WorldWideScience

Sample records for acidic hot spring

  1. Mycobacterium parascrofulaceum in Acidic Hot Springs in Yellowstone National Park▿

    Santos, Ricardo; Fernandes, João,; Fernandes, Nuno; Oliveira, Fernanda; Cadete, Manuela

    2007-01-01

    Mycobacterium parascrofulaceum was found in Norris Geyser Basin, Yellowstone National Park, in a system composed of two acidic (pH 3.0) springs with temperatures between 56°C at the source and 40°C at the confluence of both springs. Growth and survival assays at 56°C for 60 days were performed, confirming the origin of the strain.

  2. CRISPR Spacer Arrays for Detection of Viral Signatures from Acidic Hot Springs

    Snyder, J. C.; Bateson, M. M.; Suciu, D.; Young, M. J.

    2010-04-01

    Viruses are the most abundant life-like entities on the planet Earth. Using CRISPR spacer sequences, we have developed a microarray-based approach to detecting viral signatures in the acidic hot springs of Yellowstone.

  3. Biomineralization of radioactive sulfide minerals in strong acidic Tamagawa hot springs

    Bioaccumulation of radioactive sulfide minerals by bacteria in strong acidic hot spring water was found at Tamagawa Hot Springs, Akita prefecture in Japan. The hot spring water produces Hokutolite of radioactive minerals high radium and radon. The β-ray measurements of sediments and biofilms indicate 1850-2420 and 5700 cpm, respectively, which are 50-100 times higher than that of the water and the air (50-90 cpm). The characteristics of hot spring water show pH (1.2), Eh (140 mV), EC (29 mS/cm), DO (0.8 mg/l), and water temperature (99.5degC), indicating extremely strong acidic and reducing conditions. The hot spring water contains mainly HCl associated with high concentrations of Ca2+, Al3+, Fe2+, HSO4- and SO42-. SEM-EDX and TEM demonstrate some insight into how microorganisms affect the chemistry and microbiological characteristics of the strong acidic surroundings with high S, As, Ba, and Ca contents in biofilms. Especially SEM-EDX, ED-XRF, and STEM-EDX elemental content maps illustrate the distribution of sulfur-bearing compounds of barite (BaSO4), gypsum (CaSO4·2H2O), elemental sulfur (S) and orpiment(As2S3) in the reddish orange biofilms. The presence of a hydrogen sulfide-rich (H2S) thermal spring and gypsum deposits suggest the volatilization of H2S from the spring water, oxidation of the H2S gas to sulfuric acid, and reaction of the sulfuric acid. TEM micrographs of bacteria in the biofilms reveal in detail the intimate connections between biological and mineralogical processes that the cells are entirely accumulated with spherical grains, 100∼200 nm in diameter. The relationship among sulfide minerals, such as barite, gypsum, sulfur, orpiment, and Hakutolite, associated with bacteria implies that heavy metals have been transported from strong acidic hot spring water to sediments through bacteria metabolism. It is possible that the capability of radioactive sulfide biofilms for heavy metal immobilization can be used to counteract the disastrous

  4. Diversity of putative archaeal RNA viruses in metagenomic datasets of a yellowstone acidic hot spring.

    Hongming WANG; Yu, Yongxin; Liu, Taigang; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-01-01

    Two genomic fragments (5,662 and 1,269 nt in size, GenBank accession no. JQ756122 and JQ756123, respectively) of novel, positive-strand RNA viruses that infect archaea were first discovered in an acidic hot spring in Yellowstone National Park (Bolduc et al., 2012). To investigate the diversity of these newly identified putative archaeal RNA viruses, global metagenomic datasets were searched for sequences that were significantly similar to those of the viruses. A total of 3,757 associated read...

  5. Quantifying Rates of Complete Microbial Iron Redox Cycling in Acidic Hot Springs

    St Clair, B.; Pottenger, J. W.; Shock, E.

    2013-12-01

    Large accumulations of iron oxide commonly occur in shallow outflows of acidic hot springs, and culturing, molecular techniques, and microscopy by others indicate that this iron oxide (often ferrihydrite) is largely biogenic in Yellowstone National Park. The hot springs that support iron mats have several consistent geochemical features including combinations of pH, temperature, sulfide, dissolved oxygen, depth and ferrous iron concentration appropriate to support iron oxidation. These springs nearly always have a point source leading to a large shallow outflow apron. Microbial zones often, but not always, include a small clear zone near the source, followed by a sulfide oxidation zone, iron mat, and finally photosynthesis. The yellow sulfide oxidation zone is separated from the red iron mat by a sharp transition resulting from increasing dissolved oxygen from atmospheric contact and microbial depletion of sulfide. The iron mat is typically the largest microbial zone in the feature by area. Further down the outflow, iron oxidation appears to be outcompeted by phototrophs as the temperature cools. Occasionally there is overlap in these zones, but one metabolism always appears dominant. Our experiments at diverse hot springs indicate that microbial reduction is less geochemically restricted than oxidation, requiring only organic carbon, ferric minerals and an anoxic environment. With iron oxidizers fixing carbon and producing layers of ferric minerals that become rapidly anoxic with depth, iron reduction is invariably proximal to where biogenic iron oxides are forming. To characterize the interplay of oxidation and reduction rates that permit oxide accumulation, we conducted rate experiments at geochemically diverse Yellowstone hot springs featuring visible iron oxides in thermal areas throughout the park. These experiments were performed during two summer field seasons to determine in situ and maximum rates of iron oxidation and reduction by measuring changing

  6. Viral assemblage composition in Yellowstone acidic hot springs assessed by network analysis.

    Bolduc, Benjamin; Wirth, Jennifer F; Mazurie, Aurélien; Young, Mark J

    2015-10-01

    Understanding of viral assemblage structure in natural environments remains a daunting task. Total viral assemblage sequencing (for example, viral metagenomics) provides a tractable approach. However, even with the availability of next-generation sequencing technology it is usually only possible to obtain a fragmented view of viral assemblages in natural ecosystems. In this study, we applied a network-based approach in combination with viral metagenomics to investigate viral assemblage structure in the high temperature, acidic hot springs of Yellowstone National Park, USA. Our results show that this approach can identify distinct viral groups and provide insights into the viral assemblage structure. We identified 110 viral groups in the hot springs environment, with each viral group likely representing a viral family at the sub-family taxonomic level. Most of these viral groups are previously unknown DNA viruses likely infecting archaeal hosts. Overall, this study demonstrates the utility of combining viral assemblage sequencing approaches with network analysis to gain insights into viral assemblage structure in natural ecosystems. PMID:26125684

  7. Investigation of the Movement of Infiltrating Acidic Hot-Spring Water in the Ground by Means of Radioisotopes

    Tamagawa hot spring in Akita Prefecture gushes hot water of 1 pH hydrochloric acid at some 140 1/s. This quantity flows into the River Tama with the result that the river has been hindered from any significant hydropower development thus far. For the purpose of mitigating die acidity of the water river, the hot spring water is carried away through channels and infiltrated into the soil of a mountain-side for chemical neutralizing through seepage before flowing into the river. To select the sites where the water can infiltrate and to determine its distribution, the authors studied, with the aid of radioisotope tracers, the capacity and ability for neutralization by mountain soil and the mechanism of the process. They carried out a total of nine experiments at the site from 1956 to 1960. Such radioisotopes as I131, P32, Rb46, Co60 and H3 as tracers were poured into holes with carriers. The radioactivity of the water appeared in fissures of the river bed located over 200 m away from the input holes; this was measured and the movement of underground water was analysed by using the time variation of radioactivity obtained. As a result, it was found that the radioactivity increased considerably at sporadic intervals, that several holes had connections to one fissure for water, that the creeping time ranged from 6 to 82 h, that the radioactivity found was less than the input, that behaviours were different among the nuclides applied and that the aging of the underground water course was noticeable. (author)

  8. Archaeal Nitrification in Hot Springs

    Richter, A.; Daims, H.; Reigstad, L.; Wanek, W.; Wagner, M.; Schleper, C.

    2006-12-01

    Biological nitrification, i.e. the aerobic conversion of ammonia to nitrate via nitrite, is a major component of the global nitrogen cycle. Until recently, it was thought that the ability to aerobically oxidize ammonia was confined to bacteria of the phylum Proteobacteria. However, it has recently been shown that Archaea of the phylum Crenarchaeota are also capable of ammonia oxidation. As many Crenarchaeota are thermophilic or hyperthermophilic, and at least some of them are capable of ammonia oxidation we speculated on the existence of (hyper)thermophilic ammonia-oxidizing archaea (AOA). Using PCR primers specifically targeting the archaeal ammonia monooxygenase (amoA) gene, we were indeed able to confirm the presence of such organisms in several hot springs in Reykjadalur, Iceland. These hot springs exhibited temperatures well above 80 °C and pH values ranging from 2.0 to 4.5. To proof that nitrification actually took place under these extreme conditions, we measured gross nitrification rates by the isotope pool dilution method; we added 15N-labelled nitrate to the mud and followed the dilution of the label by nitrate production from ammonium either in situ (incubation in the hot spring) or under controlled conditions in the laboratory (at 80 °C). The nitrification rates in the hot springs ranged from 0.79 to 2.22 mg nitrate-N per L of mud and day. Controls, in which microorganisms were killed before the incubations, demonstrated that the nitrification was of biological origin. Addition of ammonium increased the gross nitrification rate approximately 3-fold, indicating that the nitrification was ammonium limited under the conditions used. Collectively, our study provides evidence that (1) AOA are present in hot springs and (2) that they are actively nitrifying. These findings have major implications for our understanding of nitrogen cycling of hot environments.

  9. Structural and Functional Insights from the Metagenome of an Acidic Hot Spring Microbial Planktonic Community in the Colombian Andes

    Jiménez, Diego Javier; Andreote, Fernando Dini; Chaves, Diego; Montaña, José Salvador; Osorio-Forero, Cesar; Junca, Howard; Zambrano, María Mercedes; Baena, Sandra

    2012-01-01

    A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation), and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ), associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA) indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment. PMID:23251687

  10. Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes.

    Diego Javier Jiménez

    Full Text Available A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level acidic hot spring El Coquito (EC. A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation, and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ, associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment.

  11. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand

    Katrin eHug

    2014-11-01

    Full Text Available Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand. Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic, and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  12. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina).

    Urbieta, María Sofía; González-Toril, Elena; Bazán, Ángeles Aguilera; Giaveno, María Alejandra; Donati, Edgardo

    2015-03-01

    Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms. PMID:25605537

  13. Biomineralization of pisoliths in hot springs

    Biological activity can produce complex patterned structures in accretionary carbonate spheres (pisoliths) from hot springs. Pisoliths from a few millimeters to 50 mm diameter were collected from a geyser at the high-salinity Arima Hot Springs near Kobe, Japan. High-resolution electron microscope images show that microorganisms produced concentric laminar layers of aragonite alternating with Si- and Fe-rich layers. STEM elemental distribution maps show that the cementation of aragonite is associated with NaCl-rich bacterial cells and elevated phosphorous and sulfur concentrations. The filamentous microbes build the concentric framework for mineral laminae with a web-like network of microbial strands. The intricate patterns of mineralogical and bacterial variation in the pisoliths correlate with the change of water chemistry in the hot spring. These patterns could improve our understanding of nano-scale biomineralization. In addition, the terrestrial hot spring pisoliths might be a counterpart of the tiny spherules recently found on Mars

  14. Carboxydothermus pertinax sp. nov., a thermophilic, hydrogenogenic, Fe(III)-reducing, sulfur-reducing carboxydotrophic bacterium from an acidic hot spring

    Yoneda, Yasuko; Yoshida, Takashi; Kawaichi, Satoshi;

    2012-01-01

    growth on CO, H(2) and CO(2) were produced. Growth occurred on molecular hydrogen as an energy source and carbon dioxide as a sole carbon source. Growth was observed on various organic compounds under an N(2) atmosphere with the reduction of ferric iron. The temperature range for carboxydotrophic growth......A novel anaerobic, Fe(III)-reducing, hydrogenogenic, carboxydotrophic bacterium, designated strain Ug1(T), was isolated from a volcanic acidic hot spring in southern Kyushu Island, Japan. Cells of the isolate were rod-shaped (1.0-3.0 µm long) and motile due to peritrichous flagella. Strain Ug1(T...

  15. Bacterial community analysis of Indonesian hot springs.

    Baker, G C; Gaffar, S; Cowan, D A; Suharto, A R

    2001-06-12

    We report the first attempts to describe thermophilic bacterial communities in Indonesia's thermal springs using molecular phylogenetic analyses. 16S rRNA genes from laboratory cultures and DNA directly amplified from three hot springs in West Java were sequenced. The 22 sequences obtained were assignable to the taxa Proteobacteria, Bacillus and Flavobacterium, including a number of clades not normally associated with thermophily. PMID:11410357

  16. Corrosion Properties of a Volcanic Hot Spring

    Lichti, K. L.; Braham, V. J.; Engelberg, D.; Sanada, N.; Kurata, J.; Nanjo, H.; Ikeuchi, J.; Christenson, B.W.

    1998-01-01

    Volcanic hot pools on White Island, New Zealand provide ready access to acidic fluids at atmospheric pressure. These hot pools can be used to study the corrosion properties of construction materials that might be used for energy production from deep-seated and magma-ambient geothermal systems, or from shallow resources producing acidic fluids. corrosion results for a 1,hot pool are presented. A select group of moderate and high alloy materials appear suitable for energy plant applications. Ch...

  17. Archaeal diversity in Icelandic hot springs

    Kvist, Thomas; Ahring, Birgitte Kiær; Westermann, Peter

    2007-01-01

    Whole-cell density gradient extractions from three solfataras (pH 2.5) ranging in temperature from 81 to 90 degrees C and one neutral hot spring (81 degrees C, pH 7) from the thermal active area of Hveragerethi (Iceland) were analysed for genetic diversity and local geographical variation of...

  18. [History of hot spring bath treatment in China].

    Hao, Wanpeng; Wang, Xiaojun; Xiang, Yinghong; Gu Li, A Man; Li, Ming; Zhang, Xin

    2011-07-01

    As early as the 7th century B.C. (Western Zhou Dynasty), there is a recording as 'spring which contains sulfur could treat disease' on the Wentang Stele written by WANG Bao. Wenquan Fu written by ZHANG Heng in the Easten Han Dynasty also mentioned hot spring bath treatment. The distribution of hot springs in China has been summarized by LI Daoyuan in the Northern Wei Dynasty in his Shuijingzhu which recorded hot springs in 41 places and interpreted the definition of hot spring. Bencao Shiyi (by CHEN Cangqi, Tang Dynasty) discussed the formation of and indications for hot springs. HU Zai in the Song Dynasty pointed out distinguishing hot springs according to water quality in his book Yuyin Conghua. TANG Shenwei in the Song Dynasty noted in Jingshi Zhenglei Beiji Bencao that hot spring bath treatment should be combined with diet. Shiwu Bencao (Ming Dynasty) classified hot springs into sulfur springs, arsenicum springs, cinnabar springs, aluminite springs, etc. and pointed out their individual indications. Geologists did not start the work on distribution and water quality analysis of hot springs until the first half of the 20th century. There are 972 hot springs in Wenquan Jiyao (written by geologist ZHANG Hongzhao and published in 1956). In July 1982, the First National Geothermal Conference was held and it reported that there were more than 2600 hot springs in China. Since the second half of the 20th century, hot spring sanatoriums and rehabilitation centers have been established, which promoted the development of hot spring bath treatment. PMID:22169492

  19. Initial Characterization of Carbon Metabolism in Iron Oxidizing Microbial Communities of Acidic Hot Springs in Norris Geyser Basin, Yellowstone National Park

    Kreuzer, H. W.; Jennings, R. D.; Whitmore, L.; Inskeep, W. P.; Moran, J.

    2012-12-01

    Norris Geyser Basin in Yellowstone National Park is home to several acidic, sulfidic hot springs. Visual inspection of the springs reveals distinct geochemical regions starting with a sulfur deposition zone followed by a transition to iron oxide deposition downstream. The microbial communities in the iron oxidation zones are dominated by Archaea, including several members that appear to define previously unrecognized taxa. Abiotic iron oxidation rates are very slow at these temperatures (typically ~ 65-70 oC) and pH's (typically ~3). Therefore, the relatively rapid iron oxide deposition rate strongly suggests the process is microbially mediated, and an organism previously isolated from these springs, Metallosphaera yellowstonensis, has been shown to oxide iron in culture. M. yellowstonensis has been observed in the all microbial communities analyzed in the iron oxidizing zones of these springs, though metagenomic profiling suggests it constitutes only ~20% of the community membership. When we began our studies of C flow in the iron-oxidizing community, no C source had been demonstrated. Observed potential carbon sources in the springs include dissolved inorganic carbon, dissolved organic carbon, and methane, as well as random inputs of heterotrophic carbon in the forms of insect carcasses, pine needles, and animal scat. The temperatures in the iron oxidation zones are above the photosynthetic upper temperature limit, thus precluding photosynthetic-based autotrophy within the community itself. We are employing geochemical and stable isotope techniques to assess carbon inventories in the system. We have demonstrated that M. yellowstonensis as well as excised samples of iron oxide mat communities can fix CO2, and our estimated isotopic fractionation factor is consistent with the 3-hydroxypropionate 4-hydroxybutyrate pathway. Genes of this pathway have been identified in the M. yellowstonensis genome. We have tentatively identified small amounts of organic compounds

  20. Geothermal Exploration in Hot Springs, Montana

    Toby McIntosh, Jackola Engineering

    2012-09-26

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250 of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the center of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  1. Sol Duc Hot Springs feasibility study

    1981-12-01

    Sol Duc Springs is located in the Olympic National Park in western Washington state. Since the turn of the century, the area has served as a resort, offering hot mineral baths, lodge and overnight cabin accommodations. The Park Service, in conjunction with the concessionaire, is in the process of renovating the existing facilities, most of which are approximately 50 years old. The present renovation work consists of removing all of the existing cabins and replacing them with 36 new units. In addition, a new hot pool is planned to replace the existing one. This report explores the possibility of a more efficient use of the geothermal resource to accompany other planned improvements. It is important to note that the system outlined is based upon the resource development as it exists currently. That is, the geothermal source is considered to be: the two existing wells and the hot springs currently in use. In addition, every effort has been made to accommodate the priorities for utilization as set forth by the Park Service.

  2. Hot Springs-Garrison Fiber Optic Project

    1994-10-01

    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA`s substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA.

  3. Hot Springs-Garrison Fiber Optic Project

    Bonneville Power Administration (BPA) is proposing to upgrade its operational telecommunications system between the Hot Springs Substation and the Garrison Substation using a fiber optic system. The project would primarily involve installing 190 kilometers (120 miles) of fiber optic cable on existing transmission structures and installing new fiber optic equipment in BPA's substation yards and control houses. BPA prepared an environmental assessment (EA) evaluating the proposed action. This EA was published in October 1994. The EA identifies a number of minor impacts that might occur as a result of the proposed action, as well as some recommended mitigation measures. This Mitigation Action Plan (MAP) identifies specific measures to avoid, minimize, or compensate for impacts identified in the EA

  4. Comparative metagenomics of eight geographically remote terrestrial hot springs

    Menzel, Peter; Islin, Sóley Ruth; Rike, Anne Gunn;

    2015-01-01

    Hot springs are natural habitats for thermophilic Archaea and Bacteria. In this paper, we present the metagenomic analysis of eight globally distributed terrestrial hot springs from China, Iceland, Italy, Russia, and the USA with a temperature range between 61 and 92 (∘)C and pH between 1.8 and 7...

  5. 36 CFR 7.18 - Hot Springs National Park.

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Hot Springs National Park. 7.18 Section 7.18 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.18 Hot Springs National Park. (a)...

  6. Self potential survey, Roosevelt Hot Springs, Utah

    Sill, W.R.; Johng, D.S.

    1979-01-01

    A large scale (35 km/sup 2/) self potential (SP) survey was made at Roosevelt Hot Springs. The survey consisted of approximately 47 line-km of profiles at station spacings of 100 m. The profiles were run using a fixed electrode and a traveling electrode out to distances of 1 to 2 km, before advancing the fixed electrode up to the last occupied station. Repeated measurements show a standard deviation about +- 6mv, although the spread on groups of measurements might be as large as 30 mv. Some of the SP profiles show correlations with the thermal system, having generally low values over the thermal high and the coincident resistivity low. Some of the smaller scale features appear to be associated with mapped faults. In plan view, the contoured self potential shows a character very similar to the 300 m, dipole-dipole resistivity. The SP values are generally low, where the resistivity is low. Along the eastern margin of the system, in the vicinity of steep resistivity gradients, the contour map show a series of localized highs.

  7. The Redox Potential of Hot Springs in Taiwan

    Wen-Fu Chen and Menghau Sung

    2009-01-01

    Scientists began acquiring the basic of geology, occurrence, water temperature and chemistry of hot springs in Tai wan over a century ago. However, data regarding redox potential and important redox couples still remains limited. This study explores the redox status of hot springs in Taiwan by measuring Eh in the field and by determining the concentrations of commonly found redox couples, i.e., O2/H2O, NO3 -/NH4 +, and HS-/SO4 -2. Water samples were collected at hot spring discharge pools or ...

  8. Nitrogen cycling in Hot Spring Sediments and Biofilms (Invited)

    Meyer-Dombard, D. R.; Burton, M. S.; Havig, J. R.; Shock, E.

    2010-12-01

    Over the past several decades, gene-targeted analyses have revealed that microbial communities in hydrothermal environments can be surprisingly diverse. However, we know shockingly little about basic ecological functions such as carbon and nitrogen cycling or community shifts over time, or environmental parameters such as growth criteria. Previous work has shown that carbon cycling in one hot spring in Yellowstone National Park [“Bison Pool”] and its associated runoff channel functions as a complex system. Analysis of carbon and nitrogen isotopes in biofilms across a temperature and chemical gradient at this location revealed that multiple autotrophic carbon fixation pathways are functioning in this system, and nitrogen fixation varies across the chemosynthetic/photosynthetic ecotone [1]. Further, sequencing of metagenomes from multiple locations at “Bison Pool” has indicated the presence of genes involved in carbon fixation [both phototrophic and autotrophic], and heterotrophy, as well as nitrogen fixation [2]. Studies from other Yellowstone locations have also found genetic evidence for carbon and nitrogen fixation [3-5]. The role of individual microbes in nitrogen cycling as environmental conditions vary over space and time is the focus of this study. Here, we explore the diversity of nifH [nitrogen fixation], nirK [nitrite reduction] and amoA [ammonia oxidation] genes across a variety of Yellowstone environments. Environmental nucleic acids were extracted, and the presence/absence of Bacteria and Archaea determined by PCR. In addition, PCR-directed screens reveal the presence or absence of the aforementioned functional genes, indicating genetic capacity for nitrogen cycling. We have examined the transition of genetic diversity and genetic capacity within sediments and biofilms at the chemosynthetic/photosynthetic ecotone in several hot springs spanning ranges of pH and geochemical conditions. By sampling across this ecotone, changes in the genetic

  9. Kelly Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center preliminary design. Final technical report

    Longyear, A.B. (ed.)

    1980-08-01

    A Phase 1 Preliminary Design, Construction Planning and Economic Analysis has been conducted for the Kelly Hot Spring Agricultural Center in Modoc County, California. The core activity is a 1360 breeding sow, swine raising complex that utilizes direct heat energy from the Kelly Hot Spring geothermal resource. The swine is to be a totally confined operation for producing premium pork in controlled-environment facilities. The complex contains a feed mill, swine raising buildings and a complete waste management facility that produces methane gas to be delivered to a utility company for the production of electricity. The complex produces 6.7 million pounds of live pork (29,353 animals) shipped to slaughter per year; 105,000 cu. ft. of scrubbed methane per day; and fertilizer. Total effluent is less than 200 gpm of agricultural quality-water with full odor control. The methane production rate made possible with geothermal direct heat is equivalent to at least 400 kw continuous. Sale of the methane on a co-generation basis is being discussed with the utility company. The use of geothermal direct heat energy in the complex displaces nearly 350,000 gallons of fuel oil per year. Generation of the biogas displaces an additional 300,000 gallons of fuel oil per year.

  10. The Redox Potential of Hot Springs in Taiwan

    Wen-Fu Chen and Menghau Sung

    2009-01-01

    Full Text Available Scientists began acquiring the basic of geology, occurrence, water temperature and chemistry of hot springs in Tai wan over a century ago. However, data regarding redox potential and important redox couples still remains limited. This study explores the redox status of hot springs in Taiwan by measuring Eh in the field and by determining the concentrations of commonly found redox couples, i.e., O2/H2O, NO3 -/NH4 +, and HS-/SO4 -2. Water samples were collected at hot spring discharge pools or the heads of water wells using a pump. A total of 11 hot springs located at 9 different locations across Taiwan were surveyed. The measured values of Eh ranging from -23 to -277 mV indicate reducing conditions. Most of the water samples from the hot spring sources contained sulfide and ammonium. In the Tatun Volcano Group, hot springs originating from a mixture of fumarolic gas and stream water contained high concentrations of hydrogen sulfide as the dominant reducing agent. Ammonium, with concentrations ranging from 1 to 55 mg L-1, is another important electron donor. The finding revealed that there were negative Eh measured-values for dissolved oxy gen-contained waters, both in the field and in the laboratory. The presence of sulfide or ammonium was also detected in the samples. These results confirm that the Eh sensor displayed a more height ened sensitivity to sulfide and ammonium than dissolved oxygen and nitrate. Hot springs with deep circulations (Samples S1-S4 and M1-M4 lack in oxygen gas and may re act with mineral reducers such that they will consequently be in a reducing state rather than oxidizing. Hot spring waters containing dissolved ox y gen (S2, S4, and M2 and nitrate (S3, S4, and M2-M4 most likely have mixed with shallow groundwaters. Discussions reveal implications for redox potentials and redox couples for arsenic speciation, disinfection of ammonium-containing hot springs for the spa industry as well as the possibility of using redox

  11. Hydrological and geochemical study of Yuseong hot spring in Korea

    Lee, C.; Park, C.; Cho, Y.; LEE, Y.

    2013-12-01

    Yuseong hot spring is the first modernized hot spring in 1920's that has drawn the most tourists until 2000 before decline of tourists due to the aging of facility. It is located in the mid-west of South Korea. Geologically, it is in Precambrian metamorphic complex intruded by Mesozoic granite and porphyry. Fault zones exist in the E-W and NNW-SSE directions around Yuseong hot spring. Wells lie in the E-W direction indicating the correlation between the fault zones and the hot spring distribution. Water production rate has decreased gradually from 5,200 m3/d in 1993 to 2,500 m3/d in 2011. Water depth varies from 22 m - 57 m depending on pumping. Although enforced pumping has enacted last 50 years, water depth is observed to be stable. Water temperature is measured from the highest 51.8 degree Celsius to the lowest 25 degree Celsius. Yuseong hot spring is primarily the type of Na(Ca)-HCO3 whose pH ranges from low alkaline to alkaline with sufficient silica(≥40 mg/L).

  12. Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution across Yellowstone National Park Hot Springs.

    Munson-McGee, Jacob H; Field, Erin K; Bateson, Mary; Rooney, Colleen; Stepanauskas, Ramunas; Young, Mark J

    2015-11-01

    Nanoarchaeota are obligate symbionts with reduced genomes first described from marine thermal vent environments. Here, both community metagenomics and single-cell analysis revealed the presence of Nanoarchaeota in high-temperature (∼90°C), acidic (pH ≈ 2.5 to 3.0) hot springs in Yellowstone National Park (YNP) (United States). Single-cell genome analysis of two cells resulted in two nearly identical genomes, with an estimated full length of 650 kbp. Genome comparison showed that these two cells are more closely related to the recently proposed Nanobsidianus stetteri from a more neutral YNP hot spring than to the marine Nanoarchaeum equitans. Single-cell and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis of environmental hot spring samples identified the host of the YNP Nanoarchaeota as a Sulfolobales species known to inhabit the hot springs. Furthermore, we demonstrate that Nanoarchaeota are widespread in acidic to near neutral hot springs in YNP. An integrated viral sequence was also found within one Nanoarchaeota single-cell genome and further analysis of the purified viral fraction from environmental samples indicates that this is likely a virus replicating within the YNP Nanoarchaeota. PMID:26341207

  13. Geothermal heat pump system assisted by geothermal hot spring

    Nakagawa, M.; Koizumi, Y.

    2016-01-01

    The authors propose a hybrid geothermal heat pump system that could cool buildings in summer and melt snow on the pedestrian sidewalks in winter, utilizing cold mine water and hot spring water. In the proposed system, mine water would be used as cold thermal energy storage, and the heat from the hot spring after its commercial use would be used to melt snow for a certain section of sidewalks. Neither of these sources is viable for direct use application of geothermal resources, however, they become contributing energy factors without producing any greenhouse gases. To assess the feasibility of the proposed system, a series of temperature measurements in the Edgar Mine (Colorado School of Mines' experimental mine) in Idaho Springs, Colorado, were first conducted, and heat/mass transfer analyses of geothermal hot spring water was carried out. The result of the temperature measurements proved that the temperature of Edgar Mine would be low enough to store cold groundwater for use in summer. The heat loss of the hot spring water during its transportation was also calculated, and the heat requirement for snow melt was compared with the heat available from the hot spring water. It was concluded that the heat supply in the proposed usage of hot spring water was insufficient to melt the snow for the entire area that was initially proposed. This feasibility study should serve as an example of "local consumption of locally available energy". If communities start harnessing economically viable local energy in a responsible manner, there will be a foundation upon which to build a sustainable community.

  14. An isotope study of hot springs in Nagano Prefecture

    The water samples from 28 hotsprings and mineral springs in Nagano Prefecture were examined for their stable isotope ratios of hydrogen, oxygen, carbon and sulfur. The spring water of Kashio was highly saline and rich in heavy isotopes of oxygen and hydrogen. This spring water seems to be the mixture of deep brine and local surface water. The extrapolation of the linear relationship indicated that the deep brine was both isotopically and chemically very similar to the deep brine suggested for the springs at Arima, Takarazuka and Ishibotoke. A yet unknown common origin may be warranted among these postulated brines. The hot springs in Matsushiro are a Na-Ca-Cl type with high content of carbonate. Their hydrogen and oxygen isotope ratios were higher than the local surface water. From the data, these hot springs seemed to be the mixture of fossil sea water and the water of meteoric origin. The water samples from the other hot springs studied were of simple meteoric origin, belonging to the green tuff type water. (J.P.N.)

  15. Hot-spring cure of atomic-bomb survivors, 16

    Ouchi, Tamon (Beppu Genbaku Senta (Japan))

    1984-03-01

    Though a cold winter with snowfalls, in the fiscal year 1983, the number of the atomic-bomb sufferers using the Beppu Atomic-bomb Center (a medical hot spring) was large in January and February, 1984; throughout the fiscal year, the total number was about 3,800 persons. The diseases of the sufferers, mostly in locomotion organs, are such as osteoarthritis of spine, lame hip and knee arthropathy. Being the typical diseases for which hot spring treatment is good, the effect is clear, and those desiring to enter the Center twice in a year are increasing. The situation of usage of the Center from April, 1983, to March, 1984, is described.

  16. Environmental assessment for Kelley Hot Spring geothermal project: Kelley Hot Spring Agricultural Center

    Neilson, J.A.

    1981-04-01

    The environmental impacts of an integrated swine production unit are analyzed together with necessary ancillary operations deriving its primary energy from a known geothermal reservoir in accordance with policies established by the National Energy Conservation Act. This environmental assessment covers 6 areas designated as potentially feasible project sites, using as the basic criteria for selection ground, surface and geothermal water supplies. The six areas, comprising +- 150 acres each, are within a 2 mile radius of Kelley Hot Springs, a known geothermal resource of many centuries standing, located 16 miles west of Alturas, the county seat of Modoc County, California. The project consists of the construction and operation of a 1360 sow confined pork production complex expandable to 5440 sows. The farrow to finish system for 1360 sows consists of 2 breeding barns, 2 gestation barns, 1 farrowing and 1 nursery barn, 3 growing and 3 finishing barns, a feed mill, a methane generator for waste disposal and water storage ponds. Supporting this are one geothermal well and 1 or 2 cold water wells, all occupying approximately 12 acres. Environmental reconnaissance involving geology, hydrology, soils, vegetation, fauna, air and water quality, socioeconomic, archaelogical and historical, and land use aspects were carefully carried out, impacts assessed and mitigations evaluated.

  17. Small-scale Geothermal Power Plants Using Hot Spring Water

    Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.

    2013-12-01

    The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three

  18. Anti-infective potential of hot-spring bacteria

    Pallavi Pednekar

    2011-01-01

    Full Text Available Aim and Background: Antibiotic resistance currently spans most of the known classes of natural and synthetic antibiotics; limiting our options for treatment of infections and demanding discovery of new classes of antibiotics. Much effort is being directed towards developing new antibiotics to overcome this problem. Success in getting novel chemical entities from microbial sources depends essentially on novelty of its habitat. The diversity of geographical location decides the type of micro-flora. In the past various terrestrial and aqueous microorganisms have provided several novel bioactive secondary metabolites of pharmaceutical importance. Hot-springs have not been as extensively exploited as other terrestrial resources. However, perseverance with such microbes augment the probability of getting novel bioactive compounds. Materials and Methods: Hot-springs soil samples were collected from Hot-springs in Maharashtra. Actinomycetes and other eubacteria were isolated from these soil samples by selective methods and purified. They were classified based on gram′s nature and morphology. Six representative morphological strains were screened for their anti-infective potential by agar well diffusion method as reported by Nathan P. et al (1974. The bioactivity of the active microbes was confirmed. Results: Seventy three strains of bacteria encompassing eight actinomycetes, and 65 eubacteria were isolated and purified. Among the actives eubacteria PPVWK106001 showed broad spectrum antibacterial activity encompassing both gram positive and gram negative bacterial test models. The extract was active against resistant bacteria such as MRSA and VREs. Activity was very specific as there was no activity against fungi even at 100 fold concentration. The active principle was extractable in butanol. Conclusions: The study showed that Hot-springs exhibit diverse bacteria and it serves as potential reservoirs for bacteria of antimicrobial importance with

  19. Investigation of bacterial diversity of hot springs of Odisha, India

    Rajesh Kumar Sahoo

    2015-12-01

    Full Text Available 16S rRNA deep sequencing analysis, targeting V3 region was performed using Illumina bar coded sequencing. Sediment samples from two hot springs (Atri and Taptapani were collected. Atri and Taptapani metagenomes were classified into 50 and 51 bacterial phyla. Proteobacteria (45.17% dominated the Taptapani sample metagenome followed by Bacteriodetes (23.43% and Cyanobacteria (10.48% while in the Atri sample, Chloroflexi (52.39%, Nitrospirae (10.93% and Proteobacteria (9.98% dominated. A large number of sequences remained taxonomically unresolved in both hot springs, indicating the presence of potentially novel microbes in these two unique habitats thus unraveling the importance of the current study. Metagenome sequence information is now available at NCBI, SRA database accession no. SRP057428.

