WorldWideScience

Sample records for acidic subsurface sediments

  1. Electron flow in acidic subsurface sediments co-contaminated with nitrate and uranium

    Edwards, Lainie; Küsel, Kirsten; Drake, Harold; Kostka, Joel E.

    2007-02-01

    The combination of low pH and high concentrations of nitrate and radionuclides in the subsurface is representative of many sites within the U.S. nuclear weapons complex managed by the Department of Energy (DOE), including the DOE's Environmental Remediation Sciences Program Field Research Center (ORFRC), in Oak Ridge, Tennessee. In order to provide a further understanding of the coupled microbiological and geochemical processes limiting radionuclide bioremediation, we determined the rates and pathways of terminal-electron accepting processes (TEAPs) in microcosm experiments using close to in situ conditions with ORFRC subsurface materials. At the in situ pH range of 4-5, carbon substrate utilization and TEAP rates were diminished, such that nitrate was not depleted and metal reduction was prevented. Upon biostimulation by pH neutralization and carbon substrate addition, TEAPs were stimulated to rates that rival those measured in organic-rich surficial sediments of aquatic environments, and extremely high nitrate concentrations (0.4-0.5 M) were not found to be toxic to microbial metabolism. Metal reduction under neutral pH conditions started once nitrate was depleted to low levels in response to biostimulation. Acidity controlled not only the rates but also the pathways of microbial activity. Denitrification predominated in sediments originating from neutral pH zones, while dissimilatory nitrate reduction to ammonium occurred in neutralized acidic microcosms amended with glucose. Electron donors were determined to stimulate microbial metabolism leading to metal reduction in the following order: glucose > ethanol > lactate > hydrogen. In microcosms of neutralized acidic sediments, 80-90% of C equivalents were recovered as fermentation products, mainly as acetate. Due to the stress imposed by low pH on microbial metabolism, our results indicate that the TEAPs of acidic subsurface sediment are inherently different from those of neutral pH environments and

  2. Spectroscopic studies of humic acids from subsurface sediment samples collected across the Aegean Sea

    F. SAKELLARIADOU

    2012-12-01

    Full Text Available Natural humic acids are biogenic, structurally complex and heterogeneous, refractory, acidic, yellow-to black-coloured organic polyelectrolytes of relatively high molecular weight. They occur in all soils, sediments, fresh waters, and seawaters. Humic acids represent the largest portion of nonliving soil organic matter. In the present paper, humic substances were isolated from marine subsurface sediment samples collected across the Aegean sea (in Greece and especially from a marine area extending northwards of the Samothraki plateau towards the north-eastern part of the island of Crete. In a following step, humic preparations were studied using infrared and fluorescence spectroscopy (emission, excitation and synchronous-scan excitation spectra were obtained. The infrared spectra suggested functional chemical groups such as as OH-, C-H aliphatic, C=C, C=O/COO-, salts of carboxylic acids, and also, in some cases, silicate anions or C-O from alcohols, esters and ethers. Fluorescence emission, excitation and synchronous scan excitation provided some valuable information concerning a probable origin (marine and/or terrestrial for the isolated humics.

  3. Re-Defining the Subsurface Biosphere: Characterization of Fungal Populations from Energy Limited Deep Marine Subsurface Sediments

    Reese, B. K.; Ariza, M.; St. Peter, C.; Hoffman, C.; Edwards, K. J.; Mills, H. J.

    2012-12-01

    The detection and characterization of metabolically active fungal populations within the deep marine subsurface will alter current ecosystem models that are limited to bacterial and archaeal populations. Although marine fungi have been studied for over fifty years, a detailed description of fungal populations within the deep subsurface is lacking. Fungi possess metabolic pathways capable of utilizing previously considered non-bioavailable energy reserves. Therefore, metabolically active fungi would occupy a unique niche within subsurface ecosystems, with the potential to provide an organic carbon source for heterotrophic prokaryotic populations not currently being considered in subsurface energy budgets. Sediments from the South Pacific Gyre subsurface, one of the most energy-limited environments on Earth, were collected during the Integrated Ocean Drilling Program (IODP) Expedition 329. Anaerobic and aerobic sediment slurry cultures using fresh sediment began directly following the completion of the Expedition (December 2010). From these cultures, multiple fungal lineages have been isolated on several media types that vary in carbon concentrations. Physical growth parameters of these subsurface fungal isolates were determined and compared to previously characterized lineages. Additionally, the overall diversity of metabolically active and dormant fungal populations was determined using high throughput sequencing of nucleic acids extracted from in situ cryopreserved South Pacific Gyre sediments. This project provides a robust step in determining the importance and impact of fungal populations within the marine subsurface biosphere.

  4. Measurement of bacterial growth rates in subsurface sediments using the incorporation of tritiated thymidine into DNA.

    Thorn, P M; Ventullo, R M

    1988-07-01

    Microbial growth rates in subsurface sediment from three sites were measured using incorporation of tritiated thymidine into DNA. Sampling sites included Lula, Oklahoma, Traverse City, Michigan, and Summit Lake, Wisconsin. Application of the thymidine method to subsurface sediments required (1) thymidine concentrations greater than 125 nM, (2) incubation periods of less than 4 hours, (3) addition of SDS and EDTA for optimum macromolecular extraction, and (4) DNA purification, in order to accurately measure the rate of thymidine incorporation into DNA. Macromolecule extraction recoveries, as well as the percentage of tritium label incorporated into the DNA fraction, were variable and largely dependent upon sediment composition. In general, sandy sediments yielded higher extraction recoveries and demonstrated a larger percentage of label incorporated into DNA than sediments that contained a high silt-clay component. Reported results also indicate that the acid-base hydrolysis procedure routinely used for macromolecular fractionation in water samples may not be routinely applicable to the modified sediment procedure where addition of SDS and EDTA are required for macromolecule extraction. Growth rates exhibited by subsurface communities are relatively slow, ranging from 5.1 to 10.2×10(5) cells g(-1) day(-1). These rates are 2-1,000-fold lower than growth rates measured in surface sediments. These data lend support to the supposition that subsurface microbial communities are nutritionally stressed. PMID:24201529

  5. Hydrogen utilization potential in subsurface sediments

    Adhikari, Rishi Ram; Glombitza, Clemens; Nickel, Julia;

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial...... Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen...... live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and...

  6. Hydrogen Utilization Potential in Subsurface Sediments.

    Adhikari, Rishi R; Glombitza, Clemens; Nickel, Julia C; Anderson, Chloe H; Dunlea, Ann G; Spivack, Arthur J; Murray, Richard W; D'Hondt, Steven; Kallmeyer, Jens

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones. PMID:26858697

  7. Hydrogen Utilization Potential in Subsurface Sediments

    Adhikari, Rishi R.; Glombitza, Clemens; Nickel, Julia C.; Anderson, Chloe H.; Dunlea, Ann G.; Spivack, Arthur J.; Murray, Richard W.; D'Hondt, Steven; Kallmeyer, Jens

    2016-01-01

    Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific, and Gulf of Mexico) with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product, or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material. We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i) increasing importance of fermentation in successively deeper biogeochemical zones and (ii) adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones. PMID:26858697

  8. NEPTUNIUM IV AND V SORPTIN TO END-MEMBER SUBSURFACE SEDIMENTS TO THE SAVANNAH RIVER SITE

    Kaplan, D.

    2009-11-13

    Migration of Np through the subsurface is expected to be primarily controlled by sorption to sediments. Therefore, understanding and quantifying Np sorption to sediments and sediments from the Savannah River Site (SRS) is vital to ensure safe disposal of Np bearing wastes. In this work, Np sorption to two sediments representing the geological extremes with respect to sorption properties expected in the SRS subsurface environment (named 'subsurface sandy sediment' and 'subsurface clayey sediment') was examined under a variety of conditions. First a series of baseline sorption tests at pH 5.5 under an oxic atmosphere was performed to understand Np sorption under typical subsurface conditions. These experiments indicated that the baseline K{sub d} values for the subsurface sandy and subsurface clayey sediments are 4.26 {+-} 0.24 L kg{sup -1} and 9.05 {+-} 0.61 L kg{sup -1}, respectively. These Np K{sub d} values of SRS sediments are the first to be reported since Sheppard et al. (1979). The previous values were 0.25 and 0.16 L kg{sup -1} for a low pH sandy sediment. To examine a possible range of K{sub d} values under various environmental scenarios, the effects of natural organic matter (NOM, also a surrogate for cellulose degradation products), the presence of various chemical reductants, and an anaerobic atmosphere on Np sorption were examined. The presence of NOM resulted in an increase in the Np K{sub d} values for both sediments. This behavior is hypothesized to be the result of formation of a ternary Np-NOM-sediment complex. Slight increases in the Np sorption (K{sub d} 13-24 L kg{sup -1}) were observed when performing experiments in the presence of chemical reductants (dithionite, ascorbic acid, zero-valent iron) or under anaerobic conditions. Presumably, the increased sorption can be attributed to a slight reduction of Np(V) to Np(IV), the stronger sorbing form of Np. The most significant result of this study is the finding that Np weakly

  9. Production of Abundant Hydroxyl Radicals from Oxygenation of Subsurface Sediments.

    Tong, Man; Yuan, Songhu; Ma, Sicong; Jin, Menggui; Liu, Deng; Cheng, Dong; Liu, Xixiang; Gan, Yiqun; Wang, Yanxin

    2016-01-01

    Hydroxyl radicals (•OH) play a crucial role in the fate of redox-active substances in the environment. Studies of the •OH production in nature has been constrained to surface environments exposed to light irradiation, but is overlooked in the subsurface under dark. Results of this study demonstrate that abundant •OH is produced when subsurface sediments are oxygenated under fluctuating redox conditions at neutral pH values. The cumulative concentrations of •OH produced within 24 h upon oxygenation of 33 sediments sampled from different redox conditions are 2-670 μmol •OH per kg dry sediment or 6.7-2521 μM •OH in sediment pore water. Fe(II)-containing minerals, particularly phyllosilicates, are the predominant contributor to •OH production. This production could be sustainable when sediment Fe(II) is regenerated by the biological reduction of Fe(III) during redox cycles. Production of •OH is further evident in a field injection-extraction test through injecting oxygenated water into a 23-m depth aquifer. The •OH produced can oxidize pollutants such as arsenic and tetracycline and contribute to CO2 emissions at levels that are comparable with soil respiration. These findings indicate that oxygenation of subsurface sediments is an important source of •OH in nature that has not been previously identified, and •OH-mediated oxidation represents an overlooked process for substance transformations at the oxic/anoxic interface. PMID:26641489

  10. Isolation, characterization, and U(VI)-reducing potential of a facultatively anaerobic, acid-resistant Bacterium from Low-pH, nitrate- and U(VI)-contaminated subsurface sediment and description of Salmonella subterranea sp. nov.

    Shelobolina, Evgenya S; Sullivan, Sara A; O'Neill, Kathleen R; Nevin, Kelly P; Lovley, Derek R

    2004-05-01

    A facultatively anaerobic, acid-resistant bacterium, designated strain FRCl, was isolated from a low-pH, nitrate- and U(VI)-contaminated subsurface sediment at site FW-024 at the Natural and Accelerated Bioremediation Research Field Research Center in Oak Ridge, Tenn. Strain FRCl was enriched at pH 4.5 in minimal medium with nitrate as the electron acceptor, hydrogen as the electron donor, and acetate as the carbon source. Clones with 16S ribosomal DNA (rDNA) sequences identical to the sequence of strain FRCl were also detected in a U(VI)-reducing enrichment culture derived from the same sediment. Cells of strain FRCl were gram-negative motile regular rods 2.0 to 3.4 micro m long and 0.7 to 0.9 microm in diameter. Strain FRCl was positive for indole production, by the methyl red test, and for ornithine decarboxylase; it was negative by the Voges-Proskauer test (for acetylmethylcarbinol production), for urea hydrolysis, for arginine dihydrolase, for lysine decarboxylase, for phenylalanine deaminase, for H(2)S production, and for gelatin hydrolysis. Strain FRCl was capable of using O(2), NO(3)(-), S(2)O(3)(2-), fumarate, and malate as terminal electron acceptors and of reducing U(VI) in the cell suspension. Analysis of the 16S rDNA sequence of the isolate indicated that this strain was 96.4% similar to Salmonella bongori and 96.3% similar to Enterobacter cloacae. Physiological and phylogenetic analyses suggested that strain FRCl belongs to the genus Salmonella and represents a new species, Salmonella subterranea sp. nov. PMID:15128557

  11. Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated Subsurface Sediments

    A laboratory incubation experiment was conducted with uranium contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A classical sequence of TEAPs was observed in ethanol-amended slurries, with NO3- reduction, Fe(III) reduction, SO4 2- reduction, and CH4 production proceeding in sequence until all of the added 13C-ethanol (9 mM) was consumed. Approximately 60% of the U(VI) content of the sediment was reduced during the period of Fe(III) reduction. No additional U(VI) reduction took place during the sulfate-reducing and methanogenic phases of the experiment. Only gradual reduction of NO3 -, and no reduction of U(VI), took place in ethanol-free slurries. Stimulation of additional Fe(III) or SO4 2- reduction in the ethanol-amended slurries failed to promote further U(VI) reduction. Reverse transcribed 16S rRNA clone libraries revealed major increases in the abundance of organisms related to Dechloromonas, Geobacter, and Oxalobacter in the ethanolamended slurries. PLFAs indicative of Geobacter showed a distinct increase in the amended slurries, and analysis of PLFA 13C/12C ratios confirmed the incorporation of ethanol into these PLFAs. A increase in the abundance of 13C-labeled PLFAs indicative of Desulfobacter, Desulfotomaculum, and Desulfovibrio took place during the brief period of sulfate reduction which followed the Fe(III) reduction phase. Our results show that major redox processes in ethanol-amended sediments can be reliably interpreted in terms of standard conceptual models of TEAPs in sediments. However, the redox speciation of uranium is complex and cannot be explained based on simplified thermodynamic considerations

  12. Scale-dependent desorption of uranium from contaminated subsurface sediments

    Column experiments were performed to investigate the scale-dependent desorption of uranyl [U(VI)] from a contaminated sediment collected from the Hanford 300 Area at the US Department of Energy (DOE) Hanford Site, Washington. The sediment was a coarse-textured alluvial flood deposit containing significant mass percentage of river cobble. U(VI) was, however, only associated with its minor, fine-grained (< 2mm) mass fraction. U(VI) desorption was investigated both from the field-textured sediment using a large column (80 cm length by 15 cm inner diameter), and from its < 2mm, U(VI)-associated mass fraction using a small column (10 cm length by 3.4 cm inner diameter). Dynamic advection conditions with intermittent flow and stop-flow events of variable durations were employed to investigate U(VI) desorption kinetics and its scale dependence. A multi-component kinetic model that integrated a distributed rate expression with surface complexation reactions successfully described U(VI) release from the fine-grained, U(VI)-associated materials. The field-textured sediment in the large column displayed dual domain, tracer-dependent mass transfer properties that affected the breakthrough curves of bromide, pentafluorobenzoic acid (PFBA), and tritium. The tritium breakthrough curve showed stronger non-equilibrium behavior than did PFBA and bromide, and required a larger immobile porosity to describe. The dual domain mass transfer properties were then used to scale the kinetic model of U(VI) desorption developed for the fine-grained materials to describe U(VI) release and reactive transport in the field-textured sediment. Numerical simulations indicated that the kinetic model that was integrated with the dual domain properties determined from tracer PFBA and Br best described the experimental results. The kinetic model without consideration of the dual domain properties over-predicted effluent U(VI) concentrations, while the model based on tritium mass transfer under

  13. Petroleum-related hydrocarbons in deep and subsurface sediments from South-Western Barents Sea

    Boitsov, Stepan; Petrova, V.; Jensen, Henning K. B.; Kursheva, A.; Litvinenko, I.; Chen, Y.; Klungsøyr, Jarle

    2011-01-01

    Abstract Subsurface sediments from a pockmark area in South-Western Barents Sea have been earlier found to contain elevated levels of petroleum-related polycyclic aromatic hydrocarbons. This work describes a comprehensive analysis of various biomarkers, including the highly source-specific hopanes, in a 4.5 m long gravity core from the same area, together with subsurface sediment samples from other areas in the region without pockmarks present (?background samples?). A clear differ...

  14. Geochemical characterization of subsurface sediments in the netherlands.

    Huisman, D.J.

    1998-01-01

    Traditionally, the Netherlands' subsurface is mainly used to obtain good quality drinking and industrial waters from the different aquifers. Due to the lack of space on the surface, increasing environmental problems and demand for energy, the subsurface will be used increasingly for other activities

  15. Geochemical characterization of subsurface sediments in the netherlands.

    Huisman, D.J.

    1998-01-01

    Traditionally, the Netherlands' subsurface is mainly used to obtain good quality drinking and industrial waters from the different aquifers. Due to the lack of space on the surface, increasing environmental problems and demand for energy, the subsurface will be used increasingly for other activities, including large underground infrastructural projects, underground storage of waste and greenhousegasses and underground storage capacity for the energy sector.In order to evaluate the effects of ...

  16. Final Report: Dominant Mechanisms of Uranium-Phosphate Reactions in Subsurface Sediments

    Catalano, Jeffrey G. [Washington Univ., St. Louis, MO (United States); Giammar, Daniel E. [Washington Univ., St. Louis, MO (United States); Wang, Zheming [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-08

    Phosphate addition is an in situ remediation approach that may enhance the sequestration of uranium without requiring sustained reducing conditions. However, the geochemical factors that determine the dominant immobilization mechanisms upon phosphate addition are insufficiently understood to design efficient remediation strategies or accurately predict U(VI) transport. The overall objective of our project is to determine the dominant mechanisms of U(VI)-phosphate reactions in subsurface environments. Our research approach seeks to determine the U(VI)-phosphate solid that form in the presence of different groundwater cations, characterize the effects of phosphate on U(VI) adsorption and precipitation on smectite and iron oxide minerals, examples of two major reactive mineral phases in contaminated sediments, and investigate how phosphate affects U(VI) speciation and fate during water flow through sediments from contaminated sites. The research activities conducted for this project have generated a series of major findings. U(VI) phosphate solids from the autunite mineral family are the sole phases to form during precipitation, with uranyl orthophosphate not occurring despite its predicted greater stability. Calcium phosphates may take up substantial quantities of U(VI) through three different removal processes (adsorption, coprecipitation, and precipitation) but the dominance of each process varies with the pathway of reaction. Phosphate co-adsorbs with U(VI) onto smectite mineral surfaces, forming a mixed uranium-phosphate surface complex over a wide range of conditions. However, this molecular-scale association of uranium and phosphate has not effect on the overall extent of uptake. In contrast, phosphate enhanced U(VI) adsorption to iron oxide minerals at acidic pH conditions but suppresses such adsorption at neutral and alkaline pH, despite forming mixed uranium-phosphate surface complexes during adsorption. Nucleation barriers exist that inhibit U(VI) phosphate

  17. Fossilization and degradation of intact polar lipids in deep subsurface sediments: A theoretical approach

    Schouten, Stefan; Middelburg, Jack J.; Hopmans, Ellen C.; Sinninghe Damsté, Jaap S.

    2010-07-01

    Intact polar membrane lipids (IPLs) are frequently used as markers for living microbial cells in sedimentary environments. The assumption with these studies is that IPLs are rapidly degraded upon cell lysis and therefore IPLs present in sediments are derived from in situ microbial production. We used a theoretical approach to assess whether IPLs in surface sediments can potentially represent fossilized IPLs derived from the upper part of the water column and whether IPLs can be preserved during sediment burial. Previous studies which examined the degradation kinetics of IPLs show that phospholipids, i.e. ester-linked lipids with a phosphor-containing head group, degrade more rapidly than glycosidic ether lipids, i.e. ether-linked lipids with a glycosidically bound sugar moiety. Based on these studies, we calculate that only a minor fraction of phospholipids but a major fraction of glycosidic ether lipids biosynthesized in the upper part of the water column can potentially reach deep-sea surface sediments. Using a simple model and power law kinetic degradation parameters reported in the literature, we also evaluated the degradation of IPLs during sediment burial. Our model predicts a log-log relationship between IPL concentrations and depth, consistent with what has been observed in studies of IPLs in subsurface sediments. Although our results do not exclude production of IPLs in subsurface sediment, they do suggest that IPLs present in the deep biosphere may contain a substantial fossil component potentially masking in situ IPL production.

  18. Final report - Microbial pathways for the reduction of mercury in saturated subsurface sediments

    Tamar barkay; Lily Young; Gerben Zylstra

    2009-08-25

    Mercury is a component of mixed wastes that have contaminated vast areas of the deep subsurface as a result of nuclear weapon and energy production. While this mercury is mostly bound to soil constituents episodes of groundwater contamination are known in some cases resulting in potable water super saturated with Hg(0). Microbial processes that reduce Hg(II) to the elemental form Hg(0) in the saturated subsurface sediments may contribute to this problem. When we started the project, only one microbial pathway for the reduction of Hg(II), the one mediated by the mer operon in mercury resistant bacteria was known. As we had previously demonstrated that the mer mediated process occurred in highly contaminated environments (Schaefer et al., 2004), and mercury concentrations in the subsurface were reported to be low (Krabbenhoft and Babiarz, 1992), we hypothesized that other microbial processes might be active in reducing Hg(II) to Hg(0) in saturated subsurface environments. The specific goals of our projects were: (1) Investigating the potential for Hg(II) reduction under varying electron accepting conditions in subsurface sediments and relating these potential to mer gene distribution; and (2) Examining the physiological and biochemical characteristics of the interactions of anaerobic bacteria with mercury. The results are briefly summarized with references to published papers and manuscripts in preparation where details about our research can be found. Additional information may be found in copies of our published manuscripts and conference proceedings, and our yearly reports that were submitted through the RIMS system.

  19. Palynodating of subsurface sediments, Raniganj Coalfield, Damodar Basin, West Bengal

    Srikanta Murthy; B Chakraborti; M D Roy

    2010-10-01

    The Gondwana sediments comprising fine-grained shales,carbonaceous shales,sandstones and the coal horizon in borecore RT-4 (approximately 547.00 m thick)from Tamra block,Raniganj Coal field,Damodar Basin,are analyzed palynologically.Based on the distribution pattern of marker palynotaxa,two assemblage zones are identi fied.In the Barren Measures Formation,dominance of enveloping monosaccate (Densipollenites) along with striate bisaccate (Striatopodocarpites,Fauni- pollenites) pollen taxa,and the FAD ’s of Kamthisaccites and Arcuatipollenites observed at 30.75, have equated this strata (30.75 –227.80 m thick)with the Raniganj Formation of Late Permian in age.Downwards in the Barakar Formation,between 423.80 –577.70 m depths,an abundance of non-striate (Scheuringipollenites )and striate(Faunipollenites and Striatopodocarpites )bisaccate pollen taxa is observed,that dates late Early Permian in age. Fair occurrences of hyaline,distorted and blackish-brown plant matter is observed within 231.00 –408.40 m depths.Present study infers the existence of the Raniganj Formation in the lithologically delimited Barren Measures Formation in the study area,and the underlying unproductive strata (approx.177.40 m)might represent the part of the Barren Measures Formation.

  20. Methane Production from Protozoan Endosymbionts Following Stimulation of Microbial Metabolism within Subsurface Sediments

    DawnElenaHolmes

    2014-08-01

    Full Text Available Previous studies have suggested that protozoa prey on Fe(III- and sulfate-reducing bacteria that are enriched when acetate is added to uranium contaminated subsurface sediments to stimulate U(VI reduction. In order to determine whether protozoa continue to impact subsurface biogeochemistry after these acetate amendments have stopped, 18S rRNA and ß-tubulin sequences from this phase of an in situ uranium bioremediation field experiment were analyzed. Sequences most similar to Metopus species predominated, with the majority of sequences most closely related to M. palaeformis, a cilitated protozoan known to harbor methanogenic symbionts. Quantification of mcrA mRNA transcripts in the groundwater suggested that methanogens closely related to Metopus endosymbionts were metabolically active at this time. There was a strong correlation between the number of mcrA transcripts from the putative endosymbiotic methanogen and Metopus ß-tubulin mRNA transcripts during the course of the field experiment, suggesting that the activity of the methanogens was dependent upon the activity of the Metopus species. Addition of the eukaryotic inhibitors cyclohexamide and colchicine to laboratory incubations of acetate-amended subsurface sediments significantly inhibited methane production and there was a direct correlation between methane concentration and Metopus ß-tubulin and putative symbiont mcrA gene copies. These results suggest that, following the stimulation of subsurface microbial growth with acetate, protozoa harboring methanogenic endosymbionts become important members of the microbial community, feeding on moribund biomass and producing methane.

  1. Physico-chemical and Mineralogical Characterisation of Subsurface Sediments around Gaborone Landfill, Botswana

    EKOSSE, G E; TOTOLO, O; NGOLE, V M

    2004-01-01

    ABSTRACT: Studies were carried out on subsurface sediments obtained around the Gaborone landfill area Botswana, in order to characterize their mineralogy and physico-chemistry, appraise any contaminant inputs from the landfill and assess their ability to attenuate contaminants from the landfill. Physico-chemical properties investigated included particle size distribution (PSD), moisture content, bulk density (Db), porosity, surface area, pH, electrical conductivity (EC), and cation exchange c...

  2. Immobilization and Natural Attenuation of Arsenic in Surface and Subsurface Sediments

    O'Day, P. A.; Illera, V.; Choi, S.; Vlassopoulos, D.

    2008-12-01

    Understanding of molecular-scale biogeochemical processes that control the mobilization and distribution of As and other oxyanions can be used to develop remediation strategies that take advantage of natural geochemical and hydrologic gradients. Arsenic and other toxic oxyanions can be mobilized at low bulk sediment concentrations (ppm range) and thus, treatment technologies are challenged by low contaminant concentrations, widespread sources, variable pH and Eh conditions, and inaccessibility of subsurface environments. In situ chemical amendments to soils and sediments can be used to decrease the mobility and bioaccessibility of As and oxyanions through sorption to, or precipitation with, stabilizing phases. At a site near San Francisco Bay (CA, USA), treatment of As-contaminated soils with sulfate-cement amendments has effectively immobilized As. Laboratory experiments with field soils and spectroscopic characterizations showed that in high pH cement-type treatments, As is precipitated in ettringite-type phases (Ca-Al sulfates), whereas in low pH ferrous sulfate treatments, As is associated with an iron-arsenate phase (angellelite). The presence of As-associated ettringite-type phases in field sediments amended more than a decade ago indicates long-term stability of these neophases, as long as environmental conditions are relatively constant. At sites of subsurface contamination, monitored natural attenuation (MNA) as a remediation approach for As is gaining interest and acceptance. Successful implementation of MNA requires a mechanistic understanding of As sequestration processes and of the subsurface conditions that may enhance or reduce long-term effectiveness. At a former military site (MA, USA), naturally occurring As was mobilized from sediments as a result of reducing conditions from addition of organic carbon as a biodegradation treatment of chlorinated solvents. Elevated As concentrations were not detected further than about 30 m downgradient of the

  3. Sediment and Nutrient Contributions from Subsurface Drains and Point Sources to an Agricultural Watershed

    Bonnie Ball Coelho

    2010-03-01

    Full Text Available Excess sediment and nutrients in surface waters can threaten aquatic life. To determine the relative importance of subsurface drainage as a pathway for movement of sediment and nutrients to surface waters, loading from various tile systems was compared to that from sewage treatment plants (STP within the same watershed. Movement through tiles comprised 1 to 8% of estimated total (overland plus tile annual sediment loading from the respective areas drained by the tile. Load during the growing season from five closed drain- age systems without surface inlets averaged 5 kg sediment/ha, 0.005 kg dissolved reactive P (DRP/ha, 0.003 kg NH4-N/ha, and 3.8 kg NO3-N/ha; and from two open drainage systems with surface inlets averaged 14 kg sediment/ha, 0.03 kg DRP/ha, 0.04 kg NH4-N/ha, and 3.1 kg NO3-N/ha. The eight STP contributed about 44 530 kg suspended sediments, 3380 kg total P, 1340 kg NH4-N, and 116 900 kg NO3-N to the watershed annually. Drainage systems added less NH4-N and P, but more NO3-N and suspended solids to surface waters than STP. Tile drainage pathways for NO3-N, STP in the case of P, and overland pathways for sediment are indicated as targets to control loading in artificially drained agricultural watersheds.

  4. Mobilization of arsenic from subsurface sediments by effect of bicarbonate ions in groundwater.

    Anawar, Hossain M; Akai, Junji; Sakugawa, Hiroshi

    2004-02-01

    Arsenic leaching by bicarbonate ions has been investigated in this study. Subsurface sediment samples from Bangladesh were treated with different carbonate and bicarbonate ions and the results demonstrate that the arsenic leaching efficiency of the carbonate solutions decreased in the order of Na2CO3>NaHCO3>BaCO3>MnCO3. Sodium carbonate and bicarbonate ions extracted arsenic most efficiently; Na2CO3 leached maximum 118.12 microg/l of arsenic, and NaHCO3, 94.56 microg/l of arsenic from the Ganges delta sediments after six days of incubation. The arsenic concentrations extracted in the batch experiments correlated very well with the bicarbonate concentrations. The kinetics study of arsenic release indicates that arsenic-leaching rate increased with reaction time in bicarbonate solutions. Bicarbonate ions can extract arsenic from sediment samples in both oxic and anoxic conditions. A linear relationship found between arsenic contents in core samples and those in leachates suggests that dissolved arsenic concentration in groundwater is related to the amount of arsenic in aquifer sediments. In batch experiment, bicarbonate solutions effectively extracted arsenic from arsenic adsorbed iron oxyhydroxide, reflecting that bicarbonate solutions may mobilize arsenic from iron and manganese oxyhydroxide in sediments that are ubiquitous in subsurface core samples. Carbonate ion may form complexes on the surface sites of iron hydroxide and substitute arsenic from the surface of minerals and sediments resulting in release of arsenic to groundwater. Like in the batch experiment, arsenic and bicarbonate concentrations in groundwater of Bangladesh correlated very well. Therefore, bicarbonate leaching is presumed to be one important mechanism to mobilize arsenic in bicarbonate dominated reducing aquifer of Bangladesh and other parts of the world as well. PMID:14602108

  5. Chemotactic behavior of deep subsurface bacteria toward carbohydrates, amino acids and a chlorinated alkene

    Lopez de Victoria, G. (Puerto Rico Univ., Rio Piedras (Puerto Rico). Dept. of Biology)

    1989-02-01

    The chemotactic behavior of deep terrestrial subsurface bacteria toward amino acids, carbohydrates and trichloroethylene was assayed using a modification of the capillary method and bacterial enumeration by acridine orange direct counts. Eleven isolates of bacteria isolated from six different geological formations were investigated. A bimodal response rather than an absolute positive or negative response was observed in most assays. Most of the isolates were positively chemotactic to low concentrations of substrates and were repelled by high concentrations of the same substrate. However, this was not the case for trichloroethylene (TCE) which was mostly an attractant and elicited the highest responses in all the isolates when compared with amino acids and carbohydrates. The movement rates of these isolates in aseptic subsurface sediments in the absence and presence of TCE were also determined using a laboratory model. All of the isolates showed distinct response range, peak, and threshold concentrations when exposed to the same substrates suggesting that they are possibly different species as has been inferred from DNA homology studies. 101 refs., 4 figs., 57 tabs.

  6. The microbial methane cycle in subsurface sediments. Final project report, July 1, 1993--August 31, 1997

    Grossman, E.L.; Ammerman, J.W. [Texas A and M Univ., College Station, TX (United States); Suflita, J.M. [Univ. of Oklahoma, Norman, OK (United States). Dept. of Botany and Microbiology

    1997-12-31

    The objectives of this study were to determine the factors controlling microbial activity and survival in the subsurface and, specifically, to determine whether microbial communities in aquitards and in aquifer microenvironments provide electron donors and/or acceptors that enhance microbial survival in aquifers. Although the original objectives were to focus on methane cycling, the authors pursued an opportunity to study sulfur cycling in aquifer systems, a process of much greater importance in microbial activity and survival, and in the mobility of metals in the subsurface. Furthermore, sulfur cycling is pertinent to the Subsurface Science Program`s study at Cerro Negro, New Mexico. The study combined field and laboratory approaches and microbiological, molecular, geochemical, and hydrogeological techniques. During drilling operations, sediments were collected aseptically and assayed for a variety of microorganisms and metabolic capabilities including total counts, viable aerobic heterotrophs, total anaerobic heterotrophs, sulfate reducing bacteria (SRB) and sulfate reduction activity (in situ and in slurries), methanogens, methanotrophs, and Fe- and S-oxidizers, among others. Geochemical analyses of sediments included organic carbon content and {sup 13}C/{sup 12}C ratio, sulfur chemistry (reduced sulfur, sulfate), {sup 34}S/{sup 32}S, {sup 13}C/{sup 12}C, {sup 14}C, tritium, etc. The authors drilled eight boreholes in the Eocene Yegua formation at four localities on the Texas A&M University campus using a hollow-stem auger drilling rig. The drilling pattern forms a T, with three well clusters along the dip direction and two along strike. Four boreholes were sampled for sediments and screened at the deepest sand interval encountered, and four boreholes were drilled to install wells in shallower sands. Boreholes range in depth from 8 to 31 m, with screened intervals ranging from 6 to 31 m. Below are the results of these field studies.

  7. Subsurface sediment contamination during borehole drilling with an air-actuated down-hole hammer

    Malard, Florian; Datry, Thibault; Gibert, Janine

    2005-10-01

    Drilling methods can severely alter physical, chemical, and biological properties of aquifers, thereby influencing the reliability of water samples collected from groundwater monitoring wells. Because of their fast drilling rate, air-actuated hammers are increasingly used for the installation of groundwater monitoring wells in unconsolidated sediments. However, oil entrained in the air stream to lubricate the hammer-actuating device can contaminate subsurface sediments. Concentrations of total hydrocarbons, heavy metals (Cu, Ni, Cr, Zn, Pb, and Cd), and nutrients (particulate organic carbon, nitrogen, and phosphorus) were measured in continuous sediment cores recovered during the completion of a 26-m deep borehole drilled with a down-hole hammer in glaciofluvial deposits. Total hydrocarbons, Cu, Ni, Cr and particulate organic carbon (POC) were all measured at concentrations far exceeding background levels in most sediment cores. Hydrocarbon concentration averaged 124 ± 118 mg kg - 1 dry sediment ( n = 78 samples) with peaks at depths of 8, 14, and 20 m below the soil surface (maximum concentration: 606 mg kg - 1 ). The concentrations of hydrocarbons, Cu, Ni, Cr, and POC were positively correlated and exhibited a highly irregular vertical pattern, that probably reflected variations in air loss within glaciofluvial deposits during drilling. Because the penetration of contaminated air into the formation is unpreventable, the representativeness of groundwater samples collected may be questioned. It is concluded that air percussion drilling has strong limitations for well installation in groundwater quality monitoring surveys.

  8. Using ground-based geophysics to rapidly and accurately map sub-surface acidity

    Wong, Vanessa; Triantafilis, John; Johnston, Scott; Nhan, Terence; Page, Donald; Wege, Richard; Hirst, Phillip; Slavich, Peter

    2013-04-01

    Globally, large areas of coastal and estuarine floodplains are underlain by sulfidic sediments and acid sulfate soils (ASS). These soils can be environmentally hazardous due to their high acidity and large pool of potentially mobile metals. The floodplains are characterised by high spatial and temporal heterogeneity. On coastal floodplains, ASS are of moderate to high salinity, with salts derived mainly from either connate marine sources or oxidation of biogenic sulfides and the subsequent increases in soluble ions (e.g. SO42-) and acidity that follow oxidation. Enhanced acidity also increases the mobilisation of pH-sensitive trace metals such as Fe, Al, Mn, Zn and Ni and contributes to increasing apparent salinity. Ground-based geophysics using electromagnetic (EM) induction techniques have been used successfully and extensively to rapidly map soils for salinity management and precision agriculture. EM induction techniques measure apparent soil electrical conductivity (ECa), which is a function of salinity, clay content, water content, soil mineralogy and temperature to determine the spatial distribution of sub-surface conductivity. In this study, we used ECa as a proxy to map the surface and sub-surface spatial distribution of ASS and associated acidic groundwater. Three EM instruments were used, EM38, DUALEM-421 and EM34, which focus on different depth layers, in a survey of a coastal floodplain in eastern Australia. The EM surveys were calibrated with limited soil sampling and analysis (pH, EC, soluble and exchangeable salts and metals, particle size and titratable actual acidity (TAA)). Using fuzzy k-means clustering analysis, the EM38 and elevation data, from a digital elevation model, clearly identified three classes in the near-surface (0-2m) layers: i) levee soils, ii) fluvial sediment capping and iii) ASS (Fig. 4). Increasing the number of classes did not alter the classes identified. Joint inversion of the DUALEM-421 and EM34 data also identified

  9. Characterization of anaerobic chloroethene-dehalogenating activity in several subsurface sediments

    Skeen, R.S.; Gao, J.; Hooker, B.S.; Quesenberry, R.D.

