WorldWideScience

Sample records for acidic geothermal springs

  1. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Jacob P. Beam

    2016-02-01

    Full Text Available Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA, and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III-oxide mat ecosystems. Spatial and temporal changes in Fe(III-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3 - 3.5; temperature = 68 - 75 °C in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4 - 40 d, and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 d, and reached steady-state levels within 14 - 30 d, corresponding to visible Fe(III-oxide accretion. Heterotrophic archaea colonized near 30 d, and emerged as the dominant functional guild after 70 d and in mature Fe(III-oxide mats (1 - 2 cm thick. First-order rate constants of Fe(III-oxide accretion ranged from 0.046 - 0.05 d-1, and in situ microelectrode measurements showed that the oxidation of Fe(II is limited by the diffusion of O2 into the Fe(III-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III-oxide mats are useful for understanding other Fe(II-oxidizing systems.

  2. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    Beam, Jake; Bernstein, Hans C.; Jay, Z.; Kozubal, Mark; Jennings, Ryan; Tringe, Susannah G.; Inskeep, William P.

    2016-02-15

    Iron oxide microbial mats are ubiquitous geobiological features on Earth and occur in extant acidic hot springs of Yellowstone National Park (YNP), WY, USA, and form as a result of microbial processes. The relative contribution of different organisms to the development of these mat ecosystems is of specific interest. We hypothesized that chemolithoautotrophic organisms contribute to the early development and production of Fe(III)-oxide mats, which could support later-colonizing heterotrophic microorganisms. Sterile glass slides were incubated in the outflow channels of two acidic geothermal springs in YNP, and spatiotemporal changes in Fe(III)-oxide accretion and abundance of relevant community members were measured. Lithoautotrophic Hydrogenobaculum spp. were first colonizers and the most abundant taxa identified during early successional stages (7 – 40 days). Populations of M. yellowstonensis colonized after ~ 7 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized after 30 days, and emerge as the dominant functional guild in mature iron oxide mats (1 – 2 cm thick) that form after 70 – 120 days. First-order rate constants of iron oxide accretion ranged from 0.05 – 0.046 day-1, and reflected the absolute amount of iron accreted. Micro- and macroscale microterracettes were identified during iron oxide mat development, and suggest that the mass transfer of oxygen limits microbial growth. This was also demonstrated using microelectrode measurements of oxygen as a function of mat depth, which showed steep gradients in oxygen from the aqueous mat interface to ~ 1 mm. The formation and succession of amorphous Fe(III)-oxide mat communities follows a predictable pattern of distinct stages and growth. The successional stages and microbial signatures observed in these extant Fe(III)-oxide mat communities may be relevant to other past or present Fe(III)-oxide mineralizing systems.

  3. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs.

    Beam, Jacob P; Bernstein, Hans C; Jay, Zackary J; Kozubal, Mark A; Jennings, Ryan deM; Tringe, Susannah G; Inskeep, William P

    2016-01-01

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day(-1), and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems. PMID:26913020

  4. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    Jiang, Zhou; Li, Ping; Jiang, Dawei; Dai, Xinyue; Zhang, Rui; Wang, Yanhong; Wang, Yanxin

    2016-01-01

    Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86). Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation), Sulfolobus (sulfur and iron oxidation), Metallosphaera and Acidicaldus (iron oxidation). Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs. PMID:26761709

  5. Microbial Community Structure and Arsenic Biogeochemistry in an Acid Vapor-Formed Spring in Tengchong Geothermal Area, China.

    Zhou Jiang

    Full Text Available Arsenic biogeochemistry has been studied extensively in acid sulfate-chloride hot springs, but not in acid sulfate hot springs with low chloride. In this study, Zhenzhuquan in Tengchong geothermal area, a representative acid sulfate hot spring with low chloride, was chosen to study arsenic geochemistry and microbial community structure using Illumina MiSeq sequencing. Over 0.3 million 16S rRNA sequence reads were obtained from 6-paired parallel water and sediment samples along its outflow channel. Arsenic oxidation occurred in the Zhenxhuquan pool, with distinctly high ratios of arsenate to total dissolved arsenic (0.73-0.86. Coupled with iron and sulfur oxidation along the outflow channel, arsenic accumulated in downstream sediments with concentrations up to 16.44 g/kg and appeared to significantly constrain their microbial community diversity. These oxidations might be correlated with the appearance of some putative functional microbial populations, such as Aquificae and Pseudomonas (arsenic oxidation, Sulfolobus (sulfur and iron oxidation, Metallosphaera and Acidicaldus (iron oxidation. Temperature, total organic carbon and dissolved oxygen significantly shaped the microbial community structure of upstream and downstream samples. In the upstream outflow channel region, most microbial populations were microaerophilic/anaerobic thermophiles and hyperthermophiles, such as Sulfolobus, Nocardia, Fervidicoccus, Delftia, and Ralstonia. In the downstream region, aerobic heterotrophic mesophiles and thermophiles were identified, including Ktedonobacteria, Acidicaldus, Chthonomonas and Sphingobacteria. A total of 72.41-95.91% unassigned-genus sequences were derived from the downstream high arsenic sediments 16S rRNA clone libraries. This study could enable us to achieve an integrated understanding on arsenic biogeochemistry in acid hot springs.

  6. Pagosa Springs geothermal project. Final technical report

    1984-10-19

    This booklet discusses some ideas and methods for using Colorado geothermal energy. A project installed in Pagosa Springs, which consists of a pipeline laid down 8th street with service to residences retrofitted to geothermal space heating, is described. (ACR)

  7. Microbial Iron Cycling in Acidic Geothermal Springs of Yellowstone National Park: Integrating Molecular Surveys, Geochemical Processes, and Isolation of Novel Fe-Active Microorganisms

    Mark A Kozubal; Macur, Richard E.; Zack J Jay; Jake P Beam; Malfatti, Stephanie A.; Susannah Green Tringe; Kocar, Benjamin D.; Thomas eBorch; Inskeep, William P.

    2012-01-01

    Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park (YNP). Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 84 °C and pH 2.4 to 3.6. All iron-oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly si...

  8. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina).

    Urbieta, María Sofía; González-Toril, Elena; Bazán, Ángeles Aguilera; Giaveno, María Alejandra; Donati, Edgardo

    2015-03-01

    Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms. PMID:25605537

  9. Arsenite-Oxidizing Hydrogenobaculum Strain Isolated from an Acid-Sulfate-Chloride Geothermal Spring in Yellowstone National Park

    Donahoe-Christiansen, Jessica; D'Imperio, Seth; Jackson, Colin R.; Inskeep, William P.; McDermott, Timothy R.

    2004-01-01

    An arsenite-oxidizing Hydrogenobaculum strain was isolated from a geothermal spring in Yellowstone National Park, Wyo., that was previously shown to contain microbial populations engaged in arsenite oxidation. The isolate was sensitive to both arsenite and arsenate and behaved as an obligate chemolithoautotroph that used H2 as its sole energy source and had an optimum temperature of 55 to 60°C and an optimum pH of 3.0. The arsenite oxidation in this organism displayed saturation kinetics and ...

