  6. Quantitative Microbial Community Analysis of Three Different Sulfidic Mine Tailing Dumps Generating Acid Mine Drainage▿

    Kock, Dagmar; Schippers, Axel

    2008-01-01

    The microbial communities of three different sulfidic and acidic mine waste tailing dumps located in Botswana, Germany, and Sweden were quantitatively analyzed using quantitative real-time PCR (Q-PCR), fluorescence in situ hybridization (FISH), catalyzed reporter deposition-FISH (CARD-FISH), Sybr green II direct counting, and the most probable number (MPN) cultivation technique. Depth profiles of cell numbers showed that the compositions of the microbial communities are greatly different at the three sites and also strongly varied between zones of oxidized and unoxidized tailings. Maximum cell numbers of up to 109 cells g−1 dry weight were determined in the pyrite or pyrrhotite oxidation zones, whereas cell numbers in unoxidized tailings were significantly lower. Bacteria dominated over Archaea and Eukarya at all tailing sites. The acidophilic Fe(II)- and/or sulfur-oxidizing Acidithiobacillus spp. dominated over the acidophilic Fe(II)-oxidizing Leptospirillum spp. among the Bacteria at two sites. The two genera were equally abundant at the third site. The acidophilic Fe(II)- and sulfur-oxidizing Sulfobacillus spp. were generally less abundant. The acidophilic Fe(III)-reducing Acidiphilium spp. could be found at only one site. The neutrophilic Fe(III)-reducing Geobacteraceae as well as the dsrA gene of sulfate reducers were quantifiable at all three sites. FISH analysis provided reliable data only for tailing zones with high microbial activity, whereas CARD-FISH, Q-PCR, Sybr green II staining, and MPN were suitable methods for a quantitative microbial community analysis of tailings in general. PMID:18586975

  7. Bacterial leaching kinetics for copper dissolution from a lowgrade Indian chalcopyrite ore Cinética de lixiviação por bactéria para a dissolução de cobre de um minério de calcopirita de baixo teor encontrado na Índia

    Abhilash

    2013-06-01

    Full Text Available Bio-leaching of copper (0.3% from a low grade Indian chalcopyrite ore of Malanjkhand copper mines, using a native mesophilic isolate predominantly Acidithiobacillus ferrooxidans (A.ferrooxidans, is reported. A bio-recovery of 72% Cu was recorded in the presence of this culture (not adapted, which increased to 75% with an ore adapted culture after 35 days at 35ºC and pH 2.0 with Biolixiviação de cobre (0,3% de um minério de calcopirita de baixo teor, extraído em minas de Malanjkhand, usando um isolador mesofílico nativo, predominante Acidithiobacillus ferrooxidans (A.ferrooxidans, é apresentada. Uma biorrecuperação de 72% Cu foi registrada na presença dessa cultura (não adaptada, que aumentou para 75% com a cultura do minério adaptado e cultivado por 35 dias ao 35ºC e pH 2,0, com <50um partículas. Os dados cinemáticos mostraram mais adequados para o modelo básico de encolhimento controlado por difusão, exibindo lotes lineares de [1- 2/3X- (1-X2/3] vs temp (X - fração lixiviada. Parece que o papel da bactéria, no processo, é o de converter o íon ferroso para o estado férrico, que oxida a calcopirita para poder dissolver o cobre, mantendo o alto potencial redoxante. O valor da energia de ativação (E foi calculado em 96 e 108 kJ/mol, para as culturas sem e com adaptação, respectivamente, com temperaturas entre 25-35ºC. Esse mecanismo de lixiviação foi corroborado por identificação fásica XR D e em estudos da resídua da lixiviação.

  8. Desulphurization of coal: bioleaching versus bioconditioning and flotation

    M. Zeki Dogan; Gulhan Ozbayoglu [Istanbul Technical University, Istanbul (Turkey). Faculty of Mining

    2007-07-01

    There are two bio-desulphurization methods for the removal of pyritic sulphur, namely, bacterial leaching and bacterial conditioning for pyrite depression followed by flotation of coal. Bacterial leaching is a slow process, consequently, microbial desulphurization is focused on conditioning coal by bacteria for a short time, followed by flotation. The application of Acidithiobacillus ferrooxidans in bioconditioning followed by flotation process help the oxidation of pyrite surface and enhance its depression during the flotation of coal. By bacterial conditioning for 4 hours followed by flotation, almost 78 % pyritic sulphur removal was attained with the yield of 78 % in the floated coal, whereas bacterial leaching resulted in pyritic sulphur removal of 56.60 % in 10 days. 17 refs., 5 tabs.

  9. Kinetic comparison of biological and conventional flotation of coal

    Amini, E.; Oliazadeh, M.; Kolahdoozan, M. [University of Queensland, Brisbane, Qld. (Australia)

    2009-03-15

    Froth flotation is commonly used in coal processing to selectively recover the organic material (coal) from inorganic waste material. Tabas coal, located in east Iran, contains fine disseminated pyrite which is floated with coal during flotation, and hence decreasing the quality of the final concentrate. Reagents, such as sodium cyanide, are typically added to depress pyrite. Due to the toxicity of cyanide, alternative strategies for depressing pyrite flotation are being investigated. In this paper the metallurgical performance of Tabas coal treated with sodium cyanide is compared to that of Tabas coal which has undergone bacterial treatment using Acidithiobacillus ferrooxidans. Results indicate that bacterial treatment decreases the flotation rate of pyrite and improves the selectivity between coal and gangue. The possibility of using bacteria in place of toxic chemicals such as cyanide has significant environmental benefit.

  10. Carbon dioxide and hydrogen sulfide associations with regional bacterial diversity patterns in microbially induced concrete corrosion.

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2014-07-01

    The microbial communities associated with deteriorating concrete corrosion fronts were characterized in 35 samples taken from wastewater collection and treatment systems in ten utilities. Bacterial communities were described using Illumina MiSeq sequencing of the V1V2 region of the small subunit ribosomal ribonucleic acid (SSU-rRNA) gene recovered from fresh corrosion products. Headspace gas concentrations (hydrogen sulfide, carbon dioxide, and methane), pore water pH, moisture content, and select mineralogy were tested for correlation to community outcomes and corrosion extent using pairwise linear regressions and canonical correspondence analysis. Corroding concrete was most commonly characterized by moisture contents greater than 10%, pore water pH below one, and limited richness (100 ppm) and carbon dioxide (>1%) gases, conditions which also were associated with low diversity biofilms dominated by members of the acidophilic sulfur-oxidizer genus Acidithiobacillus. PMID:24842376

  11. Putative bacterial interactions from metagenomic knowledge with an integrative systems ecology approach.

    Bordron, Philippe; Latorre, Mauricio; Cortés, Maria-Paz; González, Mauricio; Thiele, Sven; Siegel, Anne; Maass, Alejandro; Eveillard, Damien

    2016-02-01

    Following the trend of studies that investigate microbial ecosystems using different metagenomic techniques, we propose a new integrative systems ecology approach that aims to decipher functional roles within a consortium through the integration of genomic and metabolic knowledge at genome scale. For the sake of application, using public genomes of five bacterial strains involved in copper bioleaching: Acidiphilium cryptum, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans, we first reconstructed a global metabolic network. Next, using a parsimony assumption, we deciphered sets of genes, called Sets from Genome Segments (SGS), that (1) are close on their respective genomes, (2) take an active part in metabolic pathways and (3) whose associated metabolic reactions are also closely connected within metabolic networks. Overall, this SGS paradigm depicts genomic functional units that emphasize respective roles of bacterial strains to catalyze metabolic pathways and environmental processes. Our analysis suggested that only few functional metabolic genes are horizontally transferred within the consortium and that no single bacterial strain can accomplish by itself the whole copper bioleaching. The use of SGS pinpoints a functional compartmentalization among the investigated species and exhibits putative bacterial interactions necessary for promoting these pathways. PMID:26677108

  12. Catalytic effect of activated carbon on bioleaching of low-grade primary copper sulfide ores

    2007-01-01

    The catalytic effect of activated carbon on the bioleaching of low-grade primary copper sulfide ores using mixture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans was investigated. The results show that the addition of activated carbon can greatly accelerate the rate and efficiency of copper dissolution from low-grade primary copper sulfide ores. The solution with the concentration of 3.0 g/L activated carbon is most beneficial to the dissolution of copper. The resting time of the mixture of activated carbon and ores has an impact on the bioleaching of low-grade primary copper sulfide ores. The 2 d resting time is most favorable to the dissolution of copper. The enhanced dissolution rate and efficiency of copper can be attributed to the galvanic interaction between activated carbon and chalcopyrite. The addition of activated carbon obviously depresses the dissolution of iron and the bacterial oxidation of ferrous ions in solution. The lower redox potentials are more favorable to the copper dissolution than the higher potentials for low-grade primary copper sulfide ores in the presence of activated carbon.

  13. Penetration analysis of elements and bioleaching treatment of spent refractory for recycling

    2007-01-01

    Acidithiobacillus ferrooxidans ATCC23270 and Acidithiobacillus thiooxidans TM-32 were used for bioleaching of spent refractories of aluminium and copper melting furnaces for their recycling.Firstly,penetration of elements into aluminium melting furnace refractory was investigated and it was found that up to 7 cm from surface was contaminated.Comparison on leaching efficiency by the strains ATCC23270 and TM-32 found that the strain ATCC23270 could treat larger amount of the refractories than the strain TM-32 could do.In the experiment of bioleaching of spent refractory aluminium melting furnace by the strain ATCC23270,high leaching efficiency were obtained on A1,Si,and Ca,and extremely low leaching performance was,however,shown on the rest of elements i.e.,Na,Mn,and Zn.Under the strain TM-32 use,relatively high leaching performance was recognized on Al,Si,Ca,Na,Mn,and Zn.In the experiment of bioleaching for spent refractory copper melting furnace,almost the same leaching trends were shown on Cu,Zn,Al,and Si under the strains ACTT23270 and TM-32 uses.

  14. Comparison of microbial communities in three different mine drainages and their bioleaching efficiencies to low grade of chalcopyrite

    YIN Hua-qun; QIU Guan-zhou; WANG Dian-zuo; CAO Lin-hui; DAI Zhi-min; WANG Jie-wei; LIU Xue-duan

    2007-01-01

    Microbial community diversities in the drainage from three mines (Dexing Copper Mine, Qibaoshan Copper Mine and Yaogangxian Tungsten Mine, China) were analyzed using 16S rDNA PCR-RFLP approach. The efficiencies of chalcopyrite bioleaching were compared using enrichment of the three cultures. Phylogenetic analysis indicates that the dominant microorganisms are clustered with the Proteobacteria, the remaining is affiliated with Nitrospira, Acidobacteria and Actinobacteria.At the genus level, Acidithiobacillus is the dominant group in both YTW and QBS samples, while Spingomonas is dominant in YGX sample. Moreover, the principal component analysis (PCA) reveals that QBS and YTW have similar geochemical character and microbial communities. The results also show that pH value and tungsten concentration play a key role in microbial community distribution and relative abundance. The bioleaching efficiency of the enrichment cultures from YTW and QBS is similar. After 15 d,the bioleaching rates of low grade chalcopyrite (0.99%) are both up to 99.5% when using 10 g/L pulp density due to the similar microbial composition of YTW and QBS. Moreover, the leaching efficiencies of enrichment cultures containing multiple bioleaching microorganisms are higher than that of pure culture Acidithiobacillus ferrooxidans.

  15. Catalytic effect of light illumination on bioleaching of chalcopyrite.

    Zhou, Shuang; Gan, Min; Zhu, Jianyu; Li, Qian; Jie, Shiqi; Yang, Baojun; Liu, Xueduan

    2015-04-01

    The influence of visible light exposure on chalcopyrite bioleaching was investigated using Acidithiobacillus ferrooxidans. The results indicated, in both shake-flasks and aerated reactors with 8500-lux light, the dissolved Cu was 91.80% and 23.71% higher, respectively, than that in the controls without light. The catalytic effect was found to increase bioleaching to a certain limit, then plateaued as the initial chalcopyrite concentration increased from 2% to 4.5%. Thus a balanced mineral concentration is highly amenable to bioleaching via offering increased available active sites for light adsorption while eschewing mineral aggregation and screening effects. Using semiconducting chalcopyrite, the light facilitated the reduction of Fe(3+) to Fe(2+) as metabolic substrates for A.ferrooxidans, leading to better biomass, lower pH and redox potential, which are conducive to chalcopyrite leaching. The light exposure on iron redox cycling was further confirmed by chemical leaching tests using Fe(3+), which exhibited higher Fe(2+) levels in the light-induced system. PMID:25722073

  16. Direct Detection of Fe(II) in Extracellular Polymeric Substances (EPS) at the Mineral-Microbe Interface in Bacterial Pyrite Leaching.