    1996-11-01

    Anaerobic microcosms of subsurface soils from four locations were used to investigate the separate effects of several electron donors on tetrachloroethylene (PCE) dechlorination activity. The substrates tested were methanol, formate, lactate, acetate, and sucrose. Various levels of sulfate-reducing, acetogenic, fermentative, and methanogenic activity were observed in all sediments. PCE dechlorination was detected in all microcosms, but the amount of dehalogenation varied by several orders of magnitude. Trichloroethylene was the primary dehalogenation product; however, small amounts of cis-1,2-dichloroethylene, 1,1-dichloroethylene, and vinyl chloride were also detected in several microcosms. Lactate-amended microcosms showed large amounts of dehalogenation. in three of the four sediments. One of the two sediments which showed positive activity with lactate also had large amounts of delialogenation with methanol. Sucrose, formate, and acetate also stimulated large amounts of delialogenation in one sediment that showed activity with lactate. These results suggest that lactate may be an appropriate substrate for screening sediments for PCE or TCE delialogenation activity, but that the microbial response is not sufficient for complete in situ bioremediation. A detailed study of the Victoria activity revealed that delialogenation rates were more similar to the Cornell culture than to rates measured for methanogens, or a methanol-enriched sediment culture. This may suggest that these sediments contain a highly efficient delialogenation activity similar to the Cornell culture. This assertion is supported further by the fact that an average of 3% of added reducing equivalents could be diverted to dehalogenation in tests which were conducted using PCE-saturated hexadecane as a constant source of PCE during incubation. Further evidence is needed to confirm this premise. The application of these results to in situ bioremediation of highly contaminated areas are discussed.

  10. Sorption of Cs + to micaceous subsurface sediments from the Hanford site, USA

    Zachara, John M.; Smith, Steven C.; Liu, Chongxuan; McKinley, James P.; Serne, R. Jeffrey; Gassman, Paul L.

    2002-01-01

    The sorption of Cs + was investigated over a large concentration range (10 -9-10 -2 mol/L) on subsurface sediments from a United States nuclear materials site (Hanford) where high-level nuclear wastes (HLW) have been accidentally released to the vadose zone. The sediment sorbs large amounts of radiocesium, but expedited migration has been observed when HLW (a NaNO 3 brine) is the carrier. Cs + sorption was measured on homoionic sediments (Na +, K +, Ca 2+) with electrolyte concentrations ranging from 0.01 to 1.0 mol/L. In Na + electrolyte, concentrations were extended to near saturation with NaNO 3(s) (7.0 mol/L). The sediment contained nonexpansible (biotite, muscovite) and expansible (vermiculite, smectite) phyllosilicates. The sorption data were interpreted according to the frayed edge-planar site conceptual model. A four-parameter, two-site (high- and low-affinity) numeric ion exchange model was effective in describing the sorption data. The high-affinity sites were ascribed to wedge zones on the micas where particle edges have partially expanded due to the removal of interlayer cations during weathering, and the low-affinity ones to planar sites on the expansible clays. The electrolyte cations competed with Cs + for both high- and low-affinity sites according to the trend K + >> Na + ≥ Ca 2+. At high salt concentration, Cs + adsorption occurred only on high-affinity sites. Na + was an effective competitor for the high-affinity sites at high salt concentrations. In select experiments, silver-thiourea (AgTU) was used as a blocking agent to further isolate and characterize the high-affinity sites, but the method was found to be problematic. Mica particles were handpicked from the sediment, contacted with Cs +(aq), and analyzed by electron microprobe to identify phases and features important to Cs + sorption. The microprobe study implied that biotite was the primary contributor of high-affinity sites because of its weathered periphery. The poly-phase sediment

  11. Radioiodine sorption/desorption and speciation transformation by subsurface sediments from the Hanford Site

    During the last few decades, considerable research efforts have been extended to identify more effective remediation treatment technologies to lower the 129I concentrations to below federal drinking water standards at the Hanford Site (Richland, USA). Few studies have taken iodate into consideration, though recently iodate, instead of iodide, was identified as the major species in the groundwater of 200-West Area within the Hanford Site. The objective of this study was thus to quantify and understand aqueous radioiodine species transformations and uptake by three sediments collected from the semi-arid, carbonate-rich environment of the Hanford subsurface. All three sediments reduced iodate (IO3−) to iodide (I−), but the loamy-sand sediment reduced more IO3− (100% reduced within 7 days) than the two sand-textured sediments (∼20% reduced after 28 days). No dissolved organo-iodine species were observed in any of these studies. Iodate uptake Kd values ([Isolid]/[Iaq]; 0.8–7.6 L/kg) were consistently and appreciably greater than iodide Kd values (0–5.6 L/kg). Furthermore, desorption Kd values (11.9–29.8 L/kg) for both iodate and iodide were consistently and appreciably greater than uptake Kd values (0–7.6 L/kg). Major fractions of iodine associated with the sediments were unexpectedly strongly bound, such that only 0.4–6.6 % of the total sedimentary iodine could be exchanged from the surface with KCl solution, and 0–1.2% was associated with Fe or Mn oxides (weak NH2HCl/HNO3 extractable fraction). Iodine incorporated into calcite accounted for 2.9–39.4% of the total sedimentary iodine, whereas organic carbon (OC) is likely responsible for the residual iodine (57.1–90.6%) in sediments. The OC, even at low concentrations, appeared to be controlling iodine binding to the sediments, as it was found that the greater the OC concentrations in the sediments, the greater the values of uptake Kd, desorption Kd, and the greater residual iodine concentrations

  12. Microbial community responses to organophosphate substrate additions in contaminated subsurface sediments.

    Robert J Martinez

    Full Text Available BACKGROUND: Radionuclide- and heavy metal-contaminated subsurface sediments remain a legacy of Cold War nuclear weapons research and recent nuclear power plant failures. Within such contaminated sediments, remediation activities are necessary to mitigate groundwater contamination. A promising approach makes use of extant microbial communities capable of hydrolyzing organophosphate substrates to promote mineralization of soluble contaminants within deep subsurface environments. METHODOLOGY/PRINCIPAL FINDINGS: Uranium-contaminated sediments from the U.S. Department of Energy Oak Ridge Field Research Center (ORFRC Area 2 site were used in slurry experiments to identify microbial communities involved in hydrolysis of 10 mM organophosphate amendments [i.e., glycerol-2-phosphate (G2P or glycerol-3-phosphate (G3P] in synthetic groundwater at pH 5.5 and pH 6.8. Following 36 day (G2P and 20 day (G3P amended treatments, maximum phosphate (PO4(3- concentrations of 4.8 mM and 8.9 mM were measured, respectively. Use of the PhyloChip 16S rRNA microarray identified 2,120 archaeal and bacterial taxa representing 46 phyla, 66 classes, 110 orders, and 186 families among all treatments. Measures of archaeal and bacterial richness were lowest under G2P (pH 5.5 treatments and greatest with G3P (pH 6.8 treatments. Members of the phyla Crenarchaeota, Euryarchaeota, Bacteroidetes, and Proteobacteria demonstrated the greatest enrichment in response to organophosphate amendments and the OTUs that increased in relative abundance by 2-fold or greater accounted for 9%-50% and 3%-17% of total detected Archaea and Bacteria, respectively. CONCLUSIONS/SIGNIFICANCE: This work provided a characterization of the distinct ORFRC subsurface microbial communities that contributed to increased concentrations of extracellular phosphate via hydrolysis of organophosphate substrate amendments. Within subsurface environments that are not ideal for reductive precipitation of uranium

  13. Aerobic and anaerobic microbial activity in deep subsurface sediments from the Savannah River Plant

    Methanogenesis, sulfate reduction, and rates of carbon mineralization were determined for samples derived at different depths from four cores drilled at the Savannah River Plant, Aiken South Carolina. Three gram subsamples of the sediments were dispersed to 10-ml serum bottles under 5% H2 95% N2 and amended with 0.5 mL degassed distilled water with or without the following solutes: formate plus acetate, bicarbonate, lactate, and radiolabeled sulfate, glucose, and indole. After incubating 1 to 5 days, the sediments were assayed for methane, H2, 35S, and 14CO2. No methanogenesis was detected at any depth in any core and sulfate was rarely reduced. Evolution of 14CO2 from glucose and indole was detected in sediments as deep as 262 and 259 m, respectively. At some depths the 14CO2 evolution rate was comparable to that of surface soils; however, at other depths no 14CO2 evolution could be detected. Injection of sterile air into anaerobic incubations increased rates of carbon mineralization at all depths that had demonstrated anaerobic activity and stimulated mineralization activity in sediments that were inactive anaerobically, suggesting a predominance of aerobic metabolism. Increasing the concentration of added glucose and indole often increased the resulting rates of 14CO2 evolved from these substrates. The data indicate that both aerobic and anaerobic microorganisms are present and metabolically active in samples from deep subsurface environments. 16 refs., 3 figs

  14. Active microbial community structure of deep subsurface sediments within Baltic Sea Basin

    Reese, B. K.; Zinke, L.; Carvalho, G.; Lloyd, K. G.; Marshall, I.; Shumaker, A.; Amend, J.

    2014-12-01

    The Baltic Sea Basin (BSB) is a unique depositional setting that has experienced periods of glaciation and deglaciation as a result of climatic fluctuations over past tens of thousands of years. This has resulted in laminated sediments formed during periods with strong permanent salinity stratification. The high sedimentation rates make this an ideal setting to understand the microbial structure of a deep biosphere community in a relatively high carbon, and thus high-energy environment, compared to other deep subsurface sites. Samples were collected through scientific drilling during the International Ocean Discovery Program (IODP) Expedition 347 on board the Greatship Manisha, September-November 2013. We examined the active microbial community structure using the 16S rRNA gene transcript and active functional genes through metatranscriptome sequencing. Major biogeochemical shifts have been observed in response to the depositional history between the limnic, brackish, and marine phases. The active microbial community structure in the BSB is diverse and reflective of the unique changes in the geochemical profile. These data further refine our understanding of the existence life in the deep subsurface and the survival mechanisms required for this extreme environment.

  15. Sedimentation of sulfuric acid in acid tars from current production

    Denisova, T.L.; Frolov, A.F.; Aminov, A.N.; Novosel' tsev, S.P.

    1987-09-01

    Acid tars obtained in treating T-750, KhF-12, and I-8A oils were investigated for purposes of recovering sulfuric acid and asphalt binders from the compositions and of determining the effects of storage time on the recovery. The consumption and sedimentation levels of sulfuric acid during storage for different periods and at different temperatures were assessed. The characteristics of an asphalt binder obtained by neutralizing acid tar with a paste consisting of asphalts from deasphalting operations and slaked lime, followed by oxidation of the mixture with atmospheric air, were determined. The sulfuric acid recovered in the settling process could be burned in order to purify it of organic contaminants.

  16. ACID GASES IN CO2-RICH SUBSURFACE GEOLOGIC ENVIRONMENTS

    Chialvo, Ariel A [ORNL; Vlcek, Lukas [ORNL; Cole, David [Ohio State University

    2013-01-01

    The analysis of species behavior involving dilute fluid environments has been crucial for the advance of modern solvation thermodynamics through molecular-based formalisms to guide the development of macroscopic regression tools in the description of fluid behavior and correlation of experimental data (Chialvo 2013). Dilute fluid environments involving geologic formations are of great theoretical and practical relevance regardless of the thermodynamic state conditions. The most challenging systems are those involving highly compressible and reactive confined environments, i.e., where small perturbations of pressure and/or temperature can trigger considerable density changes. This in turn can alter significantly the species solvation, their preferential solvation, and consequently, their reactivity with one another and with the surrounding mineral surfaces whose outcome is the modification of the substrate porosity and permeability, and ultimately, the integrity of the mineral substrates. Considering that changes in porosity and permeability resulting from dissolution and precipitation phenomena in confined environments are at the core of the aqueous CO2-mineral interactions, and that caprock integrity (e.g., sealing capacity) depends on these key parameters, it is imperative to gain fundamental understanding of the mineral-fluid interfacial phenomena and fluid-fluid equilibria under mineral confinement at subsurface conditions. In order to undertand the potential effects of acid gases as contaminants of supercritical CO2 streams, in the next section we will discuss the thermodynamic behavior of CO2 fluid systems by addressing two crucial issues in the context of carbon capture, utilization and sequestration (CCUS) technologies: (i) Why should we consider (acid gas) CO2 impurities? and (ii) Why are CO2 fluid - mineral interactions of paramount relevance?

  17. Present and future of subsurface biosphere studies in lacustrine sediments through scientific drilling

    Ariztegui, Daniel; Thomas, Camille; Vuillemin, Aurèle

    2015-09-01

    Recently, the discovery of active microbial life in deep-sea sediments has triggered a rapid development of the field known as the "deep biosphere." Geomicrobiological investigations in lacustrine basins have also shown a substantial microbial impact on lake sediments similar to that described for the marine record. Although only 30 % of the lake sites drilled by the International Continental Drilling Program (ICDP) have included microbial investigations, these lakes cover a relatively wide range of salinities (from 0.15 to 33.8 %), pH (from 6.0 to 9.8) and environmental conditions (from very arid to humid subtropical conditions). Here, we analyze results of very recent ICDP lake sites including subsurface biosphere research from southern Patagonia (Laguna Potrok Aike) to the Levantine area (Dead Sea) as well as the East Anatolian high plateau (Lake Van) and Macedonia (Lake Ohrid). These various settings allow the examination of the impact of contrasting environments on microbial activity and their subsequent role during early diagenesis. Furthermore, they permit the identification of biosignatures of former microbial activity recorded in the sediments as well as investigating the impact of microbes in biogeochemical cycles. One of the general outcomes of these preliminary investigations is data to support the hypothesis that microbes react to climatically driven environmental changes that have a direct impact on their subsurface distribution and diversity. This is clear at conspicuous levels associated with well-known climatic periods such as the Medieval Climatic Anomaly or the Little Ice Age. Although more research is needed, this relationship between prevailing microbial assemblages and different climatic settings appears to dominate the lacustrine sites studied until to date.

  18. Investigation and subsurface remediation program for acetone in gulf coast sediments

    Failure of a subsurface pipeline and a rail car loading header caused a release of acetone to the shallow subsurface sediments at a Texas Gulf Coast chemical plant. A channel sand deposit was mapped beneath the release location consisting of fine grained sand below 10 feet of clay. The channel geometry and acetone distribution in the subsurface were delineated by a series of boreholes for the installation of monitor wells. The channel sand is approximately 30 feet thick and 150 feet wide. Aquifer test analyses show the transmissivity of the sand deposit to be about 400 ft2 /day. The acetone concentration in the ground water exceeded 100,000 mg/L with the greatest concentrations stratified at the top of the saturated zone. A ground water remediation program has been underway for more than three years. It was found that a single well, screened through the entire thickness of the sand deposit and pumped at eight gpm could effectively capture the contaminant plume, however the average concentration of acetone in the discharge fluid was only 800 mg/L. Alternate pumping schemes have been tried to evolve a more efficient recovery operation. Additionally, a top filling pneumatic pump was installed to take advantage of the higher concentrations of acetone found at the top of the saturated zone. Attempts were made to determine if a particular pumping scheme was more efficient for the ground water remediation. Both intermittent and continuous pumping were tried. Samples were collected to determine the concentrations of the discharge water and the total mass of recovered acetone. It was found that intermittent pumping of the recovery wells did not recover as much acetone as continuous pumping

  19. Geochemical and Mineralogical Investigation of Uranium in Multi–element Contaminated, Organic–rich Subsurface Sediment

    Qafoku, Nikolla; Gartman, Brandy N.; Kukkadapu, Ravi K.; Arey, Bruce W.; Williams, Kenneth H.; Mouser, Paula J.; Heald, Steve M.; Bargar, John R.; Janot, Noemie; Yabusaki, Steven B.; Long, Philip E.

    2014-03-02

    Alluvial sediments characterized by an abundance of refractory or lignitic organic carbon compounds and reduced Fe and S bearing mineral phases have been identified through drilling activities at the U.S. Department of Energy’s (DOE) Integrated Field Research Challenge (IFRC) site at Rifle, CO. Regions of the subsurface from which such sediments are derived are referred to as Naturally Reduced Zones (NRZ). We conducted a study with NRZ sediments with the objective to: i.) Characterize solid phase contamination of U and other co-contaminants; ii.) Document the occurrence of potential U host minerals; iii.) Determine U valence state and micron scale spatial association with co-contaminants. Macroscopic (wet chemical batch extractions and a column experiment), microscopic (SEM-EDS), and spectroscopic (Mössbauer, µ-XRF and XANES) techniques were employed. Results showed that sediments’ solid phase had significant concentrations of U, S, As, Zn, V, Cr, Cu and Se, and a remarkable assortment of potential U hosts (sorbents and/or electron donors), such as Fe oxides (hematite, magnetite, Al-substituted goethite), siderite, reduced Fe(II) bearing clays, sulfides of different types, Zn sulfide framboids and multi – element sulfides. Multi-contaminants, micron size (ca. 5 to 30 µm) areas of mainly U(IV) and some U(VI), and/or other electron scavengers or donors such as Se, As, Cr, and V were discovered in the sediments, suggesting complex micron-scale system responses to transient redox conditions, and different extent and rates of competing U redox reactions than those of single contaminant systems. Collectively, the results improve our understanding and ability to predict U and NRZ’s complex behavior and will delineate future research directions to further study both the natural attenuation and persistence of contaminant plumes and their contribution to groundwater contamination.

  20. Impact of Microbial Growth on Subsurface Perfluoroalkyl Acid Transport

    Weathers, T. S.; Higgins, C. P.; Sharp, J.

    2014-12-01

    The fate and transport of poly and perfluoroalkyl substances (PFASs) in the presence of active microbial communities has not been widely investigated. These emerging contaminants are commonly utilized in aqueous film-forming foams (AFFF) and have often been detected in groundwater. This study explores the transport of a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), in microbially active settings. Single point organic carbon normalized sorption coefficients derived by exposing inactive cellular material to PFASs result in more than an order of magnitude increase in sorption compared to soil organic carbon sorption coefficients found in literature. For example, the sorption coefficients for PFOS are 4.05±0.07 L/kg and 2.80±0.08 L/kg for cellular organic carbon and soil organic carbon respectively. This increase in sorption, coupled with enhanced extracellular polymeric substance production observed during growth of a common hydrocarbon degrading soil microbe exposed to source-level concentrations of PFASs (10 mg/L of 11 analytes, 110 mg/L total) may result in PFAS retardation in situ. To address the upscaling of this phenomenon, flow-through columns packed with low-organic carbon sediment and biostimulated with 10 mg/L glucose were exposed to PFAS concentrations from 15 μg/L to 10 mg/L of each 11 analytes. Breakthrough and tailing of each analyte was measured and modeled with Hydrus-1D to explore sorption coefficients over time for microbially active columns.

  1. Extracellular Enzymatic Hydrolysis of High Molecular Weight Organic Carbon in Eastern Mediterranean Sapropelic and Non-Sapropelic Subsurface Sediments

    Hoarfrost, A.; Couper, L.; Arnosti, C.

    2014-12-01

    Organic carbon availability is an important constraint on microbial activity in the subsurface. Since most sedimentary organic matter is likely high molecular weight and complex, bioavailability of organic carbon is closely tied to activities of extracellular enzymes that hydrolyze organic macromolecules into transportable sizes. In part due to methodological difficulties, few measurements of extracellular enzymatic activities have been made in marine sediments below ca. 20cm depth. We measured extracellular hydrolysis of specific polysaccharides in deep sediments from sapropel and non-sapropel sections of a single core from the Eastern Mediterranean. In order to counteract adsorption of the substrate onto sediment particles, we developed an extraction protocol utilizing competitive desorption and mild heating. This treatment improved substrate recovery from incubation subsamples 5- to 10-fold, and enabled us to detect enzymatic activity in deep subsurface sediments. The wide variation in TOC between proximal sediment layers in this core provided an excellent opportunity to investigate (i) the rate at which subsurface microbial communities can hydrolyze a diversity of organic substrates, and (ii) rates and ranges of enzymatic capabilities as a function of sediment depth, organic carbon load and microbial community composition. Our experiments were carried out in long-term incubations (3-6 weeks), in which substrates were readily hydrolyzed, but hydrolysis rates differed among substrates and among sediment sections. Activity was not correlated with depth, but was highest in sections with highest organic carbon content. Isolation of strains able to grow directly on the substrates of interest are underway, and provide a promising path forward to illuminate mechanisms driving potential hydrolytic activity in the subsurface.

  2. ANME-2D Archaea Catalyze Methane Oxidation in Deep Subsurface Sediments Independent of Nitrate Reduction

    Hernsdorf, A. W.; Amano, Y.; Suzuki, Y.; Ise, K.; Thomas, B. C.; Banfield, J. F.

    2015-12-01

    Terrestrial sediments are an important global reservoir for methane. Microorganisms in the deep subsurface play a critical role in the methane cycle, yet much remains to be learned about their diversity and metabolisms. To provide more comprehensive insight into the microbiology of the methane cycle in the deep subsurface, we conducted a genome-resolved study of samples collected from the Horonobe Underground Research Laboratory (HURL), Japan. Groundwater samples were obtained from three boreholes from a depth range of between 140 m and 250 m in two consecutive years. Groundwater was filtered and metagenomic DNA extracted and sequenced, and the sequence data assembled. Based on the sequences of phylogenetically informative genes on the assembled fragments, we detected a high degree of overlap in community composition across a vertical transect within one borehole at the two sampling times. However, there was comparatively little similarity observed among communities across boreholes. Spatial and temporal abundance patterns were used in combination with tetranucleotide signatures of assembled genome fragments to bin the data and reconstruct over 200 unique draft genomes, of which 137 are considered to be of high quality (>90% complete). The deepest samples from one borehole were highly dominated by an archaeon identified as ANME-2D; this organism was also present at lower abundance in all other samples from that borehole. Also abundant in these microbial communities were novel members of the Gammaproteobacteria, Saccharibacteria (TM7) and Tenericute phyla. Notably, a ~2 Mbp draft genome for the ANME-2D archaeon was reconstructed. As expected, the genome encodes all of the genes predicted to be involved in the reverse methanogenesis pathway. In contrast with the previously reported ANME2-D genome, the HURL ANME-2D genome lacks the capacity to reduce nitrate. However, we identified many multiheme cytochromes with closest similarity to those of the known Fe

  3. Modeling subsurface transport in extensive glaciofluvial and littoral sediments to remediate a municipal drinking water aquifer

    M. Bergvall

    2011-02-01

    Full Text Available Few studies have been carried out that cover the entire transport process of pesticides, from application at the soil surface, through subsurface transport, to contamination of drinking water in esker aquifers. In formerly glaciated areas, such as Scandinavia, many of the most important groundwater resources are situated in glaciofluvial eskers. The purpose of the present study was to model and identify significant processes that govern subsurface transport of pesticides in extensive glaciofluvial and littoral sediments. To simulate the transport processes, we coupled a vadose zone model at the point scale to a regional groundwater flow model. The model was applied to a municipal drinking-water aquifer, contaminated with the pesticide-metabolite BAM (2,6-dichlorobenzoamide. A sensitivity analysis revealed that hydraulic conductivity and infiltration rate accounted for almost half of the model uncertainty. For a ten-meter-deep vadose zone of coarse texture, macropore flow was found to be of minor importance for contaminant transport. The calibrated model was applied to optimize the location of extraction wells for remediation, which were used to verify the predictive modeling. Running a worst-case scenario, the model showed that the establishment of two remediation wells would clean the aquifer in four years, compared to nine years without them. Further development of the model would require additional field measurements to assess the importance of macropore flow in deep, sandy aquifers. We also suggest that future research should focus on characterization of the variability of hydraulic conductivity and its effect on contaminant transport in eskers.

  4. Final report - Reduction of mercury in saturated subsurface sediments and its potential to mobilize mercury in its elemental form

    Bakray, Tamar [Rutgers University

    2013-06-13

    The goal of our project was to investigate Hg(II) reduction in the deep subsurface. We focused on microbial and abiotic pathways of reduction and explored how it affected the toxicity and mobility of Hg in this unique environment. The project’s tasks included: 1. Examining the role of mer activities in the reduction of Hg(II) in denitrifying enrichment cultures; 2. Investigating the biotic/abiotic reduction of Hg(II) under iron reducing conditions; 3. Examining Hg(II) redox transformations under anaerobic conditions in subsurface sediments from DOE sites.

  5. Fossilized intact polar lipids of photosynthetic organisms in ancient subsurface sediments

    Bauersachs, T.; Schouten, S.; Hopmans, E. C.; Sinninghe Damsté, J. S.

    2009-12-01

    In recent years, the idea of a rich microbial biosphere in the marine sea floor has been widely accepted. This so-called “deep biosphere” is estimated to contain ca. 50 % of Earth’s total prokaryotic biomass with the overall order of magnitude of microbial cells in the sea floor being the same as the biomass of all surface plant life (Whitman et al. 1998). Evidence for the existence of a deep biosphere comes, among others, from the analysis of intact polar lipids (IPLs). This approach presumes that IPLs almost instantaneously lose their polar head group after cell death and thus do not preserve on geological timescales. Consequently, IPLs in the subsurface should derive from in situ production and hence indicate the presence of living prokaryotic cells. For example, in various oceanic subsurface sediments archaeal IPLs have been found, suggesting that Archaea constitute a major fraction of the deep biosphere biomass (Lipp et al. 2008). In this study, we found IPLs of heterocystous cyanobacteria in a number of ancient and deeply buried sediments. Heterocystous cyanobacteria are strictly photoautotrophic organisms that are a common constituent of the phytoplankton community in many freshwater and brackish environments but are also encountered in the marine realm as endosymbionts of diatom species. Under nitrogen-depleted conditions, these organisms carry out nitrogen fixation in specialized cells, known as heterocysts. These cells contain a suite of heterocyst glycolipids (HGs) that have not been identified in any other organism and are thus unique biological markers for nitrogen-fixing heterocystous cyanobacteria. Using high performance liquid chromatography coupled to electrospray ionisation tandem mass spectrometry (HPLC/ESI-MS/MS), we detected HGs in Pleistocene and Pliocene Mediterranean sapropels buried up to 60 m below the seafloor. In addition, these HGs were also found in lacustrine deposits of the Oligocene Lake Enspel (35 Ma), the Eocene Lake Messel

  6. Studies on arsenic transforming groundwater bacteria and their role in arsenic release from subsurface sediment.

    Sarkar, Angana; Kazy, Sufia K; Sar, Pinaki

    2014-01-01

    Ten different Gram-negative arsenic (As)-resistant and As-transforming bacteria isolated from As-rich groundwater of West Bengal were characterized to assess their role in As mobilization. 16S rRNA gene analysis confirmed the affiliation of these bacteria to genera Achromobacter, Brevundimonas, Rhizobium, Ochrobactrum, and Pseudoxanthomonas. Along with superior As-resistance and As-transformation abilities, the isolates showed broad metabolic capacity in terms of utilizing a variety of electron donors and acceptors (including As) under aerobic and anaerobic conditions, respectively. Arsenic transformation studies performed under various conditions indicated highly efficient As(3+) oxidation or As(5+) reduction kinetics. Genes encoding As(3+) oxidase (aioA), cytosolic As(5+) reductase (arsC), and As(3+) efflux pump (arsB and acr3) were detected within the test isolates. Sequence analyses suggested that As homeostasis genes (particularly arsC, arsB, and acr3) were acquired by most of the bacteria through horizontal gene transfer. A strong correlation between As resistance phenotype and the presence of As(3+) transporter genes was observed. Microcosm study showed that bacterial strain having cytosolic As(5+) reductase property could play important role in mobilizing As (as As(3+)) from subsurface sediment. PMID:24764001

  7. Intra-grain Pore-Scale Reactive Diffusion of Uranium and Upscaling in Subsurface Sediments

    Liu, C.; Shang, J.; Kerisit, S.; Wang, Z.; Zachara, J. M.

    2010-12-01

    Uranium contamination is a major environmental concern in subsurface environments at various radionuclide materials processing and waste discharging sites. Recent studies at the US DOE Hanford site have found that uranium is primarily associated with intra-grain porous media as surface-complexed and precipitated uranyl [U(VI)] phases. Intra-grain reactive diffusion strongly affects U(VI) reactive transport in sediments at both laboratory and field scales. In this presentation, we will describe our experimental and modeling studies to characterize and upscale U(VI) reactive diffusion in the intra-grain pore regions. Spectroscopic and microscopic characterizations were performed to define U(VI) speciation/distribution and intra-grain porous medium properties (pore-size, volume, and connectivity); stirred-flow cell experiments were performed to investigate the macroscopic manifestation of the intra-grain U(VI) reactive diffusion; and pore-scale simulations in the intra-grain regions were used to provide insights into the spatiotemporal variability of U(VI) reactive diffusion. Molecular dynamics simulations were used to calculate the uranyl species diffusion coefficients and to provide insights into the pore-size restriction on species diffusion. Two alternative macroscopic kinetic models were developed to evaluate the upscaling of intra-grain reactive diffusion and to illustrate the challenges in upscaling reactive diffusion processes.

  8. Sources of fatty acids in Lake Michigan surface microlayers and subsurface waters

    Meyers, P.A.; Owen, R.M.

    1980-11-01

    Fatty acid and organic carbon contents have been measured in the particulate and dissolved phases of surface microlayer and subsurface water samples collected from Lake Michigan. Concentrations are highest close to fluvial sources and lowest in offshore areas, yet surface/subsurface fractionation is lowest near river mouths and highest in open lake locations. These gradients plus accompanying fatty acid compositional changes indicate that river-borne organic materials are important constituents of coastal Lake Michigan microlayers and that sinking and turbulent resuspension of particulates affect surface film characteristics. Lake neuston and plankton contributes organic components which partially replace potamic materials removed by sinking.

  9. Analysis of a PAH-degrading bacterial population in subsurface sediments on the Mid-Atlantic Ridge

    Shao, Zongze; Cui, Zhisong; Dong, Chunming; Lai, Qiliang; Chen, Liang

    2010-05-01

    Little is known about the types and concentrations of polycyclic aromatic hydrocarbons (PAHs) existing in the deep-sea subsurface environment, which is believed to be cold, oligothrophic and of high static pressure. PAHs in the upper layers of the water column are unavoidably subjected to degradation while they are deposited to the sea floor and become embedded in the deep-sea sediment. In this report, a high concentration of PAHs was discovered in the sediment 2.7 m beneath the bottom surface at a water depth of 3962 m on the Mid-Atlantic Ridge (MAR). The total concentration of PAHs was 445 ng (g dry wt sediment) -1. Among the seven detected PAHs, the concentrations of phenanthrene (222 ng g -1) and fluorene (79 ng g -1) were relatively high. In addition, PAH-degrading bacteria were found within the sediments. As in a previously detected site on the MAR, in the PAH-enriched region of this site, a bacterium of the genus Cycloclasticus was found to be the predominant isolate detected by PCR-DGGE analysis. In addition, bacteria of the Halomonas, Marinobacter, Alcanivorax, Thalassospira and Maricaulis genera, were also included in the PAH-degrading community. In summary, a high concentration of PAHs was detected in the subsurface of the deep-sea sediment, and once again, the Cycloclasticus bacterium was confirmed to be a ubiquitous marine PAH degrader even in the subsurface marine environment. Considering the abundance of PAHs therein, biodegradation is thus thought to be inactive, probably because of the low temperature, limited oxygen and/or limited nutrients.

  10. Amino acid biogeo- and stereochemistry in coastal Chilean sediments

    Lomstein, Bente Aagaard; Jørgensen, Bo Barker; Schubert, Carsten J.;

    2006-01-01

    The spatial distribution of total hydrolysable amino acids (THAA) and amino acid enantiomers (D- and L-forms) was investigated in sediments underlying two contrasting Chilean upwelling regions,: at ~23°S off Antofagasta and at ~36°S off Concepcion. The contribution of amino acids to total organic...

  11. Characteristics of humic and fulvic acids in Arabian Sea sediments

    Sardessai, S.

    Humic and fulvic acids isolated from some of the shelf, slope and offshore sediments of the Arabian Sea were studied. The molecular weight, functional groups, elemental composition and infrared spectra were examined. Humic substances, dominated...

  12. Amino acid biogeo- and stereochemistry in coastal Chilean sediments

    Lomstein, Bente Aa.; Jørgensen, Bo B.; Schubert, Carsten J.; Niggemann, Jutta

    2006-06-01

    The spatial distribution of total hydrolysable amino acids (THAA) and amino acid enantiomers ( D- and L-forms) was investigated in sediments underlying two contrasting Chilean upwelling regions: at ˜23 °S off Antofagasta and at ˜36 °S off Concepción. The contribution of amino acids to total organic carbon (%T AAC: 7-14%) and total nitrogen (%T AAN: 23-38%) in surface sediments decreased with increasing water depth (from 126 to 1350 m) indicating that organic matter becomes increasingly decomposed in surface sediments at greater water depth. Changes in the ratio between the protein amino acid aspartate and its non-protein degradation product β-alanine confirmed this observation. Furthermore, estimates of THAA mineralization showed that sedimentary amino acid reactivity decreased with both increasing water depth as well as progressive degradation status of the organic matter that was incorporated into the sediment. Reactivity of organic matter in the sediment was also assessed using the Degradation Index (DI) developed by [Dauwe, B., Middelburg, J.J., 1998. Amino acids and hexosamines as indicators of organic matter degradation state in North Sea sediments. Limnol. Oceanogr.43, pp. 782-798.]. Off Concepción, DI was successfully applied to examine the degradation status of sedimentary organic matter at different water depths. However, unexpected results were obtained at the Antofagasta stations as DI increased with sediment depth, suggesting more degraded organic matter at the surface than deeper in the cores. The contribution of peptidoglycan amino acids to THAA was estimated from the concentrations of D-aspartate, D-glutamic acid, D-serine, and D-alanine. Peptidoglycan amino acids accounted for >18% of THAA in all investigated samples. In surface sediments peptidoglycan amino acids accounted for a progressively larger fraction of THAA at increasing water depths (up to >26%). Further, the contribution of peptidoglycan amino acids to THAA increased with

  13. A cation exchange model to describe Cs + sorption at high ionic strength in subsurface sediments at Hanford site, USA

    Liu, Chongxuan; Zachara, John M.; Smith, Steve C.

    2004-02-01

    A theoretical and experimental study of cation exchange in high ionic strength electrolytes was performed using pristine subsurface sediments from the U.S. Department of Energy Hanford site. These sediments are representative of the site contaminated sediments impacted by release of high level waste (HLW) solutions containing 137Cs + in NaNO 3 brine. The binary exchange behavior of Cs +-Na +, Cs +-K +, and Na +-K + was measured over a range in electrolyte concentration. Vanselow selectivity coefficients ( Kv) that were calculated from the experimental data using Pitzer model ion activity corrections for aqueous species showed monotonic increases with increasing electrolyte concentrations. The influence of electrolyte concentration was greater on the exchange of Na +-Cs + than K +-Cs +, an observation consistent with the differences in ion hydration energy of the exchanging cations. A previously developed two-site ion exchange model [Geochimica et Cosmochimica Acta 66 (2002) 193] was modified to include solvent (water) activity changes in the exchanger phase through application of the Gibbs-Duhem equation. This water activity-corrected model well described the ionic strength effect on binary Cs + exchange, and was extended to the ternary exchange system of Cs +-Na +-K + on the pristine sediment. The model was also used to predict 137Cs + distribution between sediment and aqueous phase ( Kd) beneath a leaked HLW tank in Hanfordd's S-SX tank using the analytical aqueous data from the field and the binary ion exchange coefficients for the pristine sediment. The Kd predictions closely followed the trend in the field data and were improved by consideration of water activity effects that were considerable in certain regions of the vadose zone plume.

  14. PROTOZOA IN SUBSURFACE SEDIMENTS FROM SITE CONTAMI- NATED WITH AVIATION GASOLINE OR JET FUEL

    Numbers of protozoa in the subsurface of aviation gasoline and jet fuel spill areas at a Coast Guard base at Traverse City, Mich., were determined. Boreholes were drilled in an uncontaminated location, in contaminated but untreated parts of the fuel plumes, and in the aviation ga...

  15. Morphologic evidence of subsurface sediment mobilization and mud volcanism in Candor and Coprates Chasmata, Valles Marineris, Mars

    Okubo, Chris H.