  20. A biophysical model of prokaryotic diversity in geothermal hot springs

    Klales, Anna; Nett, Elizabeth Janus; Kane, Suzanne Amador

    2008-01-01

    Recent field investigations of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems, with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than the expected single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution field data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of differe...

  1. Measurement of radium in hokutolite from Tamagawa hot spring

    The concentrations of radium isotopes and the progenies (226Ra, 228Ra and 228Th) in three hokutolite samples from Tamagawa hot spring were measured. These isotopes were analyzed by a well-type HPGe γ-ray spectrometer for the 351, 609, 911 and 583 keV γ-ray from 214Pb, 214Bi, 228Ac and 208Tl, respectively, each being in radioactive equilibrium with precursors. The 226Ra concentrations are in the range of 50-85 Bq/g, being higher in the lower layer. The 228Ra concentrations are in the range of 7.1-263 Bq/g, being higher in the upper layer. The activity ratios of 228Ra/226Ra provided the estimation of the growth rate (0.06-0.15 mm/y). These estimated growth rate were correlated with SO42- concentration in Tamagawa hot spring water. (author)

  2. Photosynthate Partitioning and Fermentation in Hot Spring Microbial Mat Communities

    Nold, S C; Ward, D M

    1996-01-01

    Patterns of (sup14)CO(inf2) incorporation into molecular components of the thermophilic cyanobacterial mat communities inhabiting hot springs located in Yellowstone National Park and Synechococcus sp. strain C1 were investigated. Exponentially growing Synechococcus sp. strain C1 partitioned the majority of incorporated (sup14)CO(inf2) into protein, low-molecular-weight metabolites, and lipid fractions (45, 22, and 18% of total incorporated carbon, respectively). In contrast, mat cores from va...

  3. Characteristics and origins of hot springs in the Tatun Volcano Group, northern Taiwan

    Song, S.; Liu, C.; Tsao, S.

    2009-12-01

    This paper systematically surveys the distributions, field occurrences of 14 hot springs and sampling for geochemical investigations in geothermal area of Tatun Volcano Group (TVG). Based on the Piper diagram, pH value, field occurrence and water-rock interaction, these hot springs are classified into three types: (1) Type I, the SO42--rich acidic water including the LFK, QG, SYK, TYK, SHP, and BY thermal springs which the reservoir is located in the Wuchishan Formation; (2) Type II, the near neutral spring including the TBQ, HS, MT, and LSK thermal waters, which the reservoir is located in volcanic rock body (andesite); and (3) Type III, the Cl--rich acidic one consisting of the SPT, TP and JT thermal waters except CC hot spring, which is the Cl--rich near neutral solution, and the reservoir is located in the Wuchishan Formation. For the isotopic ratio, the δD and δ18O values are close to the right of meteoric water line of the Tatun areas with the values ranging from -26.2 ‰ to -3.5 ‰ and -3.2 ‰ to 1.6 ‰, respectively. However, the δD and δ18O values of hot springs for the samples away from the meteoric water line of Tatun area are -28.4 ‰ to -13.6 ‰ and -5.5 ‰ to -4.2 ‰, respectively. In addition, the δ34S value of thermal water can be distinguished into two groups: one ranges from 25‰ to 29‰ and the other from 1‰ to 8‰. Based on the field occurrences and geochemical characteristics, a model has been provided to illustrate the origin of those geothermal waters.

  4. Vulcan Hot Springs known geothermal resource area: an environmental analysis

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Vulcan Hot Springs known geothermal resource area (KGRA) is one of the more remote KGRAs in Idaho. The chemistry of Vulcan Hot Springs indicates a subsurface resource temperature of 147/sup 0/C, which may be high enough for power generation. An analysis of the limited data available on climate, meteorology, and air quality indicates few geothermal development concerns in these areas. The KGRA is located on the edge of the Idaho Batholith on a north-trending lineament which may be a factor in the presence of the hot springs. An occasional earthquake of magnitude 7 or greater may be expected in the region. Subsidence or elevation as a result of geothermal development in the KGRA do not appear to be of concern. Fragile granitic soils on steep slopes in the KGRA are unstable and may restrict development. The South fork of the Salmon River, the primary stream in the region, is an important salmon spawning grounds. Stolle Meadows, on the edge of the KGRA, is used as a wintering and calving area for elk, and access to the area is limited during this period. Socioeconomic and demographic surveys indicate that facilities and services will probably not be significantly impacted by development. Known heritage resources in the KGRA include two sites and the potential for additional cultural sites is significant.

  5. Characterizing Hot Spring Connectivity Using Aqueous Geochemistry in the River Group Springs, Yellowstone NP, Wyoming

    Aunan, M. M.; Lindsey, C.; Price, A. N.; Fairley, J. P., Jr.; Larson, P. B.

    2015-12-01

    Abstract We analyzed the aqueous geochemical components of 11 springs in the River Group, Yellowstone National Park, Wyoming. For the springs sampled, we found pHs ranging from a low of ˜4.8 to a high of ˜9.6; TDS (as inferred from electrical conductivity measurements) was roughly correlated to pH, with the lowest pH spring being the most dilute (373 µS) and the highest pH spring having the second highest conductivity (1384 µS). In combination with a shallow ground temperature survey and visual observations of the relative water levels in the springs, the spring chemistries support a conceptual model of fracture-controlled fluid flow in which individual springs demonstrate a surprising level of flowpath isolation. We hypothesize that variations in flowpath permeability lead to steam-heating of low-pH springs, while nearby circumneutral springs are heated by upwelling liquid hydrothermal fluids, high in chlorid and other dissolved components. If our hypothesis is correct, it implies that vaporand liquid-dominated zones of Model III hydrothermal systems can coexist in close proximity, resulting in a complex surface expression of acid-sulfate and chloride-rich circum-neutral springs.

  6. Water Quality of Hot Water Unkeshwar Spring of Maharashtra, India

    Vyankatesh B. Yannawar

    2013-06-01

    Full Text Available Physical, chemical, ionic, biological studies were conducted at hot springs Unkeshwar in (Maharashtra State, India. It is positioned on south east corner of Maharashtra. Unkeshwar is situated on the bank of river Penganga. Objective: This papers aims to study the physical, chemical and biological properties in the ecological system of Unkeshwar spring. Methods: The physical and chemical parameters were analyzed as per APHA. Results: The physical parameters included: Temperature, Total solids, Total dissolved solids, Total suspended solids and electrical conductivity. The chemical parameters included: pH, free carbon-dioxide, total hardness, calcium hardness, magnesium hardness, Phenolphthalein alkalinity, total alkalinity, Salinity. Ionic parameters like chloride, phosphate, sulphate, calcium, magnesium, sodium, potassium, iron, chromium and manganese. Also the biological parameters studied standard plate count and most probable number. Conclusions: The water quality comparison of Unkeshwar spring in Nanded reveals that although the situation is not worst but it has to be maintained. Some of the water characteristics are below the permissible limit in the post-monsoon season and some are above the permissible limits in pre-monsoon season. This may be due to dilution of water by raining. Overall study showed that the water is more polluted in pre-monsoon as compared to post-monsoon. Hence this hot water spring should be preserved for its sulphur contents that possess medicinal value and cure skin diseases.

  7. Characteristics and Origins of Hot Springs in the Tatun Volcano Group in Northern Taiwan

    Chia-Mei Liu

    2011-01-01

    Full Text Available This paper systematically surveyed distribution and field occurrences of 13 hot springs as well as geochemical investigation on the geothermal area of the Tatun Volcano Group (TVG. According to Piper diagrams, pH values, field occurrences and water-rock interactions, these hot springs can be classified into three types: (1 Type I, SO42- acidic water where the reservoir is located in the Wuchishan Formation; (2 Type II, HCO3- a near neutral spring where waters originate from the volcanic terrane (andesite; and (3 Type III, Cl- -rich acidic water where waters emanate from shallower Wuchishan Formation. In terms of isotopic ratio, δD and δ18O values, two groups of hot spring can be recognized. One is far away from the meteoric water line of the Tatun area with values ranging between -26.2‰ and -3.5‰, and from -3.2‰ to 1.6‰, respectively. However, another close to the meteoric water line of the Tatun area is between -28.4‰ and -13.6‰, and from -5.5‰ to -4.2‰, respectively. In addition, the δ34S value of thermal waters can also be distinguished into two groups, one ranging from 26.1‰ to 28.5‰, and the other between 0.8‰ and 7.8‰. Based on field occurrences and geochemical characteristics, a model has been proposed to illustrate the origin of these hot springs.

  8. Structural controls of hot-spring systems on southwestern Montana

    Chadwick, Robert A.; Leonard, Robert Benjamin

    1979-01-01

    Thermal waters that issue as hot (more than 38C) springs in southwestern Montana appear to circulate to depth along Cenozoic block faults, deep fractures penetrating the dominantly crystalline rock crust, or major structural lineaments. At individual hot springs, rising thermal waters are transmitted along conduits formed by the intersection of a major fault with other faults, fracture zones, anticlinal axes (which may be faulted or fractures), or sedimentary aquifers. Step faults and other intra-valley faults may influence circulation at some springs. At others, fracture zones alone may provide the necessary vertical permeability. Normal regional heat apparently is sufficient to maintain the hydrothermal systems without enhancement from cooling igneous bodies. The thermal gradient normally is higher in low thermal conductivity sediments of the block-fault valleys than the 30C per kilometer average for crystalline rock. To attain reservoir temperatures of 60 to 120C indicated by chemical geothermometers, waters would have to circulate to depths of about 2 to 4 kilometers in crystalline rock and about 1 to 2 kilometers in valley sediments. (Kosco-USGS)

  9. Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs

    Florence eSchubotz

    2015-02-01

    Full Text Available Streamer biofilm communities (SBC are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75-88°C SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae, Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and ‘Bison Pool’, using various 13C-labeled substrates (bicarbonate, formate, acetate and glucose to determine the relative uptake of these different carbon sources. Highest 13C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. 13C-glucose showed a similar, but a 10 to 30 times lower uptake across most fatty acids. 13C bicarbonate uptake, signifying the presence of autotrophic communities was only significant at ‘Bison Pool’ and was observed predominantly in non-specific saturated C16, C18, C20 and C22 fatty acids. Incorporation of 13C-formate occurred only at very low rates at ‘Bison Pool’ and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. 13C uptake into archaeal lipids occurred predominantly with 13C acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being

  10. Carbonate Ion-Enriched Hot Spring Water Promotes Skin Wound Healing in Nude Rats

    Jingyan Liang; Dedong Kang; Yingge Wang; Ying Yu; Jianglin Fan; En Takashi

    2015-01-01

    Hot spring or hot spa bathing (Onsen) is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C) on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing spee...

  11. Study of tourists exposure rate in Mahallat hot Spring Region

    Introduction: High level radiation areas have been recognized on various parts of the earth. Some of these areas include: Brasilia, India, and Iran. Mahallat hot spring region in the central part of Iran is also one of these areas. Study of exposure in these areas could be helpful in investigating the effects of ionizing radiation. Materials and Methods: In addition to several seasonal springs, Mahallat hot spring region contains five permanent springs named: Soleimani, Shafa, Dombe, Romatism and Sauda. Internal exposure (due to inhalation of radon gas and drinking water) and external exposure (due to cosmic rays and radioactive elements in the ground) to the tourists was studied. Used materials and apparatus include: RSS -112 ionizing chamber for environmental gamma rays exposure measurement, highly pure germanium detector for measuring radioactive elements in the ground, liquid scintillation counter for measuring 222Rn gas concentration in water samples, Bubbler chamber and Locus cells for Rn concentration measurements (Emanation method) and Alfa guard detector for 226Ra concentration measurements. Conclusions and Discussion: A total of 270 visitors are included in this study. Considering residual durations of the studied group in open and closed environment of bathrooms, hotel and inn rooms, obtained annual external effective dose is 75.4±8.7μSv and 138.3±11.8μSv for natives and travelers respectively. EEC coefficients has been used for calculating annual internal effective dose due to radon gas inhalation. Annual internal effective dose, in this path, is 0.9 and 2.1 mSv in open and closed environment for native and visitors respectively. Annual internal effective dose due to drinking water, is 0.43 and 0.09μSv for natives people and travelers, respectively. Measurements show that more than 90% of the received dose in the studied groups is due to radon gas inhalation. External and internal dose summation is 0.98 mSv for natives and 2.2 mSv for for travelers

  12. Linkage of High Rates of Sulfate Reduction in Yellowstone Hot Springs to Unique Sequence Types in the Dissimilatory Sulfate Respiration Pathway

    Fishbain, Susan; Dillon, Jesse G.; Heidi L Gough; Stahl, David A

    2003-01-01

    Diversity, habitat range, and activities of sulfate-reducing prokaryotes within hot springs in Yellowstone National Park were characterized using endogenous activity measurements, molecular characterization, and enrichment. Five major phylogenetic groups were identified using PCR amplification of the dissimilatory sulfite reductase genes (dsrAB) from springs demonstrating significant sulfate reduction rates, including a warm, acidic (pH 2.5) stream and several nearly neutral hot springs with ...

  13. A hot spring in granite of the Western Tianshan, China

    The western Tianshan range is a major Cenozoic orogenic belt in central Asia exposing predominantly Paleozoic rocks including granite. Ongoing deformation is reflected by very rugged topography with peaks over 7000 m high. Active tectonic deformation is tied to an E-W trending fracture and fault system that sections the mountain chain into geologically diverse blocks that extend parallel to the orogen. In the Muzhaerte valley upwelling hot water follows such a fault system in the Muza granite. About 20 L min-1 Na-SO4-Cl water with a temperature of 55 deg. C having a total mineralization of about 1 g L-1 discharge from the hot spring. The water is used in a local spa that is frequented by the people of the upper Ili river area. Its waters are used for balneological purposes and the spa serves as a therapeutic institution. The major element composition of the hot water is dominated by Na and by SO4 and Cl, Ca is a minor component. Dissolved silica (1.04 mmol L-1) corresponds to a quartz-saturation temperature of 116 deg. C and a corresponding depth of the source of the water of about 4600 m. This temperature is consistent with Na/K and Na/Li geothermometry. The water is saturated with respect to fluorite and contains 7.5 mg L-1 F- as a consequence of the low Ca-concentration. The water is undersaturated with respect to the primary minerals of the reservoir granite at reservoir temperature causing continued irreversible dissolution of granite. The waters are oversaturated with respect to Ca-zeolite minerals (such as stilbite and mesolite), and it is expected that zeolites precipitate in the fracture pore space and in alteration zones replacing primary granite. The stable isotope composition of O and H supports a meteoric origin of the water. The Cl/Br mass ratio of 1500 suggests that the salinity results from halite dissolution. Salts leached from powders of Muza granite show the same Cl/Br signature as the hot spring water. Sodium chloride is stored in fluid and

  14. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    Jingyan Liang

    Full Text Available Hot spring or hot spa bathing (Onsen is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds.

  15. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats.

    Liang, Jingyan; Kang, Dedong; Wang, Yingge; Yu, Ying; Fan, Jianglin; Takashi, En

    2015-01-01

    Hot spring or hot spa bathing (Onsen) is a traditional therapy for the treatment of certain ailments. There is a common belief that hot spring bathing has therapeutic effects for wound healing, yet the underlying molecular mechanisms remain unclear. To examine this hypothesis, we investigated the effects of Nagano hot spring water (rich in carbonate ion, 42°C) on the healing process of the skin using a nude rat skin wound model. We found that hot spring bathing led to an enhanced healing speed compared to both the unbathed and hot-water (42°C) control groups. Histologically, the hot spring water group showed increased vessel density and reduced inflammatory cells in the granulation tissue of the wound area. Real-time RT-PCR analysis along with zymography revealed that the wound area of the hot spring water group exhibited a higher expression of matrix metalloproteinases-2 and -9 compared to the two other control groups. Furthermore, we found that the enhanced wound healing process induced by the carbonate ion-enriched hot spring water was mediated by thermal insulation and moisture maintenance. Our results provide the evidence that carbonate ion-enriched hot spring water is beneficial for the treatment of skin wounds. PMID:25671581

  16. Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea-Dominated Yellowstone Hot Springs

    Bolduc, Benjamin; Shaughnessy, Daniel P.; Wolf, Yuri I; Koonin, Eugene V.; Roberto, Francisco F.; Young, Mark

    2012-01-01

    There are no known RNA viruses that infect Archaea. Filling this gap in our knowledge of viruses will enhance our understanding of the relationships between RNA viruses from the three domains of cellular life and, in particular, could shed light on the origin of the enormous diversity of RNA viruses infecting eukaryotes. We describe here the identification of novel RNA viral genome segments from high-temperature acidic hot springs in Yellowstone National Park in the United States. These hot s...

  17. Hot spring therapy of atomic bomb exposed patients, (9)

    The following description shows the statistics and the results of medical examinatin concerning the patients utilized Beppu Atomic Bomb Center from April, 1977, to March, 1978. Number of persons utilized the center was 3904, and 20285 man-days in total. Number of case treated there was 268. Number of diseases amounted to 442 of 66 sorts, excluding temporary of acute diseases such as acute entergastritis and cold diseases, etc. According to the report by the Ministry of Health and Welfare, atomic bomb-exposed persons show twice as much rate of incidence as normal persons, and owing to aging, many of them have more than two kinds of diseases. Among the diseases, 60 cases were hypertension, 32 heart disease, 30 knee-arthritis, 26 diabetes, 25 hepatitis, 23 spondylosis deformans, etc. Among 268 cases treated by hot spring therapy, 6 were totally cured, and 252 showed alleviation, while 10 showed no change. (Kobatake, H.)

  18. Iron Homeostasis in Yellowstone National Park Hot Spring Microbial Communities

    Brown, I.; Tringe, S. G.; Franklin, H.; Bryant, D. A.; Klatt, C. G.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    It has been postulated that life may have originated on Earth, and possibly on Mars, in association with hydrothermal activity and high concentrations of ferrous iron. However, it is not clear how an iron-rich thermal hydrosphere could be hospitable to microbes, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, the study of microbial diversity in iron-depositing hot springs (IDHS) and the mechanisms of iron homeostasis and suppression of oxidative stress may help elucidate how Precambrian organisms could withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe(2+) and O2. Proteins and clusters of orthologous groups (COGs) involved in the maintenance of Fe homeostasis found in cyanobacteria (CB) inhabiting environments with high and low [Fe] were main target of this analysis. Preliminary results of the analysis suggest that the Chocolate Pots (CP) microbial community is heavily dominated by phototrophs from the cyanobacteria (CB), Chloroflexi and Chlorobi phyla, while the Mushroom Spring (MS) effluent channel harbors a more diverse community in which Chloroflexi are the dominant phototrophs. It is speculated that CB inhabiting IDHS have an increased tolerance to both high concentrations of Fe(2+) and ROS produced in the Fenton reaction. This hypothesis was explored via a comparative analysis of the diversity of proteins and COGs involved in Fe and redox homeostasis in the CP and MS microbiomes.

  19. Magnetotelluric models of the Roosevelt Hot Springs thermal area, Utah

    Wannamaker, P.E.; Ward, S.H.; Hohmann, G.W.; Sill, W.R.

    1980-09-01

    The Roosevelt Hot Springs (RHS) thermal area, which includes a hotwater-dominated fracture zone prospect, near the eastern margin of the Basin-Range tectonic province, conceivably possesses a whole family of resistivity structures that includes the following: deep hot brine reservoirs, deep-seated partially molten heat sources in the crust or upper mantle that drive the convective system, near-surface hydrothermal alteration zones, wet sedimentary fill in valleys, and a regional, apparently one-dimensional resistivity profile of the crust and upper mantle. This complex resistivity makeup, particular to RHS but probably similar to that at other geothermal areas in the Great Basin, must be treated as being fully three-dimensional (3-D). In an attempt to understand these structures, broadband (10/sup -3/ to 10/sup -2/ Hz) tensor magnetotelluric (MT) data were obtained including apparent resistivities (rho/sub a/), impedance phases (phi) and vertical magnetic field transfer functions for 93 sites in the vicinity of this resource area.

  20. Lipid Biomarkers and Stable Isotope Signatures of Microbial Mats in Hot Springs of Kamchatka, Russia

    Romanek, C. S.; Mills, G. L.; Jones, M. E.; Paddock, L.; Li, Y.; Zhang, C. L.; Wiegel, J.

    2004-12-01

    Various hot springs of the Uzon Caldera, Kamchatka, were analyzed for their chemical and stable isotope composition to better understand the relationship(s) between thermophilic microorganisms and the environments in which they live. The springs had water temperatures ranging from 40-90\\deg C and pH ranging from 5.6-5.9. Gases that emanated from the springs were composed predominantly of CO2 (20 to 90%), with lesser amounts of CH4, (CO2 fixation pathways, or other unknown mechanisms. Microbial mats were freeze-dried and extracted for lipid biomarker analysis. The lipids were separated into hydrocarbon, sterol, ether lipid, free fatty acid, and phospholipid fatty acid (PLFA) fractions. Among these fractions, PLFA indicated the community structure and abundance for Bacteria while the ether lipid fraction provided analogous information for Archaea. Results of PLFA showed 16:0 as the most abundant fatty acid (33-44%), which is universal in all living organisms. Other significant biomarkers included 18:1ω (19 to 24%), 18:2ω (5 to 13%), 16:1ω (3 to 12%), and 18:0 (2 to 7%). These biomarkers are characteristic of cyanobacteria, green-sulfur bacteria, and green non-sulfur bacteria, respectively, which are common autotrophic organisms in terrestrial hot springs. On the other hand, biomarkers of heterotrophic bacteria, such as iso- and anteiso-15:0 were low (2-8%), indicating that the bacterial carbon cycle was dominated by autotrophic organisms. Analogous archaeal constituents were present in significant abundance in the ether lipids fraction.

  1. Difference in the action mechanism of radon inhalation and radon hot spring water drinking in suppression of hyperuricemia in mice.

    Etani, Reo; Kataoka, Takahiro; Kanzaki, Norie; Sakoda, Akihiro; Tanaka, Hiroshi; Ishimori, Yuu; Mitsunobu, Fumihiro; Yamaoka, Kiyonori

    2016-06-01

    Although radon therapy is indicated for hyperuricemia, the underlying mechanisms of action have not yet been elucidated in detail. Therefore, we herein examined the inhibitory effects of radon inhalation and hot spring water drinking on potassium oxonate (PO)-induced hyperuricemia in mice. Mice inhaled radon at a concentration of 2000 Bq/m(3) for 24 h or were given hot spring water for 2 weeks. Mice were then administrated PO at a dose of 500 mg/kg. The results obtained showed that serum uric acid levels were significantly increased by the administration of PO. Radon inhalation or hot spring water drinking significantly inhibited elevations in serum uric acid levels through the suppression of xanthine oxidase activity in the liver. Radon inhalation activated anti-oxidative functions in the liver and kidney. These results suggest that radon inhalation inhibits PO-induced hyperuricemia by activating anti-oxidative functions, while hot spring water drinking may suppress PO-induced elevations in serum uric acid levels through the pharmacological effects of the chemical compositions dissolved in it. PMID:27021217

  2. Applying spatial analysis techniques to assess the suitability of multipurpose uses of spring water in the Jiaosi Hot Spring Region, Taiwan

    Jang, Cheng-Shin

    2016-04-01

    The Jiaosi Hot Spring Region is located in northeastern Taiwan and is rich in geothermal springs. The geothermal development of the Jiaosi Hot Spring Region dates back to the 18th century and currently, the spring water is processed for various uses, including irrigation, aquaculture, swimming, bathing, foot spas, and recreational tourism. Because of the proximity of the Jiaosi Hot Spring Region to the metropolitan area of Taipei City, the hot spring resources in this region attract millions of tourists annually. Recently, the Taiwan government is paying more attention to surveying the spring water temperatures in the Jiaosi Hot Spring Region because of the severe spring water overexploitation, causing a significant decline in spring water temperatures. Furthermore, the temperature of spring water is a reliable indicator for exploring the occurrence and evolution of springs and strongly affects hydrochemical reactions, components, and magnitudes. The multipurpose uses of spring water can be dictated by the temperature of the water. Therefore, accurately estimating the temperature distribution of the spring water is critical in the Jiaosi Hot Spring Region to facilitate the sustainable development and management of the multipurpose uses of the hot spring resources. To evaluate the suitability of spring water for these various uses, this study spatially characterized the spring water temperatures of the Jiaosi Hot Spring Region by using ordinary kriging (OK), sequential Gaussian simulation (SGS), and geographical information system (GIS). First, variogram analyses were used to determine the spatial variability of spring water temperatures. Next, OK and SGS were adopted to model the spatial distributions and uncertainty of the spring water temperatures. Finally, the land use (i.e., agriculture, dwelling, public land, and recreation) was determined and combined with the estimated distributions of the spring water temperatures using GIS. A suitable development strategy

  3. Impacts of geothermal energy developments on hydrological environment in hot spring areas

    Taniguchi, M.

    2015-12-01

    Water-energy nexus such as geothermal energy developments and its impacts on groundwater, river water, and coastal water is one of the key issues for the sustainable society. This is because the demand of both water and energy resources will be increasing in near future, and the tradeoff between both resources and conflict between stakeholders will be arisen. Geothermal power generation, hot springs heat power generation, and steam power generation, are developing in hot spring areas in Ring of Fire countries including Japan, as renewable and sustainable energy. Impacts of the wasted hot water after using hot springs heat and steam power generation on ecosystem in the rivers have been observed in Beppu, Oita prefecture, Japan. The number of the fish species with wasted hot water in the Hirata river is much less than that without wasted hot water in Hiyakawa river although the dominant species of tilapia was found in the Hirata river with wasted hot water. The water temperature in Hirata rive is increased by wasted hot water by 10 degree C. The impacts of the developments of steam power generations on hot spring water and groundwater in downstream are also evaluated in Beppu. The decreases in temperature and volume of the hot spring water and groundwater after the development are concerning. Stakeholder analysis related to hot spa and power generation business and others in Beppu showed common interests in community development among stakeholders and gaps in prerequisite knowledge and recognition of the geothermal resource in terms of economic/non-economic value and utilization as power generation/hot-spring. We screened stakeholders of four categories (hot spring resorts inhabitants, industries, supporters, environmentalists), and set up three communities consisting of 50 persons of the above categories. One remarkable result regarding the pros and cons of geothermal power in general terms was that the supporter count increased greatly while the neutralities count

  4. Chemical and isotopic characteristics of hot springs along the along the Neogene Malawi rift.

    Atekwana, E. A.; Tsokonombwe, G. W.; Elsenbeck, J.; Wanless, V. D.; Atekwana, E. A.

    2015-12-01

    We measured the concentrations of major ions and dissolved inorganic carbon (DIC) and the stable isotopes of carbon (δ13CDIC), hydrogen (δD) and oxygen (δ18O) of hot springs along the Neogene Malawi rift. We compared the results with those of streams and a cold spring. We aimed to assess the hot springs for evidence of addition of mantle mass, specifically water and carbon and (2) determine the processes that control the chemical and isotopic evolution of the hot springs. Understanding the source(s) of heat for the springs and if the chemical and isotopic characteristics show evidence of mantle processes is an important goal of the Project for Rift Initiation, Development and Evolution (PRIDE). The temperature of the hot springs ranged from 35 to 80 ºC. High temperature anomalies are observed between latitudes 10 to 11, 12 to 13 and 15 to 16 degrees south along the rift axis. The δD and δ18O for the cold spring, hot springs and streams had a similar range, were positively correlated and lie on the trend of the local meteoric water line. We suggest negligible contribution of water from a connate or magmatic source and limited oxygen exchange from water-rock interaction or CO2 exchange from deep sedimentary carbonates. The DIC concentrations of the hot springs are higher (5 to 61 mg C/L) than those of streams (2 to 28 mg C/L) indicating addition of carbon to the DIC pool during the circulation of some springs. The range in the δ13CDIC of the hot springs (-17 to -8‰) is broader and lower compared to streams (-12 to -5‰) due to addition of carbon with a δ13CDIC of -15‰ to the spring water during circulation. Our results indicate that (1) the source of water for the hot springs is meteoric, (2) the hot springs have not experienced extensive water-rock interaction due to fast circulation suggesting highly permeable fault zones, (3) the source of carbon in the DIC of the hot springs is mostly CO2(g) from the soil zone and (4) the springs are heated by normal

  5. Spatial relationship between earthquakes, hot-springs and faults in Odisha, India

    Pradhan, Biswajeet; Jena, Ratiranjan

    2016-06-01

    Odisha is famous for Mineral rich Eastern-Ghat mobile belt, hot springs and cultural Heritage. The hot springs are known for centuries and are used by public as a place for worship. Odisha falls under the II and III seismic zones in India. Most of the seismicity in Odisha is due to motion along some active normal faults along the Mahanadi Graben. Therefore, it is necessary to identify the active faults and understand spatial distribution of seismic activity in Odisha. It is also important to understand the Earthquakes and their relation with the Geology of Odisha and understand the neo-tectonic activity. There are 7 major hot springs found along the North Odisha Boundary Fault and Mahanadi Shear Zone. The hot water percolates deep into the Earth through porous and permeable fractured rocks along the fault. Depth of source for most of the hot springs in Odisha must be some few feets to few meters; however most of these observations are not based on scientific geophysical data. Therefore, spatial relationship between thermal springs, earthquakes, and geology of Odisha may provide better understanding of the hot-spring setting. By using the earthquake and fault data, the sense of motion along faults can be easily interpreted. All these information can explain the spatial distribution and inter-relation between hot-springs, faults and earthquakes in Odisha.

  6. Mixing of hydrothermal water and groundwater near hot springs, Yellowstone National Park (USA): hydrology and geochemistry

    Gibson, Matthew L.; Hinman, Nancy W.

    2013-06-01

    Studies of hot springs have focused mainly on the properties of fluids and solids. Fewer studies focus on the relationship between the hot springs and groundwater/surface-water environments. The differences in temperature and dissolved solids between hot-spring water and typical surface water and groundwater allow interactions to be traced. Electromagnetic terrain (EMT) conductivity is a nonintrusive technique capable of mapping mixing zones between distinct subsurface waters. These interactions include zones of groundwater/surface-water exchange and groundwater mixing. Herein, hydrogeological techniques are compared with EMT conductivity to trace hot-spring discharge interactions with shallow groundwater and surface water. Potentiometric-surface and water-quality data determined the hydrogeochemistry of two thermally influenced areas in Yellowstone National Park, Wyoming (USA). Data from the sites revealed EMT conductivity contrasts that reflected the infiltration of conductive hot-spring discharge to local groundwater systems. The anomalies reflect higher temperatures and conductivity for Na+-Cl--rich hydrothermal fluids compared to the receiving groundwater. EMT conductivity results suggested hot springs are fed by conduits largely isolated from shallow groundwater; mixing of waters occurs after hot-spring discharge infiltrates groundwater from the surface and, generally, not by leakage in the subsurface. A model was proposed to explain the growth of sinter mounds.

  7. Indoor radon levels in selected hot spring hotels in Guangdong, China

    Guangdong is one of the provinces that have most hot springs in China, and many hotels have been set up near hot springs, with spring water introduced into the bath inside each hotel room for hot spring bathing to attract tourists. In the present study, we measured radon in indoor and outdoor air, as well as in hot spring waters, in four hot spring hotels in Guangdong by using NR-667A (III) continuous radon detector. Radon concentrations ranged 53.4-292.5 Bq L-1 in the hot spring water and 17.2-190.9 Bq m-3 in outdoor air. Soil gas intrusion, indoor hot spring water use and inefficient ventilation all contributed to the elevated indoor radon levels in the hotel rooms. From the variation of radon levels in closed unoccupied hotel rooms, soil gas intrusion was found to be a very important source of indoor radon in hotel rooms with floors in contact with soils. When there was spring water bathing in the bathes, average radon levels were 10.9-813% higher in the hotel rooms and 13.8-489% higher in bathes compared to their corresponding average levels when there was no spring water use. Spring water use in the hotel rooms had radon transfer coefficients from 1.6x10-4 to 5.0x10-3. Radon in some hotel rooms maintained in concentrations much higher than guideline levels might thus have potential health risks to the hotel workers, and technical and management measures should be taken to lower their exposure of radon through inhalation

  8. New bathing therapy in Japanese hot springs using radiation from radon

    Japanese-style bathing is an important part of the traditional culture of Japan, and most Japanese people love hot springs. Many kinds of hot springs exist all over Japan and are often a major factor when considering where to go for travel, relaxation and rest. However, other countries, especially in Europe, also use hot springs for medical treatments such as balneo therapy, hydrokinetic therapy, fango therapy and inhalation therapy. Some hot springs in Japan are located on radioactive springs. Five typical radioactive spring areas can be found in Tamagawa (Akita Pref.), Murasugi (Niigata Pref.), Masutomi (Yamanashi Pref.), Misasa (Tottori Pref.), and Sekigane (Tottori Pref.). While hot springs in Japan are mainly used for bathing, these radioactive springs are also used for bedrock bathing and/or inhalation therapy. In Italy, Fango therapy is a medical treatment conducted under a medical doctor's super vision with peloids maturated with hot spring water called 'Fango'. Japanese style Fango, named BiofangoR, has already been made by using natural hot springs that have been modified with Italian Fango. Medical evaluation of test subjects has shown good results after treatment with Fango therapy. An important point in Fango therapy is how to make satisfactory maturated peloids. For this purpose, an experiment was conducted at Masutomi hot spring to confirm the possibility of using radioactive spring water to make maturated peloids. The basement material for the peloids used for this experiment was made from bentonite mixed with original rock from the Masutomi hot spring area consisting of crushed basalt and granite that have a fine amount of radioactivity. These peloids were circulated through hot spring water for two weeks to a month and then used for treatment. The medical data showed that therapy using this method resulted in greater improvement in 'test subjects' body functions compared with the data from previous observations. This seems

  9. Using Hydrogen Isotopes to Distinguish Allochthony and Autochthony in Hot Springs Ecosystems

    Hungate, J.; DeSousa, T. M.; Ong, J. C.; Caron, M. M.; Brown, J. R.; Patel, N.; Dijkstra, P.; Hedlund, B. P.; Hungate, B. A.