    Mitsunobu, Satoshi; Zhu, Ming; Takeichi, Yasuo; Ohigashi, Takuji; Suga, Hiroki; Jinno, Muneaki; Makita, Hiroko; Sakata, Masahiro; Ono, Kanta; Mase, Kazuhiko; Takahashi, Yoshio

    2016-03-26

    We herein investigated the mechanisms underlying the contact leaching process in pyrite bioleaching by Acidithiobacillus ferrooxidans using scanning transmission X-ray microscopy (STXM)-based C and Fe near edge X-ray absorption fine structure (NEXAFS) analyses. The C NEXAFS analysis directly showed that attached A. ferrooxidans produces polysaccharide-abundant extracellular polymeric substances (EPS) at the cell-pyrite interface. Furthermore, by combining the C and Fe NEXAFS results, we detected significant amounts of Fe(II), in addition to Fe(III), in the interfacial EPS at the cell-pyrite interface. A probable explanation for the Fe(II) in detected EPS is the leaching of Fe(II) from the pyrite. The detection of Fe(II) also indicates that Fe(III) resulting from pyrite oxidation may effectively function as an oxidizing agent for pyrite at the cell-pyrite interface. Thus, our results imply that a key role of Fe(III) in EPS, in addition to its previously described role in the electrostatic attachment of the cell to pyrite, is enhancing pyrite dissolution. PMID:26947441

  17. Influences of extracellular polymeric substances on the dewaterability of sewage sludge during bioleaching.

    Jun Zhou

    Full Text Available Extracellular polymeric substances (EPS play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system, the capillary suction time (CST of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92 and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement.

  18. Microbial community profiling of the Chinoike Jigoku ("Blood Pond Hell") hot spring in Beppu, Japan: isolation and characterization of Fe(III)-reducing Sulfolobus sp. strain GA1.

    Masaki, Yusei; Tsutsumi, Katsutoshi; Hirano, Shin-Ichi; Okibe, Naoko

    2016-09-01

    Chinoike Jigoku ("Blood Pond Hell") is located in the hot spring town of Beppu on the southern island of Kyushu in Japan, and is the site of a red-colored acidic geothermal pond. This study aimed to investigate the microbial population composition in this extremely acidic environment and to isolate/characterize acidophilic microorganism with metal-reducing ability. Initially, PCR (using bacteria- and archaea-specific primers) of environmental DNA samples detected the presence of bacteria, but not archaea. This was followed by random sequencing analysis, confirming the presence of wide bacterial diversity at the site (123 clones derived from 18 bacterial and 1 archaeal genera), including those closely related to known autotrophic and heterotrophic acidophiles (Acidithiobacillus sp., Sulfobacillus sp., Alicyclobacillus sp.). Nevertheless, successive culture enrichment with Fe(III) under micro-aerobic conditions led to isolation of an unknown archaeal organism, Sulfolobus sp. GA1 (with 99.7% 16S rRNA gene sequence identity with Sulfolobus shibatae). Unlike many other known Sulfolobus spp., strain GA1 was shown to lack sulfur oxidation ability. Strain GA1 possessed only minor Fe(II) oxidation ability, but readily reduced Fe(III) during heterotrophic growth under micro-aerobic conditions. Strain GA1 was capable of reducing highly toxic Cr(VI) to less toxic/soluble Cr(III), demonstrating its potential utility in bioremediation of toxic metal species. PMID:27208660

  19. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile.

    Korehi, H; Blöthe, M; Sitnikova, M A; Dold, B; Schippers, A

    2013-03-01

    The marine shore sulfidic mine tailings dump at the Chañaral Bay in the Atacama Desert, northern Chile, is characterized by extreme acidity, high salinity, and high heavy metals concentrations. Due to pyrite oxidation, metals (especially copper) are mobilized under acidic conditions and transported toward the tailings surface and precipitate as secondary minerals (Dold, Environ. Sci. Technol. 2006, 40, 752-758.). Depth profiles of total cell counts in this almost organic-carbon free multiple extreme environment showed variable numbers with up to 10(8) cells g(-1) dry weight for 50 samples at four sites. Real-time PCR quantification and bacterial 16S rRNA gene diversity analysis via clone libraries revealed a dominance of Bacteria over Archaea and the frequent occurrence of the acidophilic iron(II)- and sulfur-oxidizing and iron(III)-reducing genera Acidithiobacillus, Alicyclobacillus, and Sulfobacillus. Acidophilic chemolithoautotrophic iron(II)-oxidizing bacteria were also frequently found via most-probable-number (MPN) cultivation. Halotolerant iron(II)-oxidizers in enrichment cultures were active at NaCl concentrations up to 1 M. Maximal microcalorimetrically determined pyrite oxidation rates coincided with maxima of the pyrite content, total cell counts, and MPN of iron(II)-oxidizers. These findings indicate that microbial pyrite oxidation and metal mobilization preferentially occur in distinct tailings layers at high salinity. Microorganisms for biomining with seawater salt concentrations obviously exist in nature. PMID:23373853

  20. Bioleaching of cobalt and zinc from pyrite ore in relation to calcitic gangue content.

    Baldi, F; Bralia, A; Riccobono, F; Sabatini, G

    1991-05-01

    Bioleaching of a pyrite ore containing high concentrations of cobalt (0.1%) and zinc (0.065%) was affected by small amounts of calcitic gangue (from 0.01 to 1.01%). Results from an air-lift percolator and from Erlenmeyer flask experiments show that a small percentage of calcite raises the pH and arrests the growth of the acidophilic bacterium Thiobacillus ferrooxidans. In percolator experiments, when calcite is completely removed by the continuous addition of small quantities of acid, and the pH of the liquor becomes acid, the micro-organism begins to grow and to bio-oxidize the pyrite ore. The growth of T. ferrooxidans shows different lag phase spans (from 13 to 190 days) depending on carbonate dissolution. The metals Fe, Zn and Co are released into the leaching solution together at different rates after a lag-time which depends on calcite concentrations in pyrite gangue. Metal ratios in the mineral bulk are different from those in the liquor, Zn dissolving 5 times more readily than Co. Bioleaching rates for metal removal from pyrite are higher in percolator (for Fe, from 5 to 15 mg/l/h) than in flask experiments (from 0.5 to 2 mg/l/h), but the lag phases are shorter (from 2 to 65 days). The differences between the two systems are related to calcite dissolution and gypsum precipitation. PMID:24425016

  1. Novel cookie-with-chocolate carbon dots displaying extremely acidophilic high luminescence

    Lu, Siyu; Zhao, Xiaohuan; Zhu, Shoujun; Song, Yubin; Yang, Bai

    2014-10-01

    A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+.A fluorescent carbon dot with a cookie-with-chocolate film structure (about 5 × 5 μm2) showed a high fluorescence quantum yield (61.12%) at low pH. It was hydrothermally synthesized from l-serine and l-tryptophan. The formation mechanism of the film with carbon dots (CDs) was investigated. The film structure was formed by hydrogen bonding and π-π stacking interactions between aromatic rings. The strong blue fluorescence of the CDs increased under strong acidic conditions owing to the changes in the N-groups. These cookie-like CDs are attractive for their potential use as effective fluorescent probes for the sensitive detection of aqueous H+ and Fe3+. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03965c

  2. Development of a Simvastatin Selection Marker for a Hyperthermophilic Acidophile, Sulfolobus islandicus

    Zheng, Tao; Huang, Qihong; Zhang, Changyi; Ni, Jinfeng; She, Qunxin; Shen, Yulong

    2012-01-01

    A merodiploid strain of S. islandicus was constructed using pyrEF marker and used as the host to obtain pSSRNherA transformant with simvastatin selection. While the gene knockout (¿herA) cells generated from the herA merodiploid cells failed to form colonies in the presence of 5-fluoroorotic acid (5-FOA), the......We report here a novel selectable marker for the hyperthermophilic crenarchaeon Sulfolobus islandicus. The marker cassette is composed of the sac7d promoter and the hmg gene coding for the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (P(sac7d)-hmg), which confers simvastatin resistance......SSRlacS indicated that the plasmid was properly maintained under selection. High-level expression of the His(6)-tagged HerA helicase was obtained with the cells harboring pSSRAherA. The establishment of two efficient selectable markers (pyrEF and hmg) was subsequently exploited for genetic analysis. A her...

  3. Detection, Isolation, and Characterization of Acidophilic Methanotrophs from Sphagnum Mosses

    N. Kip; Ouyang, W.J.; van der Winden, J.; Raghoebarsing, A.; van Niftrik, L.; De Pol, A.; Pan, Y.; L. Bodrossy; van Donselaar, E. G.; G. J. Reichart; M. S. M. Jetten; J. S. Sinninghe Damsté; Op den Camp, H.J.M.

    2011-01-01

    Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphapr...

  4. Detection, Isolation, and Characterization of Acidophilic Methanotrophs from Sphagnum Mosses ▿ †

    Kip, Nardy; Ouyang, Wenjing; van Winden, Julia; Raghoebarsing, Ashna; van Niftrik, Laura; Pol, Arjan; Pan, Yao; Bodrossy, Levente; Van Donselaar, Elly G.; Reichart, Gert-Jan; Jetten, Mike S. M.; Sinninghe Damsté, Jaap S.; Op Den Camp, Huub J M

    2011-01-01

    Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphapr...

  5. New protocol for the rapid quantification of exopolysaccharides in continuous culture systems of acidophilic bioleaching bacteria.

    Michel, Caroline; Bény, Claire; Delorme, Fabian; Poirier, Laurence; Spolaore, Pauline; Morin, Dominique; d'Hugues, Patrick

    2009-02-01

    In this study, we investigate exopolysaccharide production by a bacterial consortium during the bioleaching of a cobaltiferrous pyrite. Whereas comparable studies have looked at exopolysaccharide production in batch systems, this study focuses on a continuous system comprising a series of four stirred bioreactors and reveals the difficulties in quantifying biomolecules in complex media such as bioleached samples. We also adapted the phenol/sulphuric acid method to take into account iron interference, thus establishing a new protocol for sugar quantification in bioleached samples characterised by low pH (1.4) and high iron concentration (2 g l(-1)). This allows sugar analysis without any prior sample preparation step; only a small amount of sample is needed (0.5 ml) and sample preparation is limited to a single filtration step. We found that free exopolysaccharides represented more than 80% of the total sugars in the bioreactors, probably because stirring creates abrasive conditions and detaches sugars bound to pyrite or bacteria and that they were produced mainly in the first two reactors where bioleaching activity was greatest. However, we could not establish any direct link between the measured exopolysaccharide concentration and bioleaching activity. Exopolysaccharides could have another role (protection against stress) in addition to that in bacterial attachment. PMID:19130051

  6. Geochemical Niches of Iron-Oxidizing Acidophiles in Acidic Coal Mine Drainage

    Jones, Daniel S.; Kohl, Courtney; Grettenberger, Christen; Larson, Lance N.; Burgos, William D.; Macalady, Jennifer L.

    2014-01-01

    A legacy of coal mining in the Appalachians has provided a unique opportunity to study the ecological niches of iron-oxidizing microorganisms. Mine-impacted, anoxic groundwater with high dissolved-metal concentrations emerges at springs and seeps associated with iron oxide mounds and deposits. These deposits are colonized by iron-oxidizing microorganisms that in some cases efficiently remove most of the dissolved iron at low pH, making subsequent treatment of the polluted stream water less ex...

  7. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking.

    Bharadwaj, Abhilasha; Ting, Yen-Peng

    2013-02-01

    Bioleaching of spent hydrotreating catalyst by thermophillic archae Acidianus brierleyi was investigated. The spent catalyst (containing Al, Fe, Ni and Mo as major elements) was characterized, and the effect of pretreatment (decoking) on two-step and spent medium leaching was examined at 1% w/v pulp density. Decoking resulted in removal of carbonaceous deposits and volatile impurities, and affected the solubility of metal compounds through oxidization of the metal sulfides. Nearly 100% extraction was achieved using spent medium leaching for Fe, Ni and Mo, and 67% for Al. Bioleaching reduced nickel concentration in the leachate below the regulated levels for safe waste disposal. Chemical (i.e. abiotic) leaching using equimolar concentration of sulfuric acid produced by the bacteria during two-step process achieved a lower leaching efficiency (by up to 30%). Results indicated that A. brierleyi successfully leached heavy metals from spent catalyst. PMID:23334026

  8. Enhanced Productivity of a Lutein-Enriched Novel Acidophile Microalga Grown on Urea

    Casal, C.; Cuaresma, M.; Vega, J.M.; Vilchez, C.

    2011-01-01

    Coccomyxa acidophila is an extremophile eukaryotic microalga isolated from the Tinto River mining area in Huelva, Spain. Coccomyxa acidophila accumulates relevant amounts of b-carotene and lutein, well-known carotenoids with many biotechnological applications, especially in food and health-related i

  9. Optimized Production of Xylitol from Xylose Using a Hyper-Acidophilic Candida tropicalis

    Elena Tamburini; Stefania Costa; Maria Gabriella Marchetti; Paola Pedrini

    2015-01-01

    The yeast Candida tropicalis DSM 7524 produces xylitol, a natural, low-calorie sweetener, by fermentation of xylose. In order to increase xylitol production rate during the submerged fermentation process, some parameters-substrate (xylose) concentration, pH, aeration rate, temperature and fermentation strategy-have been optimized. The maximum xylitol yield reached at 60–80 g/L initial xylose concentration, pH 5.5 at 37 °C was 83.66% (w/w) on consumed xylose in microaerophilic conditions (kLa ...

  10. Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2

    Barry, Richard C.; Young, Mark J.; Stedman, Kenneth M.; Dratz, Edward A.