    2016-05-01

    Populations of distinctive knobs, rings and lobate structures are observed in the Candor and Coprates Chasmata regions of Mars. To interpret the formation mechanisms of these landforms, I investigate their morphologies, facies, superposition and crosscutting relationships using data from the High Resolution Imaging Science Experiment (HiRISE) and the High Resolution Stereo Camera (HRSC). The knobs and rings have quasi-circular to elliptical shapes in map view, with basal diameters between several hundred meters and three kilometers. The knobs rise ∼10 to 350 m above the surrounding terrain, while the rings are ∼10 to 70 m tall. In three dimensions the knobs have a rounded cone shape, and some knobs exhibit a summit depression, which in some examples contains a subordinate mound. The rings have rounded to sharp crests and in some instances contain subordinate rings and mounds. The lobate structures are commonly ∼1 to 2 km wide, ∼3 to 5 km long and rise up to 50 m above the surrounding terrain. The lobate structures partially or completely encircle some knobs, rings and irregularly shaped rock masses. The knobs, rings and lobate structures exhibit massive and stratified facies, with some structures exhibiting both, such as a massive central rock mass surrounded by outwardly dipping layers. I interpret these landforms as mud volcanoes, injectites and mud flows based on superposition and cross-cutting relationships as well as similarities between the morphologies and facies of these landforms with terrestrial products of mud volcanism. I infer the source of sediment for this mud volcanism to be the Hesperian eolian deposits that occur within these chasmata. Further, I suggest that groundwater upwelling during the Hesperian to possibly the Early Amazonian facilitated the mobilization of these sediments within the subsurface and thereby contributed to the ensuing mud volcanism. Based on these results, I propose that the Candor Chaos formed through subsurface

  16. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?

    Onstott, T. C. [Princeton University; Aubrey, A.D. [Jet Propulsion Laboratory, Pasadena, CA; Kieft, T L [New Mexico Institute of Mining and Technology; Silver, B J [Jet Propulsion Laboratory, Pasadena, CA; Phelps, Tommy Joe [ORNL; Van Heerden, E. [University of the Free State; Opperman, D. J. [University of the Free State; Bada, J L. [Geosciences Research Division, Scripps Instition of Oceanography, Univesity of California San Diego,

    2014-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 C and 1 2 years for 3 km depth and 54 C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples.

  17. Does aspartic acid racemization constrain the depth limit of the subsurface biosphere?

    Onstott, T C; Magnabosco, C; Aubrey, A D; Burton, A S; Dworkin, J P; Elsila, J E; Grunsfeld, S; Cao, B H; Hein, J E; Glavin, D P; Kieft, T L; Silver, B J; Phelps, T J; van Heerden, E; Opperman, D J; Bada, J L

    2014-01-01

    Previous studies of the subsurface biosphere have deduced average cellular doubling times of hundreds to thousands of years based upon geochemical models. We have directly constrained the in situ average cellular protein turnover or doubling times for metabolically active micro-organisms based on cellular amino acid abundances, D/L values of cellular aspartic acid, and the in vivo aspartic acid racemization rate. Application of this method to planktonic microbial communities collected from deep fractures in South Africa yielded maximum cellular amino acid turnover times of ~89 years for 1 km depth and 27 °C and 1-2 years for 3 km depth and 54 °C. The latter turnover times are much shorter than previously estimated cellular turnover times based upon geochemical arguments. The aspartic acid racemization rate at higher temperatures yields cellular protein doubling times that are consistent with the survival times of hyperthermophilic strains and predicts that at temperatures of 85 °C, cells must replace proteins every couple of days to maintain enzymatic activity. Such a high maintenance requirement may be the principal limit on the abundance of living micro-organisms in the deep, hot subsurface biosphere, as well as a potential limit on their activity. The measurement of the D/L of aspartic acid in biological samples is a potentially powerful tool for deep, fractured continental and oceanic crustal settings where geochemical models of carbon turnover times are poorly constrained. Experimental observations on the racemization rates of aspartic acid in living thermophiles and hyperthermophiles could test this hypothesis. The development of corrections for cell wall peptides and spores will be required, however, to improve the accuracy of these estimates for environmental samples. PMID:24289240

  18. A simulation study of infiltration into surficial sediments at the Subsurface Disposal Area, Idaho National Engineering Laboratory

    Soil moisture monitoring data in the surficial sediments at the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory were used to calibrate two numerical infiltration models. The calibration was performed with the ultimate goal of providing a reliable estimate of hydraulic properties and infiltration amounts to be used in other modeling efforts. Two neutron probe access tubes and a tensiometer nest were monitored from 1986 to 1990 and again during 1993. The field measurements of moisture content and matrix potential inside the SDA were used as calibration data for the two locations. The two locations showed vastly different behavior, which was well captured in the models. The average root mean square error between simulated and measured moisture contents over the simulation period was 0.03 and 0.06 for the two locations. The hydraulic parameters resulting from the calibration compared favorably with laboratory and field scale estimates. The simulation results also provided the opportunity to partially explain infiltration and redistribution processes occurring at the SDA. The underlying fractured basalt appears to behave similar to a capillary barrier. This behavior inhibits moisture movement into the underlying basalts until moisture contents in the overlying silts approach saturation. As a result, a large proportion of recharge occurring at the SDA may be due to spring snowmelt, when the surficial sediments become nearly saturated. The results also indicated that a unit gradient boundary condition (free drainage due to gravity) at the bottom of the silts is not appropriate because of the very low relative hydraulic conductivity of the basalts. Finally, the amount of water moving into the SDA subsurface from spring snowmelt appears larger than cumulative snowfall, indicating that snow drifting due to local topography as well as current snow management practices may have a substantial influence on local infiltration

  19. ANNUAL REPORT. FIXATION MECHANISMS AND DESORPTION RATES OF SORBED CS IN HIGH-LEVEL WASTE CONTAMINATED SUBSURFACE SEDIMENTS: IMPLICATIONS TO FUTURE BEHAVIOR AND IN-GROUND STABILITY

    Research is investigating mineralogic and geochemical factors controlling the desorption rate of 137Cs+ from subsurface sediments on the Hanford Site contaminated with different types of high-level waste. The project will develop kinetic data and models that describe the release ...

  20. Feasibility of In Situ Redox Manipulation of Subsurface Sediments for RDX Remediation at Pantex

    Szecsody, James E.; Fruchter, Jonathan S.; Mckinley, Mark A.; Resch, Charles T.; Gilmore, Tyler J.

    2001-12-31

    This laboratory study was conducted to assess RDX (hexahydro-1,3,5-trinitro-1,3,5 triazine) abiotic degradation by chemically reduced sediments and other geochemical aspects of the application of this technology to remediation of RDX contamination in groundwater at the U.S. DOE Pantex facility...

  1. Actinide partitioning to an acidic, sandy lake sediment

    Knowledge of the partitioning of actinides to sediments in natural systems is essential for modeling their environmental fate. Using two different sequential extraction methods, we have studied the partitioning of U and Pu to an acidic, sandy lake sediment that was contaminated due to nuclear production activities. We find that both methods yield similar partitioning information, and that much of the U is associated with insoluble phases, whereas the majority of the Pu is extracted with oxidizable phases, defined to be predominantly organic matter. Our study suggests that U in this ecosystem is of natural origin. Although Pu and Fe in this system are known to cycle from the sediments to the water column during periods of anoxia, only a low percentage of Pu is extracted from the phases that are reducible, which are operationally defined as amorphous Fe oxides. Although this sediment is low in organic matter, our results suggest that natural organics dominate the partitioning of Pu in this system. (orig.)

  2. Interactions of acidic solutions with sediments: a case study

    A methodology is presented for investigating the chemical interactions of acidic solutions with sediments. The MINTEQ geochemical computer code was used to predict solid-phase reactions that might occur when acidic solutions contact neutral sediments which, in turn, may control the concentrations of certain dissolved components. Results of X-ray diffraction analysis of laboratory samples of sediments that have been contacted with acidic uranium mill tailings solutions suggest gypsum and jarosite precipitated. These same mineralogical changes were identified in sediment samples collected from a drained uranium mill evaporation pond (Lucky Mc mine in Wyoming) with a 10-year history of acid attack. Geochemical modeling predicted that these same phases and several amorphous solids not identifiable by X-ray diffraction should have precipitated in the contacted sediments. An equilibrium conceptual model consisting of an assemblage of minerals and amorphous solid phases was then developed to represent a sediment column through which uranium mill tailings solutions were percolated. The MINTEQ code was used to predict effluent solution concentrations resulting from the reactions of the tailings solution with the assemblage of solid phases in the conceptual model. The conceptual model successfully predicted the concentrations of several of the macro-constituents (e.g., Ca, SO4, Al, Fe, and Mn), but was not successful in modeling the concentrations of trace elements. The lack of success in predicting the observed trace metal concentrations suggests that other mechanisms, such as adsorption, must be included in future models. The geochemical modeling methodology coupled with the laboratory and field studies should be applicable to a variety of waste disposal problems

  3. Bacterial distribution and metabolic activity in subsurface sediments from a gasoline spill

    At the Lawrence Livermore National Laboratory (LLNL) in California, a records inspection in 1979 indicated an inventory of about 17,500 gal was missing from underground fuel tanks. A leak or leaks in the southernmost tank and/or pipe lines were suspected to be the source of the loss. All four tanks were taken out of service and filled with sand in 1980. The gasoline spill cleanup effort affords an opportunity to study the collective effect of fuel hydrocarbons (HCs) on the indigenous microbial population within the heterogeneous alluvial subsurface environment. This paper presents the early results of an ongoing study to (1) characterize naturally acclimated microbial populations capable of transforming HCs and (2) understand the effects of environmental factors on these biotransformations

  4. Microbial iron reduction and methane oxidation in subsurface sediments of the Arabian Sea

    Fernandes, C.E.G.; Judith, M.; Gonsalves, M.J.B.D.; Nazareth, D.R.; Nagarchi, L.; Kamaleson, A.S.

    lithologic units (Units I to IV) based on visual description, biogenic and terrigenous composition, trends in logging and physical properties data (Collett et al., 2007). Sediment samples up to a depth of 63 mbsf from litostratigraphic unit I (LSI) were.... Environ. Microbiol. 4, 115–124. Bruchert, V., Currie, B., Peard, K. R., Lass, U., Endler, R., Dubecke, A., Julies, E., Leipe, T., Zitzmann, S. 2006. Biogeochemical and physical control on shelf anoxia and water column hydrogen sulphide in the Benguela...

  5. HydroSphere: Fully-Integrated, Surface/Subsurface Numerical Model for Watershed Analysis of Hydrologic, Water Quality and Sedimentation Processes

    Matanga, G. B.; Nelson, K. E.; Sudicky, E.; Therrien, R.; Panday, S.; McLaren, R.; Demarco, D.; Gessford, L.

    2004-12-01

    A distributed, physically based and fully-coupled surface/subsurface numerical model, HydroSphere, has recently been developed for watershed analysis of hydrologic and water quality processes. It accounts for flow and transport in lateral two-dimensional surface water, one-dimensional tile drains and three-dimensional variably-saturated subsurface water. One-, two- and three-dimensional forms of the advection-dispersion equation are used to describe solute transport in the tile drains, surface water and subsurface water, respectively. Full integration of the surface, tile-drain and subsurface water regimes is achieved by assembling and solving one system of discrete algebraic equations, such that surface flow rates and water depths, tile-drain flow rates and water depths, subsurface pressure heads, saturations and velocities, as well as water fluxes between continua, are determined simultaneously. Likewise, discrete advective-dispersive transport equations for the various continua are solved simultaneously to obtain the solute concentrations in the surface, tile-drain and subsurface systems. One of the major issues calling for capabilities of surface/subsurface water interactions, water quality and erosion/sedimentation is the optimal management of water supply for fish and agricultural irrigation. For example, the USGS has demonstrated that the massive September 2002 fish-kill in the Klamath River Basin was caused by low 2002 streamflows and the resulting high water temperatures. The streams in the Klamath River Basin are fed primarily by ground water. The 2002 streamflows were lower than the flows predicted by Bureau of Reclamation based on the snowpack data alone, neglecting subsurface water data. It is also well-known that erosion/sedimentation processes impair fish habitat by impacting spawning gravel areas and upstream migration to spawning areas. The models currently being applied in the Klamath River Basin and in all Bureau of Reclamation Regions completely

  6. Desorption kinetics of radiocesium from subsurface sediments at Hanford Site, USA

    Liu, Chongxuan; Zachara, John M.; Smith, Steve C.; McKinley, James P.; Ainsworth, Calvin C.

    2003-08-01

    The desorption of 137Cs + was investigated on sediments from the United States Hanford site. Pristine sediments and ones that were contaminated by the accidental release of alkaline 137Cs +-containing high level nuclear wastes (HLW, 2 × 10 6 to 6 × 10 7 pCi 137Cs +/g) were studied. The desorption of 137Cs + was measured in Na +, K +, Rb +, and NH 4+electrolytes of variable concentration and pH, and in presence of a strong Cs +-specific sorbent (self-assembled monolayer on a mesoporous support, SAMMS). 137Cs + desorption from the HLW-contaminated Hanford sediments exhibited two distinct phases: an initial instantaneous release followed by a slow kinetic process. The extent of 137Cs + desorption increased with increasing electrolyte concentration and followed a trend of Rb + ≥ K + > Na + at circumneutral pH. This trend followed the respective selectivities of these cations for the sediment. The extent and rate of 137Cs + desorption was influenced by surface armoring, intraparticle diffusion, and the collapse of edge-interlayer sites in solutions containing K +, Rb +, or NH 4+. Scanning electron microscopic analysis revealed HLW-induced precipitation of secondary aluminosilicates on the edges and basal planes of micaceous minerals that were primary Cs + sorbents. The removal of these precipitates by acidified ammonium oxalate extraction significantly increased the long-term desorption rate and extent. X-ray microprobe analyses of Cs +-sorbed micas showed that the 137Cs + distributed not only on mica edges, but also within internal channels parallel to the basal plane, implying intraparticle diffusive migration of 137Cs +. Controlled desorption experiments using Cs +-spiked pristine sediment indicated that the 137Cs + diffusion rate was fast in Na +-electrolyte, but much slower in the presence of K + or Rb +, suggesting an effect of edge-interlayer collapse. An intraparticle diffusion model coupled with a two-site cation exchange model was used to interpret the

  7. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments. Final report

    The objective of this research was to examine the importance of microbial community structure in influencing uranium reduction rates in subsurface sediments. If the redox state alone is the key to metal reduction, then any organisms that can utilize the oxygen and nitrate in the subsurface can change the geochemical conditions so metal reduction becomes an energetically favored reaction. Thus, community structure would not be critical in determining rates or extent of metal reduction unless community structure influenced the rate of change in redox. Alternatively, some microbes may directly catalyze metal reduction (e.g., specifically reduce U). In this case the composition of the community may be more important and specific types of electron donors may promote the production of communities that are more adept at U reduction. Our results helped determine if the type of electron donor or the preexisting community is important in the bioremediation of metal-contaminated environments subjected to biostimulation. In a series of experiments at the DOE FRC site in Oak Ridge we have consistently shown that all substrates promoted nitrate reduction, while glucose, ethanol, and acetate always promoted U reduction. Methanol only occasionally promoted extensive U reduction which is possibly due to community heterogeneity. There appeared to be limitations imposed on the community related to some substrates (e.g. methanol and pyruvate). Membrane lipid analyses (phospholipids and respiratory quinones) indicated different communities depending on electron donor used. Terminal restriction fragment length polymorphism and clone libraries indicated distinct differences among communities even in treatments that promoted U reduction. Thus, there was enough metabolic diversity to accommodate many different electron donors resulting in the U bioimmobilization.

  8. MICROSCALE METABOLIC, REDOX AND ABIOTIC REACTIONS IN HANFORD 300 AREA SUBSURFACE SEDIMENTS

    Beyenal, Haluk [WSU; McLEan, Jeff [JCVI; Majors, Paul [PNNL; Fredrickson, Jim [PNNL

    2013-11-14

    The Hanford 300 Area is a unique site due to periodic hydrologic influence of river water resulting in changes in groundwater elevation and flow direction. This area is also highly subject to uranium remobilization, the source of which is currently believed to be the region at the base of the vadose zone that is subject to period saturation due to the changes in the water levels in the Columbia River. We found that microbial processes and redox and abiotic reactions which operate at the microscale were critical to understanding factors controlling the macroscopic fate and transport of contaminants in the subsurface. The combined laboratory and field research showed how microscale conditions control uranium mobility and how biotic, abiotic and redox reactions relate to each other. Our findings extended the current knowledge to examine U(VI) reduction and immobilization using natural 300 Area communities as well as selected model organisms on redox-sensitive and redox-insensitive minerals. Using innovative techniques developed specifically to probe biogeochemical processes at the microscale, our research expanded our current understanding of the roles played by mineral surfaces, bacterial competition, and local biotic, abiotic and redox reaction rates on the reduction and immobilization of uranium.

  9. Composition of Humic Acids of the Lake Baikal Sediments

    Vishnyakova, O.; Chimitdorzhieva, G.; Andreeva, D.

    2012-04-01

    Humic substances are the final stage of the biogeochemical transformation of organic matter in the biosphere. Its natural compounds are found not only in soil, peat, coal, and sediments of basins. Chemical composition and properties of humic substances are determined by the functioning of the ecosystem as a whole. Therefore the study of the unique Lake Baikal sediments can provide information about their genesis, as well as the processes of organic matter transformation. For this purpose, preparations of humic acids (HA) were isolated by alkaline extraction method. The composition of HA was investigated by the elemental analyzer CHNS/O PerkinElmer Series II. Various located sediments of the Lake Baikal were the objects of the study: 1 - Chivyrkuisky Bay, 2 - Kotovo Bay, 3 - Selenga river delta near Dubinino village, 4 - Selenga river delta near Murzino village. Data on the elemental composition of HA in terms of ash-free portion show that the carbon content (CC) is of 50-53% with a maximum value in a sample 3, and minimum - in a sample 2. Such values are characteristic also for the soils with low biochemical activity. The hydrogen content is of 4,2-5,3%, a maximum value is in a sample 1. Data recalculation to the atomic percentages identified following regularities. The CC of HA is of 35-39 at. %. Hydrogen content is of 37-43 at. %. According to the content of these elements investigated substances are clearly divided into two groups: HA of the sediments of the Lake Baikal and river Selenga delta. The magnitude of the atomic ratio H/C can be seen varying degrees of condensation of the molecules of humic acids. The high atomic ratio H/C in HA of the former group indicates the predominance of aliphatic structures in the molecules. Humic acids of the later group are characterized by a low value H/C (acids such as cystine, cysteine, methionine, which is reflected in the composition of HA. Oxygen content is about 33,8-39,1% (17-22 at. %). Data analysis of the elemental

  10. Reflectance spectral characterization and mineralogy of acid sulphate soil in subsurface using hyperspectral data

    Xian-Zhong SHI; Mehrooz ASPANDIAR; David OLDMEADOW

    2014-01-01

    Acid sulphate soil (ASS) is a kind of soil which is harmful to the environment. ASS is hard to efficiently assess efficiently in the subsurface, although it is detectable on the surface by remote sensing. This paper aims to explore a new way to rapidly assess ASS in the subsurface by introducing a proximal hyperspectral instrument, namely the HyloggerTM system which can rapidly scan soil cores and provide high resolution hyperspectral data. Some minerals in ASS, which usually act as indicators of the severity of ASS, such as iron oxides, hydroxides, and sulphates, as well as some clay minerals, such as kaolinite, have diagnostic spectral absorption features in the reflectance spectral range (400-2500 nm). Soil cores were collected from a study area and hyperspectral data were acquired by HyloggerTM scanning. The main minerals related to ASS were characterized spectrally, and were subsequently identified and mapped in the soil cores based on their reflectance spectral characteristics. Traditional X-ray diffraction (XRD) and scanning electron microscope (SEM) were also applied to verify the results of the mineral identification. The main results of this study include the spectral characterisation of ASS and its main compositional minerals, as well as the distribution of these relevant minerals in different depth of cores.

  11. Nucleic-acid characterization of the identity and activity of subsurface microorganisms

    Madsen, E. L.

    Nucleic-acid approaches to characterizing naturally occurring microorganisms in their habitats have risen to prominence during the last decade. Extraction of deoxyribonucleic-acid (DNA) and ribonucleic-acid (RNA) biomarkers directly from environmental samples provides a new means of gathering information in microbial ecology. This review article defines: (1) the subsurface habitat; (2) what nucleic-acid procedures are; and (3) the types of information nucleic-acid procedures can and cannot reveal. Recent literature examining microbial nucleic acids in the terrestrial subsurface is tabulated and reviewed. The majority of effort to date has focused upon insights into the identity and phylogeny of subsurface microorganisms afforded by analysis of their 16S rRNA genes. Given the power of nucleic-acid-based procedures and their limited application to subsurface habitats to date, many future opportunities await exploration. Au cours des derniers dix ans, les approches basées sur les acides nucléiques sont apparues et devenues essentielles pour caractériser dans leurs habitats les microorganismes existant à l'état naturel. L'extraction directe de l'ADN et de l'ARN, qui sont des biomarqueurs, d'échantillons environnementaux a fourni un nouveau moyen d'obtenir des informations sur l'écologie microbienne. Cet article synthétique définit 1) l'habitat souterrain, 2) ce que sont les procédures basées sur les acides nucléiques, 3) quel type d'informations ces procéedures peuvent et ne peuvent pas révéler. Les travaux récemment publiés concernatn les acides nucléiques microbiens dans le milieu souterrain terrestre sont catalogués et passés en revue. La majorité des efforts pour obtenir es données s'est concentrée sur l'identité et la phylogénie des microorganismes souterrains fournies par l'analyse de leurs gènes 16S rRNA. Étant donné la puissance des procédures basées sur les acides nucléiques et leur application limitée aux habitats souterrains

  12. Geochemical and microbiological processes in sediments and in the sediment-water boundary layer of acid lakes in mining landscapes

    Subjects: Applications and characterisation of sulphate-reducing bacteria in acid lakes in abandanod uranium and lignite mines; biological analysis of the lakes and their sediments; analytical methods and biogeochemical analysis of mining lakes, technical deacidification experiments, balances and models of mass flow in lakes and sediments of mining landscapes

  13. Electrode Induced Removal and Recovery of Uranium (VI) from Acidic Subsurfaces

    Gregory, Kelvin [Carnegie Mellon University

    2013-08-12

    The overarching objective of this research is to provide an improved understanding of how aqueous geochemical conditions impact the removal of U and Tc from groundwater and how engineering design may be utilized to optimize removal of these radionuclides. Experiments were designed to address the unique conditions in Area 3 of ORNL while also providing broader insight into the geochemical effectors of the removal rates and extent for U and Tc. The specific tasks of this work were to: 1) quantify the impact of common aqueous geochemical and operational conditions on the rate and extent of U removal and recovery from water, 2) investigate the removal of Tc with polarized graphite electrode, and determine the influence of geochemical and operational conditions on Tc removal and recovery, 3) determine whether U and Tc may be treated simultaneous from Area 3 groundwater, and examine the bench-scale performance of electrode-based treatment, and 4) determine the capacity of graphite electrodes for U(VI) removal and develop a mathematical, kinetic model for the removal of U(VI) from aqueous solution. Overall the body of work suggests that an electrode-based approach for the remediation of acidic subsurface environments, such as those observed in Area 3 of ORNL may be successful for the removal for both U(VI) and Tc. Carbonaceous (graphite) electrode materials are likely to be the least costly means to maximize removal rates and efficiency by maximizing the electrode surface area.

  14. Linking surface and subsurface properties of biocrusted and non-biocrusted habitats of fine-grained fluvial sediments (playas from the Negev Desert

    Kidron Giora J.

    2016-06-01

    Full Text Available With biocrusts playing a cardinal role in C and N fixation in arid zones, information regarding the factors that determine their limits of growth is of uttermost importance for the study of ecosystem structure and function. This is also the case in the western Negev dunefields, where although abundant on the sandy surfaces, biocrusts are scarce on fine-grained (mainly loessial sediments, termed playas. In the Nizzana research site (NRS, visibly distinct surfaces, with and without biocrusts were noted within a single playa. In an attempt to characterize these distinct surfaces, a set of random measurements were carried out, which included measurements of crack density, microrelief and chlorophyll content of the upper 0–1 cm. Following a cluster analysis, four distinct types of surfaces (hereafter habitats were defined, one with substantial amount of chlorophyll content which can be regarded as biocrust (P4, and three non-crusted surfaces (P1–P3. Within each type, two 50 cm-deep pits were dug and the pH, electrical conductivity (EC and fine (silt and clay content (FC of samples collected at 1–5, 5–10, 10–20, 20–30, 30–40 and 40–50 cm-depth were analyzed. In addition, periodical moisture measurements were carried out (in pairs to a depth of 0–20 cm at each surface type during 2013/14. All non-crusted habitats (P1–P3 were characterized by loessial subsurface sediments. Conversely, P4 was either characterized by loessial subsurface sediments (and in this case it was characterized by a slightly concave surface or having a sandy subsurface (at ~5–10 cm depth. While the non-crusted surfaces exhibited low moisture content, P4 exhibited deeper and higher moisture content explained either by the more sandy sediments or by lower water loss through runoff. The findings point to the close link between surface and subsurface properties and indicate that water availability may explain biocrust establishment and growth also at the loessial

  15. Fate of microbial nitrogen, carbon, hydrolysable amino acids, monosaccharides, and fatty acids in sediment

    Veuger, Bart; van Oevelen, Dick; Middelburg, Jack J.

    2012-04-01

    The fate of microbial carbon, nitrogen, hydrolysable amino acids (HAAs), monosaccharides, and fatty acids in sediment was investigated experimentally. The microbial community of a tidal flat sediment was labeled with 13C-enriched glucose and 15N-enriched ammonium, and sediment was incubated for up to 371 days. Analysis of total concentrations and 13C- and 15N content of bulk sediment, hydrolysable amino acids (including D-alanine), monosaccharides, total fatty acids (TFAs), and phospholipid-derived fatty acids (PLFAs) allowed us to trace the fate of microbial biomass and -detritus and the major biochemical groups therein (proteins, carbohydrates, and lipids) over intermediate time scales (weeks-months). Moreover, the unidentified fraction of the labeled material (i.e. not analyzed as HAA, FA, or carbohydrate) provided information on the formation and fate of molecularly uncharacterizable organic matter. Loss of 13C and 15N from the sediment was slow (half live of 433 days) which may have been due to the permanently anoxic conditions in the experiment. Loss rates for the different biochemical groups were also low with the following order of loss rate constants: PLFA > TFA > HAA > monosaccharides. The unidentified 13C-pool was rapidly formed (within days) and then decreased relatively slowly, resulting in a gradual relative accumulation of this pool over time. Degradation and microbial reworking of the labeled material resulted in subtle, yet consistent, diagenetic changes within the different biochemical groups. In the HAA pool, glycine, lysine, and proline were lost relatively slowly (i.e. best preserved) while there was no accumulation of D-alanine relative to L-alanine, indicating no relative accumulation of bacterial macromolecules rich in D-alanine. In the fatty acid pool, there was very little difference between PLFAs and TFAs, indicating a very similar lability of these pools. Differences between individual fatty acids included a relatively slow loss of i15

  16. Distribution and Variation of Ribonucleic Acid (RNA) and Protein and Its Hydrolysis Products in Lake Sediments

    梁小兵; 万国江; 黄荣贵

    2002-01-01

    Protein and RNA in lake sediments tend to be decomposed progressively with time and sedimentation depth. Their concentrations tend to decrease starting from the sedimentation depth of 17 cm and that of 19 cm, respectively. However, the products of their decomposition-amino acids and nucleotides show different rules of variation. At the depth from 27 cm to 30 cm the amino acids are most abundant in the pore waters of lake sediments. Such variation tendency seems to be related to the extent to which microbes utilize amino acids and nucleotides. Due to polymerization in the geological processes and the adsorption of protein on minerals and organic polymers, below the sedimentation depth of 17 cm there is still a certain amount of protein in the sediments. With the time passing by, protein has been well preserved in various sediment layers, indicating that its decomposition is relatively limited. The peak values of protein content in the sediments of the two lakes are produced in the surface layers at the depth of 10 cm, implicating that the surface sediments are favorable to the release of protein.The contents of amino acids in the pore waters of lake sediments are closely related to the activities of microbes. Below the depth of 27 cm, the amino acids are significantly accumulated in Lake Aha sediments, probably indicating the weakening of microbial activities.

  17. Effect of oxalic acid treatment on sediment arsenic concentrations and lability under reducing conditions.

    Sun, Jing; Bostick, Benjamin C; Mailloux, Brian J; Ross, James M; Chillrud, Steven N

    2016-07-01

    Oxalic acid enhances arsenic (As) mobilization by dissolving As host minerals and competing for sorption sites. Oxalic acid amendments thus could potentially improve the efficiency of widely used pump-and-treat (P&T) remediation. This study investigates the effectiveness of oxalic acid on As mobilization from contaminated sediments with different As input sources and redox conditions, and examines whether residual sediment As after oxalic acid treatment can still be reductively mobilized. Batch extraction, column, and microcosm experiments were performed in the laboratory using sediments from the Dover Municipal Landfill and the Vineland Chemical Company Superfund sites. Oxalic acid mobilized As from both Dover and Vineland sediments, although the efficiency rates were different. The residual As in both Dover and Vineland sediments after oxalic acid treatment was less vulnerable to microbial reduction than before the treatment. Oxalic acid could thus improve the efficiency of P&T. X-ray absorption spectroscopy analysis indicated that the Vineland sediment samples still contained reactive Fe(III) minerals after oxalic acid treatment, and thus released more As into solution under reducing conditions than the treated Dover samples. Therefore, the efficacy of enhanced P&T must consider sediment Fe mineralogy when evaluating its overall potential for remediating groundwater As. PMID:26970042

  18. Grain-Size Based Additivity Models for Scaling Multi-rate Uranyl Surface Complexation in Subsurface Sediments

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.; Hu, Qinhong

    2016-07-31

    The additivity model assumed that field-scale reaction properties in a sediment including surface area, reactive site concentration, and reaction rate can be predicted from field-scale grain-size distribution by linearly adding reaction properties estimated in laboratory for individual grain-size fractions. This study evaluated the additivity model in scaling mass transfer-limited, multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment. Experimental data of rate-limited U(VI) desorption in a stirred flow-cell reactor were used to estimate the statistical properties of the rate constants for individual grain-size fractions, which were then used to predict rate-limited U(VI) desorption in the composite sediment. The result indicated that the additivity model with respect to the rate of U(VI) desorption provided a good prediction of U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel-size fraction (2 to 8 mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.

  19. Sediment-water interaction in a water reservoir affected by acid mine drainage : experimental and modeling

    Torres Sánchez, Ester

    2013-01-01

    The discharge of acid mine drainage into a water reservoir may seriously affect the water quality. In this setting, sediment is commonly thought to act as a sink for pollutants. However, redox oscillations in the bottom water promoted by stratification-turnover events may significantly alter the metal cycling. A new sequential extraction procedure has been developed to study the metal partitioning in the sediment. The new scheme for iron, sulfur and organic carbon rich sediments was evaluated...

  20. Study Of Textural Characteristics And Heavy Mineral Assemblage Of Shallow Subsurface Sediments Of A Part Of The Brahmaputra Valley In Assam, India

    R. K. Sarmah

    2013-07-01

    Full Text Available The study area is located on the south bank of the mighty river Brahmaputra in the districts of Tinsukia and Dibrugarh of Assam within the interfluves between the rivers Noa Dihing and Burhi Dihing. Thick deposits of Recent alluvial sediments comprising Older Alluvium, High level Terraces and New Alluvium along with active flood plain deposits are well exposed in natural cut bank sections of the Burhi-Dihing and Noa-Dihing rivers and their tributaries.The alluvium had been drilled for coring up to about 50 m at four sites, viz. Dhola, Dum Duma, ChotaTingrai and Naharkatiya, which are almost equally placed in a north-south direction from the river Brahmaputra towards south close to the foot of the Naga Hills. Grain size distribution of the sediments reveals that the samples are invariably sand with minor amount of clay and silts. Most of the sediments show bimodal size distribution. Cummulative curves indicate combination of different modes of transport and deposition and represent mostly two line segments and a few three line segments. Mean size of the sediments varies from very fine sand to medium sand. Majority of the sediments are moderately sorted and fine skewed. The frequency of leptokurtic and extremely leptokurtic sediments are maximum. Bivariate plots of standard deviation, skewness and kurtosis vs mean size show wide scatter of the valuessuggesting fluctuating energy conditions.. The bivariate plots and the CM plot suggest the fluvial nature of the sediments deposited chiefly in channel sub environment under medium to high energy condition. Ultra stable and unstable heavy mineral assemblage in the sediments points to their derivation mainly from source areas consisting mainly of high grade metamorphic and acid igneous rocks.

  1. Subsurface Seismic Record of Sediment Failures in the Neogene of Deepwater West Africa: Causal Mechanisms and Characteristics

    Oluboyo, A. P.; Zhunussov, D.; Huuse, M.; Gawthorpe, R.

    2010-12-01

    Catastrophic sediment failures in deepwater margins are initiated by a wide range of triggering mechanisms including but not limited to; sea-level fluctuations, earthquakes, rapid sediment overburdening, progressive slope failures and gas hydrate destabilization. Three-dimensional seismic interpretation of a 1,400 km2 3D volume from the Neogene stratigraphic record of the Lower Congo Basin (LCB) demonstrates the existence of two major types of sediment failures within an elongate salt bound mini-basin (c. 15 km by 60 km). These slope instabilities are distinguished on the basis of their size, origin, geometries and deformational structures.Within the Middle Miocene, a regionally extensive, frontally emergent mass transport deposit occurs, and is a part of a much larger, regionally prevalent sediment failure deposit within the LCB. This deposit covers an area of ~ 750 km2 with an average thickness of ~ 60 m and a volume of 45 km3, with its lateral extent delimited by the salt diapirs which bound the mini-basin. Seismically, it exhibits chaotic, discontinuous, low amplitude semi-transparent facies with an erosive basal scour surface and an irregular upper bounding surface.The second type of sediment failure is a Pliocene aged, detached MTC with a short run out distance c. 10km. The slump is areally constrained to the flank of the western bounding salt-cored fold, with a preserved scarp along the fold crest. This deposit is frontally confined, with an average thickness of ~250 m and covers an area ~ 100 km2 (4 km by 26 km). It is defined by a high amplitude reflection at the base, with a series of syndepositional thrusts detaching off this surface at the terminal end of the deposit. Compressional structures are also seismically resolvable in strata adjacent to the distal end of the MTC. The presence of pressure ridges along the top bounding surface, coupled with the differential compaction of the slump deposits and mounded topography relative to local bathymetry

  2. Geochemical reactivity of subsurface sediments as potential buffer to anthropogenic inputs: A strategy for regional characterization in the Netherlands

    Gaans, P.F.M. van; Griffioen, J.; Mol, G.; Klaver, G.

    2011-01-01

    Purpose: Sedimentary aquifers are prone to anthropogenic disturbance. Measures aimed at mitigation or adaptation require sound information on the reactivity of soil/sediments towards the infiltrating water, as this determines the chemical quality of the groundwater and receiving surface waters. Here

  3. The effect of biogenic Fe(II) on the stability and sorption of Co(II)EDTA2- to goethite and a subsurface sediment

    Laboratory experiments were conducted with suspensions of goethite (α-FeOOH) and a subsurface sediment to assess the influence of bacterial iron reduction on the fate of Co(II)EDTA2-, a representative metal-ligand complex of intermediate stability (log KCo(II)EDTA = 17.97). The goethite was synthetic (ca. 55 m2/g) and the sediment was a Pleistocene age, Fe(III) oxide-containing material from the Atlantic coastal plain (Milford). Shewanella alga strain BrY, a dissimulatory iron reducing bacterium (DIRB), was used to promote Fe(III) oxide reduction. Sorption isotherms and pH adsorption edges were measured for Co2+, Fe2+, Co(II)EDTA2-, and Fe(II)EDTA2- on the two sorbents in 0.001 mol/L Ca(ClO4)2 to aid in experiment interpretation. It is concluded that cationic radionuclides such as 60Co or 239/240Pu, which may be mobilized from disposed wastes by complexation with EDTA4-, may become immobilized in groundwater zones where dissimilatory bacterial iron reduction is operative

  4. Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin

    Krylov, Alexey A.; Khlystov, Oleg M.; Hachikubo, Akihiro; Minami, Hirotsugu; Nunokawa, Yutaka; Shoji, Hitoshi; Zemskaya, Tamara I.; Naudts, Lieven; Pogodaeva, Tatyana V.; Kida, Masato; Kalmychkov, Gennady V.; Poort, Jeffrey

    2010-06-01

    We report on the isotopic composition of dissolved inorganic carbon (DIC) in pore-water samples recovered by gravity coring from near-bottom sediments at gas hydrate-bearing mud volcanoes/gas flares (Malenky, Peschanka, Peschanka 2, Goloustnoe, and Irkutsk) in the Southern Basin of Lake Baikal. The δ13C values of DIC become heavier with increasing subbottom depth, and vary between -9.5 and +21.4‰ PDB. Enrichment of DIC in 13C indicates active methane generation in anaerobic environments near the lake bottom. These data confirm our previous assumption that crystallization of carbonates (siderites) in subsurface sediments is a result of methane generation. Types of methanogenesis (microbial methyl-type fermentation versus CO2-reduction) were revealed by determining the offset of δ13C between dissolved CH4 and CO2, and also by using δ13C and δD values of dissolved methane present in the pore waters. Results show that both mechanisms are most likely responsible for methane generation at the investigated locations.

