WorldWideScience

Sample records for acidic sulfate aerosols

  1. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    Kravitz, Ben

    2009-07-28

    We used a general circulation model of Earth\\'s climate to conduct geoengineering experiments involving stratospheric injection of sulfur dioxide and analyzed the resulting deposition of sulfate. When sulfur dioxide is injected into the tropical or Arctic stratosphere, the main additional surface deposition of sulfate occurs in midlatitude bands, because of strong cross-tropopause flux in the jet stream regions. We used critical load studies to determine the effects of this increase in sulfate deposition on terrestrial ecosystems by assuming the upper limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2 into the tropical stratosphere or 3 Tg of SO2 into the Arctic stratosphere, neither the maximum point value of sulfate deposition of approximately 1.5 mEq m−2 a−1 nor the largest additional deposition that would result from geoengineering of approximately 0.05 mEq m−2 a−1 is enough to negatively impact most ecosystems.

  2. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  3. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years

    Weber, Rodney J.; Guo, Hongyu; Russell, Armistead G.; Nenes, Athanasios

    2016-04-01

    Particle acidity affects aerosol concentrations, chemical composition and toxicity. Sulfate is often the main acid component of aerosols, and largely determines the acidity of fine particles under 2.5 μm in diameter, PM2.5. Over the past 15 years, atmospheric sulfate concentrations in the southeastern United States have decreased by 70%, whereas ammonia concentrations have been steady. Similar trends are occurring in many regions globally. Aerosol ammonium nitrate concentrations were assumed to increase to compensate for decreasing sulfate, which would result from increasing neutrality. Here we use observed gas and aerosol composition, humidity, and temperature data collected at a rural southeastern US site in June and July 2013 (ref. ), and a thermodynamic model that predicts pH and the gas-particle equilibrium concentrations of inorganic species from the observations to show that PM2.5 at the site is acidic. pH buffering by partitioning of ammonia between the gas and particle phases produced a relatively constant particle pH of 0-2 throughout the 15 years of decreasing atmospheric sulfate concentrations, and little change in particle ammonium nitrate concentrations. We conclude that the reductions in aerosol acidity widely anticipated from sulfur reductions, and expected acidity-related health and climate benefits, are unlikely to occur until atmospheric sulfate concentrations reach near pre-anthropogenic levels.

  4. Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation.

    Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2015-11-17

    The effects of particle-phase water and the acidity of pre-existing sulfate seed particles on the formation of isoprene secondary organic aerosol (SOA) was investigated. SOA was generated from the photo-oxidation of isoprene in a flow tube reactor at 70% relative humidity (RH) and room temperature in the presence of three different sulfate seeds (effloresced and deliquesced ammonium sulfate and ammonium bisulfate) under low NOx conditions. High OH exposure conditions lead to little isoprene epoxydiol (IEPOX) SOA being generated. The primary result is that particle-phase water had the largest effect on the amount of SOA formed, with 60% more SOA formation occurring with deliquesced ammonium sulfate seeds as compared to that on effloresced ones. The additional organic material was highly oxidized. Although the amount of SOA formed did not exhibit a dependence on the range of seed particle acidity examined, perhaps because of the low amount of IEPOX SOA, the levels of high-molecular-weight material increased with acidity. While the uptake of organics was partially reversible under drying, the results nevertheless indicate that particle-phase water enhanced the amount of organic aerosol material formed and that the RH cycling of sulfate particles may mediate the extent of isoprene SOA formation in the atmosphere. PMID:26460477

  5. Carboxylic acids, sulfates, and organosulfates in processed continental organic aerosol over the southeast Pacific Ocean during VOCALS-REx 2008

    Hawkins, L. N.; Russell, L. M.; Covert, D. S.; Quinn, P. K.; Bates, T. S.

    2010-07-01

    Submicron particles were collected on board the NOAA R/V Ronald H. Brown during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific marine boundary layer in October and November 2008. The aerosol in this region was characterized by low numbers of particles (150-700 cm-3) that were dominated by sulfate ions at concentrations of 0.9 ± 0.7 μg m-3 and organic mass at 0.6 ± 0.4 μg m-3, with no measurable nitrate and low ammonium ion concentrations. Measurements of submicron organic aerosol functional groups and trace elements show that continental outflow of anthropogenic emissions is the dominant source of organic mass (OM) to the southeast Pacific with an additional, smaller contribution of organic mass from primary marine sources. This continental source is supported by a correlation between OM and radon. Saturated aliphatic C-CH (alkane) composed 41 ± 27% of OM. Carboxylic acid COOH (32 ± 23% of OM) was observed in single particles internally mixed with ketonic carbonyl, carbonate, and potassium. Organosulfate COSO3 (4 ± 8% of OM) was observed only during the periods of highest organic and sulfate concentrations and lowest ammonium concentrations, consistent with a sulfuric acid epoxide hydrolysis for proposed surrogate compounds (e.g., isoprene oxidation products) or reactive glyoxal uptake mechanisms from laboratory studies. This correlation suggests that in high-sulfate, low-ammonium conditions, the formation of organosulfate compounds in the atmosphere contributes a significant fraction of aerosol OM (up to 13% in continental air masses). Organic hydroxyl C-OH composed 20 ± 12% of OM and up to 50% of remote marine OM and was inversely correlated with radon indicating a marine source. A two-factor solution of positive matrix factorization (PMF) analysis resulted in one factor dominated by organic hydroxyl (>70% by mass) and one factor dominated by saturated aliphatic C-CH (alkane) and carboxylic acid

  6. Formation of the natural sulfate aerosol

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  7. Laboratory studies of thin films representative of atmospheric sulfate aerosol

    Fortin, Tara Jean

    Sulfate aerosols are present globally in both the upper troposphere and lower stratosphere. These aerosols are of great interest because they have a profound influence on Earth's radiation balance, heterogeneous chemistry, and cloud formation mechanisms throughout the atmosphere. The magnitude of these effects is ultimately determined by the size, phase, and chemical composition of the aerosols themselves. This thesis explores some of the questions that remain concerning the phase of these aerosols under atmospheric conditions and the effects of their chemical composition on heterogeneous chemistry and cloud formation mechanisms. In the upper troposphere, cirrus clouds are thought to form via the homogeneous nucleation of ice out of dilute sulfate aerosols such as ammonium sulfate ((NH4)2SO4). To investigate this, the low-temperature phase behavior of ammonium sulfate films has been studied using Fourier transform infrared (FTIR) spectroscopy. Experiments performed as a function of increasing relative humidity demonstrate that a phase transition from crystalline (NH 4)2SO4 to a metastable aqueous solution can occur at temperatures below the eutectic at 254 K. However, on occasion, direct deposition of ice from the vapor phase was observed, possibly indicating selective heterogeneous nucleation. In addition to serving as nuclei for cirrus clouds, sulfate aerosols can participate in heterogeneous reactions. The interaction of HNO3 with ammonium sulfate has been investigated as a possible loss mechanism for gas-phase HNO3 using a Knudsen cell reactor coupled with transmission FTIR spectroscopy. The results show that HNO3 reacts with solid ammonium sulfate to produce ammonium nitrate and letovicite at 203 K. Furthermore, this reaction is enhanced as a function of relative humidity from 0 to 41%. In the lower stratosphere, polar stratospheric clouds (PSCs) are important for springtime ozone depletion. The vapor deposition of ice on sulfuric acid tetrahydrate (SAT) has

  8. Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism

    Misra, Amit; Krissansen-Totton, Joshua; Koehler, Matthew C.; Sholes, Steven

    2015-01-01

    Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism, and therefore a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosol...

  9. Personal exposures to acidic aerosols and ammonia

    Indoor, outdoor, and personal exposures to acidic aerosols, sulfates, and ammonia were monitored for twenty-four children living in Uniontown, Pennsylvania. Adolescent children, age 11, participated in an investigation of air pollution (PM10, sulfates, acid aerosols, ozone) and pulmonary performance during the Summer of 1990. 92% of the participants (all from non-smoking homes) volunteered to wear personal monitors and record daily activities over two twelve-hour daytime periods. Similar air pollution measurements were made inside and immediately outside their homes. Indoor and outdoor concentrations were measured using the Harvard-EPA annular denuder system (HEADS), while personal exposures were measured using the Personal Annular Denuder system (PADS). All exposure measurements were compared to measurements collected at a centrally located ambient monitoring site. The paper reports the relationships among personal, indoor home, outdoor home, and central site measurements of acidic aerosols, sulfate particles, and ammonia. During days where personal monitoring occurred, hydrogen ion concentrations range from 0 to 520 nmoles/m3 at the central site. There was not substantial spatial variation in ambient acidity over this Western Pennsylvania community. Indoor concentrations were substantially lower than outdoors, with a mean ratio of 0.14. Personal exposures were typically greater than indoor exposures, but averaged only 29% of the outdoor concentrations. Time activity, housing factors, sulfate particles, and ammonia concentrations are analyzed. The impact of this study on the characterization of population exposures to acidic aerosols in epidemiologic studies and modeling also are discussed

  10. Acid Sulfate Alteration on Mars

    Ming, D. W.; Morris, R. V.

    2016-01-01

    A variety of mineralogical and geochemical indicators for aqueous alteration on Mars have been identified by a combination of surface and orbital robotic missions, telescopic observations, characterization of Martian meteorites, and laboratory and terrestrial analog studies. Acid sulfate alteration has been identified at all three landing sites visited by NASA rover missions (Spirit, Opportunity, and Curiosity). Spirit landed in Gusev crater in 2004 and discovered Fe-sulfates and materials that have been extensively leached by acid sulfate solutions. Opportunity landing on the plains of Meridiani Planum also in 2004 where the rover encountered large abundances of jarosite and hematite in sedimentary rocks. Curiosity landed in Gale crater in 2012 and has characterized fluvial, deltaic, and lacustrine sediments. Jarosite and hematite were discovered in some of the lacustrine sediments. The high elemental abundance of sulfur in surface materials is obvious evidence that sulfate has played a major role in aqueous processes at all landing sites on Mars. The sulfate-rich outcrop at Meridiani Planum has an SO3 content of up to 25 wt.%. The interiors of rocks and outcrops on the Columbia Hills within Gusev crater have up to 8 wt.% SO3. Soils at both sites generally have between 5 to 14 wt.% SO3, and several soils in Gusev crater contain around 30 wt.% SO3. After normalization of major element compositions to a SO3-free basis, the bulk compositions of these materials are basaltic, with a few exceptions in Gusev crater and in lacustrine mudstones in Gale crater. These observations suggest that materials encountered by the rovers were derived from basaltic precursors by acid sulfate alteration under nearly isochemical conditions (i.e., minimal leaching). There are several cases, however, where acid sulfate alteration minerals (jarosite and hematite) formed in open hydrologic systems, e.g., in Gale crater lacustrine mudstones. Several hypotheses have been suggested for the

  11. Relative importance of nitrate and sulfate aerosol production mechanisms in urban atmospheres

    The relative importance of the various sulfate and nitrate aerosol production mechanisms is calculated for different atmospheric conditions. The calculation scheme used to determine the rates of nitrate and sulfate production, based on the concept that vapor transfer to the aerosols and nitrate and sulfate formation within the aerosols are coupled kinetic processes, considers sulfate formation by ozone and hydrogen peroxide oxidation and catalytic oxidation in the presence of soot, iron and manganese of sulfite solutions and sulfuric acid condensation and nitrate formation by the liquid-phase oxidation of dissolved nitrogen oxides for different initial gas concentrations and particle compositions and sizes. It is found that sulfate production is higher under daytime conditions, primarily proceeding by mechanisms involving sulfuric acid and hydrogen peroxide, while at night oxidation processes on the surface of the aerosol film are more important. Nitrate tends to decrease nighttime sulfate production due to an increase in aerosol acidity and nitrate production is found to be higher under nighttime conditions and in the winter

  12. CLIMATE CHANGE ADAPTATION IN ACID SULFATE LANDSCAPES

    Chuxia Lin

    2012-01-01

    Oxidation of sulfide minerals produces sulfuric acid and consequently creates Acid Sulfate Landscapes (ASLs), which represent one of the most degraded types of land-surface environments. Although acid sulfate-producing weathering is a naturally occurring process, it is markedly facilitated by human intervention. Mining is by far the dominant anthropogenic cause for the creation of inland acid sulfate footprints while land reclamation in coastal lowlands is the driver for the formation of coas...

  13. Why Is the Climate Forcing of Sulfate Aerosols So Uncertain?

    2001-01-01

    Sulfate aerosol particles have strong scattering effect on the solar radiation transfer which results in increasing the planet albedo and, hence, tend to cool the earth-atmosphere system. Also, aerosols can act as the cloud condensation nuclei (CCN) which tend to increase the albedo of clouds and cool the global warming. The ARPEGE-Climat version 3 AGCM with FMR radiation scheme is used to estimate the direct and indirect radiative forcing of sulfate aerosols. For minimizing the uncertainties in assessing this kind of cooling effect, all kinds of factors are analyzed which have been mixed in the assessment process and may lead to the different results of the radiative forcing of aerosols. It is noticed that one of the uncertainties to assess the climate forcing of aerosols by GCM results from the different definition of radiative forcing that was used. In order to clarify this vague idea, the off-line case for considering no feedbacks and on-line case for including all the feedbacks have been used for assessment. The direct forcing of sulfate aerosols in off-line case is -0.57 W/m2 and -0.38 W/m2 for the clear sky and all sky respectively. The value of on-line case appears to be a little larger than that in off-line case chiefly due to the feedback of clouds. The indirect forcing of sulfate aerosols in off-line case is -1.4 W / m2 and -1.0 W / m2 in on-line case. The radiative forcing of sulfate aerosols has obvious regional characteristics. There is a larger negative radiative forcing over North America, Europe and East Asia. If the direct and indirect forcing are added together, it is enough to offset the positive radiative forcing induced by the greenhouse gases in these regions.

  14. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H235SO4) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables

  15. CLIMATE CHANGE ADAPTATION IN ACID SULFATE LANDSCAPES

    Chuxia Lin

    2012-01-01

    Full Text Available Oxidation of sulfide minerals produces sulfuric acid and consequently creates Acid Sulfate Landscapes (ASLs, which represent one of the most degraded types of land-surface environments. Although acid sulfate-producing weathering is a naturally occurring process, it is markedly facilitated by human intervention. Mining is by far the dominant anthropogenic cause for the creation of inland acid sulfate footprints while land reclamation in coastal lowlands is the driver for the formation of coastal ASLs. The projected climate change highlights the possibility of an increase in the frequency and severity of extreme weather events such as droughts and heavy rains, which is likely to accelerate the acid generation in some circumstances and increase the frequency and magnitude of acid discharge. Sea level rise as a result of global warming will cause additional problems with the coastal ASLs. This is a review article. The following aspects are covered: (a the overriding biogeochemical processes leading to acid sulfate-producing weathering, (b a brief introduction to the inland acid sulfate landscapes, (c a brief introduction to the coastal acid sulfate landscapes, (d the likely impacts of climate change on ASLs and (e the possible measures to combat climate change-induced environmental degradation in the identified key acid sulfate footprints. The projected climate change is like to significantly affect the acid sulfate landscapes in different ways. Appropriate management strategies and cost-effective technologies need to be developed in order to minimize the climate change-induced ecological degradation.

  16. O-MIF signature in sulfate aerosols from Mexico City

    Erwann, Legendre; Erwan, Martin; Slimane, Bekki; Armando, Retama; Pierre, Cartigny; Becky, Alexander; Aurora, Armienta Maria; Claus, Siebe

    2016-04-01

    Since the discovery of mass independent fractionation of sulfur and oxygen isotopes (S- and O-MIF) on Earth, the study of sulfate isotopic composition opened a new and wide field of investigation on the evolution of the atmospheric composition and its consequences for the climate. Sulfate aerosols that have a negative forcing on the climate can therefore be studied via their isotopic composition and leads to better constraints on their formation, fate and sinks, which is essential for our understanding of the sulfur cycle on Earth. In this study we focus on the interaction between anthropogenic and volcanic emissions that is necessary to figure out the climatic impact of volcanoes in large urban area. For the first time the O- composition of sulfate aerosols was monitored over the past 25 years in one of the world's largest megacities: Mexico City (MC). Sulfate aerosols from the megalopolis were sampled from 1989 to 2013 in different stations by high volume pumps and collected on glass filters. Additionally, fresh volcanic ash samples were collected during recent eruptions (from 1997 to 2013) of the Popocatepetl, which is only 70km from MC. After extraction and purification of sulfate from filters and volcanic ash, the isotopic composition is measured. The sulfate aerosols from MC show O-MIF composition with Δ17O of about 0.7‰ during the wet season and around 1.2‰ during the dry season and δ18O from -0.4‰ to 17.5‰. However, the volcanic sulfate aerosols from the Popocatepetl do not show O-MIF and δ18O vary from 7.0‰ to 12.2‰. The dataset allows us to discuss the seasonal variations in the SO2 oxidation pathways that lead to sulfate aerosol formation in the troposphere above MC during the last 25 years. Furthermore, since 1997 we are able to trace and quantify the influence of volcanic sulfate aerosols on the megalopolis, which is important for the sulfur budget in the region.

  17. Comparison of normal and asthmatic subjects' responses to sulfate pollutant aerosols

    Utell, M.J.; Morrow, P.E.; Hyde, R.W.

    1980-01-01

    Epidemiological studies support an association between elevated levels of sulfates and acute respiratory disease. To determine if these pollutants produce airway hyperreactivity, 16 normal and 17 asthmatic subjects inhaled a control NaCl aerosol and the following sulfates: ammonium sulfate, sodium bisulfate, ammonium bisulfate, and sulfuric acid. A Lovelace generator produced particles with an average MMAD of approx. 1.0 ..mu..m (sigma/sub g/ approx. = 2.0) and concentrations of 0.1 and 1.0 mg/m/sup 3/. By double-blind randomization, all subjects breathed these aerosols for a 16-minute period. To determine if sulfate inhalation caused increased reactivity to a known bronchoconstrictor, all subjects inhaled carbachol following each 16-minute exposure. Before, during, and after exposure, pulmonary function studies were performed. When compared to NaCl, sulfate (1 mg/m/sup 3/) produced significant reductions in airway conductance and flow rates in asthmatics. The two most sensitive asthmatics demonstrated changes even at 0.1 mg/m/sup 3/ sulfate. To a far more significant degree, the bronchoconstrictor action of carbachol was potentiated by sulfates more or less in relation to their acidity in normals and asthmatics.

  18. Hygroscopicity of organic compounds from biomass burning and their influence on the water uptake of mixed organic ammonium sulfate aerosols

    Lei, T.; Zuend, A.; Wang, W. G.; Zhang, Y. H.; Ge, M. F.

    2014-10-01

    Hygroscopic behavior of organic compounds, including levoglucosan, 4-hydroxybenzoic acid, and humic acid, as well as their effects on the hygroscopic properties of ammonium sulfate (AS) in internally mixed particles are studied by a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds used represent pyrolysis products of wood that are emitted from biomass burning sources. It is found that humic acid aerosol particles only slightly take up water, starting at RH (relative humidity) above ~70%. This is contrasted by the continuous water absorption of levoglucosan aerosol particles in the range 5-90% RH. However, no hygroscopic growth is observed for 4-hydroxybenzoic acid aerosol particles. Predicted water uptake using the ideal solution theory, the AIOMFAC model and the E-AIM (with UNIFAC) model are consistent with measured hygroscopic growth factors of levoglucosan. However, the use of these models without consideration of crystalline organic phases is not appropriate to describe the hygroscopicity of organics that do not exhibit continuous water uptake, such as 4-hydroxybenzoic acid and humic acid. Mixed aerosol particles consisting of ammonium sulfate and levoglucosan, 4-hydroxybenzoic acid, or humic acid with different organic mass fractions, take up a reduced amount of water above 80% RH (above AS deliquescence) relative to pure ammonium sulfate aerosol particles of the same mass. Hygroscopic growth of mixtures of ammonium sulfate and levoglucosan with different organic mass fractions agree well with the predictions of the thermodynamic models. Use of the Zdanovskii-Stokes-Robinson (ZSR) relation and AIOMFAC model lead to good agreement with measured growth factors of mixtures of ammonium sulfate with 4-hydroxybenzoic acid assuming an insoluble organic phase. Deviations of model predictions from the HTDMA measurement are mainly due to the occurrence of a microscopical solid phase restructuring at increased humidity (morphology

  19. Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism

    Misra, Amit; Koehler, Matthew C; Sholes, Steven

    2015-01-01

    Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism, and therefore a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosols with lifetimes of months to years. We demonstrate that the rapid increase and gradual decrease in sulfate aerosol loading associated with these eruptions may be detectable in transit transmission spectra with future large-aperture telescopes, such as the James Webb Space Telescope (JWST) and European Extremely-Large Telescope (E-ELT) for a planetary system at a distance of 10 pc, assuming an Earth-like atmosphere, bulk composition, and size. Specifically, we find that a S/N of 12.1 and 7.1 could be achieved with E-ELT (...

  20. African and marine contributions to sulfate aerosols of southern hemisphere

    From 1971 to 1973, during Gallieni and Marion Dufresne cruises relieving the scientific teams in the French Austral and Antarctic stations, systematic measurements of radon 222, sulfate aerosols and sulfur dioxide (SO2) atmospheric concentrations were made, carefully avoiding contaminations by ships exhausts. At sea level, South of 35 deg S, concentrations of sulfates are 1μg m-3. Bearing in mind the long distances from continental coasts and our data showing aerosols very short life-time in these areas, this value is only explainable if the marine source for aerosols is taken into account. Northward, between 5 deg and 25 deg S, the easterly circulation pattern requires to distinguish between the eastern and western African areas. Over the Indian Ocean, little higher sulfates concentration (1.3μg m-3) also characterizes an aerosol marine source, when we refer to the very low radon concentrations we observe. Over the Atlantic, radon concentrations ten times higher are related to sulphate concentrations greater than 2μg m-3, which are, for one half, from continental origin. The SO2 measurements support our interpretation of the data

  1. Transient Sulfate Aerosols as a Signature of Exoplanet Volcanism.

    Misra, Amit; Krissansen-Totton, Joshua; Koehler, Matthew C; Sholes, Steven

    2015-06-01

    Geological activity is thought to be important for the origin of life and for maintaining planetary habitability. We show that transient sulfate aerosols could be a signature of exoplanet volcanism and therefore of a geologically active world. A detection of transient aerosols, if linked to volcanism, could thus aid in habitability evaluations of the exoplanet. On Earth, subduction-induced explosive eruptions inject SO2 directly into the stratosphere, leading to the formation of sulfate aerosols with lifetimes of months to years. We demonstrate that the rapid increase and gradual decrease in sulfate aerosol loading associated with these eruptions may be detectable in transit transmission spectra with future large-aperture telescopes, such as the James Webb Space Telescope (JWST) and European Extremely Large Telescope (E-ELT), for a planetary system at a distance of 10 pc, assuming an Earth-like atmosphere, bulk composition, and size. Specifically, we find that a signal-to-noise ratio of 12.1 and 7.1 could be achieved with E-ELT (assuming photon-limited noise) for an Earth analogue orbiting a Sun-like star and M5V star, respectively, even without multiple transits binned together. We propose that the detection of this transient signal would strongly suggest an exoplanet volcanic eruption, if potential false positives such as dust storms or bolide impacts can be ruled out. Furthermore, because scenarios exist in which O2 can form abiotically in the absence of volcanic activity, a detection of transient aerosols that can be linked to volcanism, along with a detection of O2, would be a more robust biosignature than O2 alone. PMID:26053611

  2. Testing the linearity of the response to combined greenhouse gas and sulfate aerosol forcing

    Gillett, N.P.; Wehner, M.F.; S. F. B. Tett; Weaver, A. J.

    2004-01-01

    Detection and attribution studies of the temperature response to anthropogenic greenhouse gases and tropospheric sulfate aerosol have relied on the assumption that the responses to each of these forcings add linearly. Using surface temperature from three ensembles of integrations of the second Hadley Centre coupled model (HadCM2) forced with observed changes in greenhouse gases alone, the direct effect of sulfate aerosol alone, and combined changes in greenhouse gases and sulfate aerosol, we ...

  3. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    Song, Chen [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Now at R. J. Reynolds Tobacco Company, Winston-Salem North Carolina USA; Gyawali, Madhu [Department of Physics, University of Nevada Reno, Nevada System of Higher Education, Reno Nevada USA; Now at Desert Research Institute, Nevada System of Higher Education, Reno Nevada USA; Zaveri, Rahul A. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Shilling, John E. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Arnott, W. Patrick [Department of Physics, University of Nevada Reno, Nevada System of Higher Education, Reno Nevada USA

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  4. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-01

    is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  5. Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer

    Ghahremaninezhad, Roghayeh; Norman, Ann-Lise; Abbatt, Jonathan P. D.; Levasseur, Maurice; Thomas, Jennie L.

    2016-04-01

    Size-segregated aerosol sulfate concentrations were measured on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic during July 2014. The objective of this study was to utilize the isotopic composition of sulfate to address the contribution of anthropogenic and biogenic sources of aerosols to the growth of the different aerosol size fractions in the Arctic atmosphere. Non-sea-salt sulfate is divided into biogenic and anthropogenic sulfate using stable isotope apportionment techniques. A considerable amount of the average sulfate concentration in the fine aerosols with a diameter 63 %), which is higher than in previous Arctic studies measuring above the ocean during fall ( 30 %) (Norman et al., 1999). The anthropogenic sulfate concentration was less than that of biogenic sulfate, with potential sources being long-range transport and, more locally, the Amundsen's emissions. Despite attempts to minimize the influence of ship stack emissions, evidence from larger-sized particles demonstrates a contribution from local pollution. A comparison of δ34S values for SO2 and fine aerosols was used to show that gas-to-particle conversion likely occurred during most sampling periods. δ34S values for SO2 and fine aerosols were similar, suggesting the same source for SO2 and aerosol sulfate, except for two samples with a relatively high anthropogenic fraction in particles Ocean during the productive summer months.

  6. Effective Henry's Law constant measurements for glyoxal in model aerosols containing sulfate

    Kampf, C.; Waxman, E.; Slowik, J.; Dommen, J.; Prevot, A.; Baltensperger, U.; Noziere, B.; Hoffmann, T.; Volkamer, R.

    2012-04-01

    Traditional models represent secondary organic aerosol (SOA) formation based on the gas-phase oxidation of a limited set of precursor molecules. However, these models tend to under-estimate the amounts and degree of oxygenation of actual SOA, indicating missing processes. One such source that has become increasingly important in recent years is glyoxal (CHOCHO, the smallest alpha-dicarbonyl). Unlike traditional SOA precursors, glyoxal forms SOA by partitioning to the aqueous phase according to Henry's Law. This work presents an analysis of Henry's Law constants for glyoxal uptake to laboratory-generated aerosols in a dynamically coupled gas-aerosol system. We combine CU LED-CE-DOAS measurements of gas-phase glyoxal with online HR-Tof-AMS and time-resolved HPLC ESI MS/MS particle-phase measurements to characterize the time resolved evolution of glyoxal partitioning, and relate molecular-specific measurements to AMS mass spectra. The experiments were performed in the simulation chamber facility at PSI, Switzerland, and investigate ammonium sulfate (AS), and mixed AS / fulvic acid seed aerosols under relative humidity conditions ranging from 50 to 85% RH. The Henry's Law and effective Henry's Law constants are compared with other values reported in the literature.

  7. Effects of the physical state of tropospheric ammonium-sulfate-nitrate particles on global aerosol direct radiative forcing

    S. T. Martin

    2004-01-01

    Full Text Available The effect of aqueous versus crystalline sulfate-nitrate-ammonium tropospheric particles on global aerosol direct radiative forcing is assessed. A global three-dimensional chemical transport model predicts sulfate, nitrate, and ammonium aerosol mass. An aerosol thermodynamics model is called twice, once for the upper side (US and once for lower side (LS of the hysteresis loop of particle phase. On the LS, the sulfate mass budget is 40% solid ammonium sulfate, 12% letovicite, 11% ammonium bisulfate, and 37% aqueous. The LS nitrate mass budget is 26% solid ammonium nitrate, 7% aqueous, and 67% gas-phase nitric acid release due to increased volatility upon crystallization. The LS ammonium budget is 45% solid ammonium sulfate, 10% letovicite, 6% ammonium bisulfate, 4% ammonium nitrate, 7% ammonia release due to increased volatility, and 28% aqueous. LS aerosol water mass partitions as 22% effloresced to the gas-phase and 78% remaining as aerosol mass. The predicted US/LS global fields of aerosol mass are employed in a Mie scattering model to generate global US/LS aerosol optical properties, including scattering efficiency, single scattering albedo, and asymmetry parameter. Global annual average LS optical depth and mass scattering efficiency are, respectively, 0.023 and 10.7 m2 (g SO4-2-1, which compare to US values of 0.030 and 13.9 m2 (g SO4-2-1. Radiative transport is computed, first for a base case having no aerosol and then for the two global fields corresponding to the US and LS of the hysteresis loop. Regional, global, seasonal, and annual averages of top-of-the-atmosphere aerosol radiative forcing on the LS and US (FL and FU, respectively, in W m-2 are calculated. Including both anthropogenic and natural emissions, we obtain global annual averages of FL=-0.750, FU=-0.930, and DFU,L=24% for full sky calculations without clouds and FL=-0.485, FU=-0.605, and DFU,L=25% when clouds are included. Regionally, DFU,L=48% over the USA, 55% over Europe

  8. Simulation of nitrate, sulfate, and ammonium aerosols over the United States

    J. M. Walker

    2012-11-01

    Full Text Available Atmospheric concentrations of inorganic gases and aerosols (nitrate, sulfate, and ammonium are simulated for 2009 over the United States using the chemical transport model GEOS-Chem. Predicted aerosol concentrations are compared with surface-level measurement data from the Interagency Monitoring of Protected Visual Environments (IMPROVE, the Clean Air Status and Trends Network (CASTNET, and the California Air Resources Board (CARB. Sulfate predictions nationwide are in reasonably good agreement with observations, while nitrate and ammonium are over-predicted in the East and Midwest, but under-predicted in California, where observed concentrations are the highest in the country. Over-prediction of nitrate in the East and Midwest is consistent with results of recent studies, which suggest that nighttime nitric acid formation by heterogeneous hydrolysis of N2O5 is over-predicted based on current values of the N2O5 uptake coefficient, γ, onto aerosols. After reducing the value of γ by a factor of 10, predicted nitrate levels in the US Midwest and East still remain higher than those measured, and over-prediction of nitrate in this region remains unexplained. Comparison of model predictions with satellite measurements of ammonia from the Tropospheric Emissions Spectrometer (TES indicates that ammonia emissions in GEOS-Chem are underestimated in California and that the nationwide seasonality applied to ammonia emissions in GEOS-Chem does not represent California very well, particularly underestimating winter emissions. An ammonia sensitivity study indicates that GEOS-Chem simulation of nitrate is ammonia-limited in southern California and much of the state, suggesting that an underestimate of ammonia emissions is likely the main cause for the under-prediction of nitrate aerosol in many areas of California. An approximate doubling of ammonia emissions is needed to reproduce observed nitrate concentrations in

  9. Acid Sulfate Alteration in Gusev Crater, Mars

    Morris, R. V.; Ming, D. W.; Catalano, J. G.

    2016-01-01

    dust. The Moessbauer parameters are not definitive for mineralogical speciation (other than octahedrally-coordinated Fe(3+) but are consistent with a schwertmannite-like phase (i.e., a nanophase ferric oxide). The high oxidation state and values of Moessbauer parameters (center shift and quadrupole splitting) for the high-SO3 samples imply ferric sulfate (i.e., oxidized sulfur), although the hydration state cannot be constrained. In no case is there an excess of SO3 over available cations (i.e., no evidence for elemental sulfur), and Fe sulfide (pyrite) has been detected in only one Gusev sample. The presence of both high-SiO2 (and low total iron and SO3) and high SO3 (and high total iron as ferric sulfate) can be accommodated by a two-step geochemical model developed with the Geochemist's Workbench. (1) Step 1 is anoxic acid sulfate leaching of Martian basalt at high water-to rock ratios (greater than 70). The result is a high-SiO2 residue0, and anoxic conditions are required to solubilize Fe as Fe(2+). (2) Step 2 is the oxic precipitation of sulfate salts from the leachate. Oxic conditions are required to produce the high concentrations of ferric sulfate with minor Mg-sulfates and no detectable Fe(2+)-sulfates.

  10. Controls of Soluble Al in Experimental Acid Sulfate Conditions and Acid Sulfate Soils

    LINCHUXIA; M.D.MELVILLE

    1997-01-01

    The controls of soluble Al concentration were examined in three situations of acid sulfate conditions:1) experimental acid sulfate conditions by addition of varying amounts of Al(OH)3(gibbsite) into a sequence of H2SO4 solutions;2)experimental acid sulfate conditions by addition of the same sequence of H2SO4 solutions into two non-cid sulfacte soil samples with known amounts of acid oxalate extractable Al; and 3) actual acid sulfate soil conditions.The experiment using gibbsite as an Al-bearing mineral showed that increase in the concentration of H2SO4 solution increased the soluble Al concentration,accompanied by a decrease i the solution pH, Increasing amount of gibbsite added to the H2SO4 solutions also increased soluble Al concentration,but resulted in an increase in solution pH.Within the H2SO4 concentration range of 0.0005-0.5mol L-1 and the Al(OH)3 range of 0.01-0.5g(in 25 mL of H2SO4 solutions),the input of H2SO4 had the major control on soluble Al Concentration and pH .The availability of Al(OH)3,however,was responsible for the spread fo the various sample points,with a tendency that the samples containing more gibbsite had a higher soluble Al concentration than those containing less gibbsite at equivalent pH levels.The experimental results from treatment of soil samples with H2SO4 solutions and the analytical results of acid sulfate soils also showed the similar trend.

  11. Atmospheric oxidation of isoprene and 1,3-butadiene: influence of aerosol acidity and relative humidity on secondary organic aerosol

    M. Lewandowski

    2014-11-01

    Full Text Available The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air sample volume and the percent change of secondary organic carbon (SOC. The measurements have used several precursor compounds representative of different classes of biogenic hydrocarbons including isoprene, monoterpenes, and sesquiterpenes. To date, isoprene has displayed the most pronounced increase in SOC, although few measurements have been conducted with anthropogenic hydrocarbons. In the present study, we examine several aspects of the effect of aerosol acidity on the secondary organic carbon formation from the photooxidation of 1,3-butadiene, as well as extending the previous analysis of isoprene. The photooxidation products measured in the absence and presence of acidic sulfate aerosols were generated either through photochemical oxidation of SO2 or by nebulizing mixtures of ammonium sulfate and sulfuric acid into a 14.5 m3 smog chamber system. The results showed that, like isoprene and β-caryophyllene, 1,3-butadiene SOC yields linearly correlate with increasing acidic sulfate aerosol. The observed acid sensitivity of 0.11% SOC increase per nmol m−3 increase in H+ was approximately a factor of three less than that measured for isoprene. The results also showed that the aerosol yield decreased with increasing humidity for both isoprene and 1,3-butadiene, although to different degrees. Increasing the absolute humidity from 2 to 12 g m−3 reduced the 1,3-butadiene yield by 45% and the isoprene yield by 85%.

  12. Simulation of nitrate, sulfate, and ammonium aerosols over the United States

    J. M. Walker

    2012-08-01

    Full Text Available Atmospheric concentrations of inorganic gases and aerosols (nitrate, sulfate, and ammonium are simulated for 2009 over the United States using the chemical transport model GEOS-Chem. This work is motivated, in part, by the inability of previous modeling studies to reproduce observed high nitrate aerosol concentrations in California. Nitrate aerosol concentrations over most of the US are over-predicted relative to Interagency Monitoring of Protected Visual Environments (IMPROVE and Clean Air Status and Trends Network (CASTNET data. In California, on the other hand, nitrate and ammonium are under-predicted as compared to California Air Resources Board (CARB measurements. Over-prediction of nitrate in the East and Midwest is consistent with results of recent studies, which have suggested that nighttime nitric acid formation by heterogeneous hydrolysis of N2O5 is over-predicted with current values of the N2O5 uptake coefficient, γ, onto aerosols. Accordingly, the value of γ is reduced here by a factor of 10. Despite this, predicted nitrate levels in the US Midwest remain higher than those measured and over-prediction of nitrate in this region remains to be explained. Data from the Infrared Atmospheric Sounding Interferometer (IASI onboard the MetOp-A satellite indicate the presence of a strong ammonia maximum in central and southern California that is not present in the simulations, which are based on the EPA National Emissions Inventory (NEI NH3 emission inventory. In order to predict ammonia columns similar to the satellite measurements in the San Joaquin Valley, CA and Riverside, CA, the current ammonia emission inventory in California would need to be increased substantially. Based on the sensitivity of ammonium nitrate formation to the availability of ammonia, the present results suggest that under-prediction of ammonia emissions is likely the main cause for the under-prediction of

  13. Acid aerosol measurement method intercomparisons: An outdoor smog chamber study

    A workshop on the measurement of acid aerosols indicated that the sampling methods in use had not been intercompared. Following two laboratory pilot studies, EPA sponsored tests in an outdoor smog chamber with a variety of test aerosols, including sulfuric acid only, photochemical smog with added sulfuric acid, photo-chemical smog with added sulfuric acid and dust, and dust followed by photochemical smog with added sulfuric acid. Two experiments of each type were conducted. Six groups, several of which were active in ambient acid aerosol measurements, participated by operating duplicate samplers for each experiment. Five groups employed a similar method, in which ammonia is removed from the sample stream by diffusion, particles are removed by Teflon filter, and hydrogen ion on the Teflon filter is determined by pH electrode. However, differences existed in the method's implementation among groups in physical design, flow rate, procedures, and analysis. The sixth group's method did not use a diffusion denuder for ammonia and had several other important differences. Besides hydrogen ion, seven other species were reported by most of the groups, including particle phase sulfate, ammonium, and nitrate, and gas phase sulfur dioxide, ammonia, nitric acid, and nitrous acid. Results of the inter-comparison will be presented

  14. Evaluation of sulfate aerosol optical depths over the North Atlantic and comparison with satellite observations

    It has been postulated that scattering of sunlight by aerosols can significantly reduce the amount of solar energy absorbed by the climate system. Aerosol measurement programs alone cannot provide all the information needed to evaluate the radiative forcing due to anthropogenic aerosols. Thus, comprehensive global-scale aerosol models, properly validated against surface-based and satellite measurements, are a fundamental tool for evaluating the impacts of aerosols on the planetary radiation balance. Analyzed meteorological fields from the European Centre for Medium-Range Weather Forecasts are used to drive a modified version of the PNL Global Chemistry Model, applied to the atmospheric sulfur cycle. The resulting sulfate fields are used to calculate aerosol optical depths, which in turn are compared to estimates of aerosol optical depth based on satellite observations

  15. Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology

    Stevens, R G; J. R. Pierce; Brock, C. A.; M. K. Reed; J. H. Crawford; J. S. Holloway; Ryerson, T. B.; L. G. Huey; Nowak, J. B.

    2012-01-01

    New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aerosol pro...

  16. On numerical simulation of the global distribution of sulfate aerosol produced by a large volcanic eruption

    Pudykiewicz, J.A.; Dastoor, A.P. [Atmospheric Environment Service, Quebec (Canada)

    1994-12-31

    Volcanic eruptions play an important role in the global sulfur cycle of the Earth`s atmosphere and can significantly perturb the global atmospheric chemistry. The large amount of sulfate aerosol produced by the oxidation of SO{sub 2} injected into the atmosphere during volcanic eruptions also has a relatively big influence on the radiative equilibrium of the Earth`s climatic system. The submicron particles of the sulfate aerosol reflect solar radiation more effectively than they trap radiation in the infrared range. The effect of this is observed as cooling of the Earth`s surface. The modification of the global radiation budget following volcanic eruption can subsequently cause significant fluctuations of atmospheric variables on a subclimatic scale. The resulting perturbation of weather patterns has been observed and well documented since the eruptions of Mt. Krakatau and Mt. Tambora. The impact of the sulfate aerosol from volcanic eruptions on the radiative equilibrium of the Earth`s atmosphere was also confirmed by the studies done with Global Circulation Models designed to simulate climate. The objective of the present paper is to present a simple and effective method to estimate the global distribution of the sulfate aerosol produced as a consequence of volcanic eruptions. In this study we will present results of the simulation of global distribution of sulfate aerosol from the eruption of Mt Pinatubo.

  17. THE IMPACT OF RELATIVE HUMIDITY ON THE RADIATIVE PROPERTY AND RADIATIVE FORCING OF SULFATE AEROSOL

    张立盛; 石广玉

    2001-01-01

    With the data of complex refractive index of sulfate aerosol, the radiative properties of the aerosol under 8 relative humidity conditions are calculated in this paper. By using the concentration distribution from two CTM models and LASG GOALS/AGCM, the radiative forcing due to hygroscopic sulfate aerosol is simulated. The results show that: (1) With the increase of relative humidity, the mass extinction coefficiency factor decreases in the shortwave spectrum: single scattering albedo keeps unchanged except for a little increase in longwave spectrum, and asymmetry factor increases in whole spectrum. (2) Larger differences occur in radiative forcing simulated by using two CTM data, and the global mean forcing is -0. 268 and -0. 816 W/m2,respectively. (3) When the impact of relative humidity on radiative property is taken into account,the distribution pattern of radiative forcing due to the wet particles is very similar to that of dry sulfate, but the forcing value decreases by 6%.

  18. SULFATION OF ARABINOGALACTAN BY SULFAMIC ACID IN DIOXANE MEDIUM

    Наталья Юрьевна Васильева

    2014-09-01

    Full Text Available Sulfation of arabinogalactan (AG by sulfamic acid in the presence of urea at temperatures 70–95 °C in dioxane medium was studied. The growth of sulfation temperature from 70 to 95 °C increases a degree of AG sulfation. According to NMR 13C spectroscopy data sulfate groups are fixed at С2 and C4 positions of galactose unit of basic chain and at C6 position of terminal galactose units of basic and side chains of arabinogalactan. The sulfation of AG by complex sulfamic acid – urea in dioxane medium makes possible to increase the environmental safety and efficiency of the process as compared to the known sulfation methods.

  19. Biological functions of iduronic acid in chondroitin/dermatan sulfate

    Thelin, Martin A.; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-01-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse...

  20. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm

    P. T. Manktelow

    2010-01-01

    Full Text Available A global model of aerosol microphysics is used to simulate a large East Asian dust storm during the ACE-Asia experiment. We use the model together with size resolved measurements of aerosol number concentration and composition to examine how dust modified the production of sulfate aerosol and the particle size distribution in East Asian outflow. Simulated size distributions and mass concentrations of dust, sub- and super-micron sulfate agree well with observations from the C-130 aircraft. Modeled mass concentrations of fine sulfate (Dp<1.3 μm decrease by ~10% due to uptake of sulfur species onto super-micron dust. We estimate that dust enhanced the mass concentration of coarse sulfate (Dp>1.0 μm by more than an order of magnitude, but total sulfate concentrations increase by less than 2% because decreases in fine sulfate have a compensating effect. Our analysis shows that the sulfate associated with dust can be explained largely by the uptake of H2SO4 rather than reaction of SO2 on the dust surface, which we assume is suppressed once the particles are coated in sulfate. We suggest that many previous model investigations significantly overestimated SO2 oxidation on East Asian dust, possibly due to the neglect of surface saturation effects. We extend previous model experiments by examining how dust modified existing particle concentrations in Asian outflow. Total particle concentrations (condensation nuclei, CN modeled in the dust-pollution plume are reduced by up to 20%, but we predict that dust led to less than 10% depletion in particles large enough to act as cloud condensation nuclei (CCN. Our analysis suggests that E. Asian dust storms have only a minor impact on sulfate particles present at climate-relevant sizes.

  1. The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm

    P. T. Manktelow

    2009-07-01

    Full Text Available A global model of aerosol microphysics is used to simulate a large East Asian dust storm during the ACE-Asia experiment. We use the model together with size resolved measurements of aerosol number concentration and composition to examine how dust modified the production of sulfate aerosol and the particle size distribution in East Asian outflow. Simulated size distributions and mass concentrations of dust, sub- and super-micron sulfate agree well with observations from the C-130 aircraft. Modelled mass concentrations of fine sulfate (Dp<1.3 μm decrease by ~10% due to uptake of sulfur species onto super-micron dust. We estimate that dust enhanced the mass concentration of coarse sulfate (Dp<1.0 μm by more than an order of magnitude, but total sulfate concentrations increase by less than 2% because decreases in fine sulfate have a compensating effect. Our analysis shows that the sulfate associated with dust can be explained largely by the uptake of H2SO4 rather than reaction of SO2 on the dust surface, which we assume is suppressed once the particles are coated in sulfate. We suggest that many previous model investigations significantly overestimated SO2 oxidation on East Asian dust, possibly due to the neglect of surface saturation effects. We extend previous model experiments by examining how dust modified existing particle concentrations in Asian outflow. Total particle concentrations modelled in the dust-pollution plume are reduced by up to 20%, but we predict that dust led to less than 10% depletion in particles large enough to act as cloud condensation nuclei. Our analysis suggests that E. Asian dust storms have only a minor impact on sulfate particles present at climate-relevant sizes.

  2. Second organic aerosol formation from the ozonolysis of α-pinene in the presence of dry submicron ammonium sulfate aerosol

    ZHAO Zhe; HAO Jiming; LI Junhua; WU Shan

    2008-01-01

    An indoor chamber facility is described for investigation of atmospheric aerosol chemistry. Two sets of α-pinene ozonolysisexperiments were conducted in the presence of dry ammonium sulfate seed particle: ozone limited experiments and α-pinene limitedexperiments. The concentration of gas phase and particle phase species was monitored continuously by on-line instruments andrecorded automatically by data sampling system. The evolution of size distribution was measured by a scanning mobility particlesizer (SMPS), and α-pinene consumed was measured using GC-FID. Secondary organic aerosol (SOA) produced for seed-free systemis 100% organic in content, resulting from a sufficient supersaturation of low volatility organics to produce homogeneous nucleationfollowed by condensation to the aerosol. Secondary organic aerosol produced in seeded system is a mixture of organic and inorganicconstituents, initially forms via condensation onto the inorganic particles, and subsequent growth occurs via absorption into the organicsurface coating the inorganic core. Although the formation process and the size distribution for seed-free system and seeded system isdifferent, the ultimate mass of SOA formed is equal, and SOA yield for the two system located in the same regression line when usingone-product model, suggesting that the presence of dry ammonium sulfate seed has no measurable effect on the total aerosol yield, and the dry seed particle acts solely as a site upon which organic deposition occurs.

  3. Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology

    Stevens, R G; J. R. Pierce; Brock, C. A.; M. K. Reed; J. H. Crawford; J. S. Holloway; Ryerson, T. B.; L. G. Huey; Nowak, J. B.

    2011-01-01

    New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10 s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aer...

  4. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-01-01

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ34Ssulfate and δ18Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ34S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ34Ssulfate and δ18Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere. PMID:27435991

  5. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China.

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-01-01

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ(34)Ssulfate and δ(18)Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ(34)S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ(34)Ssulfate and δ(18)Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere. PMID:27435991

  6. Effects of two transition metal sulfate salts on secondary organic aerosol formation in toluene/NOx photooxidation

    Biwu CHU; Jiming HAO; Junhua LI; Hideto TAKEKAWA; Kun WANG; Jingkun JIANG

    2013-01-01

    Aerosol phase reactions play a very important role on secondary organic aerosol (SOA) formation, and metal-containing aerosols are important components in the atmosphere. In this study, we tested the effects of two transition metal sulfate salts, manganese sulfate (MnSO4) and zinc sulfate (ZnSO4), on the photochemical reactions of a toluene/NOx photooxidation system in a 2 m3 smog chamber. By comparing photochemical reaction products of experiments with and without transition metal sulfate seed aerosols, we evaluated the effects of transition metal sulfate seed aerosols on toluene consumption, NOx conversion and the formation of ozone and SOA. MnSO4 and ZnSO4 seed aerosols were found to have similar effects on photochemical reactions, both enhance the SOA production, while showing negligible effects on the gas phase compounds. These observations are consistent when varying metal sulfate aerosol concentrations. This is attributed to the catalytic effects of MnSO4 and ZnSO4 seed aerosols which may enhance the formation of condensable semivolatile compounds. Their subsequent partitioning into the aerosol phase leads to the observed SOA formation enhancement.

  7. Sensitivity of thermal infrared nadir instruments to the chemical and microphysical properties of UTLS secondary sulfate aerosols

    Sellitto, P.; Legras, B.

    2016-01-01

    Monitoring upper-tropospheric-lower-stratospheric (UTLS) secondary sulfate aerosols and their chemical and microphysical properties from satellite nadir observations is crucial to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Here we present a study aimed at the evaluation of the sensitivity of thermal infrared (TIR) satellite nadir observations to the chemical composition and the size distribution of idealised UTLS sulfate aerosol layers. The extinction properties of sulfuric acid/water droplets, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. IASI (Infrared Atmospheric Sounding Interferometer) pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on the brightness temperature spectra observed by this satellite instrument. We found a marked and typical spectral signature of these aerosol layers between 700 and 1200 cm-1, due to the absorption bands of the sulfate and bisulfate ions and the undissociated sulfuric acid, with the main absorption peaks at 1170 and 905 cm-1. The dependence of the aerosol spectral signature to the sulfuric acid mixing ratio, and effective number concentration and radius, as well as the role of interfering parameters like the ozone, sulfur dioxide, carbon dioxide and ash absorption, and temperature and water vapour profile uncertainties

  8. Characteristics of Anthropogenic Sulfate and Carbonaceous Aerosols over East Asia: Regional Modeling and Observation

    Yan HUANG; William L. CHAMEIDES; Qian TAN; Robert E. DICKINSON

    2008-01-01

    The authors present spatial and temporal characteristics of anthropogenic sulfate and carbonaceous aerosols over East Asia using a 3-D coupled regional climate-chemistry-aerosol model, and compare the simulation with the limited aerosol observations over the region. The aerosol module consists of SO2, SO42-, hydrophobic and hydrophilic black carbon (BC) and organic carbon compounds (OC), including emission, advections, dry and wet deposition, and chemical production and conversion. The simulated patterns of SO2 are closely tied to its emission rate, with sharp gradients between the highly polluted regions and more rural areas. Chemical conversion (especially in the aqueous phase) and dry deposition remove 60% and 30% of the total SO2 emission, respectively. The SO42- shows less horizontal gradient and seasonality than SO2, with wet deposition (60%) and export (27%) being two major sinks. Carbonaceous aerosols are spatially smoother than sulfur species. The aging process transforms more than 80% of hydrophobic BC and OC to hydrophilic components, which are removed by wet deposition (60%) and export (30%). The simulated spatial and seasonal SO42-, BC and OC aerosol concentrations and total aerosol optical depth are generally consistent with the observations in rural areas over East Asia, with lower bias in simulated OC aerosols, likely due to the underestimation of anthropogenic OC emissions and missing treatment of secondary organic carbon. The results suggest that our model is a useful tool for characterizing the anthropogenic aerosol cycle and for assessing its potential climatic and environmental effects in future studies.

  9. Association of non-marine sulfate aerosol with sea breeze circulation in Tampa bay

    Peak concentrations of aerosol sulfur in Tampa, Florida may be the result of either regional-scale transformation and transport processes or local-scale transport from nearby air pollution sources. The existence of the latter has been demonstrated in Tampa through correspondence of sulfur with sea breeze circulation patterns and the resulting chloride concentration maxima (which serve as indicators of the marine aerosol), vanadium concentration maxima (which indicate times of high concentrations of certain plume constituents), and the locations of sources favorable for high concentrations of air pollution-derived sulfate during occurrences of the sea breeze. The analysis indicates that locally derived sulfate in the Tampa atmosphere, which may be less abundant than sulfate due to regional-scale processes, can be identified by the use of combined meteorological and chemical tracer interpretation

  10. Characteristics of Phosphorus in Some Eastern Australian Acid Sulfate Soils

    2002-01-01

    Forty-five acid sulfate topsoil samples (depth < 0.5 m) from 15 soil cores were collected from 11 locations along the New South Wales coast, Australia. There was an overall trend for the concentration of the HC1extractable P to increase along with increasing amounts of organic C and the HCl-extractable trivalent metals in the topsoils of some less-disturbed acid sulfate soils (pH <4.5). This suggests that inorganic P in these soils probably accumulated via biological cycling and was retained by complexation with trivalent metals or their oxides and hydroxides. While there was no clear correlation between pH and the water-extractable P, the concentration of the water-extractable P tended to increase with increasing amounts of the HCl-extractable P. This disagrees with some established models which suggest that the concentration of solution P in acid soils is independent of total P and decreases with increasing acidity. The high concentration of sulfate present in acid sulfate soils appeared to affect the chemical behavior of P in these soil systems. Comparison was made between a less disturbed wetland acid sulfate soil and a more intensively disturbed sugarcane acid sulfate soil.The results show that reclamation of wetland acid sulfate soils for sugarcane production caused a significant decrease in the HCl-extractable P in the topsoil layer as a result of the reduced bio-cycling of phosphorus following sugarcane farming. Simulation experiment shows that addition of hydrated lime had no effects on the immobilization of retained P in an acid sulfate soil sample within a pH range 3.5~4.6. When the pH was raised to above 4.6, soluble P in the soil extracts had a tendency to increase with increasing pH until the 15th extraction (pH 5.13). This, in combination with the poor pH-soluble P relationship observed from the less-disturbed acid sulfate soils, suggests that soluble P was not clearly pH-dependent in acid sulfate soils with pH < 4.5.

  11. Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology

    R. G. Stevens

    2011-09-01

    Full Text Available New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10 s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. We have developed a modeling framework with aerosol microphysics in the System for Atmospheric Modelling (SAM, a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM. The model is evaluated against aircraft observations of new-particle formation in two different power-plant plumes and reproduces the major features of the observations. We show how the downwind plume aerosols can be greatly modified by both meteorological and background aerosol conditions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large pre-existing aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the amount of sunlight and NOx since both control OH concentrations. The results of this study highlight the importance for improved sub-grid particle formation schemes in regional and global aerosol models.

  12. Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to background aerosol and meteorology

    R. G. Stevens

    2012-01-01

    Full Text Available New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulfur sources may be an important source of particles in the atmosphere. It remains unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometers and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. In this paper, we focus on sub-grid sulfate aerosol processes within coal-fired power plant plumes: the sub-grid oxidation of SO2 with condensation of H2SO4 onto newly-formed and pre-existing particles. We have developed a modeling framework with aerosol microphysics in the System for Atmospheric Modelling (SAM, a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM. The model is evaluated against aircraft observations of new-particle formation in two different power-plant plumes and reproduces the major features of the observations. We show how the downwind plume aerosols can be greatly modified by both meteorological and background aerosol conditions. In general, new-particle formation and growth is greatly reduced during polluted conditions due to the large pre-existing aerosol surface area for H2SO4 condensation and particle coagulation. The new-particle formation and growth rates are also a strong function of the amount of sunlight and NOx since both control OH concentrations. The results of this study highlight the importance for improved sub-grid particle formation schemes in regional and global aerosol models.

  13. Remediation of Acid Mine Drainage with Sulfate Reducing Bacteria

    Hauri, James F.; Schaider, Laurel A.

    2009-01-01

    Sulfate reducing bacteria have been shown to be effective at treating acid mine drainage through sulfide production and subsequent precipitation of metal sulfides. In this laboratory experiment for undergraduate environmental chemistry courses, students design and implement a set of bioreactors to remediate acid mine drainage and explain observed…

  14. Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol

    Riva, Matthieu; Budisulistiorini, Sri Hapsari; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.

    2016-04-01

    Isoprene is the most abundant non-methane hydrocarbon emitted into Earth's atmosphere and is predominantly derived from terrestrial vegetation. Prior studies have focused largely on the hydroxyl (OH) radical-initiated oxidation of isoprene and have demonstrated that highly oxidized compounds, such as isoprene-derived epoxides, enhance the formation of secondary organic aerosol (SOA) through heterogeneous (multiphase) reactions on acidified sulfate aerosol. However, studies on the impact of acidified sulfate aerosol on SOA formation from isoprene ozonolysis are lacking and the current work systematically examines this reaction. SOA was generated in an indoor smog chamber from isoprene ozonolysis under dark conditions in the presence of non-acidified or acidified sulfate seed aerosol. The effect of OH radicals on SOA chemical composition was investigated using diethyl ether as an OH radical scavenger. Aerosols were collected and chemically characterized by ultra performance liquid chromatography/electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) and gas chromatography/electron impact ionization-mass spectrometry (GC/EI-MS). Analysis revealed the formation of highly oxidized compounds, including organosulfates (OSs) and 2-methylterols, which were significantly enhanced in the presence of acidified sulfate seed aerosol. OSs identified in the chamber experiments were also observed and quantified in summertime fine aerosol collected from two rural locations in the southeastern United States during the 2013 Southern Oxidant and Aerosol Study (SOAS).

  15. Analytical Methods for Environmental Risk Assessment of Acid Sulfate Soils: A Review

    2001-01-01

    Assessment of acid sulfate soil risk is an important step for acid sulfate soil management and its reliability depends very much on the suitability and accuracy of various analytical methods for estimating sulfide-derived potential acidity, actual acidity and acid-neutralizing capacity in acid sulfate soils. This paper critically reviews various analytical methods that are currently used for determination of the above parameters, as well as their implications for environmental risk assessment of acid sulfate soils.

  16. Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China

    Zhang, Yan-Lin; Kawamura, Kimitaka; Qing Fu, Ping; Boreddy, Suresh K. R.; Watanabe, Tomomi; Hatakeyama, Shiro; Takami, Akinori; Wang, Wei

    2016-05-01

    Vertical profiles of dicarboxylic acids, related organic compounds and secondary organic aerosol (SOA) tracer compounds in particle phase have not yet been simultaneously explored in East Asia, although there is growing evidence that aqueous-phase oxidation of volatile organic compounds may be responsible for the elevated organic aerosols (OA) in the troposphere. Here, we found consistently good correlation of oxalic acid, the most abundant individual organic compounds in aerosols globally, with its precursors as well as biogenic-derived SOA compounds in Chinese tropospheric aerosols by aircraft measurements. Anthropogenically derived dicarboxylic acids (i.e., C5 and C6 diacids) at high altitudes were 4-20 times higher than those from surface measurements and even occasionally dominant over oxalic acid at altitudes higher than 2 km, which is in contrast to the predominance of oxalic acid previously reported globally including the tropospheric and surface aerosols. This indicates an enhancement of tropospheric SOA formation from anthropogenic precursors. Furthermore, oxalic acid-to-sulfate ratio maximized at altitudes of ˜ 2 km, explaining aqueous-phase SOA production that was supported by good correlations with predicted liquid water content, organic carbon and biogenic SOA tracers. These results demonstrate that elevated oxalic acid and related SOA compounds from both the anthropogenic and biogenic sources may substantially contribute to tropospheric OA burden over polluted regions of China, implying aerosol-associated climate effects and intercontinental transport.

  17. Arrival of Sulfate Aerosols from Iceland's Laki Eruption (1783-1784 AD) to the Greenland Ice Sheet: A Critical Ice Core Dating Tool

    Wei, L.; Mosley-Thompson, E.

    2006-12-01

    The Laki (Iceland) volcanic event was a basaltic flood lava eruption lasting from June 8, 1783 to February 7, 1784. The timing of the arrival of the sulfate aerosols and volcanic fragments to the Greenland Ice Sheet (GIS) remains uncertain, but is important to confirm as the highly conductive sulfate layer has been consistently used as a time stratigraphic marker (1783 AD) in ice cores collected across Greenland. However, in the GISP2 ice core a few glass shards were found within the annual layer lying just below that containing the sulfate aerosols from Laki suggesting that the ash arrived first, in 1783, while the aerosols arrived the following year [Fiacco et al., 1994]. Additional published ice core results have neither confirmed nor refuted this observation. We have taken advantage of the accurately dated, high temporal resolution ice cores collected by PARCA (Program for Arctic Regional Climate Assessment) to (1) determine more precisely the timing of the arrival of Laki's sulfate aerosols and (2) assess the spatial variability of the excess sulfate contributed by Laki to the GIS. Our results indicate that the sulfate emitted from the Laki eruption most likely arrived on the GIS in the late summer or early fall of 1783 AD. This is also supported by contemporary weather logs and official reports of the appearance of Laki haze [Thordarson and Self, 2003]. The flux of Laki sulfate varies significantly over the GIS, largely as a function of the regional annual accumulation rate. Laki sulfate aerosols also arrived as a single pulse in most of the PARCA cores, suggesting that only a small fraction of the gases emitted from Laki reached the stratosphere. References: Fiacco, R.J.,et al., Atmospheric aerosol loading and transport due to the 1783-84 Laki eruption in Iceland, interpreted from ash particles and acidity in the GISP2 ice core, Quat. Res., 42, 231-240, 1994. Thordarson, T, and S. Self, Atmospheric and environmental effects of the 1783-1784 Laki eruption: A

  18. Acid Sulfate Soils in Australia:Characteristics,Problems and Management

    C.LIN

    1999-01-01

    Acid sulfate soils(ASS) are widely distributod in Australia.This has only been recognised recently when intensive research on ASS has been done in this county.This paper reviews aspects concerning a )the distribution and acid potential,b) controls on acidic status,and c) problems and management of ASS problems from ASS exist but insufficient attention was paid to them.

  19. Source contributions of sulfate aerosol over East Asia estimated by CMAQ-DDM.

    Itahashi, Syuichi; Uno, Itsushi; Kim, Soontae

    2012-06-19

    We applied the decoupled direct method (DDM), a sensitivity analysis technique for computing sensitivities accurately and efficiently, to determine the source-receptor relationships of anthropogenic SO(2) emissions to sulfate aerosol over East Asia. We assessed source contributions from East Asia being transported to Oki Island downwind from China and Korea during two air pollution episodes that occurred in July 2005. The contribution from China, particularly that from central eastern China (CEC), was found to dominate the sulfate aerosols. To study these contributions in more detail, CEC was divided into three regions, and the contributions from each region were examined. Source contributions exhibited both temporal and vertical variability, largely due to transport patterns imposed by the Asian summer monsoon. Our results are consistent with backward trajectory analyses. We found that anthropogenic SO(2) emissions from China produce significant quantities of summertime sulfate aerosols downwind of source areas. We used a parametric scaling method for estimating anthropogenic SO(2) emissions in China. Using column amounts of SO(2) derived from satellite data, and relationships between the column amounts of SO(2) and anthropogenic emissions, 2009 emissions were diagnosed. The results showed that 2009 emissions of SO(2) from China were equivalent to 2004 levels. PMID:22642816

  20. NUMERICAL SIMULATION WITH A COMPREHENSIVE CHEMICAL TRANSPORT MODEL OF NITRATE, SULFATE, AND AMMONIUM AEROSOL DISTRIBUTIONS OVER EAST ASIA

    Meigen Zhang

    2005-01-01

    The transport and chemical production processes of nitrate, sulfate, and ammonium aerosols over East Asia were investigated by use of the Models-3 Community Multi-scale Air Quality (CMAQ) modeling system coupled with the Regional Atmospheric Modeling System (RAMS). For the evaluation of the model's ability in depicting their3-dimensional concentration distributions and temporal variations, modeled concentrations of nitrate, sulfate, and ammonium aerosols are compared with the observations obtained at a ground station in Japan in March 2001 and onboard of an aircraft DC-8 on 18 and 21 March 2001 during the Transport and Chemical Evolution over the Pacific (TRACE-P)field campaign. Comparison shows that simulated values of nitrate, sulfate, and ammonium aerosols are generally in good agreement with their observed data, and the model captures most important observed features, and reproduces temporal and spatial variations of nitrate, sulfate, and ammonium aerosol concentrations reasonably well, e.g., the timing and locations of the concentration spikes of nitrate, sulfate, and ammonium aerosols are well reproduced, but large discrepancies between observed and simulated values are also clearly seen at some points and some times due to the coarse grid resolution and uncertainties of the emissions used in this study. This comparison results indicate that CMAQ is able to simulate the distributions of nitrate, sulfate, and ammonium aerosols and their related species in the troposphere over East Asia reasonably well.

  1. Synchronous deposition of volcanic ash and sulfate aerosols over Greenland in 1783 from the Laki eruption (Iceland)

    Wei, Lijia; Mosley-Thompson, Ellen; Gabrielli, Paolo; Thompson, Lonnie G.; Barbante, Carlo

    2008-08-01

    Sulfate aerosols from the 1783-1784 A.D. Laki eruption are widely used as a reference horizon for constraining Greenland ice core time scales, yet the timing of the arrival of the sulfate remains under discussion. Two ice cores from western Greenland, analyzed with high temporal resolution, confirm that sulfate aerosols arrived over Greenland late in 1783, concomitant with the tephra, elevated concentrations of Cd, Bi, and Tl, all indicators of volcanic emissions, and with a short-lived Rare Earth Elements anomaly. Thereafter sulfate deposition declined rapidly. Very modest concentrations of sulfate in 1784 snowfall, evident in six Greenland cores, suggest a relatively short (less than 1 year) atmospheric residence time and an injection height limited to the lower stratosphere. An improved estimate of the associated stratospheric sulfate burden is calculated and provides an important input for models assessing climatic impacts of this volcanic eruption.

  2. An aerosol formulation of R-salbutamol sulfate for pulmonary inhalation

    Xuemei Zhang

    2014-02-01

    Full Text Available An aerosol formulation containing 7.5 mg of R-salbutamol sulfate was developed. The aerosol was nebulized with an air-jet nebulizer, and further assessed according to the new European Medicines Agency (EMA guidelines. A breath simulator was used for studies of delivery rate and total amount of the active ingredient at volume of 3 mL. A next generation impactor (NGI with a cooler was used for analysis of the particle size and in vitro lung deposition rate of the active ingredient at 5 °C. The anti-asthmatic efficacy of the aerosol formulation was assessed in guinea pigs with asthma evoked by intravenous injection of histamine compared with racemic salbutamol. Our results show that this aerosol formulation of R-salbutamol sulfate met all the requirements of the new EMA guidelines for nebulizer. The efficacy of a half-dose of R-salbutamol equaled that of a normal dose of racemic salbutamol.