    2006-07-14

    A proteomic map of Sulfolobus solfataricus P2, an archaeon that grows optimally at 80 C and pH 3.2, was developed using high resolution two-dimensional gel electrophoresis and peptide mass fingerprinting. A total of 867 protein spots (659 aqueous tris-soluble spots and 208 aqueous tris-insoluble) were mapped over IPG 3-10, 4-7, and 6-11, with second dimension gels made of 8-18% polyacrylamide. 324 different gene products were represented by the 867 spots, with 274 gene products being identified in the tris-soluble fractions and 100 gene products in the tris-insoluble portion. Fifty gene products were found on gels from both fractions. Additionally, an average of 1.50 + 0.12 isoforms/per protein were identified. This mapping study confirmed the expression of proteins involved in numerous metabolic, transport, energy production, nucleic acid replication, translation, and transcription pathways. Of particular interest, phosphoenolpyruvate carboxykinase (SSO2537) was detected even though the pathway for gluconeogenesis is unknown for this archaeon. Tris-soluble fractions contained many cytosolic proteins while tris-insoluble fractions contained many membrane-associated proteins, including ABC transporters and an ATP synthase. This study provides an optimized 2-DE approach for investigating the biochemical pathways and post-translational modifications employed by Sulfolobus to survive in its extreme environment.

  11. Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate

    Bobadilla Fazzini, Roberto A.; Levican, Gloria; Parada, Pilar

    2010-01-01

    The nature of the mineral–bacteria interphase where electron and mass transfer processes occur is a key element of the bioleaching processes of sulfide minerals. This interphase is composed of proteins, metabolites, and other compounds embedded in extracellular polymeric substances mainly consisting of sugars and lipids (Gehrke et al., Appl Environ Microbiol 64(7):2743–2747, 1998). On this respect, despite Acidithiobacilli—a ubiquitous bacterial genera in bioleaching processes (Rawlings, Micr...

  12. Combined remediation technology for the reduction and bioleaching of hexavalent chromium from soils using acidithiobacillus thiooxidans

    Fonseca, B.; Rodrigues, Joana Lúcia; Mendes, T.S.; Queiroz, A.M.; Tavares, T

    2014-01-01

    Contamination of soils due to the release of effluents or deposition of wastes containing hexavalent chromium has been arising serious environmental problems. Therefore, the development of cost effectiveness but also ecological cleaning techniques is a matter of great concern among the scientific community. Bioremediation is attracting more and more attention due to its efficiency, low impact in the ecosystems and low cost. In particular, this study approaches a bioleaching tec...

  13. Hydrogen Sulfide Removal from Air by Acidithiobacillus thiooxidans in a Trickle Bed Reactor

    Ramirez, M.; Gómez, J. M.; Cantero, D.; Páca, J.; Halecký, M.; Kozliak, E. I.; Sobotka, Miroslav

    2009-01-01

    Roč. 54, č. 5 (2009), s. 409-414. ISSN 0015-5632 Institutional research plan: CEZ:AV0Z50200510 Keywords : 2-STAGE BIOTRICKLING FILTER * THIOBACILLUS-THIOPARUS * DIMETHYL SULFIDE Subject RIV: EE - Microbiology, Virology Impact factor: 0.978, year: 2009

  14. Biofilm forming and leaching mechanism during bioleaching chalcopyrite by Thiobacillus ferrooxidans

    傅建华; 胡岳华; 邱冠周; 柳建设; 徐竞

    2004-01-01

    The mechanism of attachment and leaching of thiobacillus ferrooxcidans (T. f. ) on chalcopyrite were studied. The shaking flasks with bacteria were observed by SEM. The process of T. f attached to the surface of the mineral sample and the biofilm forming were described. The promoting role of the biofilm for bioleaching was discussed. The existence of Fe2+ in the exopolysaccharide layer of T. f was demonstrated by EM(electronic microscope)cell-chemistry analysis. These results show that under the proper growth condition of bacteria, bioleaching of chalcopyrite results in the formation of complete biofilm after 2 - 3 weeks. There are iron ions in the outer layer polymer of T. f. , which provides the micro-environment for themselves, and can guaruntee the energy needed for the bacteria growth in the biofilm. At the same time, Fe3+ ions produced oxidize sulfide which brings about the increase of both growth rate of the bacterial and leaching rate of sulfide minerals.

  15. Role of Ferrous Ions in Synthetic Cobaltous Sulfide Leaching of Thiobacillus ferrooxidans

    Sugio, Tsuyoshi; Domatsu, Chitoshi; Tano, Tatsuo; Imai, Kazutami

    1984-01-01

    Microbiological leaching of synthetic cobaltous sulfide (CoS) was investigated with a pure strain of Thiobacillus ferroxidans. The strain could not grow on CoS-salts medium in the absence of ferrous ions (Fe2+). However, in CoS-salts medium supplemented with 18 mM Fe2+, the strain utilized both Fe2+ and the sulfur moiety in CoS for growth, resulting in an enhanced solubilization of Co2+. Cell growth on sulfur-salts medium was strongly inhibited by Co2+, and this inhibition was completely prot...

  16. Mathematical model for microbial oxidation of pure lead sulfide by Thiobacillus ferrooxidans.

    Kargi, F

    1989-08-01

    A shrinking-core mathematical model describing bioleaching of lead sulfide is developed considering the deposition of insoluble bio-oxidation products on metal sulfide particle surfaces. Variations in particle size are considered as it affects diffusion limitations. PMID:18588129

  17. UV-induced mutagenesis of oxidation activity of ferrous ion of Thiobacillus ferrooxidans

    2001-01-01

    An excellent strain named T. f6 was isolated and screened, the dose and other condition for the UV-induced mutagenesis were studied and the richened positive mutant m+ T. f6 was applied in the column leaching of copper-contain ing sulfides. The results show that T. f6 is characterized by rapid oxidation of ferrous ion and cupric sulfide, high tolerance of toxic ion and short generation time. The best mutagenic effectiveness can be obtained under the dose of low kill rate of UV and low temperature treatment, under which the best richened m+ T. f6 can be shortened 1.4h. It was shown by the column leaching of copper that the leaching rate can be enhanced by at least 11% compared with the original one by the mutants.

  18. Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobacillus ferrooxidans.

    Solisio, C; Lodi, A; Veglio, F

    2002-01-01

    Biological solubilisation of heavy metals contained in two different kinds of industrial wastes was performed in batches employing a strain of Thiobacillus ferroxidans. The wastes tested were: a dust coming from the iron-manganese alloy production in an electric furnace (sludge 1) and a sludge coming from a process treatment plant of aluminium anodic oxidation (sludge 2). The experimental results pointed out the ability of the used strain to maintain the environment, that initially has a pH about 8, at strongly acid conditions (pH 2.5-3.5), producing sulphuric acid that is the chemical agent responsible for the metals solubilisation. At wastes initial concentration of 1%, the percentage of solubilised metals was 76 and 78% for the wastes 1 and 2, respectively, but the lag phase was considerably longer for sludge 2 than for sludge 1, indicating a different affinity of microorganisms for the solid phase. Increasing the initial slurry concentration, the percentage of removed metal reached 72-73% for the sludge 1, while in case of sludge 2, the total amount of solubilized metal progressively decreased. Two kinetic models are proposed to describe the trends of metals solubilization curves. PMID:12214978

  19. Influencia de la concentración de hierro y pH iniciales en un proceso de biodesulfurización de carbón – ensayos a nivel de laboratorio

    Gerardo Andrés Caicedo Pineda

    2012-06-01

    Full Text Available Normal 0 21 false false false ES-CO X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Título en ingles: Particle size, iron concentration and pH influence in biodesulfurization process of coal – laboratory tests   Resumen   A un carbón proveniente del municipio de Puerto Libertador, Córdoba-Colombia (2.34% de azufre total, con 1.34% pirítico, 0.90% orgánico y 0.10% de sulfatos, se le aplicó un cultivo mixto de Acidithiobacillus ferrooxidans y Acidithiobacillus thiooxidans, con el fin de evaluar procesos de biodesulfurización en suspensión, a partir de variables que influyen en el proceso: concentración inicial de hierro y pH de la solución lixiviante, bajo dos configuraciones de tamaño de partícula: pasante malla 8 (-malla 8 y pasante malla 60 (-malla 60, acorde con la serie Tyler de tamices. Los procesos de biodesulfurización se evaluaron cada dos días, mediante mediciones de la concentración de hierro, pH, potencial de óxido-reducción y crecimiento celular, en la solución. A partir de los ensayos realizados, se alcanzaron oxidaciones de azufre pirítico por encima del 50%, después de 12 días de proceso. Se pudo constatar que tanto el tipo de carbón tratado, como de las condiciones evaluadas, inciden en el grado de lixiviación alcanzado. La mejor eficiencia del

  20. Application of fuel cell for pyrite and heavy metal containing mining waste

    Keum, H.; Ju, W. J.; Jho, E. H.; Nam, K.

    2015-12-01

    Once pyrite and heavy metal containing mining waste reacts with water and air it produces acid mine drainage (AMD) and leads to the other environmental problems such as contamination of surrounding soils. Pyrite is the major source of AMD and it can be controlled using a biological-electrochemical dissolution method. By enhancing the dissolution of pyrite using fuel cell technology, not only mining waste be beneficially utilized but also be treated at the same time by. As pyrite-containing mining waste is oxidized in the anode of the fuel cell, electrons and protons are generated, and electrons moves through an external load to cathode reducing oxygen to water while protons migrate to cathode through a proton exchange membrane. Iron-oxidizing bacteria such as Acidithiobacillus ferrooxidans, which can utilize Fe as an electron donor promotes pyrite dissolution and hence enhances electrochemical dissolution of pyrite from mining waste. In this study mining waste from a zinc mine in Korea containing 17 wt% pyrite and 9% As was utilized as a fuel for the fuel cell inoculated with A. ferrooxidans. Electrochemically dissolved As content and chemically dissolved As content was compared. With the initial pH of 3.5 at 23℃, the dissolved As concentration increased (from 4.0 to 13 mg/L after 20 d) in the fuel cell, while it kept decreased in the chemical reactor (from 12 to 0.43 mg/L after 20 d). The fuel cell produced 0.09 V of open circuit voltage with the maximum power density of 0.84 mW/m2. Dissolution of As from mining waste was enhanced through electrochemical reaction. Application of fuel cell technology is a novel treatment method for pyrite and heavy metals containing mining waste, and this method is beneficial for mining environment as well as local community of mining areas.

  1. Inhibition of bacterial oxidation of ferrous iron by lead nitrate in sulfate-rich systems

    Wang, Hongmei; Gong, Linfeng; Cravotta, Charles A., III; Yang, Xiaofen; Tuovinen, Olli H.; Dong, Hailiang; Fu, Xiang

    2013-01-01

    Inhibition of bacterial oxidation of ferrous iron (Fe(II)) by Pb(NO3)2 was investigated with a mixed culture of Acidithiobacillus ferrooxidans. The culture was incubated at 30 °C in ferrous-sulfate medium amended with 0–24.2 mM Pb(II) added as Pb(NO3)2. Anglesite (PbSO4) precipitated immediately upon Pb addition and was the only solid phase detected in the abiotic controls. Both anglesite and jarosite (KFe3(SO4)2(OH)6) were detected in inoculated cultures. Precipitation of anglesite maintained dissolved Pb concentrations at 16.9–17.6 μM regardless of the concentrations of Pb(NO3)2 added. Fe(II) oxidation was suppressed by 24.2 mM Pb(NO3)2 addition even when anglesite was removed before inoculation. Experiments with 0–48 mM KNO3 demonstrated that bacterial Fe(II) oxidation decreased as nitrate concentration increased. Therefore, inhibition of Fe(II) oxidation at 24.2 mM Pb(NO3)2 addition resulted from nitrate toxicity instead of Pb addition. Geochemical modeling that considered the initial precipitation of anglesite to equilibrium followed by progressive oxidation of Fe(II) and the precipitation of jarosite and an amorphous iron hydroxide phase, without allowing plumbojarosite to precipitate were consistent with the experimental time-series data on Fe(II) oxidation under biotic conditions. Anglesite precipitation in mine tailings and other sulfate-rich systems maintains dissolved Pb concentrations below the toxicity threshold of A. ferrooxidans.

  2. Copper isotope fractionation in acid mine drainage

    Kimball, B.E.; Mathur, R.; Dohnalkova, A.C.; Wall, A.J.; Runkel, R.L.; Brantley, S.L.

    2009-01-01

    We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The ??65Cu values (based on 65Cu/63Cu) of enargite (??65Cu = -0.01 ?? 0.10???; 2??) and chalcopyrite (??65Cu = 0.16 ?? 0.10???) are within the range of reported values for terrestrial primary Cu sulfides (-1??? fractionation (??aq-min = ??65Cuaq - ??65Cumin, where the latter is measured on mineral samples from the field system), equals 1.43 ?? 0.14??? and 1.60 ?? 0.14??? for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in 65Cu relative to chalcopyrite (1.37 ?? 0.14???) and enargite (0.98 ?? 0.14???) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (??aq-mino = - 0.57 ?? 0.14 ???, where mino refers to the starting mineral) and no apparent fractionation for enargite (??aq-mino = 0.14 ?? 0.14 ???). Abiotic fractionation is attributed to preferential oxidation of 65Cu+ at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of 65Cuaq with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of ??65Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures resulting from Cu sulfide dissolution should be useful for acid mine drainage remediation and ore prospecting purposes. ?? 2008 Elsevier Ltd.