    2013-12-01

    Hot springs are hosts to abundant and diverse microbial communities. Above the temperature threshold for photosynthesis (~73 degrees C), a variety of chemosynthetic organisms support autochthonous primary production in hot springs ecosystems. These organisms are thought to drive the carbon and energy budgets of these ecosystems, but the importance of energy inputs from the surrounding terrestrial environments - allochthonous inputs - is not well known. Here, we tested the efficacy of stable isotopes of hydrogen in distinguishing autochthonous from allochthonous sources of organic matter in hot springs ecosystems. Under laboratory conditions and in pure culture, we grew autotrophic, mixotrophic, and heterotrophic organisms from the Great Boiling Springs in northern Nevada as well as organisms typical of other hot springs environments. We measured the δ2H composition of biomass, water and organic matter sources used by the organisms to produce that biomass. We also surveyed organic matter in and around hot springs in Nevada and in the Tengchong geothermal region in China, sampling terrestrial plants at the hot springs margin, microorganisms (either scraped from surfaces or in the water column), and organic matter in the sediment accruing in the spring itself as an integrative measure of the relative importance of organic matter sources to the spring ecosystem. We found that autotrophic production in culture results in strongly depleted δ2H signatures, presumably because of fractionation against 2H-H2O during chemosynthesis. The observed difference between microbial biomass and water was larger than that typically found for terrestrial plants during photosynthesis, setting the stage for using δ2H to distinguish allochthonous from autochthonous sources of productivity in hot springs. In surveys of natural hot springs, microbial biomass sampled from the water column or from surfaces was often strongly depleted in δ2H, consistent with in situ chemosynthesis. Organic

  10. Isolation of Free-Living Amoebae from Sarein Hot Springs in Ardebil Province, Iran

    Badirzadeh, A; Niyyati, M; Babaei, Z; Amini, H.; H Badirzadeh; Rezaeian, M.

    2011-01-01

    Background: Free-living amoebae (FLA) are a group of ubiquitous protozoan, which are distrib­uted in the natural and artificial environment sources. The main aim of the current study was to identify the presence of FLA in the recreational hot springs of Sarein in Ardebil Province of Iran.Methods: Seven recreational hot springs were selected in Sarein City and 28 water samples (four from each hot spring) were collected using 500 ml sterile plastic bottles during three month. Filtra­tion of wat...

  11. Radiological Studies in the Hot Spring Region of Oyoun Mossa and Hammam Faraun Thermal Spring Areas in Western Sinai

    Radioactivity in and around the two hot springs, Oyoun Mossa and Hammam Faraun, Western Sinai has been determined. The ground water, sediment and sand samples were measured by gamma-ray spectrometer for 232Th, 226Ra and 40K isotopes. The enrichment of 226Ra in Hammam Faraun hot spring was the most prominent feature. The concentration of 226Ra in Oyoun Mossa and Hammam Faraun hot springs are 68 and 2377 Bq/kg for sediments, 3.5 and 54.7 Bq/kg for wild plants, and 205 and 1945 mBq/l for the ground water, respectively. In addition, the concentration of sand samples are 14 times larger in the area of Hammam Faraun compared with that of Oyoun Mossa. On the other hand, the concentration of 232Th in different samples are comparable in the two areas while 137Cs concentrations are relatively higher in Oyoun Mossa. For the purpose of comparison, sand samples were collected from two locations 5-12 km away from each spring. The activity concentrations of the four locations are comparable and in agreement with those from the area of the two springs except in one case. The major difference was the activity concentration of 226Ra in the area of Hammam Faraun, which is much higher. The concentrations of all detected isotopes in water samples from these two springs are much higher than that detected in 27 natural wells in north Sinai. The results of the present study indicate that water only in Hammam Faraun hot spring is contaminated with 238U-isotopes and the surrounding area is affected by this contamination. The calculated annual effective dose equivalents in the surroundings of Hammam Faraun (81.8 μSv) is superior to the maximum contaminant levels recommended.

  12. Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences.

    Stahl, D A; Lane, D J; Olsen, G J; Pace, N R

    1985-01-01

    The microorganisms inhabiting a 91 degrees C hot spring in Yellowstone National Park were characterized by sequencing 5S rRNAs isolated from the mixed, natural microflora without cultivation. By comparisons of these sequences with reference sequences, the phylogenetic relationships of the hot spring organisms to better characterized ones were established. Quantitation of the total 5S-sized rRNAs revealed a complex microbial community of three dominant members, a predominant archaebacterium af...

  13. Subaqueous hot springs in Köyceǧiz Lake and Dalyan Channel (SW Turkey)

    Avşar, Özgür; Avşar, Ulaş; Kurtuluş, Bedri; Arslan, Şebnem; Güleç, Nilgün

    2014-05-01

    The preliminary investigations within the scope of a subaqueous geothermal exploration project revealed a total of seven underwater hot springs in the Köyceǧiz Lake and through its outlet, namely Dalyan Channel. Within the scope of this project, horizontal temperature and electrical conductivity profiles of the lake water were obtained by using an YSI CTD probe along a dense survey grid. Any anomaly in the temperature and/or electrical conductivity profiles was inspected by scuba divers in detail, and water samples were taken from the explored hot springs by using a syringe type sampler. Four of these explored hot springs are located on the southern shore of Köyceǧiz Lake and the remaining ones are on the northern part of the Dalyan Channel. The temperature of the subaqueous hot springs range from 26.41 to 29.57 °C, which is slightly lower than the temperature range of the on-land hot springs in the region (i.e., 30-39 °C). Discovery of subaqueous hot springs and investigation of chemistry of these sources will lead a more comprehensive assessment of the hydrogeochemistry of the region.

  14. Estimation of growth rate of Hokutolite from Tamagawa Hot-Spring, Akita, Japan

    Concentrations of radium isotopes and the progenies (226Ra, 228Ra and 228Th) in three hokutolite samples and the hot-spring water from Tamagawa hot-spring were measured. These isotopes were analyzed by a well-type HPGe gamma-ray spectrometer for the 351, 609, 911 and 583 keV gamma-rays from 214Pb, 214Bi, 228Ac and 208Tl, respectively, each being in radioactive equilibrium with precursors. Radium-226 concentrations of hokutolite were in the range of 50-85 Bq/g, being higher in the lower layer, and 228R concentrations were in the range of 7.1-263 Bq/g, being higher in the upper layer. The activity ratios of 228Ra/226Ra provided the estimation o the growth rate of hokutolite (0.06-0.15 mm/y). Activity ratios of 228Ra/226Ra of Tamagawa hot spring-water ranged from 6 to 24, the seasonal variation pattern showed the higher ratio in summer season. Figure shows that estimated growth rate of hokutolite samples were correlated with SO42- concentration in Tamagawa hot- spring water. Estimated 228Ra/226Ra activity ratios in Tamagawa hot-spring water from hokutolite surface activity were concordant with those of the hot-spring water.

  15. Mathematical Model of the Geothermal Water Resources in the South Hot Spring System in Chongqing

    Liu Dongyan; Luo Yunju; Liu Xinrong

    2005-01-01

    The geothermal waters of south hot spring, small hot spring and Qiaokouba in Chongqing, are all part of the south hot spring geothermal water system. Exploitation has caused a decline in the water levels of the south and small hot springs, which have not flowed naturally for 15 years. Now, bores pump geothermal water to the springs. If the water level drops below the elevation of the rivers, river-water will replenish the geothermal water, destroying this resource. It is therefore an urgent task to model the geothermal water system, to enable sustainable development and continued use of the geothermal water in Qiaokouba. A numerical simulation of the geothermal water system was adopted and a quantitative study on the planning scheme was carried out. A mathematical model was set up to simulate the whole geothermal water system, based on data from the research sites. The model determined the maximum sustainable water yield in Qiaokouba and the two hot springs, and the south hot spring and small hot spring sustainable yields are 1 100 m3/d and 700 m3/d from 2006 to 2010, 1 300 m3/d and 1 000 m3/d from 2011 to 2015, and 1 500 m3/d and 1 200 m3/d from 2016 to 2036. The maximum exploitable yield is 3 300 m3/d from 2006 to 2036 in Qiaokouba. The model supplies a basis to adequately exploit and effectively protect the geothermal water resources, and to continue to develop the geothermal water as a tourist attraction in Chongqing.

  16. Evaluation of Current and Feasible Future Use of Geothermal Energy at Chinyunyu Hot Spring, Zambia

    Kapasa, Christopher

    2014-01-01

    The main source of geothermal energy is the heat flow from the mantle beneath the Earth’s surface, generated by the gradual decay of radioactive isotopes in the Earth‘s crust. A hot spring is produced by the emergence of geothermally heated groundwater flowing out to the Earth’s surface. The Chinyunyu hot spring is located about 90km east of Lusaka, Zambia. Water from the spring has been artificially channeled into a large excavated pool which is used as a bathing place. Since the undiluted s...

  17. Legionella thermalis sp. nov., isolated from hot spring water in Tokyo, Japan.

    Ishizaki, Naoto; Sogawa, Kazuyuki; Inoue, Hiroaki; Agata, Kunio; Edagawa, Akiko; Miyamoto, Hiroshi; Fukuyama, Masafumi; Furuhata, Katsunori

    2016-03-01

    Strain L-47(T) of a novel bacterial species belonging to the genus Legionella was isolated from a sample of hot spring water from Tokyo, Japan. The 16S rRNA gene sequences (1477 bp) of this strain (accession number AB899895) had less than 95.0% identity with other Legionella species. The dominant fatty acids of strain L-47(T) were a15:0 (29.6%) and the major ubiquinone was Q-12 (71.1%). It had a guanine-plus-cytosine content of 41.5 mol%. The taxonomic description of Legionella thermalis sp. nov. is proposed to be type strain L-47(T) (JCM 30970(T)  = KCTC 42799(T)). PMID:26865126

  18. Microscopic physical biomarkers in carbonate hot springs: implications in the search for life on Mars

    Allen, C. C.; Albert, F. G.; Chafetz, H. S.; Combie, J.; Graham, C. R.; Kieft, T. L.; Kivett, S. J.; McKay, D. S.; Steele, A.; Taunton, A. E.; Taylor, M. R.; Thomas-Keprta, K. L.; Westall, F.

    2000-01-01

    Physical evidence of life (physical biomarkers) from the deposits of carbonate hot springs were documented at the scale of microorganisms--submillimeter to submicrometer. The four moderate-temperature (57 to 72 degrees C), neutral pH springs reported on in this study, support diverse communities of bacteria adapted to specific physical and chemical conditions. Some of the microbes coexist with travertine deposits in endolithic communities. In other cases, the microbes are rapidly coated and destroyed by precipitates but leave distinctive mineral fabrics. Some microbes adapted to carbonate hot springs produce an extracellular polymeric substance which forms a three-dimensional matrix with living cells and cell remains, known as a biofilm. Silicon and iron oxides often coat the biofilm, leading to long-term preservation. Submicrometer mineralized spheres composed of calcium fluoride or silica are common in carbonate hot spring deposits. Sphere formation is biologically mediated, but the spheres themselves are apparently not fossils or microbes. Additionally, some microbes selectively weather mineral surfaces in distinctive patterns. Hot spring deposits have been cited as prime locations for exobiological exploration of Mars. The presence of preserved microscopic physical biomarkers at all four sites supports a strategy of searching for evidence of life in hot spring deposits on Mars.

  19. Cloning and expression of dnaK gene from Bacillus pumilus of hot water spring origin

    Murugan Kumar

    2014-03-01

    Full Text Available A set of thermotolerant strains isolated from hot springs of Manikaran and Bakreshwar (India were selected with an aim to isolate dnak gene which encodes DnaK protein. The gene dnaK along with its flanking region was successfully amplified from 5 different strains (4 from Bakreshwar and one from Manikaran. Restriction fragment length polymorphism (RFLP revealed that amplicons were almost identical in sequence. The dnak gene from one representative, Bacillus pumilus strain B3 isolated from Bakreshwar hot springs was successfully cloned and sequenced. The dnaK gene was flanked by gene grpE on one side. The dnaK gene was 1842 bp in length encoding a polypeptide of 613 amino acid residues. Calculated molecular weight and pI of the protein were 66,128.36 Da and 4.72 respectively. The deduced amino acid sequence of this gene shared high sequence homology with other DnaK proteins and its homologue Hsp 70 from other microorganisms, but possessed 36 substitutions and two insertions, as compared to DnaK protein of Bacillus subtilis. The dnaK gene of B. pumilus was successfully expressed in Escherichia coli BL 21 (DE3 using pET expression systems. Heterologous expression of dnaK of B. pumilus in E. coli BL 21 (DE3 allowed for the growth of E. coli up to 50 °C and survival up to 60 °C for 16 h, suggesting that dnak from B. pumilus imparts tolerance to host cells under high temperature. This novel gene can be an important component for possible utilization in abiotic stress management of plants.

  20. Metagenomic Study of Iron Homeostasis in Iron Depositing Hot Spring Cyanobacterial Community

    Brown, I.; Franklin H.; Tringe, S. G.; Klatt, C. G.; Bryant, D. A.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    Introduction: It is not clear how an iron-rich thermal hydrosphere could be hospitable to cyanobacteria, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, metagenomic study of cyanobacterial community in iron-depositing hot springs may help elucidate how oxygenic prokaryotes can withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe2+ and O2. Method: Anchor proteins from various species of cyanobacteria and some anoxygenic phototrophs were selected on the basis of their hypothetical role in Fe homeostasis and the suppression of oxidative stress and were BLASTed against the metagenomes of iron-depositing Chocolate Pots and freshwater Mushroom hot springs. Results: BLASTing proteins hypothesized to be involved in Fe homeostasis against the microbiomes from the two springs revealed that iron-depositing hot spring has a greater abundance of defensive proteins such as bacterioferritin comigratory protein (Bcp) and DNA-binding Ferritin like protein (Dps) than a fresh-water hot spring. One may speculate that the abundance of Bcp and Dps in an iron-depositing hot spring is connected to the need to suppress oxidative stress in bacteria inhabiting environments with high Fe2+ concnetration. In both springs, Bcp and Dps are concentrated within the cyanobacterial fractions of the microbial community (regardless of abundance). Fe3+ siderophore transport (from the transport system permease protein query) may be less essential to the microbial community of CP because of the high [Fe]. Conclusion: Further research is needed to confirm that these proteins are unique to photoautotrophs such as those living in iron-depositing hot spring.

  1. A culture-dependent survey of thermophilic bacteria from hot springs in Xiamen area in China

    YANG Bo; OUYANG Jianping; AO Jingqun; CHEN Xinhua

    2009-01-01

    Microbes are believed to play important roles in ecosystem function in many environments. The hot springs of Xiamen Island are close to the Xiamen Sea, and may have some characteristics different from those of inland hot springs. Microbes living in the hot springs of Xiamen may have new characteristics. However, little is known about microbial communities of hot springs close to the Xiamen Sea. A cuhure-dependent survey of microbial population in the Xiamen hot springs was pcrformed by using an approach combining total cellular protein profile identification and 16S rRNA gene sequencing. A total of 328 isolates of bacteria were obtained from liquid and sediment samples from the Xiamen hot springs, including neutrophilie thermophilic bacteria and moderately thermophilic acidophiles. Neutrophilic thermophilic bacteria, which grow at a temperature range of 55-90℃ including Rhodothermus marinus (Strain 1) , Thermus thermophilus (Strain 2), Thermus thiopara (Strain 3) , Geobacillus stearothermophilus(Strain 4) , Geobacillus thermoleovorans (Strain 5) , and Pseudomonas pseudoal-caligenes (Strain 6), were recovered by 2216E plates. Moderately thermophilic acidophiles, which can grow at temperatures above 50℃ and a pH range of 1. 8-3.5 such as Alicyclobacillus acidoterrestris (Strain 8) , Sul-fobacillus acidophilus (Strain 9), and Sulfobacillus thermosulfidooxidans (Strain 10), were isolated on selective solid medium containing sulfur and Fe2+. Among these strains, Rhodothermus marinus, Thermus thermophilus and Geobacillus stearothermophilus are not only thermophilcs, but also halophiles. One bacterium strain (Strain 6) shared 99% nucleotide sequence homology with Pseudomonas pseudoalcaligenes on the 16S rRNA gene se-quence, but was quite different from Pseudomonas pseudoalcaligenes in biological characteristics, suggesting that it may represent a novel thermophilic species. Results indicated that various species of neutrophilic thermophiles and moderately thermophilic

  2. Biological Sources of Branched Glycerol Dialkyl Glycerol Tetraethers (brGDGTs) in Terrestrial Hot Springs: A Possible Link Between Nitrogen-cycling Bacteria and brGDGT Production

    Wang, J. X.; Xie, W.; Boyd, E. S.; Hedlund, B. P.; Zhang, C.

    2014-12-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are common in peat, soil, lakes, rivers and hot springs. To seek the potential biological sources of brGDGTs in geothermal environments, we investigated 65 hot springs in the Yellowstone National Park (USA) and Tengchong (China). Together with previously published data from hot springs in the Great Basin (USA) and Tibet (China), we found that the abundance of brGDGTs tended to peak in springs with pH > 8. This contrasts with previous observations indicating an abundance of brGDGTs in acidic soils and peat bogs, suggesting a different biological source and function for lipids in these environments. In support of this hypothesis, a comparison of Cyclization ratios of Branched Tetraethers (CBT) between hot springs and surrounding soils indicated that more brGDGTs with cyclopentane moieties were produced in alkaline hot springs than in nearby low-temperature soils. Since Acidobacteria (the likely source of brGDGTs in peat bog environments) tend to have low CBT ratios, these data suggest a different source for brGDGTs in hot spring environments. RDA and regression analysis integrating brGDGT compounds and nitrogen species indicate that Bacteria involved in the nitrogen biogeochemical cycle (ammonia oxidation and nitrite reduction) may be related to the production of brGDGTs in terrestrial hot springs. However, direct evidence showing the link between nitrogen-cycling bacteria and brGDGT production has yet to be demonstrated under laboratory conditions. Nevertheless, our study expands the possibility of brGDGT sources into bacterial communities in terrestrial geothermal systems where Acidobacteria are absent or only a minor component.

  3. Investigations on microbial diversity of Jakrem hot spring, Meghalaya, India using cultivation-independent approach

    Panda, Amrita Kumari; Bisht, Satpal Singh; Kumar, Nachimuthu Senthil; De Mandal, Surajit

    2015-01-01

    Jakrem hot water spring is located in the West Khasi Hill District of the state of Meghalaya, and is one of the most popular hot springs of the state. There is a populist belief among the inhabitants and people that the hot spring water has got curative properties against various skin ailments. This is the first report on V3 hyper-variable region of 16S rDNA metagenome sequence employing Illumina platform to profile the microbial community of this less known hot spring from Meghalaya, India. Metagenome comprised of 10, 74,120 raw sequences with a sequence length of 151 bp and 56.35% G + C content. Metagenome sequence information is now available at NCBI, SRA database accession no. SRP056897. A total of 8, 77, 364 pre-processed reads were clustered into 694 OTUs (operational taxonomical units) comprising of 14 bacterial phyla including unknown phylum demonstrating 49 families. Hot spring bacterial community is dominated by Firmicutes (61.60%), Chloroflexi (21.37%), Cyanobacteria (12.96%) and unclassified bacteria (1.2%) respectively. PMID:26484205

  4. Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring.

    Jiang, Zhou; Li, Ping; Van Nostrand, Joy D; Zhang, Ping; Zhou, Jizhong; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Dawei; Wang, Yanxin

    2016-01-01

    Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring's outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59-0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring's pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs. PMID:27126380

  5. Investigations on microbial diversity of Jakrem hot spring, Meghalaya, India using cultivation-independent approach

    Amrita Kumari Panda

    2015-06-01

    Full Text Available Jakrem hot water spring is located in the West Khasi Hill District of the state of Meghalaya, and is one of the most popular hot springs of the state. There is a populist belief among the inhabitants and people that the hot spring water has got curative properties against various skin ailments. This is the first report on V3 hyper-variable region of 16S rDNA metagenome sequence employing Illumina platform to profile the microbial community of this less known hot spring from Meghalaya, India. Metagenome comprised of 10, 74,120 raw sequences with a sequence length of 151 bp and 56.35% G + C content. Metagenome sequence information is now available at NCBI, SRA database accession no. SRP056897. A total of 8, 77, 364 pre-processed reads were clustered into 694 OTUs (operational taxonomical units comprising of 14 bacterial phyla including unknown phylum demonstrating 49 families. Hot spring bacterial community is dominated by Firmicutes (61.60%, Chloroflexi (21.37%, Cyanobacteria (12.96% and unclassified bacteria (1.2% respectively.

  6. Thermal neutron activation analysis of the water Zamzam at Mecca, Saudi Arabia and the water of the fourty five hot springs at Hot Springs, Arkansas, USA

    Samples from the Islamic holy water Zamzam in Mecca, Saudi Arabia and the famous mineral water of Hot Springs, in Hot Springs, Arkansas were analyzed for trace elements content by thermal neutron activation analysis. For Zamzam the concentration of 37S, 49Ca, 38Cl, 31Si, 42K, 24Na and 82Br were found, respectively, to be 3, 107, 11, 12, 4, 14, and 9 ppm; and that for Hot Springs Sample, replacing 82Br with 27Mg, are 2, 44, 2, 10, 1, 4, and 5 ppm. The experimental limit of detection for pure standards of the nuclides 27Mg, 128I, 64Cu, and 56Mn were found to be 8, 8x10-3, 6x10-2, and 2x10-4 μg, respectively. These nuclides were not detected in Zamzam, therefore, it was concluded that in Zamzam the concentration levels of the nuclides 27Mg, 128I, 64Cu, and 56Mn were below that of the limit of detection of pure standards. (orig./HP)

  7. Consideration on the analytical method for heat anomalies based on distribution of heat discharge by hot springs

    Distribution of heat discharge by hot spring is a valuable feature for evaluating geologic repository site because it reflects both underground temperature and underground hydrologic conditions. Considering preparatory procedure of updating the manner of heat discharge calculation, several points have been noted. The following two points are particularly significant. For the time being naturally discharging hot springs occupy about 30 percent of the total amount of hot spring water in Japan. Therefore (1) we must evaluate natural discharge and pumped hot water separately. Recently developed hot springs, especially those by deep wells, are likely to be suffered from changes in their condition such as decrease in water temperature and/or production rate in a shot period after development. Therefore (2) hot spring data should be carefully treated for evaluating heat discharge by them. (author)

  8. Radioactivity in hot spring water, Peitou, Taiwan and Taiwan earthquake in September, 1999

    Momoshima, N. [Kumamoto Univ. (Japan). Faculty of Science; Sugihara, S. [Kyushu Univ., Graduate School of Science, Fukuoka (Japan); Huang, C.W. [Chung Yuan Christian Univ., Department of Chemistry, TW (China); Wu, C.W. [National Taiwan Univ., Institute of Agriculture Chemistry, TW (China)

    2000-07-01

    Hot spring water sometimes contains high amounts of radioactivity. Peitou hot spring, located in north of Taipei, Taiwan, is well known its high concentrations of radium isotopes and production of rare radioactive rock, hokutolite. Substances dissolved in hot spring water would be useful tools to examine geochemical processes occurring under ground. Radionuclides in hot spring water give us an information about a time scale involved in the geochemical processes. We have analyzed concentrations of radionuclides in hot spring water to understand geochemical processes occurring at Peitou. Hot spring water was collected monthly at Peitou, Taiwan from September 1996. Radium isotopes in the hot spring water were co-precipitated with BaSO{sub 4}. The radioactivities in the BaSO{sub 4} were measured by gamma spectrometry. {sup 226}Ra, {sup 228}Ra and {sup 224}Ra concentrations were determined by concentrations of their daughter nuclides after attaining radioactive equilibrium. The concentrations of {sup 226}Ra were distributed in a range between 0.02 Bq/l and 0.05 Bq/l, showing a gradual decrease from September 1996 to July 1998 as a whole followed by a fairly constant period and it increased again from May 1999. The concentrations of {sup 228}Ra and {sup 224}Ra were distributed in ranges between 0.6 Bq/l and 1.2 Bq/l for {sup 228}Ra and between 3 Bq/l and 7.80 Bq/l for {sup 224}Ra, respectively. The concentrations of {sup 228}Ra and {sup 224}Ra were 2 or 3 orders magnitude higher compared to that of {sup 226}Ra. The Peitou hot spring water is rich in radium isotopes belonging to thorium decay series. The concentrations of {sup 228}Ra and {sup 224}Ra also changed a similar manner to {sup 226}Ra. A relatively large deviation from the gradual decline was observed on the sample collected on December 1997 and the sample taken just before the Taiwan earthquake in 21 September 1999 showed significant low concentrations. We observed higher concentration of {sup 224}Ra than {sup

  9. Radioactivity in hot spring water, Peitou, Taiwan and Taiwan earthquake in September, 1999

    Hot spring water sometimes contains high amounts of radioactivity. Peitou hot spring, located in north of Taipei, Taiwan, is well known its high concentrations of radium isotopes and production of rare radioactive rock, hokutolite. Substances dissolved in hot spring water would be useful tools to examine geochemical processes occurring under ground. Radionuclides in hot spring water give us an information about a time scale involved in the geochemical processes. We have analyzed concentrations of radionuclides in hot spring water to understand geochemical processes occurring at Peitou. Hot spring water was collected monthly at Peitou, Taiwan from September 1996. Radium isotopes in the hot spring water were co-precipitated with BaSO4. The radioactivities in the BaSO4 were measured by gamma spectrometry. 226Ra, 228Ra and 224Ra concentrations were determined by concentrations of their daughter nuclides after attaining radioactive equilibrium. The concentrations of 226Ra were distributed in a range between 0.02 Bq/l and 0.05 Bq/l, showing a gradual decrease from September 1996 to July 1998 as a whole followed by a fairly constant period and it increased again from May 1999. The concentrations of 228Ra and 224Ra were distributed in ranges between 0.6 Bq/l and 1.2 Bq/l for 228Ra and between 3 Bq/l and 7.80 Bq/l for 224Ra, respectively. The concentrations of 228Ra and 224Ra were 2 or 3 orders magnitude higher compared to that of 226Ra. The Peitou hot spring water is rich in radium isotopes belonging to thorium decay series. The concentrations of 228Ra and 224Ra also changed a similar manner to 226Ra. A relatively large deviation from the gradual decline was observed on the sample collected on December 1997 and the sample taken just before the Taiwan earthquake in 21 September 1999 showed significant low concentrations. We observed higher concentration of 224Ra than 228Ra. The activity ratio of 224Ra/228Ra far exceeded unity, more than 6, that is unusual because 224Ra and

  10. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.)

    Fouke, B. W.; Farmer, J. D.; Des Marais, D. J.; Pratt, L.; Sturchio, N. C.; Burns, P. C.; Discipulo, M. K.

    2000-01-01

    Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 degrees C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43-72 degrees C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30-62 degrees C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite "ice sheets", calcified bubbles, and aggregates of aragonite needles ("fuzzy dumbbells") precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28-54 degrees C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28-30 degrees C) is composed of calcite spherules and calcite "feather" crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO2 degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding delta 13C. Travertine delta 13C and delta 18O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature (approximately 50-73 degrees C) depositional facies. Conversely, travertine precipitating in the lower-temperature (crystals. Despite the production of H2S and the abundance of sulfide oxidizing microbes

  11. Formation and Fate of Fermentation Products in Hot Spring Cyanobacterial Mats

    Anderson, Karen L.; Tayne, Timothy A.; Ward, David M.

    1987-01-01

    The fate of representative fermentation products (acetate, propionate, butyrate, lactate, and ethanol) in hot spring cyanobacterial mats was investigated. The major fate during incubations in the light was photoassimilation by filamentous bacteria resembling Chloroflexus aurantiacus. Some metabolism of all compounds occurred under dark aerobic conditions. Under dark anaerobic conditions, only lactate was oxidized extensively to carbon dioxide. Extended preincubation under dark anaerobic condi...

  12. MICROBIAL POPULATION OF HOT SPRING WATERS IN ESKİŞEHİR/TURKEY

    Nalan YILMAZ SARIÖZLÜ

    2012-02-01

    Full Text Available In order to investigate and find out the bacterial community of hot spring waters in Eskişehir, Turkey, 7 hot spring water samples were collected from 7 different hot springs. All samples were inoculated using four different media (nutrient agar, water yeast extract agar, trypticase soy agar, starch casein agar. After incubation at 50 ºC for 14 days, all bacterial colonies were counted and purified. Gram reaction, catalase and oxidase properties of all isolates were determined and investigated by BIOLOG, VITEK and automated ribotyping system (RiboPrinter. The resistance of these bacteriawas examined against ampiciline, gentamisine, trimethoprime-sulphamethoxazole and tetracycline. As a result, heat resistant pathogenic microorganisms in addition to human normal flora were determined in hot spring waters (43-50 ºC in investigated area. Ten different species belong to 6 genera were identified as Alysiella filiformis, Bordetella bronchiseptica, B. pertussis, Molexalla caprae, M. caviae, M. cuniculi, M. phenylpyruvica, Roseomonas fauriae, Delftia acidovorans and Pseudomonas taetrolens.

  13. Genome Sequence of a Novel Archaeal Rudivirus Recovered from a Mexican Hot Spring

    Servín-Garcidueñas, L; Peng, X; Garrett, R;

    2013-01-01

    We report the consensus genome sequence of a novel GC-rich rudivirus, designated SMR1 (Sulfolobales Mexican rudivirus 1), assembled from a high-throughput sequenced environmental sample from a hot spring in Los Azufres National Park in western Mexico....

  14. Hot spring therapy of the patients exposed to atomic bomb radiation, 15

    The patients exposed to the atomic bomb radiation in Hiroshima area came to Beppu Spa to have hot spring therapy. During the fiscal year of 1982 (April, 1982, to March, 1983), 3972 persons came to the hot spring sanatorium, and 586 patients (14.8 %) received physical examination. Among them, 473 patients (80.7 %) were exposed to the atomic bomb radiation on August 6, 1945, or entered in the city of Hiroshima by August 20, 1945, according to the official notebook issued by the government. Physical examination was performed twice a week during their stay, and more than 53.5 % of the patients were older than 70, and the oldest was 93 years old. Blood pressure was measured when the patients came in and went out, and hypertensive patients were asked to observe the rule of treatment strictly. The complaints of the patients which brought them to the hot spring were mostly pain in bodies and lower extremities, and hypertension, common cold syndrome, diabetes and constipation. Patients took hot spring bath 2 - 3 times daily, and many patients had microwave and low frequency wave treatment. Soaking in a bath (containing 1.4 mg of cupric sulfate and 11.4 mg of zinc sulfate per liter) was practiced by diabetic patients. The therapeutic effects were difficult to judge because the period of stay of the most patients was about 10 days, but in most of them, subjective symptoms were relieved when they left the sanatorium. (Yamashita, S.)

  15. GEOTHERMAL ENVIRONMENTAL ASSESSMENT BASELINE STUDY: VEGETATION AND SOILS OF THE ROOSEVELT HOT SPRINGS GEOTHERMAL RESOURCE AREA

    Identification and elemental concentrations of indigenous soil and plant systems found on the Roosevelt Hot Spring KGRA are described. Twenty-three different soils and five separate plant communities are geographically mapped and identified. One hundred forty-seven plant species ...

  16. Isolation of Free-Living Amoebae from Sarein Hot Springs in Ardebil Province, Iran

    A Badirzadeh

    2011-06-01

    Full Text Available Background: Free-living amoebae (FLA are a group of ubiquitous protozoan, which are distrib­uted in the natural and artificial environment sources. The main aim of the current study was to identify the presence of FLA in the recreational hot springs of Sarein in Ardebil Province of Iran.Methods: Seven recreational hot springs were selected in Sarein City and 28 water samples (four from each hot spring were collected using 500 ml sterile plastic bottles during three month. Filtra­tion of water samples was performed, and culture was done in non-nutrient agar medium enriched with Escherichia coli. Identification of the FLA was based on morphological criteria of cysts and trophozoites. Genotype identification of Acanthamoeba positive samples were also per­formed using sequencing based method.Results: Overall, 12 out of 28 (42.9% samples were positive for FLA which Acanthamoeba and Vahlkampfiid amoebae were found in one (3.6% and 11 (39.3% samples, respectively. Se­quence analysis of the single isolate of Acanthamoeba revealed potentially pathogenic T4 geno­type corresponding to A. castellanii.Conclusion: Contamination of hot springs to FLA, such as Acanthamoeba T4 genotype (A. castel­lanii and Vahlkampfiid amoebae, could present a sanitary risk for high risk people, and health authorities must be aware of FLA presence.

  17. Caldimonas meghalayensis sp. nov., a novel thermophilic betaproteobacterium isolated from a hot spring of Meghalaya in northeast India

    Rakshak, K.; Ravinder, K.; Nupur, T.N.R.; Srinivas, P.; Kumar, A.

    While studying the microbial diversity of hot springs of North-east India we isolated a strain AK31T from the Jakrem hot spring of Meghalaya. The strain formed light yellow colonies on nutrient agar and was Gram negative, non spore...

  18. Exposure to Particle Matters and Hazardous Volatile Organic Compounds in Selected Hot Spring Hotels in Guangdong, China

    Qiusheng He; Qi Song; Yulong Yan; Zhichun Wang; Lili Guo; Xinming Wang

    2016-01-01

    In Guangdong province, many hot springs were exploited and developed into popular places for tourist. In addition, hotels have been set up near hot spring sites to attract people, including local citizens, to spend their spare time inside these so-called “spring hotels”. In our study, indoor air quality was investigated in four hot spring hotels in Guangdong province, China. Measured indoor pollutants included CO2, CO, PM10, PM2.5 and Volatile Organic Compounds (VOCs). As the result show, hig...

  19. Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring

    Jiang, Zhou; Li, Ping; van Nostrand, Joy D.; Zhang, Ping; Zhou, Jizhong; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Dawei; Wang, Yanxin

    2016-04-01

    Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring’s outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59–0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring’s pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs.