  3. Electrochemical treatment of acidic aqueous ferrous sulfate and copper sulfate as models for acid mine drainage.

    Bunce, N J; Chartrand, M; Keech, P

    2001-12-01

    Acid mine drainage (AMD) is a serious environmental problem in the mining industry. The present work describes electrolytic reduction of solutions of synthetic AMD, comprising FeSO4/H2SO4 and CuSO4/H2SO4, in flow-through cells whose anode and cathode compartments were separated using ion exchange membranes. In the case of FeSO4/H2SO4 at constant flow rate, the pH of the effluent from the catholyte increased progressively with current at a variety of cathodes, due to electrolytic reduction of H+ ions to elemental hydrogen. Near-quantitative removal of iron was achieved by sparging air into the catholyte effluent, thereby precipitating iron outside the electrochemical cell, and avoiding fouling of the electrodes. The anode reaction was the oxidation of water to O2, a proton-releasing process. Using cation exchange membranes and sodium sulfate as the supporting electrolyte in the anode compartment, the efficiency of the process was compromised at high currents by transport of H+ competitively with Na+ from the anode to the cathode compartments. Higher efficiencies were obtained when anion exchange membranes were used, and in this case no additional supporting electrolyte other than dilute H2SO4 was needed, the net reaction being the electrochemically driven transfer of the elements of H2SO4 from the cathode to the anode compartments. Current efficiencies approximately 50% were achieved, the loss of efficiency being accounted for by ohmic heating of the solutions. In the case of CuSO4/H2SO4 and anion exchange membranes at high currents, reduction of Cu2+ and H+ ions and transport of SO4(2-) ions out of the catholyte caused unacceptably high potentials to be generated. PMID:11763043

  4. Backscatter laser depolarization studies of simulated stratospheric aerosols - Crystallized sulfuric acid droplets

    Sassen, Kenneth; Zhao, Hongjie; Yu, Bing-Kun

    1989-01-01

    The optical depolarizing properties of simulated stratospheric aerosols were studied in laboratory laser (0.633 micrometer) backscattering experiments for application to polarization lidar observations. Clouds composed of sulfuric acid solution droplets, some treated with ammonia gas, were observed during evaporation. The results indicate that the formation of minute ammonium sulfate particles from the evaporation of acid droplets produces linear depolarization ratios of beta equivalent to 0.02, but beta equivalent to 0.10 to 0.15 are generated from aged acid cloud aerosols and acid droplet crystalization effects following the introduction of ammonia gas into the chamber. It is concluded that partially crystallized sulfuric acid droplets are a likely candidate for explaining the lidar beta equivalent to 0.10 values that have been observed in the lower stratosphere in the absence of the relatively strong backscattering from homogeneous sulfuric acid droplet (beta equivalent to 0) or ice crystal (beta equivalent to 0.5) clouds.

  5. Characterization of particulate products for aging of ethylbenzene secondary organic aerosol in the presence of ammonium sulfate seed aerosol.

    Huang, Mingqiang; Zhang, Jiahui; Cai, Shunyou; Liao, Yingmin; Zhao, Weixiong; Hu, Changjin; Gu, Xuejun; Fang, Li; Zhang, Weijun

    2016-09-01

    Aging of secondary organic aerosol (SOA) particles formed from OH- initiated oxidation of ethylbenzene in the presence of high mass (100-300μg/m(3)) concentrations of (NH4)2SO4 seed aerosol was investigated in a home-made smog chamber in this study. The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with a Fuzzy C-Means (FCM) clustering algorithm. Experimental results showed that nitrophenol, ethyl-nitrophenol, 2,4-dinitrophenol, methyl glyoxylic acid, 5-ethyl-6-oxo-2,4-hexadienoic acid, 2-ethyl-2,4-hexadiendioic acid, 2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid, 1H-imidazole, hydrated N-glyoxal substituted 1H-imidazole, hydrated glyoxal dimer substituted imidazole, 1H-imidazole-2-carbaldehyde, N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight (HMW) components were the predominant products in the aged particles. Compared to the previous aromatic SOA aging studies, imidazole compounds, which can absorb solar radiation effectively, were newly detected in aged ethylbenzene SOA in the presence of high concentrations of (NH4)2SO4 seed aerosol. These findings provide new information for discussing aromatic SOA aging mechanisms. PMID:27593289

  6. Oxydesulfurization of coal by acidic iron sulfate solutions

    Mixon, D.A.; Vermeulen, T.

    1981-08-01

    To facilitate by-product recovery and eliminate elemental sulfur formation in coal oxydesulfurization, high-sulfur bituminous coal has been treated with aqueous ferric sulfate/sulfuric acid and oxygen at 100 to 150/sup 0/C. The rate of pyrite oxidation increases with oxygen partial pressure, temperature, and fineness of grinding. This reaction rate is relatively insensitive to sulfuric acid and ferric sulfate concentrations, so that pyrite removal may be satisfactorily performed in solutions containing 25% H/sub 2/SO/sub 4/ and 12% Fe/sub 2/(SO/sub 4/)/sub 3/ (weight percentages relative to total H/sub 2/O plus H/sub 2/SO/sub 4/); preliminary data suggest that such a leaching solution is only mildly corrosive to T316 stainless steel, at 150/sup 0/C or below, in the presence of oxygen. To provide an accurate assessment of coal oxydesulfurization stoichiometry, an analytical technique based on uv spectrophotometry has been developed for the determination of elemental sulfur in coal. Prepared coal samples are extracted for 24 hours with cyclohexane. Other exploratory oxydesulfurization runs have shown that vanadium oxides are not effective catalysts at 100/sup 0/C, with oxygen. Nor are lauryl sulfate or sulfates of zinc, copper, or manganese effective additives in the ferric sulfate/sulfuric acid/oxygen system at 150/sup 0/C. Elemental chlorine has been shown to be capable of removing significant amounts of organic sulfur from coal, at 74/sup 0/C, but suffers the drawback of chlorinating the coal's orgaic matrix. Hydrogen peroxide in aqueous sulfuric acid is an effective reagent for pyrite removal at 100/sup 0/C, but is unduly expensive.

  7. Composition and hygroscopicity of aerosol particles at Mt. Lu in South China: Implications for acid precipitation

    Li, Weijun; Chi, Jianwei; Shi, Zongbo; Wang, Xinfeng; Chen, Bin; Wang, Yan; Li, Tao; Chen, Jianmin; Zhang, Daizhou; Wang, Zifa; Shi, Chune; Liu, Liangke; Wang, Wenxing

    2014-09-01

    Physicochemical properties of aerosol particles were studied at Mt. Lu, an elevated site (115°59‧E, 29°35‧N, 1165 m) within the acid precipitation area. Northeast winds transport copious amounts of air pollutants and water vapor from the Yangtze River Delta into this acid precipitation area. NH4+ and SO42- are the dominant ions in PM2.5 and determine aerosol acidity. Individual particle analysis shows abundant S-rich and metals (i.e. Fe-, Zn-, Mn-, and Pb-rich) particles. Unlike aerosol particles in North China and urban areas, there are little soot and mineral particles at Mt. Lu. Lack of mineral particles contributed to the higher acidity in precipitation in the research area. Nano-sized spherical metal particles were observed to be embedded in 37% of S-rich particles. These metal particles were likely originated from heavy industries and fired-power plants. Hygroscopic experiments show that most particles start to deliquesce at 73-76% but organic coating lowers the particle deliquescence relative humidity (DRH) to 63-73%. The DRHs of these aerosol particles are clearly smaller than that of pure ammonium sulfate particles which is 80%. Since RH in ambient air was relatively high, ranging from 65% to 85% during our study period, most particles at our sampling site were in liquid phase. Our results suggest that liquid phase reactions in aerosol particles may contribute to SO2 to sulfuric acid conversion in the acid precipitation area.

  8. Microphysical and compositional influences on shortwave radiative forcing of climate by sulfate aerosols

    Anthropogenic sulfate aerosols scatter shortwave (solar) radiation iincident upon the atmosphere, thereby exerting a cooling influence on climate relative to pre-industrial times. Previous estimates of this forcing place its global and annual average value at about -1 W M-2, uncertain to a factor of somewhat more than 2, comparable in magnitude to greenhouse gas forcing over the same period but opposite in sign and much more uncertain. Key sources of uncertainty are atmospheric chemistry factors (yield, residence time), and microphysical factors (scattering efficiency, upscatter fraction, and the dependence of these quantities on particle size and relative humidity, RH). This paper examines these microphysical influences to indentify properties required to obtain more a accurate description of this forcing. The mass scattering efficiency exhibits a maximum at a particle diameter (∼0.5 μm) roughly equal to the wavelength of maximum power in the solar spectrum and roughly equal to diameter typical of anthropogenic sulfate aerosols. Particle size, and hence mass scattering efficiency, increase with increasing on RH because of accretion of water by deliquescent salt aerosols

  9. Inability of stratospheric sulfate aerosol injections to preserve the West Antarctic Ice Sheet

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2015-06-01

    Injection of sulfate aerosols into the stratosphere has the potential to reduce the climate impacts of global warming, including sea level rise (SLR). However, changes in atmospheric and oceanic circulation that can significantly influence the rate of basal melting of Antarctic marine ice shelves and the associated SLR have not previously been considered. Here we use a fully coupled global climate model to investigate whether rapidly increasing stratospheric sulfate aerosol concentrations after a period of global warming could preserve Antarctic ice sheets by cooling subsurface ocean temperatures. We contrast this climate engineering method with an alternative strategy in which all greenhouse gases (GHG) are returned to preindustrial levels. We find that the rapid addition of a stratospheric aerosol layer does not effectively counteract surface and upper level atmospheric circulation changes caused by increasing GHGs, resulting in continued upwelling of warm water in proximity of ice shelves, especially in the vicinity of the already unstable Pine Island Glacier in West Antarctica. By contrast, removal of GHGs restores the circulation, yielding relatively cooler subsurface ocean temperatures to better preserve West Antarctica.

  10. Two Dermatan Sulfate Epimerases Form Iduronic Acid Domains in Dermatan Sulfate*

    Pacheco, Benny; Malmström, Anders; Maccarana, Marco

    2009-01-01

    A second dermatan sulfate epimerase (DS-epi2) was identified as a homolog of the first epimerase (DS-epi1), which was previously described by our group. DS-epi2 is 1,222 amino acids long and has an ∼700-amino acid N-terminal epimerase domain that is highly conserved between the two enzymes. In addition, the C-terminal portion is predicted to be an O-sulfotransferase domain. In this study we found that DS-epi2 has epimerase activity, which involves conversion of d-glucu...

  11. Development of a rapid method for simultaneous separation of hyaluronic acid, chondroitin sulfate, dermatan sulfate and heparin by capillary electrophoresis.

    Zhao, Ting; Song, Xinlei; Tan, Xiaoqing; Xu, Linghua; Yu, Mingxiu; Wang, Siyi; Liu, Xiumei; Wang, Fengshan

    2016-05-01

    This study reports the use of diethylenetriamine as background electrolyte for the simultaneous separation of hyaluronan acid, chondroitin sulfate, dermatan sulfate and heparin. The analytes were baseline separated by using an uncoated fused silica capillary at 37°C with a run time of 23min. The migration order, with hyaluronan acid at first and heparin at last, was related to the sulfation degree. The effect of salt concentration on resolution and migration order was also investigated. The developed method was applied to the simultaneous determination of hyaluronan acid and chondroitin sulfate in mouse plasma. Interferences in plasma were removed by protein precipitation and glycosaminoglycans were further purified by ethanol precipitation. The method was validated over the concentration range from 50 to 600μg/mL for hyaluronan acid and 500 to 6000μg/mL for chondroitin sulfate in mouse plasma. Results from assay validations showed that the method was selective and robust. PMID:26877013

  12. 75 FR 78243 - Propionic Acid and Salts, Urea Sulfate, Methidathion, and Methyl Parathion; Registration Review...

    2010-12-15

    ... AGENCY Propionic Acid and Salts, Urea Sulfate, Methidathion, and Methyl Parathion; Registration Review... pesticides propionic acid and salts, case no. 4078, urea sulfate, case no. 7213, methidathion, case no. 0034... pesticides in the table below--propionic acid and salts, case 4078, urea sulfate, case no. 7213,...

  13. The effect of anthropogenic sulfate aerosols on marine cloud droplet concentrations

    Novakov, T.; Rivera-Carpio, C.; Penner, J. E.; Rogers, C. F.

    1994-04-01

    Nonseasalt sulfate (nss SO42-) mass concentrations, cloud condensation nuclei (CCN) number concentrations, and cloud droplet concentrations in warm cumulus and stratocumulus clouds were simultaneously measured in situ in marine air masses on El Yunque peak in Puerto Rico. Our results show that CNN number concentrations (measured at 0.5% supersaturation) and nss SO42- mass concentrations (in the range of ˜ 400 1700ng m-342- mass concentrations (in the range of ˜ 300 1400ng m-3). In stratocumulus clouds, a small increase in droplet concentration with nss SO42- mass concentrations in the range of ˜ 300 1100ng m-3 was observed. We attribute the low sensitivities of the droplet number concentrations to nss SO42- mass concentrations to the entrainment/mixing processes in these clouds. The magnitudes of the empirically derived sensitivities are considerably lower than those assumed in recent assessments of the effect of anthropogenic sulfate aerosols on cloud albedo.

  14. Simulated responses of terrestrial aridity to black carbon and sulfate aerosols

    Lin, L.; Gettelman, A.; Xu, Y.; Fu, Q.

    2016-01-01

    Aridity index (AI), defined as the ratio of precipitation to potential evapotranspiration (PET), is a measure of the dryness of terrestrial climate. Global climate models generally project future decreases of AI (drying) associated with global warming scenarios driven by increasing greenhouse gas and declining aerosols. Given their different effects in the climate system, scattering and absorbing aerosols may affect AI differently. Here we explore the terrestrial aridity responses to anthropogenic black carbon (BC) and sulfate (SO4) aerosols with Community Earth System Model simulations. Positive BC radiative forcing decreases precipitation averaged over global land at a rate of 0.9%/°C of global mean surface temperature increase (moderate drying), while BC radiative forcing increases PET by 1.0%/°C (also drying). BC leads to a global decrease of 1.9%/°C in AI (drying). SO4 forcing is negative and causes precipitation a decrease at a rate of 6.7%/°C cooling (strong drying). PET also decreases in response to SO4 aerosol cooling by 6.3%/°C cooling (contributing to moistening). Thus, SO4 cooling leads to a small decrease in AI (drying) by 0.4%/°C cooling. Despite the opposite effects on global mean temperature, BC and SO4 both contribute to the twentieth century drying (AI decrease). Sensitivity test indicates that surface temperature and surface available energy changes dominate BC- and SO4-induced PET changes.

  15. Inactivation of Prions by Acidic Sodium Dodecyl Sulfate

    Peretz, David; Supattapone, Surachai; Giles, Kurt; Vergara, Julie; Freyman, Yevgeniy; Lessard, Pierre; Safar, Jiri G; Glidden, David V.; McCulloch, Charles; Nguyen, Hoang-Oanh B.; Scott, Michael; Stephen J DeArmond; Prusiner, Stanley B.

    2006-01-01

    Prompted by the discovery that prions become protease-sensitive after exposure to branched polyamine dendrimers in acetic acid (AcOH) (S. Supattapone, H. Wille, L. Uyechi, J. Safar, P. Tremblay, F. C. Szoka, F. E. Cohen, S. B. Prusiner, and M. R. Scott, J. Virol. 75:3453-3461, 2001), we investigated the inactivation of prions by sodium dodecyl sulfate (SDS) in weak acid. As judged by sensitivity to proteolytic digestion, the disease-causing prion protein (PrPSc) was denatured at room temperat...

  16. Reversibility of soil solution acidity and of sulfate retention in acid forest soils

    Alewell, C.; Matzner, E. (Universitaet Bayreuth, Bayreuth (Germany). Lehrstuhl fuer Bodenoekologie)

    1993-11-01

    To quantify the effects of reduced sulfate input on the chemistry of soil solution and soil S storage in acid forest soils, an experiment with undisturbed soil columns from two different sites was implemented. The acid cambisol of the Solling is subjected to a high sulfate input and especially the B-horizon has a high sulfate content. On the contrary, the podzol of the Fuhrberg site is subjected to low input and has low sulfate content. Undisturbed soil columns were taken from both sites and were irrigated at 6[degree]C with a precipitation rate of 3 mmd[sup -1] over 10 mo. In treatment No. 1, an artificial throughfall with pH 5.2 and reduced sulfate load (45[mu]mol L[sup -1]) was applied. In treatment No. 2, an artificial throughfall representing a high sulfate deposition (427 [mu]mol L[sup -1], pH 3.2) was used. In the case of the Solling soil, the pH of soil solution was unaffected by treatments during the entire experiment. Alkalinity of the soil solution was slightly increased in treatment No. 1 at a depth of 20 cm. While treatment No. 1 resulted in a reduction of the sulfate concentrations of the soil solution in the top soil, sulfate concentrations were unaffected at a depth of 40 cm. The B-horizon of the Solling soil prevented deacidification of the soil solution by desorption of previously stored sulfate. In the case of the Fuhrberg soil, treatment No. 1 resulted in reduced sulfate concentrations of the soil solution even in deeper soil layers with concentrations approaching input levels. The pH of the solution was slightly elevated and the alkalinity of the solution increased. Organic S compounds in the soil seemed to have no influence on sulfate release in either soils. 37 refs., 3 figs., 1 tab.

  17. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City

    Adachi, K.; Buseck, P. R.

    2008-05-01

    Soot particles are major aerosol constituents that result from emissions of burning of fossil fuel and biomass. Because they both absorb sunlight and contribute to cloud formation, they are an influence on climate on local, regional, and global scales. It is therefore important to evaluate their optical and hygroscopic properties and those effects on the radiation budget. Those properties commonly change through reaction with other particles or gases, resulting in complex internal mixtures. Using transmission electron microscopy, we measured ~8000 particles (25 samples) with aerodynamic diameters from 0.05 to 0.3 μm that were collected in March 2006 from aircraft over Mexico City (MC) and adjacent areas. More than 50% of the particles consist of internally mixed soot, organic matter, and sulfate. Imaging combined with chemical analysis of individual particles show that many are coated, consist of aggregates, or both. Coatings on soot particles can amplify their light absorption, and coagulation with sulfates changes their hygroscopic properties, resulting in shorter lifetime. Our results suggest that a mixture of materials from multiple sources such as vehicles, power plants, and biomass burning occurs in individual particles, thereby increasing their complexity. Through changes in their optical and hygroscopic properties, internally mixed soot particles have a greater effect on the regional climate than uncoated soot particles. Moreover, soot occurs in more than 60% of all particles in the MC plumes, suggesting its important role in the formation of secondary aerosol particles.

  18. Internally mixed soot, sulfates, and organic matter in aerosol particles from Mexico City

    K. Adachi

    2008-05-01

    Full Text Available Soot particles are major aerosol constituents that result from emissions of burning of fossil fuel and biomass. Because they both absorb sunlight and contribute to cloud formation, they are an influence on climate on local, regional, and global scales. It is therefore important to evaluate their optical and hygroscopic properties and those effects on the radiation budget. Those properties commonly change through reaction with other particles or gases, resulting in complex internal mixtures. Using transmission electron microscopy, we measured ~8000 particles (25 samples with aerodynamic diameters from 0.05 to 0.3 μm that were collected in March 2006 from aircraft over Mexico City (MC and adjacent areas. More than 50% of the particles consist of internally mixed soot, organic matter, and sulfate. Imaging combined with chemical analysis of individual particles show that many are coated, consist of aggregates, or both. Coatings on soot particles can amplify their light absorption, and coagulation with sulfates changes their hygroscopic properties, resulting in shorter lifetime. Our results suggest that a mixture of materials from multiple sources such as vehicles, power plants, and biomass burning occurs in individual particles, thereby increasing their complexity. Through changes in their optical and hygroscopic properties, internally mixed soot particles have a greater effect on the regional climate than uncoated soot particles. Moreover, soot occurs in more than 60% of all particles in the MC plumes, suggesting its important role in the formation of secondary aerosol particles.

  19. Potential influence of inter-continental transport of sulfate aerosols on air quality

    In this study, we compare the potential influence of inter-continental transport of sulfate aerosols on the air quality of (different) continental regions. We use a global chemical transport model, Model of Ozone and Related Tracers, version 2 (MOZART-2), to quantify the source-receptor relationships of inter-continental transport of sulfate aerosols among ten regions in 2000. In order to compare the importance of foreign with domestic emissions and to estimate the effect of future changes in emissions on human exposure, we define an 'influence potential' (IP). The IP quantifies the human exposure that occurs in a receptor region as a result of a unit of SO2 emissions from a source region. We find that due to the non-linear nature of sulfate production, regions with low SO2 emissions usually have large domestic IP, and vice versa. An exception is East Asia (EA), which has both high SO2 emissions and relatively large domestic IP, mostly caused by the spatial coincidence of emissions and population. We find that inter-continental IPs are usually less than domestic IPs by 1-3 orders of magnitude. SO2 emissions from the Middle East (ME) and Europe (EU) have the largest potential to influence populations in surrounding regions. By comparing the IP ratios (IPR) between foreign and domestic SO2 emissions, we find that the IPR values range from 0.000 01 to 0.16 and change with season. Therefore, if reducing human exposure to sulfate aerosols is the objective, all regions should first focus on reducing domestic SO2 emissions. In addition, we find that relatively high IPR values exist among the EU, ME, the former Soviet Union (FSU) and African (AF) regions. Therefore, on the basis of the IP and IPR values, we conclude that a regional agreement among EA countries, and an inter-regional agreement among EU, ME, FSU and (north) AF regions to control sulfur emissions could benefit public health in these regions

  20. Characterizing the influence of anthropogenic emissions and transport variability on sulfate aerosol concentrations at Mauna Loa Observatory

    Potter, Lauren E.

    Sulfate aerosol in the atmosphere has substantial impacts on human health and environmental quality. Most notably, atmospheric sulfate has the potential to modify the earth's climate system through both direct and indirect radiative forcing mechanisms (Meehl et al., 2007). Emissions of sulfur dioxide, the primary precursor of sulfate aerosol, are now globally dominated by anthropogenic sources as a result of widespread fossil fuel combustion. Economic development in Asian countries since 1990 has contributed considerably to atmospheric sulfur loading, particularly China, which currently emits approximately 1/3 of global anthropogenic SO2 (Klimont et al., 2013). Observational and modeling studies have confirmed that anthropogenic pollutants from Asian sources can be transported long distances with important implications for future air quality and global climate change. Located in the remote Pacific Ocean (19.54°N, 155.58°W) at an elevation of 3.4 kilometers above sea level, Mauna Loa Observatory (MLO) is an ideal measurement site for ground-based, free tropospheric observations and is well situated to experience influence from springtime Asian outflow. This study makes use of a 14-year data set of aerosol ionic composition, obtained at MLO by the University of Hawaii at Manoa. Daily filter samples of total aerosol concentrations were made during nighttime downslope (free-tropospheric) transport conditions, from 1995 to 2008, and were analyzed for aerosol-phase concentrations of the following species: nitrate (NO3-), sulfate (SO42-), methanesulfonate (MSA), chloride (Cl-), oxalate, sodium (Na+), ammonium (NH 4+), potassium (K+), magnesium (Mg 2+), and calcium (Ca2+). An understanding of the factors controlling seasonal and interannual variations in aerosol speciation and concentrations at this site is complicated by the relatively short lifetimes of aerosols, compared with greenhouse gases which have also been sampled over long time periods at MLO. Aerosol filter

  1. Estimation of interfacial acidity of sodium dodecyl sulfate micelles

    Arghya Dey; G Naresh Patwari

    2011-11-01

    An enhancement in the excited state proton transfer (ESPT) processes of coumarin-102 (C-102) dye was observed upon addition of salicylic acid and hydrochloric acid in sodium dodecyl sulfate (SDS) micellar solution. The phenomenon was observed only in the micellar medium of anionic surfactant SDS and not in case of cationic (CTAB) or neutral (Trition X -100) surfactants. ESPT of C-102 was also observed in aqueous solutions but on addition of very high concentrations of hydrochloric acid. However, on comparing the ratio of the protonated species from the emission spectra in the presence and absence of SDS micelle, a conclusive estimation of the local proton concentration at the Stern layer of SDS micelles could be evaluated.

  2. Importance of including ammonium sulfate ((NH42SO4 aerosols for ice cloud parameterization in GCMs

    R. Yang

    2010-02-01

    Full Text Available A common deficiency of many cloud-physics parameterizations including the NASA's microphysics of clouds with aerosol-cloud interactions (hereafter called McRAS-AC is that they simulate lesser (larger than the observed ice cloud particle number (size. A single column model (SCM of McRAS-AC physics of the GEOS4 Global Circulation Model (GCM together with an adiabatic parcel model (APM for ice-cloud nucleation (IN of aerosols were used to systematically examine the influence of introducing ammonium sulfate (NH42SO4 aerosols in McRAS-AC and its influence on the optical properties of both liquid and ice clouds. First an (NH42SO4 parameterization was included in the APM to assess its effect on clouds vis-à-vis that of the other aerosols. Subsequently, several evaluation tests were conducted over the ARM Southern Great Plain (SGP and thirteen other locations (sorted into pristine and polluted conditions distributed over marine and continental sites with the SCM. The statistics of the simulated cloud climatology were evaluated against the available ground and satellite data. The results showed that inclusion of (NH42SO4 into McRAS-AC of the SCM made a remarkable improvement in the simulated effective radius of ice cloud particulates. However, the corresponding ice-cloud optical thickness increased even more than the observed. This can be caused by lack of horizontal cloud advection not performed in the SCM. Adjusting the other tunable parameters such as precipitation efficiency can mitigate this deficiency. Inclusion of ice cloud particle splintering invoked empirically further reduced simulation biases. Overall, these changes make a substantial improvement in simulated cloud optical properties and cloud distribution particularly over the Intertropical Convergence Zone (ITCZ in the GCM.

  3. Modeling of growth and evaporation effects on the extinction of 1.0-micron solar radiation traversing stratospheric sulfuric acid aerosols

    Yue, G. K.; Deepak, A.

    1981-01-01

    The effects of growth and evaporation of stratospheric sulfuric acid aerosols on the extinction of solar radiation traversing such an aerosol medium are reported for the case of 1.0-micron solar radiation. Modeling results show that aerosol extinction is not very sensitive to the change of ambient water vapor concentration, but is sensitive to ambient temperature changes, especially at low ambient temperatures and high ambient water vapor concentration. A clarification is given of the effects of initial aerosol size distribution and composition on the change of aerosol extinction due to growth and evaporation processes. It is shown that experiments designed to observe solar radiation extinction of aerosols may also be applied to the determination of observed changes in aerosol optical properties, environmental parameters, or the physical and optical characteristics of sulfate aerosols.

  4. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    Nemesure, S.; Wagener, R.; Schwartz, S.E. [Brookhaven National Lab., Upton, New York (United States)

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  5. 75 FR 51055 - Propionic Acid and Salts, and Urea Sulfate; Registration Review Proposed Decisions; Notice of...

    2010-08-18

    ... AGENCY Propionic Acid and Salts, and Urea Sulfate; Registration Review Proposed Decisions; Notice of... urea sulfate and opens a public comment period on the proposed decisions. Registration review is EPA's.... Urea sulfate is used as a desiccant on ] cotton. No food crop uses remain and all tolerances for...

  6. Characteristics of Soluble and Exchangeable Acidity in an Extremely Acidified Acid Sulfate Soil

    C.Lin; M.D.MELVILLE; 等

    1999-01-01

    An extremely acidified acid sulfate soil(ASS) was investigated to characterise its soluble and exchangeable acidity,The results showed that soluble acidity of a sample dtermined by titration with a KOH soulution was much significantly greater than that indicated by pH measured using a pH meter,paricularly for the extremely acidic soil samples,This is because the total soluble acidity of the extremely acidic soil samples was mainly composed of various soluble Al and Fe species,possibly in forms of Al sulfate complexes(e.g.,AlSO4+) and feerous Fe(Fe2+)_,It is therefore suggested not to use pH alone as an indicator of soluble acidity in ASS,particularly for extremely acidic ASS,It is also likely that AlSO4+ actively participated in cation exchange reactions.It appears that the possible involvement of this Al sulfate cation in the cation adsorption has significant effect on increasing the amount of acidity being adsorbed by the soils.

  7. Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol

    Barbaro, E.; Zangrando, R.; Vecchiato, M.; Piazza, R.; Cairns, W. R. L.; Capodaglio, G.; Barbante, C.; Gambaro, A.

    2015-05-01

    To investigate the impact of marine aerosols on global climate change it is important to study their chemical composition and size distribution. Amino acids are a component of the organic nitrogen in aerosols and particles containing amino acids have been found to be efficient ice nuclei. The main aim of this study was to investigate the L- and D-free amino acid composition as possible tracers of primary biological production in Antarctic aerosols from three different areas: two continental bases, Mario Zucchelli Station (MZS) on the coast of the Ross Sea, Concordia Station at Dome C on the Antarctic Plateau, and the Southern Ocean near the Antarctic continent. Studying the size distribution of amino acids in aerosols allowed us to characterize this component of the water-soluble organic carbon (WSOC) in marine aerosols near their source and after long-range transport. The presence of only free L-amino acids in our samples is indicative of the prevalence of phytoplanktonic material. Sampling at these three points allowed us to study the reactivity of these compounds during long-range transport. The mean total amino acid concentration detected at MZS was 11 pmol m-3, a higher percentage of amino acids were found in the fine fraction. The aerosol samples collected at Dome C had the lowest amino acid values (0.7 and 0.8 pmol m-3), and the coarse particles were found to have higher concentrations of amino acids compared to the coastal site. The amino acid composition in the aerosol collected at Dome C had also changed compared to the coastal site, suggesting that physical and chemical transformations had occurred during long range transport. During the sampling cruise on the R/V Italica on the Southern Ocean, high concentrations of amino acids were found in the total suspended particles, this we attribute to the presence of intact biological material (as microorganisms or plant material) in the sample.

  8. Cloud acidity and acidic deposition in the lower troposphere and ozone depletion in the Antarctic stratosphere: Modeling and data analysis regarding the role of atmospheric aerosol

    This study focused on the role of atmospheric aerosols in determining the cloud acidity and acidic deposition in the lower troposphere and the ozone depletion in the Antarctic stratosphere. For the former, a cloud chemistry model is developed to study the in-cloud chemistry and acidity in cloud droplets. The cloud chemistry model includes the absorption of trace gases, the oxidation of aqueous phase SO2, and the scavenging of atmospheric aerosols. A new scheme is developed to differentiate the acidity and chemical composition distributing in individual cloud droplets. The above cloud chemistry model is incorporated into a two-layer flow model in order to investigate the effects of mountain waves on the cloud acidity. Using the three-year database acquired at Mt. Mitchell site, the in-cloud chemistry and acidic deposition through dry, wet and cloud deposition pathways are investigated. The in-cloud scavenging of submicron aerosols such as sulfates and nitrates is parameterized as a function of cloud deposition rate. The deposition fluxes of sulfur (S) compounds are found primarily contributed by cloud capture mechanism followed by incident precipitation and dry deposition. A comparison of deposition estimates at Mt. Mitchell with those at other sites shows that the sulfate deposition at sites exceeding 1,200 m MSL in elevation in Bavaria (Germany) and eastern USA is almost identical within error limits. The features of the Antarctic stratospheric aerosols during the ozone depletion episode of October 1987 are investigated based on the SAGE 2 (Stratospheric Aerosol and Gas Experiment 2) data. The study focuses on (1) inferring the aerosol size spectrum using a modified randomized minimization-search-technique (RMST), and (2) investigating the vertical, zonal and columnar averages of aerosol properties, together with the ozone concentration

  9. Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles

    Song, M.; Marcolli, C.; U. K. Krieger; A. Zuend; Peter, T

    2012-01-01

    Knowledge of the physical state and morphology of internally mixed organic/inorganic aerosol particles is still largely uncertain. To obtain more detailed information on liquid-liquid phase separation (LLPS) and morphology of the particles, we investigated complex mixtures of atmospherically relevant dicarboxylic acids containing 5–7 carbon atoms (C5, C6 and C7) having oxygen-to-carbon atomic ratios (O:C) of 0.80, 0.67, and 0.57, respectively, mixed with ammonium sulfate (AS). With mi...

  10. Solubility of HOBr in Acidic Solution and Implications for Liberation of Halogens Via Aerosol Processing

    Iraci, Laura T.; Michelsen, R. R.; Rammer, T. A.; Ashbourn, S. F. M.

    2004-01-01

    Halogen species are known to catalytically destroy ozone in several regions of the atmosphere. In addition to direct catalytic losses, bromine compounds can indirectly enhance ozone loss through coupling to other radical families. Hypobromous acid (HOBr) is a key species in the linkage of BrOx to ClOx and HOx. The aqueous- phase coupling reaction HOBr + HCI (right arrow) BrCl + H2O may provide a pathway for chlorine activation on sulfate aerosols at temperatures warmer than those required for polar stratospheric cloud formation. We have measured t h e solubility of HOBr in 45 - 70 wt% sulfuric acid solutions. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, H* = 10(exp 4) - 10(exp 7) mol dm(exp -3) atm(exp -1). The expected inverse dependence of H* on temperature was observed, but only a weak dependence on acidity was found. The solubility of HOBr is comparable to that of HBr, indicating that equilibrium concentrations of HOBr could equal or exceed those of HBr in upper tropospheric and lower stratospheric aerosols. Despite the high solubility of HOBr, aerosol volumes are not large enough to sequester a significant fraction of inorganic bromine from the gas phase. Our measurements of HOBr uptake in aqueous sulfuric acid in the presence of other brominated gases show the evolution of gaseous products including Br2O and Br2.

  11. Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol

    E. Barbaro

    2015-01-01

    Full Text Available To investigate the impact of marine aerosols on global climate change it is important to study their chemical composition and size distribution. Amino acids are a component of the organic nitrogen in aerosols, particles containing amino acids have been found to be efficient ice nuclei. The main aim of this study was to investigate the L- and D-free amino acid composition as possible tracers of primary biological production in Antarctic aerosols from three different areas: two continental bases, Mario Zucchelli Station (MZS on the coast of the Ross Sea, Concordia Station at Dome C on the Antarctic Plateau, and the Southern Ocean near the Antarctic continent. Studying the size distribution of amino acids in aerosols allowed us to characterize this component of the water-soluble organic carbon (WSOC in marine aerosols near their source and after long-range transport. The presence of only free L-amino acids in our samples is indicative of the prevalence of phytoplanktonic material. Sampling at these three points allowed us to study the reactivity of these compounds during long-range transport. The mean total amino acid concentration detected at MZS was 11 pmol m−3, a higher percentage of amino acids were found in the fine fraction. The aerosol samples collected at Dome C had the lowest amino acid values (0.7 and 0.8 pmol m−3 and the coarse particles were found to be enriched with amino acids compared to the coastal site. The amino acid composition had also changed suggesting that physical and chemical transformations had occurred during long range transport. During the sampling cruise on the R/V talica on the Southern Ocean, high concentrations of amino acids were found in the total suspended particles, this we attribute to the presence of intact biological material in the sample.

  12. Atmospheric oxidation of isoprene and 1,3-Butadiene: influence of aerosol acidity and Relative humidity on secondary organic aerosol

    The effects of acidic seed aerosols on the formation of secondary organic aerosol (SOA)have been examined in a number of previous studies, several of which have observed strong linear correlations between the aerosol acidity (measured as nmol H+ per m3 air s...

  13. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin▿

    Maccarana, Marco; Kalamajski, Sebastian; Kongsgaard, Mads; Magnusson, S. Peter; Oldberg, Åke; Malmström, Anders

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated struct...

  14. Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol

    Hsieh, Li-Ying; Kuo, Su-Ching; Chen, Chien-Lung; Tsai, Ying I.

    The distribution of nano/micron dicarboxylic acids and inorganic ions in size-segregated suburban aerosol of southern Taiwan was studied for a PM episode and a non-episodic pollution period, revealing for the first time the distribution of these nanoscale particles in suburban aerosols. Inorganic species, especially nitrate, were present in higher concentrations during the PM episode. A combination of gas-to-nuclei conversion of nitrate particles and accumulation of secondary photochemical products originating from traffic-related emissions was likely a crucial cause of the PM episode. Sulfate, ammonium, and oxalic acid were the dominant anion, cation, and dicarboxylic acid, respectively, accounting for a minimum of 49% of the total anion, cation or dicarboxylic acid mass. Peak concentrations of these species occurred at 0.54 μm in the droplet mode during both non-episodic and PM episode periods, indicating an association with cloud-processed particles. On average, sulfate concentration was 16-17 times that of oxalic acid. Oxalic acid was nevertheless the most abundant dicarboxylic acid during both periods, followed by succinic, malonic, maleic, malic and tartaric acid. The mass median aerodynamic diameter (MMAD) of oxalic acid was 0.77 μm with a bi-modal presence at 0.54 μm and 18 nm during non-episodic pollution and an MMAD of 0.67 μm with mono-modal presence at 0.54 μm in PM episode aerosol. The concomitant formation of malonic acid and oxalic acid was attributed to in-cloud processes. During the PM episode in the 5-100 nm nanoscale range, an oxalic acid/sulfate mass ratio of 40.2-82.3% suggested a stronger formation potential for oxalic acid than for sulfate in the nuclei mode. For total cations (TC), total inorganic anions (TIA) and total dicarboxylic acids (TDA), major contributing particles were in the droplet mode, with least in the nuclei mode. The ratio of TDA to TIA in the nuclei mode increased greatly from 8.40% during the non-episodic pollution

  15. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy

    Park, Rokjin J.; Jacob, Daniel James; Field, Brendan; Yantosca, Robert M.; Chin, Mian

    2004-01-01

    We use a global three-dimensional coupled oxidant-aerosol model (GEOS-CHEM) to estimate natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosol concentrations in the United States. This work is motivated in part by the Regional Haze Rule of the U.S. Environmental Protection Agency (EPA), which requires immediate action to improve visibility in U.S. wilderness areas along a linear trajectory toward an endpoint of “natural visibility conditions” by 2064. We present fu...

  16. Acid sulfate soils are an environmental hazard in Finland

    Pihlaja, Jouni

    2016-04-01

    Acid sulfate soils (ASS) create significant threats to the environment on coastal regions of the Baltic Sea in Finland. The sediments were deposited during the ancient Litorina Sea phase of the Baltic Sea about 7500-4500 years ago. Finland has larger spatial extent of the ASS than any other European country. Mostly based on anthropogenic reasons (cultivation, trenching etc.) ASS deposits are currently being exposed to oxygen which leads to chemical reaction creating sulfuric acid. The acidic waters then dissolve metals form the soil. Acidic surface run off including the metals are then leached into the water bodies weakening the water quality and killing fish or vegetation. In constructed areas acidic waters may corrode building materials. Geological Survey of Finland (GTK) is mapping ASS deposits in Finland. The goal is to map a total of 5 million hectares of the potentially ASS affected region. It has been estimated that the problematic Litorina Sea deposits, which are situated 0-100 m above the recent Baltic Sea shoreline, cover 500 000 hectares area. There are several phases in mapping. The work begins at the office with gathering the existing data, interpreting airborne geophysical data and compiling a field working plan. In the field, quality of the soil is studied and in uncertain cases samples are taken to laboratory analyses. Also electrical conductivity and pH of soil and water are measured in the field. Laboratory methods include multielemental determinations with ICP-OES, analyses of grain size and humus content (LOI), and incubation. So far, approximately 60 % of the potential ASS affected regions in Finland are mapped. Over 15 000 sites have been studied in the field and 4000 laboratory analyses are done. The spatial database presented in the scale of 1: 250 000 can be viewed at the GTK's web pages (http://gtkdata.gtk.fi/hasu/index.html).

  17. Correlation of acid rain with the distributions of acid and alkaline elements in aerosols

    Acid rain often appeared both in Guiyang city of Guizhou province and Chongqing city of Sichuan province in the southwest of China. Aerosol samples in these two cities were collected by Andersen cascade sampler during the spring and autumn of 1995 respectively. The contents of 18 elements in the aerosol particles were analyzed by PIXE. The distributions of acid elements such as S, Cl and alkaline elements such as Ca, K in the aerosol samples from these two cities were calculated. The comparison of the distributions of acid and alkaline elements in the aerosols samples was made between these two cities and Beijing where no acid rain was found. The results showed that the acid rain in the southwest of China was caused by the dominant concentration of acid elements in the aerosol particles, which mainly resulted from the coal combustion and the lower alkalinity of soil in this area

  18. Interactions of Gas-Phase Nitric/Nitrous Acids and Primary Organic Aerosol in the Atmosphere of Houston, TX

    Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Whitlow, S. I.; Lefer, B. L.; Flynn, J.; Rappenglück, B.

    2007-12-01

    Concentrations of aerosol and gas-phase pollutants were measured on the roof of an 18-story building during the Texas Air Quality Study II Radical and Aerosol Measurement Project (TRAMP) from August 15 through September 28, 2006. Aerosol measurements included size-resolved, non-refractory mass concentrations of ammonium, nitrate, sulfate, chloride, and organic aerosol in submicron particles using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS). Particulate water-soluble organic carbon (PWSOC) was quantified using a mist chamber/total organic carbon analysis system. Concentration data for gas-phase pollutants included those for nitric acid (HNO3), nitrous acid (HONO), and hydrochloric acid (HCl) collected using a mist chamber/ion chromatographic technique, oxides of nitrogen (NOx) collected using a chemiluminescent method, and carbon monoxide (CO) collected using an infrared gas correlation wheel instrument. Coincident increases in nitrate and organic aerosol mass concentrations were observed on many occasions throughout the measurement campaign, most frequently during the morning rush hour. Based on the lack of organic aerosol processing (defined by the ratio of m/z = 44/57 in the Q-AMS spectra), strong correlation with NOx and CO, and a lack of significant increase in PWSOC concentration, the spikes in organic aerosol were likely associated with primary organic aerosol (POA). During these events, gas-phase HNO3 concentration decreases were observed simultaneously with increases in gas-phase HONO concentrations. These data likely indicate uptake of HNO3 and subsequent heterogeneous conversion to HONO involving POA. Preliminary calculations show that HNO3 partitioning could account for the majority of the observed HONO and aerosol nitrate concentrations during these events. Q-AMS chloride and HCl data also indicate uptake of chloride by particles during these events. This phenomenon was also observed during the night, but these nocturnal events were less

  19. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.; Magnusson, S.P.; Oldberg, A.; Malmstrom, A.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks...... of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in...... versican-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We...

  20. Acid Release from an Acid Sulfate Soil Sample Under Successive Extractions with Different Extractants

    2000-01-01

    An acid sulfate soil sample was successively extracted with deionized water, 1 mol L-1 KCI and 0.000 5 mol L-1 Ca(OH)2 solutions. The results showed that only very small amounts of acidity were extracted by deionized water, possibly through slow jarosite hydrolysis. Acid release through jarosite hydrolysis was greatly enhanced by Ca(OH)2 extraction at the expense of the added OH- being neutralized by the acid released. Successive extraction of the sample with KCI removed the largest amounts of acidity from the sample. However, it is likely that the major form of acidity released by KC1 extraction was exchangeable acidity. The results also show the occurrence of low or non charged A1 and Fe species in water and Ca(OH)2 extracts after first a few extractions. It appears that such a phenomenon was related to a decreasing EC value with increasing number of extractions.

  1. Decontamination of acid mine water from Ronneburg/Thueringen which is high in sulfates and metals using sulfate-reducing bacteria. Subproject. Final report

    The authors analyzed and developed the fundamentals of a microbiological water treatment process for decontamination of acid water from a uranium mine which is high in sulfates and heavy metals. The process is based on microbiological sulfate reduction. In the pre-phase of the project, sulfate-reducing microorganisms were isolated and cultivation methods for these microorganisms developed

  2. Heterogeneous Chemistry of Carbonyls and Alcohols With Sulfuric Acid: Implications for Secondary Organic Aerosol Formation

    Zhao, J.; Levitt, N.; Zhang, R.

    2006-12-01

    Recent environmental chamber studies have suggested that acid-catalyzed particle-phase reactions of organic carbonyls lead to multifold increases in secondary organic aerosol (SOA) mass and acid-catalyzed reactions between alcohols and aldehydes in the condensed phase lead to the formation of hemiacetals and acetals, also enhancing secondary organic aerosol growth. The kinetics and mechanism of the heterogeneous chemistry of carbonyls and alcohols with sulfuric acid, however, remain largely uncertain. In this talk, we present measurements of heterogeneous uptake of several carbonyls and alcohols on liquid H2SO4 in a wide range of acid concentrations and temperatures. The results indicate that uptake of larger carbonyls is explained by aldol condensation. For small dicarbonyls, heterogeneous reactions are shown to decrease with acidity and involve negligible formation of sulfate esters. Hydration and polymerization likely explain the measured uptake of such small dicarbonyls on H2SO4 and the measurements do not support an acid- catalyzed uptake. Atmospheric implications from our findings will be discussed.

  3. Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy

    Park, Rokjin J.; Jacob, Daniel J.; Field, Brendan D.; Yantosca, Robert M.; Chin, Mian

    2004-08-01

    We use a global three-dimensional coupled oxidant-aerosol model (GEOS-CHEM) to estimate natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosol concentrations in the United States. This work is motivated in part by the Regional Haze Rule of the U.S. Environmental Protection Agency (EPA), which requires immediate action to improve visibility in U.S. wilderness areas along a linear trajectory toward an endpoint of "natural visibility conditions" by 2064. We present full-year simulations for 1998 and 2001 and evaluate them with nationwide networks of observations in the United States and Europe (Interagency Monitoring of Protected Visual Environments (IMPROVE), Clean Air Status and Trends Network (CASTNET), National Atmospheric Deposition Program (NADP), European Monitoring and Evaluation Programme (EMEP)) and with Asian outflow observations from the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission. Shutting off U.S. anthropogenic emissions in the model defines "background" aerosol concentrations representing contributions from both natural and transboundary pollution sources. We find that transboundary transport of pollution from Canada, Mexico, and Asia dominates over natural influences for both sulfate and nitrate. Trans-Pacific transport of Asian pollution accounts for 30% of background sulfate in both the western and eastern United States. Our best estimates of natural concentrations for ammonium sulfate and ammonium nitrate in the United States are either consistent with or lower than the default values recommended by EPA for natural visibility calculations. However, the large transboundary pollution influence in our calculation suggests that a natural visibility objective cannot be approached without international emission controls.

  4. Morphological effects on the radiative properties of soot aerosols in different internally mixing states with sulfate

    The radiative properties of soot aerosols largely depend on their mixing state and morphology factors. In this paper, we generated soot aggregates in four mixing states with sulfate, including bare soot, partly coated soot, heavily coated soot and soot with inclusion. The number of monomers and fractal dimension of soot were varied in each mixing state while the radius of monomers was fixed at 0.025 μm. Using the discrete dipole approximation method (DDA), we calculated optical parameters relevant for climate forcing simulation at mid-visible wavelength (0.55 μm). Internal mixing results in enhanced absorption, scattering cross sections as well as the single scattering albedo. The enhancement ratio of the absorption is largest for heavily coated soot, which ranges from 1.5 to 1.65 with a soot volume fraction of 0.15 and is larger for soot with larger fractal dimension. The scattering cross section can be dramatically increased by factors larger than 10 when soot is heavily coated. The increasing of both the scattering cross section and the single scattering albedo is larger for soot aggregates with smaller number of monomers and fractal dimension. The asymmetry parameter is insensitive to the fractal dimension for heavily coated soot and soot with inclusion. Two simplified models including the homogeneous sphere model (HS) and the core shell sphere model (CS) were examined using the DDA results as references. The performance of the HS and CS model largely depends on the morphology factors and the mixing state of soot. For bare and partly coated soot, both the HS and CS model can introduce relative errors as large as several tens percent. For heavily coated soot, the HS model predicts the absorption with relative errors within 10%, while it overestimates the absorption with relative errors no larger than 20% for soot with inclusion. The HS model predicts the single scattering albedo and the asymmetry parameter with relative errors no larger than 10% for heavily

  5. Sulfate Mineral Formation from Acid-weathered Phyllosilicates: Implications for the Aqueous History of Mars

    Craig, Patricia; Ming, Douglas; Rampe, Elizabeth

    2014-11-01

    Phyllosilicates on Mars are common in Noachian terrains whereas sulfates are found in the younger Hesperian terrains and suggest alteration under more acidic conditions. Phyllosilicates that formed during the Noachian era would have been exposed to the prevailing acidic conditions during the Hesperian. The purpose of this project is to characterize the effects of acid-weathering on phyllosilicates to better understand the aqueous history of Mars. Nontronite, montmorillonite, and saponite were exposed to H2SO4 solutions at water-rock (WR) ratios of 50 and 25.X-ray diffraction (XRD) patterns of all three acid-treated minerals showed progressive collapse of the phyllosilicate basal spacing with increasing acid concentration. Bassanite formed as an intermediate phase in weathered nontronite and montmorillonite from extracted interlayer Ca. The octahedral cation determined which sulfate formed at high acid concentration: rhomboclase from nontronite, alunogen from montmorillonite, hexahydrite and kieserite from saponite. Gypsum and anhydrite also formed as intermediate phases in nontronite treated at WR=25, showing a change in sulfate hydration state with changing acid concentration (i.e. water activity). Scanning electron microscopy analyses detected phases not identified by XRD. Al-sulfate was found in nontronite weathered at WR=25 and Ca-sulfate in weathered saponite. Near-infrared reflectance spectra of the weathered samples showed decreasing intensity of the hydration/hydroxylation bands and a change or disappearance of metal-OH bands indicating dehydration and dissociation of the interlayers and octahedral layers, respectively, with increased acid weathering.Sulfate mineral formation from acid-weathered phyllosilicates may explain the presence of phyllosilicates and sulfates in close proximity to each other on Mars, such as in Gale Crater. The CheMin XRD instrument on Curiosity may find evidence for acid-weathered phyllosilicates in Mt. Sharp by comparing the 001

  6. Investigation of the atmospheric behavior of dicarboxylic acids and other polar organic aerosol constituents

    The objective of the present work was to improve the present knowledge about the atmospheric behavior of polar organic aerosol constituents with special respect to dicarboxylic acids. To enable the simultaneous determination of polar organic compounds in atmospheric samples like aerosol or precipitation samples (atmospheric hydrometeors) a new GCMS method was developed. Almost all classes of oxygenated organic compounds like mono- and dicarboxylic acids, aldehydes, alcohols or polar aromatic compounds like phthalates could be determined with only one sample preparation scheme. The separation into two classes of organic compounds with different polarity was performed using solid phase extraction. After a sample pre-treatment of the derived fractions, including esterification of the acids and extraction with cyclohexane, the samples were analyzed with a GCMS system. The new method was applied for the analysis of simultaneously collected interstitial aerosol and cloud water samples from a continental background site in Central Europe (Sonnblick Observatory, located at 3106-m elevation in the Austrian Alps). In all samples a large variety of mono- and dicarboxylic acids were identified and quantified, together with some aldehydes, alcohols and aromatic compounds. Using the obtained data set, for the first time in-cloud scavenging efficiencies for dicarboxylic acids, monocarboxylic acids, and other polar organic compounds were calculated. The results were compared to sulfate, which exhibited an average scavenging efficiency of 0.94. In the last part of the present work the results from laboratory and field investigations conducted with the intention to yield an improved sampling technique for the correction of the positive sampling artifact (adsorption of gas phase organics onto the filter substrate) were presented. (author)

  7. Spectral identification of hydrated sulfates on Mars and comparison with acidic environments on Earth

    Bishop, Janice L.; Darby Dyar, M.; Lane, Melissa D.; Banfield, Jillian F.

    2004-10-01

    We interpret recent spectral data of Mars collected by the Mars Exploration Rovers to contain substantial evidence of sulfate minerals and aqueous processes. We present visible/near-infrared (VNIR), mid-IR and Mössbauer spectra of several iron sulfate minerals and two acid mine drainage (AMD) samples collected from the Iron Mountain site and compare these combined data with the recent spectra of Mars. We suggest that the sulfates on Mars are produced via aqueous oxidation of sulfides known to be present on Mars from Martian meteorites. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to AMD environments on Earth. Because microorganisms are typically involved in the oxidation of sulfides to sulfates in terrestrial AMD sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals is likely to lead to aqueous processes and chemical weathering. Our results imply that sulfate minerals formed in Martian soils via chemical weathering, perhaps over very long time periods, and that sulfate minerals precipitated following aqueous oxidation of sulfides to form the outcrop rocks at Meridiani Planum.

  8. Raman scattering spectra and crystal structure of acid potassium-lithium sulfate

    Paper presents the results of the comprehensive investigation into Raman scattering in potassium-lithium acid sulfate crystal. A model of crystal structure is suggested on the basis of the study data. The suggested consistent model of the crystalline structure of potassium-lithium acid sulfate crystal describes well both spectrum high-frequency and low-frequency sections and may be used to analyze models of phase transformation

  9. Reactive Crystallization of Calcium Sulfate Dihydrate from Acidic Wastewater and Lime

    邓立聪; 张亦飞; 陈芳芳; 曹绍涛; 游韶玮; 刘艳; 张懿

    2013-01-01

    The present work focused on the recycle of the sulfate and the metal ions from acidic wastewater dis-charged by nonferrous metallurgical industry. The effects of the temperature, the reactant concentration, the stirring speed and the metal ions on the reactive crystallization process of calcium sulfate between sulfuric acid and lime were systematically investigated. The morphology of the precipitated crystals evolved from platelet-like and nee-dle-like shape to rod-like shape when the temperature was increased from 25 to 70 °C. An increase in the agglom-eration of calcium sulfate was found with increasing lime concentration. Metal ions markedly retard the rate of crystallization of calcium sulfate dihydrate. The crystallization of gypsum was slowed with the existence of Mg2+in the solution, and the morphology of gypsum was transformed from platelet-like shape to rod-like shape when Mg2+concentration reached 0.08 mol·L-1. The amorphous ferric hydroxide was coated on the calcium sulfate after the co-precipitation process while Zn2+and Al3+ions in the solution enhanced the agglomeration of the calcium sulfate by absorbing on the surface of the crystals. Comprehensive acidic wastewater containing heavy metals was effi-ciently purified by the two stage lime neutralization technology, and highly agglomerated gypsum precipitates with needle-like shape were obtained. The precipitates could be purified by sulfuric acid washing, and the metal ions were effectively separated from the calcium sulfate by-products.

  10. Atmospheric Aerosol Loading and Transport Due to the 1783-84 Laki Eruption in Iceland, Interpreted from Ash Particles and Acidity in the GISP2 Ice Core

    Fiacco, R. Joseph; Thordarson, Thorvaldur; Germani, Mark S.; Self, Stephen; Palais, Julie M.; Whitlow, Sallie; Grootes, Peter M.

    1994-11-01

    Glass shards from the A.D. 1783 Laki fissure eruption in Iceland have been identified in the GISP2 ice core from Summit, Greenland, at a level just preceding the major acidity/sulfate peak. Detailed reconstruction of ice stratigraphy, coupled with analyses of solid particles from filtered samples, indicate that a small amount of Laki ash was carried via atmospheric transport to Greenland in the summer of 1783, whereas the main aerosol precipitation occurred in the summer and early fall of 1784. Sulfate concentrations in the ice increase slightly during late summer and fall of 1783 and remain steady throughout the winter due to slow oxidation rates during this season in the Arctic. The sulfate concentration rises dramatically in the spring and summer of 1784, producing a massive sulfate peak, previously believed to have accumulated during the summer of 1783 and commonly used as the marker horizon in Greenland ice core studies. The chronology of ash and acid fallout at the GISP2 site suggests that a significant portion of the Laid eruption plume penetrated the tropopause and that aerosol generated from it remained aloft for at least 1 yr after the eruption. Based on comparisons with other glaciochemical seasonal indicators, abnormally cool conditions prevailed at Summit during the summer of 1784. This further supports the claim that a significant volume of sulfate aerosol remained in the Arctic middle atmosphere well after the eruption had ceased.

  11. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate

    Onysko, S.J.; Kleinmann, R.L.P.; Erickson, P.M.

    1984-07-01

    Thiobacillus ferrooxidans promote indirect oxidation of pyrite through the catalysis of the oxidation of ferrous iron to ferric iron, which is an effective oxidant of pyrite. These bacteria also may catalyze direct oxidation of pyrite by oxygen. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous iron to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage microorganisms. In this study, benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  12. Effects of stratospheric sulfate aerosol geo-engineering on cirrus clouds

    M. Kuebbeler; U. Lohmann; J. Feichter

    2012-01-01

    Cooling the Earth through the injection of sulphate into the stratosphere is one of the most discussed geo-engineering (GE) schemes. Stratospheric aerosols can sediment into the troposphere, modify the aerosol composition and thus might impact cirrus clouds. We use a global climate model with a physically based parametrization for cirrus clouds in order to investigate possible microphysical and dynamical effects. We find that enhanced stratospheric aerosol loadings as proposed by several GE a...

  13. FTIR studies of low temperature sulfuric acid aerosols

    Anthony, S. E.; Tisdale, R. T.; Disselkamp, R. S.; Tolbert, M. A.; Wilson, J. C.

    1995-01-01

    Sub-micrometer sized sulfuric acid H2SO4 particles were generated using a constant output atomizer source. The particles were then exposed to water vapor before being injected into a low temperature cell. Multipass transmission Fourier Transformation Infrared (FTIR) spectroscopy was used to determine the phase and composition of the aerosols as a function of time for periods of up to five hours. Binary H2SO4H2O aerosols with compositions from 35 to 95 wt % H2SO4 remained liquid for over 3 hours at room temperatures ranging from 189-240 K. These results suggest that it is very difficut to freeze SSAs via homogeneous nucleation. Attempts to form aerosols more dilute than 35 wt % H2SO4 resulted in ice formation.

  14. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-12-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters, and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied with experimental methods. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of similar magnitudes, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  15. Sulfate, chloride and fluoride retention in Andosols exposed to volcanic acid emissions

    Delmelle, Pierre; Delfosse, Thomas; Delvaux, Bruno

    2003-12-01

    The continuous emissions of SO{sub 2}, HCl and HF by Masaya volcano, Nicaragua, represent a substantial source of atmospheric S-, Cl- and F-containing acid inputs for local ecosystems. We report on the effects of such acid depositions on the sulfate, chloride and fluoride contents in soils (0-40 cm) from two distinct transects located downwind from the volcano. The first transect corresponds to relatively undifferentiated Vitric Andosols, and the second transect to more weathered Eutric Andosols. These soils are exposed to various rates of volcanogenic acid addition, with the Vitric sites being generally more affected. Prolonged acid inputs have led to a general pH decrease and reduced exchangeable base cation concentrations in the Andosols. The concentrations of 0.5 M NH{sub 4}F- and 0.016 M KH{sub 2}PO{sub 4}-extractable sulfate (NH{sub 4}F-S and KH{sub 2}PO{sub 4}-S, respectively) indicate that volcanic S addition has increased the inorganic sulfate content of the Vitric and Eutric soils at all depths. In this process, the rate of sulfate accumulation is also dependent on soil allophane contents. For all soils, NH{sub 4}F extracted systematically more (up to 40 times) sulfate than KH{sub 2}PO{sub 4}. This difference suggests sulfate incorporation into an aluminum hydroxy sulfate phase, whose contribution to total inorganic sulfate in the Vitric and Eutric Andosols is estimated from {approx}34 to 95% and {approx}65 to 98%, respectively. The distribution of KH{sub 2}PO{sub 4}-extractable chloride in the Vitric and Eutric Andosols exposed to volcanic Cl inputs reveals that added chloride readily migrates through the soil profiles. In contrast, reaction of fluoride with Al and Fe oxyhydroxides and allophanes is an important sink mechanism in the Masaya Andosols exposed to airborne volcanic F. Fluoride dominates the anion distribution in all soil horizons, although F is the least concentrated element in the volcanic emissions and depositions. The soil anion

  16. Sulfate, chloride and fluoride retention in Andosols exposed to volcanic acid emissions

    The continuous emissions of SO2, HCl and HF by Masaya volcano, Nicaragua, represent a substantial source of atmospheric S-, Cl- and F-containing acid inputs for local ecosystems. We report on the effects of such acid depositions on the sulfate, chloride and fluoride contents in soils (0-40 cm) from two distinct transects located downwind from the volcano. The first transect corresponds to relatively undifferentiated Vitric Andosols, and the second transect to more weathered Eutric Andosols. These soils are exposed to various rates of volcanogenic acid addition, with the Vitric sites being generally more affected. Prolonged acid inputs have led to a general pH decrease and reduced exchangeable base cation concentrations in the Andosols. The concentrations of 0.5 M NH4F- and 0.016 M KH2PO4-extractable sulfate (NH4F-S and KH2PO4-S, respectively) indicate that volcanic S addition has increased the inorganic sulfate content of the Vitric and Eutric soils at all depths. In this process, the rate of sulfate accumulation is also dependent on soil allophane contents. For all soils, NH4F extracted systematically more (up to 40 times) sulfate than KH2PO4. This difference suggests sulfate incorporation into an aluminum hydroxy sulfate phase, whose contribution to total inorganic sulfate in the Vitric and Eutric Andosols is estimated from ∼34 to 95% and ∼65 to 98%, respectively. The distribution of KH2PO4-extractable chloride in the Vitric and Eutric Andosols exposed to volcanic Cl inputs reveals that added chloride readily migrates through the soil profiles. In contrast, reaction of fluoride with Al and Fe oxyhydroxides and allophanes is an important sink mechanism in the Masaya Andosols exposed to airborne volcanic F. Fluoride dominates the anion distribution in all soil horizons, although F is the least concentrated element in the volcanic emissions and depositions. The soil anion distribution reflects preferential retention of fluoride over sulfate and chloride, and of

  17. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    Hansen, A. M. K.; Kristensen, K.; Nguyen, Q. T.; Zare, A.; Cozzi, F.; Nøjgaard, J. K.; Skov, H.; Brandt, J.; Christensen, J. H.; Ström, J.; Tunved, P.; Krejci, R.; Glasius, M.

    2014-02-01

    , organosulfate and organic acid concentrations remained relatively constant during most of the year at amean concentration of 15 (±4) ng m-3 (accounting for 4 (±1)% of total organic matter) and 3.9 (±1) ng m-3 (accounting for 1.1 (±0.1)% of total organic matter) respectively. However during four weeks of spring remarkably higher concentrations of total organosulfates (23-36 ng m-3) and total organic acids (7-10 ng m-3) were observed. The periods of observed elevated organosulfate and organic acid concentration at Station Nord and at Zeppelin Mountain coincided with the Arctic Haze period. Furthermore, backwards air mass trajectories indicated northern Eurasia as the main source region of the Arctic haze aerosols at both sites. Periods with air mass transport from Russia to Zeppelin Mountain were associated with a doubled number of detected organosulfate species compared with periods of air mass transport from the Arctic Ocean, Scandinavia and Greenland. Our analysis showed the presence of organosulfates and organic acids of both biogenic and anthropogenic origin throughout the year at both Arctic sites. As the formation of organosulfates binds inorganic sulfate, their presence may possibly affect the formation and lifetime of clouds in the Arctic atmosphere.

  18. Organosulfates and organic acids in Arctic aerosols: speciation, annual variation and concentration levels

    A. M. K. Hansen

    2014-02-01

    , organosulfate and organic acid concentrations remained relatively constant during most of the year at amean concentration of 15 (±4 ng m−3 (accounting for 4 (±1% of total organic matter and 3.9 (±1 ng m−3 (accounting for 1.1 (±0.1% of total organic matter respectively. However during four weeks of spring remarkably higher concentrations of total organosulfates (23–36 ng m−3 and total organic acids (7–10 ng m−3 were observed. The periods of observed elevated organosulfate and organic acid concentration at Station Nord and at Zeppelin Mountain coincided with the Arctic Haze period. Furthermore, backwards air mass trajectories indicated northern Eurasia as the main source region of the Arctic haze aerosols at both sites. Periods with air mass transport from Russia to Zeppelin Mountain were associated with a doubled number of detected organosulfate species compared with periods of air mass transport from the Arctic Ocean, Scandinavia and Greenland. Our analysis showed the presence of organosulfates and organic acids of both biogenic and anthropogenic origin throughout the year at both Arctic sites. As the formation of organosulfates binds inorganic sulfate, their presence may possibly affect the formation and lifetime of clouds in the Arctic atmosphere.

  19. Aldol Condensation of Volatile Carbonyl Compounds in Acidic Aerosols

    Noziere, B.; Esteve, W.

    2003-12-01

    Reactions of volatile organic compounds in acidic aerosols have been shown recently to be potentially important for organic aerosol formation and growth. Aldol condensation, the acid-catalyzed polymerization of carbonyl compounds, is a likely candidate to enhance the flux of organic matter from the gas phase to the condensed phase in the atmosphere. Until now these reactions have only been characterized for conditions relevant to synthesis (high acidities and liquid phase systems) and remote from atmospheric ones. In this work, the uptake of gas-phase acetone and 2,4\\-pentanedione by sulfuric acid solutions has been measured at room temperature using a Rotated Wetted Wall Reactor coupled to a Mass Spectrometer. The aldol condensation rate constants for 2,4\\-pentanedione measured so far for sulfuric acid solutions between 96 and 70 % wt. display a variation with acidity in agreement with what predicted in the organic chemical literature. The values of these constants, however, are much lower than expected for this compound, and comparable to the ones of acetone. Experiments are underway to complete this study to lower acidities and understand the discrepancies with the predicted reactivity.

  20. Light-absorbing aldol condensation products in acidic aerosols: Spectra, kinetics, and contribution to the absorption index

    Nozière, Barbara; Esteve, William

    The radiative properties of aerosols that are transparent to light in the near-UV and visible, such as sulfate aerosols, can be dramatically modified when mixed with absorbing material such as soot. In a previous work we had shown that the aldol condensation of carbonyl compounds produces light-absorbing compounds in sulfuric acid solutions. In this work we report the spectroscopic and kinetic parameters necessary to estimate the effects of these reactions on the absorption index of sulfuric acid aerosols in the atmosphere. The absorption spectra obtained from the reactions of six different carbonyl compounds (acetaldehyde, acetone, propanal, butanal, 2-butanone, and trifluoroacetone) and their mixtures were compared over 190-1100 nm. The results indicated that most carbonyl compounds should be able to undergo aldol condensation. The products are oligomers absorbing light in the 300-500 nm region where few other compounds absorb, making them important for the radiative properties of aerosols. Kinetic experiments in 96-75 wt% H 2SO 4 solutions and between 273 and 314 K gave an activation energy for the rate constant of formation of the aldol products of acetaldehyde of -(70±15) kJ mol -1 in 96 wt% solution and showed that the effect of acid concentration was exponential. A complete expression for this rate constant is proposed where the absolute value in 96 wt% H 2SO 4 and at 298 K is scaled to the Henry's law coefficient for acetaldehyde and the absorption cross-section for the aldol products assumed in this work. The absorption index of stratospheric sulfuric acid aerosols after a 2-year residence time was estimated to 2×10 -4, optically equivalent to a content of 0.5% of soot and potentially significant for the radiative forcing of these aerosols and for satellite observations in channels where the aldol products absorb.