  3. Microbial cycling of iron and sulfur in acidic coal mining lake sediments

    Lakes caused by coal mining processes are characterized by low pH, low nutrient status, and high concentrations of Fe(II) and sulfate due to the oxidation of pyrite in the surrounding mine tailings. Fe(III) produced during Fe(II) oxidation precipitates to the anoxic acidic sediment, where the microbial reduction of Fe(III) is the dominant electron-accepting process for the oxidation of organic matter, apparently mediated by acidophilic Acidiphilium species. Those bacteria can reduce a great variety of Fe(III)-(hydr)oxides and reduce Fe(III) and oxygen simultaneously which might be due to the small differences in the redox potentials under low pH conditions. Due to the absence of sulfide, Fe(II) formed in the upper 6 cm of the sediment diffuses to oxic zones in the water layer where it can be reoxidized by Acidithiobacillus species. Thus, acidic conditions are stabilized by the cycling of iron which inhibits fermentative and sulfate-reducing activities. With increasing sediment depth, the amount of reactive iron decrease, the pH increases above 5, and fermentative and as yet unknown Fe(III)-reducing bacteria are also involved in the reduction of Fe(III). Sulfate is reduced apparently by the activity of spore-forming sulfate reducers including new species of Desulfosporosinus that have their pH optimum similar to in situ conditions and are not capable of growth at pH 7. However, generation of alkalinity via sulfate reduction is reduced by the anaerobic reoxidation of sulfide back to sulfate. Thus, the microbial cycling of iron at the oxic-anoxic interface and the anaerobic cycling of sulfur maintains environmental conditions appropriate for acidophilic Fe(III)-reducing and acid-tolerant sulfate-reducing microbial communities

  4. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments.

    Golyshina, Olga V; Timmis, Kenneth N

    2005-09-01

    For several decades, the bacterium Acidithiobacillus (previously Thiobacillus) has been considered to be the principal acidophilic sulfur- and iron-oxidizing microbe inhabiting acidic environments rich in ores of iron and other heavy metals, responsible for the metal solubilization and leaching from such ores, and has become the paradigm of such microbes. However, during the last few years, new studies of a number of acidic environments, particularly mining waste waters, acidic pools, etc., in diverse geographical locations have revealed the presence of new cell wall-lacking archaea related to the recently described, acidophilic, ferrous-iron oxidizing Ferroplasma acidiphilum. These mesophilic and moderately thermophilic microbes, representing the family Ferroplasmaceae, were numerically significant members of the microbial consortia of the habitats studied, are able to mobilize metals from sulfide ores, e.g. pyrite, arsenopyrite and copper-containing sulfides, and are more acid-resistant than iron and sulfur oxidizing bacteria exhibiting similar eco-physiological properties. Ferroplasma cell membranes contain novel caldarchaetidylglycerol tetraether lipids, which have extremely low proton permeabilities, as a result of the bulky isoprenoid core, and which are probably a major contributor to the extreme acid tolerance of these cell wall-less microbes. Surprisingly, several intracellular enzymes, including an ATP-dependent DNA ligase have pH optima close to that of the external environment rather than of the cytoplasm. Ferroplasma spp. are probably the major players in the biogeochemical cycling of sulfur and sulfide metals in highly acidic environments, and may have considerable potential for biotechnological applications such as biomining and biocatalysis under extreme conditions. PMID:16104851

  5. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum group II CF-1

    Gloria Paz Levicán

    2016-05-01

    Full Text Available Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species. Cobalamin (vitamin B12 is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular reactive oxygen species and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective.

  6. Climatic gradients within temperate Europe and small-scale species composition of lichen-rich dry acidophilous Scots pine forests

    Košuthová, A.; Svitková, I.; Pišút, I.; Senko, D.; Valachovič, M.; Zaniewski, P. T.; Hájek, Michal

    2015-01-01

    Roč. 14, APR 2015 (2015), s. 8-23. ISSN 1754-5048 R&D Projects: GA ČR GB14-36079G Institutional support: RVO:67985939 Keywords : Baltic sea * biodiversity * Cladonio-Pinetum * continentality Subject RIV: EH - Ecology, Behaviour Impact factor: 2.929, year: 2014

  7. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1.

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective. PMID:27242761

  8. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2014-04-08

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  9. Cobalamin Protection against Oxidative Stress in the Acidophilic Iron-oxidizing Bacterium Leptospirillum Group II CF-1

    Ferrer, Alonso; Rivera, Javier; Zapata, Claudia; Norambuena, Javiera; Sandoval, Álvaro; Chávez, Renato; Orellana, Omar; Levicán, Gloria

    2016-01-01

    Members of the genus Leptospirillum are aerobic iron-oxidizing bacteria belonging to the phylum Nitrospira. They are important members of microbial communities that catalyze the biomining of sulfidic ores, thereby solubilizing metal ions. These microorganisms live under extremely acidic and metal-loaded environments and thus must tolerate high concentrations of reactive oxygen species (ROS). Cobalamin (vitamin B12) is a cobalt-containing tetrapyrrole cofactor involved in intramolecular rearrangement reactions and has recently been suggested to be an intracellular antioxidant. In this work, we investigated the effect of the exogenous addition of cobalamin on oxidative stress parameters in Leptospirillum group II strain CF-1. Our results revealed that the external supplementation of cobalamin reduces the levels of intracellular ROSs and the damage to biomolecules, and also stimulates the growth and survival of cells exposed to oxidative stress exerted by ferric ion, hydrogen peroxide, chromate and diamide. Furthermore, exposure of strain CF-1 to oxidative stress elicitors resulted in the transcriptional activation of the cbiA gene encoding CbiA of the cobalamin biosynthetic pathway. Altogether, these data suggest that cobalamin plays an important role in redox protection of Leptospirillum strain CF-1, supporting survival of this microorganism under extremely oxidative environmental conditions. Understanding the mechanisms underlying the protective effect of cobalamin against oxidative stress may help to develop strategies to make biomining processes more effective. PMID:27242761

  10. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2016-03-22

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  11. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2013-07-23

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  12. Eficiência e efeito residual de biofertilizantes de rochas com PK e enxofre com Acidithiobacillus em alface Efficiency and residual effect of PK rock biofertilizers with sulfur and Acidithiobacillus on lettuce

    Rita de Cássia Matias de Lima

    2007-09-01

    Full Text Available Entre agosto e novembro de 2005 foi realizado um experimento em campo, com dois plantios consecutivos de alface (cv. Grand Rapids, em solo do Cariri cearense, visando avaliar a eficiência da fertilização com biofertilizantes de rocha fosfatada (BP e potássica (BK, em comparação com os fertilizantes minerais superfosfato simples(SFS e cloreto de potássio (KCl. Os fertilizantes minerais foram aplicados nos níveis recomendados com base na análise de solo para alface (SFS e KCl, e os biofertilizantes em três níveis (BP1 e BK1 metade da recomendação; BP2 e BK2 nível recomendado e BP3 e BK3 uma vez e meia o recomendado para SFS e KCl, e o tratamento controle (P0K0 sem aplicação de P e K. O delineamento experimental foi de blocos casualizados, em esquema fatorial 5², com quatro repetições. Os resultados demonstraram que o desempenho dos biofertilizantes com P e K foi equivalente ao dos fertilizantes minerais, especialmente com aplicação no nível BP2BK3. No segundo cultivo ficou evidenciado o efeito residual para produtividade da alface (biomassa fresca da parte aérea, altura, número de folhas, avaliação comercial e acumulação de P e K na parte aérea. Os resultados sugerem que os biofertilizantes de rochas com P e K podem ser usados como alternativa a fertilizantes minerais.Production of rock biofertilizers is a practical process with reduction of energy consumption and increasing nutrients availability in soils. To evaluate the agronomic efficiency and the residual effect of P rock biofertilizer (PB and potash rock (KB, compared to simple superphosphate (SSP and potassium chloride (KCl, a field experiment with two consecutive lettuce crops (cv. Grand Rapids was carried out in a soil at Cariri (Ceará, Brazil, from August to September 2005. The mineral fertilizers were applied in the levels recommended for lettuce (SSP and KCl, and the biofertilizers in three levels (PB1 and KB1 half of recommended levels; recommended levels PB2 and KB2 and 150% the recommended level PB3 and KB3 for SSP and KCl and a control treatment with no P and K (P0K0. The experimental design was a factorial 5² in the randomized block, with four replicates. There was similar performance of the PK rock biofertilizers compared to the mineral fertilizers, especially when the level BP2BK3 was applied. The consecutive crop showed residual effect on lettuce yield (fresh shoot biomass, height, number of leaves, commercial evaluation, and P and K accumulation on shoot dry biomass. The results suggest that P and K rock biofertilizers may be used as an alternative in mineral fertilization.

  13. Molecular Characterization of Bacterial Respiration on Minerals

    Blake, Robert C.

    2013-04-26

    The overall aim of this project was to contribute to our fundamental understanding of proteins and biological processes under extreme environmental conditions. We sought to define the biochemical and physiological mechanisms that underlie biodegradative and other cellular processes in normal, extreme, and engineered environments. Toward that end, we sought to understand the substrate oxidation pathways, the electron transport mechanisms, and the modes of energy conservation employed during respiration by bacteria on soluble iron and insoluble sulfide minerals. In accordance with these general aims, the specific aims were two-fold: To identify, separate, and characterize the extracellular biomolecules necessary for aerobic respiration on iron under strongly acidic conditions; and to elucidate the molecular principles whereby these bacteria recognize and adhere to their insoluble mineral substrates under harsh environmental conditions. The results of these studies were described in a total of nineteen manuscripts. Highlights include the following: 1. The complete genome of Acidithiobacillus ferrooxidans ATCC 23270 (type strain) was sequenced in collaboration with the DOE Joint Genome Institute; 2. Genomic and mass spectrometry-based proteomic methods were used to evaluate gene expression and in situ microbial activity in a low-complexity natural acid mine drainage microbial biofilm community. This was the first effort to successfully analyze a natural community using these techniques; 3. Detailed functional and structural studies were conducted on rusticyanin, an acid-stable electron transfer protein purified from cell-free extracts of At. ferrooxidans. The three-dimensional structure of reduced rusticyanin was determined from a combination of homonuclear proton and heteronuclear 15N- and 13C-edited NMR spectra. Concomitantly, the three-dimensional structure of oxidized rusticyanin was determined by X-ray crystallography to a resolution of 1.9 A by multiwavelength

  14. Bacteria-assisted preparation of nano α-Fe2O3 red pigment powders from waste ferrous sulfate.

    Li, Xiang; Wang, Chuankai; Zeng, Yu; Li, Panyu; Xie, Tonghui; Zhang, Yongkui

    2016-11-01

    Massive ferrous sulfate with excess sulfuric acid is produced in titanium dioxide industry each year, ending up stockpiled or in landfills as solid waste, which is hazardous to environment and in urgent demand to be recycled. In this study, waste ferrous sulfate was used as a second raw material to synthesize nano α-Fe2O3 red pigment powders with a bacteria-assisted oxidation process by Acidithiobacillus ferrooxidans. The synthesis route, mainly consisting of bio-oxidation, precipitation and calcination, was investigated by means of titration, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray fluorescence (XRF) to obtain optimum conditions. Under the optimum conditions, nano α-Fe2O3 red pigment powders contained 98.24wt.% of Fe2O3 were successfully prepared, with a morphology of spheroidal and particle size ranged from 22nm to 86nm and averaged at 45nm. Moreover, the resulting product fulfilled ISO 1248-2006, the standards of iron oxide pigments. PMID:27344257

  15. Isotope geochemistry of waters affected by mining activities in Sierra Minera and Portman Bay (SE, Spain)

    Highlights: • Waters have a meteoric origin even in samples located near the shore. • Marine infiltration only takes place in the deepest layers. • Sulfate enrichment was caused by oxidative dissolution of pyrite by ferric iron. - Abstract: The objective of this work was to evaluate processes affecting waters from Portman Bay by way of stable isotopic analysis, particularly H and O stable isotopes from water and S and O from dissolved sulfates. In addition, surface waters from Sierra Minera were examined for the purpose of determining if these waters are affected by similar processes. The results obtained indicate that Portman Bay waters are meteoric, and marine infiltration only takes place in the deepest layers near the shore or if water remains stagnated in sediments with low permeability. The main source of sulfate was the oxidation of sulfides, resulting in the liberation of acid, sulfate and metals. In order to assess the mechanism responsible for sulfide oxidation, the stoichiometric isotope balance model and the general isotope balance model were tested, suggesting that the oxidation via Fe3+ was predominant in the surface, and controlled by Acidithiobacillus ferrooxidans, while at depth, sulfate reduction occurred

  16. Caracterización mineralógica de los productosde oxidación del sistema pirita-esfalerita por bacterias nativas oxidantes de Fe

    DIONI MABEL ZAPATA AGUIRRE

    2008-01-01

    Full Text Available La biooxidación de esfalerita y pirita fue evaluada a nivel de shaker utilizando microorganismos acidófilos compatibles con Acidithiobacillus ferrooxidans, a diferentes porcentajes de pulpa y temperatura de 35ºC. Análisis por SEM evidenciaron morfologías y mecanismos de oxidación diferentes para los dos sulfuros. La esfalerita presenta una capa de azufre elemental que bordea núcleos remanentes, los cuales a su vez muestran golfos de corrosión, evidenciando la actividad oxidante del medio. Las capas de azufre muestran morfologías típicas de precipitación a partir de soluciones generadas por la lixiviación de los sulfuros presentes. De otro lado, en la pirita la oxidación se ve reflejada en los golfos y pits de corrosión, sin que se observen películas de azufre. Además del azufre elemental, el principal producto generado durante el proceso fue jarosita. La secuencia de formación de estas fases, así como la oxidación preferencial de la esfalerita sobre la pirita fueron evidenciadas.