  20. Microbial communities and arsenic biogeochemistry at the outflow of an alkaline sulfide-rich hot spring

    Jiang, Zhou; Li, Ping; Van Nostrand, Joy D.; Zhang, Ping; Zhou, Jizhong; Wang, Yanhong; Dai, Xinyue; Zhang, Rui; Jiang, Dawei; Wang, Yanxin

    2016-01-01

    Alkaline sulfide-rich hot springs provide a unique environment for microbial community and arsenic (As) biogeochemistry. In this study, a representative alkaline sulfide-rich hot spring, Zimeiquan in the Tengchong geothermal area, was chosen to study arsenic geochemistry and microbial community using Illumina MiSeq sequencing. Over 0.26 million 16S rRNA sequence reads were obtained from 5-paired parallel water and sediment samples along the hot spring’s outflow channel. High ratios of As(V)/AsSum (total combined arsenate and arsenite concentrations) (0.59–0.78), coupled with high sulfide (up to 5.87 mg/L), were present in the hot spring’s pools, which suggested As(III) oxidation occurred. Along the outflow channel, AsSum increased from 5.45 to 13.86 μmol/L, and the combined sulfide and sulfate concentrations increased from 292.02 to 364.28 μmol/L. These increases were primarily attributed to thioarsenic transformation. Temperature, sulfide, As and dissolved oxygen significantly shaped the microbial communities between not only the pools and downstream samples, but also water and sediment samples. Results implied that the upstream Thermocrinis was responsible for the transformation of thioarsenic to As(III) and the downstream Thermus contributed to derived As(III) oxidation. This study improves our understanding of microbially-mediated As transformation in alkaline sulfide-rich hot springs. PMID:27126380

  1. Production and early preservation of lipid biomarkers in iron hot springs.

    Parenteau, Mary N; Jahnke, Linda L; Farmer, Jack D; Cady, Sherry L

    2014-06-01

    The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51-54°C, pH 5.5-6.0, and are very high in dissolved Fe(II) at 5.8-5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fatty acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. This study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs--environmental conditions that have been previously identified as highly relevant for Mars exploration. PMID:24886100

  2. Calculation of the relative chemical stabilities of proteins as a function of temperature and redox chemistry in a hot spring.

    Jeffrey M Dick

    Full Text Available Uncovering the chemical and physical links between natural environments and microbial communities is becoming increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked, through energetics of overall chemical reactions representing the formation of the proteins, to the environmental conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications of the thermodynamic calculations are possible for other natural microbial ecosystems.

  3. Utah State Prison Space Heating with Geothermal Heat - Resource Assessment Report Crystal Hot Springs Geothermal Area

    None

    1981-12-01

    Reported herein is a summary of work conducted under the Resource Assessment Program-Task 2, for the Utah State Prison Geothermal Space Heating Project at Crystal Hot Springs, Draper, Utah. Assessment of the geothermal resource in and around the Utah State Prison property began in october of 1979 with an aeromagnetic and gravity survey. These tasks were designed to provide detailed subsurface structural information in the vicinity of the thermal springs so that an informed decision as to the locations of test and production holes could be made. The geophysical reconnaissance program provided the structural details needed to focus the test drilling program on the most promising production targets available to the State Prison. The subsequent drilling and well testing program was conducted to provide information to aid fin the siting and design of a production well and preliminary design activities. As part of the resource assessment portion of the Utah State Prison Geothermal Project, a program for periodic geophysical monitoring of the Crystal Hot Springs resource was developed. The program was designed to enable determination of baseline thermal, hydraulic, and chemical characteristics in the vicinity of Crystal Hot Springs prior to production and to provide a history of these characteristics during resource development.

  4. Natural radioactivity in geothermal waters, Alhambra Hot Springs and nearby areas, Jefferson County, Montana

    Leonard, Robert B.; Janzer, Victor J.

    1978-01-01

    Radioactive hot springs issue from a fault zone in crystalline rock of the Boulder batholith at Alhambra, Jefferson County, in southwestern Montana. The discharge contains high concentrations of radon, and the gross alpha activity and the concentration of adium-226 exceed maximum levels recommended by the Environmental Protection Agency for drinking water. Part of the discharge is diverted for space heating, bathing, and domestic use. The radioactive thermal waters at measured temperatures of about 60°C are of the sodium bicarbonate type and saturated with respect to calcium carbonate. Radium-226 in the rock and on fractured surfaces or coprecipitated with calcium carbonate probably is the principal source of radon that is dissolved in the thermal water and discharged with other gases from some wells and springs. Local surface water and shallow ground water are of the calcium bicarbonate type and exhibit low background activity. The temperature, percent sodium, and radioactivity of mixed waters adjacent to the fault zone increase with depth. Samples from most of the major hot springs in southwestern Montana have been analyzed for gross alpha and beta activity. The high level of radioactivity at Alhambra appears to be related to leaching of radioactive material from siliceous veins by ascending thermal waters and is not a normal characteristic of hot springs issuing from fractured crystalline rock in Montana.

  5. Isolation and characterization of a radiation resistant thermophilic bacterium from radon hot spring

    A radiation resistant and thermophilic bacterium strain R4-33 was isolated from radon hot spring water samples, pretreated with 60Co γ-rays and UV irradiation. Tests on morphological, physiological and biochemical characters, fatty acid compositions, (G + C) mol% contents, and 16S rDNA sequencing were conducted. The results showed that strain R4-33 was of rod-shape, Gram-negative, atrichous, and endospore-forming. The optimum growth temperature and pH were 60 ℃ and 7.5, respectively. The strain utilized glucose, maltose and trehalose as carbon sources, and hydrolyzed casein and starch. Its catalase positive. The strain was sensitive to penicillin, neomycin, erythromycin, vancomycin, streptomycin, gentamycin, amikacin and ampicillin. The major cellular fatty acids were C14:1 (48.8%) and C15:1 (15.2%). The (G + C) mol% content of DNA was 58.2%. Phylogenetic tree based on 16S rDNA sequence showed R4-33 shared highly similarity to those of species in genus Anoxybacillus, especially to that of Anoxybacillus gonensis (99.5%). Based on the above, the strain R4-33 was proposed to the evolution branch of Anoxybacillus and designated as Anoxybacillu sp. R4-33. The UV and γ-radiation tests showed that the strain R4-33 had an ability of resistance to UV of 396 J/m2 and 60Co γ-rays irradiation of 14.0 kGy, indicating that the strain was a radiation resistant and thermophilic bacterium. (authors)

  6. Identification of Novel Positive-Strand RNA Viruses by Metagenomic Analysis of Archaea-Dominated Yellowstone Hot Springs

    Benjamin Bolduc; Daniel P. Shaughnessy; Yuri I. Wolf; Eugene V. Koonin; Francisco F. Roberto; Mark Young

    2012-05-01

    There are no known RNA viruses that infect Archaea. Filling this gap in our knowledge of viruses will enhance our understanding of the relationships between RNA viruses from the three domains of cellular life and, in particular, could shed light on the origin of the enormous diversity of RNA viruses infecting eukaryotes. We describe here the identification of novel RNA viral genome segments from high-temperature acidic hot springs in Yellowstone National Park in the United States. These hot springs harbor low-complexity cellular communities dominated by several species of hyperthermophilic Archaea. A viral metagenomics approach was taken to assemble segments of these RNA virus genomes from viral populations isolated directly from hot spring samples. Analysis of these RNA metagenomes demonstrated unique gene content that is not generally related to known RNA viruses of Bacteria and Eukarya. However, genes for RNA-dependent RNA polymerase (RdRp), a hallmark of positive-strand RNA viruses, were identified in two contigs. One of these contigs is approximately 5,600 nucleotides in length and encodes a polyprotein that also contains a region homologous to the capsid protein of nodaviruses, tetraviruses, and birnaviruses. Phylogenetic analyses of the RdRps encoded in these contigs indicate that the putative archaeal viruses form a unique group that is distinct from the RdRps of RNA viruses of Eukarya and Bacteria. Collectively, our findings suggest the existence of novel positive-strand RNA viruses that probably replicate in hyperthermophilic archaeal hosts and are highly divergent from RNA viruses that infect eukaryotes and even more distant from known bacterial RNA viruses. These positive-strand RNA viruses might be direct ancestors of RNA viruses of eukaryotes.

  7. Gravity and ground magnetic surveys of the Thermo Hot Springs KGRA region, Beaver County, Utah

    Sawyer, Robert F.; Cook, Kenneth L.

    1977-08-01

    During the period June to September 1976, gravity and ground magnetic surveys were made in the Thermo Hot Springs KGRA region which is located southwest of the town of Milford, Beaver County, Utah. The regional surveys comprised 273 new gravity and magnetic stations and incorporated 104 previous gravity stations over an area of approximately 620 km{sup 2}. The detailed surveys consisted of 9 east-west profiles in the immediate vicinity of the Thermo Hot Springs KGRA. The gravity data were reduced and are presented as terrain-corrected Bouguer gravity anomaly maps. Terrain corrections were made to a distance of 18.8 km. The regional gravity map shows the following features: (1) a large north-south trend with total relief of 5 mgal extending through the central portion of the study area; (2) an east-west trend with relief of about 7-8 mgal south of the Star Range and Shauntie Hills; (3) a north-south trend with 5 mgal relief east of Blue Mountain; and (4) a broad low of approximately 5 mgal closure southwest of the Shauntie Hills. The trends are probably caused by major faults and the gravity low is probably caused by the southern end of the Wah Wah Valley graben. The detailed gravity map indicates two possible east-west trending faults intersecting a major north-south trending fault in the immediate vicinity of the Thermo Hot Springs. The location of the hot springs appears to be fault controlled. To facilitate interpretation of the gravity data, the following processing and modeling techniques were used: (1) high-pass frequency filtering; (2) polynomial fitting; (3) second derivative; (4) strike filtering; (5) two-dimensional modeling; and (6) three-dimensional modeling. These techniques proved helpful as they more clearly delineated features of interest. The residual maps outlined an elongate north-south graben that extends through the survey area. The strike-filtered maps emphasize the major north-south and east-west faults of the region. Modeling provided

  8. [Comment on “Submarine hot springs: Origin of life?”] Hydrothermal vents revisited

    Hoffman, Sarah

    It was gratifying to read Peter Bell's synopsis of our paper [Corliss et al., 1981] in the March 23 issue of Eos (Submarine hot springs: Origin of life?) however, in the last sentence, he wrote, ‘They note that microorganisms found in recent expeditions to the submarine hot springs of the East Pacific Rise would be evidence that the processes are still occurring.’In our final paragraph we actually said that while “events leading to the formation of complex organic compounds and “protocell” structures may still be occurring in present-day oceanic hydrothermal systems … the complex communities of bacteria in modern oceanic environments would outcompete and consume abiotically synthesized protocells…” Modern-day vent microbiota will probably mask or destroy any evidence for abiotic synthesis in the hydrothermal vents.

  9. Ecological differentiation in planktonic and sediment-associated chemotrophic microbial populations in Yellowstone hot springs.

    Colman, Daniel R; Feyhl-Buska, Jayme; Robinson, Kirtland J; Fecteau, Kristopher M; Xu, Huifang; Shock, Everett L; Boyd, Eric S

    2016-09-01

    Chemosynthetic sediment and planktonic community composition and sizes, aqueous geochemistry and sediment mineralogy were determined in 15 non-photosynthetic hot springs in Yellowstone National Park (YNP). These data were used to evaluate the hypothesis that differences in the availability of dissolved or mineral substrates in the bulk fluids or sediments within springs coincides with ecologically differentiated microbial communities and their populations. Planktonic and sediment-associated communities exhibited differing ecological characteristics including community sizes, evenness and richness. pH and temperature influenced microbial community composition among springs, but within-spring partitioning of taxa into sediment or planktonic communities was widespread, statistically supported (P < 0.05) and could be best explained by the inferred metabolic strategies of the partitioned taxa. Microaerophilic genera of the Aquificales predominated in many of the planktonic communities. In contrast, taxa capable of mineral-based metabolism such as S(o) oxidation/reduction or Fe-oxide reduction predominated in sediment communities. These results indicate that ecological differentiation within thermal spring habitats is common across a range of spring geochemistry and is influenced by the availability of dissolved nutrients and minerals that can be used in metabolism. PMID:27306555

  10. Temporal and Seasonal Variations of the Hot Spring Basin Hydrothermal System, Yellowstone National Park, USA

    Cheryl Jaworowski

    2013-12-01

    Full Text Available Monitoring Yellowstone National Park’s hydrothermal systems and establishing hydrothermal baselines are the main goals of an ongoing collaborative effort between Yellowstone National Park’s Geology program and Utah State University’s Remote Sensing Services Laboratory. During the first years of this research effort, improvements were made in image acquisition, processing and calibration. In 2007, a broad-band, forward looking infrared (FLIR camera (8–12 microns provided reliable airborne images for a hydrothermal baseline of the Hot Spring Basin hydrothermal system. From 2008 to 2011, night-time, airborne thermal infrared image acquisitions during September yielded temperature maps that established the temporal variability of the hydrothermal system. A March 2012 airborne image acquisition provided an initial assessment of seasonal variability. The consistent, high-spatial resolution imagery (~1 m demonstrates that the technique is robust and repeatable for generating corrected (atmosphere and emissivity and calibrated temperature maps of the Hot Spring Basin hydrothermal system. Atmospheric conditions before and at flight-time determine the usefulness of the thermal infrared imagery for geohydrologic applications, such as hydrothermal monitoring. Although these ground-surface temperature maps are easily understood, quantification of radiative heat from the Hot Spring Basin hydrothermal system is an estimate of the system’s total energy output. Area is a key parameter for calculating the hydrothermal system’s heat output. Preliminary heat calculations suggest a radiative heat output of ~56 MW to 62 MW for the central Hot Spring Basin hydrothermal system. Challenges still remain in removing the latent solar component within the calibrated, atmospherically adjusted, and emissivity corrected night-time imagery.

  11. Recovery Act Validation of Innovative Exploration Techniques Pilgrim Hot Springs, Alaska

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  12. Biomineralization of phototrophic microbes in silica-enriched hot springs in South China

    PENG XiaoTong; ZHOU HuaiYang; WU ZhiJun; JIANG Lei; TANG Song; YAO HuiQiang; CHEN GuangQian

    2007-01-01

    Microbial mats in two hot springs in South China were sampled for the research of mineralization of microbes and its mechanism by the methods of geology and modern biology. The results show that hot spring microbes have the key capability for enrichment of Si, Al, Fe, Ca and other elements, and the microbes are also crucial for the formation of SiO2, CaCO3, clay and so on. The extracellular polymeric substances (EPS) play important roles in the process of mineralization of hot spring microbes, which mainly takes place in the layer of EPS outside cell wall or sheath of cyanobacteria. The sheath outside cell wall, which keeps the normal metabolism of cyanobacteria during the process of mineralization on its surface, is also considerable for the biomineralization of cyanobacteria. According to structure and mineralization characteristics of two microbial mats, the process of mineralization can be divided into three stages, namely, early surface mineralization, middle degradation mineralization, and late desquamation of mineral. The above conclusions are significant for comprehension of the process of mineralization, the process of deposition and the preservation of microfossil in modern and ancient extreme environments.

  13. Cultivation-independent comprehensive survey of bacterial diversity in Tulsi Shyam Hot Springs, India

    Anjana Ghelani

    2015-06-01

    Full Text Available A taxonomic description of bacteria was deduced from 5.78 Mb metagenomic sequence retrieved from Tulsi Shyam hot spring, India using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP. Metagenome contained 10,893 16S rDNA sequences that were analyzed by MG-RAST server to generate the comprehensive profile of bacteria. Metagenomic data are available at EBI under EBI Metagenomics database with accession no. ERP009559. Metagenome sequences represented the 98.2% bacteria origin, 1.5% of eukaryotic and 0.3% were unidentified. A total of 16 bacterial phyla demonstrating 97 families and 287 species were revealed in the hot spring metagenome. Most abundant phyla were Firmicutes (65.38%, Proteobacteria (21.21% and unclassified bacteria (10.69%. Whereas, Peptostreptococcaceae (37.33%, Clostridiaceae (23.36%, and Enterobacteriaceae (16.37% were highest reported families in metagenome. Ubiquitous species were Clostridium bifermentans (17.47%, Clostridium lituseburense (13.93% and uncultured bacterium (10.15%. Our data provide new information on hot spring bacteria and shed light on their abundance, diversity, distribution and coexisting organisms.

  14. Effects of Misasa hot spring water on the growth of vegetables (Joint research)

    Tottori University and Japan Atomic Energy Agency started a joint study to investigate the effect of hot spring water on the growth of vegetable plants in 2009. The aim of the study is to examine a feasibility of producing a regionally special vegetable with considering the characteristics of the Misasa district, where radon hot springs are historically famous. This report illustrates the intermediate results obtained from the study carried out from 2009 to 2010. (1) Screening test: Eighteen plants were examined for screening. As the results, Misasa hot spring water used in the water culture enlarged the growths of 14 plants. Lastly, 9 plants were selected as candidate plants for further examinations. (2) Sample preparation: Plants sampled in the water culture were lyophilized and stored in a freezer for nutrio-physiological analyses to select the suitable plant from the 9 plants. (3) Examination in labor-saving cultivation: Preliminary examinations were performed with a large-scale system to establish a practical labor-saving water culture system. (author)

  15. Mantle-derived CO2 in Hot Springs of the Rehai Geothermal Field,Tengchong, China

    REN Jianguo; WANG Xianbin; OUYANG Ziyuan

    2005-01-01

    Gas concentrations and isotopic compositions of He and CO2 were determined on free gas samples from ten hot springs of the Rehai geothermal field, Tengchong, China. The results showed that hot-spring CO2 gas, together with He,was derived mainly from the mantle, indicating the accumulation of mantle-derived volatiles beneath the survey area. The δ13C values of CO2, higher than those of the typical mantle-derived carbon and the isotopic composition of hot-spring-free CO2 in unequilibrium with dissolved CO2, are recognized only in the Rehai geothermal field, suggesting that there seems to be a still-degassing magmatic intrusion at depths, which provides mantle-derived volatiles to the hydrothermal system above. The accumulation of those volatiles has probably played an important role in triggering earthquakes in this region.In addition, the isotopic characteristics of He and C also indicate that the magmatic intrusion seems to have been derived from the MORB source, and could be contaminated by crustal materials during its upwelling through the continental crust.

  16. Skeletal crystals of calcite and trona from hot-spring deposits in Kenya and New Zealand

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renaut, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

    1996-01-01

    Skeletal crystals are hollow crystals that develop because their outer walls grow before their cores. The presence of skeletal crystals of calcite (three types--trigonal prisms, hexagonal prisms, and plates) and trona in hot (> 90 C) spring deposits in New Zealand (Waikite Springs and Ohaaki Pool) and Kenya (Lorusio hot springs) shows that they can form in natural sedimentary regimes. Analysis of samples from these deposits shows that this crystal morphology develops under disequilibrium conditions that are unrelated to a specific environmental or diagenetic setting. Skeletal crystals transform into solid crystals when subsequent precipitation fills their hollow cores. In some cases, this may involve precipitation of crystalline material that has a sieve-like texture. In other examples, the skeletal crystal provides a framework upon which other materials can be precipitated. Walls in the skeletal trigonal calcite prisms from Waikite Springs are formed of subcrystals that mimic the shape of the parent crystal. Similarly, plate-like skeletal crystals from Lorusio are formed of densely packed subcrystals that are < 0.5 {micro}m long. Conversely, the walls of the skeletal hexagonal calcite crystals from Ohaaki Pool and the skeletal trona crystals from Lorusio are not formed of subcrystals. Recognition of skeletal crystals is important because they represent growth that follows the reverse pattern of normal growth. Failure to recognize that crystal growth followed the skeletal motif may lead to false interpretations concerning the growth of a crystal.

  17. Determining barriers to developing geothermal power generation in Japan: Societal acceptance by stakeholders involved in hot springs

    After many years of stagnant growth in geothermal power generation, development plans for new geothermal plants have recently emerged throughout Japan. Through a literature review, we investigated the relationships between the principal barriers to geothermal development and we thereby analyzed the deciding factors in the future success of such enterprises. The results show that the societal acceptance of geothermal power by local stakeholders is the fundamental barrier as it affects almost all other barriers, such as financial, technical, and political risks. Thus, we conducted semi-structured interviews with 26 stakeholders including developers, hot spring inn managers, and local government officials. Some hot spring inn managers and local government officials noted that they have always been strongly concerned about the adverse effects of geothermal power generation on hot springs; their opposition has delayed decision-making by local governments regarding drilling permits, prolonged lead times, and caused other difficulties. A key reason for opposition was identified as uncertainty about the reversibility and predictability of the adverse effects on hot springs and other underground structures by geothermal power production and reinjection of hot water from reservoirs. Therefore, we discuss and recommend options for improving the risk management of hot springs near geothermal power plants. - Highlights: • We clarify relationships between barriers to geothermal power development in Japan. • Local acceptance by hot spring managers is the most prominent barrier. • Uncertainty of reversibility and predictability induces low acceptance. • Risk transfer system and dialogue are needed to alleviate concerns

  18. High prevalence, genetic diversity and intracellular growth ability of Legionella in hot spring environments.

    Tian Qin

    Full Text Available BACKGROUND: Legionella is the causative agent of Legionnaires' disease, and hot springs are a major source of outbreaks of this disease. It is important from a public health perspective to survey hot spring environments for the presence of Legionella. METHODS: Prospective surveillance of the extent of Legionella pollution was conducted at three hot spring recreational areas in Beijing, China in 2011. Pulsed-field gel electrophoresis (PFGE and sequence-based typing (SBT were used to describe the genetic polymorphism of isolates. The intracellular growth ability of the isolates was determined by interacting with J774 cells and plating the dilutions onto BCYE agar plates. RESULTS: Overall, 51.9% of spring water samples showed Legionella-positive, and their concentrations ranged from 1 CFU/liter to 2,218 CFU/liter. The positive rates of Legionella were significantly associated with a free chlorine concentration of ≥0.2 mg/L, urea concentration of ≥0.05 mg/L, total microbial counts of ≥400 CFU/ml and total coliform of ≥3 MPN/L (p<0.01. The Legionella concentrations were significantly associated with sample temperature, pH, total microbial counts and total coliform (p<0.01. Legionella pneumophila was the most frequently isolated species (98.9%, and the isolated serogroups included serogroups 3 (25.3%, 6 (23.4%, 5 (19.2%, 1 (18.5%, 2 (10.2%, 8 (0.4%, 10 (0.8%, 9 (1.9% and 12 (0.4%. Two hundred and twenty-eight isolates were analyzed by PFGE and 62 different patterns were obtained. Fifty-seven L. pneumophila isolates were selected for SBT analysis and divided into 35 different sequence types with 5 main clonal groups. All the 57 isolates had high intracellular growth ability. CONCLUSIONS: Our results demonstrated high prevalence and genetic polymorphism of Legionella in springs in Beijing, China, and the SBT and intracellular growth assay results suggested that the Legionella isolates of hot spring environments were pathogenic. Improved control

  19. Cultivable diversity of thermophilic arsenite/ferrous-oxidizing microorganisms in hot springs of Taiwan

    Lu, G.; Lin, Y.; Chang, Y.; Wang, P.; Lin, L.

    2009-12-01

    Elevated levels of arsenic in groundwater and surface water bodies have posed a stringent threat to the deterioration of the water quality for drinking and agriculture purposes around the world. In particular, arsenic liberated from volcanic and sedimentary rocks at high temperatures would be immobilized through adsorption on iron oxide and/or crystallization of iron-bearing minerals downstream at low temperatures. Understanding how microbially-catalytic reactions are involved in the changes of the redox state of arsenic and iron along a flow path would provide important constraints on the arsenic mobility in natural occurrences. The aims of this study were to isolate and characterize thermophilic arsenite- and iron-oxidizing microbes that would facilitate to establish the linkages between microbial distribution and in situ Fe/As cycling processes. Four source waters (LH05, LH08, SYK and MT) from acid-sulfate springs (pH 2-3, 60-97oC) located in the Tatun volcanic area of northern Taiwan were collected and inoculated into media targeting on autotrophic ferrous iron (FC3), arsenite (AC3 ,ACC3, AC7, ACC7), arsenite-resistant hydrogen (AH23), arsenite-resistant hydrogen-sulfur (AH2S3), and arsenite-resistant sulfur oxidations(AS3), and heterotrophic arsenite oxidation(AH3, AH7) at pH 3, and 7 at temperatures of 50, 70 and 80oC. Samples from the Kuantzuling mud springs (KTL) in southwestern Taiwan known with elevated arsenic levels (0.4 ppm) were also collected, inoculated into the heterotrophic medium and incubated at 50, 60, 70 and 80oC. Isolates obtained from KTL were subject to test on the AH7 and ACC7. Two positive enrichments for iron oxidation at 50oC and 70oC were confirmed by the steadily decrease of ferrous iron and increase of precipitates over 4 transfers for samples from the SYK spring. Diverse morphological types of microbes were enriched in all types of arsenite-bearing media at 50oC except for AH23. At 70oC, positive enrichments were found in media

  20. Production and Early Preservation of Lipid Biomarkers in Iron Hot Springs

    Parenteau, Mary N.; Jahnke, Linda L.; Farmer, Jack D.; Cady, Sherry L.

    2014-06-01

    The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51–54°C, pH 5.5–6.0, and are very high in dissolved Fe(II) at 5.8–5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community composition of the microbial mats, link source organisms to geologically significant biomarkers, and investigate how iron mineralization degrades the lipid signature of the community. The phospholipid and glycolipid fatty acid profiles of the highest-temperature mats indicate that they are dominated by cyanobacteria and green nonsulfur filamentous anoxygenic phototrophs (FAPs). Diagnostic lipid biomarkers of the cyanobacteria include midchain branched mono- and dimethylalkanes and, most notably, 2-methylbacteriohopanepolyol. Diagnostic lipid biomarkers of the FAPs (Chloroflexus and Roseiflexus spp.) include wax esters and a long-chain tri-unsaturated alkene. Surprisingly, the lipid biomarkers resisted the earliest stages of microbial degradation and diagenesis to survive in the iron oxides beneath the mats. Understanding the potential of particular sedimentary environments to capture and preserve fossil biosignatures is of vital importance in the selection of the best landing sites for future astrobiological missions to Mars. Finally, this study explores the nature of organic degradation processes in moderately thermal Fe(II)-rich groundwater springs—environmental conditions that have been previously identified as highly relevant for Mars exploration.

  1. A metastable equilibrium model for the relative abundances of microbial phyla in a hot spring.

    Jeffrey M Dick

    Full Text Available Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient in the outflow channel of the hot spring known as "Bison Pool" in Yellowstone National Park. The relative abundances of major phyla in individual communities sampled along the outflow channel are modeled by computing metastable equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments. The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities, assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that

  2. Nocardioides pakistanensis sp. nov., isolated from a hot water spring of Tatta Pani in Pakistan.

    Amin, Arshia; Ahmed, Iftikhar; Habib, Neeli; Abbas, Saira; Xiao, Min; Hozzein, Wael N; Li, Wen-Jun

    2016-08-01

    A Gram-staining positive, non-spore forming, non-pigmented and non-motile bacterium, designated as NCCP-1340(T), was isolated from a hot water spring, Tatta Pani, Pakistan. Cells of strain NCCP-1340(T) were observed to be aerobic, rod shaped, catalase and urease positive but H2S production and oxidase negative. Growth was observed at pH 6.0-8.0 (optimum pH 7.0) and at 20-40 °C (optimum 37 °C). The strain could tolerate 0-8 % NaCl (optimum 2 %, w/v). Phylogenetic analysis based on 16S rRNA gene sequence comparisons revealed that strain NCCP-1340(T) belongs to the genus Nocardioides and is closely related to Nocardioides iriomotensis JCM 17985(T) (96.8 %), Nocardioides daedukensis KCTC 19601(T) (96.6 %), Nocardioides jensenii KCTC 9134(T) (96.1 %) and Nocardioides daejeonensis KCTC 19772(T) (96.1 %). The DNA-DNA relatedness values of strain NCCP-1340(T) with N. iriomotensis JCM 17985(T), N. daedukensis KCTC 19601(T) and N. jensenii KCTC 9134(T) were found to be less than 53 %. The DNA G+C content of strain NCCP-1340(T) was determined to be 71.8 mol  %. The affiliation of strain NCCP-1340(T) to the genus Nocardioides was further supported by chemotaxonomic data which showed the presence of MK-8(H4) as major menaquinone system; iso-C16:0, C17:0, C16:0 10-methyl, iso-C15:0 and C 15:0 as major cellular fatty acids; and diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and unidentified glycolipids and polar lipids in the polar lipids profile. The cell wall peptidoglycan contained LL-diaminopimelic acid as the diagnostic amino acid. On the basis of physiological and biochemical characteristics and the phylogenetic analyses, strain NCCP-1340(T) can be distinguished from the closely related taxa and thus represents a novel species of the genus Nocardioides, for which the name Nocardioides pakistanensis sp. nov. is proposed with the type strain NCCP-1340(T) (= DSM 29942(T) = JCM 30630(T)). PMID:27170166

  3. Caloramator quimbayensis sp. nov., an anaerobic, moderately thermophilic bacterium isolated from a terrestrial hot spring.

    Rubiano-Labrador, Carolina; Baena, Sandra; Díaz-Cárdenas, Carolina; Patel, Bharat K C

    2013-04-01

    An anaerobic, moderately thermophilic, terminal-spore-forming bacterium, designated strain USBA A(T), was isolated from a terrestrial hot spring located at an altitude of 2683 m in the Andean region of Colombia (04° 50' 14.0″ N 75° 32' 53.4″ W). Cells of strain USBA A(T) were Gram-stain-positive, straight to slightly curved rods (0.9×2.5 µm), that were arranged singly or in pairs, and were motile by means of flagella. Growth occurred at 37-55 °C and pH 6.0-8.0, with a doubling time of 2 h under the optimal conditions (50 °C and pH 7.0). Glucose fermentation in strain USBA A(T) required yeast extract or peptone (each at 0.2 %, w/v). The novel strain fermented sugars, amino acids, Casamino acids, propanol, propionate, starch and dextrin, but no growth was observed on galactose, lactose, xylose, histidine, serine, threonine, benzoate, butyrate, lactate, pyruvate, succinate, methanol, ethanol, glycerol, casein, gelatin or xylan. The end products of glucose fermentation were formate, acetate, ethanol and lactate. Strain USBA A(T) did not grow autotrophically (with CO2 as carbon source and H2 as electron donor) and did not reduce thiosulfate, sulfate, elemental sulfur, sulfite, vanadium (V) or Fe (III) citrate. Growth of strain USBA A(T) was inhibited by ampicillin, chloramphenicol, kanamycin, penicillin and streptomycin (each at 10 µg ml(-1)). The predominant fatty acids were iso-C15 : 0, C16 : 0 and iso-C17 : 0 and the genomic DNA G+C content was 32.6 mol%. 16S rRNA gene sequence analysis indicated that strain USBA A(T) belonged in the phylum Firmicutes and that its closest relative was Caloramator viterbiensis JW/MS-VS5(T) (95.0 % sequence similarity). A DNA-DNA relatedness value of only 30 % was recorded in hybridization experiments between strain USBA A(T) and Caloramator viterbiensis DSM 13723(T). Based on the phenotypic, chemotaxonomic and phylogenetic evidence and the results of the DNA-DNA hybridization experiments, strain USBA A

  4. Lake Bogoria, Kenya: Hot and warm springs, geysers and Holocene stromatolites

    McCall, Joseph

    2010-11-01

    I carried out the first regional geological survey of the central Gregory Rift Valley in Kenya in 1958-60, and review here the numerous subsequent specialised studies focused on the unique endoreic Lake Bogoria (formerly Hannington), studies which embraced the sedimentology of the Holocene sediments around the lake shores, the hot-spring and geyser activities and the coring of the sediments beneath the lake. I focus on the occurrences of stromatolites in a hydrothermal environment, both in two closely spaced late Holocene (~ 4500 yr BP) generations at the lake margin, associated with algae and cyanobacteria, which represent a final more humid climatic phase after the several interglacial more humid phases (also represented by stromatolite occurrences in other rift valley lakes); and also at present being formed, at the edge of the now highly saline lake, in the very hot springs in association with thermophilic bacteria and with silica. I briefly mention the older occurrences in Lake Magadi to the south, which are quite different; and form three generations; and also present-day occurrences of stromatolites in a flood-plain environment, unlike the present-day environment at Lake Bogoria. Other stromatolite occurrences are mentioned, around Lake Turkana and the former lake in the Suguta River valley to the north. I suggest that the hot waterfall at Kapedo, at the head of the Suguta River, and the central island of Ol Kokwe (with hot springs, amidst the fresh water Lake Baringo) could well be investigated for stromatolite occurrences. Lake Bogoria, an empty wilderness occupied only by flamingos when I mapped it, is now more accessible and provides a unique open-air laboratory for such researches, but like all the Rift Valley lakes, is unique, sui generis. Results of detailed investigations of the type reviewed here, can only be applied to other occurrences of stromatolites elsewhere in the rift system or beyond the rift system with reservation.

  5. Geothermal investigations at Crystal Hot Springs, Salt Lake County, Utah. Report of Investigation No. 139

    Murphy, P.J.; Gwynn, J.W.

    1979-10-01

    The Crystal Hot Springs geothermal system is located in southern Salt Lake County, Utah 22.5 km (14 miles) south of Salt Lake City near the town of Draper. The system is immediately west of the Wasatch Mountains at the easternmost edge of the Basin and Range physiographic province within an active seismic zone referred to as the Intermountain Seismic Belt. The springs are located north of an east-west trending horst known as the Traverse Range. The range is intermediate in elevation between the Wasatch Range to the east and the valley grabens to the north and south. A series of northeast striking normal faults with a combined displacement of at least 90/sup 0/m (3000 ft) separate the horst from the Jordan Valley graben to the north. The spring system is located between two closely spaced range-front faults where the faults are intersected by a north-northeast striking fault. The fractured Paleozoic quartzite bedrock 25 m (80 ft) beneath the surface leaks thermal water into the overlying unconsolidated material and the springs issue along zones of weaknesses in the relatively impermeable confining zone that parallel the bedrock faults. Meteoric water from the Wasatch Range is warmed in the normal geothermal gradient of the province (approximately 32/sup 0/C/km) as the water circulates to a minimum depth of approximately 2.5 km (1.55 miles) via an undetermined path through aquifers and faults. Data collected at the Crystal Hot Springs system under the DOE state coupled program are presented for use by individuals interested in the system.

  6. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities

    Ward, D. M.; Ferris, M. J.; Nold, S. C.; Bateson, M. M.

    1998-01-01

    This review summarizes a decade of research in which we have used molecular methods, in conjunction with more traditional approaches, to study hot spring cyanobacterial mats as models for understanding principles of microbial community ecology. Molecular methods reveal that the composition of these communities is grossly oversimplified by microscopic and cultivation methods. For example, none of 31 unique 16S rRNA sequences detected in the Octopus Spring mat, Yellowstone National Park, matches that of any prokaryote previously cultivated from geothermal systems; 11 are contributed by genetically diverse cyanobacteria, even though a single cyanobacterial species was suspected based on morphologic and culture analysis. By studying the basis for the incongruity between culture and molecular samplings of community composition, we are beginning to cultivate isolates whose 16S rRNA sequences are readily detected. By placing the genetic diversity detected in context with the well-defined natural environmental gradients typical of hot spring mat systems, the relationship between gene and species diversity is clarified and ecological patterns of species occurrence emerge. By combining these ecological patterns with the evolutionary patterns inherently revealed by phylogenetic analysis of gene sequence data, we find that it may be possible to understand microbial biodiversity within these systems by using principles similar to those developed by evolutionary ecologists to understand biodiversity of larger species. We hope that such an approach guides microbial ecologists to a more realistic and predictive understanding of microbial species occurrence and responsiveness in both natural and disturbed habitats.