  10. Geothermal heat pump system assisted by geothermal hot spring

    Nakagawa, M.; Koizumi, Y.

    2016-01-01

    The authors propose a hybrid geothermal heat pump system that could cool buildings in summer and melt snow on the pedestrian sidewalks in winter, utilizing cold mine water and hot spring water. In the proposed system, mine water would be used as cold thermal energy storage, and the heat from the hot spring after its commercial use would be used to melt snow for a certain section of sidewalks. Neither of these sources is viable for direct use application of geothermal resources, however, they become contributing energy factors without producing any greenhouse gases. To assess the feasibility of the proposed system, a series of temperature measurements in the Edgar Mine (Colorado School of Mines' experimental mine) in Idaho Springs, Colorado, were first conducted, and heat/mass transfer analyses of geothermal hot spring water was carried out. The result of the temperature measurements proved that the temperature of Edgar Mine would be low enough to store cold groundwater for use in summer. The heat loss of the hot spring water during its transportation was also calculated, and the heat requirement for snow melt was compared with the heat available from the hot spring water. It was concluded that the heat supply in the proposed usage of hot spring water was insufficient to melt the snow for the entire area that was initially proposed. This feasibility study should serve as an example of "local consumption of locally available energy". If communities start harnessing economically viable local energy in a responsible manner, there will be a foundation upon which to build a sustainable community.

  11. Geothermal Exploration in Hot Springs, Montana

    Toby McIntosh, Jackola Engineering

    2012-09-26

    The project involves drilling deeper in the Camp Aqua well dri lled in June 1982 as part of an effort to develop an ethanol plant. The purpose of the current drill ing effort is to determine if water at or above 165°F exists for the use in low temperature resource power generation. Previous geothermal resource study efforts in and around Hot Springs , MT and the Camp Aqua area (NE of Hot Springs) have been conducted through the years. A confined gravel aquifer exists in deep alluvium overlain by approximately 250 of si lt and c lay deposits from Glacial Lake Missoula. This gravel aquifer overlies a deeper bedrock aquifer. In the Camp Aqua area several wel l s exist in the gravel aquifer which receives hot water f rom bedrock fractures beneath the area. Prior to this exploration, one known well in the Camp Aqua area penetrated into the bedrock without success in intersecting fractures transporting hot geothermal water. The exploration associated with this project adds to the physical knowledge database of the Camp Aqua area. The dri l l ing effort provides additional subsurface information that can be used to gain a better understanding of the bedrock formation that i s leaking hot geothermal water into an otherwise cold water aquifer. The exi s t ing well used for the explorat ion is located within the center of the hottest water within the gravel aquifer. This lent i t sel f as a logical and economical location to continue the exploration within the existing well. Faced with budget constraints due to unanticipated costs, changing dril l ing techniques stretched the limited project resources to maximize the overa l l well depth which f e l l short of original project goals. The project goal of finding 165°F or hotter water was not achieved; however the project provides additional information and understanding of the Camp Aqua area that could prove valuable in future exploration efforts

  12. Microbial iron cycling in acidic geothermal springs of Yellowstone National Park: Integrating molecular surveys, geochemical processes and isolation of novel Fe-active microorganisms

    Mark A Kozubal

    2012-03-01

    Full Text Available Geochemical, molecular, and physiological analyses of microbial isolates were combined to study the geomicrobiology of acidic iron oxide mats in Yellowstone National Park (YNP. Nineteen sampling locations from 11 geothermal springs were studied ranging in temperature from 53 to 84 °C and pH 2.4 to 3.6. All iron-oxide mats exhibited high diversity of crenarchaeal sequences from the Sulfolobales, Thermoproteales, and Desulfurococcales. The predominant Sulfolobales sequences were highly similar to Metallosphaera yellowstonensis str. MK1, previously isolated from one of these sites. Other groups of archaea were consistently associated with different types of iron oxide mats, including undescribed members of the phyla Thaumarchaeota and Euryarchaeota. Bacterial sequences were dominated by relatives of Hydrogenobaculum spp. above 65-70 °C, but increased in diversity below 60 °C. Cultivation of relevant iron-oxidizing and iron-reducing microbial isolates included Sulfolobus str. MK3, Sulfobacillus str. MK2, Acidicaldus str. MK6, and a new candidate genus in the Sulfolobales referred to as Sulfolobales str. MK5. Strains MK3 and MK5 are capable of oxidizing ferrous iron autotrophically, while strain MK2 oxidizes iron mixotrophically. Similar rates of iron oxidation were observed for M. yellowstonensis str. MK1 and Sulfolobales str. MK5 cultures, and these rates are close to those measured in situ. Biomineralized phases of ferric iron varied among cultures and field sites, and included ferric oxyhydroxides, K-jarosite, goethite, hematite, and scorodite depending on geochemical conditions. Strains MK5 and MK6 are capable of reducing ferric iron under anaerobic conditions with complex carbon sources. The combination of geochemical and molecular data as well as physiological observations of isolates suggests that the community structure of acidic Fe mats is linked with Fe cycling across temperatures ranging from 53 to 88 oC.

  13. Metagenomic analysis of microbial community of an Amazonian geothermal spring in Peru

    Paul, Sujay; Cortez, Yolanda; Vera, Nadia; Gretty K. Villena; Gutiérrez-Correa, Marcel

    2016-01-01

    Aguas Calientes (AC) is an isolated geothermal spring located deep into the Amazon rainforest (7°21′12″ S, 75°00′54″ W) of Peru. This geothermal spring is slightly acidic (pH 5.0–7.0) in nature, with temperatures varying from 45 to 90 °C and continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). Pooled water sample was analyzed at 16S rRNA V3–V4 hypervariable region by amplicon metagenome sequencing on Illumina HiSeq platform. A total of 2,976,5...

  14. Preliminary analysis of geothermal aspects of Brazilian thermal spring

    Information on more than 400 geothermal springs in Brazil has been assembled. On the basis of the data colected the temperatures at the maximum depths of circulation of spring waters are calculated using the quality of silica dissolved in water. For some thermal springs temperatures are calculated on the basis of silica determination carrried out by us. Applying linear relations between silica temperature and geothermal flux the average depths of water circulation in the Parana Basin and the Brazilian folded belts surrounding the San Francisco craton are calculated. The radioactivity of the water, derived mainly from the dissolved radon can be correlated with the temperature of the spring. An inverse correlation, as was observed for thermal springs of Pocos de Caldas, can be used to calculate the ascent velocity of thermal waters, where as, a positive correlations could be interpreted as due to the mixing of thermal with surface waters. (Author)

  15. Viruses in acidic geothermal environments of the Kamchatka Peninsula

    Bize, Ariane; Peng, Xu; Prokofeva, Maria;

    2008-01-01

    Screening for viruses in samples taken from acidic hot springs of Kamchatka (Russia) revealed a collection of morphotypes, including linear, spherical and complex fusiform shapes, which show partial similarity to those found in acidic geothermal environments in other geographical locations. One...