  5. Cycling of iron and trace metals in the sediments of acidic lakes

    This study focused on four lakes receiving acidic deposition located in the Adirondack Park, New York, U.S.A. The biogeochemistry of sediments and interstitial water along a depth transect in Big Moose, Lake was examined by chemical analysis of sediment and pore water. Solid phases of iron, manganese, aluminum, lead and zinc were quantified, using a sequential chemical extraction process. 210Pb dating, and equilibrium and diffusion transport modeling were used to assess the degree of post-depositional reprocessing of these metals. The sediment chemistry of Dart Lake, Lake Rondaxe and South Lake, were compared to the sediment processes observed in Big Moose Lake to assess inter-lake variability

  6. Influence of intraparticle diffusion on the desorption of radiocesium from the subsurface sediments at Hanford site, USA

    Liu, C.; Zachara, J.; Smith, S.; McKinley, J.

    2002-12-01

    The desorption of 137Cs was investigated on sediments from the United States Hanford site. Pristine sediments and ones that were contaminated by the accidental release of alkaline 137Cs-containing high level nuclear wastes (HLW) were studied. The desorption of 137Cs was measured in Na+, K+, Rb+, and NH4+ electrolytes of variable concentration and pH, and in presence of a strong Cs-specific sorbent (self-assembled monolayer on a mesoporous support, SAMMS). 137Cs desorption from the HLW-contaminated Hanford sediments exhibited two distinct phases: an initial instantaneous release followed by a slow kinetic process. The first phase was driven by the equilibrium ion exchange of Cs located on the mica edges and its release extent followed the respective selectivities of the sediment for exchanging cations. The kinetic process was controlled by the intraparticle diffusion. X-ray microprobe analyses of Cs-sorbed micas showed that the 137Cs distributed not only on mica edges, but also within internal channels parallel to the basal plane. The diffusion rate was influenced by surface armoring and edge-channel collapse in solutions containing K+, Rb+, or NH4+. Scanning electron microscopic analysis revealed HLW-induced precipitation of secondary alumino-silicates on the edges of micaceous minerals. The removal of these precipitates by acidified ammonium oxalate extraction significantly increased the desorption rate and extent. Controlled desorption experiments using Cs-spiked pristine sediment indicated that the 137Cs diffusion rate was fast in Na-electrolyte, but much slower in the presence of K or Rb, suggesting an effect of edge-channel collapse. Model simulation using an intraparticle diffusion coupled with a cation exchange suggested that about 40 percent of total sorbed 137Cs in the contaminated Hanford sediment was exchangeable, including equilibrium and diffusive desorbable pools. This ratio increased to 60-80 percent after the removal of secondary precipitates. The

  7. Actinide occurrences in sediments following ground disposal of acid wastes at 216-Z-9

    Liquid acid wastes from a Pu recovery facility at Hanford were released to the ground via structures collectively termed trenches from 1955 through 1962. Data are presented from a study of the microdistribution of Am and Pu in samples from the 216-Z-9 trench. Solution sediment relationships and associated actinide removal mechanisms under acid conditions were studied. Core wells were drilled into the sediments in which this covered trench is located and in the immediate vicinity to obtain samples for quantitative mineralogical analysis and comparison of sediments from various depths of contaminated and noncontaminated areas. Analytical techniques are described and results are reported

  8. DOE ER63951-3 Final Report: An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    Susan Pfiffner

    2010-06-28

    The objective of this research was to examine the importance of microbial community structure in influencing uranium reduction rates in subsurface sediments. If the redox state alone is the key to metal reduction, then any organisms that can utilize the oxygen and nitrate in the subsurface can change the geochemical conditions so metal reduction becomes an energetically favored reaction. Thus, community structure would not be critical in determining rates or extent of metal reduction unless community structure influenced the rate of change in redox. Alternatively, some microbes may directly catalyze metal reduction (e.g., specifically reduce U). In this case the composition of the community may be more important and specific types of electron donors may promote the production of communities that are more adept at U reduction. Our results helped determine if the type of electron donor or the preexisting community is important in the bioremediation of metal-contaminated environments subjected to biostimulation. In a series of experiments at the DOE FRC site in Oak Ridge we have consistently shown that all substrates promoted nitrate reduction, while glucose, ethanol, and acetate always promoted U reduction. Methanol only occasionally promoted extensive U reduction which is possibly due to community heterogeneity. There appeared to be limitations imposed on the community related to some substrates (e.g. methanol and pyruvate). Membrane lipid analyses (phospholipids and respiratory quinones) indicated different communities depending on electron donor used. Terminal restriction fragment length polymorphism and clone libraries indicated distinct differences among communities even in treatments that promoted U reduction. Thus, there was enough metabolic diversity to accommodate many different electron donors resulting in the U bioimmobilization.

  9. Environmental process descriptors for TNT, TNT-related compounds and picric acid in marine sediment slurries

    Process descriptors were determined for picric acid, TNT, and the TNT-related compounds 2,4DNT, 2,6DNT, 2ADNT, 4ADNT, 2,4DANT, 2,6DANT, TNB and DNB in marine sediment slurries. Three marine sediments of various physical characteristics (particle size ranging from 15 to >90% fines and total organic carbon ranging from <0.10 to 3.60%) were kept in suspension with 20 ppt saline water. Concentrations of TNT and its related compounds decreased immediately upon contact with the marine sediment slurries, with aqueous concentrations slowly declining throughout the remaining test period. Sediment-water partition coefficients could not be determined for these compounds since solution phase concentrations were unstable. Kinetic rates and half-lives were influenced by the sediment properties, with the finer grained, higher organic carbon sediment being the most reactive. Aqueous concentrations of picric acid were very stable, demonstrating little partitioning to the sediments. Degradation to picramic acid was minimal, exhibiting concentrations at or just above the detection limit

  10. Microbial biomass and activities associated with subsurface environments contaminated with chlorinated hydrocarbons

    Soil microcosms and enrichment cultures from subsurface sediments and ground waters contaminated with trichloroethylene (TCE) were examined. Total lipids, (1-C14)acetate incorporation into lipids, and (Me3H)thymidine incorporation into DNA were determined in these subsurface environments. In heavily TCE-contaminated zones radioisotopes were not incorporated into lipids or DNA. Radioisotope incorporation occurred in sediments both above and below the TCE plume. Phospholipid fatty acids (PLFA) were not detected, i.e., < 0.5 pmol/L in heavily contaminated groundwater samples. In less contaminated waters, extracted PLFA concentrations were greater than 100 pmol/L and microbial isolates were readily obtained. Degradation of 30-100 mg/L TCE was observed when sediments were amended with a variety of energy sources. Microorganisms in these subsurface sediments have adapted to degrade TCE at concentrations greater than 50 mg/L. 34 refs., 4 figs., 4 tabs

  11. Ligand-enhanced electrokinetic remediation of metal-contaminated marine sediments with high acid buffering capacity.

    Masi, Matteo; Iannelli, Renato; Losito, Gabriella

    2016-06-01

    The suitability of electrokinetic remediation for removing heavy metals from dredged marine sediments with high acid buffering capacity was investigated. Laboratory-scale electrokinetic remediation experiments were carried out by applying two different voltage gradients to the sediment (0.5 and 0.8 V/cm) while circulating water or two different chelating agents at the electrode compartments. Tap water, 0.1 M citric acid and 0.1 M ethylenediaminetetraacetic acid (EDTA) solutions were used respectively. The investigated metals were Zn, Pb, V, Ni and Cu. In the unenhanced experiment, the acid front could not propagate due to the high acid buffering capacity of the sediments; the production of OH(-) ions at the cathode resulted in a high-pH environment causing the precipitation of CaCO3 and metal hydroxides. The use of citric acid prevented the formation of precipitates, but solubilisation and mobilisation of metal species were not sufficiently achieved. Metal removal was relevant when EDTA was used as the conditioning agent, and the electric potential was raised up to 0.8 V/cm. EDTA led to the formation of negatively charged complexes with metals which migrated towards the anode compartment by electromigration. This result shows that metal removal from sediments with high acid buffering capacity may be achieved by enhancing the electrokinetic process by EDTA addition when the acidification of the medium is not economically and/or environmentally sustainable. PMID:26490900

  12. Sorption of a branched nonylphenol and perfluorooctanoic acid on Yangtze River sediments and their model components

    Li, C L; R. Ji; Schaffer, A.; Sequaris, J.M.; Amelung, W.; H. Vereecken; E. Klumpp

    2012-01-01

    Many metabolites of organic surfactants such as nonylphenol (NP) and perfluorooctanoic acid (PFOA) are ubiquitously found in the environment and are toxic if not sorbed on soils and sediments. In this study, we quantified the sorption of the NP isomer with the highest endocrine activity, [4-(1-ethyl-1,3-dimethylpentyl) phenol] (NP111), and that of PFOA on Yangtze River sediments and its model components illite, goethite and natural organic matter. The sorption experiments were performed with ...

  13. Diagenetic alterations of amino acids and organic matter in the upper Pearl River Estuary surface sediments

    J. Zhang

    2011-03-01

    Full Text Available The objective of this study was to investigate the sources, diagenetic alterations of, and bacterial contributions to sediment organic matter (OM in the upper Pearl River Estuary. Sediment analyses were conducted for three size fractions of OM, including coarse particulate OM (CPOM, fine particulate OM (FPOM, and ultrafiltered dissolved OM (UDOM. Results showed that the highest and lowest carbon (C: nitrogen (N ratios were in CPOM and UDOM, respectively, indicating CPOM was relatively enriched in organic C, whereas FPOM was enriched in N-containing molecules. Distributions of amino acids and their D-isomers among the sediment fractions indicated that the percentage of total N represented by total hydrolysable amino acids, C- and N-normalized yields of total D-amino acids, and C- and N-normalized yields of D-alanine, D-glutamic acid, D-serine could be used as diagenetic indicators of sediment OM. Correlations between the N yields in total D-amino acids and total hydrolysable amino acids, and total N yields suggested that the bacterial N in general reflected the bulk N changes in CPOM, FPOM, and UDOM. Our results demonstrate the crucial role of bacteria as a N source in the terrestrial (soil and vascular plant debris OM transported by the river.

  14. Keep your Sox on: Community genomics-directed isolation and microscopic characterization of the dominant subsurface sulfur-oxidizing bacterium in a sediment aquifer

    Mullin, S. W.; Wrighton, K. C.; Luef, B.; Wilkins, M. J.; Handley, K. M.; Williams, K. H.; Banfield, J. F.

    2012-12-01

    Community genomics and proteomics (proteogenomics) can be used to predict the metabolic potential of complex microbial communities and provide insight into microbial activity and nutrient cycling in situ. Inferences regarding the physiology of specific organisms then can guide isolation efforts, which, if successful, can yield strains that can be metabolically and structurally characterized to further test metagenomic predictions. Here we used proteogenomic data from an acetate-stimulated, sulfidic sediment column deployed in a groundwater well in Rifle, CO to direct laboratory amendment experiments to isolate a bacterial strain potentially involved in sulfur oxidation for physiological and microscopic characterization (Handley et al, submitted 2012). Field strains of Sulfurovum (genome r9c2) were predicted to be capable of CO2 fixation via the reverse TCA cycle and sulfur oxidation (Sox and SQR) coupled to either nitrate reduction (Nap, Nir, Nos) in anaerobic environments or oxygen reduction in microaerobic (cbb3 and bd oxidases) environments; however, key genes for sulfur oxidation (soxXAB) were not identified. Sulfidic groundwater and sediment from the Rifle site were used to inoculate cultures that contained various sulfur species, with and without nitrate and oxygen. We isolated a bacterium, Sulfurovum sp. OBA, whose 16S rRNA gene shares 99.8 % identity to the gene of the dominant genomically characterized strain (genome r9c2) in the Rifle sediment column. The 16S rRNA gene of the isolate most closely matches (95 % sequence identity) the gene of Sulfurovum sp. NBC37-1, a genome-sequenced deep-sea sulfur oxidizer. Strain OBA grew via polysulfide, colloidal sulfur, and tetrathionate oxidation coupled to nitrate reduction under autotrophic and mixotrophic conditions. Strain OBA also grew heterotrophically, oxidizing glucose, fructose, mannose, and maltose with nitrate as an electron acceptor. Over the range of oxygen concentrations tested, strain OBA was not

  15. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments.

    Christopher S Miller

    Full Text Available In microbial ecology, a fundamental question relates to how community diversity and composition change in response to perturbation. Most studies have had limited ability to deeply sample community structure (e.g. Sanger-sequenced 16S rRNA libraries, or have had limited taxonomic resolution (e.g. studies based on 16S rRNA hypervariable region sequencing. Here, we combine the higher taxonomic resolution of near-full-length 16S rRNA gene amplicons with the economics and sensitivity of short-read sequencing to assay the abundance and identity of organisms that represent as little as 0.01% of sediment bacterial communities. We used a new version of EMIRGE optimized for large data size to reconstruct near-full-length 16S rRNA genes from amplicons sheared and sequenced with Illumina technology. The approach allowed us to differentiate the community composition among samples acquired before perturbation, after acetate amendment shifted the predominant metabolism to iron reduction, and once sulfate reduction began. Results were highly reproducible across technical replicates, and identified specific taxa that responded to the perturbation. All samples contain very high alpha diversity and abundant organisms from phyla without cultivated representatives. Surprisingly, at the time points measured, there was no strong loss of evenness, despite the selective pressure of acetate amendment and change in the terminal electron accepting process. However, community membership was altered significantly. The method allows for sensitive, accurate profiling of the "long tail" of low abundance organisms that exist in many microbial communities, and can resolve population dynamics in response to environmental change.

  16. Fatty acids and Pb-210 geochronology of a sediment core from Buzzards Bay, Massachusetts

    Four sections of a Pb-210 dated core of 62 cm length from Buzzards Bay, Massachusetts, were analyzed for fatty acids. A comparison of fatty acids extracted by Soxhlet extraction (unbound fatty acids) with fatty acids extracted by subsequent saponification extraction of the same sample (bound fatty acids) showed that the former did not undergo diagenetic loss any faster than the latter. However, compositional differences between bound and unbound fatty acids were apparent in the top section of 1 to 2 cm and were less apparent in the 54 to 58 cm section. At least 14% of the bound fatty acids are esterified to non-solvent extractable material. The net conversion of fatty acids to other compounds is 32 μg/g dry weight sediment over the first 30 yr after deposition. (author)

  17. Acid-fast microscopy on polycarbonate membrane filter sputum sediments.

    Smithwick, R W; Stratigos, C B

    1981-01-01

    Polycarbonate membrane filters were used to concentrate 916 sputum specimens for detecting acid-fast bacilli by microscopic examination. These results were compared with those of smears prepared from centrifugates and direct smears of the same specimens. Culture isolation, the control procedure, demonstrated the presence of acid-fast bacilli in 76 specimens. The number of positive specimens detected by microscopy was 82 on polycarbonate membrane filter concentrates, with an 80.2% sensitivity;...

  18. Perfluorooctanoic acid and perfluorooctane sulfonate in the sediment of the Roter Main river, Bayreuth, Germany

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are widely distributed in aquatic ecosystems. Their sources are known but few studies about their accumulation potential in river sediments exist. The aim of this study is to assess the concentrations of PFOA and PFOS in sediments in relation to their levels in river water receiving effluent from a waste water treatment plant (WWTP). PFOS accumulates by a factor of about 40 relative to river water, PFOA only up to threefold. In contrast to previous suggestions, in this case the enrichment on sediment is not correlated to the total organic carbon contents. - River sediments constitute a sink of perfluorinated surfactants released from the waste water treatment plant

  19. Stable carbon and nitrogen isotopes and amino acids in Holocene sediments of Lake Lonar, central India

    Menzel, Philip; Gaye, Birgit; Wiesner, Martin; Basavaiah, Nathani; Prasad, Sushma; Stebich, Martina; Anoop, Ambili; Riedel, Nils

    2013-04-01

    Investigations on surface sediments and a sediment core from Lake Lonar in central India were carried out within the framework of the HIMPAC (Himalaya: Modern and Past Climate) programme. The aim was to understand recent productivity, sedimentation, and degradation processes and to reconstruct variations in Holocene lake conditions on the basis of biogeochemical analysis on a 10 m long sediment core retrieved from the centre of Lake Lonar. Located in India's core monsoon zone, Lake Lonar offers valuable information about the climate development of the whole region. The lake is situated at the floor of a meteorite impact structure on the Deccan plateau basalt. The modern lake is characterised by brackish water, high alkalinity, severe eutrophication, and bottom water anoxia. The lake is about 6 m deep and fed by rainfall during the SW monsoon season and three perennial streams. Since no out-flowing stream is present and no seepage loss occurs, the lake level is highly sensitive to the balance of precipitation and evaporation. Here we present C/N, carbon and nitrogen isotope, and amino acid data of bulk organic matter from modern lake and Holocene core sediments. Modern conditions are mainly related to human activity which started to have persistent influence on the biological and chemical lake properties at ~1200 cal a BP. The distribution of δ13C in the modern sediments is driven by the ratio between terrestrial and aquatic organic matter, while δ15N seems to be influenced by redox conditions at the sediment-water-interface with elevated values at shallow oxic stations. Differences in the amino acid assemblages of oxic and anoxic surface sediment samples were used to calculate an Ox/Anox ratio indicating the redox conditions during organic matter degradation. The onset of the monsoon reconstructed from the sediment core occurred at ca. 11450 cal a BP. The early Holocene core sediments are characterised by low sedimentation rate, low aquatic productivity, and

  20. Biomarkers in sediments. The racemization/epiremitation of amino acids like tool in geochronology and paleothermometrics

    The study of amino acids as biomarkers in sediments has become a necessary methodology and tool for the analysis of palaeoenvironmental conditions and, therefore, of climatic evolution in the past. Research based on the selection and analysis of geological biomarkers, and more specifically activities relating to the racemization/epimerization of amino acids, makes it possible to obtain the geochronological and photoelectrochemical data required to establish different hypotheses for Long-Term Performance Assessment of a repository for high level radioactive wastes

  1. Metal cycling during sediment early diagenesis in a water reservoir affected by acid mine drainage

    Torres, Ester; Ayora, Carlos; Canovas, C. R.;

    2013-01-01

    The discharge of acid mine drainage (AMD) into a reservoir may seriously affect the water quality. To investigate the metal transfer between the water and the sediment, three cores were collected from the Sancho Reservoir (Iberian Pyrite Belt, SW Spain) during different seasons: turnover event...

  2. Characteristics of the surface-subsurface flow generation and sediment yield to the rainfall regime and land-cover by long-term in-situ observation in the red soil region, Southern China

    Liu, Yao-Jun; Yang, Jie; Hu, Jian-Min; Tang, Chong-Jun; Zheng, Hai-Jin

    2016-08-01

    Land cover and rainfall regime are two important factors that affect soil erosion. In this paper, three land cover types - grass cover, litter cover and bare land - were employed to analyze surface runoff, subsurface flow and sediment loss processes in relation to the rainfall regimes in the red soil region of China. Five rainfall regimes were classified according to 393 rainfall events via a k-means clustering method based on the rainfall depth, duration and maximum 30-min intensity. The highest surface runoff coefficient and erosion amount were found on bare land in all five rainfall regimes, and the lowest were found on grass cover. The litter cover generated the highest subsurface flow rate, followed by the grass cover; the lowest was on bare land. For grass cover and litter cover plots, rainfall events of rainfall regime IV which had the longest duration, greatest depth and lowest intensity had the highest surface runoff coefficient, soil erosion amount and subsurface flow rate. For bare land, storm rainfall events of rainfall regime V had the highest intensity, lowest depth and duration, had the highest surface runoff coefficient and soil erosion amount, but the lowest subsurface flow rate. The highest subsurface flow rate of bare land happened in rainfall regime IV. Surface cover was urgently needed to reduce soil erosion. When the lands under dense surface cover, more attention should be paid to rainfall events that of long duration, high depth but low in intensity which commonly occurred in spring. The interactions of surface-subsurface flow and its effects on soil erosion and nutrient loss were worth considering in the red soil region.

  3. Potentially bioavailable natural organic carbon and hydrolyzable amino acids in aquifer sediments

    Thomas, Lashun K.; Widdowson, Mark A.; Novak, John T.; Chapelle, Francis H.; Benner, Ronald; Kaiser, Karl

    2012-01-01

    This study evaluated the relationship between concentrations of operationally defined potentially bioavailable organic -carbon (PBOC) and hydrolyzable amino acids (HAAs) in sediments collected from a diverse range of chloroethene--contaminated sites. Concentrations of PBOC and HAA were measured using aquifer sediment samples collected at six selected study sites. Average concentrations of total HAA and PBOC ranged from 1.96 ± 1.53 to 20.1 ± 25.6 mg/kg and 4.72 ± 0.72 to 443 ± 65.4 mg/kg, respectively. Results demonstrated a statistically significant positive relationship between concentrations of PBOC and total HAA present in the aquifer sediment (p amino acids are known to be readily biodegradable carbon compounds, this relationship suggests that the sequential chemical extraction procedure used to measure PBOC is a useful indicator of bioavailable carbon in aquifer sediments. This, in turn, is consistent with the interpretation that PBOC measurements can be used for estimating the amount of natural organic carbon available for driving the reductive dechlorination of chloroethenes in groundwater systems.

  4. Extremophile microbiomes in acidic and hypersaline river sediments of Western Australia.

    Lu, Shipeng; Peiffer, Stefan; Lazar, Cassandre Sara; Oldham, Carolyn; Neu, Thomas R; Ciobota, Valerian; Näb, Olga; Lillicrap, Adam; Rösch, Petra; Popp, Jürgen; Küsel, Kirsten

    2016-02-01

    We investigated the microbial community compositions in two sediment samples from the acidic (pH ∼3) and hypersaline (>4.5% NaCl) surface waters, which are widespread in Western Australia. In West Dalyup River, large amounts of NaCl, Fe(II) and sulfate are brought by the groundwater into the surface run-off. The presence of K-jarosite and schwertmannite minerals in the river sediments suggested the occurrence of microbial Fe(II) oxidation because chemical oxidation is greatly reduced at low pH. 16S rRNA gene diversity analyses revealed that sequences affiliated with an uncultured archaeal lineage named Aplasma, which has the genomic potential for Fe(II) oxidation, were dominant in both sediment samples. The acidophilic heterotrophs Acidiphilium and Acidocella were identified as the dominant bacterial groups. Acidiphilium strain AusYE3-1 obtained from the river sediment tolerated up to 6% NaCl at pH 3 under oxic conditions and cells of strain AusYE3-1 reduced the effects of high salt content by forming filamentous structure clumping as aggregates. Neither growth nor Fe(III) reduction by strain AusYE3-1 was observed in anoxic salt-containing medium. The detection of Aplasma group as potential Fe(II) oxidizers and the inhibited Fe(III)-reducing capacity of Acidiphilium contributes to our understanding of the microbial ecology of acidic hypersaline environments. PMID:26524974

  5. Effect of folic acid decorated magnetic fluorescent nanoparticles on the sedimentation of starch molecules

    Palanikumar, S.; Kannammal, L.; Meenarathi, B.; Anbarasan, R.

    2014-04-01

    Ferrite-folic acid (FA) nanohybrids were synthesized and characterized by various analytical tools like Fourier transform infrared spectroscopy, UV-Visible spectroscopy, fluorescence spectroscopy, field emission scanning electron microscopy, X-ray diffraction analysis and vibrating sample measurement techniques. After the nanohybrid formation, both the crystallinity and the magnetization values of ferrite were disturbed due to the surface functionalization of ferrite by FA. The role of nanohybrid on the structure-property relationship of starch, particularly the sedimentation of starch under three different pHs, was evaluated. Again the magnetization value of Fe3O4-FA/starch nanocomposite system was reduced due to the encapsulation effect. The sedimentation velocity of starch under the influence of nanohybrid was enhanced in the acidic medium.

  6. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids

    C. Woulds; Middelburg, J. J.; Cowie, G. L.

    2012-01-01

    Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing techniques to quantify amino acid net accumulation and loss during polychaete gut passage, and to link this to patterns of selective preservation and decay in sediments. Microcosms containing eith...

  7. Screening of anaerobic activities in sediments of an acidic environment: Tinto River.

    Sánchez-Andrea, Irene; Rojas-Ojeda, Patricia; Amils, Ricardo; Sanz, José Luis

    2012-11-01

    The Tinto River (Huelva, Spain) is a natural acidic rock drainage environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. A geomicrobiological model of the different microbial cycles operating in the sediments was recently developed through molecular biological methods, suggesting the presence of iron reducers, methanogens, nitrate reducers and hydrogen producers. In this study, we used a combination of molecular biological methods and targeted enrichment incubations to validate this model and prove the existence of those potential anaerobic activities in the acidic sediments of Tinto River. Methanogenic, sulfate-reducing, denitrifying and hydrogen-producing enrichments were all positive at pH between 5 and 7. Methanogenic enrichments revealed the presence of methanogenic archaea belonging to the genera Methanosarcina and Methanobrevibacter. Enrichments for sulfate-reducing microorganisms were dominated by Desulfotomaculum spp. Denitrifying enrichments showed a broad diversity of bacteria belonging to the genera Paenibacillus, Bacillus, Sedimentibacter, Lysinibacillus, Delftia, Alcaligenes, Clostridium and Desulfitobacterium. Hydrogen-producing enrichments were dominated by Clostridium spp. These enrichments confirm the presence of anaerobic activities in the acidic sediments of the Tinto River that are normally assumed to take place exclusively at neutral pH. PMID:22956355

  8. Effects of acid mine drainage on water, sediment and associated benthic macroinvertebrate communities

    The toxic constituents of abandoned mined land (AML) discharges (acidic pH, heavy metals, total suspended solids) are extremely toxic to aquatic life . Studies were undertaken to ascertain environmental impacts to the upper Powell River, Lee and Wise Counties, Va. These impacts included disruptions in physical water quality, sediment quality, altered benthic macroinvertebrate assemblages, and toxicity of the water column and sediments from short-term impairment bioassays, and the potential to bioaccumulate selected metals (Al, Fe, Mn, P, Zn, Cu, Mg, S, Ni, Cd) by periphyton and resident bivalves. Water chemistry and macroinvertebrate assemblages were collected at upstream control, just below acid mine drainage and other downstream sites. Selected trace metal concentrations (Al, Fe, Mn, P, Zn, Cu, Mg, S, Ni, Cd) were determined for water, sediment and resident bivalves using ICP-AES. Acidic pH ranged from 2.15--3.3 at three AML-influenced seeps and varied from 6.4--8.0 at reference stations. At one AML-influenced creek, acidic pH conditions worsened from summer to fall and eradicated aquatic life throughout a 1.5 km stretch of that creek as it flowed into another creek. An additional dilution of 3.4 km in the second creek was needed to nearly neutralize the acidic pH problem. Conductivity (umhos/cm) ranged from 32--278 at reference sites and from 245--4,180 at AML-impact sites. Benthic macroinvertebrate abundance and taxon richness were essentially eliminated in the seeps or reached numbers of 1 -3 taxa totaling < 10 organisms relative to reference areas where richness values were 12--17 and comprised 300--977 organisms. Concentrations of Fe, Al, Mg and Cu and Zn were highest in the environmentally stressed stations of low pH and high conductivity relative to the reference stations. Iron was, by far, the element in highest concentration followed by Al and Mg

  9. Comparison of some spectroscopic and physico-chemical properties of humic acids extracted from sewage sludge and bottom sediments

    Polak, J.; Bartoszek, M.; Sułkowski, W. W.

    2009-04-01

    Comparison of the physico-chemical properties was carried out for humic acids extracted from sewage sludge and bottom sediments. The isolated humic acids were investigated by means of EPR, IR, UV/vis spectroscopic methods and elementary analysis AE. On the basis of earlier studies it was stated that humic acids extracted from sewage sludge can be divided into humic acids extracted from raw sewage sludge and from sewage sludge after the digestion process. The digestion process was found to have the most significant effect on the physico-chemical properties of humic acids extracted from sludge during sewage treatment. Humic acids extracted from sewage sludge had higher free radical concentration than humic acid extracted from bottom sediments. Values of the g-factor were similar for all studied samples. However, it is noteworthy that g-factor values for humic acid extracted from raw sewage sludge and from bottom sediments were lower in comparison to the humic acid extracted from sewage sludge after the fermentation processes. The IR spectra of all studied humic acids confirmed the presence of functional groups characteristic for humic substances. It was also observed that humic acids extracted from bottom sediments had a more aromatic character and contained less carbon, nitrogen and hydrogen than those extracted from the sewage sludge.

  10. Sorption of Cu(2+) on humic acids sequentially extracted from a sediment.

    Yang, Kun; Miao, Gangfen; Wu, Wenhao; Lin, Daohui; Pan, Bo; Wu, Fengchang; Xing, Baoshan

    2015-11-01

    In addition to the diverse properties of humic acids (HAs) extracted from different soils or sediments, chemical compositions, functional groups and structures of HAs extracted from a single soil or sediment could also be diverse and thus significantly affect sorption of heavy metals, which is a key process controlling the transfer, transformation and fate of heavy metals in the environment. In this study, we sequentially extracted four HA fractions from a single sediment and conducted the sorption experiments of Cu(2+) on these HA fractions. Our results showed that aromaticity and acidic group content of HA fraction decreased with increasing extraction. Earlier extracted HA fraction had higher sorption capacity and affinity for Cu(2+). There were two fractions of adsorbed Cu(2+) on HAs, i.e., ion exchanged fraction and surface bonded fraction, which can be captured mechanically by the bi-Langmuir model with good isotherm fitting. The ion exchanged fraction had larger sorption capacity but lower sorption affinity, compared with the surface bonded fraction. The dissociated carboxyl groups of HAs were responsible for both fractions of Cu(2+) sorption, due to the more Cu(2+) sorption on the earlier extracted HA fraction with more carboxyl groups and at higher pH. The intensive competition between H(+) and the exchangeable Cu(2+) could result in the decrease of ion exchanged capacity and affinity for Cu(2+) on HAs. PMID:26246274

  11. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part I: Amino acids

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.

    2012-01-01

    Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing techniques to quantify amino acid net accumulation and loss during polychaete gut passage, and to link this to patterns of selective preservation and decay in sediments. Microcosms containing either Arenicolamarina or Hediste (formerly Nereis) diversicolor were constructed from defaunated sediment and filtered estuarine water, and maintained under natural temperature and light conditions. They were fed with 13C-labelled diatoms daily for 8 days, and animals were transferred into fresh, un-labelled sediment after ∼20 days. Samples of fauna, microcosm sediment and faecal matter were collected after 8, ∼20 and ∼40 days, and analysed for their bulk isotopic signatures and 13C-labelled amino acid compositions. Bulk isotopic data showed that, consistent with their feeding modes, Hediste assimilated added 13C more quickly, and attained a higher labelling level than Arenicola. Both species retained the added 13C in their biomass even after removal from the food. A principal component analysis of 13C-labelled amino acid mole percentages showed clear differences in composition between the algae, faunal tissues, and sediment plus faecal matter. Further, the two species of polychaete showed different compositions in their tissues. The amino acids phenylalanine, valine, leucine, iso-leucine, threonine and proline showed net accumulation in polychaete tissues. Serine, methionine, lysine, aspartic and glutamic acids and tyrosine were rapidly lost through metabolism, consistent with their presence in easily digestible cell components (as opposed to cell walls which offer physical protection). All sample types (polychaete tissues, sediments and faecal matter) were enriched in

  12. Microbial cycling of iron and sulfur in acidic coal mining lake sediments

    Lakes caused by coal mining processes are characterized by low pH, low nutrient status, and high concentrations of Fe(II) and sulfate due to the oxidation of pyrite in the surrounding mine tailings. Fe(III) produced during Fe(II) oxidation precipitates to the anoxic acidic sediment, where the microbial reduction of Fe(III) is the dominant electron-accepting process for the oxidation of organic matter, apparently mediated by acidophilic Acidiphilium species. Those bacteria can reduce a great variety of Fe(III)-(hydr)oxides and reduce Fe(III) and oxygen simultaneously which might be due to the small differences in the redox potentials under low pH conditions. Due to the absence of sulfide, Fe(II) formed in the upper 6 cm of the sediment diffuses to oxic zones in the water layer where it can be reoxidized by Acidithiobacillus species. Thus, acidic conditions are stabilized by the cycling of iron which inhibits fermentative and sulfate-reducing activities. With increasing sediment depth, the amount of reactive iron decrease, the pH increases above 5, and fermentative and as yet unknown Fe(III)-reducing bacteria are also involved in the reduction of Fe(III). Sulfate is reduced apparently by the activity of spore-forming sulfate reducers including new species of Desulfosporosinus that have their pH optimum similar to in situ conditions and are not capable of growth at pH 7. However, generation of alkalinity via sulfate reduction is reduced by the anaerobic reoxidation of sulfide back to sulfate. Thus, the microbial cycling of iron at the oxic-anoxic interface and the anaerobic cycling of sulfur maintains environmental conditions appropriate for acidophilic Fe(III)-reducing and acid-tolerant sulfate-reducing microbial communities

  13. A comparison of an optimised sequential extraction procedure and dilute acid leaching of elements in anoxic sediments, including the effects of oxidation on sediment metal partitioning

    The effect of oxidation of anoxic sediment upon the extraction of 13 elements (Cd, Sn, Sb, Pb, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As) using the optimised Community Bureau of Reference of the European Commission (BCR) sequential extraction procedure and a dilute acid partial extraction procedure (4 h, 1 mol L-1 HCl) was investigated. Elements commonly associated with the sulfidic phase, Cd, Cu, Pb, Zn and Fe exhibited the most significant changes under the BCR sequential extraction procedure. Cd, Cu, Zn, and to a lesser extent Pb, were redistributed into the weak acid extractable fraction upon oxidation of the anoxic sediment and Fe was redistributed into the reducible fraction as expected, but an increase was also observed in the residual Fe. For the HCl partial extraction, sediments with moderate acid volatile sulfide (AVS) levels (1-100 μmol g-1) showed no significant difference in element partitioning following oxidation, whilst sediments containing high AVS levels (>100 μmol g-1) were significantly different with elevated concentrations of Cu and Sn noted in the partial extract following oxidation of the sediment. Comparison of the labile metals released using the BCR sequential extraction procedure (ΣSteps 1-3) to labile metals extracted using the dilute HCl partial extraction showed that no method was consistently more aggressive than the other, with the HCl partial extraction extracting more Sn and Sb from the anoxic sediment than the BCR procedure, whilst the BCR procedure extracted more Cr, Co, Cu and As than the HCl extraction

  14. Determination of the gram-positive bacterial content of soils and sediments by analysis of teichoic acid components

    Gehron, M. J.; Davis, J. D.; Smith, G. A.; White, D. C.

    1984-01-01

    Many gram-positive bacteria form substituted polymers of glycerol and ribitol phosphate esters known as teichoic acids. Utilizing the relative specificity of cold concentrated hydrofluoric acid in the hydrolysis of polyphosphate esters it proved possible to quantitatively assay the teichoic acid-derived glycerol and ribitol from gram-positive bacteria added to various soils and sediments. The lipids are first removed from the soils or sediments with a one phase chloroform-methanol extraction and the lipid extracted residue is hydrolyzed with cold concentrated hydrofluoric acid. To achieve maximum recovery of the teichoic acid ribitol, a second acid hydrolysis of the aqueous extract is required. The glycerol and ribitol are then acetylated after neutralization and analyzed by capillary gas-liquid chromatography. This technique together with measures of the total phospholipid, the phospholipid fatty acid, the muramic acid and the hydroxy fatty acids of the lipopolysaccharide lipid A of the gram-negative bacteria makes it possible to describe the community structure environmental samples. The proportion of gram-positive bacteria measured as the teichoic acid glycerol and ribitol is higher in soils than in sediments and increases with depth in both.