  7. Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning.

    Robin L Miller-Coleman

    Full Text Available Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes. PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7-8.5 at concentrations up to 6.6×10(6 16S rRNA gene copies g(-1 wet sediment. In Yellowstone National Park (YNP, Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB, Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C

  8. Hydrochemistry of the Hot Springs in Western Sichuan Province Related to the Wenchuan M S 8.0 Earthquake

    Zhi Chen; Jianguo Du; Xiaocheng Zhou; Li Yi; Lei Liu; Chao Xie; Yueju Cui; Ying Li

    2014-01-01

    Hydrogeochemistry of 32 hot springs in the western Sichuan Province after the Wenchuan M S 8.0 earthquake was investigated by analyzing the concentrations of cation and anion and the isotopic compositions of hydrogen and oxygen. The water samples of the hot springs were collected four times from June 2008 to April 2010. Hydrogeochemical data indicated the water samples can be classified into 9 chemical types. Values of δ D and δ 18O indicated that the spring waters were mainly derived from me...

  9. Liquid chromatographic determination of uranium in Laki hot springs using bis(salicylaldehyde)propylene diimine as derivatizing reagent

    Preconcentration of uranium from water samples of Laki hot springs has been examined with aluminium oxide, followed by acid dissolution of the precipitate. Precolumn derivatization is carried out with bis(salicylaldehyde) propylenediimine (H/sub 2/SA/sub 2/pn). Elution and separation have been examined from YMC Pack ODS 5 mu m column with a mixture of methanol:acetonitrile:water (60:10:30 v/v/v). Detection UV was at 260 nm. Iron and copper are also detected and are simultaneously quantized with uranium. The amounts of metal ions obtained are within 11-89 mu g/L with coefficients variation (C.V) 2.6-4.5 preconcentration of 390 times. (author)

  10. Morphological, phylogenetic and physiological diversity of cyanobacteria in the hot springs of Zerka Ma

    Aharon Oren

    2009-12-01

    Full Text Available The freshwater thermal springs of Zerka Ma'in, located in Jordan in the mountains of Moab east of the Dead Sea, are densely inhabited by cyanobacteria up to the highest temperature of 63°C. We have investigated the cyanobacterial diversity of these springs and their outflow channels by microscopic examination, culture-dependent and culture-independent phylogenetic analysis, and by physiological studies of selected isolates of special interest. Both unicellular and filamentous types of cyanobacteria are present, and we identified morphological types such as Thermosynechococcus, Chroogloeocystis, Fischerella (Mastigocladus, Scytonema (occurring as large masses at lower temperatures, and others. Although morphologically similar cyanobacteria have been identified in hot springs world-wide, the Zerka Ma’in strains were phylogenetically distinct based on 16S rRNA gene sequence analysis. Considerable diversity was detected also in the gene sequences of nifH (nitrogenase reductase, encoding one of the key enzymes involved in nitrogen fixation. Nitrogen fixation in a Mastigocladus isolate obtained from the springs was investigated in further depth. The heterocystous strain could fix nitrogen (as assayed by acetylene reduction at tem peratures up to 53°C.

  11. Coordinating environmental genomics and geochemistry reveals metabolic transitions in a hot spring ecosystem.

    Wesley D Swingley

    Full Text Available We have constructed a conceptual model of biogeochemical cycles and metabolic and microbial community shifts within a hot spring ecosystem via coordinated analysis of the "Bison Pool" (BP Environmental Genome and a complementary contextual geochemical dataset of ~75 geochemical parameters. 2,321 16S rRNA clones and 470 megabases of environmental sequence data were produced from biofilms at five sites along the outflow of BP, an alkaline hot spring in Sentinel Meadow (Lower Geyser Basin of Yellowstone National Park. This channel acts as a >22 m gradient of decreasing temperature, increasing dissolved oxygen, and changing availability of biologically important chemical species, such as those containing nitrogen and sulfur. Microbial life at BP transitions from a 92 °C chemotrophic streamer biofilm community in the BP source pool to a 56 °C phototrophic mat community. We improved automated annotation of the BP environmental genomes using BLAST-based Markov clustering. We have also assigned environmental genome sequences to individual microbial community members by complementing traditional homology-based assignment with nucleotide word-usage algorithms, allowing more than 70% of all reads to be assigned to source organisms. This assignment yields high genome coverage in dominant community members, facilitating reconstruction of nearly complete metabolic profiles and in-depth analysis of the relation between geochemical and metabolic changes along the outflow. We show that changes in environmental conditions and energy availability are associated with dramatic shifts in microbial communities and metabolic function. We have also identified an organism constituting a novel phylum in a metabolic "transition" community, located physically between the chemotroph- and phototroph-dominated sites. The complementary analysis of biogeochemical and environmental genomic data from BP has allowed us to build ecosystem-based conceptual models for this hot

  12. In Situ Production of Branched Glycerol Dialkyl Glycerol Tetraethers in a Great Basin Hot Spring (USA

    ChuanlunZhang

    2013-07-01

    Full Text Available Branched glycerol dialkyl glycerol tetraethers (bGDGTs are predominantly found in soils and peat bogs. In this study, we analyzed core-bGDGTs and polar (P- bGDGTs after hydrolysis of polar fractions using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry and analyzed intact P-bGDGTs using total lipid extract (TLE without hydrolysis by liquid chromatography-electrospray ionization-multiple stage mass spectrometry. Our results show multiple lines of evidence for the production of bGDGTs in sediments and cellulolytic enrichments in a hot spring (62-86°C in the Great Basin (USA. First, in situ cellulolytic enrichment led to an increase in the relative abundance of hydrolysis-derived P-bGDGTs over their Core (C-bGDGT counterparts. Second, the hydrolysis-derived P- and C-bGDGT profiles in the hot spring were different from those of the surrounding soil samples; in particular, a monoglycosidic bGDGT Ib containing 13,16-dimethyloctacosane and one cyclopentane moiety was detected in the TLE but it was undetectable in surrounding soil samples even after sample enrichments. Third, previously published 16S rRNA gene pyrotag analysis from the same lignocellulose samples demonstrated the enrichment of thermophiles, rather than mesophiles, and total bGDGT abundance in cellulolytic enrichments correlated with the relative abundance of 16S rRNA gene pyrotags from thermophilic bacteria in the phyla Bacteroidetes, Dictyoglomi, EM3, and OP9 (“Atribacteria”. These observations conclusively demonstrate the production of bGDGTs in this hot spring; however, the identity of organisms that produce bGDGTs in the geothermal environment remains unclear.

  13. Production and Early Preservation of Lipid Biomarkers in Iron Hot Springs

    Parenteau, Mary N.; Jahnke, Linda L; Farmer, Jack D.; Cady, Sherry L.

    2014-01-01

    The bicarbonate-buffered anoxic vent waters at Chocolate Pots hot springs in Yellowstone National Park are 51–54°C, pH 5.5–6.0, and are very high in dissolved Fe(II) at 5.8–5.9 mg/L. The aqueous Fe(II) is oxidized by a combination of biotic and abiotic mechanisms and precipitated as primary siliceous nanophase iron oxyhydroxides (ferrihydrite). Four distinct prokaryotic photosynthetic microbial mat types grow on top of these iron deposits. Lipids were used to characterize the community compos...

  14. Environmental assessment of the proposed nonelectric application of geothermal resources at Desert Hot Springs, California

    Rosenberg, L.

    1978-01-01

    The paper presents an environmental analysis performed in evaluating various proposed geothermal demonstration projects at Desert Hot Springs. These are categorized in two ways: (1) indirect, or (2) direct uses. Among the former are greenhouses, industrial complexes, and car washes. The latter include aquaculture, a cascaded agribusiness system, and a mobile home park. Major categories of environmental impact covered are: (1) site, (2) construction of projects, and (3) the use of the geothermal source. Attention is also given to the disposal of the geothermal fluid after use. Finally, it is concluded that there are no major problems forseen for each project, and future objectives are discussed.

  15. A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring

    Hatzenpichler, Roland; Elena V Lebedeva; Spieck, Eva; Stoecker, Kilian; Richter, Andreas; Daims, Holger; WAGNER, Michael

    2008-01-01

    The recent discovery of ammonia-oxidizing archaea (AOA) dramatically changed our perception of the diversity and evolutionary history of microbes involved in nitrification. In this study, a moderately thermophilic (46°C) ammonia-oxidizing enrichment culture, which had been seeded with biomass from a hot spring, was screened for ammonia oxidizers. Although gene sequences for crenarchaeotal 16S rRNA and two subunits of the ammonia monooxygenase (amoA and amoB) were detected via PCR, no hints fo...

  16. Naturally enhanced radium-226 at the Hammam Pharaon hot spring area

    A radiological study was conducted for Hammam Pharaon hot spring and the surrounding area. The naturally occurring 226Ra was determined using HpGe spectrometer. Gamma emissions 351.9 keV of the 214Pb and 609.3 keV, 1120.3 keV and 1764.5 keV of the 214Bi, in equilibrium with their 226Ra parent were used to calculate its specific activity in the water, soil and rock samples. The analysis revealed the presence of some hot spots in the studied area. Elevated values of 226Ra were found to be as high as 32,000 Bq/kg (∼ 0.9 nCi/gm). The absorbed dose rates, hazard indices, and radium equivalent values were calculated on the basis of the results obtained. The resulted high doses due to the elevated radium content necessitate controlled recreational activities in this area

  17. Investigation of the microbial community in the Odisha hot spring cluster based on the cultivation independent approach

    Singh, Archana; Subudhi, Enketeswara; Sahoo, Rajesh Kumar; Gaur, Mahendra

    2016-01-01

    Deulajhari hot spring is located in the Angul district of Odisha. The significance of this hot spring is the presence of the hot spring cluster adjacent to the cold spring which attracts the attention of microbiologists to understand the role of physio-chemical factors of these springs on bacterial community structure. Next-generation sequencing technology helps us to depict the pioneering microflora of any ecological niche based on metagenomic approach. Our study represents the first Illumina based metagenomic study of Deulajhari hot spring DH1, and DH2 of the cluster with temperature 65 °C to 55 °C respectively establishing a difference of 10 °C. Comprehensive study of microbiota of these two hot springs was done using the metagenomic sequencing of 16S rRNA of V3‐V4 region extracting metagenomic DNA from the two hot spring sediments. Sequencing community DNA reported about 28 phyla in spring DH1 of which the majority were Chloroflexi (22.98%), Proteobacteria (15.51%), Acidobacteria (14.51%), Chlorobi (9.52%), Nitrospirae (8.54%), and Armatimonadetes (7.07%), at the existing physiochemical conditions like; temperature 65 °C, pH 8.06, electro conductivity 0.020 dSm− 1, and total organic carbon (TOC) 3.76%. About 40 phyla were detected in cluster DH2 at the existing physiochemical parameters like temperature 55 °C, pH 8.10, electro conductivity 0.019 dSm− 1, and total organic carbon (TOC) 0.58% predominated with Chloroflexi (41.98%), Proteobacteria (10.74%), Nitrospirae (10.01%), Chlorobi (8.73%), Acidobacteria (6.73%) and Planctomycetes (3.73%). Approximately 68 class, 107 order, 171 genus and 184 species were reported in cluster DH1 but 102 class, 180 order, 375 genus and 411 species in cluster DH2. The comparative metagenomics study of the Deulajhari hot spring clusters DH1, and DH2 depicts the differential profile of the microbiota. Metagenome sequences of these two hot spring clusters are deposited to the SRA database and are available in

  18. Evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus

    Miller, S. R.; Castenholz, R. W.

    2000-01-01

    The extension of ecological tolerance limits may be an important mechanism by which microorganisms adapt to novel environments, but it may come at the evolutionary cost of reduced performance under ancestral conditions. We combined a comparative physiological approach with phylogenetic analyses to study the evolution of thermotolerance in hot spring cyanobacteria of the genus Synechococcus. Among the 20 laboratory clones of Synechococcus isolated from collections made along an Oregon hot spring thermal gradient, four different 16S rRNA gene sequences were identified. Phylogenies constructed by using the sequence data indicated that the clones were polyphyletic but that three of the four sequence groups formed a clade. Differences in thermotolerance were observed for clones with different 16S rRNA gene sequences, and comparison of these physiological differences within a phylogenetic framework provided evidence that more thermotolerant lineages of Synechococcus evolved from less thermotolerant ancestors. The extension of the thermal limit in these bacteria was correlated with a reduction in the breadth of the temperature range for growth, which provides evidence that enhanced thermotolerance has come at the evolutionary cost of increased thermal specialization. This study illustrates the utility of using phylogenetic comparative methods to investigate how evolutionary processes have shaped historical patterns of ecological diversification in microorganisms.

  19. Biochemical comparison between radon effects and thermal effects on humans in radon hot spring therapy

    The radioactive and thermal effects of radon hot spring were biochemically compared under a sauna room or hot spring conditions with a similar chemical component, using the parameters that are closely involved in the clinic for radon therapy. The results showed that the radon and thermal therapy enhanced the antioxidation functions, such as the activities of superoxide dismutase (SOD) and catalase, which inhibit lipid peroxidation and total cholesterol produced in the body. Moreover the therapy enhanced concanavalin A (ConA)-induced mitogen response and increased the percentage of CD4 positive cells, which is the marker of helper T cells, and decreased the percentage of CD8 positive cells, which is the common marker of killer T cells and suppressor T cells, in the white blood cell differentiation antigen (CD8/CD4) assay. Furthermore, the therapy increased the levels of α atrial natriuretic polypeptide (αANP), β endorphin, adrenocorticotropic hormone (ACTH), insulin and glucose-6-phosphate dehydrogenase (G-6-PDH), and it decreased the vasopression level. The results were on the whole larger in the radon group than in the thermal group. The findings suggest that radon therapy contributes more to the prevention of life-style-related diseases related to peroxidation reactions and immune suppression than to thermal therapy. Moreover, these indicate what may be a part of the mechanism for the alleviation of hypertension, osteoarthritis (pain), and diabetes mellitus brought about more by radon therapy than by thermal therapy. (author)

  20. Structural insights of microbial community of Deulajhari (India hot spring using 16s-rRNA based metagenomic sequencing

    Archana Singh

    2016-03-01

    Full Text Available Insights about the distribution of the microbial community prove to be the major goal of understanding microbial ecology which remains to be fully deciphered. Hot springs being hub for the thermophilic microbiota attract the attention of the microbiologists. Deulajhari hot spring cluster is located in the Angul district of Odisha. Covered within a wooded area, Deulajhari hot spring is also fed by the plant litter resulting in a relatively high amount of total organic content (TOC. For the first time, Illumina sequencing based biodiversity analysis of microbial composition is studied through amplicon metagenome sequencing of 16s rRNA targeting V3‐V4 region using metagenomic DNA from the hot spring sediment. Over 28 phyla were detected through the amplicon metagenome sequencing of which the most dominating phyla at the existing physiochemical parameters like; temperature 69 °C, pH 8.09, electroconductivity 0.025 dSm−1 and total organic carbon 0.356%, were Proteobacteria (88.12%, Bacteriodetes (10.76%, Firmicutes (0.35%, Spirochetes (0.18% and chloroflexi (0.11%. Approximately 713 species were observed at the above physiochemical parameters. The analysis of the metagenome provides the quantitative insights into microbial populations based on the sequence data in Deulajhari hot spring. Metagenome sequence is deposited to SRA database which is available at NCBI with accession no. SRX1459736.

  1. Environmental inputs that can influence carbon isotopic compositions of hot spring biofilms

    Donatelli, J. L.; Havig, J. R.; Shock, E.

    2011-12-01

    The carbon isotopic compositions of hydrothermal biofilms are influenced by microbial carbon cycling, and can be correlated with the presence or absence of specific genes in environmental genomic analyses (Havig et al., 2011, JGR). Additional isotopic data on potential environmental sources of carbon will enable further tests of the specific pathways of carbon assimilation and cycling throughout hydrothermal ecosystems. Hot springs at Yellowstone National Park (YNP) are often located in open meadows or forested areas with varying amounts of vegetation and exposed soil surrounding the pools. These pools are open systems which have the potential to accumulate allochthonous materials via physical and biogenic processes. These inputs may affect the δ13C signatures of the hot spring waters and the biofilms associated with them. In the YNP hot springs we have studied since 2003, biofilms range in δ13C from -1.2 to -30.7%. Dissolved inorganic carbon (DIC) in coexisting fluids ranges from 4.3 to -3.9%. The heaviest biofilms typically show minimal isotopic fractionation from the DIC in coexisting fluids. DIC values are strongly influenced by inputs from magma degassing, water-rock reactions in the hydrothermal system, and the atmosphere. Dissolved organic carbon (DOC) values for the coexisting fluids range from -16.5 to -26.8%, which are within the range of biofilm δ13C values. DOC values will also be affected by diverse processes as precipitation infiltrates, reacts, and eventually returns to the surface as hydrothermal fluids, but may also be influenced by biologically derived inputs from the local environments where hot springs occur. In an effort to characterize the environmental context of hot springs, we have collected isotopic data on lodgepole pine needles, grasses, soils, insects and bison feces. Of these, the δ13C data for bison feces (-27.7 to -29.6%) are lighter than any of the DOC data. Pine needles (-26.3 to -29.1%) and soils (-24.8 to -27.1%) overlap with

  2. Patterns of biomediated CaCO3 crystal bushes in hot spring deposits

    Peng, Xiaotong; Jones, Brian

    2013-08-01

    In the Eryuan hot spring, located in south China, the vent pool is covered with “crystal bushes”, up to 2 cm high, 1 cm in diameter, that grew in the biofilms that thrive in the spring waters that have a pH of 7.5 and a temperature of 88 °C. The biofilms are formed largely of phototrophic purple bacteria and green bacteria. Growth of the crystal bushes, which are formed of aragonite crystals (wheat-sheaves, radiating clusters), rhombohedral and dodecahedral calcite crystals, amorphous CaCO3 (ACC), and opal-A, is attributed to precipitation in the micro-domains of the biofilms where physiochemical conditions can vary on the sub-micron scale. There is no evidence that the calcite was formed through recrystallization of the metastable aragonite and most of the calcite crystals developed as mesocrystals that are characterized by incomplete growth and porous crystal faces. With the onset of diagenesis, there is a high probability that the crystal bushes will lose much of their identity as the (1) biofilm is lost through decay, (2) ACC and aragonite change to calcite, (3) identities of the mesocrystals and incompletely formed crystals are lost through continued precipitation and/or recrystallization, and (4) porous crystal faces are converted to solid crystal faces. This means that most of the features considered indicative of biomediated calcite precipitation have a low preservation potential and that the recognition of biomediated precipitates in old spring deposits may remain problematical.

  3. Preferential soft-tissue preservation in the Hot Creek carbonate spring deposit, British Columbia, Canada

    Rainey, Dustin K.; Jones, Brian

    2010-05-01

    The relict Holocene Hot Creek carbonate spring deposit in southeast British Columbia is characterized by excellent preservation of soft-tissue organisms (e.g. cyanobacteria), but poor preservation of organisms with hard-tissue (e.g. wood, diatoms). The deposit is formed mainly of calcified cyanobacteria, with fewer mineralized macrophytes (plants), bryophytes (mosses), wood, and diatoms. Cyanobacteria grew as solitary filaments ( Lyngbya) and as radiating hemispherical colonies ( Rivularia). Both were preserved by encrustation and encapsulation while alive, and as casts after filament death and decay. Sheath impregnation was rare to absent. Filament encrustation, whereby calcite crystals nucleated on, and grew away from the sheath exterior, produced moulds that replicated external filament morphology, but hastened filament decay. Filament encapsulation, whereby calcite nucleated in the vicinity of, and grew towards the encapsulated filament, promoted sheath preservation even after trichome decay. Subsequent calcite precipitation inside the hollow sheath generated sheath casts. The inability of mineralizing spring water to penetrate durable cell walls meant that bryophytes, macrophytes, and most wood was preserved by encrustation. Some wood resisted complete decay for several thousand years, and its lignified cell walls allowed rare permineralizations. Diatoms were not preserved in the relict deposit because the frustules were dissolved by the basic spring water. Amorphous calcium carbonate produced by photosynthetic CO 2 removal may have acted as nucleation sites for physicochemically precipitated calcite. Thus, metabolic activities of floral organisms probably initiated biotic mineralization, but continuous inorganic calcite precipitation on and in flora ensured that soft tissues were preserved.

  4. A spring-driven press device for hot embossing and thermal bonding of PMMA microfluidic chips.

    Chen, Zhi; Zhang, Luyan; Chen, Gang

    2010-08-01

    A novel spring-driven press device was designed and manufactured for hot embossing and thermal bonding of PMMA microfluidic chips in this work. This simple device consisted of two semi-cylinder silicone rubber press heads, three steel clamping plates, and three compression springs that were assembled together using two screw bolts and two butterfly nuts. The three springs were clamped between the upper and the middle clamping plates, whereas the two press heads were assembled between the middle and the lower clamping plates. After an epoxy template covered by a PMMA plate or a PMMA channel plate together with a cover were sandwiched between two microscopic glass slides for embossing or bonding, respectively, they were clamped between the two elastic press heads of the press device by fastening the screw nuts on the upper clamping plate. Because the convex press heads applied pressure along the middle line of the glass slides, they would deform resulting in a negative pressure gradient from the middle to the sides so that air bubbles between the sandwiched parts could be squeezed out during embossing and bonding processes. High-quality PMMA microfluidic chips were prepared by using this unique device and were successfully applied in the electrophoretic separation of several cations. PMID:20665912

  5. Measurement of natural radiation in hot spring areas in West Java

    Springs are found in several locations in Indonesia. Some of the springs give out warm water containing natural radioactivity due to the uranium decay products, particularly containing 226Ra, 222Rn and dissolved minerals. Usually used by public for medical treatment and recreation. Measurements were carried out for radioactive concentrations, working levels, and dose rates at Cipanas, Ciater, and Ciseeng in West-Java. The concentration measurements in these areas varies from 30 to 1,331 pCi.1-1 or 1.11 to 49.25 Bq.1-1 for 226Ra and that of 1,200 to 21,700 pCi.1-1 or 44.40 to 820.90 Bq.1-1 for 222Rn. For the working level varies from 0.13 x 10-3 to 1.98x10-3 WLM. The dose rate is approximately 5.4 to 35.6 urad.h-1. The effective equivalent dose received by employees and people who live surrounding the hot springs is about 807 mrem.y-1 or 8.07 mSv.y-1 at Cipanas, 1,446 mrem.y-1 or 14.46 mSv.y-1 at Ciater, and 2,168 mrem.y-1 or 21.68 mSv.y-1 at Cipanas, respectively. (author). 7 refs, 3 figs, 6 tabs

  6. Geothermal heating from Pinkerton Hot Springs at Colorado Timberline Academy, Durango, Colorado. Final technical report

    Allen, C.C.; Allen, R.W.; Beldock, J.

    1981-11-08

    The efforts to establish a greater pool of knowledge in the field of low temperature heat transfer for the application of geothermal spring waters to space heating are described. A comprehensive set of heat loss experiments involving passive radiant heating panels is conducted and the results presented in an easily interpretable form. Among the conclusions are the facts that heating a 65 to 70 F/sup 0/ space with 90 to 100 F/sup 0/ liquids is a practical aim. The results are compared with the much lower rates published in the American Society of Heating Refrigeration and Air Conditioning Engineers SYSTEMS, 1976. A heat exchange chamber consisting of a 1000 gallon three compartment, insulated and buried tank is constructed and a control and pumping building erected over the tank. The tank is intended to handle the flow of geothermal waters from Pinkerton Hot Springs at 50 GPM prior to the wasting of the spring water at a disposal location. Approximately 375,000 Btu per hour should be available for heating assuming a 15 F/sup 0/ drop in water temperature. A combination of the panel heat loss experiments, construction of the heat exchange devices and ongoing collection of heat loss numbers adds to the knowledge available to engineers in sizing low temperature heat systems, useful in both solar and geothermal applications where source temperature may be often below 110 F/sup 0/.

  7. Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs.

    Pearson, Ann; Pi, Yundan; Zhao, Weidong; Li, WenJun; Li, Yiliang; Inskeep, William; Perevalova, Anna; Romanek, Christopher; Li, Shuguang; Zhang, Chuanlun L

    2008-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87 degrees C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenarchaeol and GDGT-4 (four cyclopentane rings, m/z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX(86) paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued development of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleoclimate studies. PMID:18390673

  8. Origin of platy calcite crystals in hot-spring deposits in the Kenya Rift Valley

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renault, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

    1998-09-01

    Platy calcite crystals, which have their c axis parallel to their shortest length axis, are common components of travertine deposits found around some hot springs in the Kenya Rift Valley. They are composite crystals formed of numerous paper-thin subcrystals. Individual plates allowed to grow without obstruction develop a hexagonal motif. The Kenyan crystals typically form in hot (>75 C) waters that have a low Ca content (<10 mg/l), a high CO{sub 2} content, and a high rate of CO{sub 2} degassing. At Chemurkeu, aggregates of numerous small platy crystals collectively form lattice crystals that superficially resemble ray crystals. The walls of the lattice crystals are formed of large platy crystals that have their long and intermediate length axes aligned parallel to the plane of the long axis of the lattice crystal. Internally, the lattice crystals are formed of small platy calcite crystals arranged in a boxlike pattern that creates the appearance of a lattice when viewed in thin section. Lattice crystals are highly porous, with each pore being enclosed by platy crystals. At Lorusio, travertines are mainly formed of pseudodentrites that are constructed by numerous small platy crystals attached to a main stem which is a large platy crystal that commonly curves along its long axis. The pseudodentrites are the main construction blocks in ledges and lilypads that form in the vent pool and spring outflow channels, where the water is too hot for microbes other than hyperthermophiles. The platy calcite crystals in the Kenyan travertines are morphologically similar to platy calcite crystals that form as scale in pipes in the geothermal fields of New Zealand and hydrothermal angel wing calcite from the La Fe mine in Mexico. Comparison of the Kenyan and New Zealand crystals indicates that platy calcite crystals form from waters with a low Ca{sup 2+} content and a high CO{sub 3}/Ca ratio due to rapid rates of CO{sub 2} degassing.

  9. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Wang, Yanxin

    2016-01-01

    Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs. PMID:26761709

  10. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    Zhou Jiang

    Full Text Available Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86. Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation, Sulfolobus (sulfur and iron oxidation, Metallosphaera and Acidicaldus (iron oxidation. Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.

  11. A novel acidophilic, thermophilic iron and sulfur-oxidizing archaeon isolated from a hot spring of tengchong, yunnan, China

    Jiannan Ding

    2011-06-01

    Full Text Available A novel thermoacidophilic iron and sulfur-oxidizing archaeon, strain YN25, was isolated from an in situ enriched acid hot spring sample collected in Yunnan, China. Cells were irregular cocci, about 0.9-1.02 µm×1.0-1.31 µm in the medium containing elemental sulfur and 1.5-2.22 µm×1.8-2.54 µm in ferrous sulfate medium. The ranges of growth and pH were 50-85 (optimum 65 and pH 1.0-6.0 (optimum 1.5-2.5. The acidophile was able to grow heterotrophically on several organic substrates, including various monosaccharides, alcohols and amino acids, though the growth on single substrate required yeast extract as growth factor. Growth occurred under aerobic conditions or via anaerobic respiration using elemental sulfur as terminal electron acceptor. Results of morphology, physiology, fatty acid analysis and analysis based on 16S rRNA gene sequence indicated that the strain YN25 should be grouped in the species Acidianus manzaensis. Bioleaching experiments indicated that this strain had excellent leaching capacity, with a copper yielding ratio up to 79.16% in 24 d. The type strain YN25 was deposited in China Center for Type Culture Collection (=CCTCCZNDX0050.

  12. Comparative study of the silica and cation geothermometry of the Malawi hot springs: Potential alternative energy source

    Dulanya, Zuze; Morales-Simfors, Nury; Sivertun, Åke

    2010-06-01

    Malawi is one of the poorest countries in the world and one of the most densely populated in south-eastern Africa. Its major power source is hydro-electricity. During the past few years, the power generation capacity has been reduced, which has impacted negatively on the socio-economic development of the country. The country holds an enormous potential to generate geothermal energy due to the country's position within the Great African Rift valley. This could contribute to economic growth, poverty reduction and technological development in Malawi. The paper presents findings of research on comparisons between silica (quartz and chalcedony) and cation geothermometers (Na-K, Na-K-Ca and K-Mg) of hot springs in the Malawi Rift, in order to deduce the temperature at depth of selected hot springs. The saturation indices of most springs have a bearing on the geology of the areas where these hot springs are found. The Na-K geothermometers are, in general, higher than the Na-K-Ca geothermometer and the K-Mg geothermometer shows temperatures that are too low to be considered. The difference in the results between the different geothermometers may indicate shallow conditions of mixing with groundwater. Results also indicate that some hot springs have sufficient heat-generating capabilities and warrant further exploration work to assess their suitability for energy generation.

  13. Recent Geochemical Variation of the Hot-Spring Gases from the Tianchi Volcano, Changbai Mountains, Northeast China

    Gao Ling; Wei Haiquan; Shangguan Zhiguan; Wu Chengzhi

    2007-01-01

    Recent fluid monitoring work shows that the contents of mantle-derived CO2, He and CH4 increased anomalously in 2002 and 2003. The 3He/4He ratio of the deep-fault-type Jinjiang hot springs increased highly anomalously in 2003, and then decreased in 2004. The 3He/4He ratio from the thermal-reservoir-type Changbaijulong hot springs increased slowly in 2003, and the increase continued in 2004. The mantle-derived He content of the He released from the Changbaijulong springs increased obviously in 2004. The anomaly of the released gases and the isotopic He was consistent with the trends of seismic activities in the Tianchi volcanic area between 2002 and 2004. The abnormal release of the Jinjiang hot springs apparently decreased after the seismic activities ceased in the second half of 2004, while the abnormal release from the Changbaijulong increased significantly after these seismic activities. It shows that the abnormal release of magmas-derived gases from the thermal-reservoir-type springs lags behind that of the deep-fault-type springs. These characteristics may be of great significance for identifying deep magmatic activity and predicting volcanic earthquakes in the future.

  14. Arsenic(III) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California

    Kulp, T.R.; Hoeft, S.E.; Asao, M.; Madigan, M.T.; Hollibaugh, J.T.; Fisher, J.C.; Stolz, J.F.; Culbertson, C.W.; Miller, L.G.; Oremland, R.S.

    2008-01-01

    Phylogenetic analysis indicates that microbial arsenic metabolism is ancient and probably extends back to the primordial Earth. In microbial biofilms growing on the rock surfaces of anoxic brine pools fed by hot springs containing arsenite and sulfide at high concentrations, we discovered light-dependent oxidation of arsenite [As(III)] to arsenate [As(V)] occurring under anoxic conditions. The communities were composed primarily of Ectothiorhodospira-like purple bacteria or Oscillatoria-like cyanobacteria. A pure culture of a photosynthetic bacterium grew as a photoautotroph when As(III) was used as the sole photosynthetic electron donor. The strain contained genes encoding a putative As(V) reductase but no detectable homologs of the As(III) oxidase genes of aerobic chemolithotrophs, suggesting a reverse functionality for the reductase. Production of As(V) by anoxygenic photosynthesis probably opened niches for primordial Earth's first As(V)-respiring prokaryotes.

  15. Biological Characterization of Rhodomicrobium vannielii Isolated from a Hot Spring at Gadek, Malacca, Malaysia

    Ainon, H.

    2006-01-01

    Full Text Available A purple nonsulfur anoxygenic phototrophic bacterium, identified as Rhodomicrobium vannielii, was isolated from water sample of a hot spring using glutamate-malate medium (GMM and Pfennig’s M2 medium. The cells were motile, Gram negative, ovoid to spherical in shape and did not form intracellular sulfur globules. The isolate viewed under transmission electron microscope showed budding filament formation, which is a characteristic of Rm. vannielii. The isolate produced red pigment in both media. The dominant photosynthetic pigment is bacteriochlorophyll a and carotenoids of lycopene and rhodopin. The growth of Rm. vannielii was better in anaerobic-light condition compared to growth in aerobic-dark. Optimum carotenoid production was achieved in 24 hours culture in GMM (pH 7.0 without yeast-extract and incubated in anaerobic-light condition at light intensity of 2000 lux.

  16. Subsurface temperature trend in response to exploitation of thermal water in Jiashi Hot Spring, northeastern Taiwan

    Chen, Wenfu; Chiang, Hsiehtang

    2015-04-01

    Temperature monitoring provides important information for sustainable management of a geothermal field. Previous studies show that decline of aquifer pressure is an obviously indicator of overexploitation for a thermal aquifer. However, many thermal water producing aquifers don't show pressure declining but with subtle temperature change. How to detect the temperature trend is an important topic for sustainable management of a geothermal field. In this study, we use borehole temperatures measured over a half year interval from 2011 to 2014 and Mann-Kendall method to determine the trends of subsurface temperature in Jiashi Hot Spring, northeastern Taiwan. Our results show that trends of subsurface temperature are related to the hydrogeology and flow field of groundwater. Flow directions of groundwater/thermal water are impacted by exploitation of thermal water of production wells, according to the depths and distribution. Repeatedly measured borehole temperature profiles provide important information to depict the trends of subsurface temperature change.