  16. Small-scale Geothermal Power Plants Using Hot Spring Water

    Tosha, T.; Osato, K.; Kiuchi, T.; Miida, H.; Okumura, T.; Nakashima, H.

    2013-12-01

    The installed capacity of the geothermal power plants has been summed up to be about 515MW in Japan. However, the electricity generated by the geothermal resources only contributes to 0.2% of the whole electricity supply. After the catastrophic earthquake and tsunami devastated the Pacific coast of north-eastern Japan on Friday, March 11, 2011, the Japanese government is encouraging the increase of the renewable energy supply including the geothermal. It needs, however, more than 10 years to construct the geothermal power plant with more than 10MW capacity since the commencement of the development. Adding the problem of the long lead time, high temperature fluid is mainly observed in the national parks and the high quality of the geothermal resources is limited. On the other hand hot springs are often found. The utilisation of the low temperature hot water becomes worthy of notice. The low temperature hot water is traditionally used for bathing and there are many hot springs in Japan. Some of the springs have enough temperature and enthalpy to turn the geothermal turbine but a new technology of the binary power generation makes the lower temp fluid to generate electricity. Large power generators with the binary technology are already installed in many geothermal fields in the world. In the recent days small-scale geothermal binary generators with several tens to hundreds kW capacity are developed, which are originally used by the waste heat energy in an iron factory and so on. The newly developed binary unit is compact suitable for the installation in a Japanese inn but there are the restrictions for the temperature of the hot water and the working fluid. The binary power unit using alternatives for chlorofluorocarbon as the working fluid is relatively free from the restriction. KOBELCO, a company of the Kobe Steel Group, designed and developed the binary power unit with an alternative for chlorofluorocarbon. The unit has a 70 MW class electric generator. Three

  17. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran

    Shakeri, Ata; Ghoreyshinia, Sayedkazem; Mehrabi, Behzad; Delavari, Morteza

    2015-10-01

    Concentrations of rare earth elements (REEs) were determined in springs and andesitic-dacitic rocks of Taftan geothermal field. Hydrochemical results of major ions indicate that thermal springs are Na-SO4-Cl and Ca-SO4-Cl types. Concentrations of REEs are in ranges of 10- 4 to 1.2 and 49 to ~ 62 times of chondrite for springwater and rock samples, respectively. The thermal (STS and TTS) and the cold (APS) springs with low pH values exhibit a very high REE contents (0.64 to 3.15 mg/l). Saturation index indicates that Fe and Al phases can control dissolved REE concentration in FTS and PF cold springs. The speciation of REE complexes indicates dominant presence of LnSO4+ and free ion in the Taftan thermal springs. In APS cold spring with pH ~ 4, fluoride complexes are dominate over the free ion and sulfate species, while in PF and FTS cold springs with pH 6.4 and 7, respectively, carbonate complexes (LnCO3+) are predominant species. Chondrite-normalized pattern for the low-pH waters show very distinctive gull-wing patterns, characteristic feature of acid-sulfate geothermal systems, and are similar to those of the host rocks. Chemical characteristics of rare earth elements in spring and volcanic rock samples indicate that REEs are originated from the andesitic-dacitic host rocks. Whole-rock-normalized REE patterns and petrographic evidences show that rare earth elements leached mainly from marginal alteration of minerals and matrix decomposition in volcanic rocks. In chondrite-normalized REE patterns, significant negative Eu anomaly in the cold springs compare to the thermal and acidic springs indicates that alteration of plagioclase is more intense in the later, corresponding to increasing in temperature and acidic state of reactant water.

  18. Microbes in mercury-enriched geothermal springs in western North America.

    Geesey, Gill G; Barkay, Tamar; King, Sue

    2016-11-01

    Because geothermal environments contain mercury (Hg) from natural sources, microorganisms that evolved in these systems have likely adapted to this element. Knowledge of the interactions between microorganisms and Hg in geothermal systems may assist in understanding the long-term evolution of microbial adaptation to Hg with relevance to other environments where Hg is introduced from anthropogenic sources. A number of microbiological studies with supporting geochemistry have been conducted in geothermal systems across western North America. Approximately 1 in 5 study sites include measurements of Hg. Of all prokaryotic taxa reported across sites with microbiological and accompanying physicochemical data, 42% have been detected at sites in which Hg was measured. Genes specifying Hg reduction and detoxification by microorganisms were detected in a number of hot springs across the region. Archaeal-like sequences, representing two crenarchaeal orders and one order each of the Euryarchaeota and Thaumarchaeota, dominated in metagenomes' MerA (the mercuric reductase protein) inventories, while bacterial homologs were mostly found in one deeply sequenced metagenome. MerA homologs were more frequently found in metagenomes of microbial communities in acidic springs than in circumneutral or high pH geothermal systems, possibly reflecting higher bioavailability of Hg under acidic conditions. MerA homologs were found in hot springs prokaryotic isolates affiliated with Bacteria and Archaea taxa. Acidic sites with high Hg concentrations contain more of Archaea than Bacteria taxa, while the reverse appears to be the case in circumneutral and high pH sites with high Hg concentrations. However, MerA was detected in only a small fraction of the Archaea and Bacteria taxa inhabiting sites containing Hg. Nevertheless, the presence of MerA homologs and their distribution patterns in systems, in which Hg has yet to be measured, demonstrates the potential for detoxification by Hg reduction

  19. Microbial Ecology at an Arctic Geothermal Spring

    Starke, V.; Fogel, M. L.; Steele, A.; Arctic Mars Analog Svalbard Expedition (Amase)

    2011-12-01

    A critical question in microbial ecology concerns how variations in environmental conditions affect microbial community makeup. Arctic thermal springs provide an exceptional opportunity to study this question because they have very steep gradients in temperature, moisture, and mobility that place strong selective pressures on microorganisms. Troll Springs, located near 79°23'N, 13°26E in the Svalbard archipelago north of Norway, is one of the northernmost documented thermal springs on land. Precipitation of travertine (calcium carbonate) from Troll's carbonate-rich waters has built a complex terrace structure. Biological materials are present at all levels of the spring structure. To investigate this microbial community in detail, we analyzed DNA extracted from wet biofilms, granular samples and endoliths with 454 parallel-tagged pyrosequencing and automated ribosomal intergenic spacer analysis (ARISA). The aim is to provide a comprehensive overview of how the community at Troll Springs changes over the gradients in environmental conditions present. The 454 and ARISA data were analyzed using multivariate methods, including non-metric multidimensional scaling (nMDS). Results show a gradual transition in the makeup of the microbial community as the environment changes from aquatic to lithologic. These observations suggest a mechanism by which the rocks are colonized by microorganisms: biofilm becomes entrapped during carbonate precipitation. Use of a range of parameters and techniques in the data processing and multidimensional scaling provides additional insight into how community makeup varies across the environments present at the spring. Some more adaptable species are found across most environments, but change markedly in abundance as the conditions change. Other less adaptable species are found in fewer environments, being wholly absent in most. Continued analysis will help reveal which species are the most adaptable, and how their adaptive capabilities

  20. Vulcan Hot Springs known geothermal resource area: an environmental analysis

    Spencer, S.G.; Russell, B.F. (eds.)