  15. Characterization of the sulfate-reducing bacterial population in sediments of acid mining lakes

    With respect to remediation of acid mine drainage (AMD), concomitant alteration of redox conditions, formation of metal sulfides and alkalinity generation are of special interest. The majority of lakes formed in the Lusatian lignite mining district bear waters of low pH and high ionic strength. For several of these acid mining lakes, sulfate-reducing activities have been demonstrated. The aim of our study was to find out which bacteria are responsible for these activities, whether these SRB exhibit special traits to thrive under extreme conditions, and whether the population differed from those inhabiting freshwater and marine environments. For this purpose we estimated the most probable number (MPN) of culturable SRB in surface sediments of three mining lakes (ML) and obtained isolates from the same sites. The strains were characterised physiologically and phylogenetically. (orig.)

  16. Effects of acid-volatile sulfide on metal bioavailability and toxicity to midge (Chironomus tentans) larvae in black shale sediments

    Ogendi, G.M.; Brumbaugh, W.G.; Hannigan, R.E.; Farris, J.L.

    2007-01-01

    Metal bioavailability and toxicity to aquatic organisms are greatly affected by variables such as pH, hardness, organic matter, and sediment acid-volatile sulfide (AVS). Sediment AVS, which reduces metal bioavailability and toxicity by binding and immobilizing metals as insoluble sulfides, has been studied intensely in recent years. Few studies, however, have determined the spatial variability of AVS and its interaction with simultaneously extracted metals (SEM) in sediments containing elevated concentrations of metals resulting from natural geochemical processes, such as weathering of black shales. We collected four sediment samples from each of four headwater bedrock streams in northcentral Arkansa (USA; three black shale-draining streams and one limestone-draining stream). We conducted 10-d acute whole-sediment toxicity tests using the midge Chironomus tentans and performed analyses for AVS, total metals, SEMs, and organic carbon. Most of the sediments from shale-draining streams had similar total metal and SEM concentrations but considerable differences in organic carbon and AVS. Zinc was the leading contributor to the SEM molar sum, averaging between 68 and 74%, whereas lead and cadmium contributed less than 3%. The AVS concentration was very low in all but two samples from one of the shale streams, and the sum of the SEM concentrations was in molar excess of AVS for all shale stream sediments. No significant differences in mean AVS concentrations between sediments collected from shale-draining or limestone-draining sites were noted (p > 0.05). Midge survival and growth in black shale-derived sediments were significantly less (p < 0.001) than that of limestone-derived sediments. On the whole, either SEM alone or SEM-AVS explained the total variation in midge survival and growth about equally well. However, survival and growth were significantly greater (p < 0.05) in the two sediment samples that contained measurable AVS compared with the two sediments from the

  17. Sediment amino acids as indicators of anthropogenic activities and potential environmental risk in Erhai Lake, Southwest China.

    Ni, Zhaokui; Wang, Shengrui; Zhang, Mianmian

    2016-05-01

    Total hydrolysable amino acids (THAAs) constitute the most important fraction of labile nitrogen. Anthropogenic activities directly influence various biogeochemical cycles and then accelerate lake ecosystem deterioration. This is the first study that has established the relationship between sediment THAAs and anthropogenic activities using dated sediment cores, and evaluated the possibility of THAAs release at the sediment interface based on changes in environmental conditions in Erhai Lake. The results showed that historical distribution and fractions of THAAs could be divided into three stages: a stable period before the 1970s, a clear increasing period from the 1970s to 1990s, and a gradually steady period that started after the 1990s. The chemical fraction, aromatic and sulfur amino acids (AAs) accounted for only ≤3% of THAAs. Basic AAs accounted for 5-17% of THAAs, and remained at a relatively stable level. However, acidic and neutral AAs, which accounted for 19-44% and 35-69% of THAAs, respectively, were the predominant factors causing THAAs to increase due to rapid agricultural intensification and intensification of contemporary sedimentation of phytoplankton or macrophytes since the 1970s. These trends were closely related to both anthropogenic activities and natural processes, which implied that sediment THAAs could act as an effective indicator that reflects anthropogenic activities and aquatic environmental characteristics. The current contributions of sediment THAAs on TN and TOC were <5% and 1.5%, respectively. However, the dramatic increase in THAAs in the sediment cores indicated that there was a huge potential source of labile nitrogen for the overlying water under certain environmental conditions. Correlation analysis suggested that the release of THAAs was negatively correlated with pH, whereas positively correlated with bacterial number and degree of OM mineralization, which particularly depend on the stability of HFOM. Therefore, the risk of

  18. Modeling the neutralizing processes of acid precipitation in soils and glacial sediments of northern Ohio

    Eckstein, Yoram; Hau, Joseph A.

    1992-02-01

    Most studies of the acidic deposition phenomena have been focused on processes occurring in the northeastern USA and Scandinavia. In these regions the soil cover is thin, the bedrock is acidic, and the terrain has very poor acid buffering capacity. Most of the US Midwest, including northern Ohio, has been ignored because the terrain is covered by glacial sediments with an abundance of carbonate minerals. Yet, for the last three decades the area has been experiencing acidic precipitation with a pH range of 3.5-4.5. the lowest in the USA. Samples of precipitation, soil water, and shallow ground water from Leroy Township in Lake County, Ohio, and from Wooster Township in Wayne County, Ohio, were analyzed and processed using WATEQ3 and PHREEQE computer models to quantify the effects of the acidic deposition. The two regions are characterized by very similar topographic, geological and hydrogeological conditions. Although the cation content of the precipitation in both regions is similar, the anion concentrations are much higher (sulfate by 70%, nitrate by 14% and chloride by 167%) in Leroy, located 50 km east-northeast and downwind of the Cleveland-Akron industrial complex, than in Wooster, located 80 km south-southwest and off-wind from the industrial complex. Computer modeling results indicate that buffering of acidic deposition in the surficial sediments and glacial tills of the two regions is dominated apparently by calcite dissolution, and dissolution and exchange of hydrogen for magnesium ions are the dominant neutralizing processes. However, reaction simulations also suggest that the buffering capacity of the Leroy soils and tills has been depleted to a much greater degree than in Wooster Township. In Leroy more acidic input is reacting with less buffering material to produce lower soil and groundwater pH. The depletion of carbonate and alumino-silicate minerals in the soils of Leroy Township is occurring at a rate that is 3-5 times faster than in the same type

  19. Amino acid biogeochemistry and bacterial contribution to sediment organic matter along the western margin of the Bay of Bengal

    Fernandes, L.; Garg, A.; Borole, D.V.

    influence burial of organic carbon (Cowie and Hedges, 1992; Burdige, 2007). OM buried in the marine sediments forms a major link between the "active" surface pools of carbon and inactive and/or slow cycling carbon pools (Burdige, 2007). In the open ocean... preserved in the marine sediments (Keil et al., 2000; Vandewiele et al., 2009). Moreover, natural occurrence and geochemical behavior of amino acids have been evaluated in several types of samples (Cowie and Hedges, 1992; Gupta and Kawahata, 2000...

  20. Organic matter in sediments in the mangrove areas and adjacent continental margins of Brazil .1. Amino acids and hexosamines

    Jennerjahn, Tc; Ittekkot, V.

    1997-01-01

    The nature of sedimentary organic matter from mangroves and the continental margin of eastern Brazil (8 degrees-24 degrees S) has been investigated in order to obtain information on sources and diagenetic processes. The organic matter content of mangrove sediments is three to four times higher than the maximum content of continental margin sediments. Downslope distribution of organic carbon, nitrogen, amino acids and hexosamines shows an enrichment in water depths between 800 m and 1000 m. Th...

  1. The effect of accidental sulphuric acid leaking on metal distributions in estuarine sediment of Patos Lagoon

    Mirlean, Nicolai; Baisch, Paulo [FURG, Dept. of Geology, Rio Grande (Brazil); Baraj, Besnik; Niencheski, Luis Felipe [FURG, Chemistry Dept., Rio Grande (Brazil); Robinson, Daniel [Fitchburg State Coll., Chemistry Dept., Fitchburg, MA (United States)

    2001-07-01

    In August of 1998 the tanker BAHAMAS belonging to the Chem Oil Company containing 12000 t of concentrated sulphuric acid, had an accident on board, after which estuarine water entered one of the compartments of the tanker, resulting in a vigorous exothermic reaction. The reaction of acid with the metallic interior hull of the ship and the accompanying heat and H{sub 2} production resulted in an imminent risk of explosion. To avoid an explosion, given the fact that neutralisation was not possible, some of the cargo was discharged into the surrounding water. Neutralisation was done in January 1999, after the acid concentration in the tanker had decreased and the concentrations of Fe, Cr and Ni remained elevated. Metal concentrations in bottom sediments showed significant modifications. Leached mercury migrated and redeposited downstream, reaching approximately 76 times the background values. Such an anomaly has a well expressed barrier character. The mechanism for redeposition of Hg and other metals probably followed the pattern: Downstream as a result of dilution and mixing with seawater the pH of acid-water increases, favouring adsorption and/or precipitation of metals. The leading edge of a geochemical barrier, at positions 7-9 of sampling sites is confirmed by pH variations in the water. The reestablishment of normal pH occurred after a short time due to the high buffering capacity of seawater and large natural dilution process. The concentration of metals in estuarine water during and after the accident showed insignificant anomalies. (Author)

  2. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage

    Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River. Highlights: ► Increasing coal drainage sediments geochemical information will increase human health information in this area. ► Brazilian coal mining information will increase recuperation planning information. ► The nanominerals showed strong sorption ability to aqueous hazardous elements

  3. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage

    Silva, Luis F.O., E-mail: felipeqma@hotmail.com [Environmental Science and Nanotechnology Department, Institute of Environmental Research and Human Development – IPADH, Capivari de Baixo, Santa Catarina (Brazil); Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Fdez- Ortiz de Vallejuelo, Silvia; Martinez-Arkarazo, Irantzu; Castro, Kepa [Department of Analytical Chemistry, University of the Basque Country (EHU/UPV), P.O. Box 644, 48080 Bilbao, Basque Country (Spain); Oliveira, Marcos L.S. [Environmental Science and Nanotechnology Department, Institute of Environmental Research and Human Development – IPADH, Capivari de Baixo, Santa Catarina (Brazil); Sampaio, Carlos H.; Brum, Irineu A.S. de [Universidade Federal do Rio Grande do Sul, Escola de Engenharia, Departamento de Metalurgia, Centro de Tecnologia, Av. Bento Gonçalves, 9500, Bairro Agronomia, CEP: 91501-970, Porto Alegre, RS (Brazil); Leão, Felipe B. de; Taffarel, Silvio R. [Laboratory of Environmental Researches and Nanotechnology Development, Centro Universitário La Salle, Victor Barreto, 2288 Centro 92010-000, Canoas, RS (Brazil); Madariaga, Juan M. [Department of Analytical Chemistry, University of the Basque Country (EHU/UPV), P.O. Box 644, 48080 Bilbao, Basque Country (Spain)

    2013-03-01

    Acid drainage from coal mines and metal mining is a major source of underground and surface water contamination in the world. The coal mining acid drainage (CMAD) from mine contains large amount of solids in suspension and a high content of sulphate and dissolved metals (Al, Mn, Zn, Cu, Pb, Fe, etc.) that finally are deposited in the rivers. Since this problem can persist for centuries after mine abandonment, it is necessary to apply multidisciplinary methods to determine the potential risk in a determinate area. These multidisciplinary methods must include molecular and elemental analysis and finally all information must be studied statistically. This methodology was used in the case of coal mining acid drainage from the Tubarao River (Santa Catarina, Brazil). During molecular analysis, Raman Spectroscopy, electron bean, and X-ray diffraction (XRD) have been proven very useful for the study of minerals present in sediment rivers near this CMAD. The obtained spectra allow the precise identification of the minerals as jarosite, quartz, clays, etc. The elemental analysis (Al, As, Fe, K, Na, Ba, Mg, Mn, Ti, V, Zn, Ag, Co, Li, Mo, Ni, Se, Sn, W, B, Cr, Cu, Pb and Sr) was realised by inductively coupled plasma mass spectrometry (ICP-MS). Statistical analysis (Principal Component Analysis) of these dates of concentration reveals the existence of different groups of samples with specific pollution profiles in different areas of the Tubarao River. Highlights: ► Increasing coal drainage sediments geochemical information will increase human health information in this area. ► Brazilian coal mining information will increase recuperation planning information. ► The nanominerals showed strong sorption ability to aqueous hazardous elements.

  4. Exudation of organic acids by a marsh plant and implications on trace metal availability in the rhizosphere of estuarine sediments

    Mucha, Ana P.; Almeida, C. Marisa R.; Bordalo, Adriano A.; Vasconcelos, M. Teresa S. D.

    2005-10-01

    The aim of this work was to identify a variety of low molecular weight organic acids exuded by the sea rush Juncus maritimus collected at two locations with different sediment characteristics (sandy and muddy) and to examine whether specific differences in physico-chemical sediment characteristics influenced plant exudation. Just after collection, plant roots were rinsed and put in contact with deionised water for 2 h. In the obtained solution the organic acids, exuded by the plants, were determined by high performance liquid chromatography. Juncus maritimus was shown to be capable of releasing malonate and oxalate. Sediments and rhizosediments (sediment in contact with the plant roots and rhizomes, corresponding to the area of higher belowground biomass) from the areas where the plants had been collected were characterised in terms of physical and chemical composition, including acid volatile sulphide and total-recoverable metals (Pb, Cr, Cu, Zn, Ni and Cd). It was found that the extent of exudation varied markedly between sites. The identified organic acids were used as extractants of metals from sediments and rhizosediments and the results were compared with those provided by a very commonly used sequential extraction approach, which was carried out in parallel. This work demonstrates that J. maritimus can release organic compounds that can act as complexing agents of trace metal and therefore organic exudates should be accounted for when dealing with estuarine environment quality.

  5. Watershed scale fungal community characterization along a pH gradient in a subsurface environment co-contaminated with uranium and nitrate

    Jasrotia, Puja [Florida State University, Tallahassee; Green, Stefan [University of Illinois, Chicago; Canion, Andy [Florida State University, Tallahassee; Overholt, Will [Florida State University, Tallahassee; Prakash, Om [Florida State University, Tallahassee; Wafula, Dennis [Georgia Institute of Technology, Atlanta; Hubbard, Daniela [Florida State University, Tallahassee; Watson, David B [ORNL; Schadt, Christopher Warren [ORNL; Brooks, Scott C [ORNL; Kostka, [Georgia Institute of Technology, Atlanta

    2014-01-01

    The objective of this study was to characterize fungal communities in a subsurface environment co-contaminated with uranium and nitrate at the watershed scale, and to determine the potential contribution of fungi to contaminant transformation (nitrate attenuation). The abundance, distribution and diversity of fungi in subsurface groundwater samples were determined using quantitative and semi-quantitative molecular techniques, including quantitative PCR of eukaryotic SSU rRNA genes and pyrosequencing of fungal internal transcribed spacer (ITS) regions. Potential bacterial and fungal denitrification was assessed in sediment-groundwater slurries amended with antimicrobial compounds and in fungal pure cultures isolated from subsurface. Our results demonstrate that subsurface fungal communities are dominated by members of the phylum Ascomycota, and a pronounced shift in fungal community composition occurs across the groundwater pH gradient at the field site, with lower diversity observed under acidic (pH < 4.5) conditions. Fungal isolates recovered from subsurface sediments were shown to reduce nitrate to nitrous oxide, including cultures of the genus Coniochaeta that were detected in abundance in pyrosequence libraries of site groundwater samples. Denitrifying fungal isolates recovered from the site were classified, and found to be distributed broadly within the phylum Ascomycota, and within a single genus within the Basidiomycota. Potential denitrification rate assays with sediment-groundwater slurries showed the potential for subsurface fungi to reduce nitrate to nitrous oxide under in situ acidic pH conditions.

  6. Characterization of humic acids extracted from the sediments of the various rivers and lakes in China

    HE Mengchang; SHI Yehong; LIN Chunye

    2008-01-01

    The humic acids (HAs) isolated from the sediments of the various rivers, lakes, and reservoirs in China were studied using elemental analyzer, fourier transform infrared (FF-IR), and CP/MAS 13C nuclear magnetic resonance (NMR) spectroscopy. The results showed that the HAs were characterized by some common chemical and physicochemical properties, but they also pose some differences in the C-containing functional groups. The C/N, C/H, O/C, and O/H ratios differ widely for the various HAs, showing that the elemental composition of the HAs from the various sediments was different due to the different environmental conditions. All HAs show similar spectra with different intense absorbance in the region of 4000-2000 cm-1, suggesting that they have very similar structures and functional groups. The absorbance region between 1900 and 400 cm-1 also showed similar spectra with different intense absorbance,different relative intensities, and some relevant differences for the various HAs. The total aromaticities for the six HAs varied from 23.1% to 41.8%. The differences in the elemental composition and functional groups for the various HAs were attributed to their different biogeochemical origins. The HAs in the sediments from Taihu Lake (one freshwater shallow lake with heavy eutrophication),the Pearl River (the tropical river), and the Liao River (located at the joint of the temperate zone and cold-temperate zone) showed different structural properties due to their different geographical and climate zones. These different properties for the six HAs were expected to affect the sorption, distributions, and fates of heavy metals and organic chemicals.

  7. Trace metals of an acid mine drainage stream using a chemical model (WATEQ) and sediment analysis

    The high metal contents common to the discharge of acid-mine drainage (AMD) from mines and mine spoils is an environmental concern to both government and industry. This paper reports the results of investigation of the behavior of metals in an AMD system at a former surface coal mine in Tuscarawas County, Oh. AMD discharges from seeps travels, in respective order through a laminar flow stream; a Typha-dominated wetland; a turbulent flow stream; and a sediment retention pond. Dissolved metals (Fe, Mn, Zn, Cr, Cd, Cu, and Al) major and minor components, and other parameters (pH, dissolved oxygen and Eh) were measured in the AMD water at each sample location. A chemical mineral equilibrium model (WATEQ) was used to predict the minerals which should precipitate at each site. Results suggest that the seeps are supersaturated and should be precipitating hematite, goethite and magnetite (iron oxides), and siderite (iron carbonate), whereas water of the other downstream sites were at or below equilibrium conditions for these minerals. The hydrogeochemistry of the AMD was further studied using sequential chemical attacks on the precipitate sediment surface coatings, in order to determine metal concentrations in the exchangeable, carbonate, Fe-Mn oxyhydroxide, and oxidizable fractions. The carbonate and exchangeable fractions of the precipitate are dominated by Ca and Fe, as well as Mg in the carbonate fraction. The Fe-Mn oxyhydroxide fraction contained Fe, Al, Mn, Mg, and trace metals, and also contained the greatest concentration of total elements in the system. The Fe-Mn oxyhydroxide is therefore, the major sink for metals of this AMD system. The decrease in the concentration of metals in the sediment precipitates in the downstream locations, is consistent with WATEQ and water analysis results

  8. Effects of acid mine effluent on sediment and water geochemistry, Ruttan Cu-Zn mine

    Shilts, W.W.

    1996-01-01

    Waters were collected from the surface and bottom of four lakes as well as from the Churchill River and approximately 20 small ponds beside the Leaf Rapids-Ruttan mine-South Indian Lake road to determine geochemical variations related to tailings and waste rock disposal from the Ruttan Cu-Zn VHMS deposit. Using sonar profiling as a guide, grab samples and cores of sediments were also collected in Ruttan, Brehaut, Rusty, and Alto lakes to investigate the geochemical and sedimentological effects of liming the acid (pH 2.5) outflow from Ruttan Lake. Preliminary results indicate that metals anthropogenically enriched in Ruttan Lake (Zn, Cd, and Hg in particular) are scavenged and precipitated at the inflow end of Brehaut Lake as a result of adding lime solutions to the Vermilion River, midway through the 500 m reach that connects Ruttan Lake and Brehaut Lake. Zn in Ruttan Lake water (up to 17 ppm) is precipitated in the limey sediment. Zn is not enriched in waters of Rusty Lake, the next lake downstream from Brehaut Lake. Rusty Lake has Zn concentrations comparable to background water from Alto Lake (water of pH 2.5 from Ruttan Lake, resulting in a remobilization of metals. The related study also showed that Zn concentrations are elevated in water in contact with waste rock used to upgrade sections of the Leaf Rapids-South Indian Lake and Brehaut Lake roads.

  9. Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions?

    De Jonge, Maarten; Dreesen, Freja; De Paepe, Josefina; Blust, Ronny; Bervoets, Lieven

    2009-06-15

    The present study evaluates the influence of acid volatile sulfides (AVS) on accumulation of sediment-bound metals in benthic invertebrates under natural field conditions. Natural sediments, pore water, surface water, and two species of widespread benthic invertebrates (Chironomus gr. thummi and Tubifex tubifex) were collected from 17 historical polluted Flemish lowland rivers and measured for metal concentrations. Different sediment characteristics were determined (AVS, organic matter, clay content) and multiple regression was used to study their relationship with accumulated metals in the invertebrates. Physical and chemical analysis of the field samples indicated low metal concentrations in the water and pore water, but very high metal concentrations in the sediment and the invertebrates, especially for Pb (5.99 micromol/ g). In general, metal accumulation in chironomids and tubificid worms was most strongly correlated with total metal concentrations in the sediment and sediment metal concentrations normalized for organic matter and clay content. Following the results of the linear regression model, AVS did not turn out to be a significant variable in describing variation in metal accumulation. Our study clearly demonstrates that, in addition to the results gained from experiments under lab conditions, benthic invertebrates can accumulate metals from unspiked field sediments even when there's an excess of AVS. PMID:19603670

  10. Palaeoceanographic implications of abundance and mean proloculus diameter of benthic foraminiferal species Epistominella exigua in sub-surface sediments from distal Bay of Bengal fan

    Saraswat, R.; Nigam, R.; Barreto, L.

    from the distal Bay of Bengal fan sediments, to infer past bottom water conditions (figure 1). 2. Epistominella exigua Epistominella exigua is a trochospirally coiled, calcareous species with smooth surface (Murray 1991). E. exigua is a sporadically... J and Giese M 1995 Deep-sea foraminifera in the South Atlantic Ocean: Eco- logy and assemblage generation; Mar. Micropaleontol. 41 342–358. Murray J W 1991 Ecology and Paleoecology of Benthic Foraminifera. John Wiley, New York and Longman Sci...

  11. A kinetic approach to evaluate the association of acid volatile sulfide and simultaneously extracted metals in aquatic sediments

    Poot, A.; Meerman, E.; Gillissen, F.; Koelmans, A.A.

    2009-01-01

    The acid volatile sulfide (AVS) and simultaneously extracted metals (¿SEM) method is widely used for evaluating potential bioavailability of heavy metals in soil and sediment. It is also criticized, because the requirement that AVS and SEM metals (i.e., Cd, Cu, Ni, Pb, and Zn) are associated in the

  12. Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin

    Krylov, A. A.; Khlystov, O.M.; Hachikubo, A.; Minami, H.; Nunokawa, Y.; Shoji, H; Zemskaya, T. I.; L. Naudts; Pogodaeva, T.V.; Kida, M; Kalmychkov, G. V.; J. Poort

    2010-01-01

    We report on the isotopic composition of dissolved inorganic carbon (DIC) in pore-water samples recovered by gravity coring from near-bottom sediments at gas hydrate-bearing mud volcanoes/gas flares (Malenky, Peschanka, Peschanka 2, Goloustnoe, and Irkutsk) in the Southern Basin of Lake Baikal. The d13C values of DIC become heavier with increasing subbottom depth, and vary between -9.5 and +21.4‰ PDB. Enrichment of DIC in 13C indicates active methane generation in anaerobic environments near ...

  13. Tangible Exploration of Subsurface Data

    Petrasova, A.; Harmon, B.; Mitasova, H.; White, J.

    2014-12-01

    Since traditional subsurface visualizations using 2D maps, profiles or charts can be difficult to interpret and often do not convey information in an engaging form, scientists are interested in developing alternative visualization techniques which would help them communicate the subsurface volume data with students and general public. We would like to present new technique for interactive visualization of subsurface using Tangible geospatial modeling and visualization system (Tangeoms). It couples a physical, three-dimensional model with geospatial modeling and analysis through a cycle of scanning and projection. Previous applications of Tangeoms were exploring the impact of terrain modifications on surface-based geophysical processes, such as overland water flow, sediment transport, and also on viewsheds, cast shadows or solar energy potential. However, Tangeoms can serve as a tool for exploring subsurface as well. By creating a physical sand model of a study area, removing the sand from different parts of the model and projecting the computed cross-sections, we can look under the ground as if we were at an excavation site, and see the actual data represented as a 3D raster in that particular part of the model. Depending on data availability, we can also incorporate temporal dimension. Our method is an intuitive and natural way of exploring subsurface data and for users, it represents an alternative to more abstract 3D computer visualization tools, by offering direct, tangible interface.

  14. Predominance and sources of alkane and fatty acid biomarkers in the surface sediments of Chitrapuzha River (South India).

    Sanil Kumar, K S; Nair, S M

    2015-04-01

    Surface sediment samples were collected from Chitrapuzha (Cochin) estuarine system to identify the natural and anthropogenic origin of organic matter. The distribution and sources of organic matter were assessed with the help of fatty acid and alkane biomarkers. Fatty acids ranging from C12 to C28 were identified and C16:0 was the most abundant fatty acid, which contributed between 23.5 % and 52.4 % to total fatty acids. The low levels of polyunsaturated fatty acids indicate the effective bacterial recycling of algal fatty acids during the whole settling and depositing process. Aliphatic hydrocarbons ranging from C12 to C33 were identified and the total concentration ranged from 7876 to 43,357 ng g(-1). The presence of unresolved complex mixtures and lower pristane to phytane ratios indicates the petroleum contamination in the study area. PMID:25694163

  15. Hydroxypropyl-β-cyclodextrin extractability and bioavailability of phenanthrene in humin and humic acid fractions from different soils and sediments.

    Gao, Huipeng; Ma, Jing; Xu, Li; Jia, Lingyun

    2014-01-01

    Organic matter (OM) plays a vital role in controlling polycyclic aromatic hydrocarbon (PAH) bioavailability in soils and sediments. In this study, both a hydroxypropyl-β-cyclodextrin (HPCD) extraction test and a biodegradation test were performed to evaluate the bioavailability of phenanthrene in seven different bulk soil/sediment samples and two OM components (humin fractions and humic acid (HA) fractions) separated from these soils/sediments. Results showed that both the extent of HPCD-extractable phenanthrene and the extent of biodegradable phenanthrene in humin fraction were lower than those in the respective HA fraction and source soil/sediment, demonstrating the limited bioavailability of phenanthrene in the humin fraction. For the source soils/sediments and the humin fractions, significant inverse relationships were observed between the sorption capacities for phenanthrene and the amounts of HPCD-extractable or biodegradable phenanthrene (p extractable phenanthrene and the amount degraded in both the bulk soils/sediments and the humin fractions, with both slopes close to 1. On the other hand, in the case of phenanthrene contained in HA, a poor relationship was observed between the amount of phenanthrene extracted by HPCD and the amount degraded, with the former being much less than the latter. The results revealed the importance of humin fraction in affecting the bioavailability of phenanthrene in the bulk soils/sediments, which would deepen our understanding of the organic matter fractions in affecting desorption and biodegradation of organic pollutants and provide theoretical support for remediation and risk assessment of contaminated soils and sediments. PMID:24705921

  16. Adsorption Behavior of Black Carbon for Radioactive Iodine Species in Subsurface Environments

    Choung, S.; Kim, M.; Um, W.

    2012-12-01

    Releases of radioactive iodines (125/129/131I) into subsurface environments occur during nuclear power plant operations, nuclear weapons tests, and nuclear accidents such as Chernobyl and Fukushima. Environmental concern is mostly for 129I due to high toxicity and long-half life, t1/2=1,600,000 years. The fate and transport of radioactive iodines depend on the speciation in the environments. Sorption of iodate (IO3-) is strongly affected by natural organic matter (NOM) in soil/sediments, while iodide (I-) sorption is less. Although there are numerous forms and compositions of NOM in soil/sediments, previous studies were mostly focused on general organic matter such as humic and fulvic acids. The objective of this study is addressed to evaluate the impact of black carbon as different NOM forms in subsurface environments. Laboratory-produced wood char was used as a representative of black carbon for sorption batch experiments. Commercial humic acid was added to experiments for comparison of iodine sorption behavior to black carbon material. Stable iodine isotope, 127I, was used as a surrogate of radioactive iodine. The 13C-NMR analyses indicated that the wood char consisted of dominantly aromatic chemical structures, while the humic acid exhibited relatively more aliphatic structures than aromaticity. The char and humic acid significantly increased iodide and iodate sorption, respectively. However, iodate sorption on char and iodide sorption on humic acid were negligible in this study. These observations implied different sorption mechanisms between black carbon and humic acid due to different pore structures and chemical compositions. Both of sorption isotherms are dependent on aqueous concentrations, following Freundlich isotherm with n~0.7. The sorption behavior and mechanism of iodine is significantly influenced by the NOM types in soils and sediments, which can enhance iodine retardation in the subsurface environment.

  17. Application of microwave energy to speed up the alkaline extraction of humic and fulvic acids from marine sediments

    The feasibility of microwave energy to speed up the alkaline extraction of humic substances (humic acid, HA, and fulvic acid, FA) from marine sediments has been checked. Extractions were performed by using 20 mL of sodium hydroxide at 0.1 M (two repeated extractions) after an ultrasound-assisted acid pre-treatment of samples to remove the carbonate fraction (ultrasound power at 17 kHz, 10 mL of 6.0 M hydrochloric acid for 15 min). After separation of HA and FA fractions by acidifying with 6 M HCl, the FA fraction (supernatant) was purified by passing the solution through a column of Amberlite XAD-8. Both HA and FA extracts were measured by UV-visible spectrophotometry. All variables affecting the extraction process (sodium hydroxide concentration and volume, ramp and hold times, temperature and number of repeated extractions) have been screened by using a Plackett-Burman design (PBD) as multivariate approach. The variables temperature and number of repeated extractions were the most significant factors (P = 95%) affecting the extraction of both FA and HA from marine sediments. These two variables have led optimum values of 150 deg. C and two repeated extractions. The developed method has been found precise (R.S.D.s of 9% for HA and 12% for FA, for 11 determinations) and its results were comparable in terms of elemental (C, H and N) composition to those obtained after applying methods based on mechanical stirring and ultrasounds assisting. However, higher HA and FA concentrations than those obtained after conventional stirring and ultrasound irradiation were obtained when applying microwave energy. This means a higher efficiency of microwave energy than ultrasounds or mechanical stirring to extract HA and FA fractions from marine sediments. The method was finally applied to different surface marine sediments from the Ria de Arousa estuary

  18. Comparative Analysis of Soluble Phosphate Amendments for the Remediation of Heavy Metal Contaminants: Effect on Sediment Hydraulic Conductivity

    Wellman, Dawn M.; Icenhower, Jonathan P.; Owen, Antionette T.

    2006-07-10

    A series of conventional, saturated column experiments were conducted to evaluate the effect of utilizing in situ phosphate amendments, for subsurface, metal remediation, on sediment hydraulic conductivity. Experiments were conducted under mildly alkaline/calcareous conditions representative of conditions commonly encountered at sites across the arid western United States, which have been used in weapons and fuel production and display significant subsurface contamination. Results indicate the displacement of a single pore volume of either sodium monophosphate or phytic acid amendments causes approximately a 30% decrease in the hydraulic conductivity of the sediment. Long-chain polyphosphate amendments afford no measurable reduction in hydraulic conductivity. These results demonstrate (1) the utility of long-chain polyphosphate amendments for subsurface metal sequestration and (2) the necessity of conducting column experiments to completely evaluate the effects of subsurface remediation.

  19. Distribution and sources of aliphatic hydrocarbons and fatty acids in surface sediments of a tropical estuary south west coast of India (Cochin estuary)

    Gireeshkumar, T.R.; Deepulal, P.M.; Chandramohanakumar, N.

    Surface sediments samples from the Cochin estuary were measured for elemental, stable isotopic and molecular biomarkers (aliphatic hydrocarbons and fatty acids) to study the sources and distribution of sedimentary organic matter. Concentrations...

  20. Desulfurella amilsii sp. nov., a novel acidotolerant sulfur-respiring bacterium isolated from acidic river sediments.

    Florentino, Anna P; Brienza, Claudio; Stams, Alfons J M; Sánchez-Andrea, Irene

    2016-03-01

    A novel acidotolerant and moderately thermophilic sulfur-reducing bacterium was isolated from sediments of the Tinto River (Spain), an extremely acidic environment. Strain TR1T stained Gram-negative, and was obligately anaerobic, non-spore-forming and motile. Cells were short rods (1.5-2 × 0.5-0.7 μm), appearing singly or in pairs. Strain TR1T was catalase-negative and slightly oxidase-positive. Urease activity and indole formation were absent, but gelatin hydrolysis was present. Growth was observed at 20-52 °C with an optimum close to 50 °C, and a pH range of 3-7 with optimum between pH 6 and 6.5. Yeast extract was essential for growth, but extra vitamins were not required. In the presence of sulfur, strain TR1T grew with acetate, formate, lactate, pyruvate, stearate, arginine and H2/CO2. All substrates were completely oxidized and H2S and CO2 were the only metabolic products detected. Besides elemental sulfur, thiosulfate was used as an electron acceptor. The isolate also grew by disproportionation of elemental sulfur. The predominant cellular fatty acids were saturated components: C16 : 0, anteiso-C17 : 0 and C18 : 0. The only quinone component detected was menaquinone MK-7(H2). The G+C content of the genomic DNA was 34 mol%. The isolate is affiliated to the genus Desulfurella of the class Deltaproteobacteria, sharing 97 % 16S rRNA gene sequence similarity with the four species described in the genus Desulfurella. Considering the distinct physiological and phylogenetic characteristics, strain TR1T represents a novel species within the genus Desulfurella, for which the name Desulfurella amilsii sp. nov. is proposed. The type strain is TR1T ( = DSM 29984T = JCM 30680T). PMID:26704766

  1. Subsurface Microbial Methanotrophic Mats in the Black Sea†

    Treude, Tina; Knittel, Katrin; Blumenberg, Martin; Seifert, Richard; Boetius, Antje

    2005-01-01

    A nodule-shaped microbial mat was found subsurface in sediments of a gas seep in the anoxic Black Sea. This mat was dominated by ANME-1 archaea and consumed methane and sulfate simultaneously. We propose that such subsurface mats represent the initial stage of previously investigated microbial reefs.

  2. Origin and vertical variation of the bound fatty acids in core sediments of Lake Dianchi in Southwest China.

    Wang, Lifang; Wu, Fengchang; Xiong, Yongqiang; Fang, Jidun

    2013-04-01

    Based on the molecular distribution of bound fatty acid (BFA) compound classes in core sediments of Lake Dianchi combined with the compound-specific δ(13)C values of the straight-chain BFAs, origin and vertical changes of organic matters in the sediments were investigated. The results indicated a significant change of BFA sources over the past 700 years. Contrast to the low concentrations of the terrestrial BFAs, the abundance of BFAs derived from the plankton/bacteria in the top sections (1944-recent) was more than 80%. The increasing proportions of the branched and unsaturated BFAs in total fatty acids were closely correlated with the heavy eutrophication and the frequent algal blooms in the decades. Furthermore, the positive shift of δ (13)C of C16 and C18 (~2‰) in the upper section might be an indicator of the excess phytoplankton productivity. However, it was found that the plankton/bacteria-derived BFAs were more easily degraded during the early diagenetic process. The special compound carbon isotopic compositions of the long straight-chain BFAs (C24 and C26) in the sediments showed a depletion of heavier δ (13)C values (ca. -30‰) in the midsections (1559-1787), reflecting a relatively growing contribution of C3 plants to C4 plants or that C4 plant growth was inhibited in cold and arid climates during the period. PMID:22903813

  3. Trace metal enrichments in core sediments in Muthupet mangroves, SE coast of India: Application of acid leachable technique

    Janaki-Raman, D. [Department of Geology, School of Earth and Atmospheric Sciences, University of Madras, Guindy Campus, Chennai - 600 025 (India); Jonathan, M.P. [Centro de Investigaciones en Ciencias de la Tierra, Universidad Autonoma del Estado de Hidalgo, Ciudad Universitaria, Carretera Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo, C. Postal. 42184 (Mexico)]. E-mail: mp_jonathan7@yahoo.com; Srinivasalu, S. [Department of Geology, Anna University, Chennai - 600 025 (India); Armstrong-Altrin, J.S. [Centro de Investigaciones en Ciencias de la Tierra, Universidad Autonoma del Estado de Hidalgo, Ciudad Universitaria, Carretera Pachuca-Tulancingo Km. 4.5, Pachuca, Hidalgo, C. Postal. 42184 (Mexico); Mohan, S.P. [Department of Geology, School of Earth and Atmospheric Sciences, University of Madras, Guindy Campus, Chennai - 600 025 (India); Ram-Mohan, V. [Department of Geology, School of Earth and Atmospheric Sciences, University of Madras, Guindy Campus, Chennai - 600 025 (India)

    2007-01-15

    Core sediments from Mullipallam Creek of Muthupet mangroves on the southeast coast of India were analyzed for texture, CaCO{sub 3}, organic carbon, sulfur and acid leachable trace metals (Fe, Mn, Cr, Cu, Ni, Co, Pb, Zn and Cd). Textural analysis reveals a predominance of mud while CaCO{sub 3} indicates dissolution in the upper half of the core, and reprecipitation of carbonates in reduction zones. Trace metals are diagenetically modified and anthropogenic processes control Pb and, to some extent, Ni, Zn and Fe. A distinct event is identified at 90 cm suggesting a change in deposition. Strong relationship of trace metals with Fe indicates that they are associated with Fe-oxyhydroxides. The role of carbonates in absorbing trace metals is evident from their positive relationship with trace metals. Comparison of acid leachable trace metals indicates increase in concentrations in the study area and the sediments act as a sink for trace metals contributed from multiple sources. - Natural and anthropogenic trace metals afeecting mangrove sediments.