  17. Genome Analysis of a New Rhodothermaceae Strain Isolated from a Hot Spring

    Goh, Kian Mau; Chan, Kok-Gan; Lim, Soon Wee; Liew, Kok Jun; Chan, Chia Sing; Shamsir, Mohd Shahir; Ee, Robson; Adrian, Tan-Guan-Sheng

    2016-01-01

    A bacterial strain, designated RA, was isolated from water sample of a hot spring on Langkawi Island of Malaysia using marine agar. Strain RA is an aerophilic and thermophilic microorganism that grows optimally at 50–60°C and is capable of growing in marine broth containing 1–10% (w/v) NaCl. 16S rRNA gene sequence analysis demonstrated that this strain is most closely related (<90% sequence identity) to Rhodothermaceae, which currently comprises of six genera: Rhodothermus (two species), Salinibacter (three species), Salisaeta (one species), Rubricoccus (one species), Rubrivirga (one species), and Longimonas (one species). Notably, analysis of average nucleotide identity (ANI) values indicated that strain RA may represent the first member of a novel genus of Rhodothermaceae. The draft genome of strain RA is 4,616,094 bp with 3630 protein-coding gene sequences. Its GC content is 68.3%, which is higher than that of most other genomes of Rhodothermaceae. Strain RA has genes for sulfate permease and arylsulfatase to withstand the high sulfur and sulfate contents of the hot spring. Putative genes encoding proteins involved in adaptation to osmotic stress were identified which encode proteins namely Na+/H+ antiporters, a sodium/solute symporter, a sodium/glutamate symporter, trehalose synthase, malto-oligosyltrehalose synthase, choline-sulfatase, potassium uptake proteins (TrkA and TrkH), osmotically inducible protein C, and the K+ channel histidine kinase KdpD. Furthermore, genome description of strain RA and comparative genome studies in relation to other related genera provide an overview of the uniqueness of this bacterium. PMID:27471502

  18. Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model

    Sen, Sudip Kumar; Raut, Sangeeta; Dora, Tapas Kumar [Department of Biotechnology, Gandhi Institute of Engineering and Technology, Gunupur, Rayagada 765 022, Odisha (India); Mohapatra, Pradeep Kumar Das, E-mail: pkdmvu@gmail.com [Department of Microbiology, Vidyasagar University, Midnapore 721 102, West Bengal (India)

    2014-01-30

    Highlights: • Adsorption of cadmium and lead using hot spring microbial consortium. • Development of empirical models for % adsorption using ANOVA and response surface methodology. • Fitting of the kinetics of adsorption to Freundlich and Langmuir model. • Optimization of the operating parameters to maximize the % of adsorption. -- Abstract: In the present investigation, a number of experiments have been conducted to isolate microbial strains from Taptapani Hot Spring Odisha, India for bioremediation of cadmium and lead. The strains Stenotrophomonas maltophilia (SS1), Aeromonas veronii (SS2) and Bacillus barbaricus (SS3) have shown better adaptation to metal tolerance test, with different concentrations of cadmium and lead and hence have been selected for further studies of metal microbial interaction and optimization. The results of bioremediation process indicate that consortium of thermophilic isolates adsorbed heavy metals more effectively than the individually treated isolates. Therefore, A 24 full factorial central composite design has been employed to analyze the effect of metal ion concentration, microbial concentration and time on removal of heavy metals with consortium. Analysis of variance (ANOVA) shows a high coefficient of determination value. The kinetic data have been fitted to pseudo-first order and second-order models. The isotherm equilibrium data have been well fitted by the Langmuir and Freundlich models. The optimum removal conditions determined for initial ion concentration was 0.3 g/l; contact time 72 h; microbial concentration, 3 ml/l; and pH 7. At optimum adsorption conditions, the adsorption of cadmium and lead are found to be 92% and 93%, respectively, and presence of metals was confirmed through EDS analysis.

  19. Contribution of hot spring bacterial consortium in cadmium and lead bioremediation through quadratic programming model

    Highlights: • Adsorption of cadmium and lead using hot spring microbial consortium. • Development of empirical models for % adsorption using ANOVA and response surface methodology. • Fitting of the kinetics of adsorption to Freundlich and Langmuir model. • Optimization of the operating parameters to maximize the % of adsorption. -- Abstract: In the present investigation, a number of experiments have been conducted to isolate microbial strains from Taptapani Hot Spring Odisha, India for bioremediation of cadmium and lead. The strains Stenotrophomonas maltophilia (SS1), Aeromonas veronii (SS2) and Bacillus barbaricus (SS3) have shown better adaptation to metal tolerance test, with different concentrations of cadmium and lead and hence have been selected for further studies of metal microbial interaction and optimization. The results of bioremediation process indicate that consortium of thermophilic isolates adsorbed heavy metals more effectively than the individually treated isolates. Therefore, A 24 full factorial central composite design has been employed to analyze the effect of metal ion concentration, microbial concentration and time on removal of heavy metals with consortium. Analysis of variance (ANOVA) shows a high coefficient of determination value. The kinetic data have been fitted to pseudo-first order and second-order models. The isotherm equilibrium data have been well fitted by the Langmuir and Freundlich models. The optimum removal conditions determined for initial ion concentration was 0.3 g/l; contact time 72 h; microbial concentration, 3 ml/l; and pH 7. At optimum adsorption conditions, the adsorption of cadmium and lead are found to be 92% and 93%, respectively, and presence of metals was confirmed through EDS analysis

  20. Nitrification of archaeal ammonia oxidizers in a high- temperature hot spring

    Chen, Shun; Peng, Xiaotong; Xu, Hengchao; Ta, Kaiwen

    2016-04-01

    The oxidation of ammonia by microbes has been shown to occur in diverse natural environments. However, the link of in situ nitrification activity to taxonomic identities of ammonia oxidizers in high-temperature environments remains poorly understood. Here, we studied in situ ammonia oxidation rates and the diversity of ammonia-oxidizing Archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface and bottom sediments were 4.80 and 5.30 nmol N g-1 h-1, respectively. Real-time quantitative polymerase chain reaction (qPCR) indicated that the archaeal 16S rRNA genes and amoA genes were present in the range of 0.128 to 1.96 × 108 and 2.75 to 9.80 × 105 gene copies g-1 sediment, respectively, while bacterial amoA was not detected. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic Candidatus Nitrosocaldus yellowstonii, which represented the most abundant operational taxonomic units (OTU) in both surface and bottom sediments. The archaeal predominance was further supported by fluorescence in situ hybridization (FISH) visualization. The cell-specific rate of ammonia oxidation was estimated to range from 0.410 to 0.790 fmol N archaeal cell-1 h-1, higher than those in the two US Great Basin hot springs. These results suggest the importance of archaeal rather than bacterial ammonia oxidation in driving the nitrogen cycle in terrestrial geothermal environments.

  1. Exposure to Particle Matters and Hazardous Volatile Organic Compounds in Selected Hot Spring Hotels in Guangdong, China

    Qiusheng He

    2016-04-01

    Full Text Available In Guangdong province, many hot springs were exploited and developed into popular places for tourist. In addition, hotels have been set up near hot spring sites to attract people, including local citizens, to spend their spare time inside these so-called “spring hotels”. In our study, indoor air quality was investigated in four hot spring hotels in Guangdong province, China. Measured indoor pollutants included CO2, CO, PM10, PM2.5 and Volatile Organic Compounds (VOCs. As the result show, high concentrations of carbon dioxide might be attributed to poor ventilation; and the variations of indoor PM10, PM2.5 concentrations were related to occupants’ activities. Alpha-pinene and toluene were the most common VOC species in the hot spring hotels other than monocyclic aromatic hydrocarbons like Benzene, Toluene, Ethylbenzene and Xylenes (BTEX, which were at medium levels among the reported indoor pollutants. High cancer risk of benzene in the newly decorated rooms should be seriously taken into consideration in the future. Indoor to Outdoor air concentration ratios (I/O for CO2 and VOCs were higher than 1, indicating their strong indoor sources. Negative correlations were found between indoor CO2 and all the other compounds, and VOCs were shown to be significantly correlated (p < 0.01 to each other, including aromatic hydrocarbons and mono-terpenes. For indoor and outdoor air compounds, correlation coefficients among all compounds did not show a significant correlation, which indicated that these pollutants had different sources. Principal components analysis by SPSS showed that indoor materials, inhabitants’ activities and respiration, cleaning products and outdoor sources were the main sources of indoor detected pollutants in hot spring hotels.

  2. Diversity of thermophiles in a Malaysian hot spring determined using 16S rRNA and shotgun metagenome sequencing

    Chia Sing eChan

    2015-03-01

    Full Text Available The Sungai Klah (SK hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-meter-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0 to 9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC. In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3−V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream and geochemical parameters (broad temperature and pH range. It is speculated that symbiotic relationships occur between the members of the community.

  3. Light stable isotope study of the Roosevelt Hot Springs thermal area, Southwestern Utah

    Rohrs D.T.; Bowman, J.R.

    1980-05-01

    The isotopic composition of hydrogen, oxygen, and carbon has been determined for regional cold springs, thermal fluids, and rocks and minerals from the Roosevelt Hot Springs thermal area. The geothermal system has developed within plutonic granitic rocks and amphibolite facies gneiss, relying upon fracture-controlled permeability for the migration of the thermal fluids. Probably originating as meteoric waters in the upper elevations of the Mineral Mountains, the thermal waters sampled in the production wells display an oxygen isotopic shift of at least +1.2. Depletions of delta /sup 18/O in wole rock, K-feldspar, and biotite have a positive correlation with alteration intensity. W/R mass ratios, calculated from the isotopic shifts of rock and water, range up to 3.0 in a producing horizon of one well, although the K-feldspar has experienced only 30% exchange with the thermal waters. While veinlet quartz has equilibrated with the thermal waters, the /sup 18/O values of K-mica clay, an alteration product of plagioclase, mimic the isotopic composition of K-feldspar and whole rock. This suggests that locally small W/R ratios enable plagioclase to influence its alteration products by isotopic exchange.

  4. Hydrogeochemical Facies of Hot Springs Water in Jebel Mara Mountain, Darfur, Western Sudan

    Sami H. Mohamed

    2014-12-01

    Full Text Available Hydrogeochemical assessment have been carried out to study the concentration ofNa+, K+, Mg2+, Ca2+, Cl-,SO42-, HCO3-, and other parameters like temperature, pH, electric conductivity (EC, total hardness(T.H and total dissolved solid (TDS in ten hot springs water samples of some parts of Jebel Mara Mountain, Western Sudan. The results of water analysis revealed the average values of pH,electrical conductivity, total dissolved solids and total hardness, 9.46, 428 µS/cm, 667.2 mg/l and 102 mg/l respectively. The pH, TDS and EC variations confirmed light-salty nature of groundwater. It is also apparent from the results that, average concentrations of sodium, potassium, calcium,magnesium, chloride, sulphate,and bicarbonate ions were 43.6, 16.4, 53.7, 44, 37.5, 26.2, 428.5 mg/l, respectively. Chloride ion concentration ranged from (30 to 46 mg/l, sulphate ion concentration ranged from (10 to 40mg/l and carbonate concentration measured ranged from (215 to 800 mg/l.The results were found to be above the recommended values given by W.H.O., 1984 and warranty further recommended studies for the best improvement and utilization of springs water.

  5. Biodiversity within hot spring microbial mat communities: molecular monitoring of enrichment cultures

    Ward, D. M.; Santegoeds, C. M.; Nold, S. C.; Ramsing, N. B.; Ferris, M. J.; Bateson, M. M.

    1997-01-01

    We have begun to examine the basis for incongruence between hot spring microbial mat populations detected by cultivation or by 16S rRNA methods. We used denaturing gradient gel electrophoresis (DGGE) to monitor enrichments and isolates plated therefrom. At near extincting inoculum dilutions we observed Chloroflexus-like and cyanobacterial populations whose 16S rRNA sequences have been detected in the 'New Pit' Spring Chloroflexus mat and the Octopus Spring cyanobacterial mat. Cyanobacterial populations enriched from 44 to 54 degrees C and 56 to 63 degrees C samples at near habitat temperatures were similar to those previously detected in mat samples of comparable temperatures. However, a lower temperature enrichment from the higher temperature sample selected for the populations found in the lower temperature sample. Three Thermus populations detected by both DGGE and isolation exemplify even more how enrichment may bias our view of community structure. The most abundant population was adapted to the habitat temperature (50 degrees C), while populations adapted to 65 degrees C and 70 degrees C were 10(2)- and 10(4)-fold less abundant, respectively. However, enrichment at 70 degrees C favored the least abundant strain. Inoculum dilution and incubation at the habitat temperature favored the more numerically relevant populations. We enriched many other aerobic chemoorganotrophic populations at various inoculum dilutions and substrate concentrations, most of whose 16S rRNA sequences have not been detected in mats. A common feature of numerically relevant cyanobacterial, Chloroflexus-like and aerobic chemorganotrophic populations, is that they grow poorly and resist cultivation on solidified medium, suggesting plating bias, and that the medium composition and incubation conditions may not reflect the natural microenvironments these populations inhabit.

  6. Genome Sequence of the Red Pigment-Forming Meiothermus taiwanensis Strain RP Isolated from Paniphala Hot Spring, India

    Mukherjee, Trinetra; Bose, Sucharita; Sen, Urmimala; Roy, Chayan; Rameez, Moidu Jameela; Ghosh, Wriddhiman

    2016-01-01

    Here we report the draft genome sequence of Meiothermus taiwanensis strain RP (MCC 2966), isolated from the Paniphala hot spring of India, which contains genes encoding for enzymes of the methyl erythritol 4-phosphate (MEP) pathway of isoprenoid biosynthesis and carotenoid backbone synthesis. PMID:27365353

  7. Thermoanaerobacter mathranii sp. nov., an ethanol-producing, extremely thermophilic anaerobic bacterium from a hot spring in Iceland

    Larsen, L.; Nielsen, P.; Ahring, B.K.

    1997-01-01

    The extremely thermophilic ethanol-producing strain A3 was isolated from a hot spring in Iceland, The cells were rod-shaped, motile, and had terminal spores: cells from the mid-to-late exponential growth phase stained gram-variable but had a gram-positive cell wall structure when viewed by transm...

  8. Genome Sequence of Anoxybacillus flavithermus Strain AK1, a Thermophile Isolated from a Hot Spring in Saudi Arabia

    Khalil, Amjad

    2015-06-04

    Anoxybacillus flavithermus strain AK1 was isolated from Al-Ain Alhara, a thermal hot spring located 50 km southeast of the city of Gazan, Saudi Arabia (16°56ʹN, 43°15ʹE). The sequenced and annotated genome is 2,630,664 bp and encodes 2,799 genes.

  9. RNA-Based Investigation of Ammonia-Oxidizing Archaea in Hot Springs of Yunnan Province, China ▿ †

    Jiang, Hongchen; Huang, Qiuyuan; DONG, HAILIANG; WANG, Peng; Wang, Fengping; Li, Wenjun; Zhang, Chuanlun

    2010-01-01

    Using RNA-based techniques and hot spring samples collected from Yunnan Province, China, we show that the amoA gene of aerobic ammonia-oxidizing archaea can be transcribed at temperatures higher than 74°C and up to 94°C, suggesting that archaeal nitrification can potentially occur at near boiling temperatures.

  10. Imaging Near-Surface Controls on Hot Spring Expression Using Shallow Seismic Refraction in Yellowstone National Park

    Price, A. N.; Lindsey, C.; Fairley, J. P., Jr.; Larson, P. B.

    2015-12-01

    We used shallow seismic refraction to image near-surface materials in the vicinity of a small group of hot springs, located in the Morning Mist Springs area of Lower Geyser Basin, Yellowstone National Park, Wyoming. Seismic velocities in the area surveyed range from a low of 0.3 km/s to a high of approximately 2.5 km/s. The survey results indicate an irregular surface topography overlain by silty sediments. The observed seismic velocities are consistent with a subsurface model in which sorted sands and gravels, probably outwash materials from the Pinedale glaciation, are overlain by silts and fine sands deposited in the flat-lying areas of the Morning Springs area. These findings are supported by published geologic maps of the area and well logs from a nearby borehole. The near-surface materials appear to be saturated with discharging hydrothermal fluids of varying temperature, and interbedded with semi-lithified geothermal deposits (sinter). We hypothesize that the relatively low-conductivity deposits of fines at the surface may serve to confine a shallow, relatively low-temperature (sub-boiling) hydrothermal aquifer, and that the distribution of sinter in the shallow subsurface plays an important role in determining the geometry of hydrothermal discharge (hot springs) at the land surface. Few studies of the shallow controls on hot spring expression exist for the Yellowstone caldera, and the present study therefore offers a unique glimpse into near-subsurface fluid flow controls.

  11. Process for acidizing hot siliceous material

    Scheuerman, R. F.; Silverman, S. A.

    1985-10-22

    The dissolving of siliceous material in an environment containing corrodable metal and having a temperature exceeding about 300/sup 0/ F. is improved by using an aqueous solution containing an amount of ammonium fluoride equivalent to that in a 2-3 molar solution of hydrogen fluoride and enough weak acid and weak acid salt to provide a pH of near to but less than 7.

  12. Hot spring siliceous stromatolites from Yellowstone National Park: assessing growth rate and laminae formation.

    Berelson, W M; Corsetti, F A; Pepe-Ranney, C; Hammond, D E; Beaumont, W; Spear, J R

    2011-09-01

    Stromatolites are commonly interpreted as evidence of ancient microbial life, yet stromatolite morphogenesis is poorly understood. We apply radiometric tracer and dating techniques, molecular analyses and growth experiments to investigate siliceous stromatolite morphogenesis in Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park. We examine rates of stromatolite growth and the environmental and/or biologic conditions that affect lamination formation and preservation, both difficult features to constrain in ancient examples. The "main body" of the stromatolite is composed of finely laminated, porous, light-dark couplets of erect (surface normal) and reclining (surface parallel) silicified filamentous bacteria, interrupted by a less-distinct, well-cemented "drape" lamination. Results from dating studies indicate a growth rate of 1-5 cm year(-1) ; however, growth is punctuated. (14)C as a tracer demonstrates that stromatolite cyanobacterial communities fix CO(2) derived from two sources, vent water (radiocarbon dead) and the atmosphere (modern (14)C). The drape facies contained a greater proportion of atmospheric CO(2) and more robust silica cementation (vs. the main body facies), which we interpret as formation when spring level was lower. Systematic changes in lamination style are likely related to environmental forcing and larger scale features (tectonic, climatic). Although the OPP stromatolites are composed of silica and most ancient forms are carbonate, their fine lamination texture requires early lithification. Without early lithification, whether silica or carbonate, it is unlikely that a finely laminated structure representing an ancient microbial mat would be preserved. In OPP, lithification on the nearly diurnal time scale is likely related to temperature control on silica solubility. PMID:21777367

  13. Microbial Fe(III) oxide reduction potential in Chocolate Pots hot spring, Yellowstone National Park.

    Fortney, N W; He, S; Converse, B J; Beard, B L; Johnson, C M; Boyd, E S; Roden, E E

    2016-05-01

    Chocolate Pots hot springs (CP) is a unique, circumneutral pH, iron-rich, geothermal feature in Yellowstone National Park. Prior research at CP has focused on photosynthetically driven Fe(II) oxidation as a model for mineralization of microbial mats and deposition of Archean banded iron formations. However, geochemical and stable Fe isotopic data have suggested that dissimilatory microbial iron reduction (DIR) may be active within CP deposits. In this study, the potential for microbial reduction of native CP Fe(III) oxides was investigated, using a combination of cultivation dependent and independent approaches, to assess the potential involvement of DIR in Fe redox cycling and associated stable Fe isotope fractionation in the CP hot springs. Endogenous microbial communities were able to reduce native CP Fe(III) oxides, as documented by most probable number enumerations and enrichment culture studies. Enrichment cultures demonstrated sustained DIR driven by oxidation of acetate, lactate, and H2 . Inhibitor studies and molecular analyses indicate that sulfate reduction did not contribute to observed rates of DIR in the enrichment cultures through abiotic reaction pathways. Enrichment cultures produced isotopically light Fe(II) during DIR relative to the bulk solid-phase Fe(III) oxides. Pyrosequencing of 16S rRNA genes from enrichment cultures showed dominant sequences closely affiliated with Geobacter metallireducens, a mesophilic Fe(III) oxide reducer. Shotgun metagenomic analysis of enrichment cultures confirmed the presence of a dominant G. metallireducens-like population and other less dominant populations from the phylum Ignavibacteriae, which appear to be capable of DIR. Gene (protein) searches revealed the presence of heat-shock proteins that may be involved in increased thermotolerance in the organisms present in the enrichments as well as porin-cytochrome complexes previously shown to be involved in extracellular electron transport. This analysis offers

  14. Consideration of Thermoelectric Power Generation by Using Hot Spring Thermal Energy or Industrial Waste Heat

    Sasaki, Keiichi; Horikawa, Daisuke; Goto, Koichi

    2015-01-01

    Today, we face some significant environmental and energy problems such as global warming, urban heat island, and the precarious balance of world oil supply and demand. However, we have not yet found a satisfactory solution to these problems. Waste heat recovery is considered to be one of the best solutions because it can improve energy efficiency by converting heat exhausted from plants and machinery to electric power. This technology would also prevent atmospheric temperature increases caused by waste heat, and decrease fossil fuel consumption by recovering heat energy, thus also reducing CO2 emissions. The system proposed in this research generates electric power by providing waste heat or unharnessed thermal energy to built-in thermoelectric modules that can convert heat into electric power. Waste heat can be recovered from many places, including machinery in industrial plants, piping in electric power plants, waste incineration plants, and so on. Some natural heat sources such as hot springs and solar heat can also be used for this thermoelectric generation system. The generated power is expected to be supplied to auxiliary machinery around the heat source, stored as an emergency power supply, and so on. The attributes of this system are (1) direct power generation using hot springs or waste heat; (2) 24-h stable power generation; (3) stand-alone power system with no noise and no vibration; and (4) easy maintenance attributed to its simple structure with no moving parts. In order to maximize energy use efficiency, the temperature difference between both sides of the thermoelectric (TE) modules built into the system need to be kept as large as possible. This means it is important to reduce thermal resistance between TE modules and heat source. Moreover, the system's efficiency greatly depends on the base temperature of the heat sources and the material of the system's TE modules. Therefore, in order to make this system practical and efficient, it is necessary to

  15. Evaluation of radon in hot spring waters in Zacatecas State, Mexico

    It is well know that radon is a potent human carcinogen. Because of the health concern of radon exposure, concentrations of 222Rn were determined in ten hot spring water samples from the Mexican state of Zacatecas. The thermal water is collected in pools and used mainly for recreational purposes. In addition to radon level, the water samples were characterized for temperature, conductivity, and ph. Liquid scintillation spectrometry was used to measure 222Rn and its decay products by mixing directly an aliquot of water with a commercial liquid scintillation. All measurements were carried out using a liquid scintillation counter (Wallac 1411). The water temperature ranged from 28 to 59 C, while the ph varied from 7.2 to 9.0, and the water conductivity was between 202.4 and 1072 μS/cm. The 222Rn concentration varied in the range 3.9-32.6 Bq/L. In addition, the risk to radon exposure was assessed by considering three -real and possible- radon exposure scenarios: 1) ingestion of bottled thermal water, 2) direct ingestion of thermal water; and 3) vapor inhalation. The annual effective dose calculated for ingestion of bottled thermal water was 0.010-0.083 mSv/yr; for ingestion of water was 0.65-5.47 mSv/yr; and for inhalation was 0.28-2.81 mSv/yr. (Author)

  16. Induced-polarization measurements at Roosevelt Hot Springs Thermal area, Utah

    Chu, J.J.; Sill, W.R.; Ward, S.H.

    1979-06-01

    An induced polarization survey was conducted at Roosevelt Hot Springs, using the dipole-dipole array. The survey consisted of two profile lines, one across the southern end of the system (2200N) and another across the northern portion (5950N). A total of 15 line-km of profiles was run, with 100 m and 300 m dipoles out to n spacings of 4 to 6. Apparent resistivity amplitude and phase data were gathered with a phase-sensitive receiver at frequencies between 32 Hz and 1/256 Hz. The data are presented in the form of apparent resistivity of phase pseudosections. Induced polarization effects in geothermal environments can result from clays and pyrite which are associated with hydrothermal alteration. Laboratory measurements on altered material show some induced polarization effects at frequencies below 1 Hz which are thought to be due to pyrite. A higher frequency polarization (> 1 Hz) is attributed to the effects of clays. The primary purpose of this survey was to investigate the feasibility of mapping clay alteration zones, and separating them from other conductive features, by making use of their polarization characteristics. The field data show some small, low frequency phase anomalies which may be the result of pyrite deposition. The higher frequencies show considerable phase effects, which can be the result of clays, but the effects of electromagnetic coupling have not, as yet, been assessed.

  17. The hot spring and geyser sinters of El Tatio, Northern Chile

    Fernandez-Turiel, J. L.; Garcia-Valles, M.; Gimeno-Torrente, D.; Saavedra-Alonso, J.; Martinez-Manent, S.

    2005-10-01

    The siliceous sinter deposits of El Tatio geothermal field in northern Chile have been examined petrographically and mineralogically. These sinters consist of amorphous silica (opal-A) deposited around hot springs and geysers from nearly neutral, silica-saturated, sodium chloride waters. Water cooling and evaporation to dryness are the main processes that control the opal-A deposition in both subaqueous and subaerial settings, in close spatial relation to microbial communities. All fingerprints of organisms observed in the studied sinter samples represent microbes and suggest that the microbial community is moderately diverse (cyanobacteria, green bacteria, and diatoms). The most important ecological parameter is the temperature gradient, which is closely related to the observed depositional settings: 1) Geyser setting: water temperature = 70-86 °C (boiling point at El Tatio: 4200 m a.s.l.); coarse laminated sinter macrostructure with rapid local variations; biota comprises non-photosynthetic hyperthermophilic bacteria. 2) Splash areas around geysers: water temperature = 60-75 °C; laminated spicule and column macrostructure, locally forming cupolas (Tatio is a natural laboratory of great interest because the sedimentary macrostructures and microtextures reflect the geological and biological processes involved in the primary deposition and early diagenesis of siliceous sinters.

  18. New findings: a very high natural radiation area in Afra hot springs, Jordan.

    Ajlouni, Abdul-Wali; Abdelsalam, Manal; Abu-Haija, Osama; Joudeh, Bassam

    2009-01-01

    A high natural radiation zone was investigated for the first time in Afra hot springs of Jordan. The radiation levels were measured using a portable Geiger-Muller counter and an Na(Tl) detector. The measured absorbed dose rates in air ranged from 10 to 1800 nGy h(-1), suggesting that the concentration of natural radioactive materials is very high compared with their normal abundance in crustal rocks. A single high-radiation zone was also found in a nearby area where a gamma radiation dose rate of 4.0 mGy h(-1) was measured. On the basis of this measurement, the area was marked as a high-radiation zone. This region is far from tourist areas and not easily reached. No intervention measures are needed to protect people because the spa area is not well inhabited, having only daily visitors (average frequency of 10 days per year per individual). The dose received by workers in the spa area should be considered and the worker should be monitored by personal radiation dosimeters, such as thermoluminescent dosimeters. PMID:19297533

  19. Iron isotope characteristics of Hot Springs at Chocolate Pots, Yellowstone National Park.

    Wu, Lingling; Brucker, Rebecca Poulson; Beard, Brian L; Roden, Eric E; Johnson, Clark M

    2013-11-01

    Chocolate Pots Hot Springs in Yellowstone National Park is a hydrothermal system that contains high aqueous ferrous iron [∼0.1 mM Fe(II)] at circumneutral pH conditions. This site provides an ideal field environment in which to test our understanding of Fe isotope fractionations derived from laboratory experiments. The Fe(III) oxides, mainly produced through Fe(II) oxidation by oxygen in the atmosphere, have high ⁵⁶Fe/⁵⁴Fe ratios compared with the aqueous Fe(II). However, the degree of fractionation is less than that expected in a closed system at isotopic equilibrium. We suggest two explanations for the observed Fe isotope compositions. One is that light Fe isotopes partition into a sorbed component and precipitate out on the Fe(III) oxide surfaces in the presence of silica. The other explanation is internal regeneration of isotopically heavy Fe(II) via dissimilatory Fe(III) reduction farther down the flow path as well as deeper within the mat materials. These findings provide evidence that silica plays an important role in governing Fe isotope fractionation factors between reduced and oxidized Fe. Under conditions of low ambient oxygen, such as may be found on early Earth or Mars, significantly larger Fe isotope variations are predicted, reflecting the more likely attainment of Fe isotope equilibrium associated with slower oxidation rates under low-O₂ conditions. PMID:24219169

  20. Microscopic examination of distribution and phenotypic properties of phylogenetically diverse Chloroflexaceae-related bacteria in hot spring microbial mats

    Nübel, Ulrich; Bateson, Mary M; Vandieken, Verona;

    2002-01-01

    We investigated the diversity, distribution, and phenotypes of uncultivated Chloroflexaceae-related bacteria in photosynthetic microbial mats of an alkaline hot spring (Mushroom Spring, Yellowstone National Park). By applying a directed PCR approach, molecular cloning, and sequence analysis of 16S...... rRNA genes, an unexpectedly large phylogenetic diversity among these bacteria was detected. Oligonucleotide probes were designed to target 16S rRNAs from organisms affiliated with the genus Chloroflexus or with the type C cluster, a group of previously discovered Chloroflexaceae relatives...

  1. Microscopic Examination of Distribution and Phenotypic Properties of Phylogenetically Diverse Chloroflexaceae-Related Bacteria in Hot Spring Microbial Mats

    Nübel, U.; Bateson, Mary M.; Vandieken, V.;

    2002-01-01

    We investigated the diversity, distribution, and phenotypes of uncultivated Chloroflexaceae-related bacteria in photosynthetic microbial mats of an alkaline hot spring (Mushroom Spring, Yellowstone National Park). By applying a directed PCR approach, molecular cloning, and sequence analysis of 16S...... rRNA genes, an unexpectedly large phylogenetic diversity among these bacteria was detected. Oligonucleotide probes were designed to target 16S rRNAs from organisms affiliated with the genus Chloroflexus or with the type C cluster, a group of previously discovered Chloroflexaceae relatives...

  2. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park

    Kara Bowen De León; Robin eGerlach; Peyton, Brent M.; Matthew W Fields

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park, Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatur...

  3. Hot and Saline Spring Behaviour in the Taupo Volcanic Zone and the North-East German Basin

    Cacace, M.; Kissling, W.

    2012-04-01

    Hot springs occur in geothermal regions worldwide, and often have important economic or cultural values which can be threatened by geothermal developments. In this paper we describe models of hot springs in the Taupo Volcanic Zone (TVZ) in New Zealand, and of saline springs in the Northeast German Basin (NEGB). In New Zealand, the operation of the Wairakei geothermal power station in the 1950's and early 1960's lead to the collapse of the thermal area known as 'Geyser Valley', and more recently, the spring and Geyser activity in Rotorua was threatened by the widespread and uncontrolled drawoff of geothermal water for domestic use. Similarly, in the NEGB, discharge of saline springs poses serious challenges for groundwater management for agricultural and domestic use, having additional implications for future geothermal energy projects. Despite their obviously very different nature the springs in NEGB and TVZ do have some common characteristics: they both feed fluid to the surface from deeper (geothermal) aquifers through embedded hydrogeological heterogeneities (e.g. fracture systems, erosional gaps and unconformities in the internal stratigraphic sequence), and data shows that they both exhibit irregular flowrates, temperatures and chemistries. Currently used models of hot/saline springs do not show these types of behaviour and offer no understanding of the mechanisms of variability in either setting, or indeed the nature of the connections to deeper aquifers. In this paper we present early results from a study aimed at identifying the most important physical mechanisms governing the dynamics of these systems. We use the simulation code NaCl-Tough2 (Kissling, 2005a,b) to accurately represent the thermodynamics of fluids in both systems. Though relatively simplistic in terms of the modelled geometry these models provide new important insights into the variability of the observed flow dynamics as well as in their causative processes at depths. The results obtained

  4. Comparative study on radon effects and thermal effects on humans in radon hot spring therapy

    Full text: The radon therapy is used radon (222Rn) gas, which mainly emits alpha-rays, and induces a small amount of active oxygen in the body. Because most of the diseases to which the radon therapy as well as the thermal therapy is applied are related to activated oxygen, in this study the effects of the radioactivity of radon and thermal effects were compared under the room or the hot spring condition with the similar chemical component, using as the parameters which are closely involved in the clinical for radon therapy. In the results, the radon and thermal therapy enhanced the antioxidation function, such as the activities of superoxide dismutase (SOD) and catalase, which inhibit lipid peroxidation and total cholesterol produce in the body. Moreover the therapy enhanced concanavalin A (ConA)-induced mitogen response, and increased the level of CD4, which is the marker of helper T cell, and decreased the level of CD8, which is the common marker of killer T cell and supresser T cell, in the white cell differentiation antigen (CD4/CD8) assay. Furthermore, the therapy increased the levels of alpha atrial natriuretic polypeptide (alpha ANP), beta endorphin, adrenocorticotropic hormone (ACTH), insulin and glucose-phosphate dehydrogenase (G-6-PDH), and decreased the vasopression level. The results were on the whole larger in the radon group than in the thermal group. The findings suggest that the radon therapy more contributes to the prevention of life style-related diseases related to peroxidation reactions and immune depression than thermal therapy. Moreover these indicate what may be a part of the mechanism for the alleviation of hypertension, osteoarthritis (pain) and diabetes mellitus brought about more radon therapy than thermal therapy

  5. Life in hot acid: Pathway analyses in extremely thermoacidophilic archaea

    Auernik, Kathryne S.; Cooper, Charlotte R.; Kelly, Robert M.

    2008-01-01

    The extremely thermoacidophilic archaea are a particularly intriguing group of microorganisms that must simultaneously cope with biologically extreme pHs (≤ 4) and temperatures (Topt ≥ 60°C) in their natural environments. Their expandi ng biotechnological significance relates to their role in biomining of base and precious metals and their unique mechanisms of survival in hot acid, at both the cellular and biomolecular levels. Recent developments, such as advances in understanding of heavy me...

  6. Reactions of Hot Tritiúm Atoms with Amino Acids

    In the existing literature there is a lack of systematic data on the interaction of tritium recoil atoms with amino acids, yet such data, in conjunction with results already obtained for organic acids and amines, could help in determining the mechanism of hot reactions in relation to the structure of compounds (chain length, functional substitutes). A study was made of the yields from the reaction of hot tritium atoms: (1) with amino acids having lengthened chains, and (2) with amino acids having a carbon chain of constant length, but with various functional substitutes. For this purpose mixtures of lithium carbonate and the acids under study were irradiated for 15 min with a slow neutron flux of 0.87 x 1013 cm2/s. Analysis was carried out on a gas chromatography unit with interchangeable columns (molecular sieves, and liquid petrolatum on kieselguhr) and with paper chromatography. Although the data obtained for the radiation survival capacity of amino acids as a function of carbon chain length were at variance with a basic tenet of radiation chemistry according to which the conservation of molecules increases in proportion to the length of their chains, the data can be explained in terms of an intramolecular transfer of energy along the carbon chain from the collision site of the hot atom to the hydroxyl group, and subsequent ''de-excitation''; on the other hand, although the energy, of tritium recoil atoms is greater than that of the chemical bond, the latter nevertheless exerts an influence on the radiation conservation of molecules with a carbon chain of constant length but with various substitutes. (author)

  7. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Jacob P. Beam

    2016-02-01

    Full Text Available Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA, and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III-oxide mat ecosystems. Spatial and temporal changes in Fe(III-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3 - 3.5; temperature = 68 - 75 °C in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4 - 40 d, and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 d, and reached steady-state levels within 14 - 30 d, corresponding to visible Fe(III-oxide accretion. Heterotrophic archaea colonized near 30 d, and emerged as the dominant functional guild after 70 d and in mature Fe(III-oxide mats (1 - 2 cm thick. First-order rate constants of Fe(III-oxide accretion ranged from 0.046 - 0.05 d-1, and in situ microelectrode measurements showed that the oxidation of Fe(II is limited by the diffusion of O2 into the Fe(III-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III-oxide mats are useful for understanding other Fe(II-oxidizing systems.