  1. Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol

    K. Stemmler

    2007-03-01

    Full Text Available The interactions of aerosols consisting of humic acids with gaseous nitrogen dioxide (NO2 were investigated under different light conditions in aerosol flow tube experiments at ambient pressure and temperature. The results show that NO2 is converted on the humic acid aerosol into nitrous acid (HONO, which is released from the aerosol and can be detected in the gas phase at the reactor exit. The formation of HONO on the humic acid aerosol is strongly activated by light: In the dark, the HONO-formation was below the detection limit, but it was increasing with the intensity of the irradiation with visible light. Under simulated atmospheric conditions with respect to the actinic flux, relative humidity and NO2-concentration, reactive uptake coefficients γrxn for the NO2→HONO conversion on the aerosol between γrxn <10−7 (in the dark and γrxn = 6×10−6 were observed. The observed uptake coefficients decreased with increasing NO2-concentration in the range from 2.7 to 280 ppb and were dependent on the relative humidity (RH with slightly reduced values at low humidity (<20% RH and high humidity (>60% RH. The measured uptake coefficients for the NO2→HONO conversion are too low to explain the HONO-formation rates observed near the ground in rural and urban environments by the conversion of NO2→HONO on organic aerosol surfaces, even if one would assume that all aerosols consist of humic acid only. It is concluded that humic materials present on the Earth surface will have a much larger impact on the HONO-formation in the lowermost layer of the troposphere than humic materials potentially occurring in airborne particles.

  2. Impact of mitigation strategies on acid sulfate soil chemistry and microbial community.

    Wu, Xiaofen; Sten, Pekka; Engblom, Sten; Nowak, Pawel; Österholm, Peter; Dopson, Mark

    2015-09-01

    Potential acid sulfate soils contain reduced iron sulfides that if oxidized, can cause significant environmental damage by releasing large amounts of acid and metals. This study examines metal and acid release as well as the microbial community capable of catalyzing metal sulfide oxidation after treating acid sulfate soil with calcium carbonate (CaCO3) or calcium hydroxide (Ca(OH)2). Leaching tests of acid sulfate soil samples were carried out in the laboratory. The pH of the leachate during the initial flushing with water lay between 3.8 and 4.4 suggesting that the jarosite/schwertmannite equilibrium controls the solution chemistry. However, the pH increased to circa 6 after treatment with CaCO3 suspension and circa 12 after introducing Ca(OH)2 solution. 16S rRNA gene sequences amplified from community DNA extracted from the untreated and both CaCO3 and Ca(OH)2 treated acid sulfate soils were most similar to bacteria (69.1% to 85.7%) and archaea (95.4% to 100%) previously identified from acid and metal contaminated environments. These species included a Thiomonas cuprina-like and an Acidocella-like bacteria as well as a Ferroplasma acidiphilum-like archeon. Although the CaCO3 and Ca(OH)2 treatments did not decrease the proportion of microorganisms capable of accelerating acid and metal release, the chemical effects of the treatments suggested their reduced activity. PMID:25933291

  3. Insights Into the Aqueous History of Mars from Acid-Sulfate Weathered Phyllosilicates

    Craig, P. I.; Ming, D. W.; Rampe, E. B.; Morris, R. V.

    2016-01-01

    Phyllosilicates on Mars are thought to have formed during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Ga). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Ga). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era would have been weathered by the prevailing acidic conditions that define the Hesperian. Therefore, the purpose of this study is to characterize the alteration products of acid-sulfate weathered phyllosilicates in laboratory experiments, focusing on the Fe/Mg-smectites commonly identified on Mars. We also compare our results to observations of phyllosilicates and sulfates on Mars in regions such as Endeavour Crater and Mawrth Vallis to understand the formation process of sulfates and constrain the aqueous history of these regions.

  4. Remote sensing of acid sulfate soils using multispectral and gamma-ray data

    Acid sulfate soils are a significant environmental problem in coastal regions of Australia. Drainage and disturbance of coastal lands can result in acid soil degradation and the release of sulfuric acid and toxic metals into coastal waters. Remote sensing can provide a useful tool for detection of these soils and monitoring of their disturbance. As acid sulfate soils become oxidised with exposure to air, iron-minerals are produced and precipitate at the surface. This results from the breakdown of pyrite to form hydrated iron minerals and elemental sulfur, the oxidation of which produces acidity. The concentration of iron minerals at the surface can be an indicator of the level of acid sulfate soil activity in the near subsurface. These iron minerals include goethite, ferrihydrite and jarosite. Space-borne remote sensing scanners such as Landsat TM are capable of detecting iron minerals as a result of ferric ion absorption of solar radiation. Hyperspectral scanners are capable of further discrimination of individual minerals. This paper will discuss spectral characteristics of active acid sulfate soils and demonstrate the use of spectral unmixing algorithms on Landsat TM to detect problem areas at the surface. This method matches multispectral data to material reflectance-spectra known as end-members. These end-members or materials are then resolved mathematically as to their respective contributions to the overall reflectance (Bierwirth, 1990). In this way, abundances for particular materials can be derived.Digital elevation data was used to distinguish between the iron minerals due to weathering of bedrock in upland areas and acid sulfate soils on the plains. Also, the results of a high resolution (200m linespacing) airborne gamma-ray survey are presented. This data senses the concentration of radioelements down to about 40 cm depth and is largely unaffected by vegetation. Concentrations of gamma-emitting elements can indicate the type and depth of alluvium that

  5. Identifying sources of acidity and spatial distribution of acid sulfate soils in the Anglesea River catchment, southern Australia

    Wong, Vanessa; Yau, Chin; Kennedy, David

    2015-04-01

    Globally, coastal and estuarine floodplains are frequently underlain by sulfidic sediments. When exposed to oxygen, sulfidic sediments oxidise to form acid sulfate soils, adversely impacting on floodplain health and adjacent aquatic ecoystems. In eastern Australia, our understanding of the formation of these coastal and estuarine floodplains, and hence, spatial distribution of acid sulfate soils, is relatively well established. These soils have largely formed as a result of sedimentation of coastal river valleys approximately 6000 years BP when sea levels were one to two metres higher. However, our understanding of the evolution of estuarine systems and acid sulfate soil formation, and hence, distribution, in southern Australia remains limited. The Anglesea River, in southern Australia, is subjected to frequent episodes of poor water quality and low pH resulting in closure of the river and, in extreme cases, large fish kill events. This region is heavily reliant on tourism and host to a number of iconic features, including the Great Ocean Road and Twelve Apostles. Poor water quality has been linked to acid leakage from mining activities and Tertiary-aged coal seams, peat swamps and acid sulfate soils in the region. However, our understanding of the sources of acidity and distribution of acid sulfate soils in this region remains poor. In this study, four sites on the Anglesea River floodplain were sampled, representative of the main vegetation communities. Peat swamps and intertidal marshes were both significant sources of acidity on the floodplain in the lower catchment. However, acid neutralising capacity provided by carbonate sands suggests that there are additional sources of acidity higher in the catchment. This pilot study has highlighted the complexity in the links between the floodplain, upper catchment and waterways with further research required to understand these links for targeted acid management strategies.

  6. Acidification of musts in warm regions with tartaric acid and calcium sulfate at industrial scale

    Gómez Juan

    2015-01-01

    Full Text Available Acidification of musts is necessary in warm areas where high temperatures during ripening accelerate breathing com- bustion of tartaric acid and, in particular, malic acid in the berries. L(+ tartaric acid, L(- or D,L malic acid and lactic acids are the only chemical acidifiers authorized by the OIV and European Community regulations. The use of calcium sulfate (gypsum: CaSO4·2H2O is also authorized in the European Community as a complementary acidifier in generous and generous liquor 42 wines from Spain (a practice known as plastering, provided that the residual sulfate content in the wine does not exceed 2.5 g/L expressed as potassium sulfate. However, this practice is not yet approved by OIV. To predict the effect on pH of different acidi- fiers, several chemical modeling approaches have been described in the literature, in particular a simplified model where the acidity of wine is considered to be due to a monoprotic acid. The aim of this work is to verify this model at pilot and industrial scale in the acidification of musts with tartaric and calcium sulfate, added either individually and in combination, using doses up to 3 g/L and to study the modifications that these practices produce on the compositions of the resulting wines. This work sup- plies useful information to study this practice in OIV in order to consider its approval.

  7. Effects of stratospheric sulfate aerosol geo-engineering on cirrus clouds

    Kuebbeler, Miriam; Lohmann, Ulrike; Feichter, Johann

    2012-12-01

    Cooling the Earth through the injection of sulphate into the stratosphere is one of the most discussed geo-engineering (GE) schemes. Stratospheric aerosols can sediment into the troposphere, modify the aerosol composition and thus might impact cirrus clouds. We use a global climate model with a physically based parametrization for cirrus clouds in order to investigate possible microphysical and dynamical effects. We find that enhanced stratospheric aerosol loadings as proposed by several GE approaches will likely lead to a reduced ice crystal nucleation rate and thus optically thinner cirrus clouds. These optically thinner cirrus clouds exert a strong negative cloud forcing in the long-wave which contributes by 60% to the overall net GE forcing. This shows that indirect effects of stratospheric aerosols on cirrus clouds may be important and need to be considered in order to estimate the maximum cooling derived from stratospheric GE.

  8. Sulfate, chloride and fluoride retention in Andosols exposed to volcanic acid emissions.

    Delmelle, Pierre; Delfosse, Thomas; Delvaux, Bruno

    2003-01-01

    The continuous emissions of SO(2), HCl and HF by Masaya volcano, Nicaragua, represent a substantial source of atmospheric S-, Cl- and F-containing acid inputs for local ecosystems. We report on the effects of such acid depositions on the sulfate, chloride and fluoride contents in soils (0-40 cm) from two distinct transects located downwind from the volcano. The first transect corresponds to relatively undifferentiated Vitric Andosols, and the second transect to more weathered Eutric Andosols. These soils are exposed to various rates of volcanogenic acid addition, with the Vitric sites being generally more affected. Prolonged acid inputs have led to a general pH decrease and reduced exchangeable base cation concentrations in the Andosols. The concentrations of 0.5 M NH(4)F- and 0.016 M KH(2)PO(4)-extractable sulfate (NH(4)F-S and KH(2)PO(4)-S, respectively) indicate that volcanic S addition has increased the inorganic sulfate content of the Vitric and Eutric soils at all depths. In this process, the rate of sulfate accumulation is also dependent on soil allophane contents. For all soils, NH(4)F extracted systematically more (up to 40 times) sulfate than KH(2)PO(4). This difference suggests sulfate incorporation into an aluminum hydroxy sulfate phase, whose contribution to total inorganic sulfate in the Vitric and Eutric Andosols is estimated from approximately 34 to 95% and approximately 65 to 98%, respectively. The distribution of KH(2)PO(4)-extractable chloride in the Vitric and Eutric Andosols exposed to volcanic Cl inputs reveals that added chloride readily migrates through the soil profiles. In contrast, reaction of fluoride with Al and Fe oxyhydroxides and allophanes is an important sink mechanism in the Masaya Andosols exposed to airborne volcanic F. Fluoride dominates the anion distribution in all soil horizons, although F is the least concentrated element in the volcanic emissions and depositions. The soil anion distribution reflects preferential retention

  9. Dispersion Process and Effect of Oleic Acid on Properties of Cellulose Sulfate- Oleic Acid Composite Film

    Guo Chen

    2015-04-01

    Full Text Available The cellulose sulfate (CS is a newly developed cellulose derivative. The work aimed to investigate the effect of oleic acid (OA content on properties of CS-OA film. The process of oleic acid dispersion into film was described to evaluate its effect on the properties of the film. Among the formulations evaluated, the OA addition decreased the solubility and water vapor permeability of the CS-OA film. The surface contact angle changed from 64.2° to 94.0° by increasing CS/OA ratio from 1:0 to 1:0.25 (w/w. The TS increased with OA content below 15% and decreased with OA over 15%, but the ε decreased with higher OA content. The micro-cracking matrices and micro pores in the film indicated the condense structure of the film destroyed by the incorporation of oleic acid. No chemical interaction between the OA and CS was observed in the XRD and FTIR spectrum. Film formulation containing 2% (w/w CS, 0.3% (w/w glycerol and 0.3% (w/w OA, showed good properties of mechanic, barrier to moisture and homogeneity.

  10. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    M. R. Beaver

    2006-01-01

    Full Text Available Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10 and ketones (C3 and C9 on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  11. Sensitivity of high-spectral resolution and broadband thermal infrared nadir instruments to the chemical and microphysical properties of secondary sulfate aerosols in the upper-troposphere/lower-stratosphere

    Sellitto, Pasquale; Legras, Bernard

    2016-04-01

    The observation of upper-tropospheric/lower-stratospheric (UTLS) secondary sulfate aerosols (SSA) and their chemical and microphysical properties from satellite nadir observations (with better spatial resolution than limb observations) is a fundamental tool to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Thermal infrared (TIR) observations are sensitive to the chemical composition of the aerosols due to the strong spectral variations of the imaginary part of the refractive index in this band and, correspondingly, of the absorption, as a function of the composition Then, these observations are, in principle, well adapted to detect and characterize UTLS SSA. Unfortunately, the exploitation of nadir TIR observations for sulfate aerosol layer monitoring is today very limited. Here we present a study aimed at the evaluation of the sensitivity of TIR satellite nadir observations to the chemical composition and the size distribution of idealised UTLS SSA layers. The sulfate aerosol particles are assumed as binary systems of sulfuric acid/water solution droplets, with varying sulphuric acid mixing ratios. The extinction properties of the SSA, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. High-spectral resolution pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on

  12. Self-limited uptake of α-pinene oxide to acidic aerosol: the effects of liquid–liquid phase separation and implications for the formation of secondary organic aerosol and organosulfates from epoxides

    G. T. Drozd

    2013-08-01

    Full Text Available The reactive uptake of α-pinene oxide (αPO to acidic sulfate aerosol was studied under humid conditions in order to gain insight into the effects of liquid–liquid phase separation on aerosol heterogeneous chemistry and to elucidate further the formation of secondary organic aerosol and organosulfates from epoxides. A continuous flow environmental chamber was used to monitor changes in diameter of monodisperse, deliquesced, acidic sulfate particles exposed to αPO at 25% and 50% RH (relative humidity. In order to induce phase separation and probe potential limits to particle growth from acidic uptake, αPO was introduced over a wide range of concentrations, from 200 ppb to 5 ppm. Uptake was observed to be highly dependent on initial aerosol pH. Significant uptake of αPO to aerosol was observed with initial pH Kp, eff were in the range of (0.1–2 x 10-4 m3μg-1 and were correlated to initial particle acidity and particle organic content; particles with higher organic content had lower partition coefficients. Effective uptake coefficients (γeff ranged from 0.1 to 1.1 x 10-4 and are much lower than recently reported for uptake to bulk solutions. In experiments in which αPO was added to bulk H2SO4 solutions, phase separation was observed for mass loadings similar to those observed with particles, and product distributions were dependent on acid concentration. Liquid–liquid phase separation in bulk experiments, along with our observations of decreased uptake to particles with the largest growth factors, suggests an organic coating forms upon uptake to particles, limiting reactive uptake.

  13. Self-limited uptake of α-pinene-oxide to acidic aerosol: the effects of liquid-liquid phase separation and implications for the formation of secondary organic aerosol and organosulfates from epoxides

    G. T. Drozd

    2013-03-01

    Full Text Available The reactive uptake of α-pinene oxide (αPO to acidic sulfate aerosol was studied under humid conditions in order to gain insight into the effects of liquid-liquid phase separation on aerosol heterogeneous chemistry and further elucidate the formation of secondary organic aerosol and organosulfates from epoxides. A continuous flow environmental chamber was used to monitor changes in diameter of monodisperse, deliquesced, acidic sulfate particles exposed to αPO at 30 and 50% RH. In order to induce phase separation and probe potential limits to particle growth from acidic uptake, αPO was introduced over a wide range of concentrations, from 200 ppb to 5 ppm. Uptake was observed to be highly dependent on initial aerosol pH. Significant uptake of αPO to aerosol was observed with initial pH Kp ranged from 0.2–1.6 × 10−4 m3 μg−1 and were correlated to initial particle acidity and particle organic content; particles with higher organic content had lower partition coefficients. Effective uptake coefficients (γ ranged from 0.4 to 4.7 × 10−5 and are much lower than recently reported for uptake to bulk solutions. In experiments in which αPO was added to bulk H2SO4 solutions, phase separation was observed for mass loadings similar to those observed with particles, and product distributions were dependent on acid concentration. Liquid-liquid phase separation in bulk experiments, along with our observations of decreased uptake to particles with the largest growth factors, suggest an organic coating forms upon uptake to particles, limiting reactive uptake.

  14. Effect of Organic Coatings, Humidity and Aerosol Acidity on Multiphase Chemistry of Isoprene Epoxydiols.

    Riva, Matthieu; Bell, David M; Hansen, Anne-Maria Kaldal; Drozd, Greg T; Zhang, Zhenfa; Gold, Avram; Imre, Dan; Surratt, Jason D; Glasius, Marianne; Zelenyuk, Alla

    2016-06-01

    Multiphase chemistry of isomeric isoprene epoxydiols (IEPOX) has been shown to be the dominant source of isoprene-derived secondary organic aerosol (SOA). Recent studies have reported particles composed of ammonium bisulfate (ABS) mixed with model organics exhibit slower rates of IEPOX uptake. In the present study, we investigate the effect of atmospherically relevant organic coatings of α-pinene (AP) SOA on the reactive uptake of trans-β-IEPOX onto ABS particles under different conditions and coating thicknesses. Single particle mass spectrometry was used to characterize in real-time particle size, shape, density, and quantitative composition before and after reaction with IEPOX. We find that IEPOX uptake by pure sulfate particles is a volume-controlled process, which results in particles with uniform concentration of IEPOX-derived SOA across a wide range of sizes. Aerosol acidity was shown to enhance IEPOX-derived SOA formation, consistent with recent studies. The presence of water has a weaker impact on IEPOX-derived SOA yield, but significantly enhanced formation of 2-methyltetrols, consistent with offline filter analysis. In contrast, IEPOX uptake by ABS particles coated with AP-derived SOA is lower compared to that of pure ABS particles, strongly dependent on particle composition, and therefore on particle size. PMID:27176464

  15. Algae as an electron donor promoting sulfate reduction for the bioremediation of acid rock drainage.

    Ayala-Parra, Pedro; Sierra-Alvarez, Reyes; Field, Jim A

    2016-11-01

    This study assessed bioremediation of acid rock drainage in simulated permeable reactive barriers (PRB) using algae, Chlorella sorokiniana, as the sole electron donor for sulfate-reducing bacteria. Lipid extracted algae (LEA), the residues of biodiesel production, were compared with whole cell algae (WCA) as an electron donor to promote sulfate-reducing activity. Inoculated columns containing anaerobic granular sludge were fed a synthetic medium containing H2SO4 and Cu(2+). Sulfate, sulfide, Cu(2+) and pH were monitored throughout the experiment of 123d. Cu recovered in the column packing at the end of the experiment was evaluated using sequential extraction. Both WCA and LEA promoted 80% of sulfate removal (12.7mg SO4(2-) d(-1)) enabling near complete Cu removal (>99.5%) and alkalinity generation raising the effluent pH to 6.5. No noteworthy sulfate reduction, alkalinity formation and Cu(2+) removal were observed in the endogenous control. In algae amended-columns, Cu(2+) was precipitated with biogenic H2S produced by sulfate reduction. Formation of CuS was evidenced by sequential extraction and X-ray diffraction. LEA and WCA provided similar levels of electron donor based on the COD balance. The results demonstrate an innovative passive remediation system using residual algae biomass from the biodiesel industry. PMID:27318730

  16. The effect of copper sulfate, potassium permanganate, and peracetic acid on Ichthyobodo necator in channel catfish

    Ichthyobodo necator is a single celled biflagellate that can cause significant mortalities in fish, particularly young, tank-reared fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against Ichthybodosis in juvenile channel catfis...

  17. Kinetics of Reductive Acid Leaching of Cadmium-Bearing Zinc Ferrite Mixture Using Hydrazine Sulfate

    Zhang, Chun; Zhang, Jianqiang; Min, Xiaobo; Wang, Mi; Zhou, Bosheng; Shen, Chen

    2015-09-01

    The reductive acid leaching kinetics of synthetic cadmium-bearing zinc ferrite was investigated, and the influence of reaction temperature, sulfuric acid and hydrazine sulfate were studied. The results illustrated that an increase in the reaction temperature, initial sulfuric acid and hydrazine sulfate significantly enhanced the extraction efficiencies of cadmium, zinc and iron. The leaching kinetics were controlled by a surface chemical reaction based on a shrinking core model. The empirical equation applied was found to fit well with the kinetics analysis; the leaching processes of cadmium, zinc and iron were similar and the activation energies were 79.9 kJ/mol, 77.9 kJ/mol and 79.7 kJ/mol, respectively. The apparent orders of cadmium-bearing zinc ferrite dissolution with respect to sulfuric acid concentration were 0.83, 0.83 and 0.84 for Cd, Zn and Fe, respectively.

  18. The effect of anthropogenic sulfate aerosols on marine cloud droplet concentrations

    Novakov, T.; RIVERA-CARPIO, C.; Penner, J. E.; Rogers, C.F.

    2011-01-01

    Nonseasalt sulfate (nss SO42-) mass concentrations, cloud condensation nuclei (CCN) number concentrations, and cloud droplet concentrations in warm cumulus and stratocumulus clouds were simultaneously measured in situ in marine air masses on El Yunque peak in Puerto Rico. Our results show that CNN number concentrations (measured at 0.5% supersaturation) and nss SO42- mass concentrations (in the range of ∼ 400–1700 ng m-3) are significantly correlated at this site. Droplet concentrations in th...

  19. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin

    I. Trebs; Meixner, F. X.; J. Slanina; Otjes, R.; P. Jongejan; Andreae, M. O.

    2004-01-01

    We measured the mixing ratios of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl), sulfur dioxide (SO2) and the corresponding water-soluble inorganic aerosol species, ammonium (NH4+), nitrate (NO3?), nitrite (NO2?), chloride (Cl?) and sulfate (SO42?), and their diel and seasonal variations at a pasture site in the Amazon Basin (Rondônia, Brazil). This study was conducted within the framework of LBA-SMOCC (Large Scale Biosphere Atmosphere Experiment in Amazonia S...

  20. Suppression of rice methane emission by sulfate deposition in simulated acid rain

    Gauci, Vincent; Dise, Nancy B; Howell, Graham; Jenkins, Meaghan E.

    2008-01-01

    Sulfate in acid rain is known to suppress methane (CH4) emissions from natural freshwater wetlands. Here we examine the possibility that CH4 emissions from rice agriculture may be similarly affected by acid rain, a major and increasing pollution problem in Asia. Our findings suggest that acid rain rates of SO2-4 deposition may help to reduce CH4 emissions from rice agriculture. Emissions from rice plants treated with simulated acid rain at levels of SO2-4 consistent with the range of depositi...

  1. Zinc-Nickel Codeposition in Sulfate Solution Combined Effect of Cadmium and Boric Acid

    Y. Addi

    2011-01-01

    Full Text Available The combined effect of cadmium and boric acid on the electrodeposition of zinc-nickel from a sulfate has been investigated. The presence of cadmium ion decreases zinc in the deposit. In solution, cadmium inhibits the zinc ion deposition and suppresses it when deposition potential value is more negative than −1.2 V. Low concentration of CdSO4 reduces the anomalous nature of Zn-Ni deposit. Boric acid decreases current density and shifts potential discharge of nickel and hydrogen to more negative potential. The combination of boric acid and cadmium increases the percentage of nickel in the deposit. Boric acid and cadmium.

  2. Light induced conversion of nitrogen dioxide into nitrous acid on submicron humic acid aerosol

    K. Stemmler

    2007-08-01

    Full Text Available The interactions of aerosols consisting of humic acids with gaseous nitrogen dioxide (NO2 were investigated under different light conditions in aerosol flow tube experiments at ambient pressure and temperature. The results show that NO2 is converted on the humic acid aerosol into nitrous acid (HONO, which is released from the aerosol and can be detected in the gas phase at the reactor exit. The formation of HONO on the humic acid aerosol is strongly activated by light: In the dark, the HONO-formation was below the detection limit, but it was increasing with the intensity of the irradiation with visible light. Under simulated atmospheric conditions with respect to the actinic flux, relative humidity and NO2-concentration, reactive uptake coefficients γrxn for the NO2→HONO conversion on the aerosol between γrxn <10−7 (in the dark and γrxn=6×10−6 were observed. The observed uptake coefficients decreased with increasing NO2-concentration in the range from 2.7 to 280 ppb and were dependent on the relative humidity (RH with slightly reduced values at low humidity (<20% RH and high humidity (>60% RH. The measured uptake coefficients for the NO2→HONO conversion are too low to explain the HONO-formation rates observed near the ground in rural and urban environments by the conversion of NO2→HONO on organic aerosol surfaces, even if one would assume that all aerosols consist of humic acid only. It is concluded that the processes leading to HONO formation on the Earth surface will have a much larger impact on the HONO-formation in the lowermost layer of the troposphere than humic materials potentially occurring in airborne particles.

  3. An ultracapacitor circuit for reducing sulfation in lead acid batteries for Mild Hybrid Electric Vehicles

    The nickel metal hydride (NiMH) batteries used in most hybrid electric vehicles (HEVs) provide satisfactory performance, but are quite expensive. In spite of their lower energy density, lead acid batteries would be much more economical except they are prone to sulfation in HEV applications. However, sulfation can be greatly reduced by a circuit that uses an ultracapacitor in conjunction with the battery. The resulting system will provide much cheaper energy storage if ultracapacitor prices can be reduced to levels predicted by some manufacturers. (author)

  4. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Alpers Charles N; Wilkin Richard T; Church Clinton D; Rye Robert O; McCleskey R Blaine

    2007-01-01

    Abstract Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated ...

  5. Development of a new corona discharge based ion source for high resolution time-of-flight chemical ionization mass spectrometer to measure gaseous H2SO4 and aerosol sulfate

    Zheng, Jun; Yang, Dongsen; Ma, Yan; Chen, Mindong; Cheng, Jin; Li, Shizheng; Wang, Ming

    2015-10-01

    A new corona discharge (CD) based ion source was developed for a commercial high-resolution time-of-flight chemical ionization mass spectrometer (HRToF-CIMS) (Aerodyne Research Inc.) to measure both gaseous sulfuric acid (H2SO4) and aerosol sulfate after thermal desorption. Nitrate core ions (NO3-) were used as reagent ions and were generated by a negative discharge in zero air followed by addition of excess nitrogen dioxide (NO2) to convert primary ions and hydroxyl radicals (OH) into NO3- ions and nitric acid (HNO3). The CD-HRToF-CIMS showed no detectable interference from hundreds parts per billion by volume (ppbv) of sulfur dioxide (SO2). Unlike the atmospheric pressure ionization (API) ToF-CIMS, the CD ion source was integrated onto the ion-molecule reaction (IMR) chamber and which made it possible to measure aerosol sulfate by coupling to a filter inlet for gases and aerosols (FIGAERO). Moreover, compared with a quadrupole-based mass spectrometer, the desired HSO4- signal was detected by its exact mass of m/z 96.960, which was well resolved from the potential interferences of HCO3-ṡ(H2O)2 (m/z 97.014) and O-ṡH2OṡHNO3 (m/z 97.002). In this work, using laboratory-generated standards the CD-HRToF-CIMS was demonstrated to be able to detect as low as 3.1 × 105 molecules cm-3 gaseous H2SO4 and 0.5 μg m-3 ammonium sulfate based on 10-s integration time and two times of the baseline noise. The CD ion source had the advantages of low cost and a simple but robust structure. Since the system was non-radioactive and did not require corrosive HNO3 gas, it can be readily field deployed. The CD-HRToF-CIMS can be a powerful tool for both field and laboratory studies of aerosol formation mechanism and the chemical processes that were critical to understand the evolution of aerosols in the atmosphere.

  6. Laboratory studies of the reactive uptake of biogenic species: Evidence for the direct polymerization of isoprene, terpenes and sesquiterpenes on acidic aerosols

    Li, S.; Liggio, J.; Mihele, C.; Brook, J.

    2006-12-01

    Numerous studies on heterogeneous reactions have shown that polymerization of semi-volatile and volatile organic compounds occurs in aerosols. To date, most evidence suggests that gaseous hydrocarbon oxidation products containing carbonyl functionality are the prime candidates for these processes. Such processes involve primarily hydration, acetal formation, polymerization and aldol-condensation reactions, resulting in oligomer products of potential significance with respect to secondary organic aerosol formation (SOA). However, little information on the heterogeneous reactions of unsaturated hydrocarbons (olefins) is known. Given that biogenic species, many of them unsaturated, make up a considerable portion of hydrocarbons emitted globally, direct reactive uptake of these compounds on aerosols would also potentially be a major source of SOA. In the present study, individual biogenic hydrocarbons were exposed to pre-existing acidic sulfate aerosols within a 2 m3 Teflon reaction chamber under varying relative humidity conditions. An Aerosol Mass Spectrometer was used to quantify any subsequent increase in organic mass as a function of time, and to obtain information regarding the structure of products via aerosol mass spectra. A Proton Transfer Reaction Mass Spectrometer was used to measure the gas-phase concentrations of isoprene, terpenes (?-pinene, ?-pinene, limonene, and carene) and sesquiterpenes (?-caryophylene and humulene) in the reaction chamber. Results from these experiments show that a significant amount of these compounds are taken up by the acidic aerosols rapidly, in a polymerization process which was highly dependent on the particle acidity. This polymerization mechanism likely involves the oxygenation of the resulting polymers via acid catalyzed hydration. The uptake of the unsaturated hydrocarbons suggests that gas-phase oxidation of biogenics to condensable products is not the only route to SOA. Details of the polymerization and hydration

  7. Fractionation of sulfur isotopes during heterogeneous oxidation of SO2 on sea salt aerosol: a new tool to investigate non-sea salt sulfate production in the marine boundary layer

    S. Borrmann

    2012-05-01

    Full Text Available The oxidation of SO2 to sulfate on sea salt aerosols in the marine environment is highly important because of its effect on the size distribution of sulfate and the potential for new particle nucleation from H2SO4 (g. However, models of the sulfur cycle are not currently able to account for the complex relationship between particle size, alkalinity, oxidation pathway and rate – which is critical as SO2 oxidation by O3 and Cl catalysis are limited by aerosol alkalinity, whereas oxidation by hypohalous acids and transition metal ions can continue at low pH once alkalinity is titrated. We have measured 34S/32S fractionation factors for SO2 oxidation in sea salt, pure water and NaOCl aerosol, as well as the pH dependency of fractionation. Oxidation of SO2 by NaOCl aerosol was extremely efficient, with a reactive uptake coefficient of ≈0.5, and produced sulfate that was enriched in 32S with αOCl = 0.9882±0.0036 at 19 °C. Oxidation on sea salt aerosol was much less efficient than on NaOCl aerosol, suggesting alkalinity was already exhausted on the short timescale of the experiments. Measurements at pH = 2.1 and 7.2 were used to calculate fractionation factors for each step from SO2(g → multiple steps → SOOCl2−. Oxidation on sea salt aerosol resulted in a lower fractionation factor than expected for oxidation of SO32− by O3 (αseasalt = 1.0124±0.0017 at 19 °C. Comparison of the lower fractionation during oxidation on sea salt aerosol to the fractionation factor for high pH oxidation shows HOCl contributed 29% of S(IV oxidation on sea salt in the short experimental timescale, highlighting the potential importance of hypohalous acids in the marine environment. The sulfur isotope fractionation factors measured in this study allow differentiation between the alkalinity-limited pathways – oxidation by O3 and by Cl catalysis (α34 = 1.0163±0.0018 at 19 °C in pure water or 1.0199±0.0024 at pH = 7.2 – which favour the heavy isotope, and

  8. Delayed effects of inhaled nitric acid aerosols in the rat: preliminary studies

    Rats that inhaled transuranic nitrate aerosols in a toxicology study were simultaneously exposed to aerosols of the suspending solution, nitric acid. Results indicated that exposure to nitric acid was associated with the finding of bone tumors. Other rats, exposed to low levels of inhaled Pu(NO3)4, showed one osteosarcoma in 79 rats examined

  9. Sulfation of metal-organic framework: Opportunities for acid catalysis and proton conductivity

    Goesten, M.G.; Stavitski, E.; Juan-Alcaniz, J.; Ramos-Fernandez, E.V.; Sai Sankar Gupta, K.B.; van Bekkum, H.; Gascon, J. and Kapteijn, F.

    2011-05-24

    A new post-functionalization method for metal-organic frameworks (MOFs) has been developed to introduce acidity for catalysis. Upon treatment with a mixture of triflic anhydride and sulfuric acid, chemically stable MOF structures MIL-101(Cr) and MIL-53(Al) can be sulfated, resulting in a Broensted sulfoxy acid group attached to up to 50% of the aromatic terephthalate linkers of the structure. The sulfated samples have been extensively characterized by solid-state NMR, XANES, and FTIR spectroscopy. The functionalized acidic frameworks show catalytic activity similar to that of acidic polymers like Nafion{reg_sign} display in the esterification of n-butanol with acetic acid (TOF {approx} 1 min{sup -1} {at} 343 K). Water adsorbs strongly up to 4 molecules per sulfoxy acid group, and an additional 2 molecules are taken up at lower temperatures in the 1-D pore channels of S-MIL-53(Al). The high water content and Broensted acidity provide the structure S-MIL-53(Al) a high proton conductivity up to moderate temperatures.

  10. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    P. J. Gallimore

    2011-12-01

    Full Text Available Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH in the range of <5–90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160–200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent

  11. Boric acid and sodium sulfate production from ulexite concentrate. Vacuum crystallization process

    South America reserves of boron minerals are concentrated in the Central Andes. Ulexite is one of the most important borates in these deposits. The mineral is associated with impurities such as sand, clays, chlorides and sulfates. At present, boric acid is produced in Argentina by leaching the ulexite with sulfuric acid and it is recovered through a process of liquid-solid separation and then, by a cooling crystallization process. The residual slurry rejected and the periodical bleedings of the crystallization residual solution produce adverse environmental effects. This paper reports and improved process to produce boric acid using concentrated ulexite as raw material instead or ore. Anhydrous sodium sulfate is obtained as a by-product using a fractional crystallization process: vacuum crystallization for boric acid and evaporating crystallization for sodium sulfate. It has been developed to minimize the pollution problems through the decreasing of residual solids production and avoiding the bleeding of residual solutions. The fractional crystallization process has been studied with the equilibrium diagrams of the H3 B O3 - Na2 S O4 - H2 O at different temperatures. (author)

  12. A study of uncertainties in the sulfate distribution and its radiative forcing associated with sulfur chemistry in a global aerosol model

    D. Goto

    2011-11-01

    Full Text Available The direct radiative forcing by sulfate aerosols is still uncertain, mainly because the uncertainties are largely derived from differences in sulfate column burdens and its vertical distributions among global aerosol models. One possible reason for the large difference in the computed values is that the radiative forcing delicately depends on various simplifications of the sulfur processes made in the models. In this study, therefore, we investigated impacts of different parts of the sulfur chemistry module in a global aerosol model, SPRINTARS, on the sulfate distribution and its radiative forcing. Important studies were effects of simplified and more physical-based sulfur processes in terms of treatment of sulfur chemistry, oxidant chemistry, and dry deposition process of sulfur components. The results showed that the difference in the aqueous-phase sulfur chemistry among these treatments has the largest impact on the sulfate distribution. Introduction of all the improvements mentioned above brought the model values noticeably closer to in-situ measurements than those in the simplified methods used in the original SPRINTARS model. At the same time, these improvements also brought the computed sulfate column burdens and its vertical distributions into good agreement with other AEROCOM model values. The global annual mean radiative forcing due to the direct effect of anthropogenic sulfate aerosol was thus estimated to be −0.26 W m−2 (−0.30 W m−2 with a different SO2 inventory, whereas the original SPRINTARS model showed −0.18 W m−2 (−0.21 W m−2 with a different SO2 inventory. The magnitude of the difference between original and improved methods was approximately 50% of the uncertainty among estimates by the world's global aerosol models reported by the IPCC-AR4 assessment report. Findings in the present study, therefore, may suggest that the model differences in the

  13. The role of sulfate and ionic strength on the shift from acid to alkaline mine drainage in southwest Pennsylvania

    Four Mile Run, Latrobe, PA, receives discharges from abandoned deep mines. In 1971, the effluent was characterized as having low pH, high acidity, and high concentrations of iron, manganese, and sulfate. After 22 yr of neglect, the water flow rate, pH, and alkalinity all increased, while the acidity, iron, manganese, and sulfate concentrations decreased. The overall loading of iron and sulfate to the stream has not changed significantly. This change from acid to alkaline drainage is fairly typical for mine effluent in the surrounding area. However, the mechanism for change is not well understood. Laboratory studies have shown that the neutralization rate of marble chips (CaCO3) is depressed by high ionic strength or elevated levels of sulfate. The decrease in sulfate levels may be an important factor contributing to the change in water quality discharged into Four Mile Run. A similar kinetic phenomenon may occur with mine spoils and anoxic drains

  14. Characteristics of Some Heavy Metals in AcidSulfate{1mmTopsoils, Eastern Australia

    2001-01-01

    Forty-five acid sulfate topsoil samples (depth < 0.5 m) from 15soil cores at 11 locations along the New South Wales coast, Australia,were selected to investigate the chemical behavior of Zn, Mn, Cr, Coand Pb in these soils. The amount of HCl-extractable Mn was muchsmaller than the mean value of the total Mn documented for other soils.This may be attributed to enhanced mobilization of Mn from the soilsunder the extremely acidic and seasonally flooded conditionsencountered in the investigated soils.   The pH-dependency of soluble Zn and Mn was strongly affected by theavailability of acid reactive Zn and Mn compounds. There were fairlygood relationships between soluble Zn and acid reactive Zn compounds,and between soluble Mn and acid reactive Mn compounds. Soluble Zn andsoluble Mn concentrations were important controls on exchangeable Znand Mn concentrations, respectively.   In contrast to the suggestion by other authors that adsorption of Cowas closely associated with Mn oxides present in soils, theexchangeable Co in the investigated acid sulfate soils was not clearlyrelated to the abundance of Mn minerals. In addition to the fact thatthere are few Mn minerals present in the soils, this might also bebecause the availability of cation exchange sites on the crystalsurfaces of Mn oxides was reduced under extremely acidic conditions.

  15. Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods

    A. H. Falkovich

    2005-01-01

    Full Text Available Particles from biomass burning and regional haze were sampled in Rondônia, Brazil, during dry, transition and wet periods from September to November 2002, as part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate field campaign. Water soluble organic and inorganic compounds in bulk (High Volume and Stacked Filter Unit sampler and size-resolved (Micro Orifice Uniform Deposit Impactor – MOUDI smoke samples were determined by ion chromatography. It was found that low molecular weight polar organic acids account for a significant fraction of the water soluble organic carbon (WSOC in biomass burning aerosols (C2-C6 dicarboxylic acids reached up to 3.7% and one-ring aromatic acids reached up to 2% of fine fraction WSOC during burning period. Short dicarboxylic (C2-C6 acids are dominated by oxalic acid followed by malonic and succinic acids. The largest ionic species is ammonium sulfate (60–70% of ionic mass. It was found that most of the ionic mass is concentrated in submicrometer-sized particles. Based on the size distribution and correlations with K+, a known biomass burning tracer, it is suggested that many of the organic acids are directly emitted by vegetation fires. Concentrations of dicarboxylic acids in the front and back filters of high volume sampler were determined. Based on these measurements, it was concluded that in the neutral or slightly basic smoke particles typical of this region, dicarboxylic acids are mostly confined to the particulate phase. Finally, it is shown that the distribution of water soluble species shifts to larger aerosols sizes as the aerosol population ages and mixes with other aerosol types in the atmosphere.

  16. Fluctuations of sulfate, S-bearing amino acids and magnesium in a giant clam shell

    T. Yoshimura

    2014-01-01

    Full Text Available We used micro-X-ray fluorescence combined with X-ray photoabsorption spectroscopy to investigate speciation-specific sulfur profiles in the inner shell layer of a giant clam (Hippopus hippopus. The sulfate, S-bearing amino acids, and total sulfur profiles indicated that inorganic sulfate was the dominant component in the shell of this bivalve. Sulfur profiles in the inner shell layer showed clear annual fluctuations that varied by more than one order of magnitude, from K-edge XANES and comparison of Mg and S-bearing amino acids profiles indicated that a pronounced effect of the organic fraction or disordered phases were observed in aragonitic shell of H. hippopus rather than regulated substitution into the aragonite crystal lattice.

  17. Synergistic extraction of uranium from acidic sulfate leach liquor using D2EHPA mixed with TOPO

    Uranium extraction from sulfate leach liquor acid by D2EHPA and TOPO mixture in kerosene was investigated. The effect of different factors affecting the extraction mechanism such as sulfate leach liquor acid, D2EHPA and TOPO concentrations and temperature have been studied. The mathematical treatment for the obtained date suggested that the composition of synergistic extraction species is (UO2(D)2T). The logarithm of the apparent equilibrium constant, log Kex, of synergistic extraction reaction has been evaluated, to be 3.35 ± 0.1. The effect of temperature on extraction process was investigated and the apparent values of the thermodynamics parameters (∆H, ∆G and ∆S) were 38.2 kJ/mol, -19.1 kJ/mol and 192.5 J/mol respectively. (author)

  18. Production of furans from pulp sheet over sulfated solid acid catalysts

    Hongdan Zhang

    2012-11-01

    Full Text Available Furans are high value-added biomass-derived chemicals that can be used to replace petrochemicals. In this study, sulfated solid acid catalysts were prepared by precipitation and impregnation and were used for the conversion of a cellulosic pulp sheet into furans. The physicochemical properties of the prepared sulfated solid acid with different calcination temperatures and different mol ratios of Ti-Al were characterized using XRD, elemental analysis, TG, and NH3-TPD. Furthermore, the effects of various processing parameters such as temperature, time, and catalyst dosage on the reaction performance were studied. The combined yield of 5-hydroxymethyl-furfural and furfural reached 8.9% and 4.5% of pulp sheet mass with a 5% dosage of SO42-/TiO2-Al2O3 catalyst at 220 oC for 30 min. The activity for recovered catalyst was also investigated in this study.

  19. Fractionation of microimpurities during precipitation of basic zirconium sulfate out of nitric acid solutions

    A study was made on fractionation of microimpurities during precipitation of basic zirconium sulfate out of concentrated with respect to ZrO2 nitric acid solutions. Investigation into fractionation of Sc(3), Cr(3), Mn(2), Fe(3), Co(2), CU(2), Zn(2) and Y(3) microirpurities during hydrolytic precipitation of basic zirconium sulfate out of nitric acid solutions showed that a majority of microimpurities are characterized by high distribution factors and concentrate in mother liquor. Adsorption isotherms were constructed for Cu(2) and Fe(3) microimpurities. The assumption about the effect of microimpurity nature (ionic charge and radius, the electron structure) on precipitation mechanism was made on the base of obtained data

  20. Variation in the Activity Coefficient of Zinc Sulfate in the Presence of Sulfuric Acid

    Begar, A.; Djeghlal, M. A.; Saada, A.

    2012-01-01

    The present study concerns the dissolution process of sphalerite in synthetic aqueous solution of sulfuric acid in the absence of oxygen, which allows zinc sulfate to be obtained from a sphalerite. The reaction product of the reaction solution in the absence of oxygen is determined using the Pitzer model used to calculate the various activity coefficients. As the leaching experiments of the present study covered the temperature range from 25° C to 200° C, it is necessa...

  1. Soil Quality Assessment of Acid Sulfate Paddy Soils with Different Productivities in Guangdong Province, China

    LIU Zhan-jun; ZHOU Wei; SHEN Jian-bo; LI Shu-tian; LIANG Guo-qing; WANG Xiu-bin; SUN Jing-wen; AI Chao

    2014-01-01

    Land conversion is considered an effective measure to ensure national food security in China, but little information is available on the quality of low productivity soils, in particular those in acid sulfate soil regions. In our study, acid sulfate paddy soils were divided into soils with high, medium and low levels based on local rice productivity, and 60 soil samples were collected for analysis. Twenty soil variables including physical, chemical and biochemical properties were determined. Those variables that were signiifcantly different between the high, medium and low productivity soils were selected for principal component analysis, and microbial biomass carbon (MBC), total nitrogen (TN), available silicon (ASi), pH and available zinc (AZn) were retained in the minimum data set (MDS). After scoring the MDS variables, they were integrated to calculate a soil quality index (SQI), and the high, medium and low productivity paddy soils received mean SQI scores of 0.95, 0.83 and 0.60, respectively. Low productivity paddy soils showed worse soil quality, and a large discrepancy was observed between the low and high productivity paddy soils. Lower MBC, TN, ASi, pH and available K (AK) were considered as the primary limiting factors. Additionally, all the soil samples collected were rich in available P and AZn, but deifcient in AK and ASi. The results suggest that soil AK and ASi deifciencies were the main limiting factors for all the studied acid sulfate paddy soil regions. The application of K and Si on a national basis and other sustainable management approaches are suggested to improve rice productivity, especially for low productivity paddy soils. Our results indicated that there is a large potential for increasing productivity and producing more cereals in acid sulfate paddy soil regions.

  2. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application

    A. A. Elisa; Ninomiya, S.; J. Shamshuddin; Roslan, I.

    2016-01-01

    In response to human population increase, the utilization of acid sulfate soils for rice cultivation is one option for increasing production. The main problems associated with such soils are their low pH values and their associated high content of exchangeable Al, which could be detrimental to crop growth. The application of soil amendments is one approach for mitigating this problem, and calcium silicate is an alternative soil amendment that could be used. Therefore, the ma...

  3. Sulfated Steroid–Amino Acid Conjugates from the Irish Marine Sponge Polymastia boletiformis

    Vangelis Smyrniotopoulos; Margaret Rae; Sylvia Soldatou; Yuanqing Ding; Wolff, Carsten W.; Grace McCormack; Coleman, Christina M.; Daneel Ferreira; Deniz Tasdemir

    2015-01-01

    Antifungal bioactivity-guided fractionation of the organic extract of the sponge Polymastia boletiformis, collected from the west coast of Ireland, led to the isolation of two new sulfated steroid-amino acid conjugates (1 and 2). Extensive 1D and 2D NMR analyses in combination with quantum mechanical calculations of the electronic circular dichroism (ECD) spectra, optical rotation, and 13C chemical shifts were used to establish the chemical structures of 1 and 2. Both compounds exhibited mode...

  4. Sulfate reduction at low pH to remediate acid mine drainage

    Sánchez-Andrea, Irene, E-mail: irene.sanchezandrea@wur.nl [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); Sanz, Jose Luis [Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Bijmans, Martijn F.M. [Wetsus, Centre of Sustainable Water Technology, P.O. Box 1113, 8900 CC Leeuwarden (Netherlands); Stams, Alfons J.M. [Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen (Netherlands); IBB – Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, 4710-057 Braga (Portugal)

    2014-03-01

    Highlights: • Acid mine drainage (AMD) is an important environmental concern. • Remediation through biological sulfate reduction and metal recovery can be applied for AMD. • Microbial community composition has a major impact on the performance of bioreactors to treat AMD. • Acidophilic SRB are strongly influenced by proton, sulfide and organic acids concentration. - Abstract: Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed.

  5. Sulfate reduction at low pH to remediate acid mine drainage

    Highlights: • Acid mine drainage (AMD) is an important environmental concern. • Remediation through biological sulfate reduction and metal recovery can be applied for AMD. • Microbial community composition has a major impact on the performance of bioreactors to treat AMD. • Acidophilic SRB are strongly influenced by proton, sulfide and organic acids concentration. - Abstract: Industrial activities and the natural oxidation of metallic sulfide-ores produce sulfate-rich waters with low pH and high heavy metals content, generally termed acid mine drainage (AMD). This is of great environmental concern as some heavy metals are highly toxic. Within a number of possibilities, biological treatment applying sulfate-reducing bacteria (SRB) is an attractive option to treat AMD and to recover metals. The process produces alkalinity, neutralizing the AMD simultaneously. The sulfide that is produced reacts with the metal in solution and precipitates them as metal sulfides. Here, important factors for biotechnological application of SRB such as the inocula, the pH of the process, the substrates and the reactor design are discussed. Microbial communities of sulfidogenic reactors treating AMD which comprise fermentative-, acetogenic- and SRB as well as methanogenic archaea are reviewed

  6. Solubility of strontium sulfate in phosphoric acid and in solutions of the CaO-SrO-P2O5-H2O system

    Solubility of strontium sulfate in phosphoric acid aqueous solutions containing 5-40 wt. % P2O5 as well as in phosphoric acid solutions saturated by calcium dihydrophosphate is studied by isothermal method in the temperature range of 25-100 Deg C. It is ascertained that strontium sulfate solubility depends on phosphoric acid concentration being approximately an order lower than calcium sulfate stable phase solubility in similar conditions. In phosphoric acid solutions saturated by calcium dihydrophosphate calcium sulfate solubility is higher than that of strontium sulfate in diluted phosphoric acid solutions (up to 20 wt. % P2O5) and lower in more concentrated solutions

  7. Effects of NO{sub x} and SO{sub 2} injections by supersonic aviation on sulfate aerosol and ozone in the troposphere and stratosphere

    Dyominov, I.G.; Zadorozhny, A.M. [Novosibirsk State Univ. (Russian Federation); Elansky, N.F. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Atmospheric Physics

    1997-12-31

    The impact of supersonic aviation on atmospheric ozone and sulfate aerosol is examined with the help of a two-dimensional dynamical/radiative/chemical model of ozonosphere including aerosol physics. For SO{sub 2} emissions from aircraft as gas, gas/particles (90%/10%) mix, and particles of 0.01 {mu}m radius the sulphate aerosol surface density at maximum of changes increases against its background value by {approx}50%, {approx}75%, and {approx}200%, respectively. This effect of SO{sub 2} emissions with insignificant NO{sub x} injection leads to a significant decrease of total ozone by 2015 in the entire atmosphere. For NO{sub x} emissions which are anticipated in future (EI(NO{sub x}) = 15) any kind of SO{sub 2} emission results in significant weakening of supersonic aviation impact on ozone layer in the Northern Hemisphere. (author) 14 refs.

  8. Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods

    P. Artaxo

    2004-10-01

    Full Text Available Particles from biomass burning and regional haze were sampled in Rondônia, Brazil, during dry, transition and wet periods from September to November 2002, as part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate field campaign. Water soluble organic and inorganic compounds in bulk (High Volume and Stacked Filter Unit sampler and size-resolved (Micro Orifice Uniform Deposit Impactor – MOUDI smoke samples were determined by ion chromatography. It was found that low molecular weight polar organic acids account for a significant fraction of the water soluble organic carbon (WSOC in biomass burning aerosols (C2-C6 dicarboxylic acids reached up to 3.7% and one-ring aromatic acids reached up to 2% of fine fraction WSOC during burning period. Short dicarboxylic (C2-C6 acids are dominated by oxalic acid followed by malonic and succinic acids. The largest ionic species is ammonium sulfate (60–70% of ionic mass. It was found that most of the ionic mass is concentrated in submicrometer-sized particles. Based on the size distribution and correlations with K+, a known biomass burning tracer, it is suggested that many of the organic acids are directly emitted by vegetation fires. It is concluded that the dicarboxylic acids are mostly confined to the particulate phase, and no evidence for semi-volatile behavior was observed. Finally, it is shown that the distribution of water soluble species shifts to larger aerosols sizes as the aerosol population ages and mixes with other aerosol types in the atmosphere.

  9. The effects of acid deposition on sulfate reduction and methane production in peatlands

    Murray, Georgia L.; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Peatlands, as fens and bods, make up a large percentage of northern latitude terrestrial environments. They are organic rich and support an active community of anaerobic bacteria, such as methanogenic and sulfate-reducing bacteria. The end products of these microbial activities, methane and hydrogen sulfide, are important components in the global biogeochemical cycles of carbon and sulfur. Since these two bacterial groups compete for nutritional substrates, increases in sulfate deposition due to acid rain potentially can disrupt the balance between these processes leading to a decrease in methane production and emission. This is significant because methane is a potent greenhouse gas that effects the global heat balance. A section of Mire 239 in the Experimental Lakes Area, in Northwestern Ontario, was artificially acidified and rates of sulfate reduction and methane production were measured with depth. Preliminary results suggested that methane production was not affected immediately after acidification. However, concentrations of dissolved methane decreased and dissolved sulfide increased greatly after acidification and both took several days to recover. The exact mechanism for the decrease in methane was not determined. Analyses are under way which will be used to determine rates of sulfate reduction. These results will be available by Spring and will be discussed.

  10. The effect of low solublility organic acids on the hygroscopicity of sodium halide aerosols

    L. Miñambres; Méndez, E; Sánchez, M. N.; Castaño, F.; F. J. Basterretxea

    2014-01-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be performed in this study. The hygroscopic properties of sodium halide submicrometer particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles were gen...

  11. The effect of low solubility organic acids on the hygroscopicity of sodium halide aerosols

    L. Miñambres; Méndez, E; Sánchez, M. N.; Castaño, F.; F. J. Basterretxea

    2014-01-01

    In order to accurately assess the influence of fatty acids on the hygroscopic and other physicochemical properties of sea salt aerosols, hexanoic, octanoic or lauric acid together with sodium halide salts (NaCl, NaBr and NaI) have been chosen to be investigated in this study. The hygroscopic properties of sodium halide sub-micrometre particles covered with organic acids have been examined by Fourier-transform infrared spectroscopy in an aerosol flow cell. Covered particles w...

  12. Iduronic Acid in Chondroitin/Dermatan Sulfate: Biosynthesis and Biological Function

    Malmström, Anders; Bartolini, Barbara; Thelin, Martin A.; Pacheco, Benny; Maccarana, Marco

    2012-01-01

    The ability of chondroitin/dermatan sulfate (CS/DS) to convey biological information is enriched by the presence of iduronic acid. DS-epimerases 1 and 2 (DS-epi1 and 2), in conjunction with DS-4-O-sulfotransferase 1, are the enzymes responsible for iduronic acid biosynthesis and will be the major focus of this review. CS/DS proteoglycans (CS/DS-PGs) are ubiquitously found in connective tissues, basement membranes, and cell surfaces or are stored intracellularly. Such wide distr...

  13. Sulfated steroid-amino acid conjugates from the Irish marine sponge Polymastia boletiformis.

    Smyrniotopoulos, Vangelis; Rae, Margaret; Soldatou, Sylvia; Ding, Yuanqing; Wolff, Carsten W; McCormack, Grace; Coleman, Christina M; Ferreira, Daneel; Tasdemir, Deniz

    2015-04-01

    Antifungal bioactivity-guided fractionation of the organic extract of the sponge Polymastia boletiformis, collected from the west coast of Ireland, led to the isolation of two new sulfated steroid-amino acid conjugates (1 and 2). Extensive 1D and 2D NMR analyses in combination with quantum mechanical calculations of the electronic circular dichroism (ECD) spectra, optical rotation, and 13C chemical shifts were used to establish the chemical structures of 1 and 2. Both compounds exhibited moderate antifungal activity against Cladosporium cucumerinum, while compound 2 was also active against Candida albicans. Marine natural products containing steroidal and amino acid constituents are extremely rare in nature. PMID:25812034

  14. Sulfated Steroid–Amino Acid Conjugates from the Irish Marine Sponge Polymastia boletiformis

    Vangelis Smyrniotopoulos

    2015-03-01

    Full Text Available Antifungal bioactivity-guided fractionation of the organic extract of the sponge Polymastia boletiformis, collected from the west coast of Ireland, led to the isolation of two new sulfated steroid-amino acid conjugates (1 and 2. Extensive 1D and 2D NMR analyses in combination with quantum mechanical calculations of the electronic circular dichroism (ECD spectra, optical rotation, and 13C chemical shifts were used to establish the chemical structures of 1 and 2. Both compounds exhibited moderate antifungal activity against Cladosporium cucumerinum, while compound 2 was also active against Candida albicans. Marine natural products containing steroidal and amino acid constituents are extremely rare in nature.

  15. Sulfated Steroid–Amino Acid Conjugates from the Irish Marine Sponge Polymastia boletiformis

    Smyrniotopoulos, Vangelis; Rae, Margaret; Soldatou, Sylvia; Ding, Yuanqing; Wolff, Carsten W.; McCormack, Grace; Coleman, Christina M.; Ferreira, Daneel; Tasdemir, Deniz

    2015-01-01

    Antifungal bioactivity-guided fractionation of the organic extract of the sponge Polymastia boletiformis, collected from the west coast of Ireland, led to the isolation of two new sulfated steroid-amino acid conjugates (1 and 2). Extensive 1D and 2D NMR analyses in combination with quantum mechanical calculations of the electronic circular dichroism (ECD) spectra, optical rotation, and 13C chemical shifts were used to establish the chemical structures of 1 and 2. Both compounds exhibited moderate antifungal activity against Cladosporium cucumerinum, while compound 2 was also active against Candida albicans. Marine natural products containing steroidal and amino acid constituents are extremely rare in nature. PMID:25812034

  16. Preparation of metal-resistant immobilized sulfate reducing bacteria beads for acid mine drainage treatment.

    Zhang, Mingliang; Wang, Haixia; Han, Xuemei

    2016-07-01

    Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. PMID:27058913

  17. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria.

    Xu, Dake; Li, Yingchao; Gu, Tingyue

    2016-08-01

    Biocorrosion is also known as microbiologically influenced corrosion (MIC). Most anaerobic MIC cases can be classified into two major types. Type I MIC involves non-oxygen oxidants such as sulfate and nitrate that require biocatalysis for their reduction in the cytoplasm of microbes such as sulfate reducing bacteria (SRB) and nitrate reducing bacteria (NRB). This means that the extracellular electrons from the oxidation of metal such as iron must be transported across cell walls into the cytoplasm. Type II MIC involves oxidants such as protons that are secreted by microbes such as acid producing bacteria (APB). The biofilms in this case supply the locally high concentrations of oxidants that are corrosive without biocatalysis. This work describes a mechanistic model that is based on the biocatalytic cathodic sulfate reduction (BCSR) theory. The model utilizes charge transfer and mass transfer concepts to describe the SRB biocorrosion process. The model also includes a mechanism to describe APB attack based on the local acidic pH at a pit bottom. A pitting prediction software package has been created based on the mechanisms. It predicts long-term pitting rates and worst-case scenarios after calibration using SRB short-term pit depth data. Various parameters can be investigated through computer simulation. PMID:27071053

  18. Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles

    M. Song

    2012-03-01

    Full Text Available Knowledge of the physical state and morphology of internally mixed organic/inorganic aerosol particles is still largely uncertain. To obtain more detailed information on liquid-liquid phase separation (LLPS and morphology of the particles, we investigated complex mixtures of atmospherically relevant dicarboxylic acids containing 5, 6, and 7 carbon atoms (C5, C6 and C7 having oxygen-to-carbon atomic ratios (O:C of 0.80, 0.67, and 0.57, respectively, mixed with ammonium sulfate (AS. With micrometer-sized particles of C5/AS/H2O, C6/AS/H2O and C7/AS/H2O as model systems deposited on a hydrophobically coated substrate, laboratory experiments were conducted for various organic-to-inorganic dry mass ratios (OIR using optical microscopy and Raman spectroscopy. When exposed to cycles of relative humidity (RH, each system showed significantly different phase transitions. While the C5/AS/H2O particles showed no LLPS with OIR = 2:1, 1:1 and 1:4 down to 20% RH, the C6/AS/H2O and C7/AS/H2O particles exhibit LLPS upon drying at RH 50 to 85% and ~90%, respectively, via spinodal decomposition, growth of a second phase from the particle surface or nucleation-and-growth mechanisms depending on the OIR. This suggests that LLPS commonly occurs within the range of O:C < 0.7 in tropospheric organic/inorganic aerosols. To support the comparison and interpretation of the experimentally observed phase transitions, thermodynamic equilibrium calculations were performed with the AIOMFAC model. For the C7/AS/H2O and C6/AS/H2O systems, the calculated phase diagrams agree well with the observations while for the C5/AS/H2O system LLPS is predicted by the model at RH below 60% and higher AS concentration, but was not observed in the experiments. Both core-shell structures and partially engulfed structures were observed for the investigated particles, suggesting that such

  19. Liquid-liquid phase separation and morphology of internally mixed dicarboxylic acids/ammonium sulfate/water particles

    M. Song

    2011-10-01

    Full Text Available Knowledge of the physical state and morphology of internally mixed organic/inorganic aerosol particles is still largely uncertain. To obtain more detailed information on liquid-liquid phase separation (LLPS and morphology of the particles, we investigated complex mixtures of atmospherically relevant dicarboxylic acids containing 5–7 carbon atoms (C5, C6 and C7 having oxygen-to-carbon atomic ratios (O:C of 0.80, 0.67, and 0.57, respectively, mixed with ammonium sulfate (AS. With micrometer-sized particles of C5/AS/H2O, C6/AS/H2O and C7/AS/H2O as model systems deposited on a hydrophobically coated substrate, laboratory experiments were conducted for various organic-to-inorganic dry mass ratios (OIR using optical microscopy and Raman spectroscopy. When exposed to cycles of relative humidity (RH, each system showed significantly different phase transitions. While the C5/AS/H2O particles showed no LLPS with OIR = 2:1, 1:1 and 1:4 down to 20% RH, the C6/AS/H2O and C7/AS/H2O particles exhibit LLPS upon drying at RH 50% to 85% and ~90%, respectively, via spinodal decomposition, growth of a second phase from the particle surface or nucleation-and-growth mechanisms depending on the OIR. This suggests that LLPS commonly occurs within the range of O:C<0.7 in tropospheric organic-inorganic aerosols. To support the comparison and interpretation of the experimentally observed phase transitions, thermodynamic equilibrium calculations were performed with the AIOMFAC model. For the C7/AS/H2O and C6/AS/H2O systems, the calculated phase diagrams agree well with the observations while for the C5/AS/H2O system LLPS is predicted by the model at RH below 60% and higher AS concentration, but was not observed in the experiments. Both core-shell structures and partially engulfed structures were observed for the investigated particles, suggesting that such morphologies

  20. Sulfur isotope evidence for the contemporary formation of pyrite in a coastal acid sulfate soil

    The sulfur isotopic composition of pyrite (FeS2), greigite (Fe3S4) and pore-water sulfate was determined for a typical coastal acid sulfate soil (ASS). Greigite occurs only in the partially oxidised upper-most pyrite sediments as blackish clusters within vertical fissures and other macro-pores. The concentration of pyrite was an order of magnitude greater than greigite in this layer, continuing through the underlying reduced estuarine sediments. δ34S of pyrite (0.45 per mil) associated with greigite accumulations were distinctly different to the bulk average for pyrite (-3.7 per mil), but similar to greigite (0.9 per mil). Greigite is meta-stable under reducing conditions, readily transforming to pyrite. The transformation of iron monosulfides (including greigite) to pyrite is a sulfur-isotope conservative process and therefore, these observations indicate that pyrite is forming from greigite at the oxic/anoxic boundary

  1. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water.

    Church, Clinton D; Wilkin, Richard T; Alpers, Charles N; Rye, Robert O; McCleskey, R Blaine

    2007-01-01

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB) were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1) preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2) stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2-3 per thousand heavier in the mine water, relative to those in surface waters; (3) reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM) analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA) and denaturing gradient gel electrophoresis (DGGE) analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures. PMID:17956615

  2. Microbial sulfate reduction and metal attenuation in pH 4 acid mine water

    Alpers Charles N

    2007-10-01

    Full Text Available Abstract Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4.0 to 7.5. The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing bacteria (SRB were active in moderately acidic conditions present in the underground mine workings. Here we document multiple, independent analyses and show evidence that sulfate reduction and associated metal attenuation are occurring in the pH-4 mine environment. Water-chemistry analyses of the mine water reveal: (1 preferential complexation and precipitation by H2S of Cu and Cd, relative to Zn; (2 stable isotope ratios of 34S/32S and 18O/16O in dissolved SO4 that are 2–3 ‰ heavier in the mine water, relative to those in surface waters; (3 reduction/oxidation conditions and dissolved gas concentrations consistent with conditions to support anaerobic processes such as sulfate reduction. Scanning electron microscope (SEM analyses of sediment show 1.5-micrometer, spherical ZnS precipitates. Phospholipid fatty acid (PLFA and denaturing gradient gel electrophoresis (DGGE analyses of Penn Mine sediment show a high biomass level with a moderately diverse community structure composed primarily of iron- and sulfate-reducing bacteria. Cultures of sediment from the mine produced dissolved sulfide at pH values near 7 and near 4, forming precipitates of either iron sulfide or elemental sulfur. DGGE coupled with sequence and phylogenetic analysis of 16S rDNA gene segments showed populations of Desulfosporosinus and Desulfitobacterium in Penn Mine sediment and laboratory cultures.

  3. Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate

    Badger, C. L.; George, I.; Griffiths, P. T.; Braban, C. F.; Cox, R. A.; Abbatt, J. P. D.

    2006-03-01

    The phase transitions and hygroscopic growth of two humic acid aerosols (Aldrich sodium salt and Leonardite Standard (IHSS)) and their mixtures with ammonium sulphate have been investigated using a combination of two techniques, Fourier transform infra-red (FTIR) spectroscopy and tandem differential mobility analysis (TDMA). A growth factor of 1.16 at 85% relative humidity (RH) was found for the Aldrich humic acid which can be regarded as an upper limit for growth factors of humic-like substances (HULIS) found in atmospheric aerosol and is significantly smaller than that of typical atmospheric inorganics. We find that the humic acid aerosols exhibit water uptake over all relative humidities with no apparent phase changes, suggesting that these aerosols readily form supersaturated droplets. In the mixed particles, the humic acid component decreases the deliquescence relative humidity (DRH) and increases the efflorescence relative humidity (ERH) of the ammonium sulphate component, and there is some degree of water uptake prior to ammonium sulphate deliquescence. In addition, at low RH, the FTIR spectra show that the ammonium is present in a different chemical environment in the mixed aerosols than in crystalline ammonium sulphate, perhaps existing as a complex with the humic materials. The growth factors of the mixed aerosols are intermediate between those of the single-component aerosols and can be predicted assuming that the inorganic and organic fractions take up water independently.