  4. Isolation of individual fatty acids in sediments using preparative capillary gas chromatography (PCGC) for radiocarbon analysis at NIES-TERRA

    Compound-specific radiocarbon analysis (CSRA) of individual fatty acids (140-1190 μg C) in an estuarine sediment sample collected from Tokyo Bay was carried out using a recently developed preparative capillary gas chromatography (PCGC) system and accelerator mass spectrometry (AMS). The results showed that the estimated 14C ages of four components greatly varied from modern age (combined iso and anteiso C15:0, C16:0) to 17 000 years BP (C22:0), while a bulk-phase 14C age of organic matter is 5000 years BP. The 14C ages of the fatty acids derived from phytoplankton and bacteria are much younger than that of the bulk phase. On the other hand, the fatty acid originated from terrestrial higher plants (C22:0) shows an older 14C age of 17 000 years BP

  5. Naphthenic acids in coastal sediments after the Hebei Spirit oil spill: a potential indicator for oil contamination.

    Wan, Yi; Wang, Beili; Khim, Jong Seong; Hong, Seongjin; Shim, Won Joon; Hu, Jianying

    2014-04-01

    Naphthenic acids (NAs) as toxic components in most petroleum sources are suspected to be one of the major pollutants in the aquatic environment following oil spills, and the polarity and persistence of NAs make it a potential indicator for oil contamination. However, the contamination and potential effects of pollutants in oil spill affected areas remain unknown. To investigate NAs in oil spill affected areas, a sensitive method was first established for analysis of NAs, together with oxy-NAs in sediment samples by UPLC-QTOF-MS. Then the method was applied to determine the NA mixtures in crude oil, weathered oil, and sediments from the spilled sites after the Hebei Spirit oil spill, Taean, South Korea (Dec. 2007). Concentrations of NAs, O3-NAs, and O4-NAs were found to be 7.8-130, 3.6-44, and 0.8-20 mg kg(-1) dw in sediments from the Taean area, respectively, which were much greater than those measured in the reference sites of Manlipo and Anmyundo beaches. Concentrations of NAs were 50-100 times greater than those (0.077-2.5 mg kg(-1) dw) of PAHs in the same sediment samples, thus the ecological risk of NAs in oil spill affected areas deserves more attention. The sedimentary profiles of oil-derived NAs and background NAs centered around compounds with 21-35 and 12-21 carbons, respectively, indicating that the crude-derived NA mixtures originating from the 2007 oil spill were persistent. Acyclic NAsn=5-20 were easily degraded compared to cyclic NAsn=21-41 during the oil weathering processes, and the ratio of oxy-NAsn=21-41 relative to NAsn=21-41 could be a novel index to estimate the degree of oil weathering in sediments. Altogether, the persistent oil-derived NAsn=21-41 could be used as a potential indicator for oil-specific contamination, as such compounds would not be much affected by the properties of coastal sediments possibly due to the high sorption of the negatively charged compounds (NAs) in sediment. PMID:24579908

  6. Variation of mineralogy in acid sediments in a small land use-impacted floodplain, Pimpama River, southeast Queensland

    Full text: The Pimpama River drainage system is located 80 km south of Brisbane, in southeast Queensland. The coastal plain of the lower catchment developed during the last several thousands of years as a result of sea level fluctuations and changing fluvial regimes which provided ideal conditions for the formation of sedimentary pyrite (FeS2). The hydrolysis of this pyrite and the consequent production of sulfuric acid is triggered and controlled by a complex mixture of natural and human factors such as rainfall patterns and seasonality, human changes to tidal regime, and current agricultural and residential activities. The production of acid and subsequent leaching of metals from the pyrite-rich sediments represent the main environmental issue of this coastal setting. Here we report some results of an X-ray diffraction (XRD) study aimed at identifying changes in the mineralogy of the floodplain sediments which have been affected by the local production of sulfuric acid. The XRD traces were run on samples of powder using a Philips PW 1050 diffractometer equipped with a cobalt anticathode. The identification and quantification of mineral phases was assisted by several computer programs: 1) TRACES (plot of traces and locate peaks), 2) JADE (search-match program) and 3) SIROQUANT (quantification program)

  7. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site

    Green, Stefan [Florida State University; Prakash, Om [Florida State University; Jasrotia, Puja [Florida State University; Overholt, Will [Florida State University; Cardenas, Erick [Michigan State University, East Lansing; Hubbard, Daniela [Florida State University; Tiedje, James M. [Michigan State University, East Lansing; Watson, David B [ORNL; Schadt, Christopher Warren [ORNL; Brooks, Scott C [ORNL; Kostka, Joel [Florida State University

    2011-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of ribosomal RNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure, and denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as concentration of nitrogen species, oxygen and sampling season did not appear to strongly influence the distribution of Rhodanobacter. Results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  8. Distribution, thickness, and volume of fine-grained sediment from precipitation of metals from acid-mine waters in Keswick Reservoir, Shasta County, California

    Bruns, Terry R.; Alpers, Charles N.; Carlson, Paul

    2006-01-01

    In February 1993, the U.S. Geological Survey (USGS) acquired high-resolution seismic-reflection data to map the distribution and thickness of fine-grained sediments associated with acid-mine drainage in Keswick Reservoir on the Sacramento River, near Redding, California. In the Spring Creek Arm of Keswick Reservoir, the sediments occurred in three distinct accumulations; thicknesses are greater than 2 meters (m) in the western accumulation, greater than 5 m in the central accumulation, and up to 8 m in the eastern accumulation. In Keswick Reservoir, fine-grained sediments related to acid-mine drainage were present from slightly north of the Spring Creek Arm downstream to the Keswick Dam. Sediment thickness varies from about 3 m opposite the mouth of the Spring Creek Arm to less than 1 m near Keswick Dam. Our estimate for the total volume of fine-grained sediments in the Spring Creek Arm at the time of the geophysical survey in February 1993 is about 152,000 cubic meters in three sediment accumulations, with about 14,000, 32,000, and 105,000 cubic meters respectively in the western, central, and eastern accumulations. We interpreted that an additional 110, 000 cubic meters of material was present in the main part of Keswick Reservoir. At the time of data collection, we therefore estimate that the total volume of fine-grained sediment was 260,000 cubic meters. In the main part of Keswick Reservoir, 42% to 50% of the reservoir area contiguous to Spring Creek Arm had mappable fine-grained sediments. Decreasing sediment supply down-reservoir meant that mappable sediment covered only about 35% of the reservoir in the area to the south, decreasing to about 12% near Keswick Dam. Much of the reservoir bottom below the Spring Creek Arm could have had a thin (less than 20-30 cm) cover of fine-grained sediment that was not mappable using the seismic-reflection data.

  9. [Simulated study of algal fatty acid degradation in hypoxia seawater-sediment interface along China coastal area].

    Sui, Wei-Wei; Ding, Hai-Bing; Yang, Gui-Peng; Lu, Xiao-Lan; Li, Wen-Juan; Sun, Li-Qun

    2013-11-01

    Series of laboratory incubation experiments were conducted to simulate degradation of organic matter in sediment-seawater interface in hypoxia enviroments along China coastal area. Under four different redox conditions (oxygen saturation: 100%, 50%, 25% and 0%), degradations of seveal biomarkers originated from Skeletonema costatum, a typical red tide alage along China coastal area were tracked. By analyzing concentrations of four fatty acid biomarkers [14:0, 16:0, 16:1(7) and 20:5] obtained at various sampling time, results showed that their concentrations decreased significantly after 2-3 weeks' incubation. Then, their concentrations changed very slowly or very little. However, degradation of the four fatty acids varied dramatically in different incubation systems. Fatty acids 14:0, 16:1(7) and 20:5 were degraded completely in all incubation systems after two-month incubation, but 25% to 35% of 16:0 was reserved in the systems. Based on multi-G model, degradations of the four fatty acids were quantively described. The results indicated that all four fatty acids had fast-degraded and slow-degraded fractions. Their degradation rate constants (k(av)) ranged from 0.079 to 0.84 d(-1). The fastest degradation of 14:0 and 16:1 (7) occurred under 25% oxygen concentrations. For these two compounds, in the fastest degradation system, their k(av), values were 2.3 folds and 1.7 folds higher than those in the slowest degradation system [50% oxygen saturation for 14:0 and 100% oxygen saturation for 16:1(7)] respectively. The 16:0 was degraded fastest under the anoxic condition and slowest under the 50% oxygen saturation. The ratio of the two k(av)s was 2.1. The k(av)s of 20:5 had a positive relationship with oxygen saturations. Results of this study suggested that besides oxgen saturations, structure and features of organic compounds, roles of microbe in the envrioments and etc. might affect degradations of fatty acids in S. costatum in hypoxia sediment-seawater interface

  10. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    are new to science all show high sequence identity to sequences retrieved from ORFRC subsurface. (2) Based on physiological and phylogenetic characterization, two new species of subsurface bacteria were described: the metal-reducer Geobacter daltonii, and the denitrifier Rhodanobacter denitrificans. (3) Strains isolated from the ORFRC show that Rhodanobacter species are well adapted to the contaminated subsurface. Strains 2APBS1 and 116-2 grow at high salt (3% NaCl), low pH (3.5) and tolerate high concentrations of nitrate (400mM) and nitrite (100mM). Strain 2APBS1 was demonstrated to grow at in situ acidic pHs down to 2.5. (4) R. denitrificans strain 2APBS1 is the first described Rhodanobacter species shown to denitrify. Nitrate is almost entirely converted to N2O, which may account for the large accumulation of N2O in the ORFRC subsurface. (5) G. daltonii, isolated from uranium- and hydrocarbon-contaminated subsurface sediments of the ORFRC, is the first organism from the subsurface clade of the genus Geobacter that is capable of growth on aromatic hydrocarbons. (6) High quality draft genome sequences and a complete eco-physiological description are completed for R. denitrificans strain 2APBS1 and G. daltonii strain FRC-32. (7) Given their demonstrated relevance to DOE remediation efforts and the availability of detailed genotypic/phenotypic characterization, Rhodanobacter denitrificans strain 2APBS1 and Geobacter daltonii strain FRC-32 represent ideal model organisms to provide a predictive understanding of subsurface microbial activity through metabolic modeling. Tasks II and III-Diversity and distribution of active anaerobes and Mechanisms linking electron transport and the fate of radionuclides: (1) Our study showed that members of genus Rhodanobacter and Geobacter are abundant and active in the uranium and nitrate contaminated subsurface. In the contaminant source zone of the Oak Ridge site, Rhodanobacter spp. are the predominant, active organisms detected

  11. Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China

    Fang, Jidun [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, Shandong Province 256600 (China); Wu, Fengchang, E-mail: wufengchang@163.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Xiong, Yongqiang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Fasheng; Du, Xiaoming; An, Da [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wang, Lifang [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002 (China)

    2014-03-01

    The distribution and compound-specific carbon isotope ratios of n-alkanes and fatty acids in a sediment core (63 cm) collected from Lake Dianchi were examined to investigate organic matter sources in the eutrophic lake. Fatty acids included free and bound fatty acids. The carbon isotope compositions of individual n-alkanes and fatty acids from Lake Dianchi sediments were determined using gas chromatography/isotope ratio mass spectrometry (GC–IRMS). The δ{sup 13}C values of individual n-alkanes (C{sub 16}–C{sub 31}) varied between − 24.1‰ and − 35.6‰, suggesting a dominance of {sup 13}C-depleted n-alkanes that originated from C{sub 3} plants and lacustrine algae. Fatty acids from the sediment extracts were analyzed for their abundances and carbon isotopic compositions. Molecular and isotopic evidence indicates that most of the short-chain fatty acids from Lake Dianchi sediment extracts are sourced from intense microbial recycling and resynthesis of organic matter. Long-chain free fatty acids are mainly derived from terrestrial sources. However, long-chain bound fatty acids are sourced from a combination of terrestrial organic matter, bacteria and algae, with the contribution from algal sources higher in the hypereutrophic stage. - Highlights: • Long-chain n-alkanes and FFAs are mainly derived from terrestrial sources. • Short-chain n-alkanes and fatty acids are mainly derived from bacterial and/or algal sources. • Long-chain BFAs are mainly derived from algal sources in hypereutrophic lakes.

  12. Source characterization of sedimentary organic matter using molecular and stable carbon isotopic composition of n-alkanes and fatty acids in sediment core from Lake Dianchi, China

    The distribution and compound-specific carbon isotope ratios of n-alkanes and fatty acids in a sediment core (63 cm) collected from Lake Dianchi were examined to investigate organic matter sources in the eutrophic lake. Fatty acids included free and bound fatty acids. The carbon isotope compositions of individual n-alkanes and fatty acids from Lake Dianchi sediments were determined using gas chromatography/isotope ratio mass spectrometry (GC–IRMS). The δ13C values of individual n-alkanes (C16–C31) varied between − 24.1‰ and − 35.6‰, suggesting a dominance of 13C-depleted n-alkanes that originated from C3 plants and lacustrine algae. Fatty acids from the sediment extracts were analyzed for their abundances and carbon isotopic compositions. Molecular and isotopic evidence indicates that most of the short-chain fatty acids from Lake Dianchi sediment extracts are sourced from intense microbial recycling and resynthesis of organic matter. Long-chain free fatty acids are mainly derived from terrestrial sources. However, long-chain bound fatty acids are sourced from a combination of terrestrial organic matter, bacteria and algae, with the contribution from algal sources higher in the hypereutrophic stage. - Highlights: • Long-chain n-alkanes and FFAs are mainly derived from terrestrial sources. • Short-chain n-alkanes and fatty acids are mainly derived from bacterial and/or algal sources. • Long-chain BFAs are mainly derived from algal sources in hypereutrophic lakes

  13. Identification of pyrite using 57Fe Moessbauer spectroscopy in core sediments from Erhai Lake, SW China combined with a series of acidic pre-treatments

    A method has been developed for analyzing pyrite quantitatively in the sediments of Erhai Lake in southwest China using 57Fe Moessbauer spectroscopy combined with a series of acidic pre-treatments. Following a washing with an alkaline solution (0.1N NaOH), the sediment samples were successively treated using HCl, HF, and then HCl (65 deg C). The residues thus prepared were analyzed for pyrite using 57Fe Moessbauer spectrometry. The presence of pyrite was also confirmed in the acidic residues of the sediments using sulfur K-edge X-ray absorption near edge structure. This method can be used to measure pyrite in aquatic sediments, especially when the concentration of pyrite is very low and the particles of pyrite are small or the crystallinity is low, and even in amorphous status. In addition, vertical variations of pyrite contents are positively correlated with organic matter and negatively correlated with hematite, superfine paramagnetic ferric iron and sedimentation rate in the cored sediment from the Erhai Lake. All these geochemical indicators may also reflect environmental changes in sedimentary conditions and diagenesis. (author)

  14. Molecular analysis of deep subsurface bacteria

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface

  15. Subsurface Science Program Bibliography, 1985--1992

    The Subsurface Science Program sponsors long-term basic research on (1) the fundamental physical, chemical, and biological mechanisms that control the reactivity, mobilization, stability, and transport of chemical mixtures in subsoils and ground water; (2) hydrogeology, including the hydraulic, microbiological, and geochemical properties of the vadose and saturated zones that control contaminant mobility and stability, including predictive modeling of coupled hydraulic-geochemical-microbial processes; and (3) the microbiology of deep sediments and ground water. TWs research, focused as it is on the natural subsurface environments that are most significantly affected by the more than 40 years of waste generation and disposal at DOE sites, is making important contributions to cleanup of DOE sites. Past DOE waste-disposal practices have resulted in subsurface contamination at DOE sites by unique combinations of radioactive materials and organic and inorganic chemicals (including heavy metals), which make site cleanup particularly difficult. The long- term (10- to 30-year) goal of the Subsurface Science Program is to provide a foundation of fundamental knowledge that can be used to reduce environmental risks and to provide a sound scientific basis for cost-effective cleanup strategies. The Subsurface Science Program is organized into nine interdisciplinary subprograms, or areas of basic research emphasis. The subprograms currently cover the areas of Co-Contaminant Chemistry, Colloids/Biocolloids, Multiphase Fluid Flow, Biodegradation/ Microbial Physiology, Deep Microbiology, Coupled Processes, Field-Scale (Natural Heterogeneity and Scale), and Environmental Science Research Center

  16. Estimation of Bacterial Cell Numbers in Humic Acid-Rich Salt Marsh Sediments with Probes Directed to 16S Ribosomal DNA

    Edgcomb, Virginia P; Mcdonald, John H.; Devereux, Richard; Smith, David W.

    1999-01-01

    The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membrane-bound nucleic acids by using seven group-specific DNA oligonucleotide probes complementary to 16S rRNA coding regions. These included a general eubacterial probe and probes encompassing most members of the gram-ne...

  17. Discharge of landfill leachate to streambed sediments impacts the mineralization potential of phenoxy acid herbicides depending on the initial abundance of tfdA gene classes

    Pazarbasi, Meric Batioglu; Milosevic, Nemanja; Malaguerra, Flavio; Binning, Philip John; Albrechtsen, Hans-Jørgen; Bjerg, Poul Løgstrup; Aamand, Jens

    2013-01-01

    To understand the role of abundance of tfdA gene classes belonging to β- and γ-proteobacteria on phenoxy acid herbicide degradation, streambed sediments were sampled around three seepage meters (SMs) installed in a landfill-impacted groundwater–surface water interface. Highest herbicide mass...

  18. Adsorption of copper, cadmium and zinc on suspended sediments in a stream contaminated by acid mine drainage: The effect of seasonal changes in dissolved organic carbon

    The release of metal-rich, acidic waters from abandoned mining operations is a major problem in Colorado and throughout the Western United States. In Colorado, over 600 km of stream reach are estimated to be affected by such releases (Wentz, 1974). The metals released adversely affect stream biota, including fish. It is therefore important to understand the chemical processes which influence metal transport in these waters. The report details studies of the role of suspended sediments with respect to the transport of several important trace metals in a stream impacted by acid mine drainage. The role of streambed sediments was studied in the same system as part of an earlier project (Acid Mine Drainage: streambed sorption of copper, cadmium and zinc, PB--93-118263)

  19. Site Recommendation Subsurface Layout

    C.L. Linden

    2000-06-28

    The purpose of this analysis is to develop a Subsurface Facility layout that is capable of accommodating the statutory capacity of 70,000 metric tons of uranium (MTU), as well as an option to expand the inventory capacity, if authorized, to 97,000 MTU. The layout configuration also requires a degree of flexibility to accommodate potential changes in site conditions or program requirements. The objective of this analysis is to provide a conceptual design of the Subsurface Facility sufficient to support the development of the Subsurface Facility System Description Document (CRWMS M&O 2000e) and the ''Emplacement Drift System Description Document'' (CRWMS M&O 2000i). As well, this analysis provides input to the Site Recommendation Consideration Report. The scope of this analysis includes: (1) Evaluation of the existing facilities and their integration into the Subsurface Facility design. (2) Identification and incorporation of factors influencing Subsurface Facility design, such as geological constraints, thermal loading, constructibility, subsurface ventilation, drainage control, radiological considerations, and the Test and Evaluation Facilities. (3) Development of a layout showing an available area in the primary area sufficient to support both the waste inventories and individual layouts showing the emplacement area required for 70,000 MTU and, if authorized, 97,000 MTU.

  20. Carbon-13 natural abundance signatures of long-chain fatty acids to determinate sediment origin: A case study in northeast Austria

    Mabit, Lionel; Gibbs, Max; Meusburger, Katrin; Toloza, Arsenio; Resch, Christian; Klik, Andreas; Swales, Andrew; Alewell, Christine

    2016-04-01

    - Several recently published information from scientific research have highlighted that compound-specific stable isotope (CSSI) signatures of fatty acids (FAs) based on the measurement of carbon-13 natural abundance signatures showed great promises to identify sediment origin. The authors have used this innovative isotopic approach to investigate the sources of sediment in a three hectares Austrian sub-watershed (i.e. Mistelbach). Through a previous study using the Cs-137 technique, Mabit et al. (Geoderma, 2009) reported a local maximum sedimentation rate reaching 20 to 50 t/ha/yr in the lowest part of this watershed. However, this study did not identify the sources. Subsequently, the deposited sediment at its outlet (i.e. the sediment mixture) and representative soil samples from the four main agricultural fields - expected to be the source soils - of the site were investigated. The bulk delta carbon-13 of the samples and two long-chain FAs (i.e. C22:0 and C24:0) allowed the best statistical discrimination. Using two different mixing models (i.e. IsoSource and CSSIAR v1.00) and the organic carbon content of the soil sources and sediment mixture, the contribution of each source has been established. Results suggested that the grassed waterway contributed to at least 50% of the sediment deposited at the watershed outlet. This study, that will require further validation, highlights that CSSI and Cs-137 techniques are complementary as fingerprints and tracers for establishing land sediment redistribution and could provide meaningful information for optimized decision-making by land managers.

  1. Viral activities and life cycles in deep subseafloor sediments.

    Engelhardt, Tim; Orsi, William D; Jørgensen, Bo Barker

    2015-12-01

    Viruses are highly abundant in marine subsurface sediments and can even exceed the number of prokaryotes. However, their activity and quantitative impact on microbial populations are still poorly understood. Here, we use gene expression data from published continental margin subseafloor metatranscriptomes to qualitatively assess viral diversity and activity in sediments up to 159 metres below seafloor (mbsf). Mining of the metatranscriptomic data revealed 4651 representative viral homologues (RVHs), representing 2.2% of all metatranscriptome sequence reads, which have close translated homology (average 77%, range 60-97% amino acid identity) to viral proteins. Archaea-infecting RVHs are exclusively detected in the upper 30 mbsf, whereas RVHs for filamentous inoviruses predominate in the deepest sediment layers. RVHs indicative of lysogenic phage-host interactions and lytic activity, notably cell lysis, are detected at all analysed depths and suggest a dynamic virus-host association in the marine deep biosphere studied here. Ongoing lytic viral activity is further indicated by the expression of clustered, regularly interspaced, short palindromic repeat-associated cascade genes involved in cellular defence against viral attacks. The data indicate the activity of viruses in subsurface sediment of the Peruvian margin and suggest that viruses indeed cause cell mortality and may play an important role in the turnover of subseafloor microbial biomass. PMID:26109514

  2. Subsurface Contamination Control

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the

  3. Organic biomarkers in deep-sea regions affected by bottom trawling: pigments, fatty acids, amino acids and carbohydrates in surface sediments from the La Fonera (Palamós Canyon, NW Mediterranean Sea

    E. Sañé

    2012-12-01

    Full Text Available Deep-sea ecosystems are in general adapted to a limited variability of physical conditions, resulting in high vulnerability and slow recovery rates from anthropogenic perturbations such as bottom trawling. Commercial trawling is the most recurrent and pervasive of human impacts on the deep-sea floor, but studies on its consequences on the biogeochemistry of deep-sea sediments are still scarce. Pigments, fatty acids, amino acids and carbohydrates were analyzed in sediments from the flanks of the La Fonera (Palamós submarine canyon (NW Mediterranean Sea, where a commercial bottom trawling fishery has been active for more than 70 yr. More specifically, we investigated how trawling-induced sediment reworking affects the quality of sedimentary organic matter which reaches the seafloor and accumulates in the sediment column, which is fundamental for the development of benthic communities. Sediment samples were collected during two oceanographic cruises in spring and autumn 2011. The sampled sites included trawl fishing grounds as well as pristine (control areas. We report that bottom trawling in the flanks of the La Fonera Canyon has caused an alteration of the quality of the organic matter accumulated in the upper 5 cm of the seafloor. The use of a wide pool of biochemical tracers characterized by different reactivity to degradation allowed us to discriminate the long-term effects of trawled-induced sediment reworking from the natural variability caused by the seasonal cycle of production and sinking of biogenic particles. Differences between untrawled and trawled areas were evidenced by labile amino acids, while differences between spring and autumn samples were detected only by the more labile indicators chlorophyll a and mono-unsaturated fatty acids. These results suggest that changes in the biochemical composition of the sedimentary organic matter caused by bottom trawling can be more relevant than those associated with natural

  4. Temperature and pressure adaptation of a sulfate reducer from the deep subsurface

    Katja eFichtel

    2015-10-01

    Full Text Available Microbial life in deep marine subsurface faces increasing temperatures and hydrostatic pressure with depth. In this study, we have examined growth characteristics and temperature-related adaptation of the Desulfovibrio indonesiensis strain P23 to the in situ pressure of 30 MPa. The strain originates from the deep subsurface of the eastern flank of the Juan de Fuca Ridge (IODP Site U1301. The organism was isolated at 20 °C and atmospheric pressure from ~61 °C-warm sediments approximately five meters above the sediment-basement interface. In comparison to standard laboratory conditions (20 °C and 0.1 MPa, faster growth was recorded when incubated at in situ pressure and high temperature (45 °C, while cell filamentation was induced by further compression. The maximum growth temperature shifted from 48°C at atmospheric pressure to 50°C under high-pressure conditions. Complementary cellular lipid analyses revealed a two-step response of membrane viscosity to increasing temperature with an exchange of unsaturated by saturated fatty acids and subsequent change from branched to unbranched alkyl moieties. While temperature had a stronger effect on the degree of fatty acid saturation and restructuring of main phospholipids, pressure mainly affected branching and length of side chains. The simultaneous decrease of temperature and pressure to ambient laboratory conditions allowed the cultivation of our moderately thermophilic strain. This may in turn be one key to a successful isolation of microorganisms from the deep subsurface adapted to high temperature and pressure.

  5. Relating groundwater and sediment chemistry to microbial characterization at a BTEX-contaminated site

    The National Center for Manufacturing Science is investigating bioremediation of petroleum hydrocarbon at a site in Belleville, Michigan. As part of this study we examined the microbial communities to help elucidate biodegradative processes currently active at the site. We observed high densities of aerobic hydrocarbon degraders and denitrifiers in the less-contaminated sediments. Low densities of iron and sulfate reducers were measured in the same sediments. In contrast, the highly-contaminated sediments showed low densities of aerobic hydrocarbon degraders and denitrifiers and high densities of iron and sulfate reducers. Methanogens were also found in these highly-contaminated sediments. These contaminated sediments also showed a higher biomass, by phospholipid fatty acids, and greater ratios of phospholipid fatty acids which indicate stress within the microbial community. Aquifer chemistry analyses indicated that the more-contaminated area was more reduced and had lower sulfate than the less-contaminated area. These conditions suggest that the subsurface environment at the highly-contaminated area had progressed into sulfate reduction and methanogensis. The less-contaminated area, although less reduced, also appeared to be progressing into primarily iron- and sulfate-reducing microbial communities. The proposed treatment to stimulate bioremediation includes addition of oxygen and nitrate. Groundwater chemistry and microbial analyses revealed significant differences resulted from the injection of dissolved oxygen and nitrate in the subsurface. These differences included increases in pH and Eh and large decreases in BTEX, dissolved iron, and sulfate concentrations at the injection well

  6. Effect of EDTA, EDDS, NTA and citric acid on electrokinetic remediation of As, Cd, Cr, Cu, Ni, Pb and Zn contaminated dredged marine sediment.

    Song, Yue; Ammami, Mohamed-Tahar; Benamar, Ahmed; Mezazigh, Salim; Wang, Huaqing

    2016-06-01

    In recent years, electrokinetic (EK) remediation method has been widely considered to remove metal pollutants from contaminated dredged sediments. Chelating agents are used as electrolyte solutions to increase metal mobility. This study aims to investigate heavy metal (HM) (As, Cd, Cr, Cu, Ni, Pb and Zn) mobility by assessing the effect of different chelating agents (ethylenediaminetetraacetic acid (EDTA), ethylenediaminedisuccinic acid (EDDS), nitrilotriacetic acid (NTA) or citric acid (CA)) in enhancing EK remediation efficiency. The results show that, for the same concentration (0.1 mol L(-1)), EDTA is more suitable to enhance removal of Ni (52.8 %), Pb (60.1 %) and Zn (34.9 %). EDDS provides effectiveness to increase Cu removal efficiency (52 %), while EDTA and EDDS have a similar enhancement removal effect on As EK remediation (30.5∼31.3 %). CA is more suitable to enhance Cd removal (40.2 %). Similar Cr removal efficiency was provided by EK remediation tests (35.6∼43.5 %). In the migration of metal-chelate complexes being directed towards the anode, metals are accumulated in the middle sections of the sediment matrix for the tests performed with EDTA, NTA and CA. But, low accumulation of metal contamination in the sediment was observed in the test using EDDS. PMID:26782321

  7. Organic geochemistry of sediments from the continental margin off southern New England, U.S.A.--Part I. Amino acids, carbohydrates and lignin

    Steinberg, S. M.; Venkatesan, M. I.; Kaplan, I. R.

    1987-01-01

    Total organic carbon (TOC), lignin, amino acids, sugars and amino sugars were measured in recent sediments for the continental margin off southern New England. The various organic carbon fractions decreased in concentration with increasing distance from shore. The fraction of the TOC that was accounted for by these major components also decreased with increasing distance from shore. The concentration of lignin indicated that only about 3-5% of the organic carbon in the nearshore sediment was of terrestrial origin. The various fractions were highly correlated, which was consistent with a simple linear mixing model of shelf organic matter with material form the slope and rise and indicated a significant transport of sediment from the continental shelf to the continental slope and rise.

  8. Discharge of landfill leachate to streambed sediments impacts the mineralization potential of phenoxy acid herbicides depending on the initial abundance of tfdA gene classes

    Pazarbasi, Meric Batioglu; Milosevic, Nemanja; Malaguerra, Flavio;

    2013-01-01

    To understand the role of abundance of tfdA gene classes belonging to β- and γ-proteobacteria on phenoxy acid herbicide degradation, streambed sediments were sampled around three seepage meters (SMs) installed in a landfill-impacted groundwater–surface water interface. Highest herbicide mass...... discharge to SM3, and lower herbicide mass discharges to SM1 and SM2 were determined due to groundwater discharge rates and herbicide concentrations. SM1-sediment with the lowest abundance of tfdA gene classes had the slowest mineralization, whereas SM2- and SM3-sediments with more abundant tfdA genes had...... faster mineralization. The observed difference in mineralization rates between discharge zones was simulated by a Monod-based kinetic model, which confirmed the role of abundance of tfdA gene classes. This study suggests presence of specific degraders adapted to slow growth rate and high yield strategy...

  9. Humic acids contribution to sedimentary organic matter on a shallow continental shelf (northern Adriatic Sea)

    Giani, M.; Rampazzo, F.; Berto, D.

    2010-12-01

    The shallow northern Adriatic Sea receives large river runoff, predominantly from the Po River, which is the main allochthonous source of nutrients and organic matter. The origin and quality of organic matter deposited in the sediments can influence the degradation processes and oxygen consumption in the bottom waters as well as the fate of many pollutants. Therefore the humic acids (HA) were quantified in surface and sub-surface sediments collected in an area of the north-western Adriatic platform south of Po River. HA showed to have a relevant contribution to sedimentary organic matter. HA content in sediments were positively correlated with the organic carbon concentration and negatively with redox potential and pH, particularly in sub-surface reduced sediments, suggesting their important role in the diagenetic processes taking place in anoxic conditions. Elemental composition of HA extracted from surface and sub-surface sediments showed a wide range of variation of the C org/N ratios which could be due to a mixed (terrestrial and marine) origin and/or an elevated bacteria degradation of nitrogen during diagenesis processes in sediments. The spectroscopic ratios A 2/A 4 and A 4/A 6 of HA confirmed a mixed origin with a high degree of condensation of the HA extracted from sediments.

  10. Microbacter margulisiae gen. nov., sp. nov., a propionigenic bacterium isolated from sediments of an acid rock drainage pond.

    Sánchez-Andrea, Irene; Sanz, Jose Luis; Stams, Alfons J M

    2014-12-01

    A novel anaerobic propionigenic bacterium, strain ADRI(T), was isolated from sediment of an acid rock drainage environment (Tinto River, Spain). Cells were small (0.4-0.6×1-1.7 µm), non-motile and non-spore-forming rods. Cells possessed a Gram-negative cell-wall structure and were vancomycin-resistant. Strain ADRI(T) utilized yeast extract and various sugars as substrates and formed propionate, lactate and acetate as major fermentation products. The optimum growth temperature was 30 °C and the optimum pH for growth was pH 6.5, but strain ADRI(T) was able to grow at a pH as low as 3.0. Oxidase, indole formation, and urease and catalase activities were negative. Aesculin and gelatin were hydrolysed. The predominant cellular fatty acids of strain ADRI(T) were anteiso-C15 : 0 (30.3 %), iso-C15 : 0 (29.2 %) and iso-C17 : 0 3-OH (14.9 %). Major menaquinones were MK-8 (52 %) and MK-9 (48 %). The genomic DNA G+C content was 39.9 mol%. Phylogenetically, strain ADRI(T) was affiliated to the family Porphyromonadaceae of the phylum Bacteroidetes. The most closely related cultured species were Paludibacter propionicigenes with 16S rRNA gene sequence similarity of 87.5 % and several species of the genus Dysgonomonas (similarities of 83.5-85.4 % to the type strains). Based on the distinctive ecological, phenotypic and phylogenetic characteristics of strain ADRI(T), a novel genus and species, Microbacter margulisiae gen. nov., sp. nov., is proposed. The type strain is ADRI(T) ( = JCM 19374(T) = DSM 27471(T)). PMID:25201913

  11. Occurrence and distribution pattern of acidic pharmaceuticals in surface water, wastewater, and sediment of the Msunduzi River, Kwazulu-Natal, South Africa.

    Agunbiade, Foluso O; Moodley, Brenda

    2016-01-01

    The paucity of information on the occurrence of pharmaceuticals in the environment in African countries led the authors to investigate 8 acidic pharmaceuticals (4 antipyretics, 3 antibiotics, and 1 lipid regulator) in wastewater, surface water, and sediments from the Msunduzi River in the province of KwaZulu-Natal, South Africa, using solid-phase extraction (SPE) and liquid chromatography-mass spectrometry (LC/MS). The method recoveries, limits of detection (LOD), and limits of quantification were determined. The method recoveries were 58.4% to 103%, and the LODs ranged between 1.16 ng/L and 29.1 ng/L for water and between 0.58 ng/g and 14.5 ng/g for sediment. The drugs were all present in wastewater and in most of the surface water and sediment samples. Aspirin was the most abundant pharmaceutical observed, 118 ± 0.82 μg/L in wastewater influent, and the most observed antibiotic was nalidixic acid (25.2-29.9 μg/L in wastewater); bezafibrate was the least observed. The distribution pattern of the antipyretic in water indicates more impact in suburban sites. The solid-liquid partitioning of the pharmaceuticals between sediment and water, measured as the distribution coefficient (log KD ) gave an average accumulation magnitude of 10× to 32× in sediments than in water. The downstream distribution patterns for both water and sediment indicate discharge contributions from wastewater, agricultural activities, domestic waste disposal, and possible sewer system leakages. Although concentrations of the pharmaceuticals were comparable with those obtained from some other countries, the contamination of the present study site with pharmaceuticals has been over time and continues at present, making effective management and control necessary. PMID:26138880

  12. Sources of variability in fatty acid (FA) biomarkers in the application of compound-specific stable isotopes (CSSIs) to soil and sediment fingerprinting and tracing: A review.