    1979-09-01

    The Vulcan Hot Springs known geothermal resource area (KGRA) is one of the more remote KGRAs in Idaho. The chemistry of Vulcan Hot Springs indicates a subsurface resource temperature of 147/sup 0/C, which may be high enough for power generation. An analysis of the limited data available on climate, meteorology, and air quality indicates few geothermal development concerns in these areas. The KGRA is located on the edge of the Idaho Batholith on a north-trending lineament which may be a factor in the presence of the hot springs. An occasional earthquake of magnitude 7 or greater may be expected in the region. Subsidence or elevation as a result of geothermal development in the KGRA do not appear to be of concern. Fragile granitic soils on steep slopes in the KGRA are unstable and may restrict development. The South fork of the Salmon River, the primary stream in the region, is an important salmon spawning grounds. Stolle Meadows, on the edge of the KGRA, is used as a wintering and calving area for elk, and access to the area is limited during this period. Socioeconomic and demographic surveys indicate that facilities and services will probably not be significantly impacted by development. Known heritage resources in the KGRA include two sites and the potential for additional cultural sites is significant.

  1. Utah State Prison Space Heating with Geothermal Heat - Resource Assessment Report Crystal Hot Springs Geothermal Area

    None

    1981-12-01

    Reported herein is a summary of work conducted under the Resource Assessment Program-Task 2, for the Utah State Prison Geothermal Space Heating Project at Crystal Hot Springs, Draper, Utah. Assessment of the geothermal resource in and around the Utah State Prison property began in october of 1979 with an aeromagnetic and gravity survey. These tasks were designed to provide detailed subsurface structural information in the vicinity of the thermal springs so that an informed decision as to the locations of test and production holes could be made. The geophysical reconnaissance program provided the structural details needed to focus the test drilling program on the most promising production targets available to the State Prison. The subsequent drilling and well testing program was conducted to provide information to aid fin the siting and design of a production well and preliminary design activities. As part of the resource assessment portion of the Utah State Prison Geothermal Project, a program for periodic geophysical monitoring of the Crystal Hot Springs resource was developed. The program was designed to enable determination of baseline thermal, hydraulic, and chemical characteristics in the vicinity of Crystal Hot Springs prior to production and to provide a history of these characteristics during resource development.

  2. Municipal geothermal heat utilization plan for Glenwood Springs, Colorado

    1980-12-31

    A study has been made of the engineering and economic feasibility of utilizing the geothermal resource underlying Glenwood Springs Colorado, to heat a group of public buildings. The results have shown that the use of geothermal heat is indeed feasible when compared to the cost of natural gas. The proposed system is composed of a wellhead plate heat exchanger which feeds a closed distribution loop of treated water circulated to the buildings which form the load. The base case system was designed to supply twice the demand created by the seven public buildings in order to take advantage of some economies of scale. To increase the utilization factor of the available geothermal energy, a peaking boiler which burns natural gas is recommended. Disposal of the cooled brine would be via underground injection. Considerable study was done to examine the impact of reduced operating temperature on the existing heating systems. Several options to minimize this problem were identified. Economic analyses were completed to determine the present values of heat from the geothermal system and from the present natural gas over a 30 year projected system life. For the base case savings of over $1 million were shown. Sensitivities of the economics to capital cost, operating cost, system size and other parameters were calculated. For all reasonable assumptions, the geothermal system was cheaper. Financing alternatives were also examined. An extensive survey of all existing data on the geology of the study has led to the prediction of resource parameters. The wellhead temperature of produced fluid is suspected to lie between 140 and 180/sup 0/F (60 and 82/sup 0/C). Flowrates may be as high as 1000 gpm (3800 liters per minute) from a reservoir formation that is 300 ft (90 m) thick beginning about 500 ft (150 m) below the suggested drill site in the proposed Two Rivers Park.

  3. A biophysical model of prokaryotic diversity in geothermal hot springs

    Klales, Anna; Nett, Elizabeth Janus; Kane, Suzanne Amador

    2008-01-01

    Recent field investigations of photosynthetic bacteria living in geothermal hot spring environments have revealed surprisingly complex ecosystems, with an unexpected level of genetic diversity. One case of particular interest involves the distribution along hot spring thermal gradients of genetically distinct bacterial strains that differ in their preferred temperatures for reproduction and photosynthesis. In such systems, a single variable, temperature, defines the relevant environmental variation. In spite of this, each region along the thermal gradient exhibits multiple strains of photosynthetic bacteria adapted to several distinct thermal optima, rather than the expected single thermal strain adapted to the local environmental temperature. Here we analyze microbiology data from several ecological studies to show that the thermal distribution field data exhibit several universal features independent of location and specific bacterial strain. These include the distribution of optimal temperatures of differe...

  4. Kelly Hot Spring Geothermal Project: Kelly Hot Spring Agricultural Center preliminary design. Final technical report

    Longyear, A.B. (ed.)

    1980-08-01

    A Phase 1 Preliminary Design, Construction Planning and Economic Analysis has been conducted for the Kelly Hot Spring Agricultural Center in Modoc County, California. The core activity is a 1360 breeding sow, swine raising complex that utilizes direct heat energy from the Kelly Hot Spring geothermal resource. The swine is to be a totally confined operation for producing premium pork in controlled-environment facilities. The complex contains a feed mill, swine raising buildings and a complete waste management facility that produces methane gas to be delivered to a utility company for the production of electricity. The complex produces 6.7 million pounds of live pork (29,353 animals) shipped to slaughter per year; 105,000 cu. ft. of scrubbed methane per day; and fertilizer. Total effluent is less than 200 gpm of agricultural quality-water with full odor control. The methane production rate made possible with geothermal direct heat is equivalent to at least 400 kw continuous. Sale of the methane on a co-generation basis is being discussed with the utility company. The use of geothermal direct heat energy in the complex displaces nearly 350,000 gallons of fuel oil per year. Generation of the biogas displaces an additional 300,000 gallons of fuel oil per year.

  5. Environmental assessment for Kelley Hot Spring geothermal project: Kelley Hot Spring Agricultural Center

    Neilson, J.A.