  4. Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate

    C. L. Badger

    2006-01-01

    Full Text Available The phase transitions and hygroscopic growth of two humic acid aerosols (Aldrich sodium salt and Leonardite Standard (IHSS and their mixtures with ammonium sulphate have been investigated using a combination of two techniques, Fourier transform infra-red (FTIR spectroscopy and tandem differential mobility analysis (TDMA. A growth factor of 1.16 at 85% relative humidity (RH was found for the Aldrich humic acid which can be regarded as an upper limit for growth factors of humic-like substances (HULIS found in atmospheric aerosol and is significantly smaller than that of typical atmospheric inorganics. We find that the humic acid aerosols exhibit water uptake over all relative humidities with no apparent phase changes, suggesting that these aerosols readily form supersaturated droplets. In the mixed particles, the humic acid component decreases the deliquescence relative humidity (DRH and increases the efflorescence relative humidity (ERH of the ammonium sulphate component, and there is some degree of water uptake prior to ammonium sulphate deliquescence. In addition, at low RH, the FTIR spectra show that the ammonium is present in a different chemical environment in the mixed aerosols than in crystalline ammonium sulphate, perhaps existing as a complex with the humic materials. The growth factors of the mixed aerosols are intermediate between those of the single-component aerosols and can be predicted assuming that the inorganic and organic fractions take up water independently.

  5. Characteristics of Some Heavy Metals in Acid Sulfate Topsoile,Eastern Australia

    C.LIN; D.MCCONCHIE; 等

    2001-01-01

    Forty-five acid sulfate topsoil samples(depth<0.5m)from 15 soil cores at 11 locations along the New South Wales coast,Australia,were selected to investigate the chemical behavior of Zn,Mn,Cr,Co and Pb in these soils.The amount of HCl-extractable Mn was much smaller than the mean value of the total Mn documented for other soils of HCl-extractable Mn was much smaller than the mean value of the total Mn documented for other soils.This may be attributed to enhanced mobilization of Mn from the soils under the extrenely acidic and seasonally flooded conditions encountered in the investigated soils.The pH-dependency of soluble Zn and Mn was strongly affected by the availabiltiy of acid reactive Zn and Mn compounds .There were fairly good relationships between soulble Zn and acid reactive Zn compounds, and between soluble Mn and acid reactive Mn compounds .Soluble Zn and soluble Mn concentations were important controls on exchangeable Zn and Mn Concentrations respectively.In contrast to the suggestion by other authors that adsorption of Co was closely associated with Mn oxides present in soils,the exchangeable Co in the investigated acid sulfate soils was not clearly realt to the abundance of Mn minerals.In addition to the fact that there are few Mn minerals present in the soils,this might also be because the availabiliy of cation exchange sites on the crystal surfaces of Mn oxides was reduced under extremely acidic conditions.

  6. Aerosol-chamber study of the α-pinene/O 3 reaction: influence of particle acidity on aerosol yields and products

    Iinuma, Yoshiteru; Böge, Olaf; Gnauk, Thomas; Herrmann, Hartmut

    α-Pinene ozonolysis was carried out in the presence of ammonium sulfate or sulfuric acid seed particles in a 9 m 3 Teflon chamber at the mixing ratios of 100 ppbv for α-pinene and about 70 ppbv for ozone. The evolution of size distribution was measured by means of a differential mobility particle sizer (DMPS). The resulting secondary organic aerosol (SOA) was sampled by a denuder/quartz fiber filter combination for the determination of the total organic carbon concentration (TOC) in the particle phase, using a thermographic method and by a denuder/PTFE filter combination for the analysis of individual chemical species in the particle phase using capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS). cis-Pinic acid ( m/ z 185) and another species tentatively identified at m/ z 171 and 199 were the major particle phase species for both seed particles although the product yields were different, indicating the influence of seed particle acidity. A thermographic method for the determination of TOC showed an increase of particle phase organics by 40% for the experiments with higher acidity. CE-ESI-MS analysis showed a large increase in the concentration of compounds with Mw>300 from the experiments with sulfuric acid seed particles. These results suggest that the seed particle acidity enhances the yield of SOA and plays an important role in the formation of larger molecules in the particle phase. Our results from direct particle phase chemical analysis suggest for the first time that condensation of smaller organics takes place by polymerization or aldol condensation following the formation of aldehydes, such as pinonaldehyde from the terpene ozonolysis.

  7. Supported zirconium sulfate on carbon nanotubes as water-tolerant solid acid catalyst

    A new solid acid of zirconium sulfate (CZ) was successfully supported on carbon nanotube (CNT) for esterification reaction. Preparation conditions of the supported CZ have been investigated, to obtain highest catalytic activity for esterification reaction. XRD, TEM, BET, X-ray photoelectron spectra (XPS) and in situ FTIR analysis has also been carried out to understand the characteristics of the catalyst. In the esterification of acrylic acid with n-octanol, the supported CZ exhibited high catalytic activity and stability. The catalytic activity was nearly unchanged during four times of reuse. XRD and TEM analysis indicated that CZ was finely dispersed on CNT. XPS analysis shows that the CZ species was preserved and the chemical environment of the CZ has changed after loaded on CNT. This finding show that CNT as CZ support is an efficient water-tolerant solid acid

  8. Impeded Acidification of Acid Sulfate Soils in an Inten- sively Drained Sugarcane Land

    2001-01-01

    Recent research results suggest that acidification of acid sulfate soils may be inhibited in well-drained estuarine floodplains in eastern Australia by the absence of natural creek levees. The lack of natural levees has allowed the inundation of the land by regular tidal flooding prior to the construction of flood mitigation work. Such physiographical conditions prevent the development of pre-drainage pyrite-derived soil acidifica- tion that possibly occurred at many levee-protected sites in eastern Australian estuarine floodplains during extremely dry spells. Pre-drainage acidification is considered as an important condition for accumulation of soluble Fe and consequently, the creation of favourable environments for catalysed pyrite oxidation. Under current intensively drained conditions, the acid materials produced by ongoing pyrite oxidation can be rapidly removed from soil pore water by lateral leaching and acid buffering, resulting in low concentrations of soluble Fe in the pyritic layer, which could reduce the rate of pyrite oxidation.

  9. Ozone-driven daytime formation of secondary organic aerosol containing carboxylic acid groups and alkane groups

    Liu, S.; D. A. Day; J. E. Shields; L. M. Russell

    2011-01-01

    Carboxylic acids are present in substantial quantities in atmospheric particles, and they play an important role in the physical and chemical properties of aerosol particles. During measurements in coastal California in the summer of 2009, carboxylic acid functional groups were exclusively associated with a fossil fuel combustion factor derived from factor analysis of Fourier transform infrared spectroscopic measurements and closely correlated with oxygenated organic factors from aerosol mass...

  10. Metal complexation inhibits the effect of oxalic acid in aerosols as cloud condensation nuclei (CCN

    T. Furukawa

    2010-11-01

    Full Text Available Atmospheric aerosols have both a direct and an indirect cooling effect that influences the radiative balance at the Earth's surface. It has been estimated that the degree of cooling is large enough to cancel the warming effect of carbon dioxide. Among the cooling factors, secondary organic aerosols (SOA play a key role in the solar radiation balance in the troposphere as SOA can act as cloud condensation nuclei (CCN and extend the lifespan of clouds because of their high hygroscopic and water soluble nature. Oxalic acid is one of the major components of SOA, and is produced via several formation pathways in the atmosphere. However, it is not certain whether oxalic acid exists as free oxalic acid or as metal oxalate complexes in aerosols, although there is a marked difference in their solubility in water and their hygroscopicity. We employed X-ray absorption fine structure spectroscopy to characterize the calcium (Ca and zinc (Zn in aerosols collected at Tsukuba in Japan with fractionation based on particle size using an impactor aerosol sampler. It was shown that 10–60% and 20–100% of the total Ca and Zn in the finer particles (<2.1 μm were present as Ca and Zn oxalate complexes, respectively. Oxalic acid can act as CCN because of its hygroscopic properties, while metal complexes are not hygroscopic, and so cannot be CCN. Based on the concentration of noncomplexed and metal-complexed oxalate species, we found that most of the oxalic acid is present as metal oxalate complexes in the aerosols, suggesting that oxalic acid does not act as CCN in the atmosphere. Similar results are expected for other dicarboxylic acids, such as malonic and succinic acids. Thus, it is possible that the cooling effect of organic aerosols assumed in various climate modeling studies is overestimated because of the lack of information on metal oxalate complexes in aerosols.

  11. Refractory status epilepticus after inadvertent intrathecal injection of tranexamic acid treated by magnesium sulfate.

    Hatch, D M; Atito-Narh, E; Herschmiller, E J; Olufolabi, A J; Owen, M D

    2016-05-01

    We present a case of accidental injection of tranexamic acid during spinal anesthesia for an elective cesarean delivery. Immediately following intrathecal injection of 2mL of solution, the patient complained of severe back pain, followed by muscle spasm and tetany. As there was no evidence of spinal block, the medications given were checked and a 'used' ampoule of tranexamic acid was found on the spinal tray. General anesthesia was induced but muscle spasm and tetany persisted despite administration of a non-depolarizing muscle relaxant. Hemodynamic instability, ventricular tachycardia, and status epilepticus developed, which were refractory to phenytoin, diazepam, and infusions of thiopental, midazolam and amiodarone. Magnesium sulfate was administered postoperatively in the intensive care unit, following which the frequency of seizures decreased, eventually stopping. Unfortunately, on postoperative day three the patient died from cardiopulmonary arrest after an oxygen supply failure that was not associated with the initial event. This report underlines the importance of double-checking medications before injection in order to avoid a drug error. As well, it suggests that magnesium sulfate may be useful in stopping seizures caused by the intrathecal injection of tranexamic acid. PMID:26775897

  12. Iron Monosulfide Distribution in Three Coastal Floodplain Acid Sulfate Soils, Eastern Australia

    2000-01-01

    The distribution of iron monosulfide (quantified as acid volatile sulfur: SAV) was compared with geo chemical properties that are known to affect its formation and accumulation in three coastal Holocene acid sulfate soils (ASS) at Tuckean Swamp, McLeods Creek and Bungawalbyn Swamp respectively. These proper ties included pH, reactive iron (FeR), pore-water sulfate (SO42-) and organic carbon (OC). Iron monosulfide was concentrated at the oxic/anoxic boundary. The Tuckean Swamp and McLeods Creek sites are Holocene sediments, whereas the Bungawalbyn Swamp is a Holocene peat. The concentration of SAV averaged 0.2 g kg-1 in a 0.5 m thick soil layer at the Tuckean Swamp, but was an order of magnitude lower in the oxic/anoxic transition layers at McLeods Creek and Bungawalbyn Swamp. The SAV mineral greigite (FesS4) was identified in the Tuckean Swamp by X-ray diffraction and scanning electron microscopy with quantitative energy dispersive X-ray analysis (SEM-EDX). Very small concentrations of greigite were also observed in the McLeods Creek, based on crystal morphology and elemental composition. The concentration of SAV was a small fraction of the total reduced sulfur, representing at most 3% of the pyrite sulfur. However, the presence of this highly reactive sulfide mineral, distributed within pores where oxygen diffusion is most rapid, has important implications to the potential rate of acid production from these sediments.

  13. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin

    I. Trebs

    2004-01-01

    Full Text Available We measured the mixing ratios of ammonia (NH3, nitric acid (HNO3, nitrous acid (HONO, hydrochloric acid (HCl, sulfur dioxide (SO2 and the corresponding water-soluble inorganic aerosol species, ammonium (NH4+, nitrate (NO3-, nitrite (NO2-, chloride (Cl- and sulfate (SO42-, and their diel and seasonal variations at a pasture site in the Amazon Basin (Rondônia, Brazil. This study was conducted within the framework of LBA-SMOCC (Large Scale Biosphere Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate. Sampling was performed from 12 September to 14 November 2002, extending from the dry season (extensive biomass burning activity, through the transition period to the wet season (background conditions. Measurements were made continuously using a wet-annular denuder (WAD in combination with a Steam-Jet Aerosol Collector (SJAC followed by suitable on-line analysis. A detailed description and verification of the inlet system for simultaneous sampling of soluble gases and aerosol compounds is presented. Overall measurement uncertainties of the ambient mixing ratios usually remained below 15%. The limit of detection (LOD was determined for each single data point measured during the field experiment. Median LOD values (3σ-definition were ≤0.015ppb for acidic trace gases and aerosol anions and ≤0.118ppb for NH3 and aerosol NH4+. Mixing ratios of acidic trace gases remained below 1ppb throughout the measurement period, while NH3 levels were an order of magnitude higher. Accordingly, mixing ratios of NH4+ exceeded those of other inorganic aerosol contributors by a factor of 4 to 10. During the wet season, mixing ratios decreased by nearly a factor of 3 for all compounds compared to those observed when intensive biomass burning took place. Additionally, N-containing gas and aerosol species featured pronounced diel variations. This is attributed to strong

  14. Iduronic Acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells

    B. Bartolini; Thelin, M.A.; Svensson, L; Ghiselli, G.; Kuppevelt, T.H. van; Malmstrom, A.; Maccarana, M.

    2013-01-01

    Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS) proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA), catalyzed by two DS epimerases. Functional ablation of DS-epi1, the main epimerase in these cells, resulted in a major reduction of IdoA both on cell surface and in secreted CS/DS proteoglycans. Downregulation of IdoA led to ...

  15. Temperature effect on adiolysis of deaerated acid aqueous solutions of ferrous sulfate

    In the course of γ-radiolysis (60Co, dose rate=3.75 Gr/c, doses=1.575-3.375 kGr) of deaerated acid aqueous solution 3.6x10-3 mol/l of ferrous sulfate in the 20-250 deg C range the hydrogen molecules radiochemical yield per 100 eV of absorbed energy G(H2) decreases from 3.82±0.12 to 2.72±0.26, whereas G(Fe3+) independently of temperature is equal 8.34±0.36

  16. Similarities Across Mars: Acidic Fluids at Both Meridiani Planum and Gale Crater in the Formation of Magnesium-Nickel Sulfates

    Yen, Albert S.; Ming, Douglas W.; Gellert, Ralf; Mittlefehldt, David W.; Vaniman, David T.; Thompson, Lucy M.; Morris, Richard V.; Clark, Benton C.; Arvidson, Raymond

    2016-01-01

    In-situ identification of sulfates at the martian surface by the Mars Exploration Rovers and the Mars Science Laboratory have included calcium sulfates with various states of hydration (gypsum, bassanite, anhydrite), iron sulfates of likely fumarolic origin, massive deposits of iron hydroxysulfates indicative of an acidic history, and minor occurrences of magnesium sulfates. Recent measurements by the Opportunity and Curiosity Alpha Particle X-ray Spectrometers (APXS) have indicated the presence of Ni-substituted Mg-sulfates at the Meridiani Planum and Gale Crater landing sites. The Opportunity rover has traversed nearly 43 km and is currently exploring the impact breccias of the rim of Endeavour crater, near a location where signatures of aqueous alteration have been established from orbit. APXS analyses of subsurface materials excavated by a rover wheel show clear evidence for a Mg(Ni)-sulfate with Mg:Ni (is) approximately 100:1 (molar). On the other side of the planet, Curiosity is continuing its climb up Mount Sharp after driving (is) approximately 13 km since landing. Over the last 4 km of the traverse, there have been multiple chemical analyses of erosionally-resistant nodules and dendritic features in a finely laminated mudstone unit which also indicate Mg(Ni)-sulfate (Mg:Ni (is) approximately 30:1, molar). The geologic settings for the Endeavour rim and the Mount Sharp mudstones are clearly different, but similar formation conditions for these sulfates may be possible. Ni(2+) readily substitutes for Mg(2+) in a variety of geochemical processes due to their comparable ionic radii. The availability of soluble Ni at the time of Mg-sulfate precipitation suggests acidic solutions. The fluids responsible for alteration in the Endeavour rim and for the formation of nodules in Gale mudstones may have had similar chemical characteristics at the time the Mg-sulfates were formed.

  17. Size distributions of aerosol sulfates and nitrates in Beijing during the 2008 Olympic Games: Impacts of pollution control measures and regional transport

    Wang, Xinfeng; Wang, Tao; Pathak, Ravi Kant; Hallquist, Mattias; Gao, Xiaomei; Nie, Wei; Xue, Likun; Gao, Jian; Gao, Rui; Zhang, Qingzhu; Wang, Wenxing; Wang, Shulan; Chai, Fahe; Chen, Yizhen

    2013-03-01

    For the 2008 Olympic Games, drastic control measures were implemented on industrial and urban emissions of sulfur dioxide (SO2), nitrogen oxides (NO x ) and other pollutants to address the issues of poor air quality in Beijing. To investigate the effects of SO2 and NO x reductions on the particulate sulfate and nitrate concentrations as well as their size distributions, size-segregated aerosol samples were collected using micro-orifice uniform deposit impactors (MOUDIs) at urban and downwind rural sites in Beijing before and after full-scale controls. During the sampling period, the mass concentrations of fine particles (PM1.8) at the urban and rural sites were 94.0 and 85.9 μg m-3, respectively. More than 90% of the sulfates and ˜60% of nitrates formed as fine particles. Benefiting from the advantageous meteorological conditions and the source controls, sulfates were observed in rather low concentrations and primarily in condensation mode during the Olympics. The effects of the control measures were separately analyzed for the northerly and the southerly air-mass-dominated days to account for any bias. After the control measures were implemented, PM, sulfates, and nitrates were significantly reduced when the northerly air masses prevailed, with a higher percentage of reduction in larger particles. The droplet mode particles, which dominated the sulfates and nitrates before the controls were implemented, were remarkably reduced in mass concentration after the control measures were implemented. Nevertheless, when the polluted southerly air masses prevailed, the local source control measures in Beijing did not effectively reduce the ambient sulfate concentration due to the enormous regional contribution from the North China Plain.

  18. Size Distributions of Aerosol Sulfates and Nitrates in Beijing during the 2008 Olympic Games: Impacts of Pollution Control Measures and Regional Transport

    WANG Xinfeng; WANG Tao; Ravi Kant PATHAK; Mattias HALLQUIST; GAO Xiaomei; NIE Wei; XUE Likun

    2013-01-01

    For the 2008 Olympic Games,drastic control measures were implemented on industrial and urban emissions of sulfur dioxide (SO2),nitrogen oxides (NOx) and other pollutants to address the issues of poor air quality in Beijing.To investigate the effects of SO2 and NOx reductions on the particulate sulfate and nitrate concentrations as well as their size distributions,size-segregated aerosol samples were collected using micro-orifice uniform deposit impactors (MOUDIs) at urban and downwind rural sites in Beijing before and after full-scale controls.During the sampling period,the mass concentrations of fine particles (PM1.8) at the urban and rural sites were 94.0 and 85.9 μg m-3,respectively.More than 90% of the sulfates and ~60%of nitrates formed as fine particles.Benefiting from the advantageous meteorological conditions and the source controls,sulfates were observed in rather low concentrations and primarily in condensation mode during the Olympics.The effects of the control measures were separately analyzed for the northerly and the southerly air-mass-dominated days to account for any bias.After the control measures were implemented,PM,sulfates,and nitrates were significantly reduced when the northerly air masses prevailed,with a higher percentage of reduction in larger particles.The droplet mode particles,which dominated the sulfates and nitrates before the controls were implemented,were remarkably reduced in mass concentration after the control measures were implemented.Nevertheless,when the polluted southerly air masses prevailed,the local source control measures in Beijing did not effectively reduce the ambient sulfate concentration due to the enormous regional contribution from the North China Plain.

  19. Measurement and interpretation of acidity in Southern California rainfall and aerosols

    MORGAN, JAMES J.

    1980-01-01

    The long-term goal of this work is to assess the environmental significance of acidity transport in the Southern California region. There are three potentially important transport routes: wet flux of acidity to the surface of the basin; dry flux of acidity as aerosol deposition; absorption of acidic and basic gases at the basin surface. We view the research from two perspectives: (1) the overall mass balance aspect of sources and sinks for various acids and bases (nitric ...

  20. Organic aerosols

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN

  1. Characterisation of boric acid aerosol behaviour and interactions with stainless steel

    Experiments have been conducted to determine the physical characteristics of boric acid aerosol. Aqueous solutions of boric acid (either 200 or 2000 ppm boron) were injected at a controlled rate onto a 304 stainless steel cone held at 1000oC. The transport and deposition of the resulting aerosol was studied through a system including pipework and a dilution chamber. Work was also undertaken to characterise the interaction between boric acid and stainless steel. Boric acid was vaporized in steam-argon atmospheres at 300oC and passed over 304 stainless steel coupons held at temperatures between 400 and 1000oC. (author)

  2. Characterisation of boric acid aerosol behaviour and interactions with stainless steel

    Anderson, A.B.; Beard, A.M.; Bennett, P.J.; Benson, C.G.

    1991-03-01

    Experiments have been conducted to determine the physical characteristics of boric acid aerosol. Aqueous solutions of boric acid (either 200 or 2000 ppm boron) were injected at a controlled rate onto a 304 stainless steel cone held at 1000{sup o}C. The transport and deposition of the resulting aerosol was studied through a system including pipework and a dilution chamber. Work was also undertaken to characterise the interaction between boric acid and stainless steel. Boric acid was vaporized in steam-argon atmospheres at 300{sup o}C and passed over 304 stainless steel coupons held at temperatures between 400 and 1000{sup o}C. (author).

  3. A quantitative test of infrared optical constants for supercooled sulphuric and nitric acid droplet aerosols

    R. Wagner

    2003-05-01

    Full Text Available In situ Fourier transform infrared (FTIR extinction spectra of supercooled H2SO4/H2O and HNO3/H2O solution droplets were recorded in the large coolable aerosol chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere of Forschungszentrum Karlsruhe for a range of aerosol compositions and at temperatures extending down to 192 K. The measured spectra were quantitatively analysed in terms of aerosol composition and mass concentration by using Mie theory in combination with published refractive index data as input parameters. Simultaneously, total sulphuric acid and nitric acid mass concentrations from filter analysis and total water concentrations measured with the Lyman-a hygrometer of Forschungszentrum Jülich were used to calculate the aerosol composition at thermodynamic equilibrium inside the aerosol chamber. By comparing these measured aerosol parameters with those retrieved from the analysis of the FTIR spectra, the accuracy of the literature data sets of refractive indices could be assessed. In summary, four data sets were tested in the H2SO4/H2O system as well as two data sets in the HNO3/H2O system, partly revealing significant discrepancies in the retrieved aerosol properties. Potential explanations for these differences are discussed in this paper.

  4. Effect of sulfate on methanogenic communities that degrade unsaturated and saturated long-chain fatty acids (LCFA)

    Sousa, D.Z.; Alves, J.I.; Alves, M. M.; Smidt, Hauke; Stams, A.J.M.

    2009-01-01

    Anaerobic bacteria involved in the degradation of long-chain fatty acids (LCFA), in the presence of sulfate as electron acceptor, were studied by combined cultivation-dependent and molecular techniques. The bacterial diversity in four mesophilic sulfate-reducing enrichment cultures, growing on oleate (C18:1, unsaturated LCFA) or palmitate (C16:0, saturated LCFA), was studied by denaturing gradient gel electrophoresis (DGGE) profiling of polymerase chain reaction (PCR)-amplified 16S rRNA gene ...

  5. Application of acidic calcium sulfate and e-polylysine to pre-rigor beef rounds for reduction of pathogens

    Foodborne illness continues to be a serious public health problem and is a major concern for the United States food industry. This study evaluated the effectiveness of warm solutions of acidic calcium sulfate (ACS), lactic acid (LA), episolon-polylysine (EPL), ACS plus EPL, and sterile distilled wa...

  6. Iron Absorption from Two Milk Formulas Fortified with Iron Sulfate Stabilized with Maltodextrin and Citric Acid

    Fernando Pizarro

    2015-10-01

    Full Text Available Background: Fortification of milk formulas with iron is a strategy widely used, but the absorption of non-heme iron is low. The purpose of this study was to measure the bioavailability of two iron fortified milk formulas designed to cover toddlers´ nutritional needs. These milks were fortified with iron sulfate stabilized with maltodextrin and citric acid. Methods: 15 women (33–47 years old participated in study. They received on different days, after an overnight fast, 200 mL of Formula A; 200 mL of Formula B; 30 mL of a solution of iron and ascorbic acid as reference dose and 200 mL of full fat cow’s milk fortified with iron as ferrous sulfate. Milk formulas and reference dose were labeled with radioisotopes 59Fe or 55Fe, and the absorption of iron measured by erythrocyte incorporation of radioactive Fe. Results: The geometric mean iron absorption corrected to 40% of the reference dose was 20.6% for Formula A and 20.7% for Formula B, versus 7.5% of iron fortified cow’s milk (p < 0.001. The post hoc Sheffé indeed differences between the milk formulas and the cow’s milk (p < 0.001. Conclusion: Formulas A and B contain highly bioavailable iron, which contributes to covering toddlers´ requirements of this micronutrient.

  7. Calcium Sulfate with Stearic Acid as an Encouraging Carrier for Reindeer Bone Protein Extract

    Pekka Jalovaara

    2011-07-01

    Full Text Available Various bone proteins and growth factors in specific concentrations are required for bone formation. If the body cannot produce sufficient quantities of these factors, bone trauma can be healed with an implant that includes the required factors in a carrier. This study was designed to evaluate various calcium salt candidates that can be used as carrier with reindeer bone protein extract to induce ectopic bone formation in the muscle pouch model of mouse. The bone protein extract was either impregnated into the disc form of carrier or mixed with carrier powder before implantation. The radiographic analysis indicated increased bone formation in all of the active groups containing the bone protein extract compared to the controls within 21 days follow-up. The highest bone formation was seen in the group with calcium sulfate with stearic acid where new bone and calcified cartilage were clearly visible. The greatest bone formation occurred in the groups that had bone protein extract readily available. This indicates that the bone forming factors in sufficient concentrations are required at the early stage of bone formation. The calcium sulfate with stearic acid was the most suitable and effective carrier for reindeer bone protein extract.

  8. Kinetics and Mechanistic Chemistry of Oxidation of Butacaine Sulfate by Chloramine-B in Acid Medium

    Shubha, Jayachamarajapura Pranesh; Kotabagi, Vinutha [Bosco Institute of Technology, Bangalore (India); Puttaswamy [Bangalore Univ., Bangalore (India)

    2012-11-15

    Butacaine sulfate is an ester of p-aminobenzoic acid which has been widely used as a local anaesthetic and it is a long standing agent particularly for spinal anaesthesia. For this reason, a kinetic study of oxidation of butacaine sulfate by sodium N-chlorobenzenesulfonamide (chloramine-B or CAB) has been carried out in HClO{sub 4} medium at 303 K in order to explore this redox system mechanistic chemistry. The rate shows a first-order dependence on both [CAB]{sub o}, and [substrate]{sub o}, and a fractional-order dependence on acid concentration. Decrease of dielectric constant of the medium, by adding methanol, increases the rate of the reaction. Variation of ionic strength and addition of benzenesulfonamide or NaCl have no significant effect on the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated. The stoichiometry of the reaction has been found to be 1:2 and the oxidation products have been identified by spectral analysis. The observed results have been explained by plausible mechanism and the related rate law has been deduced.

  9. Characterization of the sulfate-reducing bacterial population in sediments of acid mining lakes

    With respect to remediation of acid mine drainage (AMD), concomitant alteration of redox conditions, formation of metal sulfides and alkalinity generation are of special interest. The majority of lakes formed in the Lusatian lignite mining district bear waters of low pH and high ionic strength. For several of these acid mining lakes, sulfate-reducing activities have been demonstrated. The aim of our study was to find out which bacteria are responsible for these activities, whether these SRB exhibit special traits to thrive under extreme conditions, and whether the population differed from those inhabiting freshwater and marine environments. For this purpose we estimated the most probable number (MPN) of culturable SRB in surface sediments of three mining lakes (ML) and obtained isolates from the same sites. The strains were characterised physiologically and phylogenetically. (orig.)

  10. Morphologies, mechanical properties and thermal stability of poly(lactic acid) toughened by precipitated barium sulfate

    Yang, Jinian; Wang, Chuang; Shao, Kaiyun; Ding, Guoxin; Tao, Yulun; Zhu, Jinbo

    2015-11-01

    Poly(lactic acid) (PLA)-based composites were prepared by blending PLA with precipitated barium sulfate (BaSO4) modified with stearic acid. The morphologies, mechanical properties and thermal stability of samples with increased mass fraction of BaSO4 were investigated. Results showed that PLA was toughened and reinforced simultaneously by incorporation of precipitated BaSO4 particles. The highest impact toughness and elongation at break were both achieved at 15% BaSO4, while the elastic modulus increased monotonically with increasing BaSO4 loading. Little effect of BaSO4 on the thermal behavior of PLA was observed in the present case. However, the thermal stability of PLA/BaSO4 composites at high temperature was enhanced.

  11. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3- aerosol during the 2013 Southern Oxidant and Aerosol Study

    Allen, Hannah M.; Draper, Danielle C.; Ayres, Benjamin R.; Ault, Andrew P.; Bondy, Amy L.; Takahama, S.; Modini, Robert; Baumann, K.; Edgerton, Eric S.; Knote, Christoph; Laskin, Alexander; Wang, Bingbing; Fry, Juliane L.

    2015-09-25

    The inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 1 June to 15 July 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA), an ion chromatograph coupled with a wet rotating denuder and a steam-jet aerosol collector for monitoring of ambient inorganic gas and aerosol species, revealed two periods of high aerosol nitrate (NO3 ) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of coarse mode mineral or sea spray aerosol species, particularly Na+ and Ca2+, and with a shift towards aerosol with larger (1 to 2.5 um) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO3 and particles, reactions that are facilitated by transport of mineral dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH4NO3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO3 on mineral aerosol supports the conclusion that aerosol NO3 is produced primarily by this process, and is likely limited by the availability of mineral dust surface area. Modeling of NO3 and HNO3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas/aerosol phase partitioning.

  12. Mobility of radium and heavy metals from uranium mine tailings in acid sulfate soils

    This study was aimed at determining whether heavy metals in tailings from Ranger Uranium Mine change in chemical form in such a way that they will become more mobile, or bioavailable, after they are mixed with extremely acidic soils from downstream of the mine. Four soils were studied: two samples were acid sulfate (jarositic or pyritic) materials and two were acidic materials overlying acid sulfate horizons. Copper, iron, manganese, lead, uranium and zinc fractions were determined in soils to which uranium mill tailings had been added. Total and exchangeable 226 Ra were also determined in selected samples. The tailings-soil mixtures were incubated for up to 4 months and included a comparison of reactions under continuously moist conditions and when subjected to a saturation and drying cycle. The tailings had considerably grater concentrations of total Mn, Pb, U and 226 Ra than the soils. The metals in the tailings occurred as relatively immobile forms. In the non-pyritic soils, the distribution of the metals between the fractions did not change much during 4 months of reaction. In the pyritic soil, which underwent oxidation and acidification during incubation, there were 2- to 3-fold increases in the exchangeable fractions of Fe, Mn,Cu and U. The metals in the tailings and soil behaved similarly. There appeared to be more likelihood of increased mobility of metals from oxidation of pyritic materials than from addition of tailings. The fraction of total 226 Ra that was exchangeable decreased from 11% in the original tailings to 2-7% after reaction with three of the soils but increased to 44% in one soil. At estimated long-term erosion rates, the tailings are not likely to be a source of heavy metal pollution, but addition of 226Ra to soils presents a possible radiological hazard. 19 refs., 12 tabs., 8 figs

  13. Alleviating aluminum toxicity in an acid sulfate soil from Peninsular Malaysia by calcium silicate application

    Elisa, A. A.; Ninomiya, S.; Shamshuddin, J.; Roslan, I.

    2016-03-01

    In response to human population increase, the utilization of acid sulfate soils for rice cultivation is one option for increasing production. The main problems associated with such soils are their low pH values and their associated high content of exchangeable Al, which could be detrimental to crop growth. The application of soil amendments is one approach for mitigating this problem, and calcium silicate is an alternative soil amendment that could be used. Therefore, the main objective of this study was to ameliorate soil acidity in rice-cropped soil. The secondary objective was to study the effects of calcium silicate amendment on soil acidity, exchangeable Al, exchangeable Ca, and Si content. The soil was treated with 0, 1, 2, and 3 Mg ha-1 of calcium silicate under submerged conditions and the soil treatments were sampled every 30 days throughout an incubation period of 120 days. Application of calcium silicate induced a positive effect on soil pH and exchangeable Al; soil pH increased from 2.9 (initial) to 3.5, while exchangeable Al was reduced from 4.26 (initial) to 0.82 cmolc kg-1. Furthermore, the exchangeable Ca and Si contents increased from 1.68 (initial) to 4.94 cmolc kg-1 and from 21.21 (initial) to 81.71 mg kg-1, respectively. Therefore, it was noted that calcium silicate was effective at alleviating Al toxicity in acid sulfate, rice-cropped soil, yielding values below the critical level of 2 cmolc kg-1. In addition, application of calcium silicate showed an ameliorative effect as it increased soil pH and supplied substantial amounts of Ca and Si.

  14. Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping.

    Qifeng, Wei; Xiulian, Ren; Jingjing, Guo; Yongxing, Chen

    2016-03-01

    The recovery and simultaneous separation of sulfuric acid and iron from dilute acidic sulfate effluent (DASE) and waste sulfuric acid (WSA) have been an earnest wish for researchers and the entire sulfate process-based titanium pigment industry. To reduce the pollution of the waste acid and make a comprehensive use of the iron and sulfuric acid in it, a new environmentally friendly recovery and separation process for the DASE and the WSA is proposed. This process is based on the reactive extraction of sulfuric acid and Fe(III) from the DASE. Simultaneously, stripping of Fe(III) is carried out in the loaded organic phase with the WSA. Compared to the conventional ways, this innovative method allows the effective extraction of sulfuric acid and iron from the DASE, and the stripping of Fe(III) from the loaded organic phase with the WSA. Trioctylamine (TOA) and tributyl phosphate (TBP) in kerosene (10-50%) were used as organic phases for solvent extraction. Under the optimal conditions, about 98% of Fe(III) and sulfuric acid were removed from the DASE, and about 99.9% of Fe(III) in the organic phase was stripped with the WSA. PMID:26546698

  15. Real-time measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site in the Amazon Basin

    I. Trebs

    2004-02-01

    Full Text Available We measured the mixing ratios of ammonia (NH3, nitric acid (HNO3, nitrous acid (HONO, hydrochloric acid (HCl, sulfur dioxide (SO2 and the corresponding water-soluble inorganic aerosol species, ammonium (NH4+, nitrate (NO3, nitrite (NO2, chloride (Cl and sulfate (SO42−, and their diel and seasonal variations at a pasture site in the Amazon Basin (Rondônia, Brazil. This study was conducted within the framework of LBA-SMOCC (Large Scale Biosphere Atmosphere Experiment in Amazonia Smoke Aerosols, Clouds, Rainfall and Climate. Sampling was performed from 12 September to 14 November 2002, extending from the dry season (extensive biomass burning activity, through the transition period to the wet season (background conditions. Measurements were made continuously using a wet-annular denuder in combination with a Steam-Jet Aerosol Collector (SJAC followed by suitable on-line analysis. A detailed description and verification of the inlet system for simultaneous sampling of soluble gases and aerosol compounds is presented. Overall measurement uncertainties of the ambient mixing ratios usually remained below 15%. The limit of detection (LOD was determined for each single data point measured during the field experiment. Median LOD values (3σ-definition were ≤0.015 ppb for acidic trace gases and aerosol anions and ≤0.118 ppb for NH3 and aerosol NH4+. Mixing ratios of acidic trace gases remained below 1ppb throughout the measurement period, while NH3 levels were an order of magnitude higher. Accordingly, mixing ratios of NH4+ exceeded those of other inorganic aerosol contributors by a factor of 4 to 10. During the wet season, mixing ratios decreased by nearly a factor of 3 for all compounds compared to those observed when intensive biomass burning

  16. Rare Isotope Insights into Supereruptions: Rare Sulfur and Triple Oxygen Isotope Geochemistry of Stratospheric Sulfate Aerosols Absorbed on Volcanic Ash Particles

    Bindeman, I. N.; Eiler, J.; Wing, B.; Farquhar, J.

    2006-12-01

    We present analyses of stable isotopic ratios of 17O/16O, 18O/16O, 34S/32S, and 33S/32S, 36S/32S of sulfate leached from volcanic ash of a series of well-known volcanic eruptions. This list covers much of the diversity of sizes and the character of volcanic eruptions. Particular emphasis is paid to the Lava Creek Tuff of Yellowstone and we present wide geographic sample coverage for this unit. This global dataset spans a significant range in δ34S, δ18O, and Δ17O of sulfate (29, 30 and 3.3 permil respectively) with oxygen isotopes recording mass-independent fractionation and sulfur isotopes exhibiting mass-dependent behavior. These ranges are defined by the isotopic compositions of products of large caldera forming eruptions. Proximal ignimbrites and coarse ash typically do not contain sulfate. The presence of sulfate with Δ17O > 0.2 permil is characteristic of small distal ash particles, suggesting that sulfate aerosols were scavenged after they underwent atmospheric photochemical reactions. Additionally, sediments that embed ash layers either do not contain sulfate or contain minor sulfate with Δ17O near 0 permil, suggesting that the observed sulfate in ash is of volcanic origin. Mass-dependent sulfur isotopic compositions suggest that sulfate-forming reactions did not involve photolysis of SO2, unlike the situation inferred for some pre-2.3 Ga sulfates or hypothesized to occur during the formation of sulfate associated with plinian eruptions that pierce the ozone layer. However, sulfate in the products of caldera-forming eruptions display a large δ34S range and fractionation relationships that do not follow equilibrium slopes of 0.515 and 1.90 for 33S/32S vs. 34S/32S and 36S/32S vs. 34S/32S, respectively. This implies that the sulfur isotopic characteristics of these sulfates were not set by a single stage, high-temperature equilibrium process in the volcanic plum. The data presented here are consistent with a single stage kinetic fractionation of sulfur

  17. Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching

    Lin, Qing-quan; Gu, Guo-hua; Wang, Hui; Zhu, Ren-feng; Liu, You-cai; Fu, Jian-gang

    2016-05-01

    In this study, a method for preparing pure manganese sulfate from low-grade ores with a granule mean size of 0.47 mm by direct acid leaching was developed. The effects of the types of leaching agents, sulfuric acid concentration, reaction temperature, and agitation rate on the leaching efficiency of manganese were investigated. We observed that sulfuric acid used as a leaching agent provides a similar leaching efficiency of manganese and superior selectivity against calcium compared to hydrochloric acid. The optimal leaching conditions in sulfuric acid media were determined; under the optimal conditions, the leaching efficiencies of Mn and Ca were 92.42% and 9.61%, respectively. Moreover, the kinetics of manganese leaching indicated that the leaching follows the diffusion-controlled model with an apparent activation energy of 12.28 kJ·mol-1. The purification conditions of the leaching solution were also discussed. The results show that manganese dioxide is a suitable oxidant of ferrous ions and sodium dimethyldithiocarbamate is an effective precipitant of heavy metals. Finally, through chemical analysis and X-ray diffraction analysis, the obtained product was determined to contain 98% of MnSO4·H2O.

  18. Condensational growth and trace species scavenging in stratospheric sulfuric acid/water aerosol droplets

    Tompson, Robert V., Jr.

    1991-01-01

    Stratospheric aerosols play a significant role in the environment. The composition of aerosols is believed to be a liquid solution of sulfuric acid and water with numerous trace species. Of these trace species, ozone in particular was recognized as being very important in its role of shielding the environment from harmful ultraviolet radiation. Also among the trace species are HCl and ClONO2, the so called chlorine reservoir species and various oxides of nitrogen. The quantity of stratospheric aerosol and its particle size distribution determines, to a large degree, the chemistry present in the stratosphere. Aerosols experience 3 types of growth: nucleation, condensation, and coagulation. The application of condensation investigations to the specific problem of stratospheric aerosols is discussed.

  19. The boiling point of stratospheric aerosols.

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  20. The influence of nitric acid on the cloud processing of aerosol particles

    Romakkaniemi, S.; Kokkola, H.; Lehtinen, K.E.J.; Laaksonen, A

    2005-01-01

    In this paper we present simulations of the effect of nitric acid (HNO3) on cloud processing of aerosol particles. Sulfuric acid (H2SO4) production and incloud coagulation are both affected by condensed nitric acid as nitric acid increases the number of cloud droplets, which will lead to smaller mean size and higher total surface area of droplets. As a result of increased cloud droplet number concentration (CDNC), the incloud coagulation rate is enhanced by a factor of 1...

  1. Origin of dimethylsulfide, non-sea-salt sulfate, and methanesulfonic acid in eastern Antarctica

    Cosme, E.; Hourdin, F.; Genthon, C.; Martinerie, P.

    2005-02-01

    Ignoring the origin of atmospheric chemicals is often a strong limitation to the full interpretation of their measurement. In this article, this question is addressed in the case of the sulfur species in Antarctica, with an original method of retrotransport of tracers. The retrotransport model is derived from the Laboratoire de Météorologie Dynamique Zoom-Tracers (LMD-ZT) atmospheric general circulation model, optimized for polar climate and expanded to simulate atmospheric sulfur chemistry. For two East Antarctic scientific stations (Dumont d'Urville and Vostok) the effects of transport and chemistry and the influence of oceanic, volcanic, and anthropogenic sources on dimethylsulfide (DMS), non-sea-salt (nss) sulfate, and methanesulfonic acid (MSA) concentrations are evaluated in summer and winter. The oceanic source largely dominates, but other sources can episodically be significant. The meridional origin and the age of DMS, MSA, and biogenic nss sulfate are also estimated. The latitudes of origin of MSA and nss sulfate are similar in summer, but they differ markedly in winter. This is a signature of their different chemical production scheme. Also, the interannual variability of the origin of the sulfur species at Vostok is weak compared to that at Dumont d'Urville. Acknowledging that the DMS concentrations in the ocean have no interannual variability in the model, this result suggests unsurprisingly that inland Antarctic stations may be better observation sites to monitor large-scale DMS bioproductivity variability than coastal sites are. The combination of slower chemistry and more intense atmospheric circulation in winter leads to unexpected results, such as a younger DMS in winter than in summer at Vostok.

  2. Cholesterol versus cholesterol sulfate: effects on properties of phospholipid bilayers containing docosahexaenoic acid.

    Schofield, M; Jenski, L J; Dumaual, A C; Stillwell, W

    1998-09-01

    The important omega-3 fatty acid docosahexaenoic acid (DHA) is present at high concentration in some membranes that also contain the unusual sterol cholesterol sulfate (CS). The association between these lipids and their effect on membrane structure is presented here. Differential scanning calorimetry (DSC), MC540 fluorescence, erythritol permeability, pressure/area isotherms on lipid monolayers and molecular modeling are used to compare the effect of CS and cholesterol on model phospholipid membranes. By DSC, CS decreases the main phase transition temperature and broadens the transitions of dipalmitolyphosphatidylcholine (DPPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (18:0,18:1 PC) and 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0,22:6 PC) to a much larger extent than does cholesterol. In addition CS produces a three-component transition in 18:0,18:1 PC bilayers that is not seen with cholesterol. In a mixed phospholipid bilayer composed of 18:0,18:1 PC/18:0,22:6 PC (1:1, mol/mol), CS at 2.5 membrane mol% or more induces lateral phase separation while cholesterol does not. CS decreases lipid packing density and increases permeability of 18:0,18:1 PC and 18:0,22:6 PC bilayers to a much larger extent than cholesterol. CS disrupts oleic acid-containing bilayers more than those containing DHA. Molecular modeling confirms that the anionic sulfate moiety on CS renders this sterol more polar than cholesterol with the consequence that CS likely resides higher (extends further into the aqueous environment) in the bilayer. CS can therefore be preferentially accommodated into DHA-enriched bilayers where its tetracyclic ring system may fit into the delta 4 pocket of DHA, a location excluded to cholesterol. It is proposed that CS may in part replace the membrane function of cholesterol in DHA-rich membranes. PMID:9807808

  3. Microwave-assisted digestion using nitric acid for heavy metals and sulfated ash testing in active pharmaceutical ingredients.

    Pluhácek, T; Hanzal, J; Hendrych, J; Milde, D

    2016-04-01

    The monitoring of inorganic impurities in active pharmaceutical ingredients plays a crucial role in the quality control of the pharmaceutical production. The heavy metals and residue on ignition/sulfated ash methods employing microwave-assisted digestion with concentrated nitric acid have been demonstrated as alternatives to inappropriate compendial methods recommended in United States Pharmacopoeia (USP) and European Pharmacopoeia (Ph. Eur.). The recoveries using the heavy metals method ranged between 89% and 122% for nearly all USP and Ph. Eur. restricted elements as well as the recoveries of sodium sulfate spikes were around 100% in all tested matrices. The proposed microwave-assisted digestion method allowed simultaneous decomposition of 15 different active pharmaceutical ingredients with sample weigh up to 1 g. The heavy metals and sulfated ash procedures were successfully applied to the determination of heavy metals and residue on ignition/sulfated ash content in mycophenolate mofetil, nicergoline and silymarin. PMID:27209695

  4. Factors Controlling Deoxygenation of "Floodwater" Overlying an Acid Sulfate Soil: Experimental Modeling

    C. LIN; P. G. HASKINS; J. LIN

    2003-01-01

    An incubation experiment was conducted to simulate the effect of flooding on water deoxygenation in acid sulfate soil floodplain systems. The originally oxygenated "floodwater" could be deoxygenated immediately following "flooding" and it is likely that this was caused mainly by decomposition of organic debris from the inundated plants. Deoxygenation eventually led to the depletion of dissolved oxygen (DO) in the "floodwater"and it is highly possible that this resulted in the transformations of ferric Fe to ferrous Fe, sulfate to hydrogen sulfide, and organic nitrogen to ammonia (ammonification). The accumulation of these reduced substances allows the "floodwater" to develop DO-consuming capacity (DOCC). When the "floodwater" is mixed with the introduced oxygenated water, apart from the dilution effects, the reduced substances contained in the "floodwater" oxidize to further consume DO carried by the introduced water. However, it appears that the DO drop in the mixed water can only last for a few hours if no additional DO-depleted "floodwater" is added.Entry of atmospheric oxygen into the water can raise the DO level of the mixed water and lower water pH through the oxidation of the reduced substances.

  5. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  6. HCl in rocket exhaust clouds - Atmospheric dispersion, acid aerosol characteristics, and acid rain deposition

    Pellett, G. L.; Sebacher, D. I.; Bendura, R. J.; Wornom, D. E.

    1983-01-01

    Both measurements and model calculations of the temporal dispersion of peak HCl (g + aq) concentration in Titan III exhaust clouds are found to be well characterized by one-term power-law decay expressions. The respective coefficients and decay exponents, however, are found to vary widely with meteorology. The HCl (g), HCl (g + aq), dewpoint, and temperature-pressure-altitude data for Titan III exhaust clouds are consistent with accurately calculated HCl/H2O vapor-liquid compositions for a model quasi-equilibrated flat surface aqueous aerosol. Some cloud evolution characteristics are also defined. Rapid and extensive condensation of aqueous acid clearly occurs during the first three min of cloud rise. Condensation is found to be intensified by the initial entrainment of relatively moist ambient air from lower levels, that is, from levels below eventual cloud stabilization. It is pointed out that if subsequent dilution air at stabilization altitude is significantly drier, a state of maximum condensation soon occurs, followed by an aerosol evaporation phase.

  7. Improved detection of coastal acid sulfate soil hotspots through biomonitoring of metal(loid) accumulation in water lilies (Nymphaea capensis).

    Stroud, Jacqueline L; Collins, Richard N

    2014-07-15

    Anthropogenically disturbed coastal acid sulfate soils along the east coast of Australia, and worldwide, periodically result in the discharge of acid waters containing high concentrations of metals. Identifying priority sites (hotspots) within a catchment for acid sulfate soil remediation activities typically involves long-term monitoring of drainwater chemistry, including the capture of data on unpredictable rain-induced groundwater discharge events. To improve upon this monitoring approach, this study investigated using the water lily (Nymphaea capensis) as a biomonitor of drainage waters to identify hotspots in three acid sulfate soil impacted catchments (83 km(2)) in north-eastern New South Wales, Australia. In one catchment where the location of hotspots was known, water lily lamina concentrations of a suite of metal(loid)s were significantly (pcatchment-scale water lily sampling program undertaken in catchments with unidentified hotspots revealed within catchment variation of plant metal concentrations up to 70-fold. High resolution maps produced from these results, therefore, provided strong evidence for the location of potential hotspots which were confirmed with measurements of drainwater chemistry during rain-induced groundwater discharge events. Median catchment lily accumulation was ca. 160 mg Al kg(-1) and 1,300 mg Fe kg(-1), with hotspots containing up to 6- and 10-fold higher Al and Fe concentrations. These findings suggest that biomonitoring with N. capensis can be an important tool to rapidly identify priority sites for remediation in acid sulfate soil impacted landscapes. PMID:24805963

  8. Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols

    Z. Shi

    2012-02-01

    Full Text Available Aerosol acidity is one of the most important parameters influencing atmospheric chemistry and physics. Based on continuous field observations from January 2005 to May 2006 and thermodynamic modeling, we investigated the spatial and seasonal variations in PM2.5 acidity in two megacities in China, Beijing and Chongqing. Spatially, PM2.5 was generally more acidic in Chongqing than in Beijing, but a reverse spatial pattern was found within the two cities, with more acidic PM2.5 at the urban site in Beijing whereas the rural site in Chongqing. Ionic compositions of PM2.5 revealed that it was the higher concentrations of NO3− at the urban site in Beijing and the lower concentrations of Ca2+ within the rural site in Chongqing that made their PM2.5 more acidic. Temporally, PM2.5 was more acidic in summer and fall than in winter, while in the spring of 2006, the acidity of PM2.5 was higher in Beijing but lower in Chongqing than that in 2005. These were attributed to the more efficient formation of nitrate relative to sulfate as a result of the influence of Asian desert dust in 2006 in Beijing and the greater wet deposition of ammonium compared to sulfate and nitrate in 2005 in Chongqing. Furthermore, simultaneous increase of PM2.5 acidity was observed from spring to early summer of 2005 in both cities. This synoptic-scale evolution of PM2.5 acidity was accompanied by the changes in air masses origins, which were influenced by the movements of a subtropical high over the northwestern Pacific in early summer. Finally, the correlations between [NO3−]/[SO42−] and [NH4+]/[SO42−] suggests that under conditions of high aerosol acidity, heterogeneous reactions became one of the major pathways for the formation of nitrate at both cities. These findings provided new insights in our understanding of the spatial and temporal variations in aerosol acidity in Beijing and Chongqing, as well as those reported in other cities in China.

  9. Gas Chromatographic Determination of Sulfuric Acid and Application to Urinary Sulfate

    Masuoka,Noriyoshi

    1988-10-01

    Full Text Available A new gas chromatographic method for the determination of sulfate was developed. In this method, sulfate was quantitatively converted to a volatile derivative, dimethyl sulfate, by a two-step procedure. First, sulfate was converted to silver sulfate by reaction with silver oxide, and then to dimethyl sulfate by reaction with methyl iodide. The derivative was analyzed by gas chromatography. Methyl methanesulfonate was used as an internal standard. The method was applied to the determination of total urinary sulfate. Phosphate and chloride ions, which interfered with the present method, were eliminated with the use of basic magnesium carbonate and an excess of silver oxide, respectively. Recovery was over 96% when 5 to 40 mumol/ml of sulfate was added to human urine samples.

  10. Impeded Acidification of Acid Sulfate Soils in an Inter—sively Drained Sugarcane Land

    C.LIN; R.T.BUSH; 等

    2001-01-01

    Recent research results suggest that acidification of acid sulfate soils may be inhibited in well-drained estuarine floodplains in eastern Australia by the absence of natural creek levees,The lack of natural levees has allowed the inuudation of the land by regular tidal flooding prior to the construction of flood mitigation work.Such physiographical conditions prevent the development of pre-draingae pyrite-derived soil acidifica-tion that possibly occurred at many levee-protected sites in eastern Australian estuarine floodplains during extremely dry spells.Pre-drainage acidification is considered as an important condition for accumulation of soluble Fe and consequently,the creation of favourable environments for catalysed pyrite oxidation.Under current intensively drained onditions,the acid materials produced by ongoing pyrite oxidation can be rapidly removed from soil pore water by lateral leaching and acid buffering,resulting in low concentrations of soluble Fe in the pyritic layer,which could reduce the rate of pyrite oxidation.

  11. Effects of Multiple Soil Conditioners on a Mine Site Acid Sulfate Soil for Vetiver Growth

    LIN Chu-Xia; LONG Xin-Xian; XU Song-Jun; CHU Cheng-Xing; MAI Shao-Zhi; JIANG Dian

    2004-01-01

    A pot experiment was conducted to investigate the effects of various soil treatments on the growth of vetiver grass ( Vetiveria zizanioides (L.) Nash) with the objective of formulating appropriate soil media for use in sulfide-bearing mined areas. An acidic mine site acid sulfate soil (pH 2.8) was treated with different soil conditioner formula including hydrated lime, red mud (bauxite residues), zeolitic rock powder, biosolids and a compound fertilizer. Soils treated with red mud and hydrated lime corrected soil acidity and reduced or eliminated metal toxicity enabling the establishment of vetiver grass.Although over-liming affected growth, some seedlings of vetiver survived the initial strong alkaline conditions. Addition of appropriate amounts of zeolitic rock powder also enhanced growth, but over-application caused detrimental effects. In this experiment, soil medium with the best growth performance of vetiver was 50 g of red mud, 10 g of lime, 30 g of zeolitic rock powder and 30 g of biosolids with 2000 g of mine soils (100% survival rate with the greatest biomass and number of new shoots), but adding a chemical fertilizer to this media adversely impacted plant growth. In addition, a high application rate of biosolids resulted in poorer growth of vetiver, compared to a moderate application rate.

  12. Effects of inhaled acid aerosols on lung mechanics: an analysis of human exposure studies.

    Utell, M J

    1985-01-01

    There exist significant gaps in our understanding of human health effects from inhalation of pollutants associated with acid precipitation. Controlled clinical studies examine effects of criteria pollutants almost exclusively by assessing changes in lung mechanics. One constituent of acid precipitation, sulfuric acid aerosols, has been shown to induce bronchoconstriction in exercising extrinsic asthmatics at near ambient levels. These asthmatics may be an order of magnitude more sensitive to ...

  13. Stratospheric sulfate from the Gareloi eruption, 1980: Contribution to the ''ambient'' aerosol by a poorly documented volcanic eruption

    While sampling stratospheric aerosols during July--August 1980 a plume of ''fresh'' volcanic debris was observed in the Northern hemisphere. The origin of this material seems to be a poorly documented explosive eruption of Gareloi valcano in the Aleutian Islands. The debris was sampled at an altitude of 19.2 km: almost twice the height of observed eruption clouds. Such remote, unobserved or poorly documented eruptions may be a source that helps maintain the ''ambient'' stratospheric aerosol background

  14. Sulfate-nitrate-ammonium aerosols over China: response to 2000–2015 emission changes of sulfur dioxide, nitrogen oxides, and ammonia

    Y. Wang

    2013-03-01

    Full Text Available We use a chemical transport model to examine the change of sulfate-nitrate-ammonium (SNA aerosols over China due to anthropogenic emission changes of their precursors (SO2, NOx and NH3 from 2000 to 2015. From 2000 to 2006, annual mean SNA concentrations increased by about 60% over China as a result of the 60% and 80% increases in SO2 and NOx emissions. During this period, sulfate is the dominant component of SNA over South China (SC and Sichuan Basin (SCB, while nitrate and sulfate contribute equally over North China (NC. Based on emission reduction targets in the 12th (2011–2015 Five-Year Plan (FYP, China's total SO2 and NOx emissions are projected to change by −16% and +16% from 2006 to 2015, respectively. The amount of NH3 emissions in 2015 is uncertain, given the lack of sufficient information on the past and present levels of NH3 emissions in China. With no change in NH3 emissions, SNA mass concentrations in 2015 will decrease over SCB and SC compared to their 2006 levels, but increase over NC where the magnitude of nitrate increase exceeds that of sulfate reduction. This suggests that the SO2 emission reduction target set by the 12th FYP, although effective in reducing SNA over SC and SCB, will not be successful over NC, for which NOx emission control needs to be strengthened. If NH3 emissions are allowed to keep their recent growth rate and increase by +16% from 2006 to 2015, the benefit of SO2 reduction will be completely offset over all of China due to the significant increase of nitrate, demonstrating the critical role of NH3 in regulating nitrate. The effective strategy to control SNA and hence PM2.5 pollution over China should thus be based on improving understanding of current NH3 emissions and putting more emphasis on controlling NH3 emissions in the future.

  15. Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification

    Graphical abstract: - Highlights: • SAPO-34 supported zirconium sulfate solid acid catalyst was prepared. • Esterification of acetic acid with ethanol can be catalyzed by ZS/SAPO-34. • The hydration of ZS is vital to the acidic property and catalytic performance. • The ZS/SAPO-34 catalyst treated at 200 °C shows good reusability. - Abstract: Zirconium sulfate (ZS) was supported on SAPO-34 molecular sieve by using an incipient wetness impregnation method with zirconium sulfate as the precursor. The as-prepared catalysts were used as solid acid catalyst for esterification reaction of acetic acid with ethanol. The influence of calcination temperature on the acidic property, catalytic activity, and reusability of ZS/SAPO-34 catalysts were mainly investigated. FT-IR, SEM, EDS and TG analysis have been carried out to demonstrate the characteristics of ZS/SAPO-34 catalysts. It was found that the 30 wt%ZS/SAPO-34 catalysts display the property of superacid irrespective of calcination temperature. The ZS/SAPO-34 catalyst treated at 200 °C can enhance the interaction between the supported ZS and SAPO-34 and keep the catalyst remaining substantially active after several reaction cycles. However, further increasing calcination temperature will cause the transfer of ZS from hydrate to anhydrous phase, and thus the decrease of activity

  16. Radiocarbon variability of fatty acids in semi-urban aerosol samples

    We analyzed radiocarbon and the stable carbon isotope ratio for individual monocarboxylic (fatty) acids in an aerosol sample (QFF 2138) and compared the results with data of the aerosol sample taken in another year. The fatty acid concentration distribution of aerosol sample QFF 2138 showed a bimodal pattern with maxima at C16 and C26. Stable carbon isotope ratios of the fatty acids ranged from -30.8 per mille to -23.0 per mille which indicates the animal and/or marine algae origins for C16-C19 fatty acids and mainly terrestrial C3 plant origins for C>20 fatty acids. Δ14C values for fatty acids ranged from -89.7 per mille to +83.5 per mille. Compared with QFF1969, we found that the Δ14C values of fatty acids exhibited a wide diversity and Δ14C values for each fatty acid in QFF 2138 were largely different from those of QFF 1969

  17. Indoor exposures to fine aerosols and acid gases.

    Koutrakis, P; Brauer, M.; Briggs, S. L.; Leaderer, B P

    1991-01-01

    Indoor exposures to aerosols and gases are associated with both indoor and outdoor air pollution sources. The identification of sources and the assessment of their relative contribution can be a complicated process due to a) the presence of numerous indoor sources, which can vary from building to building; b) the uncertainties associated with the estimation of the impact of outdoor sources on indoor air quality; c) the interactions between pollutants; and d) the importance of reactions betwee...

  18. On the Source of Organic Acid Aerosol Layers above Clouds

    Sorooshian, Armin; Brechtel, Fred J.; Jonsson, Haflidi; Feingold, Graham; Seinfeld, John H.; Lu, Miao-Ling; Flagan, Richard C.

    2007-01-01

    Environ. Sci. Technol., 41 (13), pp 4647-4654 The article of record as published may be located at http://dx.doi.org/ 10.1021/es0630442 During the July 2005 Marine Stratus/Stratocumulus Experiment (MASE) and the August-September 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed aerosols and cumulus clouds in the eastern Pacific Ocean off the coast of nor...

  19. Role of dissimilatory sulfate reduction in wetlands constructed for acid coal mine drainage (AMD) treatment. Master's thesis

    Five constructed wetlands with different organic substrates were exposed to the same quantity/quality of acid mine drainage (AMD). During the 16-month exposure to AMD, all wetlands accumulated S in the forms of organic and reduced inorganic S and Fe in the form of iron sulfides. Iron sulfide and probably most of the organic S(C-bonded S) accumulation were end products of bacterial dissimilatory sulfate reduction. Results of study support the notion that sulfate reduction and accumulation of Fe sulfides contribute to Fe retention in wetlands exposed to AMD. Detailed information is provided

  20. Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate

    Badger, C. L.; George, I.; Griffiths, P. T.; C. F. Braban; Cox, R A; J. P. D. Abbatt

    2006-01-01

    International audience The phase transitions and hygroscopic growth of two humic acid aerosols (Aldrich sodium salt and Leonardite Standard (IHSS)) and their mixtures with ammonium sulphate have been investigated using a combination of two techniques, Fourier transform infra-red (FTIR) spectroscopy and tandem differential mobility analysis (TDMA). A growth factor of 1.16 at 85% relative humidity (RH) was found for the Aldrich humic acid which can be regarded as an upper limit for growth fa...

  1. Contemporaneous deposition of phyllosilicates and sulfates: Using Australian acidic saline lake deposits to describe geochemical variability on Mars

    Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.

    2009-01-01

    Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.

  2. Perlecan Heparan Sulfate Is Required for the Inhibition of Smooth Muscle Cell Proliferation by All-trans-Retinoic Acid.

    Tran-Lundmark, Karin; Tannenberg, Philip; Rauch, Bernhard H; Ekstrand, Johan; Tran, Phan-Kiet; Hedin, Ulf; Kinsella, Michael G

    2015-02-01

    Smooth muscle cell (SMC) proliferation is a key process in stabilization of atherosclerotic plaques, and during restenosis after interventions. A clearer understanding of SMC growth regulation is therefore needed to design specific anti-proliferative therapies. Retinoic acid has been shown to inhibit proliferation of SMCs both in vitro and in vivo and to affect the expression of extracellular matrix molecules. To explore the mechanisms behind the growth inhibitory activity of retinoic acid, we hypothesized that retinoids may induce the expression of perlecan, a large heparan sulfate proteoglycan with anti-proliferative properties. Perlecan expression and accumulation was induced in murine SMC cultures by all-trans-retinoic acid (AtRA). Moreover, the growth inhibitory effect of AtRA on wild-type cells was greatly diminished in SMCs from transgenic mice expressing heparan sulfate-deficient perlecan, indicating that the inhibition is perlecan heparan sulfate-dependent. In addition, AtRA influenced activation and phosphorylation of PTEN and Akt differently in wild-type and mutant SMCs, consistent with previous studies of perlecan-dependent SMC growth inhibition. We demonstrate that AtRA regulates perlecan expression in SMCs and that the inhibition of SMC proliferation by AtRA is, at least in part, secondary to an increased expression of perlecan and dependent upon its heparan sulfate-chains. PMID:25078760

  3. The effect of fatty acid surfactants on the uptake of nitric acid to deliquesced NaCl aerosol

    M. Ammann

    2008-09-01

    Full Text Available Surface active organic compounds have been observed in marine boundary layer aerosol. Here, we investigate the effect such surfactants have on the uptake of nitric acid (HNO3, an important removal reaction of nitrogen oxides in the marine boundary layer. The uptake of gaseous HNO3 on deliquesced NaCl aerosol was measured in a flow reactor using HNO3 labelled with the short-lived radioactive isotope 13N. The uptake coefficient γ on pure deliquesced NaCl aerosol was γ=0.5±0.2 at 60% relative humidity and 30 ppb HNO3(g. The uptake coefficient was reduced by a factor of 5–50 when the aerosol was coated with saturated linear fatty acids with carbon chain lengths of 18 and 15 atoms in monolayer quantities. In contrast, neither shorter saturated linear fatty acids with 12 and 9 carbon atoms, nor coatings with the unsaturated oleic acid (C18, cis-double bond had a detectable effect on the rate of HNO3 uptake. It is concluded that it is the structure of the monolayers formed, which determines their resistance towards HNO3 uptake. Fatty acids (C18 and C15, which form a highly ordered film in the so-called liquid condensed state, represent a significant barrier towards HNO3 uptake, while monolayers of shorter-chain fatty acids (C9, C12 and of the unsaturated oleic acid form a less ordered film in the liquid expanded state and do not hinder the uptake. Similarly, high contents of humic acids in the aerosol, a structurally inhomogeneous, quite water soluble mixture of oxidised high molecular weight organic compounds did not affect HNO3 uptake. As surfactant films on naturally occurring aerosol are expected to be less structured due to their chemical inhomogeneity, it is likely that their inhibitory effect on HNO3 uptake is smaller than that observed here for the C15 and C18 fatty acid monolayers.

  4. Exchangeable and secondary mineral reactive pools of aluminium in coastal lowland acid sulfate soils.

    Yvanes-Giuliani, Yliane A M; Waite, T David; Collins, Richard N

    2014-07-01

    The use of coastal floodplain sulfidic sediments for agricultural activities has resulted in the environmental degradation of many areas worldwide. The generation of acidity and transport of aluminium (Al) and other metals to adjacent aquatic systems are the main causes of adverse effects. Here, a five-step sequential extraction procedure (SEP) was applied to 30 coastal lowland acid sulfate soils (CLASS) from north-eastern New South Wales, Australia. This enabled quantification of the proportion of aluminium present in 'water-soluble', 'exchangeable', 'organically-complexed', 'reducible iron(III) (oxyhydr)oxide/hydroxysulfate-incorporated' and 'amorphous Al mineral' fractions. The first three extractions represented an average of 5% of 'aqua regia' extractable Al and their cumulative concentrations were extremely high, reaching up to 4000 mg·kg(-1). Comparison of Al concentrations in the final two extractions indicated that 'amorphous Al minerals' are quantitatively a much more important sink for the removal of aqueous Al derived from the acidic weathering of these soils than reducible Fe(III) minerals. Correlations were observed between soil pH, dissolved and total organic carbon (DOC and TOC) and Al concentrations in organic carbon-rich CLASS soil horizons. These results suggest that complexation of Al by dissolved organic matter significantly increases soluble Al concentrations at pH values >5.0. As such, present land management practices would benefit with redefinition of an 'optimal' soil from pH ≥5.5 to ~4.8 for the preservation of aquatic environments adjacent to organic-rich CLASS where Al is the sole or principle inorganic contaminant of concern. Furthermore, it was observed that currently-accepted standard procedures (i.e. 1 M KCl extraction) to measure exchangeable Al concentrations in these types of soils severely underestimate exchangeable Al and a more accurate representation may be obtained through the use of 0.2 M CuCl2. PMID:24727041

  5. Methylsulfonylmethane and boswellic acids versus glucosamine sulfate in the treatment of knee arthritis: Randomized trial.