  17. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries

    Highlights: ► Catalytic ion was first applied to the bioleaching process of spent lithium-ion batteries. ► The bioleaching efficiency was great improved from 43.1% to 99.9% in the presence of copper ion. ► A new reaction model was proposed to explain the catalytic mechanism. - Abstract: A copper-catalyzed bioleaching process was developed to recycle cobalt from spent lithium-ion batteries (mainly LiCoO2) in this paper. The influence of copper ions on bioleaching of LiCoO2 by Acidithiobacillus ferrooxidans (A.f) was investigated. It was shown that almost all cobalt (99.9%) went into solution after being bioleached for 6 days in the presence of 0.75 g/L copper ions, while only 43.1% of cobalt dissolution was obtained after 10 days without copper ions. EDX, XRD and SEM analyses additionally confirmed that the cobalt dissolution from spent lithium-ion batteries could be improved in the presence of copper ions. The catalytic mechanism was investigated to explain the enhancement of cobalt dissolution by copper ions, in which LiCoO2 underwent a cationic interchange reaction with copper ions to form CuCo2O4 on the surface of the sample, which could be easily dissolved by Fe3+.

  18. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries

    Zeng, Guisheng, E-mail: zengguisheng@hotmail.com [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Deng, Xiaorong [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Xubiao; Zou, Jianping [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Catalytic ion was first applied to the bioleaching process of spent lithium-ion batteries. Black-Right-Pointing-Pointer The bioleaching efficiency was great improved from 43.1% to 99.9% in the presence of copper ion. Black-Right-Pointing-Pointer A new reaction model was proposed to explain the catalytic mechanism. - Abstract: A copper-catalyzed bioleaching process was developed to recycle cobalt from spent lithium-ion batteries (mainly LiCoO{sub 2}) in this paper. The influence of copper ions on bioleaching of LiCoO{sub 2} by Acidithiobacillus ferrooxidans (A.f) was investigated. It was shown that almost all cobalt (99.9%) went into solution after being bioleached for 6 days in the presence of 0.75 g/L copper ions, while only 43.1% of cobalt dissolution was obtained after 10 days without copper ions. EDX, XRD and SEM analyses additionally confirmed that the cobalt dissolution from spent lithium-ion batteries could be improved in the presence of copper ions. The catalytic mechanism was investigated to explain the enhancement of cobalt dissolution by copper ions, in which LiCoO{sub 2} underwent a cationic interchange reaction with copper ions to form CuCo{sub 2}O{sub 4} on the surface of the sample, which could be easily dissolved by Fe{sup 3+}.

  19. Optimization of operating parameters and rate of uranium bioleaching from a low-grade ore

    In this study the bioleaching of a low-grade uranium ore containing 480 ppm uranium has been reported. The studies involved extraction of uranium using Acidithiobacillus ferrooxidans derived from the uranium mine samples. The maximum specific growth rate (μmax) and doubling time (td) were obtained 0.08 h-1 and 8.66 h, respectively. Parameters such as Fe2+ concentration, particle size, temperature and pH were optimized. The effect of pulp density (PD) was also studied. Maximum uranium bio-dissolution of 100 ± 5 % was achieved under the conditions of pH 2.0, 5 % PD and 35 deg C in 48 h with the particles of d80 = 100 μm. The optimum concentration of supplementary Fe2+ was dependent to the PD. This value was 0 and 10 g of FeSO4·7H2O/l at the PD of 5 and 15 %, respectively. The effects of time, pH and PD on the bioleaching process were studied using central composite design. New rate equation was improved for the uranium leaching rate. The rate of leaching is controlled with the concentrations of ferric and ferrous ions in solution. This study shows that uranium bioleaching may be an important process for the Saghand U mine at Yazd (Iran). (author)

  20. SOLID2: An Antibody Array-Based Life-Detector Instrument in a Mars Drilling Simulation Experiment (MARTE)

    Parro, Víctor; Fernández-Calvo, Patricia; Rodríguez Manfredi, José A.; Moreno-Paz, Mercedes; Rivas, Luis A.; García-Villadangos, Miriam; Bonaccorsi, Rosalba; González-Pastor, José Eduardo; Prieto-Ballesteros, Olga; Schuerger, Andrew C.; Davidson, Mark; Gómez-Elvira, Javier; Stoker, Carol R.

    2008-10-01

    A field prototype of an antibody array-based life-detector instrument, Signs Of LIfe Detector (SOLID2), has been tested in a Mars drilling mission simulation called MARTE (Mars Astrobiology Research and Technology Experiment). As one of the analytical instruments on the MARTE robotic drilling rig, SOLID2 performed automatic sample processing and analysis of ground core samples (0.5 g) with protein microarrays that contained 157 different antibodies. Core samples from different depths (down to 5.5 m) were analyzed, and positive reactions were obtained in antibodies raised against the Gram-negative bacterium Leptospirillum ferrooxidans, a species of the genus Acidithiobacillus (both common microorganisms in the Río Tinto area), and extracts from biofilms and other natural samples from the Río Tinto area. These positive reactions were absent when the samples were previously subjected to a high-temperature treatment, which indicates the biological origin and structural dependency of the antibody-antigen reactions. We conclude that an antibody array-based life-detector instrument like SOLID2 can detect complex biological material, and it should be considered as a potential analytical instrument for future planetary missions that search for life.

  1. Bacterial leaching of chalcopyrite and bornite with native bioleaching microorganism

    WANG Jun; QIN Wen-qing; ZHANG Yan-sheng; YANG Cong-ren; ZHANG Jian-wen; NAI Shao-shi; SHANG He; QIU Guan-zhou

    2008-01-01

    A native mesophilic iron-oxidizing bacterium,Acidithiobacillus ferrooxidans,has been isolated (30 ℃) from a typical,lead-zinc concentrate of Dachang Mine in the region of Liuzhou located in the southwest of China.Two typical copper sulfide minerals,chalcopyrite and bornite,were from Meizhou Copper Mine in the region of Guangdong Province,China.Variation of pH and cell growth on time and effects of some factors such as temperature,inoculation cell number,and pulp density on the bioleaching of chalcopyrite and bornite were investigated.The results obtained from the bioleaching experiments indicate that the efficiency of copper extraction depends on all of the mentioned variables,especially the pulp density has more effect than the other factors on the microorganism.In addition,the results show that the maximum copper recovery was achieved using a mesophilic culture.The copper dissolution reached 51.34% for the chalcopyrite while it was 72.35% for the bornite at pH 2.0,initial Fe(Ⅱ) concentration 9 g/L and pulp density 5%,after 30 d.

  2. Application of Universal Stress Proteins in Probing the Dynamics of Potent Degraders in Complex Terephthalate Metagenome

    Andreas N. Mbah

    2013-01-01

    Full Text Available The culture-independent strategies to study microbial diversity and function have led to a revolution in environmental genomics, enabling fundamental questions about the distribution of microbes and their influence on bioremediation to be addressed. In this research we used the expression of universal stress proteins as a probe to determine the changes in degrading microbial population from a highly toxic terephthalate wastewater to a less toxic activated sludge bioreactor. The impact of relative toxicities was significantly elaborated at the levels of genus and species. The results indicated that 23 similar prokaryotic phyla were represented in both metagenomes irrespective of their relative abundance. Furthermore, the following bacteria taxa Micromonosporaceae, Streptomyces, Cyanothece sp. PCC 7822, Alicyclobacillus acidocaldarius, Bacillus halodurans, Leuconostoc mesenteroides, Lactococcus garvieae, Brucellaceae, Ralstonia solanacearum, Verminephrobacter eiseniae, Azoarcus, Acidithiobacillus ferrooxidans, Francisella tularensis, Methanothermus fervidus, and Methanocorpusculum labreanum were represented only in the activated sludge bioreactor. These highly dynamic microbes could serve as taxonomic biomarkers for toxic thresholds related to terephthalate and its derivatives. This paper, highlights the application of universal stress proteins in metagenomics analysis. Dynamics of microbial consortium of this nature can have future in biotechnological applications in bioremediation of toxic chemicals and radionuclides.

  3. From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources.

    Ishii, Takumi; Kawaichi, Satoshi; Nakagawa, Hirotaka; Hashimoto, Kazuhito; Nakamura, Ryuhei

    2015-01-01

    At deep-sea vent systems, hydrothermal emissions rich in reductive chemicals replace solar energy as fuels to support microbial carbon assimilation. Until recently, all the microbial components at vent systems have been assumed to be fostered by the primary production of chemolithoautotrophs; however, both the laboratory and on-site studies demonstrated electrical current generation at vent systems and have suggested that a portion of microbial carbon assimilation is stimulated by the direct uptake of electrons from electrically conductive minerals. Here we show that chemolithoautotrophic Fe(II)-oxidizing bacterium, Acidithiobacillus ferrooxidans, switches the electron source for carbon assimilation from diffusible Fe(2+) ions to an electrode under the condition that electrical current is the only source of energy and electrons. Site-specific marking of a cytochrome aa3 complex (aa3 complex) and a cytochrome bc1 complex (bc1 complex) in viable cells demonstrated that the electrons taken directly from an electrode are used for O2 reduction via a down-hill pathway, which generates proton motive force that is used for pushing the electrons to NAD(+) through a bc1 complex. Activation of carbon dioxide fixation by a direct electron uptake was also confirmed by the clear potential dependency of cell growth. These results reveal a previously unknown bioenergetic versatility of Fe(II)-oxidizing bacteria to use solid electron sources and will help with understanding carbon assimilation of microbial components living in electronically conductive chimney habitats. PMID:26500609

  4. Microbial and mineral evolution in zero valent iron-based permeable reactive barriers during long-term operations.

    Kumar, Naresh; Millot, Romain; Battaglia-Brunet, Fabienne; Omoregie, Enoma; Chaurand, Perrine; Borschneck, Daniel; Bastiaens, Leen; Rose, Jérôme

    2016-03-01

    Impacts of subsurface biogeochemical processes over time have always been a concern for the long-term performance of zero valent iron (Fe(0))-based permeable reactive barriers (PRBs). To evaluate the biogeochemical impacts, laboratory experiments were performed using flow-through glass columns for 210 days at controlled temperature (20 °C). Two different particle sizes of Fe(0) were used in the columns, and to simulate indigenous microbial activity, extra carbon source was provided in the two columns (biotic columns) and the remaining two columns were kept abiotic using gamma radiations. Heavy metals (Zn, As) were removed efficiently in all the columns, and no exhaustion of treatment capability or clogging was observed during our experimental duration. Newly formed Fe mineral phases and precipitates were characterized using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), and micro-XRF techniques in solid phase at the end of the experiment. In addition, 16S rRNA gene extraction was used for microbial community identification in biotic columns. During the incubation, microbial population shifted in favor of Desulfosporosinus species (sulfate-reducing bacteria) from initial dominance of Acidithiobacillus ferrooxidans in sediments. Dominant mineral phases detected in biotic columns were mackinawite (FeS) and sulfate green rust, while in abiotic columns, magnetite/maghemite phases were more prevalent. PMID:26604198

  5. High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes.

    Alison L Ling

    Full Text Available Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers.

  6. So close, so different: geothermal flux shapes divergent soil microbial communities at neighbouring sites.

    Gagliano, A L; Tagliavia, M; D'Alessandro, W; Franzetti, A; Parello, F; Quatrini, P

    2016-03-01

    This study is focused on the (micro)biogeochemical features of two close geothermal sites (FAV1 and FAV2), both selected at the main exhalative area of Pantelleria Island, Italy. A previous biogeochemical survey revealed high CH4 consumption and the presence of a diverse community of methanotrophs at FAV2 site, whereas the close site FAV1 was apparently devoid of methanotrophs and recorded no CH4 consumption. Next-Generation Sequencing (NGS) techniques were applied to describe the bacterial and archaeal communities which have been linked to the physicochemical conditions and the geothermal sources of energy available at the two sites. Both sites are dominated by Bacteria and host a negligible component of ammonia-oxidizing Archaea (phylum Thaumarchaeota). The FAV2 bacterial community is characterized by an extraordinary diversity of methanotrophs, with 40% of the sequences assigned to Methylocaldum, Methylobacter (Gammaproteobacteria) and Bejerickia (Alphaproteobacteria); conversely, a community of thermo-acidophilic chemolithotrophs (Acidithiobacillus, Nitrosococcus) or putative chemolithotrophs (Ktedonobacter) dominates the FAV1 community, in the absence of methanotrophs. Since physical andchemical factors of FAV1, such as temperature and pH, cannot be considered limiting for methanotrophy, it is hypothesized that the main limiting factor for methanotrophs could be high NH4 (+) concentration. At the same time, abundant availability of NH4 (+) and other high energy electron donors and acceptors determined by the hydrothermal flux in this site create more energetically favourable conditions for chemolithotrophs that outcompete methanotrophs in non-nitrogen-limited soils. PMID:26560641

  7. High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes.

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers. PMID:25748024

  8. A New Direction for Biomining: Extraction of Metals by Reductive Dissolution of Oxidized Ores

    Kevin B. Hallberg

    2013-01-01

    Full Text Available Biomining, the biotechnology that uses microorganisms to extract metals from ores and concentrates, is currently used exclusively for processing reduced ores and mine wastes. Metals of economic value also occur extensively in oxidized ores, such as nickel laterites. While these are not amenable to oxidative dissolution, the ferric iron minerals they contain can, in theory, be disrupted by iron reduction, causing associated metals to be released. We have harnessed the ability of the facultatively anaerobic, acidophilic bacterium Acidithiobacillus ferroooxidans to couple the oxidation of elemental sulphur to the reduction of ferric iron in the goethite fraction of a limonitic nickel ore at 30 °C. Nickel and other metals (Co, Cr and Mn were effectively solubilised and maintained in solution due to the low pH (1.8 of the leach liquor. The results highlight the potential for the bioprocessing of oxidized, iron-rich ores using an approach that is energy-saving and environmentally-benign compared with metallurgical processes currently applied to the extraction of Ni from lateritic ores.