    1981-04-01

    The environmental impacts of an integrated swine production unit are analyzed together with necessary ancillary operations deriving its primary energy from a known geothermal reservoir in accordance with policies established by the National Energy Conservation Act. This environmental assessment covers 6 areas designated as potentially feasible project sites, using as the basic criteria for selection ground, surface and geothermal water supplies. The six areas, comprising +- 150 acres each, are within a 2 mile radius of Kelley Hot Springs, a known geothermal resource of many centuries standing, located 16 miles west of Alturas, the county seat of Modoc County, California. The project consists of the construction and operation of a 1360 sow confined pork production complex expandable to 5440 sows. The farrow to finish system for 1360 sows consists of 2 breeding barns, 2 gestation barns, 1 farrowing and 1 nursery barn, 3 growing and 3 finishing barns, a feed mill, a methane generator for waste disposal and water storage ponds. Supporting this are one geothermal well and 1 or 2 cold water wells, all occupying approximately 12 acres. Environmental reconnaissance involving geology, hydrology, soils, vegetation, fauna, air and water quality, socioeconomic, archaelogical and historical, and land use aspects were carefully carried out, impacts assessed and mitigations evaluated.

  6. Mathematical Model of the Geothermal Water Resources in the South Hot Spring System in Chongqing

    Liu Dongyan; Luo Yunju; Liu Xinrong

    2005-01-01

    The geothermal waters of south hot spring, small hot spring and Qiaokouba in Chongqing, are all part of the south hot spring geothermal water system. Exploitation has caused a decline in the water levels of the south and small hot springs, which have not flowed naturally for 15 years. Now, bores pump geothermal water to the springs. If the water level drops below the elevation of the rivers, river-water will replenish the geothermal water, destroying this resource. It is therefore an urgent task to model the geothermal water system, to enable sustainable development and continued use of the geothermal water in Qiaokouba. A numerical simulation of the geothermal water system was adopted and a quantitative study on the planning scheme was carried out. A mathematical model was set up to simulate the whole geothermal water system, based on data from the research sites. The model determined the maximum sustainable water yield in Qiaokouba and the two hot springs, and the south hot spring and small hot spring sustainable yields are 1 100 m3/d and 700 m3/d from 2006 to 2010, 1 300 m3/d and 1 000 m3/d from 2011 to 2015, and 1 500 m3/d and 1 200 m3/d from 2016 to 2036. The maximum exploitable yield is 3 300 m3/d from 2006 to 2036 in Qiaokouba. The model supplies a basis to adequately exploit and effectively protect the geothermal water resources, and to continue to develop the geothermal water as a tourist attraction in Chongqing.

  7. Metagenomic analysis of microbial community of an Amazonian geothermal spring in Peru.

    Paul, Sujay; Cortez, Yolanda; Vera, Nadia; Villena, Gretty K; Gutiérrez-Correa, Marcel

    2016-09-01

    Aguas Calientes (AC) is an isolated geothermal spring located deep into the Amazon rainforest (7°21'12″ S, 75°00'54″ W) of Peru. This geothermal spring is slightly acidic (pH 5.0-7.0) in nature, with temperatures varying from 45 to 90 °C and continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). Pooled water sample was analyzed at 16S rRNA V3-V4 hypervariable region by amplicon metagenome sequencing on Illumina HiSeq platform. A total of 2,976,534 paired ends reads were generated which were assigned into 5434 numbers of OTUs. All the resulting 16S rRNA fragments were then classified into 58 bacterial phyla and 2 archaeal phyla. Proteobacteria (88.06%) was found to be the highest represented phyla followed by Thermi (6.43%), Firmicutes (3.41%) and Aquificae (1.10%), respectively. Crenarchaeota and Euryarchaeota were the only 2 archaeal phyla detected in this study with low abundance. Metagenomic sequences were deposited to SRA database which is available at NCBI with accession number SRX1809286. Functional categorization of the assigned OTUs was performed using PICRUSt tool. In COG analysis "Amino acid transport and metabolism" (8.5%) was found to be the highest represented category whereas among predicted KEGG pathways "Metabolism" (50.6%) was the most abundant. This is the first report of a high resolution microbial phylogenetic profile of an Amazonian hot spring. PMID:27408814

  8. Evaluation of Current and Feasible Future Use of Geothermal Energy at Chinyunyu Hot Spring, Zambia

    Kapasa, Christopher

    2014-01-01

    The main source of geothermal energy is the heat flow from the mantle beneath the Earth’s surface, generated by the gradual decay of radioactive isotopes in the Earth‘s crust. A hot spring is produced by the emergence of geothermally heated groundwater flowing out to the Earth’s surface. The Chinyunyu hot spring is located about 90km east of Lusaka, Zambia. Water from the spring has been artificially channeled into a large excavated pool which is used as a bathing place. Since the undiluted s...

  9. Geothermal resource assessment of Ranger Warm Spring, Colorado, Resources Series 24

    Zacharakis, T. G.; Pearl, R. H.; Ringrose, C. D.

    The delineation of the geological features controlling the occurrence of geothermal resources in Colorado are discussed. The program consists of literature search, reconnaissance geological and hydrogeologic mapping and geophysical and geochemistry surveys. During 1980 and 1981 geothermal resource assessment were conducted in the Cement Creek Valley south of Crested Butte. In this valley are two warm springs, Cement Creek and Ranger. The temperature of both springs is 77 to 790F and the discharge ranges from 60 to 195 gallons per minute. Electrical resistivity and soil mercury surveys were conducted at Ranger Warm Springs. The bedrock of the area consists of sedimentary rocks ranging in age from precambrian to recent. Several faults with displacements of up to 3000 ft are found and one of these faults passes close to the Ranger Warm Springs. The electrical resistivity survey indicates that the water of Ranger Warm Springs are moving up along a buried fault which parallels Cement Creek.

  10. Metagenomic analysis of bacterial and archaeal assemblages in the soil-mousse surrounding a geothermal spring.

    Bhatia, Sonu; Batra, Navneet; Pathak, Ashish; Joshi, Amit; Souza, Leila; Almeida, Paulo; Chauhan, Ashvini

    2015-09-01

    The soil-mousse surrounding a geothermal spring was analyzed for bacterial and archaeal diversity using 16S rRNA gene amplicon metagenomic sequencing which revealed the presence of 18 bacterial phyla distributed across 109 families and 219 genera. Firmicutes, Actinobacteria, and the Deinococcus-Thermus group were the predominant bacterial assemblages with Crenarchaeota and Thaumarchaeota as the main archaeal assemblages in this largely understudied geothermal habitat. Several metagenome sequences remained taxonomically unassigned suggesting the presence of a repertoire of hitherto undescribed microbes in this geothermal soil-mousse econiche. PMID:26484255

  11. Environmental assessment of the proposed nonelectric application of geothermal resources at Desert Hot Springs, California

    Rosenberg, L.

    1978-01-01

    The paper presents an environmental analysis performed in evaluating various proposed geothermal demonstration projects at Desert Hot Springs. These are categorized in two ways: (1) indirect, or (2) direct uses. Among the former are greenhouses, industrial complexes, and car washes. The latter include aquaculture, a cascaded agribusiness system, and a mobile home park. Major categories of environmental impact covered are: (1) site, (2) construction of projects, and (3) the use of the geothermal source. Attention is also given to the disposal of the geothermal fluid after use. Finally, it is concluded that there are no major problems forseen for each project, and future objectives are discussed.