    Notarnicola, Angela; Maccagnano, Giuseppe; Moretti, Lorenzo; Pesce, Vito; Tafuri, Silvio; Fiore, Alessandra; Moretti, Biagio

    2016-03-01

    Until now glucosamine sulfate (GS) has been the most widely used supplement and has been shown to be efficacious in the treatment of osteoarthritis (OA). Methylsulfonylmethane (MSM) and boswellic acids (BA) are new effective supplements for the management of inflammation and joint degeneration, according to previous experimental studies. The aim of our study is to test the effectiveness of association of MSM and BA in comparison with GS in knee arthritis.In this prospective randomized clinical trial, MEBAGA (Methylsulfonylmethane and Boswellic Acids versus Glucosamine sulfate in the treatment of knee Arthritis), 120 participants affected by arthritis of the knee were randomly assigned to an experimental group (MB group) or a control group (GS group) treated for 60 days with 5 g of MSM and 7.2 mg of BA or with 1500 mg of GS daily, respectively. At the 2-month (T1) and 6-months (T2) follow-up , the efficacy of these two nutraceuticals was assessed using the visual analog pain scale (VAS) and the Lequesne Index (LI) for joint function, along with the use of anti-inflammatory drugs (non-steroidal anti-inflammatory drugs and anti-cyclooxygenase-2).The repeated measures ANOVA analysis shows that for VAS, LI, and the use of anti-inflammatory drugs scores there are improvements due to the time in the two groups (respectively, F=26.0; P<0.0001; F=4.15; P=0.02; F=3.38; P=0.04), with a tendency to better values for the MB group at T2.On the basis of these preliminary data, we could support the efficacy of the MSM in association with BA in the treatment of OA. These results are consistent with the anti-inflammatory and chondroprotective effects previously occurred in experimental studies. This new combination of integration (MSM and BS) has presented good results and satisfactory in comparison with GS, until now the cornerstone of the treatment of arthritis in according to guidelines. PMID:26684635

  6. Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol

    G. Gržinić

    2015-08-01

    Full Text Available The heterogeneous loss of dinitrogen pentoxide (N2O5 to aerosol particles has a significant impact on the night time nitrogen oxide cycle and therefore the oxidative capacity in the troposphere. Using a 13N short lived radioactive tracer method we studied the uptake kinetics of N2O5 on citric acid aerosol particles as a function of relative humidity (RH. The results show that citric acid exhibits lower reactivity than similar di- and polycarboxylic acids, with uptake coefficients between ~ 3 × 10−4–~ 3 × 10−3 depending on humidity (17–70 % RH. This humidity dependence can be explained by a changing viscosity and, hence, diffusivity in the organic matrix. Since the viscosity of highly concentrated citric acid solutions is not well established, we present four different parameterizations of N2O5 diffusivity based on the available literature data or estimates for viscosity and diffusivity. Above 50 % RH, uptake is consistent with the reacto-diffusive kinetic regime whereas below 50 % RH, the uptake coefficient is higher than expected from hydrolysis of N2O5 within the bulk of the particles, and the uptake kinetics may be limited by loss on the surface only. This study demonstrates the impact of viscosity in highly oxidized and highly functionalized secondary organic aerosol material on the heterogeneous chemistry of N2O5 and may explain some of the unexpectedly low loss rates to aerosol derived from field studies.

  7. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols

    Zhang, Yan-Lin; Kawamura, Kimitaka; Cao, Fang; Lee, Meehye

    2016-04-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls, and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C values of particle phase glyoxal and methylglyoxal are significantly larger than those previously reported for isoprene and other precursors. The values are consistently less negative in oxalic acid (C2, average -14.1‰), glyoxylic acid (-13.8‰), pyruvic acid (-19.4‰), glyoxal (-13.5‰), and methylglyoxal (-18.6‰) compared to other organic species (e.g., palmitic acid, -26.3‰), which can be explained by the kinetic isotope effects during atmospheric oxidation of pre-aged precursors (e.g., isoprene) and the subsequent gas-particle partitioning after the evaporation of clouds or wet aerosols. The δ13C values of C2 is positively correlated with C2 to organic carbon ratio, indicating that photochemical production of C2 is more pronounced than its degradation during long-range atmospheric transport. The isotopic results also suggest that aqueous phase oxidation of glyoxal and methylglyoxal is a major formation process of oxalic acid via the intermediates such as glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photochemically aged in the western North Pacific rim.

  8. Assignment of hexuronic acid stereochemistry in synthetic heparan sulfate tetrasaccharides with 2-O-sulfo uronic acids using electron detachment dissociation

    Agyekum, Isaac; Patel, Anish B.; Zong, Chengli; Boons, Geert Jan; Amster, I. Jonathan

    2015-01-01

    The present work focuses on the assignment of uronic acid stereochemistry in heparan sulfate (HS) oligomers. The structural elucidation of HS glycosaminoglycans is the subject of considerable importance due to the biological and biomedical significance of this class of carbohydrates. They are highly

  9. The influence of nitric acid on the cloud processing of aerosol particles

    Romakkaniemi, S.; Kokkola, H.; Lehtinen, K.E.J.; Laaksonen, A

    2006-01-01

    In this paper we present simulations of the effect of nitric acid (HNO3) on cloud processing of aerosol particles. Sulfuric acid (H2SO4) production and incloud coagulation are both affected by condensed nitric acid as nitric acid increases the number of cloud droplets, which will lead to smaller mean size and higher total surface area of droplets. As a result of increased cloud droplet number concentration (CDNC), the incloud coagulation rate is enhanced by a factor of 1–1.3, so that t...

  10. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane

    Elvert, M.; Boetius, A.; Knittel, K.; Jørgensen, BB

    2003-01-01

    Membrane fatty acids were extracted from a sediment core above marine gas hydrates at Hydrate Ridge, NE Pacific. Anaerobic sediments from this environment are characterized by high sulfate reduction rates driven by the anaerobic oxidation of methane (AOM). The assimilation of methane carbon into...... bacterial biomass is indicated by carbon isotope values of specific fatty acids as low as -103parts per thousand. Specific fatty acids released from bacterial membranes include C(16:1omega5c) , C(17:1omega6c) , and cyC(17:0omega5,6) , all of which have been fully characterized by mass spectrometry. These...

  11. Experimental and theoretical enthalpies of formation of glycine-based sulfate/bisulfate amino acid ionic liquids.

    Zhu, Jing-Fang; He, Ling; Zhang, Lei; Huang, Ming; Tao, Guo-Hong

    2012-01-12

    The experimental and theoretical enthalpies of formation of several structural-similar glycine-based sulfate/bisulfate amino acid ionic liquids including glycine sulfate (Gly(2)SO(4), 1), glycine bisulfate (GlyHSO(4), 2), N,N-dimethylglycine sulfate ([DMGly](2)SO(4), 3), N,N-dimethylglycine bisulfate ([DMGly]HSO(4), 4), N,N-dimethylglycine methyl ester sulfate ([DMGlyC(1)](2)SO(4), 5), N,N-dimethylglycine methyl ester bisulfate ([DMGlyC(1)]HSO(4), 6), N,N,N-trimethylglycine methyl ester sulfate ([TMGlyC(1)](2)SO(4), 7), and N,N,N-trimethylglycine methyl ester bisulfate ([TMGlyC(1)]HSO(4), 8) were studied. Their experimental enthalpies of formation were obtained from the corresponding energies of combustion determined by the bomb calorimetry method. The enthalpies of formation of these amino acid ionic liquids are in the range from -1406 kJ mol(-1) to -1128 kJ mol(-1). Systematic theoretical study on these amino acid ionic liquids were performed by quantum chemistry calculation using the Gaussian03 suite of programs. The geometric optimization and the frequency analyses are carried out using the B3LYP method with the 6-31+G** basis set. Their calculated enthalpies of formation were derived from the single point energies carried out with the HF/6-31+G**, B3LYP/6-31+G**, B3LYP/6-311++G**, and MP2/6-311++G** level of theory, respectively. The relevance of experimental and calculated enthalpies of formation was studied. The calculated enthalpies of formation are in good agreement with their experimental data in less than 3% error. PMID:22148242

  12. Comparison of chondroitin sulfate and hyaluronic Acid doped conductive polypyrrole films for adipose stem cells.

    Björninen, Miina; Siljander, Aliisa; Pelto, Jani; Hyttinen, Jari; Kellomäki, Minna; Miettinen, Susanna; Seppänen, Riitta; Haimi, Suvi

    2014-09-01

    Polypyrrole (PPy) is a conductive polymer that has aroused interest due to its biocompatibility with several cell types and high tailorability as an electroconductive scaffold coating. This study compares the effect of hyaluronic acid (HA) and chondroitin sulfate (CS) doped PPy films on human adipose stem cells (hASCs) under electrical stimulation. The PPy films were synthetized electrochemically. The surface morphology of PPy-HA and PPy-CS was characterized by an atomic force microscope. A pulsed biphasic electric current (BEC) was applied via PPy films non-stimulated samples acting as controls. Viability, attachment, proliferation and osteogenic differentiation of hASCs were evaluated by live/dead staining, DNA content, Alkaline phosphatase activity and mineralization assays. Human ASCs grew as a homogenous cell sheet on PPy-CS surfaces, whereas on PPy-HA cells clustered into small spherical structures. PPy-CS supported hASC proliferation significantly better than PPy-HA at the 7 day time point. Both substrates equally triggered early osteogenic differentiation of hASCs, although mineralization was significantly induced on PPy-CS compared to PPy-HA under BEC. These differences may be due to different surface morphologies originating from the CS and HA dopants. Our results suggest that PPy-CS in particular is a potential osteogenic scaffold coating for bone tissue engineering. PMID:24823653

  13. A sulfated polysaccharide, fucoidan, enhances the immunomodulatory effects of lactic acid bacteria.

    Kawashima, Tadaomi; Murakami, Katsura; Nishimura, Ikuko; Nakano, Takahisa; Obata, Akio

    2012-03-01

    Fucoidan, a sulfated polysaccharide contained in brown algae, has a variety of immunomodulatory effects, including antitumor and antiviral effects. On the other hand, lactic acid bacteria (LAB) also have immunomodulatory effects such as anti-allergic effects. In this study, we demonstrated that fucoidan enhances the probiotic effects of LAB on immune functions. By using Peyer's patch cells and spleen cells in vitro, fucoidan amplified interferon (IFN)-γ production in response to a strain of LAB, Tetragenococcus halophilus KK221, and this activity was abolished by desulfation of fucoidan. Moreover, this IFN-γ response was abolished by interleukin (IL)-12 neutralization. These results indicate that fucoidan enhanced IL-12 production in response to KK221, resulting in promoting IFN-γ production. In an in vivo study, Th1/Th2 immunobalance was most improved by oral administration of both fucoidan and KK221 to ovalbumin-immunized mice. These findings suggest that fucoidan can enhance a variety of beneficial effects of LAB on immune functions. PMID:22160132

  14. Tough and elastic hydrogel of hyaluronic acid and chondroitin sulfate as potential cell scaffold materials.

    Ni, Yilu; Tang, Zhurong; Cao, Wanxu; Lin, Hai; Fan, Yujiang; Guo, Likun; Zhang, Xingdong

    2015-03-01

    Natural polysaccharides are extensively investigated as cell scaffold materials for cellular adhesion, proliferation, and differentiation due to their excellent biocompatibility, biodegradability, and biofunctions. However, their application is often severely limited by their mechanical behavior. In this study, a tough and elastic hydrogel scaffold was prepared with hyaluronic acid (HA) and chondroitin sulfate (CS). HA and CS were conjugated with tyramine (TA) and the degree of substitution (DS) was 10.7% and 11.3%, respectively, as calculated by (1)H NMR spectra. The hydrogel was prepared by mixing HA-TA and CS-TA in presence of H2O2 and HRP. The sectional morphology of hydrogels was observed by SEM, static and dynamic mechanical properties were analyzed by Shimadzu electromechanical testing machine and dynamic mechanical thermal analyzer Q800. All samples showed good ability to recover their appearances after deformation, the storage modulus (E') of hydrogels became higher as the testing frequency went up. Hydrogels also showed fatigue resistance to cyclic compression. Mesenchymal stem cells encapsulated in hydrogels showed good cell viability as detected by CLSM. This study suggests that the hydrogels have both good mechanical properties and biocompatibility, and may serve as model systems to explore mechanisms of deformation and energy dissipation or find some applications in tissue engineering. PMID:25445680

  15. Longitudinal distributions of dicarboxylic acids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids in the marine aerosols from the central Pacific including equatorial upwelling

    Hoque, Mir Md. Mozammal; Kawamura, Kimitaka

    2016-03-01

    Remote marine aerosol samples (total suspended particles) were collected during a cruise in the central Pacific from Japan to Mexico (1°59'N-35°N and 171°54'E-90°58'W). The aerosol samples were analyzed for dicarboxylic acids (C2-C11), ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids as well as organic and elemental carbon, water-soluble organic carbon, and total nitrogen (WSTN). During the study, diacids were the most abundant compound class followed by fatty acids, ω-oxoacids, and α-dicarbonyls. Molecular compositions of diacids showed a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid comprises 74% of total diacids. This result suggests that photochemical production of oxalic acid is significant over the central Pacific. Spatial distributions of diacids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids together with total carbon and WSTN showed higher abundances in the eastern equatorial Pacific where the upwelling of high-nutrient waters followed by high biological productivity is common, indicating that their in situ production is important in the warmer central Pacific through photochemical oxidation from their gaseous and particulate precursors. This study demonstrates that there is a strong linkage in biogeochemical cycles of carbon in the sea-air interface via ocean upwelling, phytoplankton productivity, sea-to-air emissions of organic matter, and formation of secondary organic aerosols in the eastern equatorial Pacific.

  16. The effect of varying levels of surfactant on the reactive uptake of N2O5 to aqueous aerosol

    V. F. McNeill; Patterson, J; Wolfe, G. M.; Thornton, J. A.

    2006-01-01

    Recent observations have detected surface active organics in atmospheric aerosols. We have studied the reaction of N2O5 on aqueous natural seawater and NaCl aerosols as a function of sodium dodecyl sulfate (SDS) concentration to test the effect of varying levels of surfactant on gas-aerosol reaction rates. SDS was chosen as a proxy for naturally occurring long chain monocarboxylic acid molecules, such as palmitic or stearic acid, because of its solubility in water and well-c...

  17. ACID-CATALYZED REACTIONS IN SULFURIC ACID AEROSOLS: CHARACTERIZATION AND IMPACT ON ICE NUCLEATION

    Several different experimental results are possible. It may be that as long as the water content of the aerosol is known, ice nucleation conditions can be predicted using an accepted model for homogeneous ice nucleation. However, in aerosol systems where larger organics form...

  18. Aerosol-Forming Reactions of Glyoxal, Methylglyoxal and Amino Acids in Clouds

    de Haan, D. O.; Smith, K. W.; Stroik, D. R.; Corrigan, A. L.; Lee, F. E.; Phan, J. T.; Conley, A. C.

    2008-12-01

    Glyoxal and methylglyoxal are two common aldehydes present in fog and cloud water. Amino acids are present in clouds at similar concentrations. Here we present bulk and aerosol mass spectroscopic data demonstrating that irreversible reactions between glyoxal and amino acids, triggered by droplet evaporation, produce N-derivatized imidazole compounds along with deeply colored Maillard reaction products. These reactions can occur in the dark and in the absence of oxidants. Reactions between methylglyoxal and amino acids produce analogous methylated products plus oligomers with masses up to m/z = 1000. These reactions, which go to completion on the 10-min-timescale of cloud processing, could be significant sources of secondary organic aerosol and humic-like substances (HULIS or brown carbon).

  19. The influence of nitric acid on the cloud processing of aerosol particles

    S. Romakkaniemi

    2006-01-01

    Full Text Available In this paper we present simulations of the effect of nitric acid (HNO3 on cloud processing of aerosol particles. Sulfuric acid (H2SO4 production and incloud coagulation are both affected by condensed nitric acid as nitric acid increases the number of cloud droplets, which will lead to smaller mean size and higher total surface area of droplets. As a result of increased cloud droplet number concentration (CDNC, the incloud coagulation rate is enhanced by a factor of 1–1.3, so that the number of interstitial particles reduces faster. In addition, sulfuric acid production occurs in smaller particles and so the cloud processed aerosol size distribution is dependent on the HNO3 concentration. This affects both radiative properties of aerosol particles and the formation of cloud droplets during a sequence of cloud formation-evaporation events. It is shown that although the condensation of HNO3 increases the number of cloud droplets during the single updraft, it is possible that presence of HNO3 can actually decrease the cloud droplet number concentration after several cloud cycles when also H2SO4 production is taken into account.

  20. Effect of sodium dodecyl sulfate on folding and thermal stability of acid-denatured cytochrome c: A spectroscopic approach

    Xu, Qi; Keiderling, Timothy A

    2004-01-01

    The molten globule (MG) state can be an intermediate in the protein folding pathway; thus, its detailed description can help understanding protein folding. Sodium dodecyl sulfate (SDS), an anionic surfactant that is commonly used to mimic hydrophobic binding environments such as cell membranes, is known to denature some native state proteins, including horse cytochrome c (cyt c). In this article, refolding of acid denatured cyt c is studied under the influence of SDS to form MG-like states at...

  1. Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds Improved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration

    Sorina Dinescu; Bianca Gălăţeanu; Mădălina Albu; Adriana Lungu; Eugen Radu; Anca Hermenean; Marieta Costache

    2013-01-01

    Cartilage tissue engineering (CTE) applications are focused towards the use of implantable biohybrids consisting of biodegradable scaffolds combined with in vitro cultured cells. Hyaluronic acid (HA) and chondroitin sulfate (CS) were identified as the most potent prochondrogenic factors used to design new biomaterials for CTE, while human adipose-derived stem cells (ASCs) were proved to display high chondrogenic potential. In this context, our aim was not only to build novel 3D porous scaffol...

  2. Wintertime measurements of aerosol acidity and trace elements in Wuhan, a city in central China

    Waldman, J. M.; Lioy, P. J.; Zelenka, M.; Jing, L.; Lin, Y. N.; He, Q. C.; Qian, Z. M.; Chapman, R.; Wilson, W. E.

    A 2-week intensive ambient aerosol study was conducted in December 1988 in Wuhan (Hubei Province), a city of nearly 2 million located on the Yangtze River in central China (P.R.C.). This is an industrial region where soft coal burning is widespread, and emission controls for vehicles and industrial facilities are minimal. The sampling site was located in one of the civic centers where residential and commercial density is highest. An Andersen dichotomous sampler was operated with Teflon membrane filters to collect fine ( dp mass and element determinations. An annular denuder system (ADS) was used to collect fine fraction aerosols for analyses of ionic species including strong acidity (H +). The study was conducted between 18 and 30 December, which was rainless, consistently cool (3-10°C) and overcast, but without fog or acute stagnation. Fine particulate mass (PM, as μ m -3) averaged 139 (range 54-207); coarse PM averaged 86 (range 29-179). Trace element concentrations were also high. Crustal elements (Si, Al, Ca and Fe) were found primarily in the coarse fraction, while elements associated with combustion (S, K, Cl, Zn and Se) were enriched in the fine fraction. The concentrations of arsenic and selenium were evidence of a large source of coal burning, while vanadium levels (associated with fuel oil use) were not especially enriched. Despite the seemingly high PM loadings, ionic concentrations were not especially high. The average composition of soluble fine aerosol species (in neq m -3) were SO 42-: 520 (range 180-980), NO 3-: 225 (range 50-470), Cl -: 215 (range 20-640), and NH 4+: 760 (range 280-1660). A deficit in accountable FP components (total mass compared to the total of ionic plus element masses) as well as the black appearance of collected materials indicate an abundance of carbonaceous aerosol, as high as 100 μ m -3. (total mass compared to the total of ionic plus element masses) as well as the black appearance of collected materials indicate an

  3. Simulations of Sulfate-Nitrate-Ammonium (SNA) aerosols during the extreme haze events over Northern China in 2014

    Chen, Dan; Liu, Zhiquan; Fast, Jerome D.; Ban, Junmei

    2016-08-30

    Extreme haze events have occurred frequently over China in recent years. Although many studies have investigated the formation mechanisms associated with PM2.5 for heavily polluted regions in China based on observational data, adequately predicting peak PM2.5 concentrations is still challenging for regional air quality models. In this study, we evaluate the performance of one configuration of the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) and use the model to investigate the sensitivity of heterogeneous reactions on simulated peak sulfate, nitrate, and ammonium concentrations in the vicinity of Beijing during four extreme haze episodes in October 2014 over the North China Plain. The highest observed PM2.5 concentration of 469 μg m-3 occurred in Beijing. Comparisons with observations show that the model reproduced the temporal variability in PM2.5 with the highest PM2.5 values on polluted days (defined as days in which observed PM2.5 is greater than 75 μg m-3), but predictions of sulfate, nitrate, and ammonium were too low on days with the highest observed concentrations. Observational data indicate that the sulfur/nitric oxidation rates are strongly correlated with relative humidity during periods of peak PM2.5; however, the model failed to reproduce the highest PM2.5 concentrations due to missing heterogeneous reactions. As the parameterizations of those reactions is not well established yet, estimates of SO2-to-H2SO4 and NO2/NO3-to-HNO3 reaction rates that depend on relative humidity were applied which improved the simulation of sulfate, nitrate, and ammonium enhancement on polluted days in terms of both concentrations and partitioning among those species. Sensitivity simulations showed that the extremely high heterogeneous reaction rates and also higher emission rates than those reported in the emission inventory

  4. Gaseous Nitrogen Losses from Coastal Acid Sulfate Soils:A Short-Term Study

    B. C. T. MACDONALD; O. T. DENMEAD; I.WHITE; G. BYRANT

    2011-01-01

    NOx and N2O emissions from coastal acid sulfate soils (CASS) cultivated for sugarcane production were investigated on the coastal lowlands of northern New South Wales, Australia. Two series of short-term measurements were made using chambers and micrometeorological techniques. Series 1 occurred during the wet season, the water-filled pore space (WFPS) was between 60%-80% and the site flooded during the measurements. Measurements were made directly after the harvest of soybean crop, which fixed an estimated 100 kg N ha-1, and the emission amounted to 3.2 kg NOx-N ha-1 (12 d) and 1.8 kg N2O-N ha-1 (5 d). Series 2 was made towards the end of the dry season when the WFPS was less than 60%. In Series 2, after an application of 50 kg N ha-1, emissions were markedly less, amounting to 0.9 kg N ha-1 over 10 d. During both series when the soil was moist, emissions of NOx were larger than those of N2O. The emission of NOx appeared to be haphazard, with little time dependence, but there was a clear diurnal cycle for N2O, emphasising the need for continuous measurement procedures for both gases. Theseresults suggest that agricultural production on CASS could be important sources of greenhouse gases and nitrogen practices will need to be optimised to reduce the offsite effects of atmospheric warming, acidification or nitrification. Many questions still remain unanswered such as the emissions during the soybean bean filling stage and crop residue decomposition, the longer-term losses following the fertiliser application and emissions from CASS under different land uses.

  5. FROM GENE TO STRUCTURE: Formation of Iduronic Acid in Dermatan Sulfate by Two DS-epimerases

    Pacheco, Benny

    2008-01-01

    During embryonic development and adult life a wide range of cell behaviors such as differentiation, proliferation and migration are in effect to maintain tissue integrity and function. An integral part of these dynamic processes is the interplay between the cells and their environment, i.e. the extracellular space. Complex polysaccharides, such as dermatan sulfate play a key role in these processes. Dermatan sulfate is a long linear polysaccharide of a repeating disaccharide unit consisti...

  6. Metal and acidity fluxes controlled by precipitation/dissolution cycles of sulfate salts in an anthropogenic mine aquifer

    Cánovas, C. R.; Macías, F.; Pérez-López, R.

    2016-05-01

    Underground mine drainages are extremely difficult to study due to the lack of information about the flow path and source proximity in relation to the outflow adit. Geochemical processes controlling metals and acidity fluxes in a complex anthropogenic mine aquifer in SW Spain during the dry and rainy season were investigated by geochemical and statistical tools. High concentrations of acidity, sulfate, metals and metalloids (e.g. Fe, Cu, Zn, As, Cd, Ni, Co) were observed due to intense sulfide oxidation processes. The high residence time inside the anthropogenic aquifer, around 40 days, caused the release of significant quantities of metals linked to host rocks (e.g. Al, Ca, Ge, Li, Mg, REE). The most outstanding characteristic of the acid mine drainage (AMD) outflows is the existence of higher Fe/SO4 molar ratios than those theoretical of pyrite (0.50) during most of the monitored period, due to a fire which occurred in 1949 and remained active for decades. Permanent and temporal retention mechanisms of acidity and metals were observed in the galleries. Once released from sulfide oxidation, Pb and As are sorbed on Fe oxyhydroxysulfate or precipitated as low solubility minerals (i.e. anglesite) inside the galleries. The precipitation of evaporitic sulfate salts during the dry season and the subsequent re-dissolution after rainfall control the fluxes of acidity and main metals (i.e. Fe, Mg, Al) from this anthropogenic aquifer. Some elements, such as Cd, Cu, Ni, REE and Zn, are retained in highly soluble sulfate salts while other elements, such as Ge, Pb and Sc, have a lower response to washout processes due to its incorporation in less soluble sulfate salts. In this way, metal concentration during the washout processes would be controlled by the proportion and solubility of each type of evaporitic sulfate salt stored during the dry season. The recovery of metals of economic interest contained in the AMD could help to self-finance the remediation of these waters in

  7. The geochemistry during management of lake acidification caused by the rewetting of sulfuric (pH < 4) acid sulfate soils

    Highlights: • The dynamic geochemistry of a lake acidification event and its management was assessed. • Sulfate complexes dominated the aqueous metal speciation at low pH. • Iron oxydroxysulfate minerals (schwertmannite, jarosite) were identified. • Aerial additions of limestone to the acidic water slowly returned the pH to near neutral. • Coating of the limestone with gypsum and metal precipitates limited its neutralisation efficiency. - Abstract: Understanding the geochemistry and kinetics of acidification events arising from acid sulfate soils is important to enable effective management and risk assessment. Large-scale exposure and oxidation of acid sulfate soils occurred during a drought in the Lower Lakes (Murray–Darling Basin) of South Australia. We examined the geochemical changes that occurred in one region (Boggy Lake) that experienced surface water acidification and was subsequently neutralised via aerial limestone (CaCO3) dosing and dilution via natural lake refill. Very low pH (< 3) and high concentrations (≈10–1000 mg/L Fe, Al, Mn) of dissolved metals were initially found in surface water. The water chemistry exhibited pH-dependent enhancement of constituents typically associated with acid sulfate soils (SO4, Al and Fe). Geochemical speciation calculations indicated that most (60–80%) of the acidity was present as dissolved metal-sulfate complexes at low pH. X-ray diffraction (XRD) analyses showed that the orange-brown precipitates present after an initial limestone dosing were secondary oxyhydroxysulfate minerals (schwertmannite, jarosite). Further limestone dosing resulted in neutralisation of the pH, reduction in dissolved metal concentrations, dissolution of jarosite and schwertmannite precipitates, and formation of other metal oxyhydroxide phases. The results were consistent with a pE-pH diagram constructed for metal-sulfur geochemistry. Assessment of the measured and simulated (using PHREEQC) pH and Ca/Cl ratio during limestone

  8. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation

    Kirkby, Jasper; Almeida, João; Dunne, Eimear; Duplissy, Jonathan; Ehrhart, Sebastian; Franchin, Alessandro; Gagné, Stéphanie; Ickes, Luisa; Kürten, Andreas; Kupc, Agnieszka; Metzger, Axel; Riccobono, Francesco; Rondo, Linda; Schobesberger, Siegfried; Tsagkogeorgas, Georgios; Wimmer, Daniela; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; David, André; Dommen, Josef; Downard, Andrew; Ehn, Mikael; Flagan, Richard C; Haider, Stefan; Hansel, Armin; Hauser, Daniel; Jud, Werner; Junninen, Heikki; Kreissl, Fabian; Kvashin, Alexander; Laaksonen, Ari; Lehtipalo, Katrianne; Lima, Jorge; Lovejoy, Edward R; Makhmutov, Vladimir; Mathot, Serge; Mikkilä, Jyri; Minginette, Pierre; Mogo, Sandra; Nieminen, Tuomo; Onnela, Antti; Pereira, Paulo; Petäjä, Tuukka; Schnitzhofer, Ralf; Seinfeld, John H; Sipilä, Mikko; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Vanhanen, Joonas; Viisanen, Yrjo; Vrtala, Aron; Wagner, Paul E; Walther, Hansueli; Weingartner, Ernest; Wex, Heike; Winkler, Paul M; Carslaw, Kenneth S; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku

    2011-01-01

    Atmospheric aerosols exert an important influence on climate1 through their effects on stratiform cloud albedo and lifetime2 and the invigoration of convective storms3. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours4, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small5, 6. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia7. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that n...

  9. Bile salts of the West Indian manatee, Trichechus manatus latirostris: novel bile alcohol sulfates and absence of bile acids.

    Kuroki, S; Schteingart, C D; Hagey, L R; Cohen, B I; Mosbach, E H; Rossi, S S; Hofmann, A F; Matoba, N; Une, M; Hoshita, T

    1988-04-01

    The bile salts present in gallbladder bile of the West Indian manatee, Trichechus manatus latirostris, an herbivorous marine mammal of the tropical and subtropical margins of the Atlantic Ocean, were found to consist of a mixture of bile alcohol sulfates. Bile acids, previously believed to be present in all mammals, were not detected. Using chromatography, mass spectrometry, and 1H- and 13C-nuclear magnetic resonance spectroscopy, the major bile alcohol was identified as 5 beta-cholestane-3 alpha,6 beta,7 alpha-25,26-pentol; that is, it had the nuclear structure of alpha-muricholic acid and the side chain structure of bufol. This compound has not been described previously and the trivial name "alpha-trichechol" is proposed. The second most abundant compound was 5 beta-cholestane-3 alpha,7 alpha,25,26-tetrol. Other bile alcohols were tentatively identified as 5 beta-cholestane-3 alpha,6 beta,7 beta,25,26-pentol (named beta-trichechol), 3 alpha,6 alpha,7 beta, 25-26-pentol (named omega-trichechol) and 5 beta-cholestane-3 alpha,6 beta,7 alpha,26-tetrol. The 1H and 13C NMR spectra of the four 6,7 epimers of 3,6,7 trihydroxy bile acids are described and discussed. All bile alcohols were present as ester sulfates, the sulfate group being tentatively assigned to the 26-hydroxy group. 12-Hydroxy compounds were not detected. The manatee is the first mammal found to lack bile acids, presumably because it lacks the enzymes required for oxidation of the 26-hydroxy group to a carboxylic acid. Trichechols, like other bile salts, are water-soluble end products of cholesterol metabolism; whether they also function as biological surfactants in promoting biliary cholesterol secretion or lipid digestion is unknown. PMID:3392467

  10. Thermal stability and surface acidity of mesoporous silica doubly doped by incorporation of sulfate and zirconium ions

    A sulfated Si-Zr-MCM-41 solid with highly ordered mesostructure was synthesized through a templated synthesis route where the CTAB surfactant was used as template. During the synthesis procedure, various amounts of (NH4)2SO4 were added into the mixed solution of Zr and Si precursors to in situ sulfate the MCM-41 solids, aiming to enhance the acidity and thermal stability. The resultant materials showed a long-range ordered hexagonal arrangement with high surface area larger than 797 m2/g and an average pore size distributed at approximate 2.5-2.8 nm. The high-resolution TEM observations confirmed that the order of the mesostructure gained when the molar ratio of SO42-/(ZrO2 + SiO2) increased from 0.1 to 0.3 but decreased as it reached 0.5, which is consistent with the results of 29Si MAS-NMR and XRD analysis. Compared to Si-MCM-41, the (Q2 + Q3)/Q4 ratio derived from the NMR spectra of the Zr-doped sample was higher, indicating that zirconium atoms were incorporated into the silica framework. Unexpectedly, in situ sulfation does not enhance the surface Broensted acidity, most likely due to the sulfur retained within the bulk of the materials; however, it indeed improved the thermal stability of the solid and long-range order of the structure

  11. Direct effects of atmospheric sulfate deposition on vegetation

    Chevone, B.I.; Herzfeld, D.E.; Krupa, S.V.; Chappelka, A.H.

    1986-07-01

    Acid sulfate aerosol (500 ..mu..g/m/sup 3/) had no effect on soybean or pinto bean after a single 4-h exposure. However, visible injury and chlorophyl loss occurred when plants were sequentially exposed to acid aerosol and ozone (380 ..mu..g/m/sup 3/) for 4 h. In yellow poplar seedlings exposed to ozone (200 ..mu..g/m/sup 3/), sulfur dioxide (210 ..mu..g/m/sup 3/) and simulated rain solutions (pH 5.6, 4.3 and 3.0) for 6 weeks, root dry weight, leaf area increase, mean relative growth rate and unit leaf rate decreased linearly with pH in ozone-treated plants. However, unit leaf rate and mean relative growth rate increased linearly in response to sulfur dioxide as solution acidity increased. Ambient wet and dry sulfate concentrations appear insufficient to directly impact vegetation. (23 refs.)

  12. Partition of Chiral pharmaceutical intermediate R(-)-Mandelic Acid in Aqueous Two-Phase System of Poly(ethylene glycol)-Ammonium Sulfate

    Xu Xiaoping; Li Zhongqin; Chen Jiebo; Huang Xinghua

    2004-01-01

    An aqueous two-phase system of poly (ethylene glycol)-ammonium sulfate was employed to separate R (-)-mandelic acid.The result showed that R (-)-mandelic acid has priority to partition in PEG-rich top phase. This indicated that aqueous two-phase is a very suitable system for separation of R(-)-mandelic acid.

  13. Preparation of amino acid nanoparticles at varying saturation conditions in an aerosol flow reactor

    Raula, Janne, E-mail: janne.raula@aalto.fi [Aalto University School of Science, Department of Applied Physics (Finland); Lehtimaeki, Matti; Karppinen, Maarit [Aalto University School of Chemical Technology, Department of Chemistry (Finland); Antopolsky, Maxim [University of Helsinki, Drug Discovery and Development Technology Center (Finland); Jiang Hua; Rahikkala, Antti; Kauppinen, Esko I. [Aalto University School of Science, Department of Applied Physics (Finland)

    2012-07-15

    Nanoparticle formation of five amino acids, glycine, l-proline, l-valine, l-phenylalanine, and l-leucine was studied. The aim was to explore factors determining nanoparticle formation and crystallinity. The amino acid nanoparticles have been prepared at different saturation conditions in the aerosol reactor. In a condensed state, the particles were formed by droplet drying. The raise in temperature induced the sublimation of amino acids from the aerosol particles. The amino acid vapor was condensed by physical vapor deposition in a rapid cooling process. The diffusion coefficients and nucleation rates of amino acids have been calculated to understand particle formation. Upon the vapor deposition, amino acids formed crystalline nanoparticles except in the case l-phenylalanine according to X-ray diffraction. The crystal polymorph of glycine in the nanoparticles depended on the applied reactor temperature. The preference of crystallographic orientation varied in both the particle formations from condensed and vapor phase. l-Valine, l-phenylalanine, and l-leucine formed leafy-looking particles. These results could be utilized in the fabrication of nano-sized asperities on drug particle surfaces to reduce forces between particles and accordingly increase particle dispersion in dry powder inhalers.

  14. Ruthenium sulfate complexes forming during electrochemical dissolution of Ni-Fe-Ru alloys in sulfuric acid solutions

    Ruthenium sulfate complexes, prepared by anodic dissolution of Ni-Fe-Ru alloys in sulfuric acid solutions, have been studied. Ruthenium oxidation states in the complexes, their charge, dimensions, are determined, and Fe effect on the formation of different forms of complexes is clarified. Using the method of gel-chromatography, it is established, that at the anode potential >= 1w0 V ruthenium transfers into solution in the form of several neutral and anion complex forms of Ru(4): grey-violet polymeric ones (dimensions 1.6-2.3 nm), presumably containing the groupings (Rusub(n)(OH)sub(2(n-1))) or [Rusub(n)Osub(2(n-1))], where n>=3, red dimeric ones, containing (RuO)2, mixture of monomeric browngrey sulfate complexes with the grouping RuO. Fe hinders the formation of Ru complex polymeric forms

  15. BIOREMEDIATION FOR ACID MINE DRAINAGE: ORGANIC SOLID WASTE AS CARBON SOURCES FOR SULFATE-REDUCING BACTERIA: A REVIEW

    I. N. Jamil

    2013-12-01

    Full Text Available Biological sulfate reduction has been slowly replacing chemical unit processes to treat acid mine drainage (AMD. Bioremediations for AMD treatment are favored due to their low capital and maintenance cost. This paper describes the available AMD treatment, current SRB commercialization such as THIOPAQ® and BioSulphide® technologies, and also the factors and limitations faced. THIOPAQ® and BioSulphide® technologies use expensive carbon sources such as hydrogen as the electron donor. This paper discusses the possibility of organic solid waste as an alternative substrate as it is cheaper and abundant. A possible AMD treatment system setup was also proposed to test the efficiency of sulfate-reducing bacteria utilizing organic solid substrate.

  16. Visible-near-infrared reflectance spectroscopy of volcanic acid-sulfate alteration in Nicaragua: Analogs for early Mars

    Marcucci, Emma C.; Hynek, Brian M.; Kierein-Young, Kathryn S.; Rogers, K. L.

    2013-10-01

    Acid-sulfate weathering at Nicaraguan hydrothermal sites Cerro Negro, Momotombo, and Telica volcanoes and Hervidores de San Jacinto mudpots was characterized as an analog for similar processes that likely operated on early Mars. In situ mineralogical analyses were conducted with a field portable visible near-infrared spectrometer for comparison to similar Martian data sets. Three classes of alteration minerals were identified: sulfates (gypsum and natroalunite), oxides/hydroxides (hematite and goethite), and phyllosilicates (kaolinite/halloysite, montmorillonite, and saponite), as well as elemental sulfur and hydrated silica phases. Our sites had similar suites of minerals, but frequencies varied with location. The results of this field campaign allow inferences regarding the paleo-environmental conditions that were likely present at similar relic hydrothermal sites identified on Mars. In particular, sulfates and phyllosilicates could have coevolved under hydrothermal conditions at Noctis Labyrinthus as is seen in Nicaragua. Fe/Mg smectites were detected in areas with pH of 3-4. Alunite spectra at Terra Sirenum demonstrated mineral mixing effects on spectroscopy. Mineral mixing can cause uncertainties in spectral identification due to a dominant spectrum, such as iron minerals, masking another or the suppression of weaker bands. When viewed from orbit, our field sites would likely be dominated by hydrated silica and Mars sites, such as one in Syrtis Major, could have a more diverse mineralogy than the data reveal. Concentrated amorphous silica, such as at Gusev crater, can result from acidic fumarolic activity, while Mg sulfates may indicate a lack of reworking by water. This field spectroscopy study helps confirm and provide insight into hydrothermal processes on ancient Mars.

  17. Acidic gases and nitrate and sulfate particles in the atmosphere in the city of Guadalajara, México.

    Saldarriaga-Noreña, Hugo; Waliszewski, Stefan; Murillo-Tovar, Mario; Hernández-Mena, Leonel; de la Garza-Rodríguez, Iliana; Colunga-Urbina, Edith; Cuevas-Ordaz, Rosalva

    2012-05-01

    Atmospheric concentrations of nitrous acid, nitric acid, nitrate and sulfate particles were obtained in this study from April to June 2008 in the center of the city of Guadalajara, while concentrations of ozone, sulfur dioxide, nitrogen dioxide and meteorological parameters (temperature and relative humidity), were acquired by the Secretaría del Medio Ambiente para el Desarrollo Sustentable del Estado de Jalisco (SEMADES). The results showed that nitric acid (2.7 μg m(-3)) was 2.7 times higher than nitrous acid (1.0 μg m(-3)). The sulfur dioxide (SO(2)) concentration indicated an opposite trend to sulfate (SO(4) (2-)), with the average concentration of SO(2) (6.9 μg m(-3)) higher in almost the entire period of study. The sulfur conversion ratio (Fs, 24.9%) and nitrogen conversion ratio (Fn, 6.2%), were revealed to be similar to that reported in other urban areas during warm seasons. It is also noted that ozone is not the main oxidizer of nitrogen dioxide and sulfur dioxide. This determination was made by taking into account the slightly positively correlation determined for Fn (r(2) = 0.084) and Fs (r(2) = 0.092) with ozone that perhaps suggests there are other oxidizing species such as the radical OH, which are playing an important role in the processes of atmospheric oxidation in this area. PMID:22358115

  18. Stratospheric Sulfuric Acid and Black Carbon Aerosol Measured During POLARIS and its Role in Ozone Chemistry

    Strawa, Anthony W.; Pueschel, R. F.; Drdla, K.; Verma, S.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosol can affect the environment in three ways. Sulfuric acid aerosol have been shown to act as sites for the reduction of reactive nitrogen and chlorine and as condensation sites to form Polar Stratospheric Clouds, under very cold conditions, which facilitate ozone depletion. Recently, modeling studies have suggested a link between BCA (Black Carbon Aerosol) and ozone chemistry. These studies suggest that HNO3, NO2, and O3 may be reduced heterogeneously on BCA particles. The ozone reaction converts ozone to oxygen molecules, while HNO3 and NO2 react to form NOx. Finally, a buildup of BCA could reduce the single-scatter albedo of aerosol below a value of 0.98, a critical value that has been postulated to change the effect of stratospheric aerosol from cooling to warming. Correlations between measured BCA amounts and aircraft usage have been reported. Attempts to link BCA to ozone chemistry and other stratospheric processes have been hindered by questions concerning the amount of BCA that exists in the stratosphere, the magnitude of reaction probabilities, and the scarcity of BCA measurements. The Ames Wire Impactors (AWI) participated in POLARIS as part of the complement of experiments on the NASA ER-2. One of our main objectives was to determine the amount of aerosol surface area, particularly BCA, available for reaction with stratospheric constituents and assess if possible, the importance of these reactions. The AWI collects aerosol and BCA particles on thin Palladium wires that are exposed to the ambient air in a controlled manner. The samples are returned to the laboratory for subsequent analysis. The product of the AWI analysis is the size, surface area, and volume distributions, morphology and elemental composition of aerosol and BCA. This paper presents results from our experiments during POLARIS and puts these measurements in the context of POLARIS and other missions in which we have participated. It describes modifications to the AWI data

  19. The synthesis of taurine-conjugated bile acids and bile acid sulfates labeled with 14C or 3H in the taurine moiety

    Studies of bile acid transport systems require radio-labeled taurine-conjugated bile acids with high specific activity. An established procedure was optimized to provide mild, fast, and effective conjugation of radio-labeled taurine with different types of bile acids, including those with labile 7α-hydroxy-3-oxo-Δ4 or 3β, 7α-dihydroxy-Δ5 structures. Taurine labeled with 14C or 3H was reacted with excess bile acid anhydride formed from the tributylamine salt and ethylchloroformate (2/1 M/M) in aqueous dioxane for 15 min at room temperature. The yields were higher than 95% and less than 2% side products were formed. Bile acid sulfates were conjugated with 14C- or 3H-labeled taurine by using N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline as the coupling reagent. The products were effectively purified by chromatography of the sodium salts on Sephadex LH-20. The yields of taurine-conjugated bile acid sulfates were 65-70%. (author)

  20. Differentiating chondroitin sulfate glycosaminoglycans using collision-induced dissociation; uronic acid cross-ring diagnostic fragments in a single stage of tandem mass spectrometry.

    Kailemia, Muchena J; Patel, Anish B; Johnson, Dane T; Li, Lingyun; Linhardt, Robert J; Amster, I Jonathan

    2015-01-01

    The stereochemistry of the hexuronic acid residues of the structure of glycosaminoglycans (GAGs) is a key feature that affects their interactions with proteins and other biological functions. Electron based tandem mass spectrometry methods, in particular electron detachment dissociation (EDD), have been able to distinguish glucuronic acid (GlcA) from iduronic acid (IdoA) residues in some heparan sulfate tetrasaccharides by producing epimer-specific fragments. Similarly, the relative abundance of glycosidic fragment ions produced by collision-induced dissociation (CID) or EDD has been shown to correlate with the type of hexuronic acid present in chondroitin sulfate GAGs. The present work examines the effect of charge state and degree of sodium cationization on the CID fragmentation products that can be used to distinguish GlcA and IdoA containing chondroitin sulfate A and dermatan sulfate chains. The cross-ring fragments (2,4)A(n) and (0,2)X(n) formed within the hexuronic acid residues are highly preferential for chains containing GlcA, distinguishing it from IdoA. The diagnostic capability of the fragments requires the selection of a molecular ion and fragment ions with specific ionization characteristics, namely charge state and number of ionizable protons. The ions with the appropriate characteristics display diagnostic properties for all the chondroitin sulfate and dermatan sulfate chains (degree of polymerization of 4-10) studied. PMID:26307707

  1. Ion-exchange equilibria of tungsten in the ionite-sodium sulfate sulfuric acid solution system

    Ion-exchange equilibrium in the system macroporous ionite-Na2WO4-Na2SO4-H2O(H2SO4) are studied by the methods of IR- and absorption spectroscopy, electron microscopy and mercury porometry to develop methods for tungsten selective extraction from solutions mentioned. It is ascertained that amine-containing macroporous anionites features a high exchange capacity towards tungsten ions in sulfate solutions at pH 2.5-5.5. The anionites permit a complete separation of tungsten ions from sulfate ions and preparation of pure tungsten salts

  2. Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms

    S.-L. Sihto

    2006-05-01

    Full Text Available We have investigated the formation and early growth of atmospheric secondary aerosol particles building on atmospheric measurements. The measurements were part of the QUEST 2 campaign which took place in spring 2003 in Hyytiälä (Finland. During the campaign numerous new aerosol particle formation events occurred of which 15 were accompanied by gaseous sulphuric acid measurements. Our detailed analysis of these 15 events is focussed on nucleation and early growth (to a diameter of 3 nm of fresh particles. It revealed that new particle formation seems to be a function of the gaseous sulphuric acid concentration to the power from one to two. The former would be consistent with the recently developed activation theory while the latter would be consistent with the kinetic nucleation theory. We find that some events are dominated by the activation mechanism and some are dominated by the kinetic mechanism. Inferred coefficients for the two nucleation mechanisms are correlated with the product of gaseous sulphuric acid and ammonia concentrations. This indicates that besides gaseous sulphuric acid also ammonia has a role in nucleation. Early growth of fresh particles to a diameter of 3 nm has a mean rate of 1.2 nm/h and is clearly correlated with the gaseous sulphuric acid concentration.

  3. Plant and Soil Emissions of Amines and Amino Acids: A Source of Secondary Aerosol Precursors

    Jackson, M. L.; Doskey, P. V.; Pypker, T. G.

    2011-12-01

    Ammonia (NH3) is the most abundant alkaline gas in the atmosphere and forms secondary aerosol by neutralizing sulfuric and nitric acids that are released during combustion of fossil fuels. Ammonia is primarily emitted by cropping and livestock operations. However, C2 and C3 amines (pKb 3.3-3.4), which are stronger bases than NH3 (pKb 4.7) have been observed in nuclei mode aerosol that is the precursor to secondary aerosol. Mixtures of amines and amino acids have been identified in diverse environments in aerosol, fog water, cloud water, the soluble fraction of precipitation, and in dew. Glycine (pKb 4.2), serine (pKb 4.8) and alanine (pKb 3.7 and 4.1 for the D and L forms, respectively) are typically the most abundant species. The only reported values of gas-phase glycine, serine and alanine were in marine air and ranged from 6-14 pptv. The origin of atmospheric amines and amino acids has not been fully identified, although sources are likely similar to NH3. Nitrate assimilation in plants forms glycine, serine, and L-alanine, while D-alanine is present in bacterial cell walls. Glycine is converted to serine during C3 plant photorespiration, producing CO2 and NH3. Bacteria metabolize glycine and alanine to methylamine and ethylamine via decarboxylation. Likely sources of amino acids are plants and bacteria, thus concentrations near continental sources are likely greater than those measured in marine air. The overall goal of the research is to examine seasonal variations and relationships between the exchange of CO2, NH3, amines, and amino acids with a corn/soybean rotation in the Midwest Corn Belt. The study presents gaseous profiles of organic amine compounds from various species of vegetation using a mist chamber trapping technique and analysis of the derivatized species by high pressure liquid chromatography with fluorescence detection. Amino acid and amine profiles were obtained for red oak (Quercus rubra), sugar maple (Acer saccharinum), white pine (Pinus

  4. Preparation and Catalytic Application of Novel Water Tolerant Solid Acid Catalysts of Zirconium Sulfate/HZSM-5

    JIANG Ya-jie; JUAN Joon Ching; MENG Xiu-juan; CAO Wei-liang; YARMO Mohd Ambar; ZHANG Jing-chang

    2007-01-01

    Esterification of acrylic acid(AA) to produce AA esters has widespread application in the chemical industry. A series of water tolerant solid acid catalysts was prepared, and characterized by XRD, nitrogen adsorption, TGA-DTA, XPS, and ammonia adsorption FTIR. The effects of Si/Al ratio, zirconium sulfate(ZS) loading on HZSM-5 and calcination temperature on the esterification were investigated. When 20%(mass fraction) ZS is loaded on HZSM-5, the conversion of AA reaches 100%. XRD analysis indicates that ZS is highly dispersed on HZSM-5 because no crystalline structure assigned to ZS is found. Catalytic activity and hydrophobicity of ZS supported on HZSM-5 are higher compared with those of parent ZS or HZSM-5. Results show that this kind of novel catalysts is an efficient water tolerant solid acid catalyst for esterification reactions.

  5. Long term response of acid-sensitive Vermont Lakes to sulfate deposition

    Atmospheric deposition of sulfur can negatively affect the health of lakes and streams, particularly in poorly buffered catchments. In response to the Clean Air Act Amendments, wet deposition of sulfate decreased more than 35% in Vermont between 1990 and 2008. However, most of ...

  6. MICROBIAL SULFATE REDUCTION AND METAL ATTENUATION IN PH 4 ACID MINE WATER

    Sediments recovered from the flooded mine workings of the Penn Mine, a Cu-Zn mine abandoned since the early 1960s, were cultured for anaerobic bacteria over a range of pH (4 to 7.5). The molecular biology of sediments and cultures was studied to determine whether sulfate-reducing...

  7. Ozone-driven daytime formation of secondary organic aerosol containing carboxylic acid groups and alkane groups

    S. Liu

    2011-08-01

    Full Text Available Carboxylic acids are present in substantial quantities in atmospheric particles, and they play an important role in the physical and chemical properties of aerosol particles. During measurements in coastal California in the summer of 2009, carboxylic acid functional groups were exclusively associated with a fossil fuel combustion factor derived from factor analysis of Fourier transform infrared spectroscopic measurements and closely correlated with oxygenated organic factors from aerosol mass spectrometry measurements. The high fraction of acid groups and the high ratio of oxygen to carbon in this factor suggest that this factor is composed of secondary organic aerosol (SOA products of combustion emissions from the upwind industrial region (the ports of Los Angeles and Long Beach. Another indication of the photochemically-driven secondary formation of this combustion-emitted organic mass (OM was the daytime increase in the concentrations of acid groups and the combustion factors. This daytime increase closely tracked the O3 mixing ratio with a correlation coefficient of 0.7, indicating O3 was closely associated with the SOA maximum and thus likely the oxidant that resulted in acid group formation. Using a pseudo-Lagrangian framework to interpret this daytime increase of carboxylic acid groups and the combustion factors, we estimate that the carboxylic acid groups formed in a 12-h daytime period of one day ("Today's SOA" accounted for 25–33 % of the measured carboxylic acid group mass, while the remaining 67–75 % (of the carboxylic acid group mass was likely formed 1–3 days previously (the "Background SOA". A similar estimate of the daytime increase in the combustion factors suggests that "Today's SOA" and the "Background SOA" respectively contributed 25–50 % and 50–75 % of the combustion factor (the "Total SOA", for a "Total SOA" contribution to the OM of 60 % for the project average. Further, size

  8. Molecular Basis of the Receptor Interactions of Polysialic Acid (polySia), polySia Mimetics, and Sulfated Polysaccharides.

    Zhang, Ruiyan; Loers, Gabriele; Schachner, Melitta; Boelens, Rolf; Wienk, Hans; Siebert, Simone; Eckert, Thomas; Kraan, Stefan; Rojas-Macias, Miguel A; Lütteke, Thomas; Galuska, Sebastian P; Scheidig, Axel; Petridis, Athanasios K; Liang, Songping; Billeter, Martin; Schauer, Roland; Steinmeyer, Jürgen; Schröder, Jens-Michael; Siebert, Hans-Christian

    2016-05-01

    Polysialic acid (polySia) and polySia glycomimetic molecules support nerve cell regeneration, differentiation, and neuronal plasticity. With a combination of biophysical and biochemical methods, as well as data mining and molecular modeling techniques, it is possible to correlate specific ligand-receptor interactions with biochemical processes and in vivo studies that focus on the potential therapeutic impact of polySia, polySia glycomimetics, and sulfated polysaccharides in neuronal diseases. With this strategy, the receptor interactions of polySia and polySia mimetics can be understood on a submolecular level. As the HNK-1 glycan also enhances neuronal functions, we tested whether similar sulfated oligo- and polysaccharides from seaweed could be suitable, in addition to polySia, for finding potential new routes into patient care focusing on an improved cure for various neuronal diseases. The knowledge obtained here on the structural interplay between polySia or sulfated polysaccharides and their receptors can be exploited to develop new drugs and application routes for the treatment of neurological diseases and dysfunctions. PMID:27136597

  9. Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products

    Garland, Rebecca M.; Elrod, Matthew J.; Kincaid, Kristi; Beaver, Melinda R.; Jimenez, Jose L.; Tolbert, Margaret A.

    While it is well established that organics compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, we use the aerodyne aerosol mass spectrometer (AMS) to probe the uptake of gas-phase hexanal into ammonium sulfate and sulfuric acid aerosols. While both deliquesced and dry non-acidic ammonium sulfate aerosols showed no organic uptake, the acidic aerosols took up substantial amounts of organic material when exposed to hexanal vapor. Further, we used 1H-NMR, Fourier transform infrared (FTIR) spectroscopy and GC-MS to identify the products of the acid-catalyzed reaction of hexanal in acidic aerosols. Both aldol condensation and hemiacetal products were identified, with the dominant reaction products dependent upon the initial acid concentration of the aerosol. The aldol condensation product was formed only at initial concentrations of 75-96 wt% sulfuric acid in water. The hemiacetal was produced at all sulfuric acid concentrations studied, 30-96 wt% sulfuric acid in water. Aerosols up to 88.4 wt% organic/11.1 wt% H 2SO 4/0.5 wt% water were produced via these two dimerization reaction pathways. The UV-VIS spectrum of the isolated aldol condensation product, 2-butyl 2-octenal, extends into the visible region, suggesting these reactions may impact aerosol optical properties as well as aerosol composition. In contrast to previous suggestions, no polymerization of hexanal or its products was observed at any sulfuric acid concentration studied, from 30 to 96 wt% in water.

  10. Effect of abietic acid addition on anodic dissolution of zinc- cadmium- and thallium amalgams in sodium sulfate solution

    The method of inversion voltametry with a stationary mercury drop electrode has been applied to investigate the effect of abietic acid (AA) on anodic oxidation of cadmium, zinc, thallium from their amalgams as well as from mixed cadmium-thallium and zinc-thallium amalgams against the background of 0.5 M sodium sulfate at 298 K. Constants of peak of analgam anodic oxidation in the background solution and with additions of different AA concentrations are calculated. It is established that AA has the inhibiting effect on the processes of oxidation of cadmium- and zinc amalgams and does not produce the inhibiting effect on the oxidation of thallium amalgam

  11. Quantifying heavy metals sequestration by sulfate-reducing bacteria in an acid mine drainage-contaminated wetland

    JohnWMoreau

    2013-03-01

    Full Text Available Bioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century.

  12. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons

    Theeba Manickam; Gerard Cornelissen; Robert T. Bachmann; Illani Z. Ibrahim; Jan Mulder; Hale, Sarah E.

    2015-01-01

    The use of biochar as an agricultural soil improvement was tested in acid sulfate and sandy soils from Malaysia, cropped with rice and corn. Malaysia has an abundance of waste rice husks that could be used to produce biochar. Rice husk biochar was produced in a gasifier at a local mill in Kelantan as well as in the laboratory using a controlled, specially designed, top lift up draft system (Belonio unit). Rice husk biochar was applied once to both soils at two doses (2% and 5%), in a pot set ...

  13. Controlled exposures of volunteers to respirable carbon and sulfuric acid aerosols

    Anderson, K.R.; Avol, E.L.; Edwards, S.A.; Shamoo, D.A.; Ruchuan Peng; Linn, W.S.; Hackney, J.D. (Univ. of Southern California, Downey (United States))

    1992-06-01

    Respirable carbon or fly ash particles are suspected to increase the respiratory toxicity of coexisting acidic air pollutants, by concentrating acid on their surfaces and so delivering it efficiently to the lower respiratory tract. To investigate this issue, the authors exposed 15 healthy and 15 asthmatic volunteers in a controlled-environment chamber to four test atmospheres: (1) clean air; (2) 0.5-{mu}m H{sub 2}SO{sub 4} aerosol at {approx}100 {mu}g/m{sup 3}, generated from water solution; (3) 0.5-{mu}m carbon aerosol at {approx}250 {mu}g/m{sup 3}, generated from highly pure carbon black with specific surface area comparable to ambient pollution particles; and (4) carbon as in (3) plus {approx}100 {mu}g/m{sup 3} of ultrafine H{sub 2}SO{sub 4} aerosol generated from fuming sulfuric acid. Electron microscopy showed that nearly all acid in (4) became attached to carbon particle surfaces, and that most particles remained in the sub-{mu}m size range. Exposures were performed double-blind, 1 week apart. They lasted 1 hr each, with alternate 10-min periods of heavy exercise (ventilation {approx}50 L/min) and rest. Subjects gargled citrus juice before exposure to suppress airway ammonia. Lung function and symptoms were measured pre-exposure, after initial exercise, and at end-exposure. Bronchial reactivity to methacholine was measured after exposure. Statistical analyses tested for effects of H{sub 2}SO{sub 4} or carbon, separate or interactive, on health measures.

  14. Aerosol dynamics simulations on the connection of sulphuric acid and new particle formation

    S.-L. Sihto

    2008-06-01

    Full Text Available We have performed a series of simulations with an aerosol dynamics box model to study the connection between new particle formation and sulphuric acid concentration. For nucleation either activation mechanism with a linear dependence on the sulphuric acid concentration or ternary H2O-H2SO4-NH3 nucleation was assumed. We investigated the factors that affect the sulphuric acid dependence during the early stages of particle growth, and tried to find conditions which would yield the linear dependence between the particle number concentration at 3–6 nm and sulphuric acid, as observed in field experiments. The simulations showed that the correlation with sulphuric acid may change during the growth from nucleation size to 3–6 nm size range, the main reason being the size dependent growth rate between 1 and 3 nm. In addition, the assumed size for the nucleated clusters had a crucial impact on the sulphuric acid dependence at 3 nm. The simulations yielded a linear dependence between the particle number concentration at 3 nm and sulphuric acid, when a low saturation vapour pressure for the condensable organic vapour was assumed, or when nucleation took place at ~2 nm instead of ~1 nm. Comparison of results with activation and ternary nucleation showed that ternary nucleation cannot explain the experimentally observed linear or square dependence on sulphuric acid.

  15. Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing bacteria.

    Ňancucheo, Ivan; Rowe, Owen F; Hedrich, Sabrina; Johnson, D Barrie

    2016-05-01

    Growth media have been developed to facilitate the enrichment and isolation of acidophilic and acid-tolerant sulfate-reducing bacteria (aSRB) from environmental and industrial samples, and to allow their cultivation in vitro The main features of the 'standard' solid and liquid devised media are as follows: (i) use of glycerol rather than an aliphatic acid as electron donor; (ii) inclusion of stoichiometric concentrations of zinc ions to both buffer pH and to convert potentially harmful hydrogen sulphide produced by the aSRB to insoluble zinc sulphide; (iii) inclusion of Acidocella aromatica (an heterotrophic acidophile that does not metabolize glycerol or yeast extract) in the gel underlayer of double layered (overlay) solid media, to remove acetic acid produced by aSRB that incompletely oxidize glycerol and also aliphatic acids (mostly pyruvic) released by acid hydrolysis of the gelling agent used (agarose). Colonies of aSRB are readily distinguished from those of other anaerobes due to their deposition and accumulation of metal sulphide precipitates. Data presented illustrate the effectiveness of the overlay solid media described for isolating aSRB from acidic anaerobic sediments and low pH sulfidogenic bioreactors. PMID:27036143

  16. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate.

    Jagupilla, Santhi Chandra; Moon, Deok Hyun; Wazne, Mahmoud; Christodoulatos, Christos; Kim, Min Gyu

    2009-08-30

    A bench-scale treatability study was conducted to assess the effects of particle size and acid addition on the remediation of chromite ore processing residue (COPR) using ferrous sulfate. The remediation scheme entailed the chemical reduction of hexavalent chromium [Cr(VI)] and the mitigation of swell potential. Leaching tests and the EQ3/6 geochemical model were used to estimate the acid dosage required to destabilize Cr(VI)-bearing and swell-causing minerals. The model predicted greater acid dosage than that estimated from the batch leaching tests. This indicated that mass transfer limitation may be playing a significant role in impeding the dissolution of COPR minerals following acid addition and hence hindering the remediation of COPR. Cr(VI) concentrations determined by alkaline digestion for the treated samples were less than the current NJDEP standard. However, Cr(VI) concentrations measured by X-ray absorption near edge structure (XANES) were greater than those measured by alkaline digestion. Greater Cr(VI) percentages were reduced for acid pretreated and also for smaller particle size COPR samples. Upon treatment, brownmillerite content was greatly reduced for the acid pretreated samples. Conversely, ettringite, a swell-causing mineral, was not observed in the treated COPR. PMID:19272700

  17. Anode oxidation of cadmium in acid and that of zinc in neutral sulfate solutions

    By the method of anode polarization curves on rotary disc electrode there have been studied kinetics and mechanism of zinc and cadmium dissolution in 0.1-2.0 N sulfate solutions. There have been determined exchange currents of the first and second stages of ionization and transfer coefficients. Cadmium anode dissolution takes place in sequent single-electron stages with diffusion stage of reaction being superimposed

  18. Bimodal Distribution of Sulfuric Acid Aerosols in the Upper Haze of Venus

    Gao, Peter; Crisp, David; Bardeen, Charles G; Yung, Yuk L

    2013-01-01

    The upper haze (UH) of Venus is variable on the order of days and it is populated by two particle modes. We use a 1D microphysics and vertical transport model based on the Community Aerosol and Radiation Model for Atmospheres to evaluate whether interaction of upwelled cloud particles and sulfuric acid particles nucleated in situ on meteoric dust are able to generate the two size modes and whether their observed variability are due to cloud top vertical transient winds. Nucleation of photochemically produced sulfuric acid onto polysulfur condensation nuclei generates mode 1 cloud droplets that then diffuse upwards into the UH. Droplets generated in the UH from nucleation of sulfuric acid onto meteoric dust coagulate with the upwelled cloud particles and cannot reproduce the observed bimodal size distribution. The mass transport enabled by cloud top transient winds are able to generate a bimodal size distribution in a time scale consistent with observations. Sedimentation and convection in the middle and lower...

  19. Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect

    B. Zobrist

    2006-05-01

    Full Text Available Heterogeneous ice freezing points of aqueous solutions containing various immersed solid dicarboxylic acids (oxalic, adipic, succinic, phthalic and fumaric have been measured with a differential scanning calorimeter. The results show that only the dihydrate of oxalic acid (OAD acts as a heterogeneous ice nucleus, with an increase in freezing temperature between 2-5 K depending on solution composition. In several field campaigns, oxalic acid enriched particles have been detected in the upper troposphere with single particle aerosol mass spectrometry. Simulations with a microphysical box model indicate that the presence of OAD may reduce the ice particle number density in cirrus clouds by up to ~50% when compared to exclusively homogeneous cirrus formation without OAD. Using the ECHAM4 climate model we estimate the global net radiative effect caused by this heterogeneous freezing to result in a cooling as high as -0.3 Wm-2.

  20. Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect

    B. Zobrist

    2006-01-01

    Full Text Available Heterogeneous ice freezing points of aqueous solutions containing various immersed solid dicarboxylic acids (oxalic, adipic, succinic, phthalic and fumaric have been measured with a differential scanning calorimeter. The results show that only the dihydrate of oxalic acid (OAD acts as a heterogeneous ice nucleus, with an increase in freezing temperature between 2 and 5 K depending on solution composition. In several field campaigns, oxalic acid enriched particles have been detected in the upper troposphere with single particle aerosol mass spectrometry. Simulations with a microphysical box model indicate that the presence of OAD may reduce the ice particle number density in cirrus clouds by up to ~50% when compared to exclusively homogeneous cirrus formation without OAD. Using the ECHAM4 climate model we estimate the global net radiative effect caused by this heterogeneous freezing to result in a cooling as high as −0.3 Wm−2.

  1. Organosulfates and organic acids in Arctic aerosols: Speciation, annual variation and concentration levels

    Hansen, Anne Maria Kaldal; Kristensen, Kasper; Nguyen, Quynh;

    2014-01-01

    organosulfates and 1 nitrooxy organosulfate were identified in aerosol samples from the two sites using a high-performance liquid chromatograph (HPLC) coupled to a quadrupole Time-of-Flight mass spectrometer. At Station Nord, compound concentrations followed a distinct annual pattern, where high mean...... concentrations of organosulfates (47 +/- 14 ng m(-3)) and organic acids (11.5 +/- 4 ng m(-3)) were observed in January, February and March, contrary to considerably lower mean concentrations of organosulfates (2 +/- 3 ng m(3-)) and organic acids (2.2 +/- 1 ng m(-3)) observed during the rest of the year....... At Zeppelin Mountain, organosulfate and organic acid concentrations remained relatively constant during most of the year at a mean concentration of 15 +/- 4 ng m(-3) and 3.9 +/- 1 ng m(-3), respectively. However during four weeks of spring, remarkably higher concentrations of total organosulfates (23-36 ng m...

  2. Is aerosol formation in cirrus clouds possible?

    J. Kazil

    2007-01-01

    Full Text Available The recent observation of ultrafine aerosol particles in cirrus clouds has raised the question whether aerosol formation within cirrus clouds is possible, and if so, what mechanisms are involved. We have developed an aerosol parcel model of neutral and charged H2SO4/H2O aerosol processes, including nucleation from the gas phase and loss onto cirrus ice particles. Laboratory thermodynamic data for sulfuric acid uptake and loss by small neutral and charged clusters are used, allowing for a reliable description of both neutral and charged nucleation down to the very low temperatures occurring in the upper troposphere and lower stratosphere. The model implements a first order scheme for resolving the aerosol size distribution within its geometric size sections, which efficiently suppresses numerical diffusion. We operate the model offline on trajectories generated with a detailed 1D cirrus model which describes ice crystal nucleation, deposition growth, vertical advection of ice crystals and water vapor, and ice crystal sedimentation. In this paper we explore the possibility of aerosol formation within non-convective cirrus clouds and draw conclusions for aerosol formation in anvil cirrus. We find that sulfate aerosol formation within cirrus clouds can proceed even at high ice surface area concentrations, and depends strongly on the size of the cirrus ice crystals and on the surface area concentration of preexisting aerosol particles.