    Reiffarth, D G; Petticrew, E L; Owens, P N; Lobb, D A

    2016-09-15

    Determining soil redistribution and sediment budgets in watersheds is often challenging. One of the methods for making such determinations employs soil and sediment fingerprinting techniques, using sediment properties such as geochemistry, fallout radionuclides, and mineral magnetism. These methods greatly improve the estimation of erosion and deposition within a watershed, but are limited when determining land use-based soil and sediment movement. Recently, compound-specific stable isotopes (CSSIs), which employ fatty acids naturally occurring in the vegetative cover of soils, offer the possibility of refining fingerprinting techniques based on land use, complementing other methods that are currently in use. The CSSI method has been met with some success; however, challenges still remain with respect to scale and resolution due to a potentially large degree of biological, environmental and analytical uncertainty. By better understanding the source of tracers used in CSSI work and the inherent biochemical variability in those tracers, improvement in sample design and tracer selection is possible. Furthermore, an understanding of environmental and analytical factors affecting the CSSI signal will lead to refinement of the approach and the ability to generate more robust data. This review focuses on sources of biological, environmental and analytical variability in applying CSSI to soil and sediment fingerprinting, and presents recommendations based on past work and current research in this area for improving the CSSI technique. A recommendation, based on current information available in the literature, is to use very-long chain saturated fatty acids and to avoid the use of the ubiquitous saturated fatty acids, C16 and C18. PMID:27155260

  13. The Serpentinite Subsurface Microbiome

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  14. Measurement of subsurface lithology

    Gamma ray spectra of earth formations surrounding an open cased well borehole are obtained by exciting subsurface formation elements around the borehole with neutrons and detecting the gamma ray resulting from capture in the subsurface formation of thermal neutrons from a capture gamma spectroscopy well log source. The spectra of gamma rays so obtained are analyzed to form logs of the elements which contribute significantly to the spectra. From these logs, quantitative measurements of the primary parameters of formation such as water salinity, water saturation, porosity, major matrix components and ratios of formation constituents of the earth formation are obtained

  15. Quantification of Tinto River Sediment Microbial Communities: Importance of Sulfate-Reducing Bacteria and Their Role in Attenuating Acid Mine Drainage

    Sanchez-Andrea, I.; Knittel, K; Amann, R; Amils, R.; Sanz, J.L.

    2012-01-01

    Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed repor...

  16. Rare-earth-element fractionation patterns in estuarine sediments as a consequence of acid mine drainage: A case study in SW Spain

    Lopez-Gonzalez, N.; Borrego, J.; Carro, B.; Grande, J. A.; Torre, M. L. de la; Valente, T.

    2011-07-01

    Processes of seawater dilution and acid neutralization cause significant effects upon REE fractionation between the aqueous solution and sediments. This study describes the results of a recent investigation into such processes in the sediments of the Tinto and Odiel estuary. The results show differences in behaviour between light REEs (LREEs) and middle and heavy REEs (MREEs and HREEs). A relative depletion in La is observed as a consequence of the low pH values, which prevents the separation of LREEs from solution to the suspended matter. When acid neutralization occurs, on the other hand, an increase in the La content is related to the preferential separation of LREEs compared to MREEs and HREEs. Under these conditions three main fractionation patterns were distinguished: the first shows a slightly MREEenriched shape in sediments deposited in the fluvial zone; the second displays significant depletion in LREEs and a nearly flat tendency in MREEs and HREEs towards the estuarine mixing zone; and the third is enriched in total REEs and shows a relative increase in LREEs and MREEs. The evolution of these patterns reveals that pH is the key variable controlling REE fractionation in environments affected by acid mine drainage. (Author) 55 refs.

  17. Rare-earth-element fractionation patterns in estuarine sediments as a consequence of acid mine drainage: A case study in SW Spain

    Processes of seawater dilution and acid neutralization cause significant effects upon REE fractionation between the aqueous solution and sediments. This study describes the results of a recent investigation into such processes in the sediments of the Tinto and Odiel estuary. The results show differences in behaviour between light REEs (LREEs) and middle and heavy REEs (MREEs and HREEs). A relative depletion in La is observed as a consequence of the low pH values, which prevents the separation of LREEs from solution to the suspended matter. When acid neutralization occurs, on the other hand, an increase in the La content is related to the preferential separation of LREEs compared to MREEs and HREEs. Under these conditions three main fractionation patterns were distinguished: the first shows a slightly MREEenriched shape in sediments deposited in the fluvial zone; the second displays significant depletion in LREEs and a nearly flat tendency in MREEs and HREEs towards the estuarine mixing zone; and the third is enriched in total REEs and shows a relative increase in LREEs and MREEs. The evolution of these patterns reveals that pH is the key variable controlling REE fractionation in environments affected by acid mine drainage. (Author) 55 refs.

  18. Microbial Diversity in Anaerobic Sediments at Río Tinto, a Naturally Acidic Environment with a High Heavy Metal Content▿†

    Sánchez-Andrea, Irene; Rodríguez, Nuria; Amils, Ricardo; Sanz, José Luis

    2011-01-01

    The Tinto River is an extreme environment located at the core of the Iberian Pyritic Belt (IPB). It is an unusual ecosystem due to its size (100 km long), constant acidic pH (mean pH, 2.3), and high concentration of heavy metals, iron, and sulfate in its waters, characteristics that make the Tinto River Basin comparable to acidic mine drainage (AMD) systems. In this paper we present an extensive survey of the Tinto River sediment microbiota using two culture-independent approaches: denaturing...

  19. Subsurface connection methods for subsurface heaters

    Vinegar, Harold J. (Bellaire, TX); Bass, Ronald Marshall (Houston, TX); Kim, Dong Sub (Sugar Land, TX); Mason, Stanley Leroy (Allen, TX); Stegemeier, George Leo (Houston, TX); Keltner, Thomas Joseph (Spring, TX); Carl, Jr., Frederick Gordon (Houston, TX)

    2010-12-28

    A system for heating a subsurface formation is described. The system includes a first elongated heater in a first opening in the formation. The first elongated heater includes an exposed metal section in a portion of the first opening. The portion is below a layer of the formation to be heated. The exposed metal section is exposed to the formation. A second elongated heater is in a second opening in the formation. The second opening connects to the first opening at or near the portion of the first opening below the layer to be heated. At least a portion of an exposed metal section of the second elongated heater is electrically coupled to at least a portion of the exposed metal section of the first elongated heater in the portion of the first opening below the layer to be heated.

  20. Subsurface energy footprints

    Anthropogenic climate change and energy security concerns have created a demand for new ways of meeting society’s demand for energy. The Earth’s crust is being targeted in a variety of energy developments to either extract energy or facilitate the use of other energy resources by sequestering emitted carbon dioxide. Unconventional fossil fuel developments are already being pursued in great numbers, and large scale carbon capture and sequestration and geothermal energy projects have been proposed. In many cases, these developments compete for the same subsurface environments and they are not necessarily compatible with each other. Policy to regulate the interplay between these developments is poorly developed. Here, the subsurface footprints necessary to produce a unit of energy from different developments are estimated to assist with subsurface planning. The compatibility and order of development is also examined to aid policy development. Estimated subsurface energy footprints indicate that carbon capture and sequestration and geothermal energy developments are better choices than unconventional gas to supply clean energy. (letter)

  1. Results of chemical, toxicological, and bioaccumulation evaluations of dioxins, furans, and guaicol/organic acids in sediments from the Grays Harbor/Chehalis River area

    The Battelle/Marine Sciences Laboratory (MSL) was requested by the US Army Corps of Engineers (USACE), Seattle District, to assist in planning and conducting sampling, toxicological tests, and chemistry evaluations on sediment samples collected from the Chehalis River in Grays Harbor, Washington. The objectives of the study were to investigate the toxicity and biological effects of sediments that might potentially contain dioxins, furans, and organic acids, as a result of industrial practices in the Grays Harbor area, on sensitive marine species. In addition to the toxicological tests conducted using standard bioassays, sediment chemistry tests were performed to determine levels of selected chemicals, and elutriates of sediments were tested chemically and biologically to determine contaminant mobility in water. Also, bioaccumulation measurements were made to determine chemical mobility in animal tissue. A joint task group, including representatives from the USACE, Washington Department of Ecology (WDOE), Washington Department of Natural Resources (WDNR), Washington Department of Fisheries (WDOF), and Region 9 of the US Environmental Protection Agency (USEPA) participated in designing the testing program and reviewing data produced by MSL. The results of this analysis will be included in a supplemental Environmental Assessment (EA) prepared by the USACE for the Grays Harbor Dredging Program, beginning in early 1990. 13 refs., 5 figs., 8 tabs

  2. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments

    Li, Dong

    2015-09-24

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction–modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants. © 2015, Springer Science+Business Media New York.

  3. Denitrifying bacteria from the terrestrial subsurface exposed to mixed waste contamination

    Green, Stefan [Florida State University; Prakash, Om [Florida State University; Gihring, Thomas [Florida State University; Akob, Denise M. [Florida State University; Jasrotia, Puja [Florida State University; Jardine, Philip M [ORNL; Watson, David B [ORNL; Brown, Steven D [ORNL; Palumbo, Anthony Vito [ORNL; Kostka, Joel [Florida State University

    2010-01-01

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available with which to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy s Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria) and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were confirmed as complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. Ribosomal RNA gene analyses reveal that bacteria from the genus Rhodanobacter comprise a diverse population of circumneutral to moderately acidophilic denitrifiers at the ORIFRC site, with a high relative abundance in areas of the acidic source zone. Rhodanobacter species do not contain a periplasmic nitrite reductase and have not been previously detected in functional gene surveys of denitrifying bacteria at the OR-IFRC site. Sequences of nitrite and nitrous oxide reductase genes were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation, genomic and metagenomic data are essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifying microorganisms. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  4. Denitrifying bacteria from the terrestrial subsurface exposed to mixed waste contamination

    In terrestrial subsurface environments where nitrate is a critical groundwater contaminant, few cultivated representatives are available with which to verify the metabolism of organisms that catalyze denitrification. In this study, five species of denitrifying bacteria from three phyla were isolated from subsurface sediments exposed to metal radionuclide and nitrate contamination as part of the U.S. Department of Energy's Oak Ridge Integrated Field Research Challenge (OR-IFRC). Isolates belonged to the genera Afipia and Hyphomicrobium (Alphaproteobacteria), Rhodanobacter (Gammaproteobacteria), Intrasporangium (Actinobacteria) and Bacillus (Firmicutes). Isolates from the phylum Proteobacteria were confirmed as complete denitrifiers, whereas the Gram-positive isolates reduced nitrate to nitrous oxide. Ribosomal RNA gene analyses reveal that bacteria from the genus Rhodanobacter comprise a diverse population of circumneutral to moderately acidophilic denitrifiers at the ORIFRC site, with a high relative abundance in areas of the acidic source zone. Rhodanobacter species do not contain a periplasmic nitrite reductase and have not been previously detected in functional gene surveys of denitrifying bacteria at the OR-IFRC site. Sequences of nitrite and nitrous oxide reductase genes were recovered from the isolates and from the terrestrial subsurface by designing primer sets mined from genomic and metagenomic data and from draft genomes of two of the isolates. We demonstrate that a combination of cultivation, genomic and metagenomic data are essential to the in situ characterization of denitrifiers and that current PCR-based approaches are not suitable for deep coverage of denitrifying microorganisms. Our results indicate that the diversity of denitrifiers is significantly underestimated in the terrestrial subsurface.

  5. Exploring Genomic Diversity Using Metagenomics of Deep-Sea Subsurface Microbes from the Louisville Seamount and the South Pacific Gyre

    Tully, B. J.; Sylvan, J. B.; Heidelberg, J. F.; Huber, J. A.

    2014-12-01

    There are many limitations involved with sampling microbial diversity from deep-sea subsurface environments, ranging from physical sample collection, low microbial biomass, culturing at in situ conditions, and inefficient nucleic acid extractions. As such, we are continually modifying our methods to obtain better results and expanding what we know about microbes in these environments. Here we present analysis of metagenomes sequences from samples collected from 120 m within the Louisville Seamount and from the top 5-10cm of the sediment in the center of the south Pacific gyre (SPG). Both systems are low biomass with ~102 and ~104 cells per cm3 for Louisville Seamount samples analyzed and the SPG sediment, respectively. The Louisville Seamount represents the first in situ subseafloor basalt and the SPG sediments represent the first in situ low biomass sediment microbial metagenomes. Both of these environments, subseafloor basalt and sediments underlying oligotrophic ocean gyres, represent large provinces of the seafloor environment that remain understudied. Despite the low biomass and DNA generated from these samples, we have generated 16 near complete genomes (5 from Louisville and 11 from the SPG) from the two metagenomic datasets. These genomes are estimated to be between 51-100% complete and span a range of phylogenetic groups, including the Proteobacteria, Actinobacteria, Firmicutes, Chloroflexi, and unclassified bacterial groups. With these genomes, we have assessed potential functional capabilities of these organisms and performed a comparative analysis between the environmental genomes and previously sequenced relatives to determine possible adaptations that may elucidate survival mechanisms for these low energy environments. These methods illustrate a baseline analysis that can be applied to future metagenomic deep-sea subsurface datasets and will help to further our understanding of microbiology within these environments.

  6. Subsurface quality assurance practices

    This report addresses only the concept of applying Nuclear Quality Assurance (NQA) practices to repository shaft and subsurface design and construction; how NQA will be applied; and the level of detail required in the documentation for construction of a shaft and subsurface repository in contrast to the level of detail required in the documentation for construction of a traditional mine. This study determined that NQA practices are viable, attainable, as well as required. The study identified the appropriate NQA criteria and the repository's major structures, systems, items, and activities to which the criteria are applicable. A QA plan, for design and construction, and a list of documentation, for construction, are presented. 7 refs., 1 fig., 18 tabs

  7. Subsurface contaminants focus area

    NONE

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  8. Subsurface contaminants focus area

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites

  9. Microbial Fe(III) Reduction in Acidic Mining Lake Sediments after Addition of an Organic Substrate and Lime

    To elucidate the role of Fe(III) reduction in mining lake sediments amended with organic substrates, we performed a large (10 m diameter) enclosure experiment in which sediments were amended with Carbokalk, a waste product from sugar industry containing organic carbon and lime. Fe(III) reduction rates were determined monthly by measuring the accumulation of Fe(II) in the sediments in the field. Fe(III) reduction rates were also determined by incubating sediment samples with synthetic Fe(III) oxyhydroxide under in situ temperature in the laboratory. Sulfate reduction was selectively inhibited in the Fe(III) reduction experiments by addition of sodium molybdate. Sulfate reduction was measured by accumulation of reduced inorganic sulfides in the field and by 35S radiotracer using a core injection technique. Sediment incubation and determination of sulfate reduction rates with radiotracer showed that sulfate reduction and direct microbial Fe(III) reduction occurred simultaneously in the upper centimeters of the sediments and that both processes contributed to alkalinity generation. However, Fe(III) reduction was the initial process and rates were at least 3.5 fold higher than sulfate reduction rates. The results indicate that the presence of suitable anions for Fe(II) precipitation as carbonate or sulfide is needed in order to prevent loss of potential alkalinity by Fe(II) diffusion and reoxidation in the water column

  10. Physiologically anaerobic microorganisms of the deep subsurface

    Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) were significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site

  11. Alteration of organic matter during infaunal polychaete gut passage and links to sediment organic geochemistry. Part II: Fatty acids and aldoses

    Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.

    2014-07-01

    The activities of sediment-dwelling fauna are known to influence the rates of and pathways through which organic matter is cycled in marine sediments, and thus to influence eventual organic carbon burial or decay. However, due to methodological constraints, the role of faunal gut passage in determining the subsequent composition and thus degradability of organic matter is relatively little studied. Previous studies of organic matter digestion by benthic fauna have been unable to detect uptake and retention of specific biochemicals in faunal tissues, and have been of durations too short to fit digestion into the context of longer-term sedimentary degradation processes. Therefore this study aimed to investigate the aldose and fatty acid compositional alterations occurring to organic matter during gut passage by the abundant and ubiquitous polychaetes Hediste diversicolor and Arenicola marina, and to link these to longer-term changes typically observed during organic matter decay. This aim was approached through microcosm experiments in which selected polychaetes were fed with 13C-labelled algal detritus, and organisms, sediments, and faecal pellets were sampled at three timepoints over ∼6 weeks. Samples were analysed for their 13C-labelled aldose and fatty acid contents using GC-MS and GC-IRMS. Compound-selective net accumulation of biochemicals in polychaete tissues was observed for both aldoses and fatty acids, and the patterns of this were taxon-specific. The dominant patterns included an overall loss of glucose and polyunsaturated fatty acids; and preferential preservation or production of arabinose, microbial compounds (rhamnose, fucose and microbial fatty acids), and animal-synthesised fatty acids. These patterns may have been driven by fatty acid essentiality, preferential metabolism of glucose, and A. marina grazing on bacteria. Fatty acid suites in sediments from faunated microcosms showed greater proportions of saturated fatty acids and bacterial markers

  12. Ionizing radiation damage to the folded chromosome of Escherichia coli K-12: sedimentation properties of irradiated nucleoids and chromosomal deoxyribonucleic acid

    The structures of the membrane-free nucleoid of Escherichia coli K-12 and of unfolded chromosomal deoxyribonucleic acid (DNA) were investigated by low-speed sedimentation on neutral sucrose gradients after irradiation with 60Co gamma rays. Irradiation both in vivo and in vitro was used as a molecular probe of the constraints on DNA packaging in the bacterial chromosome. The number of domains of supercoiling was estimated to be approximately 180 per genome equivalent of DNA, based on measurements of relaxation caused by single-strand break formation in folded chromosomes gamma irradiated in vivo and in vitro. Similar estimates based on the target size of ribonucleic acid molecules responsible for maintaining the compact packaging of the nucleoid predicted negligible unfolding due to the formation of ribonucleic acid single-strand breaks at doses of up to 10 krad; this was born out by experimental measurements. Unfolding of the nucleoid in vitro by limit digestion with ribonuclease or by heating at 700C resulted in DNA complexes with sedimentation coefficients of 1,030 +- 59S and 625 +- 15S, respectively. The difference in these rates was apparently due to more complete deproteinization and thus less mass in the heated material. These structures are believed to represent intact, replicating genomes in the form of complex-theta structures containing two to three genome equivalents of DNA

  13. Subsurface Biogeochemistry of Actinides

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  14. Benthic metal fluxes and sediment diagenesis in a water reservoir affected by acid mine drainage: A laboratory experiment and reactive transport modeling

    Torres, E.; Ayora, C.; Jiménez-Arias, J. L.; García-Robledo, E.; Papaspyrou, S.; Corzo, A.

    2014-08-01

    Reservoirs are one of the primary water supply sources. Knowledge of the metal fluxes at the water-sediment interfaces of reservoirs is essential for predicting their ecological quality. Redox oscillations in the water column are promoted by stratification; turnover events may significantly alter metal cycling, especially in reservoirs impacted by acid mine drainage (AMD). To study this phenomenon, an experiment was performed under controlled laboratory conditions. Sediment cores from an AMD-affected reservoir were maintained in a tank with reservoir water for approximately two months and subjected to alternating oxic-hypoxic conditions. A detailed metal speciation in solid phases of the sediment was initially performed by sequential extraction, and pore water was analyzed at the end of each redox period. Tank water metals concentrations were systematically monitored throughout the experiment. The experimental results were then used to calibrate a diffusion-reaction model and quantify the reaction rates and sediment-water fluxes. Under oxic conditions, pH, Fe and As concentrations decreased in the tank due to schwertmannite precipitation, whereas the concentrations of Al, Zn, Cu, Ni, and Co increased due to Al(OH)3 and sulfide dissolution. The reverse trends occurred under hypoxic conditions. Under oxic conditions, the fluxes calculated by applying Fick’s first law to experimental concentration gradients contradicted the fluxes expected based on the evolution of the tank water. According to the reactive transport calculations, this discrepancy can be attributed to the coarse resolution of sediment sampling. The one-cm-thick slices failed to capture effectively the notably narrow (1-2 mm) concentration peaks of several elements in the shallow pore water resulting from sulfide and Al(OH)3 dissolution. The diffusion-reaction model, extended to the complete year, computed that between 25% and 50% of the trace metals and less than 10% of the Al that precipitated under

  15. A method to attenuate U(VI) mobility in acidic waste plumes using humic acids

    Wan, J.; Dong, W.; Tokunaga, T.K.

    2011-02-01

    Acidic uranium (U) contaminated plumes have resulted from acid-extraction of plutonium during the Cold War and from U mining and milling operations. A sustainable method for in-situ immobilization of U under acidic conditions is not yet available. Here, we propose to use humic acids (HAs) for in-situ U immobilization in acidic waste plumes. Our laboratory batch experiments show that HA can adsorb onto aquifer sediments rapidly, strongly and practically irreversibly. Adding HA greatly enhanced U adsorption capacity to sediments at pH below 5.0. Our column experiments using historically contaminated sediments from the Savannah River Site under slow flow rates (120 and 12 m/y) show that desorption of U and HA were non-detectable over 100 pore-volumes of leaching with simulated acidic groundwaters. Upon HA-treatment, 99% of the contaminant [U] was immobilized at pH < 4.5, compared to 5% and 58% immobilized in the control columns at pH 3.5 and 4.5, respectively. These results demonstrated that HA-treatment is a promising in-situ remediation method for acidic U waste plumes. As a remediation reagent, HAs are resistant to biodegradation, cost effective, nontoxic, and easily introducible to the subsurface.

  16. Iron buffer system in the water column and partitioning in the sediments of the naturally acidic Lake Caviahue, Neuquén, Argentina

    Cabrera, J. M.; Diaz, M. M.; Schultz, S.; Temporetti, P.; Pedrozo, F.

    2016-05-01

    Sedimentary iron partitioning was studied for five sediment strata (16 cm depth) at three sampling sites of the naturally-occurring acidic Lake Caviahue (Patagonia, Argentina). Additionally, water column iron was modeled based on five-year period input loadings to study a possible iron buffer system. The partition coefficient between the water column and the total iron content of the sediments was also addressed. Sedimentary iron was found to be distributed, on average, in the following forms: exchangeable (6%), iron oxides (4%), pyrite and reactive organic matter (38%) and residual (non-andesitic) materials with a high content of humic acids (52%). Furthermore, we found that the dissolved iron in the lake was nearly constant throughout the five year period we studied. This is consistent with the existence of an iron buffer system in the lake at pH between 2.0 and 3.0, which may cause differential iron precipitation at the delta of the volcanic river with respect to the deeper northern and southern arms. Sedimentary iron measurements taken at the delta further support the existence of a buffer system, where it was found that the iron content in the sub-superficial stratum (2 cm) was double that of the remainder of the vertical profile at the same site.

  17. Containment of subsurface contaminants

    Corey, John C.

    1994-01-01

    A barrier for reducing the spread of a plume of subsurface contaminants. The apparatus includes a well system for injecting a fluid, such as air, just outside and below the periphery of the plume. The fluid is injected at a pressure sufficient to lower the hydraulic conductivity of the soil from the point of injection to the surface thus establishing a curtain-like barrier to groundwater movement. The barrier is established upgradient of the plume to divert groundwater away, or preferably completely around the plume to reduce the flow of groundwater into or out of the plume. The barrier enables the remediation of the confined contamination and then, when the injection of the fluid is halted, the barrier quickly dissipates.

  18. Subsurface geochemical studies

    Subsurface geochemical studies are composed of spectral radiometric studies and core geochemistry. These studies are aimed at identifying both secondary and remnant primary halos pertinent to the known mineralization. Genetically, any geochemical signatures delineated in the altered rocks are classified as epigenetic dispersion patterns that are formed during post primary-mineralization processes. However, a few remnant hypogene geochemical dispersion patterns, typical of immobile elements, are also manifested in the area. The above-mentioned studies are also oriented towards understanding the genesis of uranium deposits in granitic rocks. Thus these geochemical studies form an essential link in the exploration systems approach to the identification of halos and contribute to drilling plans and the ultimate discovery of blind uranium deposits in granitic rocks. 61 figures, 5 tables

  19. Interaction of acid mine drainage with waters and sediments of West Squaw Creek in the West Shasta Mining District, California

    Filipek, L.H.; Kirk, Nordstrom D.; Ficklin, W.H.

    1987-01-01

    Acid mine drainage has acidified large volumes of water and added high concentrations of dissolved heavy metals to West Squaw Creek, a California stream draining igneous rocks of low acid-neutralizing capacity. During mixing of the acid sulfate stream waters in the South Fork of West Squaw Creek with an almost equal volume of dilute uncontaminated water, Cu, Zn, Mn, and Al remained in solution rather than precipitating or adsorbing on solid phases. Changes in the concentration of these generally conservative metals could be used to determine relative flow volumes of acid tributaries and the main stream. An amorphous orange precipitate (probably ferric hydroxides or a mixture of ferric hydroxides and jarosite) was ubiquitous in the acid stream beds and was intimately associated with algae at the most acid sites. Relative sorption of cations decreased with decreasing water pH. However, arsenic was almost completely scavenged from solution within a short distance from the sulfide sources.

  20. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    Sobecky, Patricia A. [Univ. of Alabama, Tuscaloosa, AL (United States)

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  1. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  2. Subsurface Ventilation System Description Document

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  3. Subsurface Ventilation System Description Document

    NONE

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  4. Metal partitioning in sediments and mineralogical controls on the acid mine drainage in Ribeira da Água Forte (Aljustrel, Iberian Pyrite Belt, Southern Portugal)

    This work focuses on the geochemical processes taking place in the acid drainage in the Ribeira da Água Forte, located in the Aljustrel mining area in the Iberian Pyrite Belt. The approach involved water and stream sediment geochemical analyses, as well as other techniques such as sequential extraction, Mössbauer spectroscopy, and X-ray diffraction. Ribeira da Água Forte is a stream that drains the area of the old mine dumps of the Aljustrel mine, which have for decades been a source of acid waters. This stream flows to the north for a little over than 10 km, but mixes with a reduced, organic-rich, high pH waste water from the municipal waste water pools of the village. This water input produces two different results in the chemistry of the stream depending upon the season: (i) in the winter season, effective water mixing takes place, and the flux of acid water from the mine dumps is continuous, resulting in the immediate precipitation of the Fe from the acid waters; (ii) during the summer season, acid drainage is interrupted and only the waste water feeds the stream, resulting in the reductive dissolution of Fe hydroxides and hydroxysulfates in the stream sediments, releasing significant quantities of metals into solution. Throughout the year, water pH stays invariably within 4.0–4.5 for several meters downstream of this mixing zone even when the source waters come from the waste water pools, which have a pH around 8.4. The coupled interplay of dissolution and precipitation of the secondary minerals (hydroxides and sulfates), keeps the system pH between 3.9 and 4.5 all along the stream. In particular, evidence suggests that schwertmannite may be precipitating and later decomposing into Fe hydroxides to sustain the stream water pH at those levels. While Fe content decreases by 50% from solution, the most important trace metals are only slightly attenuated before the solution mixes with the Ribeira do Rôxo stream waters. Concentrations of As are the only ones

  5. Ecology, physiology, and phylogeny of deep subsurface Sphingomonas sp.

    Fredrickson, Jim K.; Balkwill, David L.; Romine, Margaret F.; Shi, T

    1999-10-01

    Several new species of the genus Sphingomonas including S. aromaticivorans, S. stygia, and S. subterranea that have the capacity for degrading a broad range of aromatic compounds including toluene, naphthalene, xylenes, p-cresol, fluorene, biphenyl, and dibenzothiophene, were isolated from deeply-buried (>200 m) sediments of the US Atlantic coastal plain (ACP). In S. aromaticivorans F199, many of the genes involved in the catabolism of these aromatic compounds are encoded on a 184-kb conjugative plasmid; some of the genes involved in aromatic catabolism are plasmid-encoded in the other strains as well. Members of the genus Sphingomonas were common among aerobic heterotrophic bacteria cultured from ACP sediments and have been detected in deep subsurface environments elsewhere. The major source of organic carbon for heterotrophic metabolism in ACP deep aquifers is lignite that originated from plant material buried with the sediments. We speculate that the ability of the subsurface Sphingomonas strains to degrade a wide array of aromatic compounds represents an adaptation for utilization of sedimentary lignite. These and related subsurface Sphingomonas spp may play an important role in the transformation of sedimentary organic carbon in the aerobic and microaerobic regions of the deep aquifers of the ACP.

  6. Evaluation of scission and crosslinking yields in γ-irradiated poly(acrylic acid) and poly(methacrylic acid) from weight- and Ζ-average molecular weights determined by sedimentation equilibrium

    Weight- and Ζ-average molecular weights, M-barW(D) and M-barΖ(D), of poly(methacrylic acid) (PMMA) and poly(acrylic acid) (PAA) have been determined by sedimentation equilibrium in the ultracentrifuge after various doses D of γ-radiation in vacuum. Relationships between [Mi(0)/Mi(D)-1]/D and D (i=w or Ζ), derived recently by O'Donnell and coworkers, have been used to determine radiation chemical yields for scission and crosslinking of G(S)=6.0, G(X)=0 for PMAA and G(S)=0, G(X)=0.44 for PAA. Allowance was necessary for the effects of COOH decomposition on the average values of the molecular weight and partial specific volume for irradiated PAA. (author)

  7. Biochemical distributions (amino acids, neutral sugars, and lignin phenols) among size-classes of modern marine sediments from the Washington coast

    Keil, Richard G.; Tsamakis, Elizabeth; Giddings, J. Calvin; Hedges, John I.

    1998-04-01

    In order to examine relationships of organic matter source, composition, and diagenesis with particle size and mineralogy in modern marine depositional regimes, sediments from the continental shelf and slope along the Northwest Pacific rim (Washington coast, USA) were sorted into hydrodynamic size fractions (sand: >250, 63-250 μm; silt: 35-63, 17-35, 8-17, 3-8 μm; and clay-sized: 1-3, 0.5-1, fucose and rhamnose. Organic matter in the silt fractions, though degraded, is not as diagenetically altered as in the clay fractions. Enrichment of pollen grains in the silt-size material is reflected by high cinnamic acid to ferulic acid lignin phenol ratios. The highest pollen biochemical signal is observed in the silt fractions of the deepest station (1835 m), where pollen abundances are also highest. Organic matter tightly bound in the silt and sand-sized fractions are enriched in aldoses and show indications of enhanced microbial biomass as reflected by high weight percentages of ribose. Distinct organic debris was composed of relatively unaltered vascular plant remains as reflected by high lignin phenol yields and low acid/aldehyde ratios. Clay-size fractions are enriched in nitrogenous components, as reflected by elevated yields of total and basic amino acids (especially lysine). Silt- and sand-size fractions rich in quartz and albite show slightly higher yields of neutral amino acids. Consistent trends across all size classes and among the different depositional settings illustrates that only a small portion of the organic matter is present as distinct organic debris (e.g. pollen, vascular plant tissues, etc.), but that this debris can be isolated in specific size classes. The data for surface-associated organic matter are consistent with, but not conclusive of, selective partitioning of some organic matter to specific mineral surfaces. The dominant size class-specific trends in organic matter composition are due to changes in both source and diagenetic alteration.

  8. Quantification of Tinto River sediment microbial communities: importance of sulfate-reducing bacteria and their role in attenuating acid mine drainage.

    Sánchez-Andrea, Irene; Knittel, Katrin; Amann, Rudolf; Amils, Ricardo; Sanz, José Luis

    2012-07-01

    Tinto River (Huelva, Spain) is a natural acidic rock drainage (ARD) environment produced by the bio-oxidation of metallic sulfides from the Iberian Pyritic Belt. This study quantified the abundance of diverse microbial populations inhabiting ARD-related sediments from two physicochemically contrasting sampling sites (SN and JL dams). Depth profiles of total cell numbers differed greatly between the two sites yet were consistent in decreasing sharply at greater depths. Although catalyzed reporter deposition fluorescence in situ hybridization with domain-specific probes showed that Bacteria (>98%) dominated over Archaea (water column (pH 2.5 and +400 mV), the most abundant organisms were identified as iron-reducing bacteria: Acidithiobacillus spp. and Acidiphilium spp., probably related to the higher iron solubility at low pH. At the JL dam, characterized by a banded sediment with higher pH (4.2 to 6.2), more reducing redox potential (-210 mV to 50 mV), and a lower solubility of iron, members of sulfate-reducing genera Syntrophobacter, Desulfosporosinus, and Desulfurella were dominant. The latter was quantified with a newly designed CARD-FISH probe. In layers where sulfate-reducing bacteria were abundant, pH was higher and redox potential and levels of dissolved metals and iron were lower. These results suggest that the attenuation of ARD characteristics is biologically driven by sulfate reducers and the consequent precipitation of metals and iron as sulfides. PMID:22544246

  9. Centimetre-scale vertical variability of phenoxy acid herbicide mineralization potential in aquifer sediment relates to the abundance of tfdA genes

    Pazarbasi, Meric Batioglu; Bælum, Jacob; Johnsen, Anders R.;

    2012-01-01

    suggests that the abundance of MCPA degraders was greater than that of 2,4-D degraders, possibly due to the fact that the overlying agricultural soil had long been treated with MCPA. Mineralization of 2,4-D and MCPA was followed by increased abundance of tfdA class I and class III catabolic genes, which...... are known to be involved in the metabolism of phenoxy acid herbicides. tfdA class III gene copy number was approximately 100-fold greater in samples able to mineralize MCPA than in samples able to mineralize 2,4-D, suggesting that tfdA class III gene plays a greater role in the metabolism of MCPA than...... of 2,4-D. Degradation rate was found to correlate positively with tfdA gene copy number, as well as with the total organic carbon content of the sediment....

  10. Evaluation of Pb and Fe tenors present in the sediments nearby the activities of taking advantage of lead-acid batteries

    The region chosen for this study was the Municipality of Belo Jardim, Pernambuco State, Brazil, which is considered an important industrial complex of the production and repairing of lead-acid batteries. Sediment samples were collected near to the illegal smelting industries and analyzed by ionic exchange method using a alpha-beta proportional counter for determining the activity of Pb-210, radionuclide used as geochronological tool. The chemical elements Pb and Fe were determined by means of flame atomic absorption spectrometry. The obtained results indicated an expressive increasing of lead and iron concentrations in the last 20 years. The concentrations in the sampled profile varied from 318 to 15487 mg.kg-1 and from 19 to 1524 mg.kg-1 for Fe and Pb, respectively. (author)

  11. Experimental Study and Numerical Solution of Poly Acrylic Acid Supported Magnetite Nanoparticles Transport in a One-Dimensional Porous Media

    M. Golzar; S. F. Saghravani; Azhdari Moghaddam, M.

    2014-01-01

    Recently, iron nanoparticles have attracted more attention for groundwater remediation due to its potential to reduce subsurface contaminants such as PCBs, chlorinated solvents, and heavy metals. The magnetic properties of iron nanoparticles cause to attach to each other and form bigger colloid particles of iron nanoparticles with more rapid sedimentation rate in aqueous environment. Using the surfactants such as poly acrylic acid (PAA) prevents iron nanoparticles from forming large flocs tha...