  9. A new group in the Leptospirillum clade: cultivation-independent community genomics, proteomics and transcriptomics of the new species Leptospirillum group IV UBA BS.

    Goltsman, Daniela [University of California, Berkeley; Dasari, Mauna [University of California, Berkeley; Thomas, BC [University of California, Berkeley; Shah, Manesh B [ORNL; Verberkmoes, Nathan C [ORNL; Hettich, Robert {Bob} L [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2013-01-01

    Leptospirillum spp. are widespread members of acidophilic microbial communities that catalyze ferrous iron oxidation, thereby increasing sulfide mineral dissolution rates. These bacteria play important roles in environmental acidification and are harnessed for bioleaching-based metal recovery. Known members of the Leptospirillum clade of the Nitrospira phylum are Leptospirillum ferrooxidans (group I), Leptospirillum ferriphilum and Leptospirillum rubarum (group II), and Leptospirillum ferrodiazotrophum (group III). In the Richmond Mine acid mine drainage (AMD) system, biofilm formation is initiated by L. rubarum; L. ferrodiazotrophum appears in later developmental stages. Here we used community metagenomic data from unusual, thick floating biofilms to identify distinguishing metabolic traits in a rare and uncultivated community member, the new species Leptospirillum group IV UBA BS. These biofilms typically also contain a variety of Archaea, Actinobacteria, and a few other Leptospirillum spp. The Leptospirillum group IV UBA BS species shares 98% 16S rRNA sequence identity and 70% average amino acid identity between orthologs with its closest relative, L. ferrodiazotrophum. The presence of nitrogen fixation and reverse tricarboxylic acid (TCA) cycle proteins suggest an autotrophic metabolism similar to that of L. ferrodiazotrophum, while hydrogenase proteins suggest anaerobic metabolism. Community transcriptomic and proteomic analyses demonstrate expression of a multicopper oxidase unique to this species, as well as hydrogenases and core metabolic genes. Results suggest that the Leptospirillum group IV UBA BS species might play important roles in carbon fixation, nitrogen fixation, hydrogen metabolism, and iron oxidation in some acidic environments.

  10. A review of recovery of metals from industrial waste

    U.U. Jadhav

    2012-10-01

    precipitation, cementation, solvent extraction and ion exchange. The metals are finally recovered in pure form by using electrolysis and precipitation methods. Biohydrometallurgy is one of the most promising and revolutionary biotechnologies. This technique exploits microbiological processes for recovery of heavy metal ions. In last few decades the concept of microbiological leaching have played a grate role to recover valuable metals from various sulfide minerals or low grade ores. Now the microbiological leaching process has been shifted for its application to recover valuable metals from the different industrial wastes. There are many microrganisms which play important role in recovery of heavy metals from industrial wastes. Among the bacteria Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans, and Sulfolobus sp., are well known for the bioleaching activity while Penicillium, and Aspergillus niger are some fungi those help in metal leaching process. The process of recovery makes sense only if the cost of recovery is much less than the value of the precious metal. The restrictions imposed on waste disposal and stringent environmental regulations demand eco-friendly technologies for metal recovery. This paper reports a review of number of industrial processes that generate metal containing waste and the various methods in use for recovery of metals from these wastes. This will help in selection of a proper method for recovery of heavy metals from industrial wastes.

  11. Bacterial diversity characterization in petroleum samples from Brazilian reservoirs Caracterização da diversidade bacteriana em amostras de petróleo provenientes de reservatórios brasileiros

    Valéria Maia de Oliveira

    2008-09-01

    Full Text Available This study aimed at evaluating potential differences among the bacterial communities from formation water and oil samples originated from biodegraded and non-biodegraded Brazilian petroleum reservoirs by using a PCR-DGGE based approach. Environmental DNA was isolated and used in PCR reactions with bacterial primers, followed by separation of 16S rDNA fragments in the DGGE. PCR products were also cloned and sequenced, aiming at the taxonomic affiliation of the community members. The fingerprints obtained allowed the direct comparison among the bacterial communities from oil samples presenting distinct degrees of biodegradation, as well as between the communities of formation water and oil sample from the non-biodegraded reservoir. Very similar DGGE band profiles were observed for all samples, and the diversity of the predominant bacterial phylotypes was shown to be low. Cloning and sequencing results revealed major differences between formation water and oil samples from the non-biodegraded reservoir. Bacillus sp. and Halanaerobium sp. were shown to be the predominant components of the bacterial community from the formation water sample, whereas the oil sample also included Alicyclobacillus acidoterrestris, Rhodococcus sp., Streptomyces sp. and Acidithiobacillus ferrooxidans. The PCR-DGGE technique, combined with cloning and sequencing of PCR products, revealed the presence of taxonomic groups not found previously in these samples when using cultivation-based methods and 16S rRNA gene library assembly, confirming the need of a polyphasic study in order to improve the knowledge of the extent of microbial diversity in such extreme environments.Este estudo teve como objetivo comparar as comunidades bacterianas de amostras de água de formação e de óleo de reservatórios de petróleo brasileiros com diferentes graus de biodegradação usando a técnica de PCR-DGGE. O DNA ambiental foi isolado e empregado em reações de PCR com primers bacterianos

  12. Transformation of heavy metals and the formation of secondary iron minerals during pig manure bioleaching by the co-inoculation acidophilic thiobacillus.

    Zhou, Jun; Zhou, Lixiang; Liu, Fenwu; Zheng, Chaocheng; Deng, Wenjing

    2012-12-01

    Bioleaching of heavy metals from pig manure using a mixture of harmless iron- and sulfur-oxidizing bacteria in an air-lift reactor was conducted. The transformation of heavy metals and the formation of secondary Fe minerals during bioleaching were also investigated in the present study. The removal efficiencies of Zn, Cu, and Mn from pig manure were 95.1%, 80.9%, and 87.5%, respectively. Zn mainly existed in the form of Fe-Mn oxides in fresh pig manure; most of the pig manure-borne Cu was in organic matter form; Mn existed mainly in Fe-Mn oxides, carbonates, and residual forms. The pig manure can be applied to land more safely after bioleaching because the heavy metals mainly existed in stable forms. The removal efficiencies Zn, Cu, and Mn had good relationships with pH and oxidation reduction potential during bioleaching. A mixture ofjarosite and schwertmannite was found in the bioleached pig manure, which might have an adverse effect on the solubilization efficiency of toxic metals from pig manure. The bioleaching process using a mixture of harmless iron- and sulfur-oxidizing bacteria was shown to be a very feasible technology for the removal of heavy metals from pig manure. PMID:23437654

  13. A new acidophilic thermostable endo-1,4-β-mannanase from Penicillium oxalicum GZ-2: cloning, characterization and functional expression in Pichia pastoris

    Liao, Hanpeng; Li, Shuixian; Zheng, Haiping; Wei, Zhong; Liu, Dongyang; Raza, Waseem; Shen, Qirong; Xu, Yangchun

    2014-01-01

    Background Endo-1,4-β-mannanase is an enzyme that can catalyze the random hydrolysis of β-1, 4-mannosidic linkages in the main chain of mannans, glucomannans and galactomannans and has a number of applications in different biotechnology industries. Penicillium oxalicum is a powerful hemicellulase-producing fungus (Bioresour Technol 123:117-124, 2012); however, few previous studies have focused on the cloning and expression of the endo-1,4-β-mannanase gene from Penicillium oxalicum. Results A ...

  14. Uncovering a Microbial Enigma: Isolation and Characterization of the Streamer-Generating, Iron-Oxidizing, Acidophilic Bacterium “Ferrovum myxofaciens”

    Johnson, D. Barrie; Hallberg, Kevin B.; Hedrich, Sabrina

    2014-01-01

    A betaproteobacterium, shown by molecular techniques to have widespread global distribution in extremely acidic (pH 2 to 4) ferruginous mine waters and also to be a major component of “acid streamer” growths in mine-impacted water bodies, has proven to be recalcitrant to enrichment and isolation. A modified “overlay” solid medium was devised and used to isolate this bacterium from a number of mine water samples. The physiological and phylogenetic characteristics of a pure culture of an isolat...

  15. Radionuclide release from simulated waste material after biogeochemical leaching of uraniferous mineral samples.

    Williamson, Aimee Lynn; Caron, François; Spiers, Graeme

    2014-12-01

    Biogeochemical mineral dissolution is a promising method for the released of metals in low-grade host mineralization that contain sulphidic minerals. The application of biogeochemical mineral dissolution to engineered leach heap piles in the Elliot Lake region may be considered as a promising passive technology for the economic recovery of low grade Uranium-bearing ores. In the current investigation, the decrease of radiological activity of uraniferous mineral material after biogeochemical mineral dissolution is quantified by gamma spectroscopy and compared to the results from digestion/ICP-MS analysis of the ore materials to determine if gamma spectroscopy is a simple, viable alternative quantification method for heavy nuclides. The potential release of Uranium (U) and Radium-226 ((226)Ra) to the aqueous environment from samples that have been treated to represent various stages of leaching and passive closure processes are assessed. Dissolution of U from the solid phase has occurred during biogeochemical mineral dissolution in the presence of Acidithiobacillus ferrooxidans, with gamma spectroscopy indicating an 84% decrease in Uranium-235 ((235)U) content, a value in accordance with the data obtained by dissolution chemistry. Gamma spectroscopy data indicate that only 30% of the (226)Ra was removed during the biogeochemical mineral dissolution. Chemical inhibition and passivation treatments of waste materials following the biogeochemical mineral dissolution offer greater protection against residual U and (226)Ra leaching. Pacified samples resist the release of (226)Ra contained in the mineral phase and may offer more protection to the aqueous environment for the long term, compared to untreated or inhibited residues, and should be taken into account for future decommissioning. PMID:24726552

  16. The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism.

    Auernik, Kathryne S; Maezato, Yukari; Blum, Paul H; Kelly, Robert M

    2008-02-01

    Despite their taxonomic description, not all members of the order Sulfolobales are capable of oxidizing reduced sulfur species, which, in addition to iron oxidation, is a desirable trait of biomining microorganisms. However, the complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, approximately 2,300 open reading frames [ORFs]) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins involved (directly or indirectly) with bioleaching. As expected, the M. sedula genome contains genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation, and a putative tetrathionate hydrolase, implicated in sulfur oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, was also identified. These iron- and sulfur-oxidizing components are missing from genomes of nonleaching members of the Sulfolobales, such as Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole-genome transcriptional response analysis showed that 88 ORFs were up-regulated twofold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included genes for components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized. PMID:18083856

  17. High level arsenic resistance in bacteria present in biooxidation tanks used to treat gold-bearing arsenopyrite concentrates: A review

    D.E.RAWLINGS

    2008-01-01

    The microbial consortium used in continuous-flow,stirred tank processes to treat gold-bearing arsenopyrite concentrates became adapted to high concentrations of arsenic over a number of years.The dominant microorganisms,Acidithiobacillus caldus and Leptospirillum ferriphilum,were found to contain two sets of arsenic resistance genes.One set of ars genes was present in all isolates of a species irrespective of whether they were highly arsenic resistant or not.A second set of ars genes was present on Tn21-like transposons and was found in all strains tested that had been adapted to high concentrations of arsenic.The arsenic resistance transposons present in At.caldus and L.ferriphilum were closely related,but sufficiently different for them to have been acquired independently rather than having been passed from one bacterium to the other.The transposons were transpositionally active in Escherchia coli and were shown to confer higher levels of arsenic resistance than the chromosomally-located ars genes where it was possible to test this.Transposons containing arsenic resistance genes that were identical or closely related to the transposon from L.ferriphilum,originally found in South Africa,were also found in both L.ferrooxidans and L.ferriphilum isolates from South America and Europe.An arsB gene knockout of At.caldus was produced by homologous recombination that demonstrated both the ability of the chromosomal ars genes to confer low levels of arsenic resistance in At.caldus and the development of a genetic system for the creation of knock-out mutants.

  18. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.