  3. Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons

    Theeba Manickam

    2015-12-01

    Full Text Available The use of biochar as an agricultural soil improvement was tested in acid sulfate and sandy soils from Malaysia, cropped with rice and corn. Malaysia has an abundance of waste rice husks that could be used to produce biochar. Rice husk biochar was produced in a gasifier at a local mill in Kelantan as well as in the laboratory using a controlled, specially designed, top lift up draft system (Belonio unit. Rice husk biochar was applied once to both soils at two doses (2% and 5%, in a pot set up that was carried out for two cropping seasons. Positive and significant crop yield effects were observed for both soils, biochars and crops. The yield effects varied with biochar type and dosage, with soil type and over the cropping seasons. The yield increases observed for the sandy soil were tentatively attributed to significant increases in plant-available water contents (from 4%–5% to 7%–8%. The yield effects in the acid sulfate soil were likely a consequence of a combination of (i alleviation of plant root stress by aluminum (Ca/Al molar ratios significantly increased, from around 1 to 3–5 and (ii increases in CEC. The agricultural benefits of rice husk biochar application to Malaysian soils holds promise for its future use.

  4. Atmospheric sulphuric acid and aerosol formation: implications from atmospheric measurements for nucleation and early growth mechanisms

    S.-L. Sihto

    2006-01-01

    Full Text Available We have investigated the formation and early growth of atmospheric secondary aerosol particles building on atmospheric measurements. The measurements were part of the QUEST 2 campaign which took place in spring 2003 in Hyytiälä (Finland. During the campaign numerous aerosol particle formation events occurred of which 15 were accompanied by gaseous sulphuric acid measurements. Our detailed analysis of these 15 events is focussed on nucleation and early growth (to a diameter of 3 nm of fresh particles. It revealed that new particle formation seems to be a function of the gaseous sulphuric acid concentration to the power from one to two when the time delay between the sulphuric acid and particle number concentration is taken into account. From the time delay the growth rates of freshly nucleated particles from 1 nm to 3 nm were determined. The mean growth rate was 1.2 nm/h and it was clearly correlated with the gaseous sulphuric acid concentration. We tested two nucleation mechanisms – recently proposed cluster activation and kinetic type nucleation – as possible candidates to explain the observed dependences, and determined experimental nucleation coefficients. We found that some events are dominated by the activation mechanism and some by the kinetic mechanism. Inferred coefficients for the two nucleation mechanisms are the same order of magnitude as chemical reaction coefficients in the gas phase and they correlate with the product of gaseous sulphuric acid and ammonia concentrations. This indicates that besides gaseous sulphuric acid also ammonia has a role in nucleation.

  5. Palmitic Acid on Salt Subphases and in Mixed Monolayers of Cerebrosides: Application to Atmospheric Aerosol Chemistry

    Ellen M. Adams

    2013-10-01

    Full Text Available Palmitic acid (PA has been found to be a major constituent in marine aerosols, and is commonly used to investigate organic containing atmospheric aerosols, and is therefore used here as a proxy system. Surface pressure-area isotherms (π-A, Brewster angle microscopy (BAM, and vibrational sum frequency generation (VSFG were used to observe a PA monolayer during film compression on subphases of ultrapure water, CaCl2 and MgCl2 aqueous solutions, and artificial seawater (ASW. π-A isotherms indicate that salt subphases alter the phase behavior of PA, and BAM further reveals that a condensation of the monolayer occurs when compared to pure water. VSFG spectra and BAM images show that Mg2+ and Ca2+ induce ordering of the PA acyl chains, and it was determined that the interaction of Mg2+ with the monolayer is weaker than Ca2+. π-A isotherms and BAM were also used to monitor mixed monolayers of PA and cerebroside, a simple glycolipid. Results reveal that PA also has a condensing effect on the cerebroside monolayer. Thermodynamic analysis indicates that attractive interactions between the two components exist; this may be due to hydrogen bonding of the galactose and carbonyl headgroups. BAM images of the collapse structures show that mixed monolayers of PA and cerebroside are miscible at all surface pressures. These results suggest that the surface morphology of organic-coated aerosols is influenced by the chemical composition of the aqueous core and the organic film itself.

  6. Aldol Condensation Products and Polyacetals in Organic Films Formed from Reactions of Propanal in Sulfuric Acid at Upper Troposphere/Lower Stratosphere (UT/LS) Aerosol Acidities

    Bui, J. V. H.; Perez-Montano, S.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.; Van Wyngarden, A. L.

    2015-12-01

    Aerosols in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt. %) which is highly reflective towards UV and visible radiation. However, airborne measurements have shown that these particles may also contain a significant amount of organic material. Experiments combining organics (propanal, glyoxal and/or methylglyoxal) with sulfuric acid at concentrations typical of UT/LS aerosols produced highly colored surface films (and solutions) that have the potential to impact chemical, optical and/or cloud-forming properties of aerosols. In order to assess the potential for such films to impact aerosol chemistry or climate properties, experiments were performed to identify the chemical processes responsible for film formation. Surface films were analyzed via Attenuated Total Reflectance-FTIR and Nuclear Magnetic Resonance spectroscopies and are shown to consist primarily of aldol condensation products and cyclic and linear polyacetals, the latter of which are likely responsible for separation from the aqueous phase.

  7. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  8. Aerosol dynamics simulations on the connection of sulphuric acid and new particle formation

    S.-L. Sihto

    2009-05-01

    Full Text Available We have performed a series of simulations with an aerosol dynamics box model to study the connection between new particle formation and sulphuric acid concentration. For nucleation either activation mechanism with a linear dependence on the sulphuric acid concentration, kinetic mechanism with a squared dependence on the sulphuric acid concentration or ternary H2O-H2SO4-NH3 nucleation was assumed. The aim was to study the factors that affect the sulphuric acid dependence during the early stages of particle growth, and specifically to find conditions which would yield the linear dependence between the particle number concentration at 3–6 nm and sulphuric acid, as observed in field experiments. The simulations showed that the correlation with sulphuric acid may change during the growth from nucleation size to 3–6 nm size range, the main reason being the size dependent growth rate between 1 and 3 nm. In addition, the assumed size for the nucleated clusters had a crucial impact on the sulphuric acid dependence at 3 nm. A linear dependence between the particle number concentration at 3 nm and sulphuric acid was achieved, when activation nucleation mechanism was used with a low saturation vapour pressure for the condensable organic vapour, or with nucleation taking place at ~2 nm instead of ~1 nm. Simulations with activation, kinetic and ternary nucleation showed that ternary nucleation reproduces too steep dependence on sulphuric acid as compared to the linear or square dependence observed in field measurements.

  9. On the composition of ammonia-sulfuric acid clusters during aerosol particle formation

    Schobesberger, S; Bianchi, F; Rondo, L; Duplissy, J; Kürten, A; Ortega, I K; Metzger, A; Schnitzhofer, R; Almeida, J; Amorim, A; Dommen, J; Dunne, E M; Ehn, M; Gagné, S; Ickes, L; Junninen, H; Hansel, A; Kerminen, V-M; Kirkby, J; Kupc, A; Laaksonen, A; Lehtipalo, K; Mathot, S; Onnela, A; Petäjä, T; Riccobono, F; Santos, F D; Sipilä, M; Tomé, A; Tsagkogeorgas, G; Viisanen, Y; Wagner, P E; Wimmer, D; Curtius, J; Donahue, N M; Baltensperger, U; Kulmala, M; Worsnop, D R

    2014-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 10. Positively charged clusters grew on average by Δm / Δn = 1.05 and were only observed at sufficiently high [NH3] / [H2SO4]. The H2SO4 molecules of these clusters are partially neutralized by NH3, in close resemblance to the acid-base bindings ...

  10. The chemical processing of gas-phase carbonyl compounds by sulfuric acid aerosols: 2,4-pentanedione

    Nozière, Barbara; Riemer, Daniel D.

    This work investigates the interactions between gas-phase carbonyl compounds and sulfuric acid aerosols. It focuses on understanding the chemical processes, giving a first estimate of their importance in the atmosphere, and suggesting directions for further investigations. The solubility and reactivity of a compound with a large enolization constant, 2,4-pentanedione, in water/sulfuric acid solutions 0-96 wt% have been investigated at room temperature using the bubble column/GC-FID technique. 2,4-pentanedione was found to undergo aldol condensation at acidities as low as 20 wt% H 2SO 4, that is, well in the tropospheric range of aerosol composition. In agreement with well-established organic chemical knowledge, this reaction resulted in changes of color of the solutions of potential importance for the optical properties of the aerosols. 2,4-pentanedione was also found to undergo retroaldol reaction, specific to dicarbonyl compounds, producing acetone and acetaldehyde. The Henry's law coefficient for 2,4-pentanedione was found to be a factor 5 larger than the one of acetone over the whole range of acidity, with a value in water of H (297 K)=(155±27) M atm -1. A chemical system is proposed to describe the transformations of carbonyl compounds in sulfuric acid aerosols. Aldol condensation is likely to be the most common reaction for these compounds, probably involving a large number of the ones present in the atmosphere and a wide range of aerosol compositions. The enolization constant contributes as a proportional factor to the rate constant for aldol condensation, and is shown in this work to contribute as an additive constant to the Henry's law coefficient. In addition to the many important aspects of these reactions illustrated in this work, the rate of aldol condensation was estimated to be potentially fast enough for the losses of some compounds in acidic aerosols to compete with their gas-phase chemistry in the atmosphere.

  11. Kinetics of Acid-Catalyzed Dehydration of Cyclic Hemiacetals in Organic Aerosol Particles in Equilibrium with Nitric Acid Vapor.

    Ranney, April P; Ziemann, Paul J

    2016-04-28

    Previous studies have shown that 1,4-hydroxycarbonyls, which are often major products of the atmospheric oxidation of hydrocarbons, can undergo acid-catalyzed cyclization and dehydration in aerosol particles to form highly reactive unsaturated dihydrofurans. In this study the kinetics of dehydration of cyclic hemiacetals, the rate-limiting step in this process, was investigated in a series of environmental chamber experiments in which secondary organic aerosol (SOA) containing cyclic hemiacetals was formed from the reaction of n-pentadecane with OH radicals in dry air in the presence of HNO3. A particle beam mass spectrometer was used to monitor the formation and dehydration of cyclic hemiacetals in real time, and SOA and HNO3 were quantified in filter samples by gravimetric analysis and ion chromatography. Measured dehydration rate constants increased linearly with increasing concentration of HNO3 in the gas phase and in SOA, corresponding to catalytic rate constants of 0.27 h(-1) ppmv(-1) and 7.0 h(-1) M(-1), respectively. The measured Henry's law constant for partitioning of HNO3 into SOA was 3.7 × 10(4) M atm(-1), ∼25% of the value for dissolution into water, and the acid dissociation constant was estimated to be SOA and that dehydration of cyclic hemiacetals was catalyzed by molecular HNO3 rather than by H(+). The Henry's law constant and kinetics relationships measured here can be used to improve mechanisms and models of SOA formation from the oxidation of hydrocarbons in dry air in the presence of NOx, which are conditions commonly used in laboratory studies. The fate of cyclic hemiacetals in the atmosphere, where the effects of higher relative humidity, organic/aqueous phase separation, and acid catalysis by molecular H2SO4 and/or H(+) are likely to be important, is discussed. PMID:27043733

  12. Chondroitin sulfate

    ... in combination with glucosamine sulfate, shark cartilage, and camphor. Some people also inject chondroitin sulfate into the ... in combination with glucosamine sulfate, shark cartilage, and camphor seems to reduce arthritis symptoms. However, any symptom ...

  13. Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process

    Chen, Dan; Ma, Xiaolong; Zhou, Jizhi [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China); Chen, Xi [Department of Earth and Environmental Engineering, Columbia University, West 120th Street, New York, NY 10027 (United States); Qian, Guangren, E-mail: grqian@shu.edu.cn [School of Environmental and Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444 (China)

    2014-08-30

    Graphical abstract: Organic dyes could be absorbed on the surface of the composite or dispersed in the solution. Sulfate radicals (SO{sub 4}·{sup −}) generated by the synergistic reaction between peroxymonosulfate (PMS) and the composite, attacked the organic functional groups of the dyes molecules both adsorbed on the composite surface and dispersed in the solution, which resulted in the degradation of AO7 dye. - Highlights: • A new composite was synthesized successfully via microwave hydrothermal method. • The complete degradation in the system of FLCN and PMS can be achieved. • The catalytic behavior of FLCN can be reused at least for five times. • The AO7 degradation mechanism in the system of FLCN and PMS was demonstrated. - Abstract: We synthesized a novel magnetic composite, Fe{sub 3}O{sub 4}/Cu(Ni)Cr-LDH, as a heterogeneous catalyst for the degradation of organic dyes in the solution using sulfate radical-based advanced oxidation processes. The physicochemical properties of the composite synthesized via two-step microwave hydrothermal method were characterized by several techniques, such as X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The degradation tests were performed at 25 °C with Acid Orange 7 (AO7) initial concentration of 25 mg/L and AO7/peroxymonosulfate (PMS) molar ratio of 1:10, which showed that the complete degradation by Fe{sub 3}O{sub 4}/Cu{sub 1.5}Ni{sub 0.5}Cr-LDH could be achieved and the mineralization rate could reach 46%. PMS was activated by Cu (II) and Fe (II/III) of Fe{sub 3}O{sub 4}/Cu(Ni)Cr-LDH to generate sulfate radicals (SO{sub 4}·{sup −}). Subsequently, the organic functional groups of AO7 molecules were destroyed by sulfate radicals (SO{sub 4}·{sup −}), inducing the degradation of AO7. Moreover, the catalytic behavior of the catalysts could be reused five times. Therefore, our work suggested that the Fe{sub 3}O{sub 4

  14. Sulfate radical-induced degradation of Acid Orange 7 by a new magnetic composite catalyzed peroxymonosulfate oxidation process

    Graphical abstract: Organic dyes could be absorbed on the surface of the composite or dispersed in the solution. Sulfate radicals (SO4·−) generated by the synergistic reaction between peroxymonosulfate (PMS) and the composite, attacked the organic functional groups of the dyes molecules both adsorbed on the composite surface and dispersed in the solution, which resulted in the degradation of AO7 dye. - Highlights: • A new composite was synthesized successfully via microwave hydrothermal method. • The complete degradation in the system of FLCN and PMS can be achieved. • The catalytic behavior of FLCN can be reused at least for five times. • The AO7 degradation mechanism in the system of FLCN and PMS was demonstrated. - Abstract: We synthesized a novel magnetic composite, Fe3O4/Cu(Ni)Cr-LDH, as a heterogeneous catalyst for the degradation of organic dyes in the solution using sulfate radical-based advanced oxidation processes. The physicochemical properties of the composite synthesized via two-step microwave hydrothermal method were characterized by several techniques, such as X-ray diffraction (XRD), inductively coupled plasma (ICP), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The degradation tests were performed at 25 °C with Acid Orange 7 (AO7) initial concentration of 25 mg/L and AO7/peroxymonosulfate (PMS) molar ratio of 1:10, which showed that the complete degradation by Fe3O4/Cu1.5Ni0.5Cr-LDH could be achieved and the mineralization rate could reach 46%. PMS was activated by Cu (II) and Fe (II/III) of Fe3O4/Cu(Ni)Cr-LDH to generate sulfate radicals (SO4·−). Subsequently, the organic functional groups of AO7 molecules were destroyed by sulfate radicals (SO4·−), inducing the degradation of AO7. Moreover, the catalytic behavior of the catalysts could be reused five times. Therefore, our work suggested that the Fe3O4/Cu(Ni)Cr-LDH composite could be applied widely for the treatment of organic dyes in wastewater

  15. A new source of oxygenated organic aerosol and oligomers

    J. Liggio

    2013-03-01

    Full Text Available A large oxygenated organic uptake to aerosols was observed when exposing ambient urban air to inorganic acidic and non-acidic sulfate seed aerosol. For non-acidic seed aerosol the uptake was attributed to the direct dissolution of primary vehicle exhaust gases into the aqueous aerosol fraction, and was correlated to the initial seed sulphate mass. The uptake of primary oxygenated organic gases to aerosols in this study represents a significant amount of organic aerosol (OA that may be considered primary when compared to that reported for primary organic aerosol (POA, but is considerably more oxygenated (O : C ~ 0.3 than traditional POA. Consequently, a fraction of measured ambient oxygenated OA, which correlates with secondary sulphate, may in fact be of a primary, rather than secondary source. These results represent a new source of oxygenated OA on neutral aerosol and imply that the uptake of primary organic gases will occur in the ambient atmosphere, under dilute conditions, and in the presence of pre-existing SO4 aerosols which contain water. Conversely, under acidic seed aerosol conditions, oligomer formation was observed with the uptake of organics being enhanced by a factor of three or more compared to neutral aerosols, and in less than 2 min, representing an additional source of SOA to the atmosphere. This resulted in a trajectory in Van Krevelen space towards higher O : C (slope ~ −1.5, despite a lack of continual gas-phase oxidation in this closed system. The results demonstrate that high molecular weight species will form on acidic aerosols at the ambient level and mixture of organic gases, but are otherwise unaffected by subsequent aerosol neutralization, and that aerosol acidity will affect the organic O : C via aerosol-phase reactions. These two processes, forming oxygenated POA under neutral conditions and SOA under acidic conditions can contribute to the total ambient OA mass and the evolution of ambient aerosol O : C ratios

  16. Chemical and Mineralogical Characterization of Acid-Sulfate Alteration of Basaltic Material on Mauna Kea Volcano, Hawaii: Jarosite and Hydrated Halloysite

    Graff, Trevor G.; Morris, R. V.; Archilles C. N.; Agresti, D. G.; Ming, D. W.; Hamilton, J. C.; Mertzman, S. A.; Smith, J.

    2012-01-01

    Sulfates have been identified on the martian surface during robotic surface exploration and by orbital remote sensing. Measurements at Meridiani Planum (MP) by the Alpha-Particle X-ray Spectrometer (APXS) and Mossbauer (MB) instruments on the Mars Exploration Rover Opportunity document the presence of a ubiquitous sulfate-rich outcrop (20-40% SO3) that has jarosite as an anhydrous Fe3+-sulfate [1- 3]. The presence of jarosite implies a highly acidic (pH chemical manifestations of acid-sulfate alteration of basaltic compositions in terrestrial environments. We have previously shown that acidsulfate alteration of tephra under hydrothermal conditions on the Puu Poliahu cone (summit region of Mauna Kea volcano, Hawaii) resulted in jarosite and alunite as sulfate-bearing alteration products [11-14]. Other, more soluble, sulfates may have formed, but were leached away by rain and melting snow. Acidsulfate processes on Puu Poliahu also formed hematite spherules similar (except in size) to the hematite spherules observed at MP as an alteration product [14]. Phyllosilicates, usually smectite }minor kaolinite are also present as alteration products [13]. We discuss here an occurrence of acid-sulfate alteration on Mauna Kea Volcano (Hawaii). We report VNIR spectra (0.35-2.5 microns ASD spectrometer), Mossbauer spectra (MER-like ESPI backscatter spectrometer), powder XRD (PANalytical), and major element chemical compositions (XRF with LOI and Fe redox) for comparison to similar data acquired or to be acquired by MRO-CRISM and MEx OMEGA, MERMB, MSL-CheMin, and MER and MSL APXS, respectively.

  17. Halogen-induced organic aerosol (XOA) formation and decarboxylation of carboxylic acids by reactive halogen species - a time-resolved aerosol flow-reactor study

    Ofner, Johannes; Zetzsch, Cornelius

    2013-04-01

    Reactive halogen species (RHS) are released to the atmosphere from various sources like photo-activated sea-salt aerosol and salt lakes. Recent studies (Cai et al., 2006 and 2008, Ofner et al., 2012) indicate that RHS are able to interact with SOA precursors similarly to common atmospheric oxidizing gases like OH radicals and ozone. The reaction of RHS with SOA precursors like terpenes forms so-called halogen-induced organic aerosol (XOA). On the other hand, RHS are also able to change the composition of functional groups, e.g. to initiate the decarboxylation of carboxylic acids (Ofner et al., 2012). The present study uses a 50 cm aerosol flow-reactor, equipped with a solar simulator to investigate the time-resolved evolution and transformation of vibrational features in the mid-infrared region. The aerosol flow-reactor is coupled to a home-made multi-reflection cell (Ofner et al., 2010), integrated into a Bruker IFS 113v FTIR spectrometer. The reactor is operated with an inlet feed (organic compound) and a surrounding feed (reactive halogen species). The moveable inlet of the flow reactor allows us to vary reaction times between a few seconds and up to about 3 minutes. Saturated vapours of different SOA precursors and carboxylic acids were fed into the flow reactor using the moveable inlet. The surrounding feed inside the flow reactor was a mixture of zero air with molecular chlorine as the precursor for the formation of reactive halogen species. Using this setup, the formation of halogen-induced organic aerosol could be monitored with a high time resolution using FTIR spectroscopy. XOA formation is characterized by hydrogen-atom abstraction, carbon-chlorine bond formation and later, even formation of carboxylic acids. Several changes of the entire structure of the organic precursor, caused by the reaction of RHS, are visible. While XOA formation is a very fast process, the decarboxylation of carboxylic acids, induced by RHS is rather slow. However, XOA formation

  18. Fast and sensitive quantification of human liver cytosolic lithocholic acid sulfation using ultra-high performance liquid chromatography-tandem mass spectrometry.

    Bansal, Sumit; Lau, Aik Jiang

    2016-02-01

    Detoxification of lithocholic acid (LCA) to lithocholic acid sulfate (LCA-S) is catalyzed by sulfotransferases, mainly SULT2A1. We developed and validated an ultra-high performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify human liver cytosolic-dependent LCA sulfation. Chromatographic separation was achieved on an UPLC C18 column (2.1×50mm, 1.7μm) and a gradient elution of 0.1% formic acid in water and acetonitrile. Negative electrospray ionization with multiple reaction monitoring (MRM) mode was used to quantify LCA-S (455.3→97.0) and cholic acid (407.2→343.3; internal standard). The retention time was 3.51min for LCA-S and 3.08min for cholic acid. The lower limit of quantification of LCA-S was 0.5nM (or 0.23ng/ml in 400μl total volume) and the assay was linear from 0.2 to 200pmol. Intra-day and inter-day accuracy and precision were dithiothreitol) did not affect LCA-S formation. Human liver cytosolic LCA sulfation was linear with 20-100μg of cytosolic protein and 5-30min incubation time. This UPLC-MS/MS approach offers a specific, sensitive, fast, and direct approach for quantifying human liver cytosolic LCA sulfation. PMID:26773894

  19. The ceric sulfate dosimeter

    Bjergbakke, Erling

    The process employed for the determination of absorbed dose is the reduction of ceric ions to cerous ions in a solution of ceric sulfate and cerous sulfate in 0.8N sulfuric acid: Ce4+→Ce 3+ The absorbed dose is derived from the difference in ceric ion concentration before and after irradiation. The...

  20. Acidification and buffering mechanisms in acid sulfate soil wetlands of the Murray-Darling Basin, Australia.

    Glover, Fiona; Whitworth, Kerry L; Kappen, Peter; Baldwin, Darren S; Rees, Gavin N; Webb, John A; Silvester, Ewen

    2011-04-01

    The acid generation mechanisms and neutralizing capacities of sulfidic sediments from two inland wetlands have been studied in order to understand the response of these types of systems to drying events. The two systems show vastly different responses to oxidation, with one (Bottle Bend (BB) lagoon) having virtually no acid neutralizing capacity (ANC) and the other (Psyche Bend (PB) lagoon) an ANC that is an order of magnitude greater than the acid generation potential. While BB strongly acidifies during oxidation the free acid generation is less than that expected from the measured proton production and consumption processes, with additional proton consumption attributed to the formation of an acid-anion (chloride) FeIII (oxyhydr)oxide product, similar to akaganéite (Fe(OH)2.7Cl0.3). While such products can partially attenuate the acidification of these systems, resilience to acidification is primarily imparted by sediment ANC. PMID:21375259

  1. Visualization of Two Phase Natural Convection Flow in a Vertical Pipe using the Sulfuric Acid - Copper Sulfate Electroplating System

    The passive containment cooling system (PCCS) driven by natural forces convection gain draws research interests after Fukushima NPP accident. The PCCS was classified into three categories: Containment pressure suppression, Containment passive heat removal/pressure suppression systems and Passive containment spray. Among the types of containment passive heat removal/pressure suppression systems, the system composed of an internal heat exchanger and an external coolant tank is considered. In a severe accident condition, the heat from the containment atmosphere is transferred to the outer surface of the heat exchanger by the convection and condensation of the mixture of steam and gases. On the other hand, the heat is transferred to external pool by single phase or two phase natural convection inside of heat exchanger pipes. The study aimed at investigating the influence of the diameter (D) and height (H) of the heat exchanger pipes on the single phase and two phase natural convection heat transfer. As the initial stage of the study, the two phase natural convection flow inside a vertical pipe is visualized. In order to achieve the aim with ample test rig, a sulfuric acid - cooper sulfate electroplating system was employed based on the analogy between heat and mass transfer. The reduction of hydrogen ion at the cathode surface at high potential was used to simulate the boiling phenomena. This study tried to visualize the boiling heat transfer inside a vertical pipe using a cupric acid-copper sulfate (H2SO4-CuSO4) electroplating system. This seems to be successful so far. However further study has to be done to compare the result with real two phase flow situation. The surface tension and surface characteristics are to be tuned to simulate the real situation

  2. Visualization of Two Phase Natural Convection Flow in a Vertical Pipe using the Sulfuric Acid - Copper Sulfate Electroplating System

    Ohk, Seung-Min; Chae, Myeong-Seon; Chung, Bum-Jin [Kyung Hee Univ., Yongin (Korea, Republic of)

    2014-10-15

    The passive containment cooling system (PCCS) driven by natural forces convection gain draws research interests after Fukushima NPP accident. The PCCS was classified into three categories: Containment pressure suppression, Containment passive heat removal/pressure suppression systems and Passive containment spray. Among the types of containment passive heat removal/pressure suppression systems, the system composed of an internal heat exchanger and an external coolant tank is considered. In a severe accident condition, the heat from the containment atmosphere is transferred to the outer surface of the heat exchanger by the convection and condensation of the mixture of steam and gases. On the other hand, the heat is transferred to external pool by single phase or two phase natural convection inside of heat exchanger pipes. The study aimed at investigating the influence of the diameter (D) and height (H) of the heat exchanger pipes on the single phase and two phase natural convection heat transfer. As the initial stage of the study, the two phase natural convection flow inside a vertical pipe is visualized. In order to achieve the aim with ample test rig, a sulfuric acid - cooper sulfate electroplating system was employed based on the analogy between heat and mass transfer. The reduction of hydrogen ion at the cathode surface at high potential was used to simulate the boiling phenomena. This study tried to visualize the boiling heat transfer inside a vertical pipe using a cupric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) electroplating system. This seems to be successful so far. However further study has to be done to compare the result with real two phase flow situation. The surface tension and surface characteristics are to be tuned to simulate the real situation.

  3. Temporal Variation of Aerosol Properties at a Rural Continental Site and Study of Aerosol Evolution through Growth Law Analysis

    Wang, Jian; Collins, Don; Covert, David; Elleman, Robert; Ferrare, Richard A.; Gasparini, Roberto; Jonsson, Haflidi; Ogren, John; Sheridan, Patrick; Tsay, Si-Chee

    2006-01-01

    Aerosol size distributions were measured by a Scanning Mobility Particle Sizer (SMPS) onboard the CIRPAS Twin Otter aircraft during 16 flights at the Southern Great Plains (SGP) site in northern central Oklahoma as part of the Aerosol Intensive Operation period in May, 2003. During the same period a second SMPS was deployed at a surface station and provided continuous measurements. Combined with trace gas measurements at the SGP site and back-trajectory analysis, the aerosol size distributions provided insights into the sources of aerosols observed at the SGP site. High particle concentrations, observed mostly during daytime, were well correlated with the sulfur dioxide (SO2) mixing ratios, suggesting nucleation involving sulfuric acid is likely the main source of newly formed particles at the SGP. Aerosols within plumes originating from wildfires in Central America were measured at the surface site. Vertically compact aerosol layers, which can be traced back to forest fires in East Asia, were intercepted at altitudes over 3000 meters. Analyses of size dependent particle growth rates for four periods during which high cloud coverage was observed indicate growth dominated by volume controlled reactions. Sulfate accounts for 50% to 72% of the increase in aerosol volume concentration; the rest of the volume concentration increase was likely due to secondary organic species. The growth law analyses and meteorological conditions indicate that the sulfate was produced mainly through aqueous oxidation of SO2 in clouds droplets and hydrated aerosol particles.

  4. Water Uptake and Hygroscopic Growth of Organosulfate Aerosol.

    Estillore, Armando D; Hettiyadura, Anusha P S; Qin, Zhen; Leckrone, Erin; Wombacher, Becky; Humphry, Tim; Stone, Elizabeth A; Grassian, Vicki H

    2016-04-19

    Organosulfates (OS) are important components of secondary organic aerosol (SOA) that have been identified in numerous field studies. This class of compounds within SOA can potentially affect aerosol physicochemical properties such as hygroscopicity because of their polar and hydrophilic nature as well as their low volatility. Currently, there is a dearth of information on how aerosol particles that contain OS interact with water vapor in the atmosphere. Herein we report a laboratory investigation on the hygroscopic properties of a structurally diverse set of OS salts at varying relative humidity (RH) using a Hygroscopicity-Tandem Differential Mobility Analyzer (H-TDMA). The OS studied include the potassium salts of glycolic acid sulfate, hydroxyacetone sulfate, 4-hydroxy-2,3-epoxybutane sulfate, and 2-butenediol sulfate and the sodium salts of benzyl sulfate, methyl sulfate, ethyl sulfate, and propyl sulfate. In addition, mixtures of OS and sodium chloride were also studied. The results showed gradual deliquescence of these aerosol particles characterized by continuous uptake and evaporation of water in both hydration and dehydration processes for the OS, while the mixture showed prompt deliquescence and effloresce transitions, albeit at a lower relative humidity relative to pure sodium chloride. Hygroscopic growth of these OS at 85% RH were also fit to parameterized functional forms. This new information provided here has important implications about the atmospheric lifetime, light scattering properties, and the role of OS in cloud formation. Moreover, results of these studies can ultimately serve as a basis for the development and evaluation of thermodynamic models for these compounds in order to consider their impact on the atmosphere. PMID:26967467

  5. Solvent extraction of uranium from lean grade acidic sulfate leach liquor with alamine 336 reagent

    This paper describes the solvent extraction studies carried out on an acidic low assay uranium bearing leach liquor generated during sulfuric acid leaching of a refractory uranium ore using alamine 336-isodecenol-kerosene reagent combine. The leach liquor has a U3O8 content of about 270 mg/L, free acidity 2.4 N H2SO4 and total dissolved solids concentration of 260 g/L. Process parameteric variation studies indicated strong influence of free acidity of the leach liquor, alamine 336 concentration and aqueous to organic phase ratio on the extraction efficiency of uranium. An extraction efficiency of about 95% was achieved when the free acidity of leach liquor was 1 N H2SO4 or lower, using 2% (v/v) alamine 336 at ambient temperature with an aqueous to organic phase ratio of 1:1. The loading capacity under these conditions was 1.2 g/L of U3O8. About 98% of the uranium values could be stripped from the loaded organic using 1 N NaCl in 0.2 N H2SO4. The solvent extraction studies aided in developing a suitable process flowsheet for treating refractory uranium ores which need high acidity during leaching and relatively lower acidity for purification by solvent extraction. (author)

  6. Aerosol Disinfection Capacity of Slightly Acidic Hypochlorous Acid Water Towards Newcastle Disease Virus in the Air: An In Vivo Experiment.

    Hakim, Hakimullah; Thammakarn, Chanathip; Suguro, Atsushi; Ishida, Yuki; Nakajima, Katsuhiro; Kitazawa, Minori; Takehara, Kazuaki

    2015-12-01

    Existence of bioaerosol contaminants in farms and outbreaks of some infectious organisms with the ability of transmission by air increase the need for enhancement of biosecurity, especially for the application of aerosol disinfectants. Here we selected slightly acidic hypochlorous acid water (SAHW) as a candidate and evaluated its virucidal efficacy toward a virus in the air. Three-day-old conventional chicks were challenged with 25 doses of Newcastle disease live vaccine (B1 strain) by spray with nebulizer (particle size <3 μm in diameter), while at the same time reverse osmosis water as the control and SAHW containing 50 or 100 parts per million (ppm) free available chlorine in pH 6 were sprayed on the treated chicks with other nebulizers. Exposed chicks were kept in separated cages in an isolator and observed for clinical signs. Oropharyngeal swab samples were collected from 2 to 5 days postexposure from each chick, and then the samples were titrated with primary chicken kidney cells to detect the virus. Cytopathic effects were observed, and a hemagglutination test was performed to confirm the result at 5 days postinoculation. Clinical signs (sneezing) were recorded, and the virus was isolated from the control and 50 ppm treatment groups, while no clinical signs were observed in and no virus was isolated from the 100 ppm treatment group. The virulent Newcastle disease virus (NDV) strain Sato, too, was immediately inactivated by SAHW containing 50 ppm chlorine in the aqueous phase. These data suggest that SAHW containing 100 ppm chlorine can be used for aerosol disinfection of NDV in farms. PMID:26629621

  7. Direct determination of amino acids by hydrophilic interaction liquid chromatography with charged aerosol detection.

    Socia, Adam; Foley, Joe P

    2016-05-13

    A chromatographic analytical method for the direct determination of amino acids by hydrophilic interaction liquid chromatography (HILIC) was developed. A dual gradient simultaneously varying the pH 3.2 ammonium formate buffer concentration and level of acetonitrile (ACN) in the mobile phase was employed. Using a charged aerosol detector (CAD) and a 2(nd) order regression analysis, the fit of the calibration curve showed R(2) values between 0.9997 and 0.9985 from 1.5mg/mL to 50μg/mL (600ng to 20ng on column). Analyte chromatographic parameters such as the sensitivity of retention to the water fraction in the mobile phase values (mHILIC) were determined as part of method development. A degradation product of glutamine (5-pyrrolidone-2-carboxylic acid; pGlu) was observed and resolved chromatographically with no method modifications. The separation was used to quantitate amino acid content in acid hydrolysates of various protein samples. PMID:27059400

  8. Forest-soil response to acid and salt additions of sulfate. 2. Aluminum and base cations

    Reconstructed spodosol and intact alfisol soil columns were used to examine the effects of 52 weeks of additions of various simulated throughfall solutions on base cation, Al, acid neutralizing capacity, and pH levels in soil leachates. The work illustrates the importance of soil cation exchange (especially in the forest floor), anion concentrations, and pCO2 levels in controlling the leachate chemistry in response to acidic and 'seasalt' deposition events

  9. Wintertime measurements of aerosol acidity and trace elements in wuhan, a city in central china

    In the People's Republic of China (P.R.C.), the pervasive use of soft coal leads to situations where the concentrations of SO2 and particulate matter approach or surpass those historically observed in London. A cooperative investigation of the effects of air pollution upon the lung function of children in five Chinese cities has been developed among China EPA, U.S. EPA and Robert Wood Johnson Medical School. The paper presents initial results of a winter air pollution field study conducted in Wuhan, one of the selected cities. A 2-week intensive ambient aerosol study was conducted in December 1988 in Wuhan (Hubei Province), a city of nearly 2 million located on the Yangtze River in central China (P.R.C.). This is an industrial region where soft coal burning is widespread, and emission controls for vehicles and industrial facilities are minimal. The sampling site was located in one of the civic centers where residential and commercial density is highest. The purpose of this initial intensive study period was to obtain information on the chemical and physical characteristics of the aerosol species in the urban P.R.C. setting. The focus was the composition and acidity of fine particulate material

  10. Sulfuric acid effect on the deposition of radioactive aerosol in the respiratory tract of guinea pigs

    The effect of inhalation of sulfuric acid (H2SO4) aerosol on respiratory deposition of radiolabeled streptococcus aerosol was investigated in guinea pigs. A 60 minute exposure to 3020 μgm/m3 H2SO4 (1.8 μm CMD) resulted in a 60 percent greater total respiratory deposition rate than control animals and a proximal shift in the regional pattern of deposition to the nasopharynx. Dose-response experiments revealed that a concentration of 30 μgm/m3 H2SO4 (0.25 μm CMD) also induced a proximal shift in the regional pattern of particle deposition but in this instance the shift was to the trachea. The interrelationship between mass concentration of H2SO4 and its particle size to the interpretation of these results is discussed. A hypothesis concerning the relationship of these data to previously reported respiratory physiologic effects of H2SO4 inhalation and to a pathophysiologic mechanism which may underlie effects attributed to sulfur oxides by epidemiologic studies is described

  11. 1-Butyl-3-methylimidazolium Hydrogen Sulfate [bmim]HSO4: An Efficient Reusable Acidic Ionic Liquid for the Formylation of Alcohols

    NIKNAM Khodabakhsh; ZOLFIGOL Mohammad Ali; SABERI Dariush; KHONBAZI Mahdi

    2009-01-01

    1-Butyl-3-methylimidazolium hydrogen sulfate [bmim]HSO4 as an acidic ionic liquid was prepared and used as a catalyst for the formylation of alcohols with ethyl formate at room temperature with good to excellent yields.A good selectivity was observed for the formylation of primary alcohols in the presence of tertiary alcohols.

  12. Genome-Wide Expression Analysis of Human In Vivo Irritated Epidermis: Differential Profiles Induced by Sodium Lauryl Sulfate and Nonanoic Acid

    Clemmensen, Anders; Andersen, Klaus E; Clemmensen, Ole;

    2010-01-01

    differential molecular events induced in the epidermis by different irritants, we collected sequential biopsies ((1/2), 4, and 24 hours after a single exposure and at day 11 after repeated exposure) from human volunteers exposed to either sodium lauryl sulfate (SLS) or nonanoic acid (NON). Gene expression...

  13. Effectiveness of copper sulfate, potassium permanganate, and peracetic acid to reduce mortality and infestation of Ichthyobodo nector in channel catfish Ictalurus punctatus (Rafinesque 1818)

    Ichthyobodo necator is a single celled bi-flagellate parasite, and in high density can causes significant mortality in young fish. Copper sulfate (CuSO4), potassium permanganate (KMnO4) and peracetic acid (PAA) were evaluated for effectiveness against ichthyobodosis. Treatments were: untreated con...

  14. The 2005 catastrophic acid crater lake drainage, lahar, and acidic aerosol formation at Mount Chiginagak volcano, Alaska, USA: Field observations and preliminary water and vegetation chemistry results

    Schaefer, J.R.; Scott, W.E.; Evans, William C.; Jorgenson, J.; McGimsey, R.G.; Wang, B.

    2008-01-01

    A mass of snow and ice 400-m-wide and 105-m-thick began melting in the summit crater of Mount Chiginagak volcano sometime between November 2004 and early May 2005, presumably owing to increased heat flux from the hydrothermal system, or possibly from magma intrusion and degassing. In early May 2005, an estimated 3.8??106 m3 of sulfurous, clay-rich debris and acidic water, with an accompanying acidic aerosol component, exited the crater through a tunnel at the base of a glacier that breaches the south crater rim. Over 27 km downstream, the acidic waters of the flood inundated an important salmon spawning drainage, acidifying Mother Goose Lake from surface to depth (approximately 0.5 km3 in volume at a pH of 2.9 to 3.1), killing all aquatic life, and preventing the annual salmon run. Over 2 months later, crater lake water sampled 8 km downstream of the outlet after considerable dilution from glacial meltwater was a weak sulfuric acid solution (pH = 3.2, SO4 = 504 mg/L, Cl = 53.6 mg/L, and F = 7.92 mg/L). The acid flood waters caused severe vegetation damage, including plant death and leaf kill along the flood path. The crater lake drainage was accompanied by an ambioructic flow of acidic aerosols that followed the flood path, contributing to defoliation and necrotic leaf damage to vegetation in a 29 km2 area along and above affected streams, in areas to heights of over 150 m above stream level. Moss species killed in the event contained high levels of sulfur, indicating extremely elevated atmospheric sulfurcontent. The most abundant airborne phytotoxic constituent was likely sulfuric acid aerosols that were generated during the catastrophic partial crater lake drainage event. Two mechanisms of acidic aerosol formation are proposed: (1) generation of aerosol mist through turbulent flow of acidic water and (2) catastrophic gas exsolution. This previously undocumented phenomenon of simultaneous vegetationdamaging acidic aerosols accompanying drainage of an acidic crater

  15. Oxidative stress markers, secondary bile acids and sulfated bile acids classify the clinical liver injury type: Promising diagnostic biomarkers for cholestasis.

    Masubuchi, Noriko; Sugihara, Masahiro; Sugita, Tomonori; Amano, Katsushi; Nakano, Masanori; Matsuura, Tomokazu

    2016-08-01

    Clinicians sometimes encounter difficulty in choosing a therapeutic strategy due to the uncertainty regarding the type of liver injury. In particular, cholestasis is difficult to diagnose by conventional markers at an early stage of disease. The aim of this study was to identify promising biomarkers for distinguishing the symptom-based types of liver injury (e.g. hepatocellular injury, cholestasis), which was derived from a rigorously statistical perspective. The associations between diagnostic biomarkers (e.g. bile acid components, oxidative stress markers and liver fibrosis markers) and the liver injury types were assessed by a multiple logistic regression analysis using 304 blood samples from patients with liver disease. As a result, reductions in the lithocholic acid (LCA) and deoxycholic acid (DCA) levels, and elevation of the serum sulfated bile acid (SSBA), liver fibrosis marker IV collagen (type IV collagen), hyaluronic acid (HA) and reactive oxygen species (ROS) levels were all significantly associated with cholestasis. On the other hand, elevations in the LCA and type IV collagen levels, and a reduction in the ursodeoxy cholic acid (UDCA) level, were significantly associated with hepatocellular injury. The receiver operating characteristic (ROC) analyses showed that the largest area under the ROC curve (AUC) was found for ROS, followed by DCA, HA, LCA, SSBA and type IV collagen in the cholestatic-type cases. These results indicated that ROS, the secondary bile acid levels such as DCA and LCA, and SSBA are promising biomarkers for cholestasis and for classifying the type of liver injuries. This comprehensive approach will allow for an accurate diagnosis, which will facilitate the selection of an appropriate therapy at the onset of disease. PMID:26325587

  16. Synergistic Effects of Lactic Acid and Sodium Dodecyl Sulfate to Decontaminate Escherichia coli O157:H7 on Cattle Hide Sections

    Elramady, Mohamed G.; Aly, Sharif S.; Rossitto, Paul V.; Crook, Jennifer A.; Cullor, James S.

    2013-01-01

    The objective of this study was to investigate the antibacterial properties of chitosan acetate (CA), sodium dodecyl sulfate (SDS), lactic acid (LA) and their synergism when combined against a nontoxigenic strain of Escherichia coli O157:H7. Treatments that significantly reduced the concentration of E. coli O157:H7 in vitro by more than two logs were further investigated using a cattle hide decontamination model. In vitro treatments included CA (1% chitosan in 1% acetic acid vol/vol), SDS (1%...

  17. Diagnosis of Metachromatic Leukodystrophy, Krabbe Disease, and Farber Disease after Uptake of Fatty Acid-labeled Cerebroside Sulfate into Cultured Skin Fibroblasts

    Kudoh, Tooru; Wenger, David A

    1982-01-01

    [14C]Stearic acid-labeled cerebroside sulfate (CS) was presented to cultured skin fibroblasts in the media. After endocytosis into control cells 86% was readily metabolized to galactosylceramide, ceramide, and stearic acid, which was reutilized in the synthesis of the major lipids found in cultured fibroblasts. Uptake and metabolism of the [14C]CS into cells from typical and atypical patients and carriers of metachromatic leukodystrophy (MLD), Krabbe disease, and Farber disease were observed....

  18. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition

    Gauci, Vincent; Dise, Nancy; Fowler, David

    2002-01-01

    The effect of acid rain SO42- deposition on peatland CH4 emissions was examined by manipulating SO42- inputs to a pristine raised peat bog in northern Scotland. Weekly pulses of dissolved Na2SO4 were applied to the bog over two years in doses of 25, 50, and 100 kg S ha-1 yr-1, reflecting the range of pollutant S deposition loads experienced in acid rain-impacted regions of the world. CH4 fluxes were measured at regular intervals using a static chamber/gas chromatographic flame ionization detector method. Total emissions of CH4 were reduced by between 21 and 42% relative to controls, although no significant differences were observed between treatments. Estimated total annual fluxes during the second year of the experiment were 16.6 g m-2 from the controls and (in order of increasing SO42- dose size) 10.7, 13.2, and 9.8 g m-2 from the three SO42- treatments, respectively. The relative extent of CH4 flux suppression varied with changes in both peat temperature and peat water table with the largest suppression during cool periods and episodes of falling water table. Our findings suggest that low doses of SO42- at deposition rates commonly experienced in areas impacted by acid rain, may significantly affect CH4 emissions from wetlands in affected areas. We propose that SO42- from acid rain can stimulate sulfate-reducing bacteria into a population capable of outcompeting methanogens for substrates. We further propose that this microbially mediated interaction may have a significant current and future effect on the contribution of northern peatlands to the global methane budget.

  19. Significance of Ligand Exchange Relating to Sulfate in Retarding Acidification of Variable Charge Soils Caused by Acid Rain

    WANGJINGHUA; YUTIANREN

    1996-01-01

    For the purpose of evaluating the role of ligand exchange of sulfate ions in retarding the rate of acidification of variable charge soils,the changes in pH after the addition of different amounts of HNO3 or H2SO4 to representative soils of China were measured .A difference between pH changes caused by the two kinds of acids was observed only for variable charge soils and kaolinite,but not for constant charge soils and bentonite,The larger the proportion of H2SO4 in the HNO3-H2SO4 mixture,the lower the calculated H+ ion activities remained in the suspension.The difference in H+ ion activities between H2SO4 systems and HNO3 systems was larger for soils with a low base-saturation(BS) percentage than those with a high BS percentage.The removal of free iron oxides from the soil led to a decrease in the difference,while the coating of Fe2O3 on a bentonite resulted in a remarkable appearance of the difference.The effect of ligand exchange on the acidity status of the soil varied with the soil type.Surface soils with a high organic matter content showed a less pronounced effect of ligand exchange than subsoils did.It was estimated that when acid rain chiefly containing H2SO4 was deposited on variable charge soils the acidification rate might be slower by 20%-40% than that when the acid rain chiefly contained HNO3 for soils with a high organic matter content,and that the rate might be half of that caused by HNO3 for soils with a low organic matter content,especially for latosols.

  20. Orbital Evidence for Clay and Acidic Sulfate Assemblages on Mars and Mineralogical Analogs from Rio Tinto, Spain

    Kaplan, H. H.; Milliken, R.; Fernandez-Remolar, D. C.; Amils, R.; Robertson, K.; Knoll, A. H.

    2015-12-01

    A suite of enigmatic near-infrared reflectance spectra with a 'doublet' absorption between 2.2 and 2.3 µm is observed in CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) hyperspectral images over Ius and Melas Chasma on Mars. The doublet-bearing deposits are found alongside other hydrated minerals including clays, sulfates, and silica, but the mineral(s) responsible for the spectral signature has yet to be identified. Reflectance spectra of rocks and sediments at Rio Tinto, Spain exhibit similar absorptions at airborne, field, and lab spatial scales. Coupled X-ray diffraction and reflectance spectra of these terrestrial examples indicate the absorption arises from a mixture of jarosite, a ferric sulfate, and Al-phyllosilicates (illite/muscovite). Detailed analysis of CRISM data over Ius and Melas Chasma suggests that these deposits also contain mixtures of jarosite and Al-phyllosilicate, where the latter may include halloysite, kaolinite and/or montmorillonite in addition to illite/muscovite. This interpretation is supported because (1) the two absorptions in the doublet feature vary independently, implying the presence of two or more phases, (2) the position of the absorptions is consistent with Al-OH and Fe-OH vibrations in both the Rio Tinto and CRISM spectra and (3) Al-phyllosilicates and jarosite are identified separately in nearby regions. Multiple formation mechanisms are proposed based on stratigraphy in Ius Chasma, where the strength of absorptions varies within a single stratigraphic unit as well as between different units. Mechanisms include authigenic formation of jarosite, which would indicate locally acidic and oxidizing conditions, mixed with detrial Al-phyllosilicates, or authigenic formation of Al-phyllosilicates and jarosite. Each implies different conditions in terms of aqueous geochemistry, redox, and sediment transport. Results from the field, lab, and CRISM analysis will be presented to discuss how placing these spectral

  1. Hyaluronic acid and glucosamine sulfate for adult Kashin-Beck disease: a cluster-randomized, placebo-controlled study.

    Xia, Chuan-Tao; Yu, Fang-Fang; Ren, Feng-Ling; Fang, Hua; Guo, Xiong

    2016-05-01

    To evaluate the efficacy and safety of hyaluronic acid (HA) and glucosamine sulfate (GS) in alleviating symptoms and improving function of Kashin-Beck disease (KBD). A cluster-randomized, placebo-controlled trial was conducted in 150 patients with KBD. Participants were randomly allocated to receive intra-articular injection hyaluronic acid (IAHA) for 4 weeks, oral GS for 12 weeks, or oral placebo for 12 weeks. The primary outcome measures were 20 % and 50 % reductions in pain from baseline measured by the Western Ontario and McMaster Universities Osteoarthritis (WOMAC) index. Secondary outcome measures included WOMAC index parameters of pain, stiffness, and physical function. The third outcome measure was mean change in Lequence score. HA and GS were effective in reducing WOMAC pain by 20 % (differences of 43.5 % and 25.4 %) and 50 % (differences of 43.4 % and 26.9 %). Both HA and GS significantly reduced WOMAC pain, WOMAC stiffness, and WOMAC normalized score compared with placebo group (all P < 0.05). IAHA was significantly more effective than oral GS in improving WOMAC normalized score (P = 0.034), pain (P = 0.002), stiffness (P = 0.018), and function (P = 0.044). The results indicate that HA and GS were more effective than placebo in treating KBD and HA was more effective than GS. PMID:25388643

  2. Could Acid Sulfate Soils Be a Potential Environmental Threat to Estuarine Ecosystems on the South CHina Coast?

    C.LIN

    1999-01-01

    Acid sulfate soils (ASS) contain considerable amounts of reduced sulfur compounds(mainly pyrite) which produce sulfuric acid upon their oxidation.ASS-derived environmental degradation widely occurs in the coastal lowlands around the world,especially in the tropical and subtropical areas.The presence of ASS iun the South China has been recognized but their distribution may be largely underestimated because the soil survey data concerning ASS are based on unreliable methods and techniques.ASS in the South China have been traditionally used for rice cultivation and this practice has been proved sustainable if appropriate improvement measures are adopted.Recently,the rapid economic growth in the region has resulted in intensified coastal development which frequently involves activities that may disturb ASS,Construction of roads,foundations and aquaculture ponds may cause the exposure of ASS to air and bring about severe environmental acidificvation.There is currently insufficient awareness of the problems among the researchers,policy-makers and land managers in the South China.More attention must be paid to the possible ASS-dervived environmental degradation in order to ensure a sustainable development of the coastal lowlands in the South China region.

  3. Stannous sulfate as an electrolyte additive for lead acid battery made from a novel ultrafine leady oxide

    Wang, Qin; Liu, Jianwen; Yang, Danni; Yuan, Xiqing; Li, Lei; Zhu, Xinfeng; Zhang, Wei; Hu, Yucheng; Sun, Xiaojuan; Liang, Sha; Hu, Jingping; Kumar, R. Vasant; Yang, Jiakuan

    2015-07-01

    The effects of SnSO4 as an electrolyte additive on the microstructure of positive plate and electrochemical performance of lead acid battery made from a novel leady oxide are investigated. The novel leady oxide is synthesized through leaching of spent lead paste in citric acid solution. The novel leady oxides are used to prepare working electrode (WE) subjected to electrochemical cyclic voltammetry (CV) tests. Moreover, the novel leady oxides are used as active materials of positive plate assembled as a testing battery of 1.85 A h capacity. In CV tests, SEM/EDX results show that the major crystalline phase of the paste in WE after CV cycles is PbSO4. The larger column-shaped PbSO4 crystals easily generate in the paste of WE without an electrolyte additive of SnSO4. However, PbSO4 crystals significantly become smaller with the addition of SnSO4 in the electrolyte. In batteries testing, SEM results show that an electrolyte additive of SnSO4 could effectively decrease PbO2 particle size in the positive active materials of the teardown battery at the end of charging procedure. It is indicated that an electrolyte additive of SnSO4 could have a positive influence on restraining larger particles of irreversible sulfation in charge/discharge cycles of battery testing.

  4. Three-year survey of sulfate-reducing bacteria community structure in Carnoules acid mine drainage (France), highly contaminated by arsenic

    Giloteaux, L.; Duran, R.; Casiot, C.; Bruneel, Odile; Elbaz-Poulichet, F.; Goni-Urriza, M.

    2013-01-01

    A 3-year survey on sulfate-reducing bacteria (SRB) was conducted in the waters of the arsenic-rich acid mine drainage (AMD) located at Carnoules (France) to determine the influence of environmental parameters on their community structure. The source (S5 station) exhibited most extreme conditions with pH lowering to similar to 1.2; iron, sulfate, and arsenic concentrations reaching 6843, 29593, and 638mgL1, respectively. The conditions were less extreme at the downstream stations S1 (pH simila...

  5. An HPLC Method for Microanalysis and Pharmacokinetics of Marine Sulfated Polysaccharide PSS-Loaded Poly Lactic-co-Glycolic Acid (PLGA) Nanoparticles in Rat Plasma

    Hua-Shi Guan; Guang-Li Yu; Xiao-Xi He; Hong-Bing Liu; Hai-Hua Li; Yi-Ting Xue; Chun-Xia Li; Peng-Li Li

    2013-01-01

    This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS) in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with d-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of...

  6. Introduction manner of sulfate acid for improving the performance of SO42-/CeO2 on selective catalytic reduction of NO by NH3

    宋忠贤; 张秋林; 宁平; 刘昕; 樊洁; 黄真真

    2016-01-01

    A series of sulfated CeO2 catalysts were synthesized by impregnation and sol-gel methods and used for selective catalytic reduction (SCR) of NOx by NH3. The results showed that the sulfated CeO2 catalysts prepared by sol-gel method showed excellent catalytic activity at 150–450 °C, and more than 90% NOx conversion was obtained at 232–450 °C with a gas hourly space velocity of 60000 h–1. The catalysts were characterized by X-ray diffraction (XRD), N2 adsorption, Raman, thermogravimetry (TG), H2-tem-perature-programmed reduction (H2-TPR) and Py-infrared spectroscopy (Py-IR). The excellent SCR performance was associated with the surface acidity and the micro-structure. The introduction of sulfate acid into CeO2 could increase the amount of Brönsted and Lewis acid sites over the catalysts, resulting in the improvement of the low temperature activity. The sulfated CeO2 catalysts prepared by sol-gel method possessed lower crystallization degree, excellent redox property and larger specific surface areas, which were re-sponsible for the superior SCR performance.

  7. Effect of nitrate and sulfate relative abundance in PM2.5 on liquid water content explored through half-hourly observations of inorganic soluble aerosols at a polluted receptor site

    Xue, Jian; Griffith, Stephen M.; Yu, Xin; Lau, Alexis K. H.; Yu, Jian Zhen

    2014-12-01

    Liquid water content (LWC) is the amount of liquid water on aerosols. It contributes to visibility degradation, provides a surface for gas condensation, and acts as a medium for heterogeneous gas/particle reactions. In this study, 520 half-hourly measurements of ionic chemical composition in PM2.5 at a receptor site in Hong Kong are used to investigate the dependence of LWC on ionic chemical composition, particularly on the relative abundance of sulfate and nitrate. LWC was estimated using a thermodynamic model (AIM-III). Within this data set of PM2.5 ionic compositions, LWC was highly correlated with the multivariate combination of sulfate and nitrate concentrations and RH (R2 = 0.90). The empirical linear regression result indicates that LWC is more sensitive to nitrate mass than sulfate. During a nitrate episode, the highest LWC (80.6 ± 17.9 μg m-3) was observed and the level was 70% higher than that during a sulfate episode despite a similar ionic PM2.5 mass concentration. A series of sensitivity tests were conducted to study LWC change as a function of the relative nitrate and sulfate abundance, the trend of which is expected to shift to more nitrate in China as a result of SO2 reduction and increase in NOx emission. Starting from a base case that uses the average of measured PM2.5 ionic chemical composition (63% SO42-, 11% NO3-, 19% NH4+, and 7% other ions) and an ionic equivalence ratio, [NH4+]/(2[SO42-] + [NO3-]), set constant to 0.72, the results show LWC would increase by 204% at RH = 40% when 50% of the SO42- is replaced by NO3- mass concentration. This is largely due to inhibition of (NH4)3H(SO4)2 crystallization while PM2.5 ionic species persist in the aqueous phase. At RH = 90%, LWC would increase by 12% when 50% of the SO42- is replaced by NO3- mass concentration. The results of this study highlight the important implications to aerosol chemistry and visibility degradation associated with LWC as a result of a shift in PM2.5 ionic chemical

  8. Sulfuric Acid and Ammonium Sulfate Leaching of Alumina from Lampang Clay

    Numluk, Paweena; Chaisena, Aphiruk

    2012-01-01

    The rapid development of the global alumina industry has led to a considerable increase in the production alumina and processing of alumina from non-bauxitic sources. Lampang clays comprise various minerals that contain about 22.70 wt% of extractable alumina. Local clay was ground, activated by calcination and treated with sulfuric acid to extract alumina. In the activation step, the effects of temperature and time on the extraction of alumina and iron were investigated. The leaching experime...

  9. Effect of the donor addition nature on noncation-exchange extraction of uranyl sulfate by the mixtures of di-2-ethylhexylphosphoric acid with organic oxides

    Solvent extraction of uranyl sulfate in a wide range of its concentration by the mixtures of di-2-ethylhexylphosphoric acid (HX) with organic oxides (B)-triisoamyl (TAPO)-, triphenyl(TPPO)-phosphine oxides, 2-nonylpyridine-N-oxide (2-NPO) and diphenyl sulfoxide (DPSO) is studied. Cation exchange and noncation exchange (after HX saturation) synergistic effects are stated. By synergistic effect in uranyl sulfate noncation exchange extraction (UO2X2+B mixture is in fact an extracting agent) organic oxides are arranged in TAPO>2-NPO>TPPO>DPSO series coinsiding with the sequence of decreasing donor ability of B in hydrogen bond. A quantitative description of UO2SO4xB addition to UO2X2 is presented. It is stated that regularities of coordination extraction of metals by different class oxides and of uranyl sulfate extraction by UO2X2+B mixtures are similar

  10. Recover of productivity in acids sulfate soils by means of addition organic and lime amendments under greenhouse conditions at Boyaca

    In flooded zones of Boyaca have been identified acid sulfate soil (SSA), restricted for extremes acidity originated for reactions of chemical and biological oxide-reduction by organic material of sulfur iron (pyrite), forming this way big quantities of sulfuric acid and high concentrations of Al toxic, besides it is characterized for being recent soils, with excessive quantities of S; high levels of organic matter and in some parts affected for salts and sodium that together with flooded areas and bad drenated make them inadequate for the establishing of cultivation. For this reason, it is looked for to make productive this SSA of high influence in the area of watering district. Starting with calcareous and organics rocks in winter pasture, the Resources to used were Ca (OH)2 and dolomite in doses of 10,25,50 and 100 t/ha; hen dung 5,10,20 and 30 t/ha mixes with limes hen dung 10+5, 10+10,25+20 and 50+30 using A. sative like indicator plant in a design completely on random with 22 treatments, correspond to ca (OH)2 25,50 ton/ha, dolomite 10,2.50 ton/ha and the mixes with calcareous rocks and hen dung with doses of 25+20 and 50+30 ton/ha respectively, which obtained the best answer in the development of the plant (biomass), reflected in the physical-chemical dynamic of the SSA. Due to this treatments increased in two units of pH, decreased the content of salts and the concentration of aluminum of non-toxic change, with respect to the initial soil, the soil with doses greater to 50 t/ha Ca (OH)2 evidenced over-limed together with the of hen-dung (5,10 t/ha) and the initial soil presented a restricted in develop and recuperation, indicating the conditions adverse in SSA

  11. Different pathways of canalicular secretion of sulfated and non-sulfated fluorescent bile acids : a study in isolated hepatocyte couplets and TR- rats

    Mills, CO; Milkiewicz, P; Muller, M; Roma, MG; Havinga, R; Coleman, R; Kuipers, F; Jansen, PLM; Elias, E

    1999-01-01

    Background/Aims: Fluorescent bile acids have proved useful for characterizing bile salt transport mechanisms, The aim of this study was to further validate the use of lysyl-fluorescein conjugated bile acid analogues as surrogate bile acids, Methods: We analyzed biliary excretion kinetics of cholyl l

  12. Water soluble inorganic trace gases and related aerosol compounds in the tropical boundary layer. An analysis based on real time measurements at a pasture site in the Amazon Basin

    I. Trebs

    2005-01-01

    This dissertation investigates the behavior of water-soluble inorganic trace gases and related aerosol species in the tropical boundary layer. Mixing ratios of ammonia (NH3), nitric acid (HNO3), nitrous acid (HONO), hydrochloric acid (HCl), sulfur dioxide (SO;,) and the corresponding water-soluble aerosol species, ammonium (NH,,1), nitrate (NO3 ), nitrite (NO,), chloride (CI) and sulfate (SO,") were measured at a pasture site in the Amazon Basin (Rondónia, Brazil). Sampling was performed from...

  13. Study of photolytic aerosols at stratospheric pressures

    An experimental study of photolytic aerosol formation at stratospheric pressure (60 Torr) and laboratory temperature, was carried out previous to the exact simulation of photolytic aerosol formation in real stratospheric conditions. An experimental simulation device, techniques of generation of known mixtures of inert gases with SO2 and NOsub(x) traces at low concentration (below 1 ppm volume) and H2O traces (a few ppm), and techniques for the determination and counting of aerosol particles at low pressures were perfected. The following results were achieved: the rate of vapor condensation on nuclei was reduced when total pressure decreased. At low pressure the working of condensation nuclei counters and the formation of photolytic aerosols is influenced by this phenomenon. An explanation is proposed, as well as means to avoid this unpleasant effect on the working of nuclei counters at low pressure. No photolytic aerosol production was ascertained at 60 Torr when water concentration was below 100 ppm whatever the concentration of SO2 or NOsub(x) traces. With water concentration below 1200ppm and SO2 trace concentration below 1ppm, the aerosol particles produced could not consist of sulfuric acid drops but probably of nitrosyl sulfate acide crystals

  14. Seasonal variations of water-soluble organic carbon, dicarboxylic acids, ketoacids, and α-dicarbonyls in the central Himalayan aerosols

    K. Kawamura

    2012-01-01

    Full Text Available Aerosol samples were collected from a high elevation mountain site (Nainital, India; 1958 m a.s.l. in the central Himalayas, which provide an isolated platform above the planetary boundary layer to better understand the composition of the remote continental troposphere. The samples were analyzed for water-soluble dicarboxylic acids (C2–C12 and related compounds (ketocarboxylic acids and α-dicarbonyls, as well as organic carbon, elemental carbon and water soluble organic carbon. The contributions of total dicarboxylic acids to total aerosol carbon during wintertime were 1.7 and 1.8%, for day and night, respectively whereas they significantly reduced during summer. Molecular distributions of diacids demonstrated that oxalic (C2 acid was the most abundant species followed by C4 and C3 diacids. The average concentrations of total diacids (433 ± 108 ng m−3, ketoacids (48 ± 23 ng m−3, and α-dicarbonyls (9 ± 4 ng m−3 were similar to those from Asian cities such as Tokyo, Beijing and Hong Kong. During summer season most of the organic species were several times more abundant than in winter. Phthalic acid, which originates from oxidation of polycyclic aromatic hydrocarbons such as naphthalene, was found to be 7 times higher in summer than winter. This feature has not been reported in atmospheric aerosols. Based on molecular distributions and air mass backward trajectories, we report that dicarboxylic acids and related compounds in Himalayan aerosols are influenced by the anthropogenic activities from highly populated Indo-Gangetic plain areas.

  15. Sorption extraction of green ruthenium (4) sulfate from sulfuric acid solutions by complexing type ionite

    The possibility is studied of ruthenium sorption eXtraction on ionites of polyamino- and aminocarboxyle types from equilibrium solutions in the sulfuric acid concentration ranga from 0.05 to 2 g. eq./l at 20 and 85 deg C A temperature increase affects only the sorption kinetics. The AN-31, AV-16G- and ANKB-1 ionites reduce Ru(4) to Ru(3) which is absorbed by ionites, while the ampholyte ANKB-2 possesses no reducing properties. The ruthenium extraction by ionites proceeds following the mechanism of intraspheric substitution

  16. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    A. L. Van Wyngarden

    2014-11-01

    Full Text Available Particles in the upper troposphere and lower stratosphere (UT/LS consist mostly of concentrated sulfuric acid (40–80 wt % in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4 with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, Attenuated Total Reflectance–Fourier Transform Infrared and 1H Nuclear Magnetic Resonance spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal and 1,3,5-trimethylbenzene, which was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence for products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal

  17. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2015-04-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt%) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  18. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  19. The effect of particle acidity on secondary organic aerosol formation from α-pinene photooxidation under atmospherically relevant conditions

    Han, Yuemei; Stroud, Craig A.; Liggo, John; Li, Shao-Meng

    2016-01-01

    Secondary organic aerosol (SOA) formation from OH-initiated photooxidation of α-pinene has been investigated in a photochemical reaction chamber under varied particle acidity levels. The effect of particle acidity on SOA yield and chemical composition was examined under high- and low-NOx conditions. The SOA yield (4.0 %–7.3 %) increased nearly linearly with the increase in particle acidity under high-NOx conditions. In contrast, the SOA yield (27.9 %–35.6 %) was substantially higher under low...