  12. Anaerobic U(IV) Bio-oxidation and the Resultant Remobilization of Uranium in Contaminated Sediments

    A proposed strategy for the remediation of uranium (U) contaminated sites is based on immobilizing U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Due to the use of nitric acid in the processing of nuclear fuels, nitrate is often a co-contaminant found in many of the environments contaminated with uranium. Recent studies indicate that nitrate inhibits U(VI) reduction in sediment slurries. However, the mechanism responsible for the apparent inhibition of U(VI) reduction is unknown, i.e. preferential utilization of nitrate as an electron acceptor, direct biological oxidation of U(IV) coupled to nitrate reduction, and/or abiotic oxidation by intermediates of nitrate reduction. Recent studies indicates that direct biological oxidation of U(IV) coupled to nitrate reduction may exist in situ, however, to date no organisms have been identified that can grow by this metabolism. In an effort to evaluate the potential for nitrate-dependent bio-oxidation of U(IV) in anaerobic sedimentary environments, we have initiated the enumeration of nitrate-dependent U(IV) oxidizing bacteria. Sediments, soils, and groundwater from uranium (U) contaminated sites, including subsurface sediments from the NABIR Field Research Center (FRC), as well as uncontaminated sites, including subsurface sediments from the NABIR FRC and Longhorn Army Ammunition Plant, Texas, lake sediments, and agricultural field soil, sites served as the inoculum source. Enumeration of the nitrate-dependent U(IV) oxidizing microbial population in sedimentary environments by most probable number technique have revealed sedimentary microbial populations ranging from 9.3 x 101 - 2.4 x 103 cells (g sediment)-1 in both contaminated and uncontaminated sites. Interestingly uncontaminated subsurface sediments (NABIR FRC Background core FB618 and Longhorn Texas Core BH2-18) both harbored the most numerous nitrate-dependent U(IV) oxidizing population 2.4 x 103 cells (g sediment)-1

  13. Biomarkers in sediments. The racemization/epiremitation of amino acids like tool in geochronology and paleothermometrics; Estratigrafia biomolecular. La racemizacion/epimerizacion de aminoacidos como herramienta geocronologica y paleotermometrica

    Torres, T.; Llamas, F. J.; Canoira, L.; Garcia-Alonso, P.; Ortiz, J. E. [Universidad Politecnica de Madrid (Spain)

    1999-07-01

    The study of amino acids as biomarkers in sediments has become a necessary methodology and tool for the analysis of palaeoenvironmental conditions and, therefore, of climatic evolution in the past. Research based on the selection and analysis of geological biomarkers, and more specifically activities relating to the racemization/epimerization of amino acids, makes it possible to obtain the geochronological and photoelectrochemical data required to establish different hypotheses for Long-Term Performance Assessment of a repository for high level radioactive wastes. (Author)

  14. Characterization of accumulated precipitates during subsurface iron removal

    Van Halem, Doris

    2011-01-01

    The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O2-rich water oxidizes adsorbed Fe 2+, creating a subsurface oxidation zone. When groundwater abstraction is resumed, the soluble Fe 2+ is adsorbed and water with reduced Fe concentrations is abstracted for multiple volumes of the injection water. In this article, Fe accumulation deposits in the aquifer near subsurface treatment wells were identified and characterized to assess the sustainability of subsurface iron removal regarding clogging of the aquifer and the potential co-accumulation of other groundwater constituents, such as As. Chemical extraction of soil samples, with Acid-Oxalate and HNO3, showed that Fe had accumulated at specific depths near subsurface iron removal wells after 12 years of operation. Whether it was due to preferred flow paths or geochemical mineralogy conditions; subsurface iron removal clearly favoured certain soil layers. The total Fe content increased between 11.5 and 390.8 mmol/kg ds in the affected soil layers, and the accumulated Fe was found to be 56-100% crystalline. These results suggest that precipitated amorphous Fe hydroxides have transformed to Fe hydroxides of higher crystallinity. These crystalline, compact Fe hydroxides have not noticeably clogged the investigated well and/or aquifer between 1996 and 2008. The subsurface iron removal wells even need less frequent rehabilitation, as drawdown increases more slowly than in normal production wells. Other groundwater constituents, such as Mn, As and Sr were found to co-accumulate with Fe. Acid extraction and ESEM-EDX showed that Ca occurred together with Fe and by X-ray Powder Diffraction it was identified as calcite. © 2010 Elsevier Ltd. All rights reserved.

  15. Subsurface Geotechnical Parameters Report

    D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson

    2003-12-17

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce

  16. Subsurface Geotechnical Parameters Report

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce

  17. Microbial communities in the deep subsurface

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface

  18. SUBSURFACE CONSTRUCTION AND DEVELOPMENT ANALYSIS

    The purpose of this analysis is to identify appropriate construction methods and develop a feasible approach for construction and development of the repository subsurface facilities. The objective of this analysis is to support development of the subsurface repository layout for License Application (LA) design. The scope of the analysis for construction and development of the subsurface Repository facilities covers: (1) Excavation methods, including application of knowledge gained from construction of the Exploratory Studies Facility (ESF). (2) Muck removal from excavation headings to the surface. This task will examine ways of preventing interference with other subsurface construction activities. (3) The logistics and equipment for the construction and development rail haulage systems. (4) Impact of ground support installation on excavation and other construction activities. (5) Examination of how drift mapping will be accomplished. (6) Men and materials handling. (7) Installation and removal of construction utilities and ventilation systems. (8) Equipping and finishing of the emplacement drift mains and access ramps to fulfill waste emplacement operational needs. (9) Emplacement drift and access mains and ramps commissioning prior to handover for emplacement operations. (10) Examination of ways to structure the contracts for construction of the repository. (11) Discussion of different construction schemes and how to minimize the schedule risks implicit in those schemes. (12) Surface facilities needed for subsurface construction activities

  19. Program overview: Subsurface science program

    The OHER Subsurface Science Program is DOE's core basic research program concerned with subsoils and groundwater. These practices have resulted in contamination by mixtures of organic chemicals, inorganic chemicals, and radionuclides. A primary long-term goal is to provide a foundation of knowledge that will lead to the reduction of environmental risks and to cost-effective cleanup strategies. Since the Program was initiated in 1985, a substantial amount of research in hydrogeology, subsurface microbiology, and the geochemistry of organically complexed radionuclides has been completed, leading to a better understanding of contaminant transport in groundwater and to new insights into microbial distribution and function in the subsurface environments. The Subsurface Science Program focuses on achieving long-term scientific advances that will assist DOE in the following key areas: providing the scientific basis for innovative in situ remediation technologies that are based on a concept of decontamination through benign manipulation of natural systems; understanding the complex mechanisms and process interactions that occur in the subsurface; determining the influence of chemical and geochemical-microbial processes on co-contaminant mobility to reduce environmental risks; improving predictions of contaminant transport that draw on fundamental knowledge of contaminant behavior in the presence of physical and chemical heterogeneities to improve cleanup effectiveness and to predict environmental risks

  20. Recognition of a Biofilm at the Sediment-Water Interface of AN Acid Mine Drainage-Contaminated Stream, and its Role in Controlling Iron Flux

    Boult, Stephen; Johnson, Nicholas; Curtis, Charles

    1997-03-01

    Material collected over a month on plates attached to the bed of the Afon Goch, Anglesey, a stream highly contaminated by acid mine drainage (AMD), was either examined intact by electron microscopy or suspended and cultured to reveal the presence of microbiota. Certain of the aerobic microbiota were identified, the genus Pseudomonas formed the commonest isolate and cultures of Serratia plymuthica were grown in order to compare the biofilms formed with the material collected in the Afon Goch. The material at the sediment-water interface of the Afon Goch was of similar underlying morphology to that of the cultured biofilms. However, the former had a superficial granular coating of equidimensional (60-100 nm) and evenly spaced iron rich particles (determined by X-ray microanalysis). The sediment-water interface of this AMD-contaminated stream is therefore best described as a highly contaminated biofilm. Evidence from previous work suggests that the streambed is active in iron removal from the water column. The intimate association of iron with microbiota at the streambed, therefore, implies that iron flux prediction may not be possible from physical and chemical data alone but requires knowledge of biofilm physiology and ecology.Microbially mediated metal precipitation, both by single bacteria and by biofilms, has been reported elsewhere but mass balance considerations suggest that this explanation cannot hold good for the large amounts of iron hydroxide depositing from waters of the prevalent pH and redox status. Filtered stream water analyses indicate the presence of colloidal iron hydroxide and also its removal downstream where ochreous (iron hydroxide rich) material accumulates. The process of iron immobilization is likely to be the attraction and physical trapping of colloidal iron hydroxide by extracellular polymeric substances (EPS) which constitute the matrix of biofilms.

  1. Structural changes of humic acids from sinking organic matter and surface sediments investigated by advanced solid-state NMR: Insights into sources, preservation and molecularly uncharacterized components

    Mao, Jingdong; Tremblay, Luc; Gagné, Jean-Pierre

    2011-12-01

    Knowledge of the structural changes that particulate organic matter (POM) undergoes in natural systems is essential for determining its reactivity and fate. In the present study, we used advanced solid-state NMR techniques to investigate the chemical structures of sinking particulate matter collected at different depths as well as humic acids (HAs) extracted from these samples and underlying sediments from the Saguenay Fjord and the St. Lawrence Lower Estuary (Canada). Compared to bulk POM, HAs contain more non-polar alkyls, aromatics, and aromatic C-O, but less carbohydrates (or carbohydrate-like structures). In the two locations studied, the C and N contents of the samples (POM and HAs) decreased with depth and after deposition onto sediments, leaving N-poor but O-enriched HAs and suggesting the involvement of partial oxidation reactions during POM microbial degradation. Advanced NMR techniques revealed that, compared to the water-column HAs, sedimentary HAs contained more protonated aromatics, non-protonated aromatics, aromatic C-O, carbohydrates (excluding anomerics), anomerics, OC q, O-C q-O, OCH, and OCH 3 groups, but less non-polar alkyls, NCH, and mobile CH 2 groups. These results are consistent with the relatively high reactivity of lipids and proteins or peptides. In contrast, carbohydrate-like structures were selectively preserved and appeared to be involved in substitution and copolymerization reactions. Some of these trends support the selective degradation (or selective preservation) theory. The results provide insights into mechanisms that likely contribute to the preservation of POM and the formation of molecules that escape characterization by traditional methods. Despite the depletion of non-polar alkyls with depth in HAs, a significant portion of their general structure survived and can be assigned to a model phospholipid. In addition, little changes in the connectivities of different functional groups were observed. Substituted and copolymerized

  2. Martian sub-surface ionising radiation: biosignatures and geology

    L. R. Dartnell

    2007-02-01

    Full Text Available The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionizing radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Previous research has attempted to address the question of biomarker persistence by inappropriately using dose profiles weighted specifically for cellular survival. Here, we present modelling results of the unmodified physically absorbed radiation dose as a function of depth through the Martian subsurface. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments.

    We present calculations of the dose-depth profile from galactic cosmic rays in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost, solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude, and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and briefly treat particle deflection by the crustal magnetic fields.

  3. Martian sub-surface ionising radiation: biosignatures and geology

    J. M. Ward

    2007-07-01

    Full Text Available The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments.

    We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost, solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude, and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.

  4. Characterization of accumulated precipitates during subsurface iron removal

    Research highlights: → Accumulated iron was not found to clog the well or aquifer after 12 years of subsurface iron removal. → 56-100% of accumulated iron hydroxides were found to be crystalline. → Subsurface iron removal favoured certain soil layers, either due to hydraulics or mineralogy. → Other groundwater constituents, such as manganese and arsenic were found to co-accumulate with iron. - Abstract: The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O2-rich water oxidizes adsorbed Fe2+, creating a subsurface oxidation zone. When groundwater abstraction is resumed, the soluble Fe2+ is adsorbed and water with reduced Fe concentrations is abstracted for multiple volumes of the injection water. In this article, Fe accumulation deposits in the aquifer near subsurface treatment wells were identified and characterized to assess the sustainability of subsurface iron removal regarding clogging of the aquifer and the potential co-accumulation of other groundwater constituents, such as As. Chemical extraction of soil samples, with Acid-Oxalate and HNO3, showed that Fe had accumulated at specific depths near subsurface iron removal wells after 12 years of operation. Whether it was due to preferred flow paths or geochemical mineralogy conditions; subsurface iron removal clearly favoured certain soil layers. The total Fe content increased between 11.5 and 390.8 mmol/kg ds in the affected soil layers, and the accumulated Fe was found to be 56-100% crystalline. These results suggest that precipitated amorphous Fe hydroxides have transformed to Fe hydroxides of higher crystallinity. These crystalline, compact Fe hydroxides have not noticeably clogged the investigated well and/or aquifer between 1996 and 2008. The subsurface iron removal wells even need less frequent rehabilitation, as drawdown increases more slowly than in normal

  5. Soils and organic sediments

    The organic component of soils is basically made up of substances of an individual nature (fats, waxes, resins, proteins, tannic substances, and many others), and humic substances (Kononova, 1966). These are complex polymers formed from breakdown products of the chemical and biological degradation of plant and animal residues. They are dark coloured, acidic, predominantly aromatic compounds ranging in molecular weight from less than one thousand to tens of thousands (Schnitzer, 1977). They can be partitioned into three main fractions:(i) Humic acid, which is soluble in dilute alkaline solution, but can be precipitated by acidification of the alkaline extract.(ii) Fulvic acid, which is soluble in alkaline solution, but is also soluble on acidification.(iii) Humin that cannot be extracted from the soil or sediment by dilute acid or alkaline solutions. It has mostly been assumed that the humic and fulvic acid components of the soil are part of the mobile, or 'active' component, and the humin component is part of the 'passive' component. Other types of organic sediments are likely to contain chemical breakdown products of plant material, plant fragments and material brought in from outside sources. The outside material can be contemporaneous with sediment deposition, can be older material, or younger material incorporated into the sediment long after deposition. Recognition of 'foreign' material is essential for dating, but is not an easy task. Examples of separation techniques for humic and non humic components are evaluated for their efficiency

  6. Endoscopic subsurface imaging in tissues

    Demos, S G; Staggs, M; Radousky, H B

    2001-02-12

    The objective of this work is to develop endoscopic subsurface optical imaging technology that will be able to image different tissue components located underneath the surface of the tissue at an imaging depth of up to 1 centimeter. This effort is based on the utilization of existing technology and components developed for medical endoscopes with the incorporation of the appropriate modifications to implement the spectral and polarization difference imaging technique. This subsurface imaging technique employs polarization and spectral light discrimination in combination with image processing to remove a large portion of the image information from the outer layers of the tissue which leads to enhancement of the contrast and image quality of subsurface tissue structures.

  7. ESF Subsurface Standby Generator Analysis

    The purpose of this analysis is to outline and recommend two standby generator systems. These systems shall provide power during a utility outage to critical Alcove No.5's thermal test loads and to subsurface flow through ventilation loads. Critical loads that will be supported by these generator systems will be identified and evaluated. Additionally, other requirements from the Exploratory Studies Facilities Design Requirements (ESFDR) document will be evaluated. Finally, the standby generator systems will be integrated into the existing ESF subsurface distribution system. The objective of this analysis is to provide design inputs for an efficient and reliable standby generator systems which will provide power for critical loads during a power outage; specifically, Alcove No.5's thermal test loads and the subsurface flow through ventilation loads. Additionally, preliminary one-line diagrams will be developed using this analysis as a primary input

  8. Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments

    A. Boetius

    2013-02-01

    Full Text Available This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan. The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulphate reduction (SR and anaerobic methane oxidation (AOM. Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed to emanate from the sediments, and the pH reached approximately 4.5 in a sediment depth >6 cm, as determined in situ by microsensors. Methane and sulphate co-occurred in most sediment samples from the vicinity of the vents down to a depth of at least 3 m. However, SR and AOM were restricted to the upper 7–15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulphate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000–1700 mM, through the ensuing high H2CO3 levels (approx. 1–2 mM uncouples the proton-motive-force (PMF and thus inhibits biological energy conservation by ATPase-driven phosphorylation. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.

  9. Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments

    D. de Beer

    2013-08-01

    Full Text Available This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan. The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulfate reduction (SR and anaerobic methane oxidation (AOM. Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed emanating from the sediments, and the pH reached approximately 4.5 in a sediment depth > 6 cm, as determined in situ by microsensors. Methane and sulfate co-occurred in most sediment samples from the vicinity of the vents down to a depth of 3 m. However, SR and AOM were restricted to the upper 7–15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulfate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000–1700 mM, which disrupt the cellular pH homeostasis, and lead to end-product inhibition. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.

  10. Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments

    de Beer, D.; Haeckel, M.; Neumann, J.; Wegener, G.; Inagaki, F.; Boetius, A.

    2013-08-01

    This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan). The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulfate reduction (SR) and anaerobic methane oxidation (AOM). Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed emanating from the sediments, and the pH reached approximately 4.5 in a sediment depth > 6 cm, as determined in situ by microsensors. Methane and sulfate co-occurred in most sediment samples from the vicinity of the vents down to a depth of 3 m. However, SR and AOM were restricted to the upper 7-15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulfate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000-1700 mM), which disrupt the cellular pH homeostasis, and lead to end-product inhibition. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.

  11. Effect of humic acid on absorption-release processes in the system bottom sediments - Yenisei river water as studied by dual-column ion chromatography and γ-ray spectrometry

    The effect of humic acid on absorption-release processes in the system bottom sediments - Yenisei river water was studied by dual-column ion chromatography and γ-ray spectrometry. With the use of ion chromatography, it was found that processes related to the absorption of SO42- and Cl- anions by a solid phase with the release of NO3-, PO43- , and F- to a liquid phase competed in the test systems as the concentration of water-soluble organic carbon (WSOC) was increased. Only the test anions were released in the systems without the introduction of an additional amount of WSOC as humic acid. With the use of γ-ray spectrometry, it was found that the release of 60Co, 152Eu, and 241Am radionuclides to the liquid phase in the systems with added humic acid began much earlier than in the system without the addition of humic acid. In this case, the amount of released radionuclides was greater than the amount of radioisotopes released in the system without the addition of humic acid: ∼25% 241Am, ∼3% 152Eu, and ∼0.8% 60Co in the system with added humic acid or 0.8% 152Eu and 60Co in the system without the addition of humic acid. The 241Am radionuclide was not determined in the system without the addition of humic acid. An increase in the concentration of WSOC in the experimental system bottom sediments - Yenisei river water initiated the release of 60Co, 152Eu, and 241Am anthropogenic radionuclides from bottom sediments because of the formation of soluble complexes capable of migration. An increase in the concentration of WSOC had almost no effect on the release of 40K and 137Cs radionuclides

  12. Targeting sediment management strategies using sediment quantification and fingerprinting methods

    Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; hUallacháin, Daire Ó.

    2016-04-01

    Cost-effective sediment management is required to reduce excessive delivery of fine sediment due to intensive land uses such as agriculture, resulting in the degradation of aquatic ecosystems. Prioritising measures to mitigate dominant sediment sources is, however, challenging, as sediment loss risk is spatially and temporally variable between and within catchments. Fluctuations in sediment supply from potential sources result from variations in land uses resulting in increased erodibility where ground cover is low (e.g., cultivated, poached and compacted soils), and physical catchment characteristics controlling hydrological connectivity and transport pathways (surface and/or sub-surface). Sediment fingerprinting is an evidence-based management tool to identify sources of in-stream sediments at the catchment scale. Potential sediment sources are related to a river sediment sample, comprising a mixture of source sediments, using natural physico-chemical characteristics (or 'tracers'), and contributions are statistically un-mixed. Suspended sediment data were collected over two years at the outlet of three intensive agricultural catchments (approximately 10 km2) in Ireland. Dominant catchment characteristics were grassland on poorly-drained soils, arable on well-drained soils and arable on moderately-drained soils. High-resolution (10-min) calibrated turbidity-based suspended sediment and discharge data were combined to quantify yield. In-stream sediment samples (for fingerprinting analysis) were collected at six to twelve week intervals, using time-integrated sediment samplers. Potential sources, including stream channel banks, ditches, arable and grassland field topsoils, damaged road verges and tracks were sampled, oven-dried (Soil and sediment samples were analysed for mineral magnetics, geochemistry and radionuclide tracers, particle size distribution and soil organic carbon. Tracer data were corrected to account for particle size and organic matter selectivity

  13. Aquatic Sediments.

    Sanville, W. D.; And Others

    1978-01-01

    Presents a literature review of aquatic sediments and its effect upon water quality, covering publications of 1976-77. This review includes: (1) sediment water interchange; (2) chemical and physical characterization; and (3) heavy water in sediments. A list of 129 references is also presented. (HM)

  14. Direct analysis of volatile fatty acids in marine sediment porewater by two-dimensional ion chromatography-mass spectrometry

    Glombitza, Clemens; Pedersen, Jeanette; Røy, Hans;

    2014-01-01

    ion monitoring mode. No sample pretreatment is required and statistically determined detection limits are below 25 ppb (μg L–1). The method can also be used without the online coupling to a mass spectrometer. In the latter case, quantification of the VFAs can be done by the conductivity detector......Volatile fatty acids (VFAs) are key intermediates in the microbial food web. However, the analysis of low concentrations of VFAs in marine porewater is hampered by interference from high concentrations of inorganic ions. Published methods often use sample pretreatment, including distillation...... by two-dimensional ion chromatography-mass spectrometry (2D IC-MS). The first chromatographic dimension is used to separate the VFAs from the inorganic ions whereas the second dimension separates the individual VFAs. Quantification and identification are achieved by online mass spectrometry in selected...

  15. Bioremediation potential of toxics by manipulation of deep terrestrial subsurface ecosystems

    Mixed physiological types of bacteria in consortia recovered from subsurface contaminated sediments degrade mixed organic wastes containing carbon-rich (benzene, xylene, toluene) and halogenated hydrocarbon substrates (chlorobenzene, trichloroethylene, dichloroethylenes, vinyl chloride) in column bioreactors when provided with oxygen and methane and/or propane substrates. In expanded bed bioreactors degradation proceeds to 99% completion for several organic and chlorocarbon contaminants (60% for tetrachloroethylene) to carbon dioxide on repeated cycles in 21 days with little loss of volatiles in the control bioreactor except for a 70% loss of vinyl chloride in the control. Biodegradation is most efficient when the microbial consortia is maintained in a suboptimal nutritional state which can be monitored by ratios of endogenous storage lipid (poly beta-hydroxy alkanoic acid, PHA) to total phospholipid ester-linked fatty acids (PLFA). Under the best conditions the efficiency of biodegradation was 50-65 moles substrate (propane or propane + methane)/mole of TEC degraded. The microbial communities showed a rich diversity of microbes based on PLFA biomarkers. The effects of adding methane and/or propane in inducing specific subsets of the microbial community can readily be detected in the PLFA biomarker. Despite the presence of carbon rich substrates (benzene, toluene, xylene) in the mixed wastes, no evidence of plugging of interstitial spaces by exopolysaccharide was detected

  16. Targeting sediment management strategies using sediment quantification and fingerprinting methods

    Sherriff, Sophie; Rowan, John; Fenton, Owen; Jordan, Phil; hUallacháin, Daire Ó.

    2016-04-01

    Cost-effective sediment management is required to reduce excessive delivery of fine sediment due to intensive land uses such as agriculture, resulting in the degradation of aquatic ecosystems. Prioritising measures to mitigate dominant sediment sources is, however, challenging, as sediment loss risk is spatially and temporally variable between and within catchments. Fluctuations in sediment supply from potential sources result from variations in land uses resulting in increased erodibility where ground cover is low (e.g., cultivated, poached and compacted soils), and physical catchment characteristics controlling hydrological connectivity and transport pathways (surface and/or sub-surface). Sediment fingerprinting is an evidence-based management tool to identify sources of in-stream sediments at the catchment scale. Potential sediment sources are related to a river sediment sample, comprising a mixture of source sediments, using natural physico-chemical characteristics (or 'tracers'), and contributions are statistically un-mixed. Suspended sediment data were collected over two years at the outlet of three intensive agricultural catchments (approximately 10 km2) in Ireland. Dominant catchment characteristics were grassland on poorly-drained soils, arable on well-drained soils and arable on moderately-drained soils. High-resolution (10-min) calibrated turbidity-based suspended sediment and discharge data were combined to quantify yield. In-stream sediment samples (for fingerprinting analysis) were collected at six to twelve week intervals, using time-integrated sediment samplers. Potential sources, including stream channel banks, ditches, arable and grassland field topsoils, damaged road verges and tracks were sampled, oven-dried (stream banks, roads - road verges and tracks, fields - grassland and arable topsoils) were statistically un-mixed using FR2000, an uncertainty-inclusive algorithm, and combined with sediment yield data. Results showed sediment contributions

  17. Safety analysis in subsurface repositories

    The development of mathematical models to represent the repository-geosphere-biosphere system, and the development of a structure for data acquisition, processing, and use to analyse the safety of subsurface repositories, are presented. To study the behavior of radionuclides in geosphere a laboratory to determine the hydrodynamic dispersion coefficient was constructed. (M.C.K.)

  18. Feasibility of a subsurface storage

    This report analyses the notion of subsurface storage under the scientifical, technical and legal aspects. This reflection belongs to the studies about long duration storage carried out in the framework of the axis 3 of the December 30, 1991 law. The report comprises 3 parts. The first part is a synthesis of the complete subsurface storage study: definitions, aim of the report, very long duration storage paradigm, description files of concepts, thematic synthesis (legal aspects, safety, monitoring, sites, seismicity, heat transfers, corrosion, concretes, R and works, handling, tailings and dismantlement, economy..), multi-criteria/multi-concept cross-analysis. The second part deals with the technical aspects of the subsurface storage: safety approach (long duration impact, radiation protection, mastery of effluents), monitoring strategy, macroscopic inventory of B-type waste packages, inventory of spent fuels, glasses, hulls and nozzles, geological contexts in the French territory (sites selection and characterization), on-site activities, hydrogeological and geochemical aspects, geo-technical works and infrastructures organization, subsurface seismic effects, cooling modes (ventilation, heat transfer with the geologic environment), heat transfer research programs (convection, poly-phase cooling in porous media), handling constraints, concretes (use, behaviour, durability), corrosion of metallic materials, technical-economical analysis, international context (experience feedback from Sweden (CLAB) and the USA (Yucca Mountain), other European and French facilities). The last part of the report is a graphical appendix with 3-D views and schemes of the different concepts. (J.S.)

  19. SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS

    The ''Subsurface Fire Hazard Analysis'' (CRWMS M andO 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M andO 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree

  20. Effect of growth conditions and staining procedure upon the subsurface transport and attachment behaviors of a groundwater protist

    Harvey, R.W.; Mayberry, N.; Kinner, N.E.; Metge, D.W.; Novarino, F.

    2002-01-01

    The transport and attachment behaviors of Spumella guttula (Kent), a nanoflagellate (protist) found in contaminated and uncontaminated aquifer sediments in Cape Cod, Mass., were assessed in flowthrough and static columns and in a field injection-and-recovery transport experiment involving an array of multilevel samplers. Transport of S. guttula harvested from low-nutrient (10 mg of dissolved organic carbon per liter), slightly acidic, granular (porous) growth media was compared to earlier observations involving nanoflagellates grown in a traditional high-nutrient liquid broth. In contrast to the highly retarded (retardation factor of ???3) subsurface transport previously reported for S. guttula, the peak concentration of porous-medium-grown S. guttula traveled concomitantly with that of a conservative (bromide) tracer. About one-third of the porous-medium-grown nanoflagellates added to the aquifer were transported at least 2.8 m downgradient, compared to only ???2% of the broth-grown nanoflagellates. Flowthrough column studies revealed that a vital (hydroethidine [HE]) staining procedure resulted in considerably less attachment (more transport) of S. guttula in aquifer sediments than did a staining-and-fixation procedure involving 4???,6???-diamidino-2-phenylindole (DAPI) and glutaraldehyde. The calculated collision efficiency (???10-2. for porous-medium-grown, DAPI-stained nanoflagellates) was comparable to that observed earlier for the indigenous community of unattached ground-water bacteria that serve as prey. The attachment of HE-labeled S. guttula onto aquifer sediment grains was independent of pH (over the range from pH 3 to 9) suggesting a primary attachment mechanism that may be fundamentally different from that of their prey bacteria, which exhibit sharp decreases in fractional attachment with increasing pH. The high degree of mobility of S. guttula in the aquifer sediments has important ecological implications for the protistan community within the

  1. Microbes of deep marine sediments as viewed by metagenomics

    Biddle, J.

    2015-12-01

    Ten years after the first deep marine sediment metagenome was produced, questions still exist about the nucleic acid sequences we have retrieved. Current data sets, including the Peru Margin, Costa Rica Margin and Iberian Margin show that consistently, data forms larger assemblies at depth due to the reduced complexity of the microbial community. But are these organisms active or preserved? At SMTZs, a change in the assembly statistics is noted, as well as an increase in cell counts, suggesting that cells are truly active. As depth increases, genome sizes are consistently large, suggesting that much like soil microbes, sedimentary microbes may maintain a larger reportorie of genomic potential. Functional changes are seen with depth, but at many sites are not correlated to specific geochemistries. Individual genomes show changes with depth, which raises interesting questions on how the subsurface is settled and maintained. The subsurface does have a distinct genomic signature, including unusual microbial groups, which we are now able to analyze for total genomic content.

  2. Sources of suspended sediment in the Lower Roanoke River, NC

    Jalowska, A. M.; McKee, B. A.; Rodriguez, A. B.; Laceby, J. P.

    2015-12-01

    The Lower Roanoke River, NC, extends 220 km from the fall line to the bayhead delta front in the Albemarle Sound. The Lower Roanoke is almost completely disconnected from the upper reaches by a series of dams, with the furthest downstream dam located at the fall line. The dams effectively restrict the suspended sediment delivery from headwaters, making soils and sediments from the Lower Roanoke River basin, the sole source of suspended sediment. In flow-regulated rivers, bank erosion, especially mass wasting, is the major contributor to the suspended matter. Additional sources of the suspended sediment considered in this study are river channel, surface soils, floodplain surface sediments, and erosion of the delta front and prodelta. Here, we examine spatial and temporal variations in those sources. This study combined the use of flow and grain size data with a sediment fingerprinting method, to examine the contribution of surface and subsurface sediments to the observed suspended sediment load along the Lower Roanoke River. The fingerprinting method utilized radionuclide tracers 210Pb (natural atmospheric fallout), and 137Cs (produced by thermonuclear bomb testing). The contributions of surface and subsurface sources to the suspended sediment were calculated with 95% confidence intervals using a Monte-Carlo numerical mixing model. Our results show that with decreasing river slope and changing hydrography along the river, the contribution of surface sediments increases and becomes a main source of sediments in the Roanoke bayhead delta. At the river mouth, the surface sediment contribution decreases and is replaced by sediments eroded from the delta front and prodelta. The area of high surface sediment contribution is within the middle and upper parts of the delta, which are considered net depositional. Our study demonstrates that floodplains, often regarded to be a sediment sink, are also a sediment source, and they should be factored into sediment, carbon and

  3. Active Marine Subsurface Bacterial Population Composition in Low Organic Carbon Environments from IODP Expedition 320

    Shepard, A.; Reese, B. K.; Mills, H. J.; IODP Expedition 320 Shipboard Science Party

    2011-12-01

    The marine subsurface environment contains abundant and active microorganisms. These microbial populations are considered integral players in the marine subsurface biogeochemical system with significance in global geochemical cycles and reservoirs. However, variations in microbial community structure, activity and function associated with the wide-ranging sedimentary and geochemical environments found globally have not been fully resolved. Integrated Ocean Drilling Program Expedition 320 recovered sediments from site U1332. Two sampling depths were selected for analysis that spanned differing lithological units in the sediment core. Sediments were composed of mostly clay with zeolite minerals at 8 meters below sea floor (mbsf). At 27 mbsf, sediments were composed of alternating clayey radiolarian ooze and nannofossil ooze. The concentration of SO42- had little variability throughout the core and the concentration of Fe2+ remained close to, or below, detection limits (0.4 μM). Total organic carbon content ranged from a low of 0.03 wt% to a high of 0.07 wt% between 6 and 30 mbsf providing an opportunity to evaluate marine subsurface microbial communities under extreme electron donor limiting conditions. The metabolically active fraction of the bacterial population was isolated by the extraction and amplification of 16S ribosomal RNA. Pyrosequencing of 16S rRNA transcripts and subsequent bioinformatic analyses provided a robust data set (15,931 total classified sequences) to characterize the community at a high resolution. As observed in other subsurface environments, the overall diversity of active bacterial populations decreased with depth. The population shifted from a diverse but evenly distributed community at approximately 8 mbsf to a Firmicutes dominated population at 27 mbsf (80% of sequences). A total of 95% of the sequences at 27 mbsf were grouped into three genera: Lactobacillus (phylum Firmicutes) at 80% of the total sequences, Marinobacter (phylum

  4. RADIOIODINE GEOCHEMISTRY IN THE SRS SUBSURFACE ENVIRONMENT

    Kaplan, D.; Emerson, H.; Powell, B.; Roberts, K.; Zhang, S.; Xu, C.; Schwer, K.; Li, H.; Ho, Y.; Denham, M.; Yeager, C.; Santschi, P.

    2013-05-16

    Iodine-129 is one of the key risk drivers for several Savannah River Site (SRS) performance assessments (PA), including that for the Low-Level Waste Disposal Facility in E-Area. In an effort to reduce the uncertainty associated with the conceptual model and the input values used in PA, several studies have recently been conducted dealing with radioiodine geochemistry at the SRS. The objective of this report was to review these recent studies and evaluate their implications on SRS PA calculations. For the first time, these studies measured iodine speciation in SRS groundwater and provided technical justification for assuming the presence of more strongly sorbing species (iodate and organo-iodine), and measured greater iodine sediment sorption when experiments included these newly identified species; specifically they measured greater sorption coefficients (K{sub d} values: the concentration ratio of iodine on the solid phase divided by the concentration in the aqueous phase). Based on these recent studies, new best estimates were proposed for future PA calculations. The new K{sub d} values are greater than previous recommended values. These proposed K{sub d} values reflect a better understanding of iodine geochemistry in the SRS subsurface environment, which permits reducing the associated conservatism included in the original estimates to account for uncertainty. Among the key contributing discoveries supporting the contention that the K{sub d} values should be increased are that: 1) not only iodide (I{sup -}), but also the more strongly sorbing iodate (IO{sub 3}{sup -}) species exists in SRS groundwater (average total iodine = 15% iodide, 42% iodate, and 43% organoiodine), 2) when iodine was added as iodate, the measured K{sub d} values were 2 to 6 times greater than when the iodine was added as iodide, and perhaps most importantly, 3) higher desorption (10 to 20 mL/g) than (ad)sorption (all previous studies) K{sub d} values were measured. The implications of this

  5. Sediment Characteristic Studies in the Surface Sediment from Kemaman Mangrove Forest, Terengganu, Malaysia

    M.C. ONG

    2012-12-01

    Full Text Available 43 surface sediment samples from Kemaman mangrove forest, Terengganu were analyzed for sediment characteristic (mean, sorting and skewness off two seasons (dry season and wet season by using the Particle Size Analyzer (PSA after digest the sample with Hydrogen Peroxide (H2O2 and Hydrochloric Acid (HCl. There is a significant (P<0.05 relationship between sediment characteristic with the seasonal changes with the increasing mean particle size occurring during the wet season. Finer sediments dominate the mangrove sediment during monsoon season while coarser sediments dominate during the dry season. Meanwhile, sediment mean size for each transect tends to be coarser towards the back mangrove.

  6. Contaminant Transport Through Subsurface Material from the DOE Hanford Reservation

    Pace, M.N.; Mayes, M.A.; Jardine, P.M.; Fendorf, S.E.; Nehlhorn, T.L.; Yin, X.P.; Ladd, J.; Teerlink, J.; Zachara, J.M.

    2003-03-26

    Accelerated migration of contaminants in the vadose zone has been observed beneath tank farms at the U.S. Department of Energy's Hanford Reservation. This paper focuses on the geochemical processes controlling the fate and transport of contaminants in the sediments beneath the Hanford tank farms. Laboratory scale batch sorption experiments and saturated transport experiments were conducted using reactive tracers U(VI), Sr, Cs, Co and Cr(VI) to investigate geochemical processes controlling the rates and mechanisms of sorption to Hanford subsurface material. Results indicate that the rate of sorption is influenced by changes in solution chemistry such as ionic strength, pH and presence of competing cations. Sediment characteristics such as mineralogy, iron content and cation/anion exchange capacity coupled with the dynamics of flow impact the number of sites available for sorption. Investigative approaches using a combination of batch and transport experiments will contribute to the conceptual and Hanford vadose zone.

  7. Sediment Transport

    Liu, Zhou

    Flow and sediment transport are important in relation to several engineering topics, e.g. erosion around structures, backfilling of dredged channels and nearshore morphological change. The purpose of the present book is to describe both the basic hydrodynamics and the basic sediment transport...... mechanics. Chapter 1 deals with fundamentals in fluid mechanics with emphasis on bed shear stress by currents, while chapter 3 discusses wave boundary layer theory. They are both written with a view to sediment transport. Sediment transport in rivers, cross-shore and longshore are dealt with in chapters 2...

  8. Method of installing subsurface barrier

    Nickelson, Reva A.; Richardson, John G.; Kostelnik, Kevin M.; Sloan, Paul A.

    2007-10-09

    Systems, components, and methods relating to subterranean containment barriers. Laterally adjacent tubular casings having male interlock structures and multiple female interlock structures defining recesses for receiving a male interlock structure are used to create subterranean barriers for containing and treating buried waste and its effluents. The multiple female interlock structures enable the barriers to be varied around subsurface objects and to form barrier sidewalls. The barrier may be used for treating and monitoring a zone of interest.

  9. Geophysical characterization of subsurface barriers

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier

  10. Subsurface transport program: Research summary

    DOE's research program in subsurface transport is designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biological mechanisms that contribute to the transport and long term fate of energy related contaminants in subsurface ecosystems can be understood. Understanding the physical and chemical mechanisms that control the transport of single and co-contaminants is the underlying concern of the program. Particular attention is given to interdisciplinary research and to geosphere-biosphere interactions. The scientific results of the program will contribute to resolving Departmental questions related to the disposal of energy-producing and defense wastes. The background papers prepared in support of this document contain additional information on the relevance of the research in the long term to energy-producing technologies. Detailed scientific plans and other research documents are available for high priority research areas, for example, in subsurface transport of organic chemicals and mixtures and in the microbiology of deep aquifers. 5 figs., 1 tab