  12. Spatial Characteristics of Geothermal Spring Temperatures and Discharge Rates in the Tatun Volcanic Area, Taiwan

    Jang, C. S.; Liu, C. W.

    2014-12-01

    The Tatun volcanic area is the only potential volcanic geothermal region in the Taiwan island, and abundant in hot spring resources owing to stream water mixing with fumarolic gases. According to the Meinzer's classification, spring temperatures and discharge rates are the most important properties for characterizing spring classifications. This study attempted to spatially characterize spring temperatures and discharge rates in the Tatun volcanic area, Taiwanusing indicator kriging (IK). First, data on spring temperatures and discharge rates, which were collected from surveyed data of the Taipei City Government, were divided into high, moderate and low categories according to spring classification criteria, and the various categories were regarded as estimation thresholds. Then, IK was adopted to model occurrence probabilities of specified temperatures and discharge rates in springs, and to determine their classifications based on estimated probabilities. Finally, nine combinations were obtained from the classifications of temperatures and discharge rates in springs. Moreover, the combinations and features of spring water were spatially quantified according to seven sub-zones of spring utilization. A suitable and sustainable development strategy of the spring area was proposed in each sub-zone based on probability-based combinations and features of spring water.The research results reveal that the probability-based classifications using IK provide an excellent insight in exploring the uncertainty of spatial features in springs, and can provide Taiwanese government administrators with detailed information on sustainable spring utilization and conservation in the overexploited spring tourism areas. The sub-zones BT (Beitou), RXY (Rd. Xingyi), ZSL (Zhongshanlou) and LSK (Lengshuikeng) with high or moderate discharge rates are suitable to supply spring water for tourism hotels.Local natural hot springs should be planned in the sub-zones DBT (Dingbeitou), ZSL, XYK

  13. Impacts of geothermal energy developments on hydrological environment in hot spring areas

    Taniguchi, M.

    2015-12-01

    Water-energy nexus such as geothermal energy developments and its impacts on groundwater, river water, and coastal water is one of the key issues for the sustainable society. This is because the demand of both water and energy resources will be increasing in near future, and the tradeoff between both resources and conflict between stakeholders will be arisen. Geothermal power generation, hot springs heat power generation, and steam power generation, are developing in hot spring areas in Ring of Fire countries including Japan, as renewable and sustainable energy. Impacts of the wasted hot water after using hot springs heat and steam power generation on ecosystem in the rivers have been observed in Beppu, Oita prefecture, Japan. The number of the fish species with wasted hot water in the Hirata river is much less than that without wasted hot water in Hiyakawa river although the dominant species of tilapia was found in the Hirata river with wasted hot water. The water temperature in Hirata rive is increased by wasted hot water by 10 degree C. The impacts of the developments of steam power generations on hot spring water and groundwater in downstream are also evaluated in Beppu. The decreases in temperature and volume of the hot spring water and groundwater after the development are concerning. Stakeholder analysis related to hot spa and power generation business and others in Beppu showed common interests in community development among stakeholders and gaps in prerequisite knowledge and recognition of the geothermal resource in terms of economic/non-economic value and utilization as power generation/hot-spring. We screened stakeholders of four categories (hot spring resorts inhabitants, industries, supporters, environmentalists), and set up three communities consisting of 50 persons of the above categories. One remarkable result regarding the pros and cons of geothermal power in general terms was that the supporter count increased greatly while the neutralities count

  14. Determining barriers to developing geothermal power generation in Japan: Societal acceptance by stakeholders involved in hot springs

    After many years of stagnant growth in geothermal power generation, development plans for new geothermal plants have recently emerged throughout Japan. Through a literature review, we investigated the relationships between the principal barriers to geothermal development and we thereby analyzed the deciding factors in the future success of such enterprises. The results show that the societal acceptance of geothermal power by local stakeholders is the fundamental barrier as it affects almost all other barriers, such as financial, technical, and political risks. Thus, we conducted semi-structured interviews with 26 stakeholders including developers, hot spring inn managers, and local government officials. Some hot spring inn managers and local government officials noted that they have always been strongly concerned about the adverse effects of geothermal power generation on hot springs; their opposition has delayed decision-making by local governments regarding drilling permits, prolonged lead times, and caused other difficulties. A key reason for opposition was identified as uncertainty about the reversibility and predictability of the adverse effects on hot springs and other underground structures by geothermal power production and reinjection of hot water from reservoirs. Therefore, we discuss and recommend options for improving the risk management of hot springs near geothermal power plants. - Highlights: • We clarify relationships between barriers to geothermal power development in Japan. • Local acceptance by hot spring managers is the most prominent barrier. • Uncertainty of reversibility and predictability induces low acceptance. • Risk transfer system and dialogue are needed to alleviate concerns

  15. Colorado geothermal commercialization program. Geothermal energy opportunities at four Colorado towns: Durango, Glenwood Springs, Idaho Springs, Ouray

    Coe, B.A.; Zimmerman, J.

    1981-01-01

    The potential of four prospective geothermal development sites in Colorado was analyzed and hypothetical plans prepared for their development. Several broad areas were investigated for each site. The first area of investigation was the site itself: its geographic, population, economic, energy demand characteristics and the attitudes of its residents relative to geothermal development potential. Secondly, the resource potential was described, to the extent it was known, along with information concerning any exploration or development that has been conducted. The third item investigated was the process required for development. There are financial, institutional, environmental, technological and economic criteria for development that must be known in order to realistically gauge the possible development. Using that information, the next concern, the geothermal energy potential, was then addressed. Planned, proposed and potential development are all described, along with a possible schedule for that development. An assessment of the development opportunities and constraints are included. Technical methodologies are described in the Appendix. (MHR)

  16. Estimation of deepwater temperature and hydrogeochemistry of springs in the Takab geothermal field, West Azerbaijan, Iran.

    Sharifi, Reza; Moore, Farid; Mohammadi, Zargham; Keshavarzi, Behnam

    2016-01-01

    Chemical analyses of water samples from 19 hot and cold springs are used to characterize Takab geothermal field, west of Iran. The springs are divided into two main groups based on temperature, host rock, total dissolved solids (TDS), and major and minor elements. TDS, electrical conductivity (EC), Cl(-), and SO4 (2-) concentrations of hot springs are all higher than in cold springs. Higher TDS in hot springs probably reflect longer circulation and residence time. The high Si, B, and Sr contents in thermal waters are probably the result of extended water-rock interaction and reflect flow paths and residence time. Binary, ternary, and Giggenbach diagrams were used to understand the deeper mixing conditions and locations of springs in the model system. It is believed that the springs are heated either by mixing of deep geothermal fluid with cold groundwater or low conductive heat flow. Mixing ratios are evaluated using Cl, Na, and B concentrations and a mass balance approach. Calculated quartz and chalcedony geothermometer give lower reservoir temperatures than cation geothermometers. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 62 and 90 °C. The δ(18)O and δD (δ(2)H) are used to trace and determine the origin and movement of water. Both hot and cold waters plot close to the local meteoric line, indicating local meteoric origin. PMID:26733417

  17. Colorado: basic data for thermal springs and wells as recorded in GEOTHERM

    Bliss, J.D.