  20. Coordination compounds of nitrates and sulfates of some metals with isonicotinic acid hydrazide

    The complexes M(No3)2x2HINA, MSO4x2HINA, Cu(NO3)2xHINA, and CuSO4xHINAx1, 5C2H5OH (where M=Co, Ni, Cu, Zn, Cd; HINA is hydrazide of isonicotinic acid) are obtained, their infrared (400-4000 cm-1) and Raman (50-4000 cm-1) spectra are studied. It is shown that HINA molecules in all compounds are bound with the metal by the nitrogen atoms of the amino group. In nickel, zink, and cadmium complexes the nitrogen atoms of the heterocycle are also bound with the central atom, thus forming tubazid bridges

  1. Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds Improved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration

    Gălăţeanu, Bianca; Albu, Mădălina

    2013-01-01

    Cartilage tissue engineering (CTE) applications are focused towards the use of implantable biohybrids consisting of biodegradable scaffolds combined with in vitro cultured cells. Hyaluronic acid (HA) and chondroitin sulfate (CS) were identified as the most potent prochondrogenic factors used to design new biomaterials for CTE, while human adipose-derived stem cells (ASCs) were proved to display high chondrogenic potential. In this context, our aim was not only to build novel 3D porous scaffolds based on natural compounds but also to evaluate their in vitro biological performances. Therefore, for prospective CTE, collagen-sericin (Coll-SS) scaffolds improved with HA (5% or 10%) and CS (5% or 10%) were used as temporary physical supports for ASCs and were analyzed in terms of structural, thermal, morphological, and swelling properties and cytotoxic potential. To complete biocompatibility data, ASCs viability and proliferation potential were also assessed. Our studies revealed that Coll-SS hydrogels improved with 10% HA and 5% CS displayed the best biological performances in terms of cell viability, proliferation, morphology, and distribution. Thus, further work will address a novel 3D system including both HA 10% and CS 5% glycoproteins, which will probably be exposed to prochondrogenic conditions in order to assess its potential use in CTE applications. PMID:24308001

  2. Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds Improved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration

    Sorina Dinescu

    2013-01-01

    Full Text Available Cartilage tissue engineering (CTE applications are focused towards the use of implantable biohybrids consisting of biodegradable scaffolds combined with in vitro cultured cells. Hyaluronic acid (HA and chondroitin sulfate (CS were identified as the most potent prochondrogenic factors used to design new biomaterials for CTE, while human adipose-derived stem cells (ASCs were proved to display high chondrogenic potential. In this context, our aim was not only to build novel 3D porous scaffolds based on natural compounds but also to evaluate their in vitro biological performances. Therefore, for prospective CTE, collagen-sericin (Coll-SS scaffolds improved with HA (5% or 10% and CS (5% or 10% were used as temporary physical supports for ASCs and were analyzed in terms of structural, thermal, morphological, and swelling properties and cytotoxic potential. To complete biocompatibility data, ASCs viability and proliferation potential were also assessed. Our studies revealed that Coll-SS hydrogels improved with 10% HA and 5% CS displayed the best biological performances in terms of cell viability, proliferation, morphology, and distribution. Thus, further work will address a novel 3D system including both HA 10% and CS 5% glycoproteins, which will probably be exposed to prochondrogenic conditions in order to assess its potential use in CTE applications.

  3. Barium Sulfate

    Barium sulfate is used to help doctors examine the esophagus (tube that connects the mouth and stomach), ... dimensional pictures of the inside of the body). Barium sulfate is in a class of medications called ...

  4. Glucosamine sulfate

    ... to control arthritis pain. These creams usually contain camphor and other ingredients in addition to glucosamine. Glucosamine ... in combination with chondroitin sulfate, shark cartilage, and camphor for up to 8 weeks. Glucosamine sulfate can ...

  5. The Effect of Methyl, Hydroxyl, and Ketone Functional Groups on the Heterogeneous Oxidation of Succinic Acid Aerosol by OH Radicals

    Chan, M.; Zhang, H.; Wilson, K. R.

    2013-12-01

    The heterogeneous oxidation of atmospheric organic aerosols can influence their effects on climate, human health, and visibility. During oxidation, functionalization occurs when an oxygenated functional group is added to a molecule, leaving the carbon skeleton intact. Fragmentation involves carbon-carbon bond cleavage and produces two products with smaller carbon numbers than the parent compound. To gain better insights into how the molecular structure of more oxygenated organic compounds affects heterogeneous reactivity, succinic acid aerosols are photo-oxidized in an aerosol flow tube reactor, and the reaction products are analyzed using Direct Analysis in Real Time Mass Spectrometry for online chemical analysis. The effect of various functional groups (CH3, OH, C=O) along the carbon backbone on the heterogeneous reaction mechanisms are also investigated using model compounds. For this series of compounds, the formation of more oxygenated products through functionalization can be explained by well-known condensation-phase reactions such as Russell and Bennett and Summers. The number of fragmentation products is found to increase with the presence of OH and CH3 groups. This can be attributed to the increased number of tertiary carbons, enhancing the fragmentation after multiple oxidation steps. Smaller dicaids (oxalic acid and malonic acid) can be formed through the fragmentation processes in the heterogeneous oxidation of succinic acid. The effect of molecular structure on reaction kinetics, volatilization, and the relative importance of functionalization and fragmentation pathways will be discussed.

  6. Quantitative assessment of organosulfates in size-segregated rural fine aerosol

    H. Lukács

    2008-04-01

    Full Text Available Organosulfates have recently come into the focus of organic aerosol research as potentially important components of water-soluble secondary organic aerosol (SOA which now dominate tropospheric fine aerosol. Their presence has been confirmed by the identification of sulfate esters of abundant biogenic carbonyl compounds in both smog chamber and continental aerosol. However, none of the studies have been able to determine the mass contribution of organosulfates to SOA.

    In this paper, as possibly the very first attempt to quantify organosulfates in ambient aerosol, we inferred the mass concentrations of organosulfates by concurrently determining mass concentrations of total sulfur, sulfate and methanesulfonate in rural fine aerosol using two highly sensitive analytical techniques. Although uncertainties were relatively large, we found that mass concentrations of organosulfates in water-soluble fine aerosol ranged from 0.02 μgS m−3 to 0.09 μgS m−3 yielding a mass contribution of 6–12% to bulk sulfur concentrations (or 6–14% to sulfate concentrations. The inferred size distribution of organosulfates suggested that they possibly form in heterogeneous reactions from semi-volatile carbonyl compounds with subsequent or concurrent condensation of gaseous sulfuric acid producing a refractory organic film on particle surfaces.

  7. Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: The effect of pH, dextran sulfate and probe concentration.

    Rocha, Rui; Santos, Rita S; Madureira, Pedro; Almeida, Carina; Azevedo, Nuno F

    2016-05-20

    Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria. PMID:27021959

  8. Holothurian Fucosylated Chondroitin Sulfate

    Vitor H. Pomin

    2014-01-01

    Full Text Available Fucosylated chondroitin sulfate (FucCS is a structurally distinct glycosaminoglycan found in sea cucumber species. It has the same backbone composition of alternating 4-linked glucuronic acid and 3-linked N-acetyl galactosamine residues within disaccharide repeating units as regularly found in mammalian chondroitin sulfates. However, FucCS has also sulfated fucosyl branching units 3-O-linked to the acid residues. The sulfation patterns of these branches vary accordingly with holothurian species and account for different biological actions and responses. FucCSs may exhibit anticoagulant, antithrombotic, anti-inflammatory, anticancer, antiviral, and pro-angiogenic activities, besides its beneficial effects in hemodialysis, cellular growth modulation, fibrosis and hyperglycemia. Through an historical overview, this document covers most of the science regarding the holothurian FucCS. Both structural and medical properties of this unique GAG, investigated during the last 25 years, are systematically discussed herein.

  9. Early Performance of Duong Mandarin (Citrus reticulata Blanco on Three Rootstock under Acid Sulfate Soil Fields at Mekong Delta of Vietnam

    Khoe Thi Le

    2016-01-01

    Full Text Available Abstract About 1.6 billion hectare area of acid sulfate soils is at Mekong Delta of Vietnam, and Duong mandarin fruits are valued for the fresh market due to the easy peeling, attractive flavor, and health and nutritional properties; thereby, the investigation on early performance of Duong mandarin on three rootstock under acid sulfate soil fields (pH below 4 at Mekong Delta of Vietnam was undertaken from 2009 to 2012 for determination of the most promising scion stock combination of Duong mandarin, which introduced to growers for expanding citrus production to increase in income of farmers, and helping to use the sustainable and efficient land resource at acid sulfate soil region of Mekong Delta. Primary results showed that Duong mandarin grafted on Mat orange, Tau lemon and Carrizo citrange were significant differenence in vegetative parameters, fruit yield and quality. It proved that Duong mandarin trees grafted on Tau lemon were better growth and development on acid sulfate soil fields with below 4 pH in soil and water suspension of 1:2.5 ratio as compared to those grafted on Mat orange and Carrizo citrange rootstocks; whereby, that induced trees with 171.48 cm height, 6.65 m3 canopy volume and 51.84 mm trunk diameter, 1.08 scion/ stock ratio in third year after growing. Moreover, Duong mandarin trees grafted on Tau lemon were with spreading growth performance. In regarding to fruit yield and quality, Duong mandarin trees grafted on Tau lemon produced highest fruit yield of 9.21 kg per tree per year in third year after planting, and fruit with 115.30g weight, 8.85 brix juice, thinner and somewhat easy peel rind. 

  10. Heparan sulfate biosynthesis

    Multhaupt, Hinke A B; Couchman, John R

    2012-01-01

    Heparan sulfate is perhaps the most complex polysaccharide known from animals. The basic repeating disaccharide is extensively modified by sulfation and uronic acid epimerization. Despite this, the fine structure of heparan sulfate is remarkably consistent with a particular cell type. This suggests...... apparatus has not been carried out in a detailed way using high-resolution microscopy. We have begun this process, using well-known markers for the various Golgi compartments, coupled with the use of characterized antibodies and cDNA expression. Laser scanning confocal microscopy coupled with line scanning...

  11. Gas-particle partitioning of organic acids during the Southern Oxidant and Aerosol Study (SOAS): measurements and modeling

    Thompson, S.; Yatavelli, R.; Stark, H.; Kimmel, J.; Krechmer, J.; Day, D. A.; Isaacman, G. A.; Goldstein, A. H.; Khan, M. A. H.; Holzinger, R.; Lopez-Hilfiker, F.; Mohr, C.; Thornton, J. A.; Jayne, J. T.; Worsnop, D. R.; Jimenez, J. L.

    2014-12-01

    Gas-Particle partitioning measurements of organic acids were carried out during the Southern Oxidant and Aerosol Study (SOAS, June-July 2013) at the Centerville, AL Supersite in the Southeast US, a region with significant isoprene and terpene emissions. Organic acid measurements were made with a Chemical Ionization High Resolution Time-of-Flight Mass Spectrometer (HRToF-CIMS) with a Filter Inlet for Gases and AEROsols (FIGAERO) and acetate (CH3COO-) as the reagent ion. We investigate both individual species and bulk organic acids and partitioning to organic and water phases in the aerosol. Measured partitioning is compared to data from three other instruments that can also quantify gas-particle partitioning with high time resolution: another HRToF-CIMS using iodide (I-) as the reagent ion to ionize acids and other highly oxidized compounds, a Semivolatile Thermal Desorption Aerosol GC/MS (SV-TAG), and a Thermal Desorption Proton Transfer Time-of-Flight Mass Spectrometer (TD-PTRMS The partitioning measurements for three of the instruments are generally consistent, with results in the same range for most species and following similar temporal trends and diurnal cycles. The TD-PTRMS measures on average ½ the partitioning to the particle phase of the acetate CIMS. Both the measurements and the model of partitioning to the organic phase respond quickly to temperature, and the model agrees with the measured partitioning within the error of the measurement for multiple compounds, although many compounds do not match the modeled partitioning, especially at lower m/z. This discrepancy may be due to thermal decomposition of larger molecules into smaller ones when heated.

  12. Sulfur mass loading of the atmosphere from volcanic eruptions: Calibration of the ice core record on basis of sulfate aerosol deposition in polar regions from the 1982 El Chichon eruption

    Sigurdsson, Haraldur; Laj, Paolo

    1990-01-01

    Major volcanic eruptions disperse large quantities of sulfur compound throughout the Earth's atmosphere. The sulfuric acid aerosols resulting from such eruptions are scavenged by snow within the polar regions and appear in polar ice cores as elevated acidity layers. Glacio-chemical studies of ice cores can, thus, provide a record of past volcanism, as well as the means for understanding the fate of volcanic sulfur in the atmosphere. The primary objectives of this project are to study the chemistry and physical properties of volcanic fallout in a Greenland Ice Core in order to evaluate the impact of the volcanic gases on the atmospheric chemistry and the total atmospheric mass of volcanic aerosols emitted by major volcanic eruptions. We propose to compare the ice core record to other atmospheric records performed during the last 10 years to investigate transport and deposition of volcanic materials.

  13. Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO3− aerosol during the 2013 Southern Oxidant and Aerosol Study

    H. M. Allen; D. C. Draper; B. R. Ayres; A. Ault; A. Bondy; Takahama, S; Modini, R. L.; K. Baumann; Edgerton, E.; Knote, C.; Laskin, A.; Wang, B; Fry, J. L

    2015-01-01

    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea ...

  14. Non-sea-salt sulfate in the marine boundary layer and its possible impact on chloride depletion

    XIE Zhouqing; SUN Liguang; Cole-Dai Jihong

    2005-01-01

    Aerosol samples were collected on board the research vessel Xuelong during the Fifteenth Chinese Antarctic Research Expedition (CHINARE XV) in November 1998-April 1999 and the First Chinese Arctic Research Expedition in July-September 1999.The areas traversed by the expeditionary cruises include the Arctic Ocean, the western North Pacific Ocean and the eastern Indian Ocean,covering 75°N-69°S and 75°E-133°W. Aerosol samples were also taken at the Chinese Zhongshan Station in East Antarctica during the CHINARE XV. Analysis of the samples yielded concentrations of non-sea-salt sulfate and other soluble chemical species in the marine boundary layer. The data suggest that the chemical composition of the marine aerosols is influenced by three major sources:continental air masses, primary oceanic emissions, and secondary marine aerosols originated from oceanic emissions. The results show that, awing to strong anthropogenic sulfur emissions from the Asian continent, non-sea-salt sulfate concentrations in the Northern Hemisphere (the western North Pacific) marine aerosol are significantly higher than those in the Southern Hemisphere (the eastern Indian Ocean). Aerosol non-sea-salt sulfate concentrations appear to be inversely correlated with aerosol non-sea-salt chloride which shows significantly negative values, indicating the loss of chloride by sea salts, in most aerosol samples. Since gaseous HCl may be involved in chemical reactions that deplete atmospheric ozone in the marine boundary layer (MBL), high levels of acidic non-sea-salt-sulfate released by human activities in the low and mid-latitudes of the Northern Hemisphere may become an important potential contributor to the loss of atmospheric ozone in the MBL.

  15. Stratospheric sulfate from the Gareloi eruption, 1980: Contribution to the ''ambient'' aerosol by a poorly documented volcanic eruption

    Sedlacek, W.A.; Mroz, E.J.; Heiken, G.

    1981-07-01

    While sampling stratospheric aerosols during July--August 1980 a plume of ''fresh'' volcanic debris was observed in the Northern hemisphere. The origin of this material seems to be a poorly documented explosive eruption of Gareloi valcano in the Aleutian Islands. The debris was sampled at an altitude of 19.2 km: almost twice the height of observed eruption clouds. Such remote, unobserved or poorly documented eruptions may be a source that helps maintain the ''ambient'' stratospheric aerosol background.

  16. Esterification of fatty acids using sulfated zirconia and composites activated carbon/sulfated zirconia catalysts; Esterificacao de acidos graxos utilizando zirconia sulfatada e compositos carvao ativado/zirconia sulfatada como catalisadores

    Brum, Sarah S.; Santos, Valeria C. dos; Destro, Priscila; Guerreiro, Mario Cesar [Universidade Federal de Lavras, MG (Brazil). Dept. de Quimica

    2011-07-01

    In this work sulfated zirconia (SZr) and activated carbon/SZr composites produced by impregnation method with or without heating treatment step (CABC/SZr-I and CABC/SZr-I SC) and by the method of synthesis of SZr on the carbon (CABC/SZr-S) was used as catalysts in the esterification reactions of fatty acids. The SZr presented very active, conversions higher than 90% were obtained after 2 h of reaction. The activity of the composite CABC/SZr-I20%SC was up to 92%, however, this was directly related to time and temperature reactions. CABC/SZr-I and CABC/SZr-S were less active in esterification reactions, what could be attributed to its low acidity. (author)

  17. Lagrangian Sampling of 3-D Air Quality Model Results for Regional Transport Contributions to Sulfate Aerosol Concentrations at Baltimore, MD in Summer of 2004

    The Lagrangian method provides estimates of the chemical and physical evolution of air arriving in the daytime boundary layer at Baltimore. Study results indicate a dominant role for regional transport contributions of those days when sulfate air pollution is highest in Baltimor...

  18. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    Panhwar, Qurban Ali; Naher, Umme Aminun; Shamshuddin, Jusop; Jusop, Shamshuddin; Othman, Radziah; Latif, Md Abdul; Ismail, Mohd Razi

    2014-01-01

    A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia). The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c) kg(-1), respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB) including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis). The isolated strains were capable of producing indoleacetic acid (IAA) and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65%) existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM) was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils. PMID:25285745

  19. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth.

    Qurban Ali Panhwar

    Full Text Available A study was conducted to determine the total microbial population, the occurrence of growth promoting bacteria and their beneficial traits in acid sulfate soils. The mechanisms by which the bacteria enhance rice seedlings grown under high Al and low pH stress were investigated. Soils and rice root samples were randomly collected from four sites in the study area (Kelantan, Malaysia. The topsoil pH and exchangeable Al ranged from 3.3 to 4.7 and 1.24 to 4.25 cmol(c kg(-1, respectively, which are considered unsuitable for rice production. Total bacterial and actinomycetes population in the acidic soils were found to be higher than fungal populations. A total of 21 phosphate-solubilizing bacteria (PSB including 19 N2-fixing strains were isolated from the acid sulfate soil. Using 16S rRNA gene sequence analysis, three potential PSB strains based on their beneficial characteristics were identified (Burkholderia thailandensis, Sphingomonas pituitosa and Burkholderia seminalis. The isolated strains were capable of producing indoleacetic acid (IAA and organic acids that were able to reduce Al availability via a chelation process. These PSB isolates solubilized P (43.65% existing in the growth media within 72 hours of incubation. Seedling of rice variety, MR 219, grown at pH 4, and with different concentrations of Al (0, 50 and 100 µM was inoculated with these PSB strains. Results showed that the bacteria increased the pH with a concomitant reduction in Al concentration, which translated into better rice growth. The improved root volume and seedling dry weight of the inoculated plants indicated the potential of these isolates to be used in a bio-fertilizer formulation for rice cultivation on acid sulfate soils.

  20. Water-soluble Organic Components in Aerosols Associated with Savanna Fires in Southern Africa: Identification, Evolution and Distribution

    Gao, Song; Hegg, Dean A.; Hobbs, Peter V.; Kirchstetter, Thomas W.; Magi, Brian I.; Sadilek, Martin

    2003-01-01

    During the SAFARI 2000 field campaign, both smoke aerosols from savanna fires and haze aerosols in the boundary layer and in the free troposphere were collected from an aircraft in southern Africa. These aerosol samples were analyzed for their water-soluble chemical components, particularly the organic species. A novel technique, electrospray ionization-ion trap mass spectrometry, was used concurrently with an ion chromatography system to analyze for carbohydrate species. Seven carbohydrates, seven organic acids, five metallic elements, and three inorganic anions were identified and quantified. On the average, these 22 species comprised 36% and 27% of the total aerosol mass in haze and smoke aerosols, respectively. For the smoke aerosols, levoglucosan was the most abundant carbohydrate species, while gluconic acid was tentatively identified as the most abundant organic acid. The mass abundance and possible source of each class of identified species are discussed, along with their possible formation pathways. The combustion phase of a fire had an impact on the chemical composition of the emitted aerosols. Secondary formation of sulfate, nitrate, levoglucosan, and several organic acids occurred during the initial aging of smoke aerosols. It is likely that under certain conditions, some carbohydrate species in smoke aerosols, such as levoglucosan, were converted to organic acids during upward transport.

  1. Acid-sulfate mixtures from Río Tinto, Spain: Spectral masking relationships and implications for Mars

    Cull-Hearth, Selby; van Venrooy, Alexis; Caroline Clark, M.; Cvitkovic, Adriana

    2016-06-01

    Most sulfate minerals form only in specific pH conditions, making them useful markers of past environmental conditions on Mars. However, interpreting past environments requires a full understanding of the suite of minerals present, a task which is complicated by the fact that some minerals can spectrally mask others in the visible- to near-infrared (VNIR, 0.4-2.5 μm). Here, we report VNIR spectra of two-phase mineral combinations obtained from the Río Tinto acid mine drainage system of southern Spain. Our results show that in VNIR reflectance spectroscopy: (1) copiapite masks rhomboclase and partially masks melanterite; (2) coquimbite masks copiapite, jarosite, and rhomboclase; (3) at wavelengths 1.2 μm, gypsum masks these minerals; (4) unlike copiapite, jarosite, or melanterite, halotrichite masks gypsum completely; (5) in two-phase mixtures of copiapite and jarosite, both phases are evident. No consistent VNIR relationship is observed in two-phase mixtures of melanterite and halotrichite, suggesting that microtextures are likely more important than optical properties in determining VNIR reflectance. We also show that the shorter wavelengths are more sensitive to the presence of both phases: even in mixtures where one phase is masking another, both phases usually impact absorptions in the 0.75-0.95 μm region. This region may therefore be useful in remotely identifying mineral mixtures on Mars. These results have implications for several regions on Mars: most notably, they imply that the jarosite exposures reported at Mawrth Vallis may be jarosite-copiapite mixtures.

  2. Hydroxyapatite-calcium sulfate-hyaluronic acid composite encapsulated with collagenase as bone substitute for alveolar bone regeneration.

    Subramaniam, Sadhasivam; Fang, Yen-Hsin; Sivasubramanian, Savitha; Lin, Feng-Huei; Lin, Chun-pin

    2016-01-01

    Periodontitis is a very severe inflammatory condition of the periodontium that progressively damages the soft tissue and destroys the alveolar bone that supports the teeth. The bone loss is naturally irreversible because of limited reparability of the teeth. Advancement in tissue engineering provides an effective regeneration of osseous defects with suitable dental implants or tissue-engineered constructs. This study reports a hydroxyapatite, calcium sulfate hemihydrate and hyaluronic acid laden collagenase (HAP/CS/HA-Col) as a bone substitute for the alveolar bone regeneration. The composite material was mechanically tested and the biocompatibility was evaluated by WST-1 assay. The in vivo bone formation was assessed in rat with alveolar bone defects and the bone augmentation by the HAP/CS/HA-Col composite was confirmed by micro-CT images and histological examination. The mechanical strength of 6.69 MPa with excellent biocompatibility was obtained for the HAP/CS/HA-Col composite. The collagenase release profile had facilitated the acceleration of bone remodeling process and it was confirmed by the findings of micro-CT and H&E staining. The bone defects implanted with HAP/CS/HA composite containing 2 mg/mL type I collagenase have shown improved new bone formation with matured bone morphology in comparison with the HAP/CS/HA composite that lacks the collagenase and the porous hydroxyapatite (p-HAP) granules. The said findings demonstrated that the collagenase inclusion in HAP/CS/HA composite is a feasible approach for the alveolar bone regeneration and the same design can also be applied to other defective tissues. PMID:26454048

  3. Four-component one-pot synthesis of unsymmetrical polyhydroquinoline derivatives using 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate as a catalyst

    Nader Ghaffari Khaligh

    2014-01-01

    3-Methyl-1-sulfonic acid imidazolium hydrogen sulfate has been used as an efficient, halogen-free, and reusable Brönsted acidic ionic liquid catalyst for the synthesis of ethyl-4-aryl/heteryl- hexahy-dro-trimehtyl-5-oxoquinoline-3-carboxylates via the one-pot condensation of dimedone with ar-yl/heteryl aldehydes, ethyl acetoacetate, and ammonium acetate under solvent-free conditions. This method has the advantage of being clean and simple, as well as providing the desired product in high yield over a short reaction time. Furthermore, the catalyst could be recycled and reused four times without any discernible reduction in activity.

  4. An interfacial mechanism for cloud droplet formation on organic aerosols.

    Ruehl, Christopher R; Davies, James F; Wilson, Kevin R

    2016-03-25

    Accurate predictions of aerosol/cloud interactions require simple, physically accurate parameterizations of the cloud condensation nuclei (CCN) activity of aerosols. Current models assume that organic aerosol species contribute to CCN activity by lowering water activity. We measured droplet diameters at the point of CCN activation for particles composed of dicarboxylic acids or secondary organic aerosol and ammonium sulfate. Droplet activation diameters were 40 to 60% larger than predicted if the organic was assumed to be dissolved within the bulk droplet, suggesting that a new mechanism is needed to explain cloud droplet formation. A compressed film model explains how surface tension depression by interfacial organic molecules can alter the relationship between water vapor supersaturation and droplet size (i.e., the Köhler curve), leading to the larger diameters observed at activation. PMID:27013731

  5. On the composition of ammonia-sulfuric acid clusters during aerosol particle formation

    S. Schobesberger

    2014-05-01

    Full Text Available The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3 and sulfuric acid (H2SO4. Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 2SO4] from 3.3 × 106 to 1.4 × 109 cm−3, and a temperature range from −25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4 only form at [NH3] / [H2SO4]3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm / Δn, where n is in the range 4–18 (negatively charged clusters or 1–17 (positively charged clusters. For negatively charged clusters, Δm / Δn saturated between 1 and 1.4 for [NH3] / [H2SO4]>10. Positively charged clusters grew on average by Δm / Δn = 1.05 and

  6. Terpenylic acid and nine-carbon multifunctional compounds formed during the aging of β-pinene ozonolysis secondary organic aerosol

    Sato, Kei; Jia, Tianyu; Tanabe, Kiyoshi; Morino, Yu; Kajii, Yoshizumi; Imamura, Takashi

    2016-04-01

    Recent field and laboratory studies suggest that forest aerosol particles contain more highly functionalized organic molecules than pinonic acid, a traditional molecular maker of secondary organic aerosol (SOA) particles. To investigate the reaction mechanisms during the aging of biogenic SOAs, the gases and particles formed from the ozonolysis of β- and α-pinene were exposed to OH radicals in a laboratory chamber. The particle samples were collected before and after OH exposure for analysis by liquid chromatography-negative electrospray ionization time-of-flight mass spectrometry. Pinic acid and terpenylic acid were abundant products in both β- and α-pinene ozonolysis SOA particles. Terpenylic acid and products with m/z 201.08 present in β-pinene SOA particles increased upon exposing SOA to OH radicals, whereas 3-methyl-1,2,3-butanetricarboxylic acid present in α-pinene SOA particles increased upon exposing SOA to OH radicals. The products with m/z 201.08 were suggested to be C9H14O5 compounds. Similar C9H14O5 compounds and terpenylic acid were also detected in SOA particles formed from the photooxidation of nopinone, a major first-generation product of β-pinene ozonolysis. The OH-initiated oxidation of nopinone will contribute to the formation of terpenylic acid and C9H14O5 compounds during the aging of β-pinene SOA. A formation mechanism for terpenylic acid via gas-phase diaterpenylic acid formation followed by self-dehydration in the condensed phase was suggested.

  7. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91–93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability. - Highlights: • HA/CS/PAAc hydrogels were synthesized by gamma-ray irradiation. • HA/CS/PAAc hydrogels exhibited 91–93% gel fractions under 15 kGy radiation. • All of the HA/CS/PAAc hydrogels exhibited high water contents of over 90%. • The hydrogel samples showed relatively high cell viabilities of more than

  8. Acid-base equilibria and dynamics in sodium dodecyl sulfate micelles: geminate recombination and effect of charge stabilization.

    Freitas, Adilson A; Paulo, Luisa; Maçanita, Antonio L; Quina, Frank H

    2006-09-12

    The synthetic flavylium salt 4-carboxy-7-hydroxy-4'-methoxyflavylium chloride (CHMF) exhibits two acid-base equilibria in the range of pH 1-8 in both aqueous and micellar sodium dodecyl sulfate (SDS) solutions. The values of pK(a1) and pK(a2) for the cation-zwitterion (AH(2)(+) Z + H(+)) and the zwitterion-base (Z A(-) + H(+)) equilibria increase from 0.73 and 4.84 in water to 2.77 and 5.64 in SDS micelles, respectively. The kinetic study of the Z A(-) + H(+) ground-state reactions in SDS points to the diffusion-controlled protonation of A(-) in the aqueous phase (k(p2w) = 4.2 x 10(10) M(-)(1) s(-)(1)) and in the micelle (k(p2m) = 2.3 x 10(11) M(-)(1) s(-)(1)). The deprotonation rate of Z did not significantly change upon going from water (k(d2) = 6.3 x 10(5) s(-)(1)) to SDS (k(d2) = 5.2 x 10(5) s(-)(1)), in contrast with the behavior of ordinary cationic flavylium salts, for which k(d2) strongly decreases in SDS micelles. These results suggest that deprotonation of the zwitterionic acid is not substantially perturbed by the micellar charge. Electronic excitation of the Z form of CHMF induces fast adiabatic deprotonation of the hydroxyl group of Z() (2.9 x 10(10) s(-)(1) in water and 8.4 x 10(9) s(-)(1) in 0.1 M SDS), followed by geminate recombination on the picosecond time scale. Interestingly, while recombination in water (k(rec) = 1.7 x 10(9) s(-)(1)) occurs preferentially at the carboxylate group, at the SDS micelle surface, recombination (k(rec) = 9.2 x 10(9) s(-)(1)) occurs at the hydroxyl group. The important conclusion is that proton mobility at the SDS micelle surface is substantially reduced with respect to the mobility in water, which implies that geminate recombination should be a general phenomenon in SDS micelles. PMID:16952232

  9. Applying Limestone or Basalt in Combination with Bio-Fertilizer to Sustain Rice Production on an Acid Sulfate Soil in Malaysia

    Qurban Ali Panhwar

    2016-07-01

    Full Text Available A study was conducted to determine the efficacy of applying ground magnesium limestone (GML or ground basalt in combination with bio-fertilizer to sustain rice production on an acid sulfate soil in Malaysia. Soils from Kelantan Plains, Malaysia, were treated with GML, ground basalt, bio-fertilizer, GML + bio-fertilizer, and ground basalt + bio-fertilizer (4 t·ha−1 each. Results showed that soil fertility was improved by applying the soil amendments. GML and basalt contain some Zn and Cu; thus, application of these amendments would increase their contents in the soil needed for the healthy growth of rice. Basalt applied in combination with bio-fertilizer appeared to be the best agronomic option to improve the fertility of acid sulfate soils for sustainable rice production in the long run. In addition to increasing Ca, Mg, Zn, and Cu reserves in the soil, water pH increased and precipitated Al3+ and/or Fe2+. Ground basalt is cheaper than GML, but basalt dissolution in the acidic soil was slow. As such, its ameliorative effects could only be seen significantly from the second season onwards. The specially-formulated bio-fertilizer for alleviating the infertility of acid sulfate soil could also enhance rice growth. The use of the bio-fertilizer fortified with N2-fixing bacteria is a green technology that would help reduce NO3− and/or NO2− pollution and reduce the cost of rice production. The phosphate-solubilizing bacteria (PSB present in the bio-fertilizer not only increased the available P, but also helped release organic acids that would inactivate Al3+ and/or Fe2+ via the process of chelation.

  10. Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006

    C. Fountoukis

    2009-03-01

    Full Text Available Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM2.5 is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1μm diameter, semi-volatile partitioning requires 15–30 min to equilibrate; longer time is typically required during the night and early morning hours. Aerosol and gas-phase speciation always exhibits substantial temporal variability, so that aerosol composition measurements (bulk or size-resolved obtained over large integration periods are not reflective of its true state. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as "equivalent sodium" (rather than explicitly in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  11. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-04-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03) + 0.19 (± 0.08)i at 360 nm and 1.63 (± 0.03) + 0.21 (± 0.05)i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02) + 0.07 (± 0.06)i at 360 nm and 1.66 (± 0.02) + 0.06 (± 0.04)i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  12. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    R. A. Washenfelder

    2013-01-01

    Full Text Available Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross-sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360–390 and 385–420 nm spectral regions using two light emitting diodes (LED and a grating spectrometer with charge-coupled device (CCD detector. We determined aerosol extinction cross-sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate, slightly absorbing (Suwannee River fulvic acid, and strongly absorbing (nigrosin dye. We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross-sections over the 360–420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (±0.03 + 0.19 (±0.08 i at 360 nm and 1.53 (±0.03 + 0.21 (±0.05 i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (±0.02 + 0.07 (±0.06 i at 360 nm and 1.66 (±0.02 + 0.06 (±0.04 i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross-section, and complex refractive index as a function of wavelength.

  13. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    R. A. Washenfelder

    2013-04-01

    Full Text Available Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360–390 and 385–420 nm spectral regions using two light emitting diodes (LED and a grating spectrometer with charge-coupled device (CCD detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate, slightly absorbing (Suwannee River fulvic acid, and strongly absorbing (nigrosin dye. We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360–420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03 + 0.19 (± 0.08i at 360 nm and 1.63 (± 0.03 + 0.21 (± 0.05i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02 + 0.07 (± 0.06i at 360 nm and 1.66 (± 0.02 + 0.06 (± 0.04i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  14. USE OF ORGANIC MATERIALS WETLAND TO IMPROVING THE CAPACITY SULFATE REDUCTION BACTERIA (SRB) OF REDUCE SULFATE IN ACID MINE WATER (AMW)

    Fahruddin

    2013-01-01

    Increasing mining activities in several regions in Indonesia, began to face problems, namely of environmental pollution. One of the mining waste that is liquid sulfur, or acid mine water, which can lower the pH of the water and dissolves heavy metals. Countermeasures for the chemical method is to use lime, but this is less effective. The method is good and is environmentally friendly way by using biological bacteria sulphate reduction bacteria (SRB) that naturally there are many in the sedime...

  15. Observation of attachment ratio of fission products on solution aerosol

    Attachment behavior of fission products to solution aerosols has been observed to elucidate the role of chemical effects in the generation mechanism of fissionproduct aerosols. Primary aerosols generated from aqueous solution of sodium chloride or ammonium sulfate were passed through a fission-product chamber, and radioactive aerosols were generated by attaching fission products to the primary aerosol particles. Attachment ratios of the fission products on aerosols were estimated from activity measurements. It was found that the attachment ratio of the sodium chloride solution aerosol is larger than that of the ammonium sulfate solution aerosol. (author)

  16. Stratospheric aerosols

    Stratospheric aerosol measurements can provide both spatial and temporal data of sufficient resolution to be of use in climate models. Relatively recent results from a wide range of instrument techniques for measuring stratospheric aerosol parameters are described. Such techniques include impactor sampling, lidar system sensing, filter sampling, photoelectric particle counting, satellite extinction-sensing using the sun as a source, and optical depth probing, at sites mainly removed from tropospheric aerosol sources. Some of these techniques have also had correlative and intercomparison studies. The main methods for determining the vertical profiles of stratospheric aerosols are outlined: lidar extinction measurements from satellites; impactor measurements from balloons and aircraft; and photoelectric particle counter measurements from balloons, aircraft, and rockets. The conversion of the lidar backscatter to stratospheric aerosol mass loading is referred to. Absolute measurements of total solar extinction from satellite orbits can be used to extract the aerosol extinction, and several examples of vertical profiles of extinction obtained with the SAGE satellite are given. Stratospheric mass loading can be inferred from extinction using approximate linear relationships but under restrictive conditions. Impactor sampling is essentially the only method in which the physical nature of the stratospheric aerosol is observed visually. Vertical profiles of stratospheric aerosol number concentration using impactor data are presented. Typical profiles using a dual-size-range photoelectric dustsonde particle counter are given for volcanically disturbed and inactive periods. Some measurements of the global distribution of stratospheric aerosols are also presented. Volatility measurements are described, indicating that stratospheric aerosols are composed primarily of about 75% sulfuric acid and 25% water

  17. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    A. A. Zardini

    2008-03-01

    Full Text Available Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity. We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid in parallel with an electrodynamic balance (EDB and a hygroscopicity tandem differential mobility analyzer (HTDMA. The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR relationship as long as the two-component particle is completely liquid in the ammonium sulfate/citric acid and in the ammonium sulfate/glutaric acid cases. However, we observe significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  18. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo[14C]chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo[14C]chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo[14C] chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo[14C]chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo[14C]chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo[14C]chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo[14C]chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent

  19. A Computational Study of Acid Catalyzed Aerosol Reactions of Atmospherically Relevant Epoxides

    Epoxides are important intermediates of atmospheric isoprene oxidation. Their subsequent reactions in the particle phase lead to the production of organic compounds detected in ambient aerosols. We apply density functional theory to determine the important kinetic factors that ...

  20. Chromism of Model Organic Aerosol

    Rincon, Angela; Guzman, Marcelo; Hoffmann, Michael; Colussi, Agustin

    2008-03-01

    The optical properties of the atmospheric aerosol play a fundamental role in the Earth's radiative balance. Since more than half of the aerosol mass consists of complex organic matter that absorbs in the ultraviolet and visible regions of the spectrum, it is important to establish the identity of the organic chromophores. Here we report studies on the chromism vs. chemical composition of photolyzed (lambda longer than 305 nm) solutions of pyruvic acid, a widespread aerosol component, under a variety of experimental conditions that include substrate concentration, temperature and the presence of relevant spectator solutes, such ammonium sulfate. We use high resolution mass- and 13C NMR-spectrometries to track chemical speciation in photolyzed solutions as they undergo thermochromic and photobleaching cycles. Since the chemical identity of the components of these mixtures does not change in these cycles, in which photobleached solutions gradually recover their yellow color in the dark with non-conventional kinetics typical of aggregation processes, we infer that visible absorptions likely involve the intermolecular coupling of carbonyl chromophores in supramolecular assemblies made possible by the polyfunctional nature of the products of pyruvic acid photolysis.

  1. Effect of dextran and dextran sulfate on the structural and rheological properties of model acid milk gels.

    Pachekrepapol, U; Horne, D S; Lucey, J A

    2015-05-01

    Various types of polysaccharides are widely used in cultured dairy products. However, the interaction mechanisms, between milk proteins and these polysaccharides, are not entirely clear. To explore the interactions between uncharged and charged polysaccharides and the caseins, we used a model acid-milk-gel system, which allowed acidification to occur separately from gelation. The effect of adding uncharged dextran (DX; molecular weight ~2.0×10(6) Da) and negatively charged dextran sulfate (DS; molecular weight ~1.4×10(6) Da) to model acid milk gels was studied. Two concentrations (0.075 and 0.5%, wt/wt) of DX or DS were added to cold milk (~0°C) that had been acidified to pH values 4.4, 4.6, 4.8, or 4.9. Acidified milks containing DX or DS were then quiescently heated at the rate of 0.5°C/min to 30°C, which induced gelation, and gels were then held at 30°C for 17 h to facilitate gel development. Dynamic small-amplitude-oscillation rheology and large-deformation (shear) tests were performed. Microstructure of gels was examined by fluorescence microscopy. Gels made with a high concentration of DX gelled at a lower temperature, but after 17 h at 30°C, these gels exhibited lower storage moduli and lower yield-stress values. At pH 4.8 or 4.9 (pH values greater than the isoelectric point of caseins), addition of 0.5% DS to acidified milk resulted in lower gelation temperature. At pH 4.4 (pH values less than the isoelectric point of caseins), addition of 0.5% DS to acidified milk resulted in gels with very high stiffness values. Gels made at pH 4.8 or 4.9 with both concentrations of DS had much lower stiffness and yield-stress values than control gels. Microstructural analysis indicated that gels made at pH 4.4 with the addition of 0.5% DX exhibited large protein strands and pores, whereas gels made with 0.075% DX or the control gels had a finer protein matrix. At higher pH values (>4.4), gels made with 0.5% DX had a finer structure. At all pH values, gels made

  2. Impacts of aerosol indirect effect on past and future changes in tropospheric composition

    N. Unger

    2009-02-01

    Full Text Available The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, the aerosol indirect effect (AIE. The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI to present day (PD and future impacts from PD to 2050 (for the moderate IPCC A1B scenario that embrace a wide spectrum of precursor emission changes and consequential aerosol-cloud interactions. The AIE is estimated to be −2.0 W m−2 for PD–PI and −0.6 W m−2 for 2050–PD, at the high end of current estimates. Inclusion of aerosol-cloud interactions substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of aerosol-cloud effects leads to 20% enhancements in in-cloud sulfate production and ~10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions (~10–30%. Nitric acid wet deposition is dampened by 15–20% across the industrialized regions due to AIE allowing additional re-release of reactive nitrogen that contributes to 1–2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that aerosol-cloud interactions must be considered in studies of methane trends and projections of future changes to particulate matter air quality.

  3. Artificial primary marine aerosol production: a laboratory study with varying water temperature, salinity and succinic acid concentration

    J. Zábori

    2012-08-01

    Full Text Available Primary marine aerosols are an important component of the climate system, especially in the remote marine environment. With diminishing sea-ice cover, better understanding of the role of sea spray aerosol on climate in the polar regions is required. As for Arctic Ocean water, laboratory experiments with NaCl water confirm that a few degrees change in the water temperature (Tw gives a large change in the number of primary particles. Smaller particles with a dry diameter between 0.01 μm and 0.25 μm dominate the aerosol number density, but their relative dominance decreases with increasing water temperature from 0 °C where they represent 85–90% of the total aerosol number to 60–70% of the total aerosol number at 10 °C water temperature. This effect is most likely related to a change in physical properties and not to modification of sea water chemistry. A change of salinity between 15 g kg−1 and 35 g kg−1 showed no influence on the relative shape of a particle number size distribution, nor did a change in water temperature between 0 °C and 16 °C. An experiment where succinic acid was added to a NaCl water solution showed, that the number concentration of particles with Dp < 0.312 μm decreased by 43% when the succinic acid concentration in NaCl water at Tw = 0 °C was increased from 0 μmol l−1 to 2446 μmol l−1. Different organic constituents and perhaps inorganic substances resulted in a particle number shift towards larger particle sizes, when comparing a size distribution resulting from pure NaCl water to size distributions resulting from Arctic Ocean water and resulting from NaCl water with a succinic acid concentration of 2446 μmol l−1.

  4. Fine aerosol bulk composition measured on WP-3D research aircraft in vicinity of the Northeastern United States – results from NEAQS

    C. Warneke

    2007-02-01

    Full Text Available During the New England Air Quality Study (NEAQS in the summer of 2004, airborne measurements were made of the major inorganic ions and the water-soluble organic carbon (WSOC of the submicron (PM1.0 aerosol. These and ancillary data are used to describe the overall aerosol chemical characteristics encountered during the study. Fine particle mass was estimated from particle volume and a calculated density based on measured particle composition. Fine particle organic matter (OM was estimated from WSOC and a mass balance analysis. The aerosol over the northeastern United States (U.S. and Canada was predominately sulfate and associated ammonium, and organic components, although in unique plumes additional ionic components were also periodically above detection limits. In power generation regions, and especially in the Ohio River Valley region, the aerosol tended to be predominantly sulfate (~60% μg μg−1 and apparently acidic, based on an excess of measured anions compared to cations. In all other regions where sulfate concentrations were lower and a smaller fraction of overall mass, the cations and anions were balanced suggesting a more neutral aerosol. In contrast, the WSOC and estimated OM were more spatially uniform and the fraction of OM relative to PM mass largely influenced by sources of sulfate. The study median OM mass fraction was 40%. Throughout the study region, sulfate and organic aerosol mass were highest near the surface and decreased rapidly with increasing altitude. The relative fraction of organic mass to sulfate was similar within the boundary layer (altitude less than ~2.5 km, but was significantly higher in the free troposphere (above ~2.5 km. A number of distinct biomass burning plumes from fires in Alaska and the Yukon were periodically intercepted, mostly at altitudes between 3 and 4 km. These plumes were associated with highest aerosol concentrations of the study and were largely comprised of organic aerosol components

  5. Aerosol Mass Scattering Efficiency: Generalized Treatment of the Organic Fraction

    Garland, R. M.; Ravishankara, A. R.; Lovejoy, E. R.; Tolbert, M. A.; Baynard, T.

    2005-12-01

    Atmospheric aerosols are complex mixtures of organic and inorganic compounds. Current efforts to provide a simplified parameterization to describe the RH dependence of water uptake and associated optical properties lack the capability to include any dependence on the composition of the organic fraction. Using laboratory generated aerosol we have investigated the validity of such simplified treatment of organic fraction and estimated potential biases. In this study, we use cavity ring-down aerosol extinction photometry (CRD-AEP) to study the relative humidity (RH) dependence of the light extinction of aerosols, σep, simultaneously considering the influence of particle size, chemical composition, and mixing state (internal and external mixtures). We have produced internally mixed aerosol systems including; ammonium sulfate, ammonium nitrate, sodium chloride, dicarboxylic acids, sugars, amino acids and humic acid. These aerosols are produced with an atomizer and size-selected with a Differential Mobility Analyzer (DMA). The particles then enter into a CRD-AEP to measure dry extinction, σep(Dry), after which they travel into a RH conditioner and another CRD-AEP to measure the humidified aerosol extinction, fσ(ep)RH. The ratio of the humidified extinction to the dry extinction is fσ(ep)RH. Representative organic compounds were found to have fσ(ep)RH values that are much smaller than pure salts; though the fσ(ep)RH values vary little within the organic compounds studied. In addition, we have found that treating the inorganic/organic aerosols as external mixtures is generally correct to within ~10%, indicating appropriate simplified treatment of the RH dependence of atmospheric aerosol according to inorganic/organic fraction. In this presentation, we include recommendations for the generalized treatment of the organic fraction, exceptions to this generalized behavior, and estimates of the potential bias caused by generalized treatment.

  6. Chemical composition of the atmospheric aerosol in the troposphere over the Hudson Bay lowlands and Quebec-Labrador regions of Canada

    Gorzelska, K.; Talbot, R. W.; Klemm, K.; Lefer, B.; Klemm, O.; Gregory, G. L.; Anderson, B.; Barrie, L. A.

    1994-01-01

    Atmospheric aerosols were collected in the boundary layer and free troposphere over continental and coastal subarctic regions of Canada during the July - August 1990 joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B/Northern Wetlands Study (NOWES). The samples were analyzed for the following water soluble species: sulfate, nitrate, ammonium, potassium, sodium, chloride, oxalate, methylsulfonate, and total amine nitrogen. Ammonium and sulfate were the major water soluble components of these aerosols. The nearly neutral (overall) chemical composition of summertime aerosol particles contrasts their strongly acidic wintertime composition. Aerosol samples were separated into several air mass categories and characterized in terms of chemical composition, associated mixing ratios of gaseous compounds, and meteorological parameters. The fundamental category represented particles associated with 'background' air masses. The summertime atmospheric aerosols in background air over the North American subarctic and Arctic regions were characterized by relatively small and spatially uniform mixing ratios of the measured species. These aerosol particles were aged to the extent that they had lost their primary source signature. The chemical profile of the background air aerosols was frequently modified by additions from biomass fire plumes, aged tropical marine air, and intrusions of upper tropospheric/lower stratospheric air. Aerosols in boundary layer background air over the boreal forest region of Quebec-Labrador had significantly larger mixing ratios of ammonium and sulfate relative to the Hudson Bay region. This may reflect infiltration of anthropogenic pollution or be due to natural emissions from this region.

  7. Quantification of Tinto River sediment microbial communities: importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage.

    Sánchez-Andrea, Irene; Knittel, Katrin; Amann, Rudolf; Amils, Ricardo; Sanz, José Luis

    2012-07-01

    Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (water column (pH 2.5 and +400 mV), the most abundant organisms were identified as iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (-210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides. PMID:22544246

  8. Hydrological processes behind annual and decadal-scale variations in the water quality of runoff in Finnish catchments with acid sulfate soils

    Toivonen, Janne; Österholm, Peter; Fröjdö, Sören

    2013-04-01

    SummaryIn this study we assess long- and short term temporal variations in the impact of acid sulfate (a.s.) soils on river water quality. We demonstrate how such variations depend on changes in hydrological conditions driven by land use, meteorological variations and potential changes in climate with important implications on mitigation strategies, water ecology and utilization of water resources. Quality of river water discharging into the Larsmo-Öja Lake in Midwestern Finland was studied by using long term water data collected during 1963-2009. Acid sulfate soils are extremely acidic soils (pH depletion of the acidic pool in the existing a.s. soils. In the short run, water quality varied greatly due to varying hydrological conditions between seasons and years. Generally, the impact from a.s. soils was highest during high runoff in autumn and spring, and therefore, neutralization of acidity in discharge water by liming would at such occasions be very demanding. The relationship between the runoff and water quality was, however, somewhat different during different seasons. As expected, dry summers (low ground water levels) were found to increase the impact from a.s. soils in the subsequent autumn, but only if runoff was high. Towards the end of the study period winters tended to become warmer with higher runoff and spring floods tended to occur earlier. Thus, events with bad water quality during the winter months have become more common and acidic spring surges occur earlier. Seen from the data in this study, it is obvious that potential changes in the future climate will have significant consequences on the impact from a.s. soils on water courses.

  9. Effect of COD:SO4 2− Ratio, HRT and Linoleic Acid Concentration on Mesophilic Sulfate Reduction: Reactor Performance and Microbial Population Dynamics

    Chungman Moon; Rajesh Singh; Sathyanarayan S. Veeravalli; Saravanan R. Shanmugam; Subba Rao Chaganti; Jerald A. Lalman; Heath, Daniel D.

    2015-01-01

    Biological sulfate (SO42−) reduction was examined in anaerobic sequential batch reactors (ASBRs) operated under different hydraulic retention times (HRTs) ranging from 12 to 36 h and COD (Chemical Oxygen Demand)/SO42−) ratios of 2.4, 1.6 and 0.8. Competition between SO42− reducing bacteria (SRBs), methane producing archaea (MPAs) and homoacetogens (HACs) was examined in controls and cultures treated with linoleic acid (LA). The ASBR performance was influenced by the COD/SO42− ratio in control...

  10. Artificial primary marine aerosol production: a laboratory study with varying water temperature, salinity, and succinic acid concentration

    J. Zábori

    2012-11-01

    Full Text Available Primary marine aerosols are an important component of the climate system, especially in the remote marine environment. With diminishing sea-ice cover, better understanding of the role of sea spray aerosol on climate in the polar regions is required. As for Arctic Ocean water, laboratory experiments with NaCl water confirm that a few degrees change in the water temperature (Tw gives a large change in the number of primary particles. Small particles with a dry diameter between 0.01 μm and 0.25 μm dominate the aerosol number density, but their relative dominance decreases with increasing water temperature from 0 °C where they represent 85–90% of the total aerosol number to 10 °C, where they represent 60–70% of the total aerosol number. This effect is most likely related to a change in physical properties and not to modification of sea water chemistry. A change of salinity between 15 g kg−1 and 35 g kg−1 did not influence the shape of a particle number size distribution. Although the magnitude of the size distribution for a water temperature change between 0 °C and 16 °C changed, the shape did not. An experiment where succinic acid was added to a NaCl water solution showed, that the number concentration of particles with 0.010 μm < Dp < 4.5 μm decreased on average by 10% when the succinic acid concentration in NaCl water at a water temperature of 0 °C was increased from 0 μmol L−1 to 94 μmol L−1. A shift to larger sizes in the particle number size distribution is observed from pure NaCl water to Arctic Ocean water. This is likely a consequence of organics and different inorganic salts present in Arctic Ocean water in addition to the NaCl.

  11. Enhanced sulfate reduction with acidogenic sulfate-reducing bacteria

    Sulfate reduction in a continuous flow, acidogenic reactor using molasses wastewater as the carbon source was studied at varying chemical oxygen demand/sulfate (COD/SO42-) ratios. At a critical COD/SO42- ratio of 2.7, neither COD nor sulfate were in excess for extra production of ethanol or acetate in the reactor. An acetic-type microbial metabolism was established with sulfate-reducing bacteria (SRB) significantly consuming hydrogen and volatile fatty acids produced by acidogenic bacteria and hydrogen producing acetogens in degrading COD, thereby yielding sulfate removal rate >94.6%. A low critical COD/SO42- ratio of 1.6 was also observed with the enriched ASRB population in reactor which overcomes the barrier to the treatment capability of sulfate-laden wastewater treatment with limited COD supply

  12. Atmospheric aerosol compositions in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols

    X. Y. Zhang

    2012-01-01

    Full Text Available From 2006 to 2007, the daily concentrations of major inorganic water-soluble constituents, mineral aerosol, organic carbon (OC and elemental carbon (EC in ambient PM10 samples were investigated from 16 urban, rural and remote sites in various regions of China, and were compared with global aerosol measurements. A large difference between urban and rural chemical species was found, normally with 1.5 to 2.5 factors higher in urban than in rural sites. Optically-scattering aerosols, such as sulfate (~16%, OC (~15%, nitrate (~7%, ammonium (~5% and mineral aerosol (~35% in most circumstance, are majorities of the total aerosols, indicating a dominant scattering feature of aerosols in China. Of the total OC, ~55%–60% can be attributed to the formation of the secondary organic carbon (SOC. The absorbing aerosol EC only accounts for ~3.5% of the total PM10. Seasonally, maximum concentrations of most aerosol species were found in winter while mineral aerosol peaks in spring. In addition to the regular seasonal maximum, secondary peaks were found for sulfate and ammonium in summer and for OC and EC in May and June. This can be considered as a typical seasonal pattern in various aerosol components in China. Aerosol acidity was normally neutral in most of urban areas, but becomes some acidic in rural areas. Based on the surface visibility observations from 681 meteorological stations in China between 1957 and 2005, four major haze areas are identified with similar visibility changes, namely, (1 Hua Bei Plain in N. China, and the Guanzhong Plain; (2 E. China with the main body in the Yangtze River Delta area; (3 S. China with most areas of Guangdong and the Pearl River Delta area; (4 The Si Chuan Basin in S.W. China. The degradation of visibility in these areas is linked with the emission changes and high PM concentrations. Such quantitative chemical characterization of aerosols is essential in assessing their role in atmospheric

  13. The Trimethylamine-Formic Acid Complex: Microwave Characterization of a Prototype for Potential Precursors to Atmospheric Aerosol.

    Mackenzie, Rebecca B; Dewberry, Christopher T; Leopold, Kenneth R

    2016-04-14

    The reactions of amines and carboxylic acids have recently received attention for their possible role in the formation of atmospheric aerosol. Here, we report a microwave study of the trimethylamine-formic acid hydrogen-bonded complex, a simple prototype in which to study amine-carboxylic acid interactions. Spectra of three isotopologues of the system have been observed using a tandem cavity and chirped-pulse Fourier transform microwave spectrometer. The complex has a plane of symmetry, with the acidic proton of the formic acid directed toward the lone pair of the nitrogen. The zero-point-averaged hydrogen bond length is 1.702 Å, and the O-H···N angle is 177°. (14)N nuclear quadrupole hyperfine structure has been used to assess the degree of proton transfer from the formic acid to the trimethylamine. Experimental results are supplemented with density functional theory calculations. M06-2X/6-311++G(3df,3pd) calculations indicate a binding energy of 16.8 kcal/mol with counterpoise correction (17.4 kcal/mol without counterpoise correction). PMID:27023479

  14. FTIR Analysis of Functional Groups in Aerosol Particles

    Shokri, S. M.; McKenzie, G.; Dransfield, T. J.

    2012-12-01

    Secondary organic aerosols (SOA) are suspensions of particulate matter composed of compounds formed from chemical reactions of organic species in the atmosphere. Atmospheric particulate matter can have impacts on climate, the environment and human health. Standardized techniques to analyze the characteristics and composition of complex secondary organic aerosols are necessary to further investigate the formation of SOA and provide a better understanding of the reaction pathways of organic species in the atmosphere. While Aerosol Mass Spectrometry (AMS) can provide detailed information about the elemental composition of a sample, it reveals little about the chemical moieties which make up the particles. This work probes aerosol particles deposited on Teflon filters using FTIR, based on the protocols of Russell, et al. (Journal of Geophysical Research - Atmospheres, 114, 2009) and the spectral fitting algorithm of Takahama, et al (submitted, 2012). To validate the necessary calibration curves for the analysis of complex samples, primary aerosols of key compounds (e.g., citric acid, ammonium sulfate, sodium benzoate) were generated, and the accumulated masses of the aerosol samples were related to their IR absorption intensity. These validated calibration curves were then used to classify and quantify functional groups in SOA samples generated in chamber studies by MIT's Kroll group. The fitting algorithm currently quantifies the following functionalities: alcohols, alkanes, alkenes, amines, aromatics, carbonyls and carboxylic acids.

  15. The Hydrothermal System at Home Plate in Gusev Crater, Mars: Formation of High Silica Material by Acid-Sulfate Alteration of Basalt

    Morris, R. V.; Ming, D. W.; Gellert, R.; Yen, A.; Clark, B. C.; Gnaff, T. G.; Arvidson, R. E.; Squyres, S. W.

    2008-01-01

    The Alpha Particle X-ray Spectrometer (APXS) instrument on the Mars Exploration Rover (MER) Spirit measured three targets on or adjacent to Home Plate in Gusev Crater that have unusually high SiO2 concentrations (68% to 91%), unusually low FeO concentrations (1% to 7%, with total Fe as FeO), and unusually high TiO2/FeO ratios (0.2 to 1.2 by weight) [1]. Two targets (Kenosha Comets and Lefty Ganote) are located on high albedo soil (Gertrude Weise) that was exposed by the rover wheels, and one target is a float rock called Fuzzy Smith. Kenosha Comets has the highest SiO2 concentration, lowest FeO concentration, and highest TiO2/FeO ratio. Mineralogical evidence from the MER Miniature Thermal Emission Spectrometer (Mini-TES) suggests that the SiO2 is present as amorphous (noncrystalline) SiO2 at Gertrude Weise and nearby targets [2,3]. Mini-TES data were not acquired for Fuzzy Smith. Home Plate is considered to have an explosive volcanic origin, resulting when basaltic magma came into contact with ground water or ice [4]. Within 50 m to 1 km of Home Plate are sulfate rich soil deposits (Paso Robles class soils with 22-35% SO3) which are considered to be probable fumarolic and/or hydrothermal deposits associated with the volcanism [5]. We develop the model here, suggested by [5], that the high-silica materials are another manifestation of acid-sulfate processes associated with fumarolic and hydrothermal activity at Home Plate. This is done by analogy with basaltic materials altered by acid sulfate processes on the Island of Hawaii.

  16. Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA

    O. Möhler

    2002-10-01

    Full Text Available The homogeneous freezing of supercooled H2SO4/H2O solution droplets was investigated in the aerosol chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere of Forschungszentrum Karlsruhe. 24 freezing experiments were performed at temperatures between 194 and 235 K with aerosol particles in the diameter range 0.05 to 1 µm. Individual experiments started at homogeneous temperatures and ice saturation ratios between 0.85 and 0.95. Cloud cooling rates up to -2.8 K/min were simulated dynamically in the chamber by expansion cooling using a mechanical pump. Depending on the cooling rate and starting temperature, freezing threshold relative humidities were exceeded after expansion time periods between about 1 and 10 min. The onset of ice formation was measured with three independent methods showing good agreement among each other. Ice saturation ratios measured at the onset of ice formation increased from about 1.4 at 231 K to about 1.75 at 189 K. The experimental data set including thermodynamic parameters as well as physical and chemical aerosol analysis provides a good basis for microphysical model applications.

  17. The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model

    Pringle, K. J.; Carslaw, K. S.; D. V. Spracklen; Mann, G. M.; M. P. Chipperfield

    2009-01-01

    Empirical relationships that link cloud droplet number (CDN) to aerosol number or mass are commonly used to calculate global fields of CDN for climate forcing assessments. In this work we use a sectional global model of sulfate and sea-salt aerosol coupled to a mechanistic aerosol activation scheme to explore the limitations of this approach. We find that a given aerosol number concentration produces a wide range of CDN concentrations due to variations in the shape of the aerosol size distrib...

  18. An HPLC method for microanalysis and pharmacokinetics of marine sulfated polysaccharide PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles in rat plasma.

    Li, Peng-Li; Li, Chun-Xia; Xue, Yi-Ting; Li, Hai-Hua; Liu, Hong-Bing; He, Xiao-Xi; Yu, Guang-Li; Guan, Hua-Shi

    2013-04-01

    This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS) in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with D-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD) at 250 nm (excitation) and 435 nm (emission) using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1-500 μg/mL, and the lower limit of detection (LLOD) was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (PSS-NP) in rat plasma after a single intravenous (PSS only) and oral administration (PSS and PSS-NP). Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability. PMID:23549283

  19. An HPLC Method for Microanalysis and Pharmacokinetics of Marine Sulfated Polysaccharide PSS-Loaded Poly Lactic-co-Glycolic Acid (PLGA Nanoparticles in Rat Plasma

    Hua-Shi Guan

    2013-04-01

    Full Text Available This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with d-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD at 250 nm (excitation and 435 nm (emission using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1–500 μg/mL, and the lower limit of detection (LLOD was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA nanoparticles (PSS-NP in rat plasma after a single intravenous (PSS only and oral administration (PSS and PSS-NP. Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability.

  20. Effect of magnesium sulfate aerosol inhalation on children asthma: a Meta-analysis%硫酸镁雾化吸入对儿童哮喘发作治疗作用的Meta分析

    刘原虎; 韩书婧; 初平; 鲁洁; 金雅琼; 郭永丽

    2014-01-01

    Objective To assess the efficacy of magnesium sulfate for aerosol inhalation in treatment of children asthma exacerbations.Methods All relevant randomized eontrolled clinical trials (RCT) with isotonic magnesium sulphate and saline for inhaled salbutamol in treatment of children asthma exacerbations were searched with the key words of asthma,salbutamol and magnesium sulfate.A Meta-analysis was performed to evaluate the result of the magnesium sulfate.Results Four relevant RCTs from literatures were collected and totally 857 cases were included for analysis.The Meta-analysis indicated that the improvements were obtained from isotonic magnesium sulfate as a vehicle for nebulized salbutamol,in comparison with only magnesium sulfate[pooled standardized mean difference(SMD) =0.31,95% confidence interval:0.06-0.57,P < 0.05].The occurrence of adverse reactions of children asthma exacerbation were not statistically reduced among inpatients using magnesium sulfate as a vehicle for nebulized salbutamol and only using magnesium sulfate[pooled relative risk =0.97,95% CI:0.68-1.40,P > 0.05].Analysis of publication bias between the various research found that among the obvious publication bias (Z =2.47,P < 0.001).Conclusions Compared with only magnesium sulfate,the use of isotonic magnesium sulfate as an adjuvant to nebulize salbutamol is a good therapy with improving pulmonary function in the children asthma exacerbation.The safety of the therapy needs further research assessment.%目的 评价硫酸镁雾化吸入在儿童哮喘急性发作治疗中的疗效.方法 通过对中国期刊数据库(CNKI)、中国科技期刊数据库(VIP)、万方数据库进行系统检索,以“硫酸镁”“沙丁胺醇”和“哮喘”作为检索词,收集发表的所有硫酸镁雾化治疗儿童哮喘急性发作研究的文献.对已发表的比较单独硫酸镁溶液雾化和以硫酸镁溶液为溶媒吸入沙丁胺醇对儿童哮喘急性发作疗效的临床随机对照

  1. 21 CFR 186.1797 - Sodium sulfate.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium sulfate. 186.1797 Section 186.1797 Food and... Substances Affirmed as GRAS § 186.1797 Sodium sulfate. (a) Sodium sulfate (Na2SO4, CAS Reg. No. 7757-82-6... crystalline powder. It is prepared by the neutralization of sulfuric acid with sodium hydroxide. (b)...

  2. 21 CFR 184.1461 - Manganese sulfate.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese sulfate. 184.1461 Section 184.1461 Food... Specific Substances Affirmed as GRAS § 184.1461 Manganese sulfate. (a) Manganese sulfate (MnSO4·H2O, CAS... manganese compounds with sulfuric acid. It is also obtained as a byproduct in the manufacture...

  3. 21 CFR 184.1443 - Magnesium sulfate.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to...

  4. One-pot Green Synthesis of Pyrrole Derivatives Catalyzed by Nano Sulfated Zirconia as a Solid Acid Catalyst%One-pot Green Synthesis of Pyrrole Derivatives Catalyzed by Nano Sulfated Zirconia as a Solid Acid Catalyst

    Teimouri, Abbas; Chermahini, Alireza Najafi

    2012-01-01

    A new and efficient method for the preparation of N-substituted pyrroles from one-pot Paal-Knorr condensation has been accomplished using nano-crystalline sulfated zirconia (SZ) as the catalyst in ethanol at moderate temperature. This new protocol has the advantages of easy availability, stability, reusability and eco-friendliness of the catalyst, high to excellent yields, simple experimental and work-up procedure. The synthesized compounds were confirmed through spectral characterization using IR, 1H NMR, 13C NMR and mass spectra.

  5. Effects of Long-Term Acid-Mine Drainage Contamination on Diversity and Activity of Sulfate-Reducing Bacteria in a Natural Salt Marsh.

    Moreau, J. W.; Banfield, J. F.