  8. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Beam, Jake; Bernstein, Hans C.; Jay, Z.; Kozubal, Mark; Jennings, Ryan; Tringe, Susannah G.; Inskeep, William P.

    2016-02-15

    Iron oxide microbial mats are ubiquitous geobiological features on Earth and occur in extant acidic hot springs of Yellowstone National Park (YNP), WY, USA, and form as a result of microbial processes. The relative contribution of different organisms to the development of these mat ecosystems is of specific interest. We hypothesized that chemolithoautotrophic organisms contribute to the early development and production of Fe(III)-oxide mats, which could support later-colonizing heterotrophic microorganisms. Sterile glass slides were incubated in the outflow channels of two acidic geothermal springs in YNP, and spatiotemporal changes in Fe(III)-oxide accretion and abundance of relevant community members were measured. Lithoautotrophic Hydrogenobaculum spp. were first colonizers and the most abundant taxa identified during early successional stages (7 – 40 days). Populations of M. yellowstonensis colonized after ~ 7 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized after 30 days, and emerge as the dominant functional guild in mature iron oxide mats (1 – 2 cm thick) that form after 70 – 120 days. First-order rate constants of iron oxide accretion ranged from 0.05 – 0.046 day-1, and reflected the absolute amount of iron accreted. Micro- and macroscale microterracettes were identified during iron oxide mat development, and suggest that the mass transfer of oxygen limits microbial growth. This was also demonstrated using microelectrode measurements of oxygen as a function of mat depth, which showed steep gradients in oxygen from the aqueous mat interface to ~ 1 mm. The formation and succession of amorphous Fe(III)-oxide mat communities follows a predictable pattern of distinct stages and growth. The successional stages and microbial signatures observed in these extant Fe(III)-oxide mat communities may be relevant to other past or present Fe(III)-oxide mineralizing systems.

  9. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs.

    Beam, Jacob P; Bernstein, Hans C; Jay, Zackary J; Kozubal, Mark A; Jennings, Ryan deM; Tringe, Susannah G; Inskeep, William P

    2016-01-01

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day(-1), and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems. PMID:26913020

  10. Distribution of Sequence-Based Types of Legionella pneumophila Serogroup 1 Strains Isolated from Cooling Towers, Hot Springs, and Potable Water Systems in China

    Qin, Tian; Zhou, Haijian; Ren, Hongyu; GUAN, HONG; Li, Machao; Zhu, Bingqing; Shao, Zhujun

    2014-01-01

    Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discriminatio...

  11. PCR Detection and Analysis of the Free-Living Amoeba Naegleria in Hot Springs in Yellowstone and Grand Teton National Parks

    Sheehan, Kathy B.; Fagg, Jennifer A.; Ferris, Michael J.; Henson, Joan M.

    2003-01-01

    Free-living thermotolerant amoebae pose a significant health risk to people who soak and swim in habitats suitable for their growth, such as hot springs. In this survey of 23 different hot springs in Yellowstone and Grand Teton National Parks, we used PCR with primer sets specific for Naegleria to detect three sequence types that represent species not previously described, as well as a fourth sequence type identified as the pathogen Naegleria fowleri.

  12. Excretion of radon in expired air after bathing and drinking of radioactive hot spring water at Misasa spa

    The radon (Rn) content in expired air after bathing in, exposure in a hot air room to and drinking of Misasa radioactive hot spring water was determined, using an ionization chamber equipped with a vibrating reed electrometer. (1) The Rn contents in the indoor and outdoor air of Misasa spa were 0.5 - 1.0 pCi/l and 0.4 - 0.7 pCi/l, respectively. (2) The highest Rn content in the expired air of subjects bathed in radioactive hot spring (Rn 58.0 x 10-10 Ci/kg) was immediately after bathing, 10.8 - 25.9 pCi/l (bathing for 5 min), 16.8 - 27.9 pCi/l (for 10 min) and 38.8 - 59.3 pCi/l (for 15 min). The Rn content in expired air was reduced to about 1.0 pCi/l in 120 - 180 min. The longer the bathing time and the younger the subjects, the higher the Rn content in expired air. (3) The highest the Rn content in the expired air of subjects exposed in a hot air room (Rn in air 54.3 x 10-10 Ci/l, staying for 15 min) was 4.9 - 7.8 pCi/l. (4) The Rn content in the expired air of subjects immediately after drinking radioactive spring water (Rn content 596.8 x 10-10 Ci/kg, drinking 500 ml) was the highest, and 28.0 - 101.5 pCi/l, and reduced to about 1.3 pCi/l in 180 min. (J.P.N.)

  13. In situ expression of genes involved in carbon concentrating expression of genes involved in carbon concentratingmechanisms in hot spring cyanobacteria

    Jensen, Sheila Ingemann; Steunou, Anne-Soisig; Bhaya, Devaki;

    The photosynthetic microbial mat in the effluent channel of an alkaline hot spring (Mushroom Spring) in Yellowstone National Park experiences extreme diel fluctuations in physicochemical parameters. During the day, photosynthesis causes the oxygen concentration within the mat to rise to highly...

  14. Hydrochemical characteristics of hot spring waters in the Kangding district related to the Lushan MS = 7.0 earthquake in Sichuan, China

    Chen, Z; Zhou, X.; Du, J.; C. Xie; Liu, L; Li, Y.; Yi, L.; Liu, H.; Y. Cui

    2015-01-01

    Hydrogeochemistry of 10 hot springs in the Kangding district was investigated by analyzing cation and anion concentrations in the spring water. The water samples were collected in the 5 days after the Lushan MS = 7.0 earthquake, which occurred on 20 April 2013. The spring waters are classified into seven chemical types based on their hydrochemical compositions. Compared with hydrochemical data before the Lushan earthquake, concentrations of Ca2+, HCO3- and total dissolved so...

  15. [An outbreak of legionellosis in a new facility of hot spring bath in Hiuga City].

    Yabuuchi, Eiko; Agata, Kunio

    2004-02-01

    Following cerebrating ceremony in 20 June 2002, for the completion of Hiuga Sun-Park Hot Spring Bath "Ofunade-no-Yu" facilities, Miyazaki Prefecture, Kyushu Island, 200 neighbors were invited each day to experience bathing on 20 and 21 June. The Bath "Ofunade-no-Yu" officially opened on 1 July 2002. On 18 July, Hiuga Health Center was informed that 3 suspected Legionella pneumonia patients in a hospital and all of them have bathing history of "Ofunade-no-Yu". Health Center officers notified Hiuga City, the main proprietor of the Bath business, that on-site inspection on sanitary managements will be done next day and requested the City to keep the bath facilities as they are. On 19 July, Health Center officers collected bath water from seven places and recommended voluntary-closing of "Ofunade-no-Yu" business. Because of various reasons, Hiuga City did not accept the recommendation and continued business up to 23 July. Because Legionella pneumophila serogroup 1 strains from 4 patients' sputa and several bath water specimens were determined genetically similar by Pulsed Field Gel Electrophoresis of Sfi I-cut DNA. "Ofunede-no-Yu" was regarded as the source of infection of this outbreak. On 24 July, "Ofunade-no-Yu" accepted the Command to prohibit the business. Among 19,773 persons who took the bath during the period from 20 June to 23 July, 295 became ill, and 7 died. Among them, 34 were definitely diagnosed as Legionella pneumonia due to L. pneumophila SG 1, by either one or two tests of positive sputum culture, Legionella-specific urinary antigen, and significant rise of serum antibody titer against L. pneumophila SG 1. In addition to the 8 items shown by Miyazaki-Prefecture Investigation Committee as the cause of infection. Hiuga City Investigation Committee pointed out following 3 items: 1) Insufficient knowledge and understanding of stuffs on Legionella and legionellosis; 2) Residual water in tubing system after trial runs might lead multiplication of legionellae

  16. Microbial Fe(III) Oxide Reduction in Chocolate Pots Hot Springs, Yellowstone National Park

    Fortney, N. W.; Roden, E. E.; Boyd, E. S.; Converse, B. J.

    2014-12-01

    Previous work on dissimilatory iron reduction (DIR) in Yellowstone National Park (YNP) has focused on high temperature, low pH environments where soluble Fe(III) is utilized as an electron acceptor for respiration. Much less attention has been paid to DIR in lower temperature, circumneutral pH environments, where solid phase Fe(III) oxides are the dominant forms of Fe(III). This study explored the potential for DIR in the warm (ca. 40-50°C), circumneutral pH Chocolate Pots hot springs (CP) in YNP. Most probable number (MPN) enumerations and enrichment culture studies confirmed the presence of endogenous microbial communities that reduced native CP Fe(III) oxides. Enrichment cultures demonstrated sustained DIR coupled to acetate and lactate oxidation through repeated transfers over ca. 450 days. Pyrosequencing of 16S rRNA genes indicated that the dominant organisms in the enrichments were closely affiliated with the well known Fe(III) reducer Geobacter metallireducens. Additional taxa included relatives of sulfate reducing bacterial genera Desulfohalobium and Thermodesulfovibrio; however, amendment of enrichments with molybdate, an inhibitor of sulfate reduction, suggested that sulfate reduction was not a primary metabolic pathway involved in DIR in the cultures. A metagenomic analysis of enrichment cultures is underway in anticipation of identifying genes involved in DIR in the less well-characterized dominant organisms. Current studies are aimed at interrogating the in situ microbial community at CP. Core samples were collected along the flow path (Fig. 1) and subdivided into 1 cm depth intervals for geochemical and microbiological analysis. The presence of significant quantities of Fe(II) in the solids indicated that DIR is active in situ. A parallel study investigated in vitro microbial DIR in sediments collected from three of the coring sites. DNA was extracted from samples from both studies for 16S rRNA gene and metagenomic sequencing in order to obtain a

  17. Sub-glacial Origin of the Hot Springs Bay Valley hydrothermal System, Akutan, Alaska

    Stelling, P. L.; Tobin, B.; Knapp, P.

    2015-12-01

    Exploration for geothermal energy in Hot Springs Bay Valley (HSBV) on Akutan Island, Alaska, has revealed a rich hydrothermal history, including what appears to be a stage of peak activity during a significant glacial period. Alteration mineralogy observed in 754 m of drill core recovered from the outflow zone is dominated by chlorite and includes minor smectite clays, a suite of zeolite species and several moderately high-temperature hydrothermal minerals (epidote/clinozoisite, prehnite, adularia and wairakite). The latter minerals each have minimum formation temperatures exceeding 200 oC, and fluid inclusion results in related calcite crystals indicate temperatures of formation to be as high as 275 oC, some 100 oC hotter than the modern boiling point with depth (BPD) curve at that depth (>62 m). In order to maintain liquid temperatures this high, the pressure during mineralization must have been substantially greater (~680 bar), a pressure change equivalent to erosion of ~280 m of rock (ρ=2.5 g/cm3). Although glacial erosion rates are too low (0.034 mm/yr; Bekele et al., 2003) for this amount of erosion to occur in a single glaciation, glacial melting and ablation are substantially more rapid (~100 mm/yr; Bekele et al., 2003; Person et al., 2012). Thus, a more probable scenario than pure erosion is that peak hydrothermal conditions occurred during a large glacial event, with the added pressure from the overlying ice allowing the high temperature minerals to form closer to the ground surface. Subsequent melting of the ice eroded upper tributary valleys and upper levels of the originally smectite-rich alteration assemblage, explaining the paucity of swelling clays in the region. We present mineralogical, fluid inclusion and geochronologic evidence to support these conclusions, and discuss the general implications of sub-glacial hydrothermal system formation and geothermal resource potential. References: Bekele, E., Rostron, B. and Person, M. (2003) Fluid pressure

  18. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada

    López, Dina L.; Smith, Leslie; Storey, Michael L.

    1994-01-01

    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  19. Hydrochemistry of the Hot Springs in Western Sichuan Province Related to the Wenchuan MS 8.0 Earthquake

    Zhi Chen

    2014-01-01

    Full Text Available Hydrogeochemistry of 32 hot springs in the western Sichuan Province after the Wenchuan MS 8.0 earthquake was investigated by analyzing the concentrations of cation and anion and the isotopic compositions of hydrogen and oxygen. The water samples of the hot springs were collected four times from June 2008 to April 2010. Hydrogeochemical data indicated the water samples can be classified into 9 chemical types. Values of δD and δ18O indicated that the spring waters were mainly derived from meteoric precipitation and affected by water-rock interaction and mixture of deep fluids. Concentrations of K+ and SO4− of the samples from the Kangding district exhibited evident increases before the Wenchuan earthquake, indicating more supplement of deep fluids under the increase of tectonic stress. The chemical and isotopic variations of the water samples from the area closer to the epicenter area can be attributed to variation of regional stress field when the aftershock activities became weak.

  20. Hydrochemistry of the hot springs in western Sichuan province related to the Wenchuan MS 8.0 earthquake.

    Chen, Zhi; Du, Jianguo; Zhou, Xiaocheng; Yi, Li; Liu, Lei; Xie, Chao; Cui, Yueju; Li, Ying

    2014-01-01

    Hydrogeochemistry of 32 hot springs in the western Sichuan Province after the Wenchuan MS 8.0 earthquake was investigated by analyzing the concentrations of cation and anion and the isotopic compositions of hydrogen and oxygen. The water samples of the hot springs were collected four times from June 2008 to April 2010. Hydrogeochemical data indicated the water samples can be classified into 9 chemical types. Values of δ D and δ(18)O indicated that the spring waters were mainly derived from meteoric precipitation and affected by water-rock interaction and mixture of deep fluids. Concentrations of K(+)and SO4(-) of the samples from the Kangding district exhibited evident increases before the Wenchuan earthquake, indicating more supplement of deep fluids under the increase of tectonic stress. The chemical and isotopic variations of the water samples from the area closer to the epicenter area can be attributed to variation of regional stress field when the aftershock activities became weak. PMID:24892106

  1. Hydrothermal alteration at the Roosevelt Hot Springs thermal area, Utah: characterization of rock types and alteration in Getty Oil Company well Utah state 52-21

    Ballantyne, G.H.

    1978-11-01

    Getty Oil Company well 52-21 in the Roosevelt Hot Springs thermal area was drilled to 7500 feet in predominantly upper amphibolite facies metamorphic rocks. All lithologies in the drill hole are pervasively but weakly altered: the alteration assemblage is chlorite + sericite + clays with occasional traces of calcite, above 2300 feet, and chlorite + sericite + clays + calcite +- epidote below 2500 feet. A zone of increased alteration intensity from approximately 1800 feet to 2300 feet occurs within and adjacent to a dacite dike which cuts the metamorphic rocks. A second zone of stronger alteration extends from 6000 feet to the bottom of the drill hole. The drill hole which is located approximately 5000 feet south of the center of the silica apron known as the Opal Mound was apparently drilled beyond the influence of acid, high-sulfate brines such as have affected the upper portions of drill holes 72-16, 76-1 and University of Utah 1A and 1B.

  2. Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning.

    Miller-Coleman, Robin L; Dodsworth, Jeremy A; Ross, Christian A; Shock, Everett L; Williams, Amanda J; Hartnett, Hilairy E; McDonald, Austin I; Havig, Jeff R; Hedlund, Brian P

    2012-01-01

    Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes). PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7-8.5 at concentrations up to 6.6×10(6) 16S rRNA gene copies g(-1) wet sediment. In Yellowstone National Park (YNP), Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB), Korarchaeota were most abundant at spring sources of pHapplication of a C-SVM to microbial ecology. PMID:22574130

  3. Changes in microbial intact polar membrane lipids related to environmental parameters at Yellowstone National Park hot springs

    Schubotz, F.; Boyd, E.; Lipp, J. S.; Fecteau, K.; Shock, E.; Summons, R. E.

    2012-12-01

    Extremes in temperature, pH and other geochemical parameters force microorganisms to adapt their membrane composition to maintain fluidity and regulate ionic and electron gradients. Recently, it was shown that temperature and pH had a distinct influence on the ring distribution of different tetraether lipids in archaea found in hot springs (Pearson et al., 2008). However, these studies were never evaluated with respect to metabolic or community dynamics. Here we explore the composition of archaeal and bacterial intact polar membrane lipids in a diverse range of hot springs at Yellowstone National Park. Our goal is to relate observed lipid patterns both to phylogeny as well as to a range of environmental parameters. The temperatures of the investigated samples covered a range from 32 to 90°C and the pH varied from pH 1.9 to pH 8.7. Membrane lipids broadly followed changes in the community composition: at elevated temperatures archaeal lipids were more dominant than bacterial lipids and matched 16S rDNA clone libraries. Bacterial lipids at hotter sites had abundant aquificales-specific lipids, such as aminopentanetetrol (APT) and phosphatidyl inositol (PI), whereas moderate, cyanobacteria-dominated sites showed abundant glycolipids typical for phototrophic organisms. Archaeal lipids were characterized by mono- and diglycosidic head groups with zero to four ring tetraether cores. More distinct shifts in head group and core lipid composition, such as ratios of phospho- to amino- or glycolipids will be evaluated with respect to changes in environmental parameters, including temperature, pH and nutrients, allowing for a deeper understanding of the role of membrane adaptations in extreme environments. Reference: Pearson A., Pi Y., Zhao W., Li W., Li Y., Inskeep, W., Perevalova A., Romanek C., Li S., Zhang C.L (2008) Factors controlling the distribution of archaeal tetraethers in terrestrial hot springs. Applied and Environmental Microbiology. 74, 3523-3532.

  4. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in

  5. Terminal Processes in the Anaerobic Degradation of an Algal-Bacterial Mat in a High-Sulfate Hot Spring

    Ward, David M.; Olson, Gregory J.

    1980-01-01

    The algal-bacterial mat of a high-sulfate hot spring (Bath Lake) provided an environment in which to compare terminal processes involved in anaerobic decomposition. Sulfate reduction was found to dominate methane production, as indicated by comparison of initial electron flow through the two processes, rapid conversion of [2-14C]acetate to 14CO2 and not to 14CH4, and the lack of rapid reduction of NaH14CO3 to 14CH4. Sulfate reduction was the dominant process at all depth intervals, but a mark...

  6. Genome sequencing and annotation of Laceyella sacchari strain GS 1-1, isolated from hot spring, Chumathang, Leh, India

    Navjot Kaur

    2014-12-01

    Full Text Available We report the 3.3-Mb draft genome of Laceyella sacchari strain GS 1-1, isolated from hot spring water sample, Chumathang, Leh, India. Draft genome of strain GS 1-1 consists of 3, 324, 316 bp with a G + C content of 48.8% and 3429 predicted protein coding genes and 75 RNAs. Geobacillus thermodenitrificans strain NG80-2, Geobacillus kaustophilus strain HTA426 and Geobacillus sp. Strain G11MC16 are the closest neighbors of the strain GS 1-1.

  7. Phylogenetic Evidence for the Existence of Novel Thermophilic Bacteria in Hot Spring Sulfur-Turf Microbial Mats in Japan

    Yamamoto, Hiroyuki; Hiraishi, Akira; Kato, Kenji; Chiura, Hiroshi X.; Maki, Yonosuke; Shimizu, Akira

    1998-01-01

    So-called sulfur-turf microbial mats, which are macroscopic white filaments or bundles consisting of large sausage-shaped bacteria and elemental sulfur particles, occur in sulfide-containing hot springs in Japan. However, no thermophiles from sulfur-turf mats have yet been isolated as cultivable strains. This study was undertaken to determine the phylogenetic positions of the sausage-shaped bacteria in sulfur-turf mats by direct cloning and sequencing of 16S rRNA genes amplified from the bulk...

  8. On the stunted Mocambique tilapia Oreochromis mossambicus (Peters, 1852 (PIsces: Cichlidae of the Matiovila hot spring, Kruger National Park

    T Hecht

    1984-12-01

    Full Text Available A stunted population of Oreochromis mossambicus occurs in the Matiovila Hot Sulphur Spring in the Kruger National Park. The growth of the fishes can best be described by the Von Bertalanffy equation L, = ^^(l-e0154^028^ mm SL. Breeding occurs throughout the year and the smallest sexually mature female was 35 mm SL. The fish from this locality were morphometrically compared to another stunted population and to a population of 0. mossambicus from a large impoundment. Speculative reasons for and advantages of stunting are presented.

  9. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park

    Bowen De León, Kara; Gerlach, Robin; Peyton, Brent M.; Fields, Matthew W.

    2013-01-01

    The Heart Lake Geyser Basin (HLGB) is remotely located at the base of Mount Sheridan in southern Yellowstone National Park (YNP), Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU) rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5) hot springs with varying temperatures (44°C, 63°C, 75°C). The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi) at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus) at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44 and 63°C springs and a thermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different) to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts. PMID:24282404

  10. Archaeal and bacterial communities in three alkaline hot springs in Heart Lake Geyser Basin, Yellowstone National Park

    Kara Bowen De León

    2013-11-01

    Full Text Available The Heart Lake Geyser Basin (HLGB is remotely located at the base of Mount Sheridan in southern Yellowstone National Park, Wyoming, USA and is situated along Witch Creek and the northwestern shore of Heart Lake. Likely because of its location, little is known about the microbial community structure of springs in the HLGB. Bacterial and archaeal populations were monitored via small subunit (SSU rRNA gene pyrosequencing over 3 years in 3 alkaline (pH 8.5 hot springs with varying temperatures (44°C, 63°C, 75°C. The bacterial populations were generally stable over time, but varied by temperature. The dominant bacterial community changed from moderately thermophilic and photosynthetic members (Cyanobacteria and Chloroflexi at 44°C to a mixed photosynthetic and thermophilic community (Deinococcus-Thermus at 63°C and a non-photosynthetic thermophilic community at 75°C. The archaeal community was more variable across time and was predominantly a methanogenic community in the 44°C and 63°C springs and a hyperthermophilic community in the 75°C spring. The 75°C spring demonstrated large shifts in the archaeal populations and was predominantly Candidatus Nitrosocaldus, an ammonia-oxidizing crenarchaeote, in the 2007 sample, and almost exclusively Thermofilum or Candidatus Caldiarchaeum in the 2009 sample, depending on SSU rRNA gene region examined. The majority of sequences were dissimilar (≥10% different to any known organisms suggesting that HLGB possesses numerous new phylogenetic groups that warrant cultivation efforts.

  11. Boring of hot spring. Kussaku koji deno mondaiten/ryuiten; Onsen boringu ni tsuite. Problems and consideration in well drilling work

    Higuchi, K. [The Society of Engineers for Mineral Springs, Tokyo (Japan)

    1997-03-31

    Problems and consideration in well drilling from the application to the completion of the well are discussed from the viewpoint of hot spring drilling industry. In the case of developing a hot spring, it is required to make an application for drilling and get permission based on the hot spring law. Inquiries must be made for `other laws` to obtain necessary permission and a written consent. Subjects which should be considered regarding the core, drilling depth, and diameter of the well are introduced. The drilling depths from 1,000m to 1,500m become common recently, and wells with more than 2,000m depths are drilled sometimes. The technology for hot spring drilling is also an important factor. Documents desirable to be attached to the contract for preventing future troubles beforehand are indicated. Among the important works during the work period, confirmation whether the work has been carried on in accordance with the documents for design and plan is necessary. Problems and consideration during finishing and hot spring water pumping tests are discussed. 5 figs., 6 tabs.

  12. First Acetic Acid Survey with CARMA in Hot Molecular Cores

    Shiao, Y -S Jerry; Remijan, Anthony J; Snyder, Lewis E; Friedel, Douglas N

    2010-01-01

    Acetic acid (CH$_3$COOH) has been detected mainly in hot molecular cores where the distribution between oxygen (O) and nitrogen (N) containing molecular species is co-spatial within the telescope beam. Previous work has presumed that similar cores with co-spatial O and N species may be an indicator for detecting acetic acid. However, does this presumption hold as higher spatial resolution observations become available of large O and N-containing molecules? As the number of detected acetic acid sources is still low, more observations are needed to support this postulate. In this paper, we report the first acetic acid survey conducted with the Combined Array for Research in Millimeter-wave Astronomy (CARMA) at 3 mm wavelengths towards G19.61-0.23, G29.96-0.02 and IRAS 16293-2422. We have successfully detected CH$_3$COOH via two transitions toward G19.61-0.23 and tentatively confirmed the detection toward IRAS 16293-2422 A. The determined column density of CH$_3$COOH is 2.0(1.0)$\\times 10^{16}$ cm$^{-2}$ and the...

  13. Silicon isotope fractionation during silica precipitation from hot-spring waters: Evidence from the Geysir geothermal field, Iceland

    Geilert, Sonja; Vroon, Pieter Z.; Keller, Nicole S.; Gudbrandsson, Snorri; Stefánsson, Andri; van Bergen, Manfred J.

    2015-09-01

    This study aims to explore the extent and controls of silicon isotope fractionation in hot spring systems of the Geysir geothermal area (Iceland), a setting where sinter deposits are actively formed. The δ30Si values of dissolved silica measured in the spring water and sampling sites along outflowing streams, covering a temperature range between 20 and 100 °C, were relatively constant around +0.2‰, whereas the δ30Si signatures of associated opaline sinters from the streambeds were between -0.1‰ and -4.0‰, becoming progressively more negative in the downstream parts of the aprons. Here, the deposited sinters represent some of the most 30Si depleted abiotically produced terrestrial materials documented to date. Compared to the data reported for Icelandic basalts, considered to be the source of the silicon, the δ30Si values of the fluids and sinter deposits are higher and lower, respectively. The resulting values for apparent solid-water isotope fractionation (Δ30Sisolid-water) decreased with decreasing temperature from ca. -0.7‰ at ∼80 °C to -3.7‰ at ∼20 °C, locally down to -4.4‰. This temperature relationship was reproducible in each of the investigated hot spring systems and is qualitatively consistent with recent findings in laboratory experiments on kinetic fractionation for a flowing fluid. However, the apparent fractionation magnitudes observed in the field are ca. -2‰ more negative and thus significantly larger. We infer that solid-water silicon isotope fractionation during deposition of amorphous silica from a flowing fluid correlates inversely with temperature, but is essentially a function of the precipitation rate, such that the fractionation factor decreases with increasing rate. As an important corollary, the effective fractionation behavior during precipitation of silica from saturated solutions is a system-dependent feature, which should be taken into account when using silicon isotopes for paleo-environmental reconstructions.

  14. Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential

    Klatt, C. G.; Wood, J. M.; Rusch, D. B.;

    2011-01-01

    Phototrophic microbial mat communities from 60¿°C and 65¿°C regions in the effluent channels of Mushroom and Octopus Springs (Yellowstone National Park, WY, USA) were investigated by shotgun metagenomic sequencing. Analyses of assembled metagenomic sequences resolved six dominant chlorophototrophic...

  15. Oil yield and fatty acid composition of spring sunflower

    Shahbaz Ahmad; Fayyaz-ul-Hassan

    2000-01-01

    Five sunflower hybrids were grown at four sowing dates to have variable maturity temperatures. The hybrids having the same oil yield potential may differ for the oil quality. Oil yield and oleic acid increased while linoleic acid decreased with increasing maturity temperature. The intersection point of oil yield and linoleic acid lines at 2000 growing degree days (GDD) may be the best compromise for high oil yield with the best quality.

  16. Life in hot acid: pathway analyses in extremely thermoacidophilic archaea.

    Auernik, Kathryne S; Cooper, Charlotte R; Kelly, Robert M

    2008-10-01

    The extremely thermoacidophilic archaea are a particularly intriguing group of microorganisms that must simultaneously cope with biologically extreme pHs ( or = 60 degrees C) in their natural environments. Their expanding biotechnological significance relates to their role in biomining of base and precious metals and their unique mechanisms of survival in hot acid, at both the cellular and biomolecular levels. Recent developments, such as advances in understanding of heavy metal tolerance mechanisms, implementation of a genetic system, and discovery of a new carbon fixation pathway, have been facilitated by the availability of genome sequence data and molecular genetic systems. As a result, new insights into the metabolic pathways and physiological features that define extreme thermoacidophily have been obtained, in some cases suggesting prospects for biotechnological opportunities. PMID:18760359

  17. Chronic gamma radiation-induced changes in the content of fatty acids in spring rape seeds

    Chronic gamma irradiation of spring rape plants having no erucic acid and eicosanoic acid in seed oil induced changes both in the growth and in the morphological composition of the plants. The contents of erucic acid and eicosanoic acid did not increase. The greatest changes occurred in unsaturated acids, especially in macromutants resulting from irradiated plants located in the closest proximity of the radiation source or in places with the most significant plant growth inhibition. Nutants with a low, or a high, content of linolenic acid were obtained. (author)

  18. Hyperspatial Thermal Imaging of Surface Hydrothermal Features at Pilgrim Hot Springs, Alaska using a small Unmanned Aerial System (sUAS)

    Haselwimmer, C. E.; Wilson, R.; Upton, C.; Prakash, A.; Holdmann, G.; Walker, G.

    2013-12-01

    Thermal remote sensing provides a valuable tool for mapping and monitoring surface hydrothermal features associated with geothermal activity. The increasing availability of low-cost, small Unmanned Aerial Systems (sUAS) with integrated thermal imaging sensors offers a means to undertake very high spatial resolution (hyperspatial), quantitative thermal remote sensing of surface geothermal features in support of exploration and long-term monitoring efforts. Results from the deployment of a quadcopter sUAS equipped with a thermal camera over Pilgrim Hot Springs, Alaska for detailed mapping and heat flux estimation for hot springs, seeps, and thermal pools are presented. Hyperspatial thermal infrared imagery (4 cm pixels) was acquired over Pilgrim Hot Springs in July 2013 using a FLIR TAU 640 camera operating from an Aeryon Scout sUAS flying at an altitude of 40m. The registered and mosaicked thermal imagery is calibrated to surface temperature values using in-situ measurements of uniform blackbody tarps and the temperatures of geothermal and other surface pools acquired with a series of water temperature loggers. Interpretation of the pre-processed thermal imagery enables the delineation of hot springs, the extents of thermal pools, and the flow and mixing of individual geothermal outflow plumes with an unprecedented level of detail. Using the surface temperatures of thermal waters derived from the FLIR data and measured in-situ meteorological parameters the hot spring heat flux and outflow rate is calculated using a heat budget model for a subset of the thermal drainage. The heat flux/outflow rate estimates derived from the FLIR data are compared against in-situ measurements of the hot spring outflow rate recorded at the time of the thermal survey.

  19. Spring mires fed by hot artesian water in Kruger National Park, South Africa

    A.P. Grootjans

    2010-12-01

    Full Text Available This article describes two spring mire complexes in the Kruger National Park (South Africa that are fed by thermal water with a temperature of 37–42°C. The mires are small (1–20 m in diameter. The peat thickness is 1–2.5 m, of which 1–1.5 m is elevated above the surroundings. Some of the domes have dried out severely and show signs of erosion due to water flow and trampling by large animals. The mires lie in an almost straight line, supporting the hypothesis that the water originates from deep aquifers which discharge at geological faults. The long-term existence of these spring mire complexes may not be threatened because young stages of mire formation are present, but research to elucidate the timescales of peat development is needed to make a valid prognosis.

  20. Diversity of Culturable Thermophilic Actinobacteria in Hot Springs in Tengchong, China and Studies of their Biosynthetic Gene Profiles.

    Liu, Lan; Salam, Nimaichand; Jiao, Jian-Yu; Jiang, Hong-Chen; Zhou, En-Min; Yin, Yi-Rui; Ming, Hong; Li, Wen-Jun

    2016-07-01

    The class Actinobacteria has been a goldmine for the discovery of antibiotics and has attracted interest from both academics and industries. However, an absence of novel approaches during the last few decades has limited the discovery of new microbial natural products useful for industries. Scientists are now focusing on the ecological aspects of diverse environments including unexplored or underexplored habitats and extreme environments in the search for new metabolites. This paper reports on the diversity of culturable actinobacteria associated with hot springs located in Tengchong County, Yunnan Province, southwestern China. A total of 58 thermophilic actinobacterial strains were isolated from the samples collected from ten hot springs distributed over three geothermal fields (e.g., Hehua, Rehai, and Ruidian). Phylogenetic positions and their biosynthetic profiles were analyzed by sequencing 16S rRNA gene and three biosynthetic gene clusters (KS domain of PKS-I, KSα domain of PKS-II and A domain of NRPS). On the basis of 16S rRNA gene phylogenetic analysis, the 58 strains were affiliated with 12 actinobacterial genera: Actinomadura Micromonospora, Microbispora, Micrococcus, Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, Thermoactinospora, Thermocatellispora, and Verrucosispora, of which the two novel genera Thermoactinospora and Thermocatellisopora were recently described from among these strains. Considering the biosynthetic potential of these actinobacterial strains, 22 were positive for PCR amplification of at least one of the three biosynthetic gene clusters (PKS-I, PKS-II, and NRPS). These actinobacteria were further subjected to antimicrobial assay against five opportunistic human pathogens (Acinetobacter baumannii, Escherichia coli, Micrococcus luteus, Staphylococcus aureus and Streptococcus faecalis). All of the 22 strains that were positive for PCR amplification of at least one of the biosynthetic gene domains exhibited

  1. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs in U.S. Great Basin hot springs

    Brian P. Hedlund

    2013-08-01

    Full Text Available Branched glycerol dialkyl glycerol tetraethers (bGDGTs are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31-95°C; pH: 6.8-10.7. bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal. The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤ 70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS- and positively with properties of oxygenated, low temperature sites (O2, NO3-. Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤ 70°C.

  2. Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin.