    1983-05-01

    GEOTHERM sample file contains 225 records for Colorado. Three computer-generated indexes are found in appendices A, B, and C of this report. The indexes give one line summaries of each GEOTHERM record describing the chemistry of geothermal springs and wells in the sample file for Colorado. Each index is sorted by different variables to assist the user in locating geothermal records describing specific sites. Appendix A is sorted by the county name and the name of the source. Also given are latitude, longitude (both use decimal minutes), township, range, section, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix B is sorted by county, township, range, and section. Also given are name of source, GEOTHERM record identifier, and temperature (/sup 0/C). Appendix C is first sorted into one-degree blocks by latitude, and longitude, and then by name of source. Adjacent one-degree blocks which are published as a 1:250,000 map are combined under the appropriate map name. Also given are GEOTHERM record identifier, and temperature (/sup 0/C). A bibliography is given in Appendix D.

  18. A multi-disciplinary investigation of Irish warm springs and their potential for geothermal energy provision.

    Blake, Sarah; Jones, Alan G.; Henry, Tiernan

    2015-04-01

    Irish warm springs are one of a set of several target types that are being evaluated for their geothermal energy potential during the course of the island-wide assessment of the geothermal energy potential of Ireland under the IRETHERM project (www.iretherm.ie). Forty-two warm springs and warm shallow groundwater occurrences have been recorded in Ireland; water temperatures in the springs (approx. 12-25 °C) are elevated with respect to average Irish groundwater temperatures (10-11 °C). This study focuses on warm springs in east-central Ireland found in the Carboniferous limestone of the Dublin Basin. A combination of geophysical methods (controlled source electromagnetics (CSEM) and audio-magnetotellurics (AMT)) and hydrochemical analyses (including time-lapse temperature and electrical conductivity measurements) have been utilised at several of the springs to determine the source of the heated waters at depth and the nature of the geological structures that deliver the warm waters to the surface. Using the example of St. Gorman's Well, Co. Meath, we show how the combination of these different methods of investigation and the interpretation of these various data sets enables us to better understand the physical and chemical variability of the spring through time. This will provide the basis for an assessment of the source of these thermal waters as a potential geothermal energy reservoir and will allow for more precise characterisation of the groundwater resource. We present subsurface models derived from new geophysical data collected at St. Gorman's Well in 2013. This high-resolution AMT survey consisted of a grid of 40 soundings recorded at approximately 200 m intervals centred on the spring. The aim of the survey was to image directly any (electrically conductive) fluid conduit systems that may be associated with the springs and to provide an understanding of the observed association of the Irish warm springs with major structural lineaments, such as the NE

  19. Geothermal heating from Pinkerton Hot Springs at Colorado Timberline Academy, Durango, Colorado. Final technical report

    Allen, C.C.; Allen, R.W.; Beldock, J.

    1981-11-08

    The efforts to establish a greater pool of knowledge in the field of low temperature heat transfer for the application of geothermal spring waters to space heating are described. A comprehensive set of heat loss experiments involving passive radiant heating panels is conducted and the results presented in an easily interpretable form. Among the conclusions are the facts that heating a 65 to 70 F/sup 0/ space with 90 to 100 F/sup 0/ liquids is a practical aim. The results are compared with the much lower rates published in the American Society of Heating Refrigeration and Air Conditioning Engineers SYSTEMS, 1976. A heat exchange chamber consisting of a 1000 gallon three compartment, insulated and buried tank is constructed and a control and pumping building erected over the tank. The tank is intended to handle the flow of geothermal waters from Pinkerton Hot Springs at 50 GPM prior to the wasting of the spring water at a disposal location. Approximately 375,000 Btu per hour should be available for heating assuming a 15 F/sup 0/ drop in water temperature. A combination of the panel heat loss experiments, construction of the heat exchange devices and ongoing collection of heat loss numbers adds to the knowledge available to engineers in sizing low temperature heat systems, useful in both solar and geothermal applications where source temperature may be often below 110 F/sup 0/.

  20. A Geological and Geophysical Study of the Geothermal Energy Potential of Pilgrim Springs, Alaska

    Turner, Donald L.; Forbes, Robert B. [eds.

    1980-01-01

    The Pilgrim Springs geothermal area, located about 75 km north of Nome, was the subject of an intensive, reconnaissance-level geophysical and geological study during a 90-day period in the summer of 1979. The thermal springs are located in a northeast-oriented, oval area of thawed ground approximately 1.5 km{sup 2} in size, bordered on the north by the Pilgrim River. A second, much smaller, thermal anomaly was discovered about 3 km northeast of the main thawed area. Continuous permafrost in the surrounding region is on the order of 100 m thick. Present surface thermal spring discharge is {approx} 4.2 x 10{sup -3} m{sup 3} s{sup -1} (67 gallons/minute) of alkali-chloride-type water at a temperature of 81 C. The reason for its high salinity is not yet understood because of conflicting evidence for seawater vs. other possible water sources. Preliminary Na-K-Ca geothermometry suggests deep reservoir temperatures approaching 150 C, but interpretation of these results is difficult because of their dependence on an unknown water mixing history. Based on these estimates, and present surface and drill hole water temperatures, Pilgrim Springs would be classified as an intermediate-temperature, liquid-dominated geothermal system.

  1. Estimating mobilization and transport of arsenic using Hydrogeochemical modelling in Guandu geothermal spring area, Taiwan

    Wang, C.; Liu, C.; Kao, Y.