    2003-12-01

    Constructed wetlands have been studied as sites or analogs for in situ bioremediation of metal contaminants from acid mine drainage (AMD) or industrial sources (e.g. Webb et al. 1998). Wetlands bioremediation necessarily invokes the ubiquity and robustness of sulfate-reducing bacteria (SRB) to sequester dissolved metals into various poorly soluble metal-sulfides (e.g. PbS, CdS). However, few studies of natural wetlands under long-term ecological forcing by AMD or other contaminant sources are available for context. We are investigating the microbial diversity, mineralogy and geochemistry of a highly contaminated salt marsh along the East Central San Francisco Bay. For nearly a half-century, areas within this marsh have received acidic and/or metal-rich groundwaters from near-surface pyrite tailings (transported there from Iron Mountain Mine, near Redding, CA) and local industrial sources (e.g. paint and explosives manufacturers). Sediment cores (30-40 cm long) were taken from six contaminated sites in the marsh with pH range of ˜2 to ˜8. Previous analyses (URS Corp. 2001) reported As, Cd, Cu, Se, Zn, and Pb present in sediments at extremely high concentrations (100s of ppm), yet our ICP-AES analyses of pore waters showed only As present at concentrations of 10-50 ppb. We infer, from high-resolution transmission electron microscope (HRTEM) studies of biogenic (SRB biofilm) ZnS (Moreau et al. 2003, in review) and marsh sediments, that contaminant metals have been sequestered into aggregates of nanocrystalline metal-sulfides. Continuous-flow isotope ratio mass spectrometer (CF-IRMS) analyses of pore-water sulfate and sedimentary sulfides allow resolution of contributions to dissolved sulfate and sulfide from tailings oxidation and dissimilatory sulfate reduction. Sulfate analyses from subsections of three cores (pH 2-3, 6-7, 7-8, respectively) all yield δ 34S values consistent with bacterial sulfate reduction. We note that all three cores also contain very fine

  6. Field and Laboratory Studies of Atmospheric Organic Aerosol

    Coggon, Matthew Mitchell

    conditions, nucleated particles composed of oxidized organic compounds contributed nearly an order of magnitude more cloud condensation nuclei (CCN) than less oxidized particles formed under cloudy conditions. The processing time necessary for particles to become CCN active was short ( 4 hr). Laboratory chamber experiments were also conducted to evaluate particle-phase processes influencing aerosol phase and composition. In one study, ammonium sulfate seed was coated with a layer of secondary organic aerosol (SOA) from toluene oxidation followed by a layer of SOA from α-pinene oxidation. The system exhibited different evaporative properties than ammonium sulfate seed initially coated with α-pinene SOA followed by a layer of toluene SOA. This behavior is consistent with a shell-and-core model and suggests limited mixing among different SOA types. Another study investigated the reactive uptake of isoprene epoxy diols (IEPOX) onto non-acidified aerosol. It was demonstrated that particle acidity has limited influence on organic aerosol formation onto ammonium sulfate seed, and that the chemical system is limited by the availability of nucleophiles such as sulfate. Flow tube experiments were conducted to examine the role of iron in the reactive uptake and chemical oxidation of glycolaldehyde. Aerosol particles doped with iron and hydrogen peroxide were mixed with gas-phase glycolaldehyde and photochemically aged in a custom-built flow reactor. Compared to particles free of iron, iron-doped aerosols significantly enhanced the oxygen to carbon (O/C) ratio of accumulated organic mass. The primary oxidation mechanism is suggested to be a combination of Fent

  7. Seasonal variations in the physico-chemical characteristics of aerosols in North Taiwan

    Chou, Charles

    2014-05-01

    From 2007 to 2012, this study investigated the mass concentration and chemical composition of ambient aerosols (i.e. PM10, PM2.5, and PMc = PM10-PM2.5) at Cape Fuguei, Yangminshan, and NTU (National Taiwan University) stations in northern Taiwan. It was found that the concentration and composition of aerosols exhibited significant seasonal variations but without an inter-annual trend during the study period. Moderate correlations (R2 = 0.4-0.6) were observed among the aerosol concentrations at the respective stations, indicating that the aerosol concentrations were dominated by factors on regional scales. During the seasons of northeasterly winter monsoons, long range transport of dust and particulate air pollutants from the Asia Continent had negatively impacted the atmospheric environment in this area. On the other hand, as a highly developed urban area, Taipei has substantial local emissions of air pollutants that should have transported to the surrounding areas of Taipei basin and caused deterioration of air quality and visibility in Cape Fuguei and Yangminshan. The results indicated that the major components of aerosols in Taipei include sulfate, sea salts, dust, and organic matters. In addition, contributions from nitrate, ammonium, and elemental carbon were also significant. In terms of mass concentration, most of the sea salts and dust particles existed in the coarse mode of aerosols, whereas sulfate and EC were confined within PM2.5. This suggests that the dust and sea salts particles were externally mixed with EC and sulfate in the aerosols over Taipei area. Further, it was found that nitrate were closely associated with sea salts in aerosols, suggesting the reaction between nitric acid and sea salt particles. Different seasonality was observed for sea salt and dust: sea salts peaked in fall and dust reached the maximal level in springtime, implying their sources were regulated by independent seasonal factors. Particulate pollutants (i.e. sulfate, nitrate

  8. Effect of excess dietary iron as ferrous sulfate and excess dietary ascorbic acid on liver zinc, copper and sulfhydryl groups and the ovary

    Female guinea pigs of the NIH 13/N strain, weighing between 475 and 512 g, were fed diets supplemented with 50 to 2500 mg of iron per kg of diet as ferrous sulfate and 0.2 to 8.0 g of ascorbic acid per kg of diet. A significant effect was observed on tissue copper and zinc, ovary weight and liver protein sulfhydryl groups. The mean ovary weight for guinea pigs fed 2500 mg of iron was significantly less than that of animals fed 50 mg of iron, 0.045 +/- 0.012 g and 0.061 +/- 0.009 g, respectively. Liver zinc content of animals fed 2500 mg of iron and 200 mg of ascorbic acid per kg of diet was significantly less than that of animals fed 50 mg of iron and 200 mg of ascorbic acid, 16.3 +/- 3.3 μg and 19.6 +/- 1.6 μg, respectively. There was no difference in liver copper due to dietary iron, but when dietary ascorbic acid was increased to 8 g per kg of diet, there was a significant decrease (from 22.8 +/- 8.1 μg to 10.5 +/- 4.8 μg) in liver copper. Excess dietary ascorbic acid decreased ovarian zinc significantly when increased to 8 g per kg of diet, 2929 +/- 919 μg vs 1661 +/- 471 μg, respectively, when compared to the control group

  9. Acetylsalicylic Acid Reduces the Severity of Dextran Sodium Sulfate-Induced Colitis and Increases the Formation of Anti-Inflammatory Lipid Mediators

    Thomas Köhnke

    2013-01-01

    Full Text Available The role of non-steroidal anti-inflammatory drugs in inflammatory bowel disease is controversial, as they have been implicated in disease aggravation. Different from other cyclooxygenase inhibitors, acetylsalicylic acid (ASA enhances the formation of anti-inflammatory and proresolution lipoxins derived from arachidonic acid as well as resolvins from omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA. In this study, we examined the effect of ASA on murine dextran sodium sulfate colitis. A mouse magnetic resonance imaging (MRI protocol and post mortem assessment were used to assess disease severity, and lipid metabolites were measured using liquid chromatography-coupled tandem mass spectrometry. Decreased colitis activity was demonstrated by phenotype and MRI assessment in mice treated with ASA, and confirmed in postmortem analysis. Analysis of lipid mediators showed sustained formation of lipoxin A4 and an increase of DHA-derived 17-hydroxydocosahexaenoic acid (17-HDHA after treatment with ASA. Furthermore, in vitro experiments in RAW264.7 murine macrophages demonstrated significantly increased phagocytosis activity after incubation with 17-HDHA, supporting its proresolution effect. These results show a protective effect of ASA in a murine colitis model and could give a rationale for a careful reassessment of ASA therapy in patients with inflammatory bowel disease and particularly ulcerative colitis, possibly combined with DHA supplementation.

  10. Distributions of low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls in the marine aerosols collected over the Arctic Ocean during late summer

    K. Kawamura

    2012-08-01

    Full Text Available Oxalic and other small dicarboxylic acids have been reported as important water-soluble organic constituents of atmospheric aerosols from different environments. Their molecular distributions are generally characterized by the predominance of oxalic acid (C2 followed by malonic (C3 and/or succinic (C4 acids. In this study, we collected marine aerosols from the Arctic Ocean during late summer in 2009 when sea ice is retreated. The marine aerosols were analyzed for the molecular distributions of dicarboxylic acids as well as ketocarboxylic acids and α-dicarbonyls to better understand the source of water-soluble organics and their photochemical processes in the high Arctic marine atmosphere. We found that diacids are more abundant than ketoacids and α-dicarbonyls, but their concentrations are generally low (< 30 ng m−3, except for one sample (up to 70 ng m−3 that was collected near the mouth of Mackenzie River during clear sky condition. Although the molecular compositions of diacids are in general characterized by the predominance of oxalic acid, a depletion of C2 was found in two samples in which C4 became the most abundant. Similar depletion of oxalic acid has previously been reported in the Arctic aerosols collected at Alert after polar sunrise and in the summer aerosols from the coastal Antarctica. Because the marine aerosols that showed a depletion of C2 were observed under the overcast and/or foggy conditions, we suggest that a photochemical decomposition of oxalic acid may have occurred in aqueous phase of aerosols over the Arctic Ocean via the photo dissociation of oxalate-Fe (III complex. We also determined stable carbon isotopic compositions (δ13C of bulk aerosol carbon and individual diacids. The δ13C of bulk aerosols showed −26.5‰ (range: −29.7‰ to −24.7‰, suggesting that marine aerosol carbon is derived

  11. Distributions of low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls in the marine aerosols collected over the Arctic Ocean during late summer

    K. Kawamura

    2012-11-01

    Full Text Available Oxalic and other small dicarboxylic acids have been reported as important water-soluble organic constituents of atmospheric aerosols from different environments. Their molecular distributions are generally characterized by the predominance of oxalic acid (C2 followed by malonic (C3 and/or succinic (C4 acids. In this study, we collected marine aerosols from the Arctic Ocean during late summer in 2009 when sea ice was retreating. The marine aerosols were analyzed for the molecular distributions of dicarboxylic acids as well as ketocarboxylic acids and α-dicarbonyls to better understand the source of water-soluble organics and their photochemical processes in the high Arctic marine atmosphere. We found that diacids are more abundant than ketoacids and α-dicarbonyls, but their concentrations are generally low (< 30 ng m−3, except for one sample (up to 70 ng m−3 that was collected near the mouth of Mackenzie River during clear sky condition. Although the molecular compositions of diacids are in general characterized by the predominance of oxalic acid, a depletion of C2 was found in two samples in which C4 became the most abundant. Similar depletion of oxalic acid has previously been reported in the Arctic aerosols collected at Alert after polar sunrise and in the summer aerosols from the coast of Antarctica. Because the marine aerosols that showed a depletion of C2 were collected under the overcast and/or foggy conditions, we suggest that a photochemical decomposition of oxalic acid may have occurred in aqueous phase of aerosols over the Arctic Ocean via the photo dissociation of oxalate-Fe (III complex. We also determined stable carbon isotopic compositions (δ13C of bulk aerosol carbon and individual diacids. The δ13C of bulk aerosols showed −26.5‰ (range: −29.7 to −24.7‰, suggesting that marine aerosol carbon is derived

  12. Heparin cofactor II is degraded by heparan sulfate and dextran sulfate.

    Saito, Akio

    2015-02-20

    Heparan sulfate normally binds to heparin cofactor II and modulates the coagulation pathway by inhibiting thrombin. However, when human heparin cofactor II was incubated with heparan sulfate, heparin cofactor II became degraded. Other glycosaminoglycans were tested, including hyaluronic acid, chondroitin sulfates, dermatan sulfate, and heparin, but only dextran sulfate also degraded heparin cofactor II. Pretreatment of heparan sulfate with heparinase reduced its heparin cofactor II-degrading activity. Heparan sulfate and dextran sulfate diminished the thrombin inhibitory activity of heparin cofactor II. Other serpins, including antithrombin III and pigment epithelium-derived factor, were also degraded by heparan sulfate. This is the first evidence of acidic polysaccharides exhibiting protein-degrading activity without the aid of other proteins. PMID:25600805

  13. Models of Metabolic Community Structure in Martian Habitable Environments: Constraints from a Terrestrial Analog Acid-Sulfate Fumarole Environment, Cerro Negro Volcano, Nicaragua

    Rogers, K. L.; McCollom, T. M.; Hynek, B. M.

    2014-12-01

    Microbial habitability in extreme environments on Earth is described by microscale geochemical conditions that constrain metabolic niches in concert with long-term habitat stability that is governed by dynamic geologic processes. Using terrestrial analogs to identify habitable martian environments requires correlating microscale geochemical constraints with reconstructions of past martian environments that are based on global-scale observations. While past martian environments can be characterized by primary parameters (e.g. pH, redox, mineralogy, thermal history), microbial habitability on Earth is a complex function of both primary and derived parameters (e.g. metabolic reaction energetics, chemical & thermal gradients, flow dynamics). In recent years we have been investigating acid-sulfate fumaroles at the Mars analog site, Cerro Negro Volcano, Nicaragua, where habitability is constrained by steep thermal gradients, spatially- and temporally-variable vent dynamics, and limited water and nutrient availability. The most common niche identified thus far is found in fumaroles that host mixed photosynthetic and chemosynthetic endolithic microbial communities. One such endolith is dominated by acidic red algae (Cyanidiales), aerobic bacterial heterotrophs (Ktedonobacteria), and archaeal thermoacidophiles (Hyperthermus, Caldisphaera, and Thermofilum). An analysis of the metabolic structure suggests that primary production by the red algae supports the growth of heterotrophic thermoacidophiles. Diversification among the chemoheterotrophs with respect to temperature and oxygen tolerance suggests community adaptation to environmental gradients or variable venting dynamics. Furthermore, individual cells within the endolith are silica-encrusted, providing the possibility for biosignature formation and preservation. Putative hydrothermal environments on early Mars with similar conditions could have supported endolithic communities with comparable metabolic strategies. Even

  14. Sub-Antarctic marine aerosol: significant contributions from biogenic sources

    J. Schmale

    2013-03-01

    Full Text Available Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS, was 21% non-sea salt sulfate 2% nitrate, 7% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea salt signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA profiles could be isolated: an amino acids/amine factor (AA-OA, 18% of OA mass, a methanesulfonic acid OA factor (MSA-OA, 25%, a marine oxygenated OA factor (M-OOA, 40%, a sea salt OA fraction (SS-OA, 7% and locally produced hydrocarbon-like OA (HOA, 9%. The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (C : N ratio = 0.13, has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea salt aerosol was identified (SS-OA. However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not

  15. Sub-Antarctic marine aerosol: dominant contributions from biogenic sources

    J. Schmale

    2013-09-01

    Full Text Available Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS, was 21% non-sea-salt sulfate, 2% nitrate, 8% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea spray signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA profiles could be isolated: an amino acid/amine factor (AA-OA, 18% of OA mass, a methanesulfonic acid OA factor (MSA-OA, 25%, a marine oxygenated OA factor (M-OOA, 41%, a sea spray OA fraction (SS-OA, 7% and locally produced hydrocarbon-like OA (HOA, 9%. The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (N : C ratio = 0.13, has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea spray aerosol was identified (SS-OA. However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not

  16. Sub-Antarctic marine aerosol: significant contributions from biogenic sources

    Schmale, J.; Schneider, J.; Nemitz, E.; Tang, Y. S.; Dragosits, U.; Blackall, T. D.; Trathan, P. N.; Phillips, G. J.; Sutton, M.; Braban, C. F.

    2013-03-01

    Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea salt sulfate 2% nitrate, 7% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea salt signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acids/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 40%), a sea salt OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (C : N ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea salt aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated to sea

  17. Sub-Antarctic marine aerosol: dominant contributions from biogenic sources

    Schmale, J.; Schneider, J.; Nemitz, E.; Tang, Y. S.; Dragosits, U.; Blackall, T. D.; Trathan, P. N.; Phillips, G. J.; Sutton, M.; Braban, C. F.

    2013-09-01

    Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea-salt sulfate, 2% nitrate, 8% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea spray signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acid/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 41%), a sea spray OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (N : C ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea spray aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated

  18. Small molecules as tracers in atmospheric secondary organic aerosol

    Yu, Ge

    Secondary organic aerosol (SOA), formed from in-air oxidation of volatile organic compounds, greatly affects human health and climate. Although substantial research has been devoted to SOA formation and evolution, the modeled and lab-generated SOA are still low in mass and degree of oxidation compared to ambient measurements. In order to compensate for these discrepancies, the aqueous processing pathway has been brought to attention. The atmospheric waters serve as aqueous reaction media for dissolved organics to undergo further oxidation, oligomerization, or other functionalization reactions, which decreases the vapor pressure while increasing the oxidation state of carbon atoms. Field evidence for aqueous processing requires the identification of tracer products such as organosulfates. We synthesized the standards for two organosulfates, glycolic acid sulfate and lactic acid sulfate, in order to measure their aerosol-state concentration from five distinct locations via filter samples. The water-extracted filter samples were analyzed by LC-MS. Lactic acid sulfate and glycolic acid sulfate were detected in urban locations in the United States, Mexico City, and Pakistan with varied concentrations, indicating their potential as tracers. We studied the aqueous processing reaction between glyoxal and nitrogen-containing species such as ammonium and amines exclusively by NMR spectrometry. The reaction products formic acid and several imidazoles along with the quantified kinetics were reported. The brown carbon generated from these reactions were quantified optically by UV-Vis spectroscopy. The organic-phase reaction between oxygen molecule and alkenes photosensitized by alpha-dicarbonyls were studied in the same manner. We observed the fast kinetics transferring alkenes to epoxides under simulated sunlight. Statistical estimations indicate a very effective conversion of aerosol-phase alkenes to epoxides, potentially forming organosulfates in a deliquescence event and

  19. Natural aerosol direct and indirect radiative effects

    Rap, Alexandru; Scott, Catherine E.; Spracklen, Dominick V; Bellouin, Nicolas; Forster, Piers M.; Carslaw, Kenneth S.; Schmidt, Anja; Mann, Graham

    2013-01-01

    Natural aerosol plays a significant role in the Earth's system due to its ability to alter the radiative balance of the Earth. Here we use a global aerosol microphysics model together with a radiative transfer model to estimate radiative effects for five natural aerosol sources in the present-day atmosphere: dimethyl sulfide (DMS), sea-salt, volcanoes, monoterpenes, and wildfires. We calculate large annual global mean aerosol direct and cloud albedo effects especially for DMS-derived sulfate ...

  20. The challenge of measuring sulfuric acid aerosols: number concentration and size evaluation using a condensation particle counter (CPC) and an electrical low pressure impactor (ELPI+)

    Brachert, L.; Mertens, J.; Khakharia, P.M.; Schaber, K.

    2014-01-01

    In this study, two different methods for the measurement of the sulfuric acid aerosol which is formed in wet flue gas cleaning processes have been investigated. The condensation particle counter (UFCPC, PALAS GmbH) provides information about the number concentration. With the electrical low pressure

  1. Tropospheric chemistry of natural hydrocarbons, aldehydes, and peroxy radicals: Their connections to sulfuric acid production and climate effects

    Recent work has shown that natural hydrocarbon emissions can significantly affect the levels of urban and regional tropospheric ozone. We report on the reactivities of these biogenic trace gases, particularly isoprene, focusing on their importance in the production of aldehydes and peroxy radicals, leading to increased levels of hydrogen over regional forests. Hydrogen peroxide can lead to the wet oxidation of sulfur dioxide to acidic sulfate in aerosols, fogs, and clouds. In turn, acidic sulfate can act to as a light scattering aerosol and a source of cloud condensation nuclei (CCN), potentially leading to global cooling. Aerosol sulfate and other dissolved organic and inorganic compounds can also play important roles as a greenhouse species in the lower troposphere

  2. Barium Sulfate

    ... using x-rays or computed tomography (CAT scan, CT scan; a type of body scan that uses ... be clearly seen by x-ray examination or CT scan. ... more times before an x-ray examination or CT scan.If you are using a barium sulfate ...

  3. Markers of heterogeneous reaction products in α-pinene ozone secondary organic aerosol

    Czoschke, Nadine M.; Jang, Myoseon

    A gas chromatograph iontrap mass spectrometer (GC-ITMS) was used to analyze the gas-and particle-phase products of α-pinene ozone oxidation in the presence of three different inorganic seed aerosols: sodium chloride, ammonium sulfate only, and ammonium sulfate with sulfuric acid. Products of α-pinene ozone oxidation common to the literature showed little difference in gas or particle-phase concentrations between seed types within the precision of the measurements even though significantly different aerosol yields were found between seed types. Small amounts of ring-opening products of four-membered cyclic oxygenates and markers of aldol condensation products were tentatively identified in the particle-phase for all seed types. These tentatively identified products are thought to be the result of acid-catalyzed heterogeneous reactions in the particle-phase or during sampling processes or analysis. The mechanisms for their formation are also proposed in this study.

  4. Examining the role of NOx and acidity on organic aerosol formation through predictions of key isoprene aerosol species in the United States

    Isoprene is a significant contributor to organic aerosol in the Southeastern United States. Later generation isoprene products, specifically isoprene epoxydiols (IEPOX) and methacryloylperoxynitrate (MPAN), have been identified as SOA precursors. The contribution of each pathway ...

  5. High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season

    Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.

    2013-08-01

    Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N, 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low-molecular-weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Molecular distributions of dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acids, were also detected together with aromatic diacids (phthalic, isophthalic and terephthalic acids). ω-oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (>6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June, showing a maximum on 7 June, and then significantly decreased during the period 8-11 June, when the wind direction shifted from southerly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of

  6. H3OLa(SO4)2 . 3 H2O: a new acidic sulfate of the rare earth elements

    Colorless single crystals of H3OLa(SO4)2 . 3 H2O have been obtained by the reaction of La2O3 and sulfuric acid (80% H2SO4) at 150 C. In the crystal structure (monoclinic, P21/c, Z = 4, a = 1119.5(5), b = 693.3(2), c = 1357.4(4) pm, β = 110.94(4) ) La3+ is ninefold coordinated by oxygen atoms which belong to five SO4- ions and three H2O molecules. One of sulfate groups acts as a bidentate ligand. Hydrogen bonding is observed with H2O molecules as donors and acceptors. Furthermore, strong hydrogen bonds are formed between the H3O+ ions and oxygen atoms of the SO42- groups. (orig.)

  7. Effectiveness of acidic calcium sulfate with propionic and lactic acid and lactates as postprocessing dipping solutions to control Listeria monocytogenes on frankfurters with or without potassium lactate and stored vacuum packaged at 4.5 degrees C.

    Nuñez de Gonzalez, Maryuri T; Keeton, Jimmy T; Acuff, Gary R; Ringer, Larry J; Lucia, Lisa M

    2004-05-01

    The safety of ready-to-eat meat products such as frankfurters can be enhanced by treating with approved antimicrobial substances to control the growth of Listeria monocytogenes. We evaluated the effectiveness of acidic calcium sulfate with propionic and lactic acid, potassium lactate, or lactic acid postprocessing dipping solutions to control L. monocytogenes inoculated (ca. 10(8) CFU/ml) onto the surface of frankfurters with or without potassium lactate and stored in vacuum packages at 4.5 degrees C for up to 12 weeks. Two frankfurter formulations were manufactured without (control) or with potassium lactate (KL, 3.3% of a 60% [wt/wt] commercially available syrup). After cooking, chilling, and peeling, each batch was divided into inoculated (four strains of L. monocytogenes mixture) and noninoculated groups. Each group was treated with four different dips: (i) control (saline solution), (ii) acidic calcium sulfate with propionic and lactic acid (ACS, 1:2 water), (iii) KL, or (iv) lactic acid (LA, 3.4% of a 88% [wt/wt] commercially available syrup) for 30 s. Noninoculated frankfurters were periodically analyzed for pH, water activity, residual nitrite, and aerobic plate counts (APCs), and L. monocytogenes counts (modified Oxford medium) were determined on inoculated samples. Surface APC counts remained at or near the lower limit of detection (dip, which indicated a residual bactericidal effect when L. monocytogenes populations were monitored over 12 weeks. L. monocytogenes numbers were also reduced, but not to the same degree in franks made without or with KL and treated with LA. These results revealed the effectiveness of ACS (bactericidal effect) or LA (bacteriostatic effect) as postprocessing dipping solutions to inhibit or control the growth of L. monocytogenes on vacuum-packaged frankfurters stored at 4.5 degrees C for up to 12 weeks. PMID:15151227

  8. Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006

    Fountoukis, C.; Nenes, A.; Sullivan, A.; Weber, R.; VanReken, T.; Fischer, M.; Matias, E.; Moya, M.; Farmer, D.; Cohen, R.C.

    2008-12-05

    Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM{sub 2.5} is insensitive to changes in ammonia but is to acidic semivolatile species. For particle sizes up to 1 {micro}m diameter, semi-volatile partitioning requires 30-60 min to equilibrate; longer time is typically required during the night and early morning hours. When the aerosol sulfate-to-nitrate molar ratio is less than unity, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as 'equivalent sodium' (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations is required to accurately predict the partitioning and phase state of aerosols.

  9. Secondary Organic Aerosol Formation from Glyoxal: photochemical versus dark uptake and reversible versus irreversible SOA formation

    Waxman, E.; Slowik, J.; Kampf, C.; Timkovsky, J.; Noziere, B.; Praplan, A.; Pffafenberger, L.; Holzinger, R.; Hoffmann, T.; Dommen, J.; Prevot, A.; Baltensperger, U.; Volkamer, R.

    2012-04-01

    Glyoxal forms secondary organic aerosol (SOA) by partitioning to the aerosol aqueous phase according to Henry's law. The subsequent processing by heterogeneous and multiphase reactions shifts the partitioning towards aerosols. Currently it is not well understood whether these reactions result in reversible or irreversible SOA formation, and what parameters influence the rate limiting step of multiphase processing. We conducted a series of simulation chamber experiments at PSI in April and May 2011 to investigate processing under dark conditions, UV and/or visible light irradiated conditions, and in the presence and absence of OH radicals. Experiments used ammonium sulfate or ammonium sulfate/fulvic acid mixtures as seed aerosols, and were conducted between 50% and 85% relative humidity at approximately constant RH over the course of any given experiment. Glyoxal was produced photochemically from acetylene, using HONO photolysis as the OH radical source. Gas-phase glyoxal was measured by the CU LED-Cavity Enhanced-DOAS. The Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer (TD-PTR-MS) and Ion Chromatography Mass Spectrometer (IC-MS) monitored both gas and aerosol-phase organic reaction products. Particle composition was monitored by High-Resolution Time-of-Flight Aerosol Mass Spectrometry (HR-ToF-AMS), and HPLC-ESI MS/MS and LC-MS analysis of filter samples.

  10. Lipid organics in background aerosols, cloudwater, and snow and implication for organic scavenging

    During three years free tropospheric snow, aerosol, and cloudwater samples were collected at Mount Sonnblick, Austria, at an elevation of 3106 m a.s.l. The samples were analyzed for their lipid organic trace components using extraction with n-hexane as sample pretreatment and gas chromatography-mass spectrometry-flame ionization detection for identification and quantification of the substances. The main components identified in all the samples were the phthalic acid esters which are of anthropogenic origin. Of further interest were aliphatic alcohols (not detected in aerosols) and phenols. They are of biogenic origin. The concentrations were found to be higher in spring than in the fall season. To compare the concentrations of aerosol, cloudwater and snow samples scavenging ratios (aerosol to snow), scavenging efficiencies (aerosol to cloud) and cloud to snow ratios were calculated for the first time for organic compounds. Scavenging ratios were 10 to 100 times lower, scavenging efficiencies 2 to 10 times lower than sulfate. This can result from the poor watersolubility of the compounds or from gas phase sorptions on the filter surface (overestimation of aerosol concentrations). The cloud to snow ratios were generally higher than for sulfate. However, a few components exhibited very low cloud to snow ratios which might be due to additional sources in snow for these substances (alcohols). (author)

  11. A novel tandem differential mobility analyzer with organic vapor treatment of aerosol particles

    J. Joutsensaari

    2001-01-01

    Full Text Available A novel method to characterize the organic composition of aerosol particles has been developed. The method is based on organic vapor interaction with aerosol particles and it has been named an Organic Tandem Differential Mobility Analyzer (OTDMA. The OTDMA method has been tested for inorganic (sodium chloride and ammonium sulfate and organic (citric acid and adipic acid particles. Growth curves of the particles have been measured in ethanol vapor and as a comparison in water vapor as a function of saturation ratio. Measurements in water vapor show that sodium chloride and ammonium sulfate as well as citric acid particles grow at water saturation ratios (S of 0.8 and above, whereas adipic acid particles do not grow at S S = 0.75 and S = 0.79, respectively. Citric acid particles grow monotonously with increasing saturation ratios already at low saturation ratios and no clear deliquescence point is found. For sodium chloride and ammonium sulfate particles, no growth can be seen in ethanol vapor at saturation ratios below 0.93. In contrast, for adipic acid particles, the deliquescence takes place at around S = 0.95 in the ethanol vapor. The recrystallization of adipic acid takes place at S The results show that the working principles of the OTDMA are operational for single-component aerosols. Furthermore, the results indicate that the OTDMA method may prove useful in determining whether aerosol particles contain organic substances, especially if the OTDMA is operated in parallel with a hygroscopicity TDMA, as the growth of many substances is different in ethanol and water vapors.

  12. Epoxide pathways improve model predictions of isoprene markers and reveal key role of acidity in aerosol formation

    Isoprene significantly contributes to organic aerosol in the southeastern United States where biogenic hydrocarbons mix with anthropogenic emissions. In this work, the Community Multiscale Air Quality model is updated to predict isoprene aerosol from epoxides produced under both ...

  13. Effects of sulfuric acid aerosol on respiratory mechanics and mucociliary particle clearance in healthy nonsmoking adults

    Ten healthy nonsmokers inhaled H2SO4 at 0 (control), 110, 330, and 980 μg/m3 for one hour via nasal mask in random sequence on four separate days. Respiratory mechanical function was assessed before and after the H2SO4 exposure. A /sup 99m/Tc tagged Fe2O3 aerosol was inhaled approx. 10 min before each H2SO4 exposure. Thoracic retention of the deposited radioactivity was monitored using collimated scintillation detectors. A tracheal probe was used to determine the tracheal mucociliary trnsport rates (TMTR's) of local concentrations of activity. Bronchial mucociliary clearance was markedly altered in a dose dependent pattern in six of the individuals and in the group as a whole. The four individuals whose clearance times were not significantly affected by these H2SO4 exposures were each given an additional test with a 1000 μg/m3 H2SO4 exposure preceding the tagged Fe2O3 aerosol. Three of them responded. Thus, 9 of 10 subjects had substantial changes in bronchial clearance times following H2SO4 exposures

  14. Metabolomics analysis reveals elevation of 3-indoxyl sulfate in plasma and brain during chemically-induced acute kidney injury in mice: Investigation of nicotinic acid receptor agonists

    An investigative renal toxicity study using metabolomics was conducted with a potent nicotinic acid receptor (NAR) agonist, SCH 900424. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were used to identify small molecule biomarkers of acute kidney injury (AKI) that could aid in a better mechanistic understanding of SCH 900424-induced AKI in mice. The metabolomics study revealed 3-indoxyl sulfate (3IS) as a more sensitive marker of SCH 900424-induced renal toxicity than creatinine or urea. An LC-MS assay for quantitative determination of 3IS in mouse matrices was also developed. Following treatment with SCH 900424, 3IS levels were markedly increased in murine plasma and brain, thereby potentially contributing to renal- and central nervous system (CNS)-related rapid onset of toxicities. Furthermore, significant decrease in urinary excretion of 3IS in those animals due to compromised renal function may be associated with the elevation of 3IS in plasma and brain. These data suggest that 3IS has a potential to be a marker of renal and CNS toxicities during chemically-induced AKI in mice. In addition, based on the metabolomic analysis other statistically significant plasma markers including p-cresol-sulfate and tryptophan catabolites (kynurenate, kynurenine, 3-indole-lactate) might be of toxicological importance but have not been studied in detail. This comprehensive approach that includes untargeted metabolomic and targeted bioanalytical sample analyses could be used to investigate toxicity of other compounds that pose preclinical or clinical development challenges in a pharmaceutical discovery and development. - Research highlights: → Nicotinic acid receptor agonist, SCH 900424, caused acute kidney injury in mice. → MS-based metabolomics was conducted to identify potential small molecule markers of renal toxicity. → 3-indoxyl-sulfate was found to be as a more sensitive marker of renal toxicity than

  15. High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountain aerosols over the North China Plain during wheat burning season

    Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.

    2013-02-01

    Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N; 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acid, were also detected together with aromatic diacids (phthalic, iso-phthalic and tere-phthalic acids). ω-Oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (> 6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June showing a maximum on 7 June and then significantly decreased during 8-11 June when the wind direction shifted from northeasterly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning products of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of volatile and semi

  16. Influence of Biomass Burning on Temporal and Diurnal Variations of Acidic Gases, Particulate Nitrate, and Sulfate in a Tropical Urban Atmosphere

    Sailesh N. Behera

    2014-01-01

    Full Text Available The present study investigated the temporal and diurnal distributions of atmospheric acidic gases (sulphur dioxide (SO2, nitrous acid (HONO, and nitric acid (HNO3 and those of particulate nitrate (NO3- and sulfate (SO42- through a comprehensive field campaign during the largest smoke haze episode in Singapore, a representative country in Southeast Asia (SEA. To identify the atmospheric behavior of these pollutants during the smoke haze period, the data generated from the measurement campaign were divided into three distinct periods: prehaze, during haze, and posthaze periods. The 24 hr average data indicated that ambient SO2, HONO, and HNO3 during the smoke haze episodes increased by a factor ranging from 1.2 to 2.6 compared to those during the prehaze and posthaze periods. Similarly, in the case of particulates SO42- and NO3-, the factor ranged from 2.3 to 4.2. Backward air trajectories were constructed and used to find the sources of biomass burning to the recurring smoke haze in this region. The air trajectory analysis showed that the smoke haze episodes experienced in Singapore were influenced by transboundary air pollution, caused by severe biomass burning events in the islands of Indonesia.

  17. Effect of a Long Chain Carboxylate Acid on Sodium Dodecyl Sulfate Micelle Structure: A Small-angle Neutron Scattering Study

    The effect of different hydrocarbon chain length of carboxylate acid, i.e. dodecanoic acid, CH3(CH2)10COOH and hexadecanoic acid, CH3(CH2)14COOH as a co-surfactant in the 0.3M SDS micellar solution has been studied using small angle neutron scattering (SANS). Here, the present of dodecanoic acid has induced the SDS structural micelles. The ellipsoid micelles structures changed significantly in length (major axis) from 21.7 Armstrong to 35.5 Armstrong at a fixed minor axis of 16.7 Armstrong in the present of 0.005M to 0.1M dodecanoic acid. Nevertheless, this effect was not shown in the present of hexadecanoic acid with the same concentration range. The present of hexadecanoic acid molecules gave a small effect on growth of SDS micelles where the major axis of the micelle was simply elongated from 21.5 Armstrong to 23.5 Armstrong. It showed that the appropriate hydrocarbon chain length between surfactant and co-surfactant molecules is one of the determining factors in forming a mixed micelles structure. (author)

  18. Secondary Organic Aerosol Formation from 2-Methyl-3-Buten-2-ol Photooxidation: Evidence of Acid-Catalyzed Reactive Uptake of Epoxides

    Zhang, Haofei; Zhang, Zhenfa; Cui, Tianqu; Lin, Ying-Hsuan; Bhathela, Neil A.; Ortega, John; Worton, David; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Gold, Avram; Surratt, Jason D.

    2014-04-08

    Secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) photooxidation has recently been observed in both field and laboratory studies. Similar to isoprene, MBO-derived SOA increases with elevated aerosol acidity in the absence of nitric oxide; therefore, an epoxide intermediate, (3,3-dimethyloxiran-2-yl)methanol (MBO epoxide) was synthesized and tentatively proposed here to explain this enhancement. In the present study, the potential of the synthetic MBO epoxide to form SOA via reactive uptake was systematically examined. SOA was observed only in the presence of acidic aerosols. Major SOA constituents, 2,3-dihydroxyisopentanol (DHIP) and MBO-derived organosulfate isomers, were chemically characterized in both laboratory-generated SOA and in ambient fine aerosols collected from the BEACHON-RoMBAS field campaign during summer 2011, where MBO emissions are substantial. Our results support epoxides as potential products of MBO photooxidation leading to formation of atmospheric SOA and suggest that reactive uptake of epoxides may generally explain acid enhancement of SOA observed from other biogenic hydrocarbons.

  19. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    Zhang, M.; Han, X.; Liu, X.

    2011-12-01

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W/m2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W/m2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan.

  20. Characterization of novel di- and tricarboxylic acids in fine tropical aerosols

    Zdráhal, Zbyněk; Vermeylen, R.; Claeys, M.; Maenhaut, W.; Guyon, P.; Artaxo, P.

    2001-01-01

    Roč. 36, č. 4 (2001), s. 403-416. ISSN 1076-5174 Institutional research plan: CEZ:AV0Z4031919 Keywords : dicarboxylic acids * tricarboxylic acids * gas chromatography/mass spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.685, year: 2001

  1. Gaseous ion-composition measurements in the young exhaust plume of jet aircraft at cruising altitudes. Implications for aerosols and gaseous sulfuric acid

    Arnold, F.; Wohlfrom, K.H.; Klemm, M.; Schneider, J.; Gollinger, K. [Max-Planck-Inst. for Nuclear Physics, Heidelberg (Germany); Schumann, U.; Busen, R. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    Mass spectrometric measurements were made in the young exhaust plume of an Airbus (A310) at cruising altitudes at distances between 400 and 800 m behind the Airbus (averaged plume age: 3.4 sec). The measurements indicate that gaseous sulfuric acid (GSA) number densities were less than 1.3 x 10{sup 8} cm{sup -3} which is smaller than the expected total sulfuric acid. Hence the missing sulfuric acid must have been in the aerosol phase. These measurements also indicate a total aerosol surface area density A{sub T} {<=} 5.4 x 10{sup -5} cm{sup 2} per cm{sup 3} which is consistent with simultaneously measured soot and water contrail particles. However, homogeneous nucleation leading to (H{sub 2}SO{sub 4}){sub x}(H{sub 2}O){sub y}-clusters can not be ruled out. (author) 16 refs.

  2. Tropospheric Aerosols

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    uncertainties by "the I-beams". Only an uncertainty range rather than a best estimate is presented for direct aerosol forcing by mineral dust and for indirect aerosol forcing. An assessment of the present level of scientific understanding is indicated at the bottom of the figure (reproduced by permission of Intergovernmental Panel on Climate Change). The importance of atmospheric aerosols to issues of societal concern has motivated much research intended to describe their loading, distribution, and properties and to develop understanding of the controlling processes to address such issues as air pollution, acid deposition, and climate influences of aerosols. However, description based wholly on measurements will inevitably be limited in its spatial and temporal coverage and in the limited characterization of aerosol properties. These limitations are even more serious for predictions of future emissions and provide motivation for concurrent theoretical studies and development of model-based description of atmospheric aerosols.An important long-range goal, which has already been partly realized, is to develop quantitative understanding of the processes that control aerosol loading, composition, and microphysical properties as well as the resultant optical and cloud-nucleating properties. An objective is to incorporate these results into chemical transport models that can be used for predictions. Such models are required, for example, to design approaches to achieve air quality standards and to assess and predict aerosol influences on climate change. Much current research is directed toward enhancing this understanding and to evaluating it by comparison of model results and observations. However, compared to gases, models involving particles are far more complex because of the need to specify additional parameters such as particle sizes and size distributions, compositions as a function of size, particle shapes, and temporal and spatial variations, including reactions that occur

  3. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-10-01

    Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.

  4. Chemical composition, main sources and temporal variability of PM1 aerosols in southern African grassland

    P. Tiitta

    2013-06-01

    Full Text Available Southern Africa is a significant source region of atmospheric pollution, yet long-term data on pollutant concentrations and properties from this region are rather limited. A recently established atmospheric measurement station in South Africa, Welgegund, is strategically situated to capture regional background emissions, as well as emissions from the major source regions in the interior of South Africa. We measured non-refractive submicron aerosols (NR-PM1 and black carbon over a one year period in Welgegund, and investigated the seasonal and diurnal patterns of aerosol concentration levels, chemical composition, acidity and oxidation level. Based on air mass back trajectories, four distinct source regions were determined for NR-PM1. Supporting data utilized in our analysis included particle number size distributions, aerosol absorption, trace gas concentrations, meteorological variables and the flux of carbon dioxide. The dominant submicron aerosol constituent during the dry season was organic aerosol, reflecting high contribution from savannah fires and other combustion sources. Organic aerosol concentrations were lower during the wet season, presumably due to wet deposition as well as reduced emissions from combustion sources. Sulfate concentrations were usually high and exceeded organic aerosol concentrations when air-masses were transported over regions containing major point sources. Sulfate and nitrate concentrations peaked when air masses passed over the industrial Highveld (iHV area. In contrast, concentrations were much lower when air masses passed over the cleaner background (BG areas. Air masses associated with the anti-cyclonic recirculation (ACBIC source region contained largely aged OA. Positive Matrix Factorization (PMF analysis of aerosol mass spectra was used to characterize the organic aerosol (OA properties. The factors identified were oxidized organic aerosols (OOA and biomass burning organic aerosols (BBOA in the dry season

  5. Expanding the 3-O-Sulfate Proteome-Enhanced Binding of Neuropilin-1 to 3-O-Sulfated Heparan Sulfate Modulates Its Activity.

    Thacker, Bryan E; Seamen, Emylie; Lawrence, Roger; Parker, Matthew W; Xu, Yongmei; Liu, Jian; Vander Kooi, Craig W; Esko, Jeffrey D

    2016-04-15

    Binding of proteins to heparan sulfate is driven predominantly by electrostatic interactions between positively charged amino acid residues in the protein and negatively charged sulfate groups located at various positions along the polysaccharide chain. Although many heparin/heparan-sulfate-binding proteins have been described, few exhibit preferential binding for heparan sulfates containing relatively rare 3-O-sulfated glucosamine residues. To expand the "3-O-sulfate proteome," affinity matrices were created from Chinese hamster ovary (CHO) cell heparan sulfate engineered in vitro with and without 3-O-sulfate groups. Fractionation of different animal sera yielded several proteins that bound specifically to columns containing 3-O-sulfated heparan sulfate modified by two members of the heparan sulfate 3-O-sulfotransferase superfamily, Hs3st1 and Hs3st2. Neuropilin-1 was analyzed in detail because it has been implicated in angiogenesis and axon guidance. We show that 3-O-sulfation enhanced the binding of neuropilin-1 to heparan sulfate immobilized on plastic plates and to heparan sulfate present on cultured cells. Chemoenzymatically synthesized 3-O-sulfated heparan sulfate dodecamers protected neuropilin-1 from thermal denaturation and inhibited neuropilin-1-dependent, semaphorin-3a-induced growth cone collapse of neurons derived from murine dorsal root ganglia. The effect of 3-O-sulfation was cell autonomous and specific to Hs3st2 based on collapse assays of neurons derived from Hs3st1- and Hs3st2-deficient mice. Finally, 3-O-sulfated heparan sulfate enhanced the inhibition of endothelial cell sprouting by exogenous heparan sulfate. These findings demonstrate a reliable method to identify members of the 3-O-sulfate proteome and that 3-O-sulfation of heparan sulfate can modulate axonal growth cone collapse and endothelial cell sprouting. PMID:26731579

  6. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn for measuring organic acids in concentrated bulk aerosol – a laboratory and field study

    J. Williams

    2012-08-01

    Full Text Available The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was increased by a factor of 7.5 to 11 (e.g. ~40 ng m−3 for pinonic acid by using the miniature Versatile Aerosol Concentration Enrichment System (mVACES upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards – pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total sub-micron organic aerosol mass was estimated to be about 60%. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94 demonstrates soft ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene cannot account for all of the measured fragments, which illustrates the complexity of ambient aerosol and possibly indicates unidentified or underestimated biogenic SOA precursor in the boreal forest.

  7. Use of ferric sulfate: acid media for the desulfurization of model compounds of coal. [Dibenzothiophene, diphenyl sulfide, di-n-butyl sulfide

    Clary, L.R.; Vermeulen, T.; Lynn, S.

    1980-12-01

    The objective of this work has been to investigate the ability of ferric sulfate-acid leach systems to oxidize the sulfur in model compounds of coal. Ferric iron-acid leach systems have been shown to be quite effective at removal of inorganic sulfur in coal. In this study, the oxidative effect of ferric iron in acid-leach systems was studied using dibenzothiophene, diphenyl sulfide, and di-n-butyl sulfide as models of organic sulfur groups in coal. Nitrogen and oxygen, as well as various transition metal catalysts and oxidants, were utilized in this investigation. Dibenzothiophene was found to be quite refractory to oxidation, except in the case where metavanadate was added, where it appears that 40% oxidation to sulfone could have occurred per hour at 150/sup 0/C and mild oxygen pressure. Diphenyl sulfide was selectively oxidized to sulfoxide and sulfone in an iron and oxygen system. Approximately 15% conversion to sulfone occurred per hour under these conditions. Some of the di-n-butyl sulfide was cracked to 1-butene and 1-butanethiol under similar conditions. Zinc chloride and ferric iron were used at 200/sup 0/C in an attempt to desulfonate dibenzothiophene sulfone, diphenyl sulfone, and di-n-butyl sulfone. Di-n-butyl sulfone was completely desulfurized on one hour and fragmented to oxidized parafins, while dibenzothiophene sulfone and diphenyl sulfone were unaffected. These results suggest that an iron-acid leach process could only selectively oxidize aryl sulfides under mild conditions, representing only 20% of the organic sulfur in coal (8% of the total sulfur). Removal through desulfonation once selective sulfur oxidation had occurred was only demonstrated for alkyl sulfones, with severe oxidation of the fragmented paraffins also occurring in one hour.

  8. Iron-hydroxide, iron-sulfate and hydrous-silica coatings in acid-mine tailings facilities: A comparative study of their trace-element composition

    Highlights: → Distribution and concentration of trace elements in rock coatings in Acid-Mine-Drainage systems. → Coatings occur along ponds and lakes of different pH and composition and are composed of Fe-hydroxides, Fe-sulfates and hydrous silica. → Silica-rich coatings have higher or similar trace-elements concentrations to Fe-rich coatings. → High trace-metal concentrations in Si-rich coatings are the result of the formation of jarosite-type phases in a silica-rich matrix. → Jarosite-type phases nucleate in silica-rich coatings via mixing of Fe-sulfate-rich solutions with trace-elements of underlying rock. - Abstract: Surface alteration-layers often coat minerals in acid-mine drainage systems and the characterization of their chemical composition is required to understand the uptake or release of potentially toxic elements. Samples with micrometer-thick rock coatings were collected from bedrock in contact with three acidic tailings ponds and a small lake, all located within the Copper Cliff mine tailings disposal area in Sudbury, Ontario, Canada. Distribution and concentration of trace-metals in the rock coatings were characterized with Laser-Ablation Inductively-Coupled Plasma Mass Spectroscopy and Micro X-ray Fluorescence Spectroscopy. The rock coatings are composed of goethite, ferrihydrite, schwertmannite, jarosite and amorphous silica. The latter phase is a product of the non-stoichiometric weathering of the underlying siliceous rock. Layers within the coatings are distinguished on the basis of their atomic Fe:Si ratios: FeOx coatings have Fe:Si > 4:1, Si-FeOx coatings have Fe:Si = 4:1 to 1:1 and SiOx coatings have Si > Fe. Iron-rich coatings (FeOx) in contact with acidic tailings ponds (pH x in contact with lake water at near neutral pH have similar trace-metal concentrations than Si-FeOx and SiOx, most likely the result of higher adsorption rates of metals at near neutral pH conditions. High trace-metal concentrations in Si-FeOx and SiOx are

  9. Iron-hydroxide, iron-sulfate and hydrous-silica coatings in acid-mine tailings facilities: A comparative study of their trace-element composition

    Durocher, J.L. [Department of Earth Sciences, Laurentian University, Sudbury, ON, P3E 2C6 (Canada); Schindler, M., E-mail: mschindler@laurentian.ca [Department of Earth Sciences, Laurentian University, Sudbury, ON, P3E 2C6 (Canada)

    2011-08-15

    Highlights: > Distribution and concentration of trace elements in rock coatings in Acid-Mine-Drainage systems. > Coatings occur along ponds and lakes of different pH and composition and are composed of Fe-hydroxides, Fe-sulfates and hydrous silica. > Silica-rich coatings have higher or similar trace-elements concentrations to Fe-rich coatings. > High trace-metal concentrations in Si-rich coatings are the result of the formation of jarosite-type phases in a silica-rich matrix. > Jarosite-type phases nucleate in silica-rich coatings via mixing of Fe-sulfate-rich solutions with trace-elements of underlying rock. - Abstract: Surface alteration-layers often coat minerals in acid-mine drainage systems and the characterization of their chemical composition is required to understand the uptake or release of potentially toxic elements. Samples with micrometer-thick rock coatings were collected from bedrock in contact with three acidic tailings ponds and a small lake, all located within the Copper Cliff mine tailings disposal area in Sudbury, Ontario, Canada. Distribution and concentration of trace-metals in the rock coatings were characterized with Laser-Ablation Inductively-Coupled Plasma Mass Spectroscopy and Micro X-ray Fluorescence Spectroscopy. The rock coatings are composed of goethite, ferrihydrite, schwertmannite, jarosite and amorphous silica. The latter phase is a product of the non-stoichiometric weathering of the underlying siliceous rock. Layers within the coatings are distinguished on the basis of their atomic Fe:Si ratios: FeO{sub x} coatings have Fe:Si > 4:1, Si-FeO{sub x} coatings have Fe:Si = 4:1 to 1:1 and SiO{sub x} coatings have Si > Fe. Iron-rich coatings (FeO{sub x}) in contact with acidic tailings ponds (pH < 3.5) have lower trace-metal concentrations than their Si-rich counterparts, whereas FeO{sub x} in contact with lake water at near neutral pH have similar trace-metal concentrations than Si-FeO{sub x} and SiO{sub x}, most likely the result of

  10. Sulfates on Mars: Indicators of Aqueous Processes

    Bishop, Janice L.; Lane, Melissa D.; Dyar, M. Darby; Brown, Adrian J.

    2006-01-01

    Recent analyses by MER instruments at Meridiani Planum and Gusev crater and the OMEGA instrument on Mars Express have provided detailed information about the presence of sulfates on Mars [1,2,3]. We are evaluating these recent data in an integrated multi-disciplinary study of visible-near-infrared, mid-IR and Mossbauer spectra of several sulfate minerals and sulfate-rich analog sites. Our analyses suggest that hydrated iron sulfates may account for features observed in Mossbauer and mid-IR spectra of Martian soils [4]. The sulfate minerals kieserite, gypsum and other hydrated sulfates have been identified in OMEGA spectra in the layered terrains in Valles Marineris and Terra Meridiani [2]. These recent discoveries emphasize the importance of studying sulfate minerals as tracers of aqueous processes. The sulfate-rich rock outcrops observed in Meridiani Planum may have formed in an acidic environment similar to acid rock drainage environments on Earth [5]. Because microorganisms typically are involved in the oxidation of sulfides to sulfates in terrestrial sites, sulfate-rich rock outcrops on Mars may be a good location to search for evidence of past life on that planet. Whether or not life evolved on Mars, following the trail of sulfate minerals will lead to a better understanding of aqueous processes and chemical weathering.

  11. Orbital evidence for clay and acidic sulfate assemblages on Mars based on mineralogical analogs from Rio Tinto, Spain

    Kaplan, Hannah H.; Milliken, Ralph E.; Fernández-Remolar, David; Amils, Ricardo; Robertson, Kevin; Knoll, Andrew H.

    2016-09-01

    Outcrops of hydrated minerals are widespread across the surface of Mars, with clay minerals and sulfates being commonly identified phases. Orbitally-based reflectance spectra are often used to classify these hydrated components in terms of a single mineralogy, although most surfaces likely contain multiple minerals that have the potential to record local geochemical conditions and processes. Reflectance spectra for previously identified deposits in Ius and Melas Chasma within the Valles Marineris, Mars, exhibit an enigmatic feature with two distinct absorptions between 2.2 and 2.3 μm. This spectral 'doublet' feature is proposed to result from a mixture of hydrated minerals, although the identity of the minerals has remained ambiguous. Here we demonstrate that similar spectral doublet features are observed in airborne, field, and laboratory reflectance spectra of rock and sediment samples from Rio Tinto, Spain. Combined visible-near infrared reflectance spectra and X-ray diffraction measurements of these samples reveal that the doublet feature arises from a mixture of Al-phyllosilicate (illite or muscovite) and jarosite. Analyses of orbital data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows that the martian spectral equivalents are also consistent with mixtures of Al-phyllosilicates and jarosite, where the Al-phyllosilicate may also include kaolinite and/or halloysite. A case study for a region within Ius Chasma demonstrates that the relative proportions of the Al-phyllosilicate(s) and jarosite vary within one stratigraphic unit as well as between stratigraphic units. The former observation suggests that the jarosite may be a diagenetic (authigenic) product and thus indicative of local pH and redox conditions, whereas the latter observation may be consistent with variations in sediment flux and/or fluid chemistry during sediment deposition.

  12. Resistance of different materials used in sewers systems:Polyvinyl chloride (PVC, polypropylene (PP and High density polyethylene (HDPE, to sulfuric acid and sodium sulfate attack.

    LASFAR Sara

    2014-02-01

    Full Text Available The behaviour of PVC, PP and HDPE used in sewer systems exposed to acid and sulfate solutions was investigated at 25°C and 40°C. Gravimetric characterization proves that PVC has a fickian behavior. It shows also, that PP has a non-fickian behavior, characterized by a rapid acceleration of water absorption, and the HDPE has a fickian behavior at 25°C, while it has a non-fickian behavior at 40°C, characterized by a weight loss after a certain aging period. The prolongation of the time of exposure to sulfuric acid solution leads to a progressive increase in tensile strength followed by a slight decrease at 40°C. The unaged samples of all materials have a much lower tensile strength than those of the aged samples, and a drop in elongation at break could be observed. These results can be explained by the increase of crystallinity, followed by the increase of crosslinking density due to the diffusion of the solvent and the effect of the temperature as the exposure time increases. These results prove that there is a correlation between the diffusion of the solvent as well as the increased exposure time and temperature on the mechanical properties of polymer.

  13. Photophoretic levitation of engineered aerosols for geoengineering

    Keith, David W.

    2010-01-01

    Aerosols could be injected into the upper atmosphere to engineer the climate by scattering incident sunlight so as to produce a cooling tendency that may mitigate the risks posed by the accumulation of greenhouse gases. Analysis of climate engineering has focused on sulfate aerosols. Here I examine the possibility that engineered nanoparticles could exploit photophoretic forces, enabling more control over particle distribution and lifetime than is possible with sulfates, perhaps allowing clim...

  14. Glucosamine sulfate

    ... bark extract, ginger root concentrate, Indian frankincense extract, turmeric root extract, cayenne, and hyaluronic acid (Instaflex Joint ... bark extract, ginger root concentrate, Indian frankincense extract, turmeric root extract, cayenne, and hyaluronic acid (Instaflex Joint ...

  15. Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSn for measuring organic acids in concentrated bulk aerosol – a laboratory and field study

    J. Williams

    2013-02-01

    Full Text Available The field application of an aerosol concentrator in conjunction with an atmospheric pressure chemical ionization ion trap mass spectrometer (APCI-IT-MS at the boreal forest station SMEAR II at Hyytiälä, Finland, is demonstrated in this study. APCI is a soft-ionization technique allowing online measurements of organic acids in the gas and particle phase. The detection limit for the acid species in the particle phase was improved by a factor of 7.5 to 11 (e.g. ∼40 ng m3 for pinonic acid by using the miniature versatile aerosol concentration enrichment system (mVACES upstream of the mass spectrometer. The APCI-IT-MS was calibrated in the negative ion mode with two biogenic organic acid standards – pinic acid and pinonic acid. Pinic acid was used as a surrogate for the quantification of the total amount of organic acids in the ambient aerosol based on the total signal intensities in the negative ion mode. The results were compared with the total organic signal of a C-ToF-AMS during the HUMPPA-COPEC 2010 field campaign. The campaign average contribution of organic acids measured by APCI-IT-MS to the total submicron organic aerosol mass was estimated to be about 60%, based on the response of pinic acid. Very good correlation between APCI-IT-MS and C-ToF-AMS (Pearson's R = 0.94 demonstrates soft-ionization mass spectrometry as a complimentary technique to AMS with electron impact ionization. MS2 studies of specific m/z ratios recorded during the HUMPPA-COPEC 2010 field campaign were compared to MS2 studies of selected monoterpene oxidation products formed in simulation chamber experiments. The comparison of the resulting fragments shows that oxidation products of the main VOCs emitted at Hyytiälä (α-pinene and Δ3-carene cannot account for all of the measured fragments. Possible explanations for those unaccounted fragments are the presence of unidentified or underestimated biogenic SOA precursors, or that different products are formed by a

  16. EFFECTS OF LARGE (0.9 MICROMETER) SULFURIC ACID AEROSOLS ON HUMAN PULMONARY FUNCTION

    The effects of sulfuric acid particle concentration (mass/volume) and ambient temperatures on pulmonary function of young male nonsmokers were examined. Subjects (n=11) thrice repeated a sequence of 20-min exercise (ventilation approximately 30 liters/min) and 20-min sitting rest...

  17. A non-derivatization Analysis of Fatty Acids from C6 to C20 in PM 2.5 Aerosols using GC/FID and GC/MSD

    Cheng, Y.; Li, S.

    2002-12-01

    Fatty acids make large contributions to aerosol mass. In particular, palmitic acid (C16) and stearic acid (C18) are dominant in atmosphere and in many sources of aerosols. Their analysis after sampling is usually based on methylation or silanization into methyl esters or silanes for analysis on GC/FID or GC/MSE. In this paper, a non-derivatization analysis method of fatty acids ranged from C6 to C20 in PM2.5 aerosols is discussed. The entire analysis method includes the processes of extraction using Accelerated Solvent Extraction (ASE), cleanup using silica gel column chromatography, concentration by blow down, and GC/FID and GC/MSD analysis/identification with the DB-FFAP capillary column. The calibration curves of the fatty acids on the GC/FID basically go through the origin and have highly linear response (r2 from 0.99862 to 0.99979) for the concentrations ranged from 0.6 to 128 ng/μl. Detection limits of fatty acids on the GC/FID are from 0.2 to 0.6 ng/μl depending on the compounds. The linear response of the calibration curves on the GC/FID is from 0.92 to 0.99. The detect limits on the GC/MSD are around 0.8 ng/μl. The relative standard deviations (RSD) of quantitation on the GC/FID are smaller than on the GC/MSD. Using the GC/FID, the recoveries of fatty acids using the entire method with spiked internal standards (surrogates) are between 80 and 104% with the RSD extracted at 80°C on the ASE the compounds were not stable and later turned into their methyl esters within one month, as well as creating some contamination peaks that rendered the quantitative analysis useless.

  18. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC: CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment

    D. Rose

    2007-06-01

    Full Text Available Experimental and theoretical uncertainties in the measurement of cloud condensation nuclei (CCN with a continuous-flow thermal-gradient CCN counter from Droplet Measurement Technologies (DMT-CCNC have been assessed by model calculations and calibration experiments with ammonium sulfate and sodium chloride aerosol particles in the diameter range of 20–220 nm. Experiments have been performed in the laboratory and during field measurement campaigns, extending over a period of more than one year and covering a wide range of operating conditions (650–1020 hPa ambient pressure, 0.5–1.0 L min−1 aerosol flow rate, 20–30°C inlet temperature, 4–34 K m−1 temperature gradient. For each set of conditions, the effective water vapor supersaturation (Seff in the CCNC was determined from the measured CCN activation spectra and Köhler model calculations.

    High measurement precision was achieved under stable laboratory conditions, where relative variations of Seff in the CCNC were generally less than ±2%. During field measurements, however, the relative variability increased up to ±5–7%, which can be mostly attributed to variations of the CCNC column top temperature with ambient temperature.

    To assess the accuracy of the Köhler models used to calculate Seff, we have performed a comprehensive comparison and uncertainty analysis of the various Köhler models and thermodynamic parameterizations commonly used in CCN studies. For the relevant supersaturation range (0.05–2%, the relative deviations between different modeling approaches were as high as 25% for (NH42SO4 and 16% for NaCl. The deviations were mostly caused by the different parameterizations for the activity of water in aqueous solutions of (NH42SO4 and NaCl (activity parameterization, osmotic coefficient, and van't Hoff

  19. Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition

    N. Unger

    2009-06-01

    Full Text Available The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, aerosol-cloud interactions (ACI. The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI to present day (PD and future impacts from PD to 2050 (for the moderate IPCC A1B scenario that embrace a wide spectrum of precursor emission changes and consequential ACI. The aerosol indirect effect (AIE is estimated to be −2.0 Wm−2 for PD-PI and −0.6 Wm−2 for 2050-PD, at the high end of current estimates. Inclusion of ACI substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of ACI leads to 20% enhancements in in-cloud sulfate production and ~10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions (~10–30%. Nitric acid wet deposition is dampened by 15–20% across the industrialized regions due to ACI allowing additional re-release of reactive nitrogen that contributes to 1–2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that ACI must be considered in studies of methane trends and projections of future changes to particulate matter air quality.

  20. Sulfur isotope analysis of aerosol particles by NanoSIMS

    Winterholler, Bärbel

    2007-01-01

    A new method to measure the sulfur isotopic composition of individual aerosol particles by NanoSIMS has been developed and tested on several standards such as barite (BaSO4), anhydrite (CaSO4), gypsum (CaSO4·2H2O), mascagnite ((NH4)2SO4), epsomite (MgSO4·7H2O), magnesium sulfate (MgSO4·xH2O), thenardite (Na2SO4), boetite (K2SO4) and cysteine (an amino acid). This ion microprobe technique employs a Cs+ primary ion beam and measures negative secondary ions permitting the analysis of sulfur isot...

  1. Cysteic acid and taurine synthesis from sulphate in the chick embryo; Synthese de l'acide cysteique et de la taurine a partir du sulfate dans l'oeuf embryonne de poule

    Chapeville, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-07-01

    The formation of taurine from sulphate was studied in the chick embryo using the radioisotopes of: sulphur, carbon and hydrogen. The following reactions occur: 1) reduction of sulphate to sulphite; 2) fixation of the sulphite on a carbon chain with an amino group, resulting from desulphydration of L-cysteine, which leads to the formation of L-cysteic acid; 3) decarboxylation of L-cysteic acid. Reaction (1) takes place only in the endo-dermal cells of the yolk sac; reaction (2) in these same cells and in the yolk; reaction (3) is general, localized in the yolk sac, in the yolk as well as in the tissues of the embryo itself. The enzyme which catalyses reaction (2) has been purified; the coenzyme is pyridoxal phosphate. The desulphydration of cysteine by this enzyme is a reversible reaction. In non-physiological conditions of concentration and temperature, pyridoxal phosphate catalyses in the presence of metallic ions, the desulphydration of cysteine and the formation of cysteic acid from sulphite. (author) [French] On a montre que la formation de taurine a partir de sulfate dans I'oeuf embryonne de poule, etudiee a l'aide des radioisotopes, du soufre, du carbone et de l'hydrogene, correspond aux reactions suivantes: 1) reduction du sulfate en sulfite; 2) fixation du sulfite sur une chaine tricarbonee et aminee provenant de la desulfhydration de la L-cysteine, fixation conduisant a la formation d'acide L-cysteique; 3) decarboxylation de l'acide L-cysteique. La reaction (1) a lieu uniquement dans les cellules de l'endoderme du sac vitellin; la reaction (2) dans les memes cellules et dans le vitellus; la reaction (3) est plus generale, elle est localisee dans le sac vitellin, dans le vitellus et dans les tissus de l'embryon. L'enzyme qui catalyse la reaction (2) a ete purifie; il possede le phosphate de pyridoxal comme coenzyme. La desulfhydration de la cysteine par cet enzyme est une reaction reversible. Dans les conditions non

  2. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-07-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8 ± 8.4 μg m-3 and 13.5 ± 8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva) ∼200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  3. State transformations and ice nucleation in glassy or (semi-solid amorphous organic aerosol

    K. J. Baustian

    2012-10-01

    Full Text Available Glassy or amorphous (semi-solid organic aerosol particles have the potential to serve as surfaces for heterogeneous ice nucleation in cirrus clouds. Raman spectroscopy and optical microscopy have been used in conjunction with a cold stage to examine water uptake and ice nucleation on individual aqueous organic glass particles at atmospherically relevant temperatures (200–273 K. Three organic compounds considered proxies for atmospheric secondary organic aerosol (SOA were used in this investigation: sucrose, citric acid and glucose. Internally mixed particles consisting of each organic species and ammonium sulfate were also investigated.

    Results from water uptake experiments were used to construct glass transition curves and state diagrams for each organic and corresponding mixture. A unique glass transition point on each state diagram, Tg', was used to quantify and compare results from this study to previous works. Values of Tg' determined for aqueous sucrose, glucose and citric acid glasses were 236 K, 230 K and 220 K, respectively. Values of Tg' for internally mixed organic/sulfate particles were always significantly lower; 210 K, 207 K and 215 K for sucrose/sulfate, glucose/sulfate and citric acid/sulfate, respectively.

    All investigated organic species were observed to serve as heterogeneous ice nuclei at tropospheric temperatures. Heterogeneous ice nucleation on pure organic particles occurred at Sice=1.1–1.4 for temperatures between 235 K and 200 K. Particles consisting of 1:1 organic-sulfate mixtures remained liquid over a greater range of conditions but were in some cases also observed to depositionally nucleate ice at temperatures below 202 K (Sice=1.25–1.38.

    Glass transition curves constructed from experimental data were incorporated into the Community Aerosol Radiation Model for Atmospheres (CARMA along with the

  4. Aerosols in large-scale atmospheric models: Future directions and needs

    Kerminen, V.M.; Korhonen, H. [Finnish Meteorological Institute, Helsinki (Finland)

    2004-07-01

    Large-scale atmospheric models range from regional air quality models to global chemical transport and/or climate models. The treatment of aerosol particles in such models was very crude in the past, as most models included only the sulfate aerosol or some other major aerosol type such as sea-salt or dust. The only predicted aerosol parameter in these models was the total mass concentration of each aerosol type. More recent models have aimed to predict the mass size distribution of relevant chemical components in the particulate phase. The application of large-scale atmospheric models has shifted gradually from acid deposition and visibility studies toward investigating the climate change and various health effects caused by air pollution. As a result, new requirements for these models and their structures have appeared. In the following we will discuss briefly what this means in terms of treating aerosols in large-scale atmospheric models, and what implications this further has on doing aerosol measurements.

  5. Forest soil response to acid and salt additions of sulfate. 3. Solubilization and composition of dissolved organic carbon

    A year-long experiment, using reconstructed spodosol and intact alfisol soil columns, was conducted to examine the effects of various simulated throughfall solutions on soil C dynamics. Soil organic C solubilization, dissolved organic C fractions, and decomposition rates were studied using simulated acidic and salt throughfall solutions. Based on the results of the study the authors propose that throughfall solutions of pH above 3.7 will have little or no influences on dissolved organic C cycling in the types of spodosol and alfisol forest soils used here. However, at pH 3.0 some alterations in organic C solubilization, dissolved organic C fractions, and mobility could be expected

  6. Biocompatibility evaluation of dicalcium phosphate/calcium sulfate/poly (amino acid) composite for orthopedic tissue engineering in vitro and in vivo.

    Wang, Peng; L