    Costa, Kyle C; Navarro, Jason B; Shock, Everett L; Zhang, Chuanlun L; Soukup, Debbie; Hedlund, Brian P

    2009-05-01

    A coordinated study of water chemistry, sediment mineralogy, and sediment microbial community was conducted on four >73 degrees C springs in the northwestern Great Basin. Despite generally similar chemistry and mineralogy, springs with short residence time (approximately 5-20 min) were rich in reduced chemistry, whereas springs with long residence time (>1 day) accumulated oxygen and oxidized nitrogen species. The presence of oxygen suggested that aerobic metabolisms prevail in the water and surface sediment. However, Gibbs free energy calculations using empirical chemistry data suggested that several inorganic electron donors were similarly favorable. Analysis of 298 bacterial 16S rDNAs identified 36 species-level phylotypes, 14 of which failed to affiliate with cultivated phyla. Highly represented phylotypes included Thermus, Thermotoga, a member of candidate phylum OP1, and two deeply branching Chloroflexi. The 276 archaeal 16S rDNAs represented 28 phylotypes, most of which were Crenarchaeota unrelated to the Thermoprotei. The most abundant archaeal phylotype was closely related to "Candidatus Nitrosocaldus yellowstonii", suggesting a role for ammonia oxidation in primary production; however, few other phylotypes could be linked with energy calculations because phylotypes were either related to chemoorganotrophs or were unrelated to known organisms. PMID:19247786

  3. Description, field test and data analysis of a controlled-source EM system (EM-60). [Leach Hot Springs, Grass Valley

    Morrison, H.F.; Goldstein, N.E.; Hoversten, M.; Oppliger, G.; Riveros, C.

    1978-10-01

    The three sections describe the transmitter, the receiver, and data interpretations and indicate the advances made toward the development of a large moment electromagnetic (EM) system employing a magnetic dipole source. A brief description is given of the EM-60 transmitter, its general design, and the consideration involved in the selection of a practical coil size and weight for routine field operations. A programmable, multichannel, multi-frequency, phase-sensitive receiver is described. A field test of the EM-60, the data analysis and interpretation procedures, and a comparison between the survey results and the results obtained using other electrical techniques are presented. The Leach Hot Springs area in Grass Valley, Pershing County, Nevada, was chosen for the first field site at which the entire system would be tested. The field tests showed the system capable of obtaining well-defined sounding curves (amplitude and phase of magnetic fields) from 1 kHz down to 0.1 Hz. (MHR)

  4. Regulatory, Land Ownership, and Water Availability Factors for a Magma Well: Long Valley Caldera and Coso Hot Springs, California

    Blackett, Robert

    1985-09-01

    The U.S. Department of Energy is currently engaged in a program to demonstrate the engineering feasibility of extracting thermal energy from high-level molten magma bodies. The program is being carried out under the direction of Sandia National Laboratories where a number of individual projects support the overall program. The existing program elements include (1) high-temperature materials compatibility testing; (2) studies of properties of melts of various compositions; and (3) the investigation of the economics of a magma energy extraction system. Another element of the program is being conducted with the cooperation of the U.S. Geological Survey, and involves locating and outlining magma bodies at selected sites using various geophysical techniques. The ultimate goal here will be to define the limits of a magma body as a drilling target. During an earlier phase of the program, more than twenty candidate study sites considered were evaluated based upon: (1) the likelihood of the presence of a shallow magma chamber, (2) the accessibility of the site, and (3) physical and institutional constraints associated with each site with respect to performing long-term experiments. From these early phase activities, the number of candidate sites were eventually narrowed to just 2. The sites currently under consideration are Coso Hot Springs and the Long Valley caldera (Figure 1). This report describes certain attributes of these sites in order to help identify potential problems related to: (1) state and federal regulations pertaining to geothermal development; (2) land ownership; and (3) water resource availability. The information sources used in this study were mainly maps, publications, and informative documents gathered from the California Division of Oil and Gas and the U.S. Department of the Interior. Environmental studies completed for the entire Long Valley caldera study area, and for portions of the Coso Hot Springs study area were also used for reference.

  5. Composition of ammonia-oxidizing archaea and their contribution to nitrification in a high-temperature hot spring

    Chen, S.; Peng, X.-T.; Xu, H.-C.; Ta, K.-W.

    2015-10-01

    The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA) in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N-NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g-1 h-1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH). Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU) in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR) indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g-1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell-1 h-1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.

  6. Composition of ammonia-oxidizing archaea and their contribution to nitrification in a high-temperature hot spring

    S. Chen

    2015-10-01

    Full Text Available The oxidation of ammonia by microbes and associated organisms has been shown to occur in diverse natural environments. However, the contribution of ammonia-oxidizing archaea to nitrification in high-temperature environments remains unclear. Here, we studied in situ ammonia oxidation rates and the abundance of ammonia-oxidizing archaea (AOA in surface and bottom sediments at 77 °C in the Gongxiaoshe hot spring, Tengchong, Yunnan, China. The in situ ammonia oxidation rates measured by the 15N–NO3- pool dilution technique in the surface sinter and bottom sediments were 4.8 and 5.3 nmol N g−1 h−1, respectively. Relative abundances of Crenarchaea in both samples were determined by fluorescence in situ hybridization (FISH. Phylogenetic analysis of 16S rRNA genes showed high sequence similarity to thermophilic "Candidatus Nitrosocaldus yellowstonii", which represented the most abundant operation taxonomic units (OTU in both sediments. Furthermore, bacterial amoA was not detected in this study. Quantitative PCR (qPCR indicated that AOA and 16S rRNA genes were present in the range of 2.75 to 9.80 × 105 and 0.128 to 1.96 × 108 gene copies g−1 sediment. The cell-specific nitrification rates were estimated to be in the range of 0.41 to 0.79 fmol N archaeal cell−1 h−1, which is consistent with earlier estimates in estuary environments. This study demonstrated that AOA were widely involved in nitrification in this hot spring. It further indicated the importance of archaea rather than bacteria in driving the nitrogen cycle in terrestrial geothermal environments.

  7. Microbial community profiling of the Chinoike Jigoku ("Blood Pond Hell") hot spring in Beppu, Japan: isolation and characterization of Fe(III)-reducing Sulfolobus sp. strain GA1.

    Masaki, Yusei; Tsutsumi, Katsutoshi; Hirano, Shin-Ichi; Okibe, Naoko

    2016-09-01

    Chinoike Jigoku ("Blood Pond Hell") is located in the hot spring town of Beppu on the southern island of Kyushu in Japan, and is the site of a red-colored acidic geothermal pond. This study aimed to investigate the microbial population composition in this extremely acidic environment and to isolate/characterize acidophilic microorganism with metal-reducing ability. Initially, PCR (using bacteria- and archaea-specific primers) of environmental DNA samples detected the presence of bacteria, but not archaea. This was followed by random sequencing analysis, confirming the presence of wide bacterial diversity at the site (123 clones derived from 18 bacterial and 1 archaeal genera), including those closely related to known autotrophic and heterotrophic acidophiles (Acidithiobacillus sp., Sulfobacillus sp., Alicyclobacillus sp.). Nevertheless, successive culture enrichment with Fe(III) under micro-aerobic conditions led to isolation of an unknown archaeal organism, Sulfolobus sp. GA1 (with 99.7% 16S rRNA gene sequence identity with Sulfolobus shibatae). Unlike many other known Sulfolobus spp., strain GA1 was shown to lack sulfur oxidation ability. Strain GA1 possessed only minor Fe(II) oxidation ability, but readily reduced Fe(III) during heterotrophic growth under micro-aerobic conditions. Strain GA1 was capable of reducing highly toxic Cr(VI) to less toxic/soluble Cr(III), demonstrating its potential utility in bioremediation of toxic metal species. PMID:27208660

  8. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  9. Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat

    Steunou, Anne-Soisig; Jensen, Sheila I; Brecht, Eric;

    2008-01-01

    in the microbial mat of an alkaline hot spring in Yellowstone National Park. The results showed a rise in nif transcripts in the evening, with a subsequent decline over the course of the night. In contrast, immunological data demonstrated that the level of the NifH polypeptide remained stable during the night...

  10. Analysis of the metatranscriptome of microbial communities of an alkaline hot sulfur spring revealed different gene encoding pathway enzymes associated with energy metabolism.

    Tripathy, Swetaleena; Padhi, Soumesh Kumar; Mohanty, Sriprakash; Samanta, Mrinal; Maiti, Nikhil Kumar

    2016-07-01

    Alkaline sulfur hot springs notable for their specialized and complex ecosystem powered by geothermal energy are abundantly rich in different chemotrophic and phototrophic thermophilic microorganisms. Survival and adaptation of these organisms in the extreme environment is specifically related to energy metabolism. To gain a better understanding of survival mechanism of the organisms in these ecosystems, we determined the different gene encoding enzymes associated with anaerobic pathways of energy metabolism by applying the metatranscriptomics approach. The analysis of the microbial population of hot sulfur spring revealed the presence of both aerobic and anaerobic organisms indicating dual mode of lifestyle of the community members. Proteobacteria (28.1 %) was the most dominant community. A total of 988 reads were associated with energy metabolism, out of which 33.7 % of the reads were assigned to nitrogen, sulfur, and methane metabolism based on KEGG classification. The major lineages of hot spring communities were linked with the anaerobic pathways. Different gene encoding enzymes (hao, nir, nar, cysH, cysI, acs) showed the involvement of microbial members in nitrification, denitrification, dissimilatory sulfate reduction, and methane generation. This study enhances our understanding of important gene encoding enzymes involved in energy metabolism, required for the survival and adaptation of microbial communities in the hot spring. PMID:27290724

  11. Investigation of Microbial Diversity in Geothermal Hot Springs in Unkeshwar, India, Based on 16S rRNA Amplicon Metagenome Sequencing

    Mehetre, Gajanan T.; Paranjpe, Aditi; Dastager, Syed G.; Dharne, Mahesh S.

    2016-01-01

    Microbial diversity in geothermal waters of the Unkeshwar hot springs in Maharashtra, India, was studied using 16S rRNA amplicon metagenomic sequencing. Taxonomic analysis revealed the presence of Bacteroidetes, Proteobacteria, Cyanobacteria, Actinobacteria, Archeae, and OD1 phyla. Metabolic function prediction analysis indicated a battery of biological information systems indicating rich and novel microbial diversity, with potential biotechnological applications in this niche.

  12. Separating natural acidity from anthropogenic acidification in the spring flood of northern Sweden

    Spring flood is an occasion for transient hydrochemical changes that profoundly effect the biodiversity of the aquatic ecosystem. Spring flood is also very susceptible to anthropogenic acidification. Belief that acid deposition is primarily responsible for pH decline during spring flood has been an important factor in the decision to spend close to one billion Swedish crowns to lime surface waters in northern Sweden during the last decade. The objective of this work is to present an operational tool, the Boreal Dilution Model (BDM), for separating and quantifying the anthropogenic and natural contributions to episodic acidification during spring flood episodes in northern Sweden. The limited data requirements of 10-15 stream water samples before and during spring flood make the BDM suitable for widespread use in environmental monitoring programs. This creates a possibility for distinguishing trends and spatial patterns in the human impact as well as natural pH decline. The results from applying the BDM, and a one point 'pBDM' version of the model, in northern Sweden demonstrate that the anthropogenic component associated with spring flood episodes is now generally limited. Instead it is the combination of natural organic acidity and dilution of the buffering capacity that is the major driving mechanism of episodic acidity during spring flood events in the region. While the anthropogenic component of episodic acidification generally contributes 0.1 to 0.3 pH units to the natural pH decline of up to 2.5 pH units, the current regional extent of areas that are severely affected by anthropogenically driven episodes is approximately 6%. Prior to the initiation of the Swedish Environmental Protection Agency's 'Episode Project' the limited spring flood data together with lack of a systematic methodology for determining liming candidates forced the liming authorities to base the remediation strategy in northern Sweden on biological indications. But, since there are more

  13. FY 1998 geothermal development promotion survey. Report on the environmental effect survey (hot spring/water level/spring water, No. C-3 Akinomiya area); 1998 nendo chinetsu kaihatsu sokushin chosa. Kankyo eikyo chosa hokokusho (onsen suii yusui, No.C-3 Akinomiya chiiki)

    NONE

    1999-04-01

    As a part of the FY 1998 geothermal development promotion survey, the results were summed up of the environmental effect survey conducted at the Akinomiya area of Ogachi-gun, Akita prefecture. In the survey, the drilling of N9-AY-4 exploration well and short-term injection tests of N8-AY-2/N9-AY-3 were carried out in the area. The survey was made aiming at grasping the effects on hot spring/ground water level/spring water in the area. The methods used for survey were surveys of hot spring variation, ground water level variation, precipitation, rivers, all spring sources, and analyses of hot spring water/spring water in the Akinomiya area. As a result of the survey, in hot spring/ground water level/spring water, no variations were recognized which were caused by the drilling of N9-AY-3/N9-AY-4/N9-AY-5 exploration wells and short-term injection tests of N8-AY-2/N9-AY-3 exploration wells. Moreover, since few changes of spring water quality were seen also in the result of the survey of all spring sources, it was judged that the drilling and short-term injection tests of the exploration wells described above have no effects on the hot spring, ground water level and spring water in the Akinomiya area. (NEDO)

  14. Hydrothermal alteration at Roosevelt Hot Springs KGRA: DDH 1976-1

    Bryant, N.L.; Parry, W.T.

    1977-09-01

    Hot waters of the Roosevelt Thermal Area, Utah, have altered granitic rocks and detritus of the Mineral Range pluton, Utah. Alteration and mineral deposition recognized in a 200' drill core from DDH 1-76 is most intense in the upper 100 feet which consists of altered alluvium and opal deposits; the lower 100 feet is weakly altered quartz monzonite. Petrographic, x-ray, and chemical methods were used to characterize systematic changes in chemistry and mineralogy. Comparison of the alteration mineral assemblages with known water chemistry and equilibrium activity diagrams suggests that a simple solution equilibrium model cannot account for the alteration. A model is proposed in which upward moving thermal water supersaturated with respect to quartz and a downward moving cool water undersaturated with respect to quartz produces the observed alteration. An estimate of the heat flow contributions from hydrothermal alteration was made by calculating reaction enthalpies for alteration reactions at each depth. The estimated heat flow varied from .02 HFU (for 200' depth, 400,000 yr duration, and no sulfur oxidation) to 67 HFU (for 5,000' depth, 1,000 yr duration, and all sulfur oxidized from sulfide). Heat flow contributions from hydrothermal alteration are comparable with those from a cooling granitic magma.

  15. Hydrothermal alteration at Roosevelt Hot Springs KGRA - DDH 1976-1

    Bryant, N.L.; Parry, W.T.

    1977-09-01

    Hot waters of the Roosevelt Thermal Area, Utah, have altered granitic rocks and detritus of the Mineral Range pluton, Utah. Petrographic, x-ray, and chemical methods were used to characterize systematic changes in chemistry and mineralogy. Major alteration zones include: 1) an advanced argillic zone in the upper 30 feet of altered detritus containing alunite, opal, vermiculite, and relic quartz; 2) an argillic zone from 30 feet to 105 feet containing kaolinite, muscovite, and minor alunite; and 3) a propylitic zone from 105 to 200 feet containing muscovite, pyrite, marcasite, montmorillonite, and chlorite in weakly altered quartz monzonite. Comparison of the alternation mineral assemblages with known water chemistry and equilibrium activity diagrams suggests that a simple solution equilibrium model cannot account for the alteration. A model is proposed in which upward moving thermal water supersaturated with respect to quartz and a downward moving cool water undersaturated with respect to quartz produces the observed alteration. An estimate of the heat flow contributions from hydrothermal alteration was made by calculating reaction enthalpies for alteration reactions at each depth.

  16. A preliminary study of older hot spring alteration in Sevenmile Hole, Grand Canyon of the Yellowstone River, Yellowstone Caldera, Wyoming

    Larson, P.B.; Phillips, A.; John, D.; Cosca, M.; Pritchard, C.; Andersen, A.; Manion, J.

    2009-01-01

    Erosion in the Grand Canyon of the Yellowstone River, Yellowstone Caldera (640??ka), Wyoming, has exposed a cross section of older hydrothermal alteration in the canyon walls. The altered outcrops of the post-collapse tuff of Sulphur Creek (480??ka) extend from the canyon rim to more than 300??m beneath it. The hydrothermal minerals are zoned, with an advanced argillic alteration consisting of an association of quartz (opal) + kaolinite ?? alunite ?? dickite, and an argillic or potassic alteration association with quartz + illite ?? adularia. Disseminated fine-grained pyrite or marcasite is ubiquitous in both alteration types. These alteration associations are characteristic products of shallow volcanic epithermal environments. The contact between the two alteration types is about 100??m beneath the rim. By analogy to other active geothermal systems including active hydrothermal springs in the Yellowstone Caldera, the transition from kaolinite to illite occurred at temperatures in the range 150 to 170????C. An 40Ar/39Ar age on alunite of 154,000 ?? 16,000??years suggests that hydrothermal activity has been ongoing since at least that time. A northwest-trending linear array of extinct and active hot spring centers in the Sevenmile Hole area implies a deeper structural control for the upflowing hydrothermal fluids. We interpret this deeper structure to be the Yellowstone Caldera ring fault that is covered by the younger tuff of Sulphur Creek. The Sevenmile Hole altered area lies at the eastern end of a band of hydrothermal centers that may mark the buried extension of the Yellowstone Caldera ring fault across the northern part of the Caldera. ?? 2009 Elsevier B.V.

  17. Incipient silicification of recent conifer wood at a Yellowstone hot spring

    Hellawell, Jo; Ballhaus, Chris; Gee, Carole T.; Mustoe, George E.; Nagel, Thorsten J.; Wirth, Richard; Rethemeyer, Janet; Tomaschek, Frank; Geisler, Thorsten; Greef, Karin; Mansfeldt, Tim

    2015-01-01

    A branch of lodgepole pine (Pinus contorta) from a silica sinter apron of Cistern Spring, Yellowstone National Park, is partially mineralized with silica gel. The distribution of Si mapped in transverse sections of the branch suggests that mineralization was episodic. Early silica-rich solutions used the cellular structures in the wood as pathways, in particular the axial tracheids and rays. Later solutions infiltrated into the branch through shrinkage cracks along the decorticated branch's periphery. Among the tracheids, a distinct preference is noted for silica precipitates to line lumina of the earlywood tracheids, suggesting that this differential concentration in silica may reflect seasonal growth and water uptake in a live tree. Raman spectroscopy identifies the silica phases as amorphous silica gel. Secondary electron images of radial sections along the tracheids demonstrate that the distribution of silica is heterogeneous on a micrometer scale. Silica gel precipitates form micro spheroids with a spherical substructure that extends down to the sub-nanometer scale. All cell walls are templated with a monolayer consisting of closely spaced silica gel nano spheres around 100 nm in diameter. Transmission electron microscopy of focused ion beam sections through cell walls of partially mineralized tracheids reveals that the permineralization of cellular structures and the replacement of organic material by silica are processes that go hand in hand. The branch is dated with the 14C chronometer to 140 ± 33 years, underlining that the silicification reactions that preserve wood in the fossil record can be very rapid. Textural considerations of Si distribution in the wood suggest that the early stages of silicification in this branch date from a time when the pine tree was still alive.

  18. Hydrochemical characteristics of the hot spring waters in the Kangding district related to the Lushan MS 7.0 earthquake in Sichuan, China

    Chen, Z.; Zhou, X.; Du, J.; Xie, C.; Liu, L.; Li, Y.; Yi, L.; Liu, H.; Cui, Y.

    2014-12-01

    Hydrogeochemistry of 10 hot springs in the Kangding district was investigated by analyzing cation and anion concentrations of the spring waters. The water samples were collected within 5 days after the Lushan earthquake. The spring waters are classified into 7 chemical types based on the hydrochemical compositions. Comparison with the hydrochemical data before the Lushan earthquake, concentrations of Ca2+, HCO3- and TDS of the waters from the Guanding, Erdaoqiao, Gonghe, Erhaoying, Tianwanhe and Caoke springs evidently increased, which resulted from enhancing interaction between deep-earth fluids and carbonate rocks by the increment of dissolved CO2 in the groundwater. Concentrations of Na+, Cl- and SO42- of the waters from the Guanding, zheduotang, Xinxing and Gonghe springs were decreased, indicating dilution of precipitation water. Concentrations of Na+ and SO42- of the Erhaoying spring water increased, which may be attributed to the more supplement of fluids enriched in sulfur. The results indicate that hydrochemical components of spring water can be used as an effective indicator for earthquakes.

  19. Hydrochemical characteristics of hot spring waters in the Kangding district related to the Lushan MS = 7.0 earthquake in Sichuan, China

    Chen, Z.; Zhou, X.; Du, J.; Xie, C.; Liu, L.; Li, Y.; Yi, L.; Liu, H.; Cui, Y.

    2015-06-01

    Hydrogeochemistry of 10 hot springs in the Kangding district was investigated by analyzing cation and anion concentrations in the spring water. The water samples were collected in the 5 days after the Lushan MS = 7.0 earthquake, which occurred on 20 April 2013. The spring waters are classified into seven chemical types based on their hydrochemical compositions. Compared with hydrochemical data before the Lushan earthquake, concentrations of Ca2+, HCO3- and total dissolved solid (TDS) in water samples from the Guanding, Erdaoqiao, Gonghe, Erhaoying, Tianwanhe and Caoke springs significantly increased, which may be the result of a greater increase in groundwater from carbonate rocks, and water-carbonate rock interactions, enhanced by the increment of CO2. Concentrations of Na+, Cl- and SO42- in water samples from the Guanding, Zheduotang, Xinxing and Gonghe springs decreased, indicating a dilution of shallow waters. Concentrations of Na+ and SO42- in water samples from the Erhaoying spring water increased, which may be attributed to water-granite interactions enhanced by H2S. The results indicated that hydrochemical components of spring water could be used as an effective indicator for earthquakes.

  20. Hydrochemical characteristics of the hot spring waters in the Kangding district related to the Lushan MS 7.0 earthquake in Sichuan, China

    Z. Chen

    2014-12-01

    Full Text Available Hydrogeochemistry of 10 hot springs in the Kangding district was investigated by analyzing cation and anion concentrations of the spring waters. The water samples were collected within 5 days after the Lushan earthquake. The spring waters are classified into 7 chemical types based on the hydrochemical compositions. Comparison with the hydrochemical data before the Lushan earthquake, concentrations of Ca2+, HCO3− and TDS of the waters from the Guanding, Erdaoqiao, Gonghe, Erhaoying, Tianwanhe and Caoke springs evidently increased, which resulted from enhancing interaction between deep-earth fluids and carbonate rocks by the increment of dissolved CO2 in the groundwater. Concentrations of Na+, Cl− and SO42− of the waters from the Guanding, zheduotang, Xinxing and Gonghe springs were decreased, indicating dilution of precipitation water. Concentrations of Na+ and SO42− of the Erhaoying spring water increased, which may be attributed to the more supplement of fluids enriched in sulfur. The results indicate that hydrochemical components of spring water can be used as an effective indicator for earthquakes.

  1. Big George to Carter Mountain 115-kV transmission line project, Park and Hot Springs Counties, Wyoming. Environmental Assessment

    1994-02-01

    The Western Area Power Administration (Western) is proposing to rebuild, operate, and maintain a 115-kilovolt (kV) transmission line between the Big George and Carter Mountain Substations in northwest Wyoming (Park and Hot Springs Counties). This environmental assessment (EA) was prepared in compliance with the National Environmental Policy Act (NEPA) and the regulations of the Council on Environmental Quality (CEQ) and the Department of Energy (DOE). The existing Big George to Carter Mountain 69-kV transmission line was constructed in 1941 by the US Department of Interior, Bureau of Reclamation, with 1/0 copper conductor on wood-pole H-frame structures without an overhead ground wire. The line should be replaced because of the deteriorated condition of the wood-pole H-frame structures. Because the line lacks an overhead ground wire, it is subject to numerous outages caused by lightning. The line will be 54 years old in 1995, which is the target date for line replacement. The normal service life of a wood-pole line is 45 years. Under the No Action Alternative, no new transmission lines would be built in the project area. The existing 69-kV transmission line would continue to operate with routine maintenance, with no provisions made for replacement.

  2. Terminal processes in the anaerobic degradation of an algal-bacterial mat in a high-sulfate hot spring

    The algal-bacterial mat of a high-sulfate hot spring (Bath Lake) provided an environment in which to compare terminal processes involved in anaerobic decomposition. Sulfate reduction was found to dominate methane production, as indicated by comparison of initial electron flow through the two processes, rapid conversion of [2-14C]acetate to 14CO2 and not to 14CH4, and the lack of rapid reduction of NaH14CO3 to 14CH4. Sulfate reduction was the dominant process at all depth intervals, but a marked decrease of sulfate reduction and sulfate-reducing bacteria was observed with depth. Concurrent methanogenesis was indicated by the presence of viable methanogenic bacteria and very low but detectable rates of methane production. A marked increase in methane production was observed after sulfate depletion despite high concentrations of sulfide (>1.25 mM), indicating that methanogenesis was not inhibited by sulfide in the natural environment. Although a sulfate minimum and sulfide maximum occurred in the region of maximal sulfate reduction, the absence of sulfate depletion in interstitial water suggests that methanogenesis is always severely limited in Bath Lake sediments. Low initial methanogenesis was not due to anaerobic methane oxidation

  3. Geothermal investment analysis with site-specific applications to Roosevelt Hot Springs and Cove Fort-Sulphurdale, Utah

    Cassel, T.A.V.; Edelstein, R.H.; Blair, P.D.

    1978-12-01

    The analysis and modeling of investment behavior in the development of hydrothermal electric power facilities are reported. This investment behavior reflects a degree of sensitivity to public policy alternatives concerning taxation and regulation of the resource and its related energy conversion facilities. The objective of the current research is to provide a realistic and theoretically sound means for estimating the impacts of such public policy alternatives. A stochastic simulation model was developed which offers an efficient means for site-specific investment analysis of private sector firms and investors. The results of the first year of work are discussed including the identification, analysis, quantification and modeling of: a decision tree reflecting the sequence of procedures, timing and stochastic elements of hydrothermal resource development projects; investment requirements, expenses and revenues incurred in the exploration, development and utilization of hydrothermal resources for electric power generation; and multiattribute investment decision criteria of the several types of firms in the geothermal industry. An application of the investment model to specific resource sites in the state of Utah is also described. Site specific data for the Known Geothermal Resource Areas of Roosevelt Hot Springs and Cove Fort-Sulphurdale are given together with hypothesized generation capacity growth rates.

  4. Survey of environmental radiation dose rates from Tokushima to Misasa hot spring in Tottori using a scintillation survey meter

    In this work, a survey of environmental radiation dose rates from Tokushima to Misasa Hot Spring in Tottori has been performed using a portable NaI(Tl) scintillation survey meter equipped in a car. It has been possible to record the environmental radiation dose rates together with time information by a portable personal computer. In the course of the present survey, the maximum value of the environmental radiation dose rates was 0.203 μSv/h into Kokubunji tunnel in Kagawa prefecture, while the minimum value was 0.016 μSv/h on the bridge of Seto-Ohashi. Radiation dose rates into tunnels were higher than those of public places, in contrast, those on bridges were lower. This trend is in agreement with generally recognized one. That is, the radiation dose rates into tunnels will increase by a top and sides of bedrocks, while those on bridges will decrease by the effect of shielding of river and sea waters for the natural occurring radiation due to bedrocks. Comparing the environmental radiation dose rates at public places in the following four prefectures, Tokushima, Kagawa, Okayama, and Tottori, except those tunnels and bridges, we found that the average radiation dose rate in Tottori was 0.079 ± 0.011 μSv/h and it was the highest value in the four prefectures. This suggests that granites, which generally have the highest content of U and Th, will be geologically distributed in the Chugoku District than the Shikoku One. (author)

  5. Synthesis and Characterization of Polyesteramide Hot Melt Adhesive from Low Purity Dimer Acid, Ethylenediamine, and Ethanolamine

    Pravin G. KADAM; Vaidya, Parth; Mhaske, Shashank T.

    2014-01-01

    Polyesteramide hot melt adhesive (HMA) was synthesized using low purity dimer acid (composition: 3% linoleic acid, 75% dimer acid, and 22% trimer acid), ethanolamine, and ethylenediamine. Ethanolamine was added as a partial replacement (10, 20, and 30%) of ethylenediamine. Prepared HMAs were characterized for acid value, amine value, hydroxyl value, Fourier transform infrared spectroscopy, mechanical (tensile strength, percentage strain at brea, and shore D hardness), thermal (glass transitio...

  6. Isotope hydrology of El Chichón volcano-hydrothermal system; a coupled system of crater lake and hot springs

    Peiffer, L.; Taran, Y.; Rouwet, D.

    2010-12-01

    The catastrophic 1982 eruption of El Chichón (>1.5 km3 of erupted material) opened the upper hundred meters of the existing volcano-hydrothermal system. In the new formed 200m-deep crater a large shallow crater lake and numerous hot springs were formed. The lake existence and its salinity depend on the precipitation (~4000 mm/y) as well as a group of geyser-like neutral saline springs (source of Cl and SO4) and hydrothermal steam vents discharging into the lake (source of SO4). The chemistry of these “Soap Pool” (SP) springs evolved from >13,000 ppm of Cl in 1995 to ~2000-3000 ppm of Cl in 2006. Since 2006, this Cl-concentration in SP waters is constant. Similar concentrations of Cl are observed in most flank hot springs located at altitudes of ~ 600 m asl, 2-3 km from the crater. Therefore, it can be suggested that the flank springs, crater lake and crater hot springs are manifestations of the upper, relatively shallow volcano-hydrothermal system developed beneath the crater in the volcano edifice. Water isotopic composition of all types of thermal and fresh waters including fumarolic steam condensates (>100 samples collected in 1995-2010) allow to classify and distinguish different processes of shallow mixing, boiling, evaporation and water-rock isotope exchange. All spring waters from the upper system have meteoric origin, with the isotopic composition plotting close to the meteoric water line. Crater waters are strongly evolved due to shallow boiling and loss of steam. Isotopic composition of water from the lower, deep hydrothermal system is characterized by a significant positive oxygen isotopic shift and a strong Cl-d18O linear correlation. Waters from numerous cold springs that drain pyroclastic deposits demonstrate a clear negative oxygen shift. Some problems related to water isotopic composition are still remain unresolved: (1) we cannot find any traces of the infiltrated isotopically heavy lake waters, i.e., the seepage from the lake at the volcano

  7. Cyanobacterial ecotypes in different optical microenvironments of a 68 C hot spring mat community revealed by 16S-23S rRNA internal transcribed spacer region variation

    Ferris, Mike J.; Kühl, Michael; Wieland, Andrea;

    2003-01-01

    We examined the population of unicellular cyanobacteria (Synechococcus) in the upper 3-mm vertical interval of a 68°C region of a microbial mat in a hot spring effluent channel (Yellowstone National Park, Wyoming). Fluorescence microscopy and microsensor measurements of O2 and oxygenic photosynth......We examined the population of unicellular cyanobacteria (Synechococcus) in the upper 3-mm vertical interval of a 68°C region of a microbial mat in a hot spring effluent channel (Yellowstone National Park, Wyoming). Fluorescence microscopy and microsensor measurements of O2 and oxygenic...... distinct populations over the vertical interval. We were unable to identify patterns in genetic variation in Synechococcus 16S rRNA sequences that correlate with different vertically distributed populations. However, patterns of variation at the internal transcribed spacer locus separating 16S and 23S r...

  8. Diel metabolomics analysis of a hot spring chlorophototrophic microbial mat leads to new hypotheses of community member metabolisms

    Young-Mo eKim

    2015-04-01

    Full Text Available Dynamic environmental factors such as light, nutrients, salt, and temperature continuously affect chlorophototrophic microbial mats, requiring adaptive and acclimative responses to stabilize composition and function. Quantitative metabolomics analysis can provide insights into metabolite dynamics for understanding community response to such changing environmental conditions. In this study, we quantified volatile organic acids, polar metabolites (amino acids, glycolytic and citric acid cycle intermediates, nucleobases, nucleosides, and sugars, wax esters, and polyhydroxyalkanoates, resulting in the identification of 104 metabolites and related molecules in thermal chlorophototrophic microbial mat cores collected over a diel cycle in Mushroom Spring, Yellowstone National Park. A limited number of predominant taxa inhabit this community and their functional potentials have been previously identified through metagenomic and metatranscriptomic analyses and in situ metabolisms, and metabolic interactions among these taxa have been hypothesized. Our metabolomics results confirmed the diel cycling of photorespiration (e.g. glycolate and fermentation (e.g. acetate, propionate, and lactate products, the carbon storage polymers polyhydroxyalkanoates, and dissolved gases (e.g. H2 and CO2 in the waters overlying the mat, which were hypothesized to occur in major mat chlorophototrophic community members. In addition, we have formulated the following new hypotheses: 1 the morning hours are a time of biosynthesis of amino acids, DNA, and RNA; 2 photo-inhibited cells may also produce lactate via fermentation as an alternate metabolism; 3 glycolate and lactate are exchanged among Synechococcus and Roseiflexus spp.; and 4 fluctuations in many metabolite pools (e.g. wax esters at different times of day result from species found at different depths within the mat responding to temporal differences in their niches

  9. Isolation of phosphatase-producing phosphate solubilizing bacteria from Loriya hot spring: Investigation of phosphate solubilizing in the presence of different parameters

    Maryam Parhamfar; Arastoo Badoei-Dalfard; Mouj Khaleghi; Mehdi Hassanshahian

    2014-01-01

    Introduction: Biofertilizers are the microorganisms that can convert useless nutrient to usable compounds. Unlike fertilizer, cost of biofertilizer production is low and doesn’t produce ecosystem pollution. Phosphate fertilizers can be replaced by phosphate biofertilizer to produce improvement. So, it is necessary to screen the climate-compatible phosphate solubilizing bacteria. Materials and methods: In this project samples were picked up from Loriya hot spring, which are located in Jiro...

  10. Cultivation and Genomic, Nutritional, and Lipid Biomarker Characterization of Roseiflexus Strains Closely Related to Predominant In Situ Populations Inhabiting Yellowstone Hot Spring Microbial Mats▿ †

    van der Meer, Marcel T.J.; Klatt, Christian G.; Wood, Jason; Bryant, Donald A.; Bateson, Mary M.; Lammerts, Laurens; Schouten, Stefan; Sinninghe Damsté, Jaap S.; Madigan, Michael T.; Ward, David M.

    2010-01-01

    Roseiflexus sp. strains were cultivated from a microbial mat of an alkaline siliceous hot spring in Yellowstone National Park. These strains are closely related to predominant filamentous anoxygenic phototrophs found in the mat, as judged by the similarity of small-subunit rRNA, lipid distributions, and genomic and metagenomic sequences. Like a Japanese isolate, R. castenholzii, the Yellowstone isolates contain bacteriochlorophyll a, but not bacteriochlorophyll c or chlorosomes, and grow phot...