    Fantauzzi, Marzia; Licheri, Cristina; Atzei, Davide; Loi, Giovanni; Elsener, Bernhard; Rossi, Giovanni; Rossi, Antonella

    2011-10-01

    In this work, a multi-technical bulk and surface analytical approach was used to investigate the bioleaching of a pyrite and arsenopyrite flotation concentrate with a mixed microflora mainly consisting of Acidithiobacillus ferrooxidans. X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy mineral surfaces investigations, along with inductively coupled plasma-atomic emission spectroscopy and carbon, hydrogen, nitrogen and sulphur determination (CHNS) analyses, were carried out prior and after bioleaching. The flotation concentrate was a mixture of pyrite (FeS(2)) and arsenopyrite (FeAsS); after bioleaching, 95% of the initial content of pyrite and 85% of arsenopyrite were dissolved. The chemical state of the main elements (Fe, As and S) at the surface of the bioreactor feed particles and of the residue after bioleaching was investigated by X-ray photoelectron and X-ray excited Auger electron spectroscopy. After bioleaching, no signals of iron, arsenic and sulphur originating from pyrite and arsenopyrite were detected, confirming a strong oxidation and the dissolution of the particles. On the surfaces of the mineral residue particles, elemental sulphur as reaction intermediate of the leaching process and precipitated secondary phases (Fe-OOH and jarosite), together with adsorbed arsenates, was detected. Evidence of microbial cells adhesion at mineral surfaces was also produced: carbon and nitrogen were revealed by CHNS, and nitrogen was also detected on the bioleached surfaces by XPS. This was attributed to the deposition, on the mineral surfaces, of the remnants of a bio-film consisting of an extra-cellular polymer layer that had favoured the bacterial action. PMID:21847529

  19. Diguanylate Cyclase Null Mutant Reveals That C-Di-GMP Pathway Regulates the Motility and Adherence of the Extremophile Bacterium Acidithiobacillus caldus

    Castro, Matías; Deane, Shelly M.; Ruiz, Lina; Rawlings, Douglas E.; Guiliani, Nicolas

    2015-01-01

    An understanding of biofilm formation is relevant to the design of biological strategies to improve the efficiency of the bioleaching process and to prevent environmental damages caused by acid mine/rock drainage. For this reason, our laboratory is focused on the characterization of the molecular mechanisms involved in biofilm formation in different biomining bacteria. In many bacteria, the intracellular levels of c-di-GMP molecules regulate the transition from the motile planktonic state to ...

  20. Comparative genome analysis reveals metabolic versatility and environmental adaptations of Sulfobacillus thermosulfidooxidans strain ST.

    Xue Guo

    Full Text Available The genus Sulfobacillus is a cohort of mildly thermophilic or thermotolerant acidophiles within the phylum Firmicutes and requires extremely acidic environments and hypersalinity for optimal growth. However, our understanding of them is still preliminary partly because few genome sequences are available. Here, the draft genome of Sulfobacillus thermosulfidooxidans strain ST was deciphered to obtain a comprehensive insight into the genetic content and to understand the cellular mechanisms necessary for its survival. Furthermore, the expressions of key genes related with iron and sulfur oxidation were verified by semi-quantitative RT-PCR analysis. The draft genome sequence of Sulfobacillus thermosulfidooxidans strain ST, which encodes 3225 predicted coding genes on a total length of 3,333,554 bp and a 48.35% G+C, revealed the high degree of heterogeneity with other Sulfobacillus species. The presence of numerous transposases, genomic islands and complete CRISPR/Cas defence systems testifies to its dynamic evolution consistent with the genome heterogeneity. As expected, S. thermosulfidooxidans encodes a suit of conserved enzymes required for the oxidation of inorganic sulfur compounds (ISCs. The model of sulfur oxidation in S. thermosulfidooxidans was proposed, which showed some different characteristics from the sulfur oxidation of Gram-negative A. ferrooxidans. Sulfur oxygenase reductase and heterodisulfide reductase were suggested to play important roles in the sulfur oxidation. Although the iron oxidation ability was observed, some key proteins cannot be identified in S. thermosulfidooxidans. Unexpectedly, a predicted sulfocyanin is proposed to transfer electrons in the iron oxidation. Furthermore, its carbon metabolism is rather flexible, can perform the transformation of pentose through the oxidative and non-oxidative pentose phosphate pathways and has the ability to take up small organic compounds. It encodes a multitude of heavy metal

  1. Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur

    Balci, N.; Mayer, B.; Shanks, Wayne C.; Mandernack, K.W.

    2012-01-01

    Studies of metal sulfide oxidation in acid mine drainage (AMD) systems have primarily focused on pyrite oxidation, although acid soluble sulfides (e.g., ZnS) are predominantly responsible for the release of toxic metals. We conducted a series of biological and abiotic laboratory oxidation experiments with pure and Fe-bearing sphalerite (ZnS & Zn 0.88Fe 0.12S), respectively, in order to better understand the effects of sulfide mineralogy and associated biogeochemical controls of oxidation on the resultant ?? 34S and ?? 18O values of the sulfate produced. The minerals were incubated in the presence and absence of Acidithiobacillus ferrooxidans at an initial solution pH of 3 and with water of varying ?? 18O values to determine the relative contributions of H 2O-derived and O 2-derived oxygen in the newly formed sulfate. Experiments were conducted under aerobic and anaerobic conditions using O 2 and Fe(III) aq as the oxidants, respectively. Aerobic incubations with A. ferrooxidans, and S o as the sole energy source were also conducted. The ??34SSO4 values from both the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq produced sulfur isotope fractionations (??34SSO4-ZnS) of up to -2.6???, suggesting the accumulation of sulfur intermediates during incomplete oxidation of the sulfide. No significant sulfur isotope fractionation was observed from any of the aerobic experiments. Negative sulfur isotope enrichment factors (??34SSO4-ZnS) in AMD systems could reflect anaerobic, rather than aerobic pathways of oxidation. During the biological and abiotic oxidation of ZnS and ZnS Fe by Fe(III) aq all of the sulfate oxygen was derived from water, with measured ?? 18OSO 4-H 2O values of 8.2??0.2??? and 7.5??0.1???, respectively. Also, during the aerobic oxidation of ZnS Fe and S o by A. ferrooxidans, all of the sulfate oxygen was derived from water with similar measured ?? 18OSO 4-H 2O values of 8.1??0.1??? and 8.3??0.3???, respectively. During biological oxidation

  2. Analysis of Microbial Community Composition in Obturating Acid Mine Drainage%封闭环境下酸性矿坑水中微生物生态多样性的研究

    霍强; 刘晰; 刘文斌; 谢建平; 刘新星

    2009-01-01

    Tong Lushan Copper Mine has the longest exploitation time span in the world. Many disused mines produce a large amount of environmental detrimental acid mine drainage (AMD). The microbial community in obturating AMD samples,which collected from Tong Lushan Copper Mine,was identified by the technology of the restriction fragment length polymorphisma (RFLP) analysis of bacterial and archaeal 16S rDNA clone libraries. The bacterial and archaeal richness of acidophilic communities in this acidic and high-ion-concentration AMD were lower when compared with other extremophile and non-extremophile assemblages. The result of RFLP analysis and phylogenetic anlysis show that the majority of the bacterial clones were A. ferrooxidans belonging to the gamma-Proteobacteria and L. ferrooxidans belonging to the Nitospira while the majority of the archaeal clones were affiliated with Thermoplasma.Archaeal clones related to uncultured methanogenic archaeon were first found in obturating AMD environment and accounted for more than a quarter of the total archaeal clones. This microbial community structure composed by both bacteria and archaea contributed much to the generation of AMD.%铜绿山铜矿是世界开采时间最长的矿井之一,在开采过程中有许多矿井被废弃,许多废弃的矿井内产生了大量的对环境有害的酸性矿坑水.酸性矿坑水取自铜绿山铜矿某废弃矿井,利用限制性酶切片断多样性分析(RFLP分析)对酸性矿坑水中的微生物生态多样性进行了研究.研究表明,酸性矿坑水呈酸性,相对于其他极端与非极端生态环境,酸性矿坑水中的细菌与古菌的群落多样性较低.RFLP分析与系统发育分析表明,酸性矿坑水中细菌主要由A.fcrrooxidans(属于gamma-Proteobacteria)和L.ferrooxidans(属于Nitospira)成;古菌主要由Thermoplasma相关古菌组成.在这种封闭环境的酸性矿坑水中首次发现了类似于产甲烷古菌的克隆片断,其占古菌种群的四分

  3. Biosynthetic Schwertmannite as Catalyst in Fenton-liKe Reactions for Degradation of Methyl Orange%生物合成施氏矿物作为类芬顿反应催化剂降解甲基橙的研究

    汪快兵; 方迪; 徐峙晖; 施瑛; 郑冠宇; 周立祥

    2015-01-01

    应用生物合成施氏矿物作为光助类芬顿反应催化剂促进甲基橙的降解.施氏矿物通过A. f-LX5细胞悬浮液在初始pH值2.5和28℃时氧化FeSO43d生成,并进行X射线衍射和扫描电子显微镜表征.本研究分析了不同初始pH、H2 O2浓度及催化剂装载量对在光助类芬顿反应中甲基橙氧化降解效率的影响.结果表明,生物合成施氏矿物具有较高的催化活性,并且通过羟基自由基机制使甲基橙降解.在近中性、较高Cl-、SO2-4及NO3-浓度条件下,施氏矿物仍然能保持较高催化甲基橙降解的效率.本研究验证了以生物合成施氏矿物作为催化剂的异相光助类芬顿反应是一种处理含甲基橙废水有应用前景的高级氧化技术.%Biosynthesized schwertmannite was used as catalyst in photo-Fenton-like reaction to facilitate the degradation of methyl orange ( MO) . Schwertmannite was synthesized through the oxidation of FeSO4 by Acidithiobacillus ferrooxidans LX5 cell suspension at an initial pH 2. 5 and 28℃ for 3 days and characterized using X-ray diffraction spectroscopy and scanning electron microscope. The oxidative degradation of MO in the photo-Fenton-like reaction was studied at different initial pH values of suspension, concentrations of H2 O2 and dosages of catalyst. The results suggested that the biosynthetic schwertmannite showed a good catalytic activity in the MO degradation via ·OH radical mechanism. Considerable degradation efficiency of MO was still obtained in approximately neutral condition or in the presence of high concentrations of chloride, sulfate and nitrate. This work demonstrated that the heterogeneous photo-Fenton-like reaction catalyzed by the biosynthetic schwertmannite is a promising advanced oxidation technology for the treatment of wastewater containing MO.

  4. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    Bayat, Belgin, E-mail: bbayat@cu.edu.tr [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey); Sari, Bulent [Department of Environmental Engineering, Faculty of Engineering and Architecture, Cukurova University, Balcali, Adana 01330 (Turkey)

    2010-02-15

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 {+-} 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric

  5. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge

    The purpose of the study described in this paper was to evaluate the application of bioleaching technique involving Acidithiobacillus ferrooxidans to recover heavy metals (Zn, Cu, Ni, Pb, Cd and Cr) in dewatered metal plating sludge (with no sulfide or sulfate compounds). The effect of some conditional parameters (i.e. pH, oxidation-reduction potential (ORP), sulfate production) and operational parameters (i.e. pulp density of the sludge and agitation time) were investigated in a 3 l completely mixed batch (CMB) reactor. The metal recovery yields in bioleaching were also compared with chemical leaching of the sludge waste using commercial inorganic acids (sulfuric acids and ferric chloride). The leaching of heavy metals increased with decreasing of pH and increasing of ORP and sulfate production during the bioleaching experiment. Optimum pulp density for bioleaching was observed at 2% (w/v), and leaching efficiency decreased with increasing pulp density in bioleaching experiments. Maximum metal solubilization (97% of Zn, 96% of Cu, 93% of Ni, 84% of Pb, 67% of Cd and 34% of Cr) was achieved at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the bioleaching process. The maximum removal efficiencies of 72% and 79% Zn, 70% and 75% Cu, 69% and 73% Ni, 57% and 70% Pb, 55% and 65% Cd, and 11% and 22% Cr were also attained with the chemical leaching using sulfuric acids and ferric chloride, respectively, at pH 2, solids contents of 2% (w/v), and a reaction temperature of 25 ± 2 deg. C during the acid leaching processes. The rates of metal leaching for bioleaching and chemical leaching are well described by a kinetic equation related to time. Although bioleaching generally requires a longer period of operation compared to chemical leaching, it achieves higher removal efficiency for heavy metals. The efficiency of leaching processes can be arranged in descending order as follows: bioleaching > ferric chloride leaching > sulfuric acid

  6. Radionuclide release from simulated waste material after biogeochemical leaching of uraniferous mineral samples

    Biogeochemical mineral dissolution is a promising method for the released of metals in low-grade host mineralization that contain sulphidic minerals. The application of biogeochemical mineral dissolution to engineered leach heap piles in the Elliot Lake region may be considered as a promising passive technology for the economic recovery of low grade Uranium-bearing ores. In the current investigation, the decrease of radiological activity of uraniferous mineral material after biogeochemical mineral dissolution is quantified by gamma spectroscopy and compared to the results from digestion/ICP-MS analysis of the ore materials to determine if gamma spectroscopy is a simple, viable alternative quantification method for heavy nuclides. The potential release of Uranium (U) and Radium-226 (226Ra) to the aqueous environment from samples that have been treated to represent various stages of leaching and passive closure processes are assessed. Dissolution of U from the solid phase has occurred during biogeochemical mineral dissolution in the presence of Acidithiobacillus ferrooxidans, with gamma spectroscopy indicating an 84% decrease in Uranium-235 (235U) content, a value in accordance with the data obtained by dissolution chemistry. Gamma spectroscopy data indicate that only 30% of the 226Ra was removed during the biogeochemical mineral dissolution. Chemical inhibition and passivation treatments of waste materials following the biogeochemical mineral dissolution offer greater protection against residual U and 226Ra leaching. Pacified samples resist the release of 226Ra contained in the mineral phase and may offer more protection to the aqueous environment for the long term, compared to untreated or inhibited residues, and should be taken into account for future decommissioning. - Highlights: • Gamma counting showed an 84% decrease in 235U after biogeochemical mineral leaching. • Chemical digestion/ICP-MS analysis also showed an 84% decrease in total U. • Over 70% of

  7. 氧化亚铁硫杆菌培养条件的筛选及脱硫效果研究%Screening of Culture Condition for Thiobacillus Ferrooxidans and Desulfurisation Test

    邓恩建; 杨朝晖; 曾光明; 陶然

    2005-01-01

    从湖南某煤矿附近的土壤中,分离出能有效脱除燃煤中硫的菌株TFD-9,鉴定为氧化亚铁硫杆菌.通过不同温度、pH值和底物浓度对TFD-9菌生物量的影响,确定了最适宜的培养条件;并试验了该菌株对不同能源物质的利用以及对煤的脱硫能力.实验表明:TFD-9菌的适宜生长条件为温度30℃、Fe2+浓度9g/L、pH值2.0,此时最大生物量达到9.26×107个/mL;菌株对能源物质的利用能力分别为Fe2+ 100%,S2O32- 62%,S少于50%;生物处理20d燃煤总硫脱除率为75.6%,硫化物硫脱除率为82.75%.

  8. S, Zn, Cr, Cu and Fe changes during fluvial sediments oxidation Transformaciones del S, Zn, Cr, Cu y Fe en sedimentos fluviales durante el proceso de secado

    María Pía Di Nanno

    2009-12-01

    Full Text Available Acidification of dredged sediments which have been disposed on land is highly dependent on redox shifts. The aim of the present work was to assess changes in sulphur, metal speciation (Zn, Fe, Cr y Cu and acidity caused by a polluted sediment oxidation event. Sediments were dessicated under controlled conditions and sulphide compounds (acid volatile sulphides-AVS- and sulphate, pH and neutralization potential were measured through time during 36 days. Zinc, Cu, Cr and Fe speciation (BCR metal sequential extraction procedure were measured at the beginning of the experiment and at day 22. An acid-base equilibrium method based on the BCR procedure was employed to assess the sediment acidification risk. Some of the re-suspension experiments were inoculated with an Acidithiobacillus ferrooxidans strain to assess biological catalysis on sulphide oxidation. Acid-base equilibrium results indicated the sediment sample had a significant acidification potential. Oxidation increased sulphate levels (56 to 2300 mg S kg-¹ in the desiccation experiment with a temporal evolution adjusted by a logistic model, and a 2100 to 3000 mg SO4 -² L-¹ increase for the resuspension experiments. Sulphide oxidation rates varied between 0 to 3.1.10-9 mg O2 kg-¹ s-¹ for the drying sediment. Zinc changes could be explained partially by ZnS conversion to ZnSO4 during oxidation. Iron reduction could be attributed to an increase in Fe oxides crystallinity. Acid-base equilibrium for the sample indicated it was a potentially acid-generating material. Zinc increased its bioavailability during drying and was the only metal that appeared in significant amounts in solution during re-suspension. Land-filling with dredged sediments could present increased metals bioavailability problems despite having an important and effective neutralization potential.La evaluación de los riesgos de acidificación por deposición de sedimentos dragados en superficie es muy dependiente de los

  9. Microbially influenced corrosion visualized by atomic force microscopy

    Telegdi, J.; Keresztes, Z.; Pálinkás, G.; Kálmán, E.; Sand, W.

    Corrosion, biofilm formation and the adsorption of different, corrosion-enhancing microbes (such as Desulfovibrio desulfuricans, Thiobacillus ferrooxidans, Thiobacillus intermedius, Leptospirillum ferrooxidans, and mixed cultures) to different surfaces (iron, copper, pyrite) have been studied in aqueous environment by atomic force microscopy (AFM). It is one of the most effective on-line techniques for imaging surfaces (bacterial, metallic, etc.) with high resolution.

  10. Oxygen and sulfur isotope systematics of sulfate produced by bacterial and abiotic oxidation of pyrite

    Balci, N.; Shanks, Wayne C., III; Mayer, B.; Mandernack, K.W.

    2007-01-01

    To better understand reaction pathways of pyrite oxidation and biogeochemical controls on ??18O and ??34S values of the generated sulfate in acid mine drainage (AMD) and other natural environments, we conducted a series of pyrite oxidation experiments in the laboratory. Our biological and abiotic experiments were conducted under aerobic conditions by using O2 as an oxidizing agent and under anaerobic conditions by using dissolved Fe(III)aq as an oxidant with varying ??18OH2O values in the presence and absence of Acidithiobacillus ferrooxidans. In addition, aerobic biological experiments were designed as short- and long-term experiments where the final pH was controlled at ???2.7 and 2.2, respectively. Due to the slower kinetics of abiotic sulfide oxidation, the aerobic abiotic experiments were only conducted as long term with a final pH of ???2.7. The ??34SSO4 values from both the biological and abiotic anaerobic experiments indicated a small but significant sulfur isotope fractionation (???-0.7???) in contrast to no significant fractionation observed from any of the aerobic experiments. Relative percentages of the incorporation of water-derived oxygen and dissolved oxygen (O2) to sulfate were estimated, in addition to the oxygen isotope fractionation between sulfate and water, and dissolved oxygen. As expected, during the biological and abiotic anaerobic experiments all of the sulfate oxygen was derived from water. The percentage incorporation of water-derived oxygen into sulfate during the oxidation experiments by O2 varied with longer incubation and lower pH, but not due to the presence or absence of bacteria. These percentages were estimated as 85%, 92% and 87% from the short-term biological, long-term biological and abiotic control experiments, respectively. An oxygen isotope fractionation effect between sulfate and water (??18 OSO4 s(-) H2 O) of ???3.5??? was determined for the anaerobic (biological and abiotic) experiments. This measured ??18 OSO42 - s(-) H2

  11. Enargite oxidation: A review

    Lattanzi, Pierfranco; Da Pelo, Stefania; Musu, Elodia; Atzei, Davide; Elsener, Bernhard; Fantauzzi, Marzia; Rossi, Antonella

    2008-01-01

    Enargite, Cu 3AsS 4, is common in some deposit types, e.g. porphyry systems and high sulphidation epithermal deposits. It is of environmental concern as a potential source of arsenic. In this communication, we review the current knowledge of enargite oxidation, based on the existing literature and our own original data. Explicit descriptions of enargite oxidation in natural environments are scarce. The most common oxidized alteration mineral of enargite is probably scorodite, FeAsO 4.2H 2O, with iron provided most likely by pyrite, a phase almost ubiquitously associated with enargite. Other secondary minerals after enargite include arsenates such as chenevixite, Cu 2Fe 2(AsO 4) 2(OH) 4.H 2O, and ceruleite, Cu 2Al 7(AsO 4) 4.11.5H 2O, and sulphates such as brochantite, Cu 4(SO 4)(OH) 6, and posnjakite, Cu 4(SO 4)(OH) 6·H 2O. Detailed studies of enargite field alteration at Furtei, Sardinia, suggest that most alteration occurs through dissolution, as testified by the appearance of etch pits at the surface of enargite crystals. However, apparent replacement by scorodite and cuprian melanterite was observed. Bulk oxidation of enargite in air is a very slow process. However, X-ray photoelectron spectroscopy (XPS) reveals subtle surface changes. From synchrotron-based XPS it was suggested that surface As atoms react very fast, presumably by forming bonds with oxygen. Conventional XPS shows the formation, on aged samples, of a nanometer-size alteration layer with an appreciably distinct composition with respect to the bulk. Mechanical activation considerably increases enargite reactivity. In laboratory experiments at acidic to neutral pH, enargite oxidation/dissolution is slow, although it is accelerated by the presence of ferric iron and/or bacteria such as Acidithiobacillus ferrooxidans and Sulfolobus BC. In the presence of sulphuric acid and ferric iron, the reaction involves dissolution of Cu and formation of native sulphur, subsequently partly oxidized to sulphate

  12. Lysogenic bacteriophage isolated from acidophilium

    Ward, Thomas W.; Bruhn, Debby F.; Bulmer, Deborah K.

    1992-01-01

    A bacteriophage identified as .phi.Ac1 capable of infecting acidophilic heterotropic bacteria (such as Acidiphilium sp.) and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phase having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element form ore or coal.

  13. fRNAdb Summary: FR085160 [

    Full Text Available FR085160 AJ237901,AJ237904,AJ237905,AJ237906 transfer RNA (tRNA), GAT (Ile/I) Isoleucine tRNA Le ... ptospirillum ferrooxidans,Leptospirillum sp. DSM ... 2391,Leptospirillum sp. DSM ... 9468,Leptospirillum sp ...

  14. The mutual effect of mixed Thiobacilli and Leptospirilli populations on pyrite bioleaching

    Battaglia-Brunet, F.; Hugues, P. d'; Cabral, T.; Cezac, C.; Garcia, Jean-louis; Morin, D.

    1998-01-01

    Although current bio-oxidation processes with mesophilic bacteria result from the occurrence of mixed populations, the mutual effect of the various species has not been studied very extensively to date. Mixed cultures made up of pure #Thiobacillus ferrooxidans$, #Thiobacillus thiooxidans$ and #Leptospirillum ferrooxidans$ strains of the DSM collection were batch tested for their ability to oxidize a cobaltiferous pyrite ore. The most efficient population for pyrite oxidation was composed of t...

  15. The essence of being extremophilic : the role of the unique archaeal membrane lipids

    Vossenberg, Jack L.C.M. van de; Driessen, Arnold J.M.; Konings, Wil N.

    1998-01-01

    In extreme environments, mainly Archaea are encountered. The archaeal cytoplasmic membrane contains unique ether lipids that cannot easily be degraded, are temperature- and mechanically resistant, and highly salt tolerant. Moreover, thermophilic and extreme acidophilic Archaea possess membrane-spann

  16. Three new genera of fungi from extremely acidic soils

    Hujslová, Martina; Kubátová, A.; Kostovčík, Martin; Blanchette, R.A.; de Beer, Z.W.; Chudíčková, Milada; Kolařík, Miroslav

    2014-01-01

    Roč. 13, č. 3 (2014), s. 819-831. ISSN 1617-416X Institutional support: RVO:61388971 Keywords : Amplistromataceae * Micromycetes * Acidophilic Subject RIV: EE - Microbiology, Virology Impact factor: 1.913, year: 2014

  17. Significance of Microbial Communities and Interactions in Safeguarding Reactive Mine Tailings by Ecological Engineering▿†

    N̆ancucheo, Ivan; Johnson, D. Barrie

    2011-01-01

    Pyritic mine tailings (mineral waste generated by metal mining) pose significant risk to the environment as point sources of acidic, metal-rich effluents (acid mine drainage [AMD]). While the accelerated oxidative dissolution of pyrite and other sulfide minerals in tailings by acidophilic chemolithotrophic prokaryotes has been widely reported, other acidophiles (heterotrophic bacteria that catalyze the dissimilatory reduction of iron and sulfur) can reverse the reactions involved in AMD genes...

  18. 耐低pH的氧化亚铁硫杆菌选育及其氧化硫酸亚铁的初步研究%Adaption of Thiobacillus ferrooxidans Tolerating Low pH and Biooxidation of Ferrous Sulphate

    龙中儿; 黄运红; 蔡昭铃; 丛威; 欧阳藩

    2002-01-01

    低pH条件下高效氧化硫酸亚铁的氧化亚铁硫杆菌的选育是两步法生物浸出工艺应用的前提条件. 本文经定向培育和连续培养筛选得到pH为1.7~2.0条件下氧化硫酸亚铁的氧化亚铁硫杆菌驯化菌,其氧化硫酸亚铁的最适pH值由原来的2.0~3.0下降到1.7~2.0,在初始pH为1.7条件下培养48 h后,9K培养基中Fe2+氧化率从13.1%提高到85%. 动力学研究结果表明,该菌在250 ml摇瓶中装量100 ml、接种量10%、起始pH=1.7、温度31oC、转速120 r/min的优化条件下培养52 h后,9K培养基中Fe2+氧化率在98%以上,对数期的细菌比生长速率为0.0635 h(1,与出发菌株相近. 该菌有望用于两步法生物浸出矿物的新工艺.

  19. Biohydrometallurgy of low-grade, carbonate bearing sandstone uranium ore

    An alkaline, carbonate bearing, sandstone uranium ore was leached microbiologically. Pure as well as mixed cultures of local isolated of Thiobacillus ferrooxidans were employed. Sandstone uranium ore contained 5% calcite, 2.3% Fe2O3, minor amounts of pyrite and was alkaline in nature. Shake flask studies employing mixed and pure culture of thiobacilli were carried out. Ore was amended with different oxidizable inorganic energy sources such as FeSO4, slag and sulfur etc. The leaching capability of local isolate of T. ferrooxidans was also compared with that of pure ATCC culture number-sign 13661 of this bacteria. It was found that the local isolate leached out uranium more efficiently as compared with exenic culture. Further, slag was found to be economical energy source for these bacteria. Mixed culture studies revealed that the percentage of leached uranium was increasing with increase in the proportion of T. ferrooxidans in the inoculum

  20. Bioleaching of marmatite in high concentration of iron

    邱冠周; 吴伯增; 覃文庆; 蓝卓越

    2002-01-01

    Bioleaching of marmatite with a culture of Thiobacillus ferrooxidans and Thiobacillus thiooxidans in high concentration of iron was studied, the results show that the zinc leaching rate of the mixed culture is faster than that of the sole Thiobacillus ferrooxidans, the increasing iron concentration in leaching solution enhances the zinc leaching rate. The SEM analysis indicates that the chemical leaching residues is covered with porous solid layer of elemental sulfur, while elemental sulfur is not found in the bacterial leaching residues. The primary role of bacteria in bioleaching of sphalerite is to oxidize the chemical leaching products of ferrous ion and elemental sulfur, thus the indirect mechanism prevails in the bioleaching of marmatite.