    2012-12-01

    Arsenic (As) is one of the environmental contaminants, widely distributed in geothermal ecosystem. Previous studies indicated that As concentration of Beitou geothermal spring was up to 4.32 mg/L and significantly exceeded the drinking water (0.01 mg/L) guideline of WHO. Moreover, in this study area, including the Beitou geothermal valley, Guandu Plain and Guandu Wetland, which may be influenced by toxicological effects of As. The probable path of As distribution is from Beitou geothermal spring to downstream of alluvial aquifer and wetland, via the stream flow and groundwater flow. This study following 3 cases aims to establish the spatial distribution of arsenic in this study area and develop a hydrogeochemical model using HYDROGEOCHEM 5.0 and PHREEQC. Total of 1960 nodes and 895 elements were consisted in groundwater flow direction (Case 1) and As transport (Case 2) of this conceptual model using HYDROGEOCHEM 5.0. In addition, dissolve/ precipitation , adsorption/ desorption and exchange reactions were also considered. In the case 1, the simulated results of groundwater flow direction show that the flow direction is from the northeast to the southwest, which water table decrease with variation of terrain. In the case 2, the results of As transport show that As distribution are gradually decrease from geothermal valley to downstream region. However, a slowly rising in the wetland. The illustrates conceptual diagram of As that high As contents released from geothermal spring transport into wetland ecosystem along stream flow and wetland particularly easily accumulated As. Furthermore, the geochemical parameters of pore water samples in the Guandu Wetland are applied to establish As mobility with different depth using PHREEQC program(Case 3). The simulated results show that the predominant species of As in the shallow layer and deep layer are As(V) and As(III), respectively. The likely mechanisms of As mobility is former probably adsorbed on the Ferric hydroxide (S

  2. GEOTHERMAL ENVIRONMENTAL ASSESSMENT BASELINE STUDY: VEGETATION AND SOILS OF THE ROOSEVELT HOT SPRINGS GEOTHERMAL RESOURCE AREA

    Identification and elemental concentrations of indigenous soil and plant systems found on the Roosevelt Hot Spring KGRA are described. Twenty-three different soils and five separate plant communities are geographically mapped and identified. One hundred forty-seven plant species ...

  3. Mantle-derived CO2 in Hot Springs of the Rehai Geothermal Field,Tengchong, China

    REN Jianguo; WANG Xianbin; OUYANG Ziyuan

    2005-01-01

    Gas concentrations and isotopic compositions of He and CO2 were determined on free gas samples from ten hot springs of the Rehai geothermal field, Tengchong, China. The results showed that hot-spring CO2 gas, together with He,was derived mainly from the mantle, indicating the accumulation of mantle-derived volatiles beneath the survey area. The δ13C values of CO2, higher than those of the typical mantle-derived carbon and the isotopic composition of hot-spring-free CO2 in unequilibrium with dissolved CO2, are recognized only in the Rehai geothermal field, suggesting that there seems to be a still-degassing magmatic intrusion at depths, which provides mantle-derived volatiles to the hydrothermal system above. The accumulation of those volatiles has probably played an important role in triggering earthquakes in this region.In addition, the isotopic characteristics of He and C also indicate that the magmatic intrusion seems to have been derived from the MORB source, and could be contaminated by crustal materials during its upwelling through the continental crust.

  4. Geothermal investigations at Crystal Hot Springs, Salt Lake County, Utah. Report of Investigation No. 139

    Murphy, P.J.; Gwynn, J.W.

    1979-10-01

    The Crystal Hot Springs geothermal system is located in southern Salt Lake County, Utah 22.5 km (14 miles) south of Salt Lake City near the town of Draper. The system is immediately west of the Wasatch Mountains at the easternmost edge of the Basin and Range physiographic province within an active seismic zone referred to as the Intermountain Seismic Belt. The springs are located north of an east-west trending horst known as the Traverse Range. The range is intermediate in elevation between the Wasatch Range to the east and the valley grabens to the north and south. A series of northeast striking normal faults with a combined displacement of at least 90/sup 0/m (3000 ft) separate the horst from the Jordan Valley graben to the north. The spring system is located between two closely spaced range-front faults where the faults are intersected by a north-northeast striking fault. The fractured Paleozoic quartzite bedrock 25 m (80 ft) beneath the surface leaks thermal water into the overlying unconsolidated material and the springs issue along zones of weaknesses in the relatively impermeable confining zone that parallel the bedrock faults. Meteoric water from the Wasatch Range is warmed in the normal geothermal gradient of the province (approximately 32/sup 0/C/km) as the water circulates to a minimum depth of approximately 2.5 km (1.55 miles) via an undetermined path through aquifers and faults. Data collected at the Crystal Hot Springs system under the DOE state coupled program are presented for use by individuals interested in the system.

  5. Low-temperature geothermal water in Utah: A compilation of data for thermal wells and springs through 1993

    Blackett, R.E.

    1994-07-01

    The Geothermal Division of DOE initiated the Low-Temperature Geothermal Resources and Technology Transfer Program, following a special appropriation by Congress in 1991, to encourage wider use of lower-temperature geothermal resources through direct-use, geothermal heat-pump, and binary-cycle power conversion technologies. The Oregon Institute of Technology (OIT), the University of Utah Research Institute (UURI), and the Idaho Water Resources Research Institute organized the federally-funded program and enlisted the help of ten western states to carry out phase one. This first phase involves updating the inventory of thermal wells and springs with the help of the participating state agencies. The state resource teams inventory thermal wells and springs, and compile relevant information on each sources. OIT and UURI cooperatively administer the program. OIT provides overall contract management while UURI provides technical direction to the state teams. Phase one of the program focuses on replacing part of GEOTHERM by building a new database of low- and moderate-temperature geothermal systems for use on personal computers. For Utah, this involved (1) identifying sources of geothermal date, (2) designing a database structure, (3) entering the new date; (4) checking for errors, inconsistencies, and duplicate records; (5) organizing the data into reporting formats; and (6) generating a map (1:750,000 scale) of Utah showing the locations and record identification numbers of thermal wells and springs.

  6. Chemical and isotopic study to define the origin of acidity in the Los Humeros geothermal reservoir

    Chemical and isotopic analyses of geothermal fluids were carried out at the Los Humeros, Mexico, geothermal field in order to establish the water-rock equilibrium state and to determine the origin of the acidity in the reservoir. From the perspective of water-rock equilibrium, the Los Humeros geothermal reservoir is out of equilibrium. This is probably the case since it is associated with recent volcanism, with magmatic components in the geothermal fluids that are not neutralized by reaction with feldspar and mica. Superheated magmatic steam contains HCl gas, which condenses or mixes with liquid at moderate temperature (2/Ar of 270 to 340 deg. C. The isotopic composition of the Los Humeros wells shows anδ18O shift which is characteristic of fluids of geothermal origin that have reached equilibrium with the rock at high temperatures. The isotopic compositions of cold spring waters in the area are mostly located on the meteoric line. The sample from Alchichica lagoon has an isotopic composition typical of evaporated water. (author)

  7. Characterization and Metal Detoxification Potential of Moderately Thermophilic Bacillus cereus from Geothermal Springs of Himalaya

    Aslam Khan Ghalib; Muhammad Yasin; Muhammad Faisal

    2014-01-01

    Two thermophilic Bacillus cereus strains (B. cereus-TA2 and B. cereus-TA4) used in the present study were isolated from the geothermal spring of Hunza valley, Gilgit, Pakistan. They showed the ability to withstand and grow at high temperature (85°C). Both these strains could resist multiple metals (copper, cadmium, mercury, manganese, zinc, arsenic, chromium and selenium). Strain B. cereus-TA4 reduced Cr (VI) at pH 5.0 to 9.0 but maximum reduction (83%) was observed at pH 7.0 after 48 h when ...

  8. Direct use applications of geothermal resources at Desert Hot Springs, California. Final report, May 23, 1977--July 31, 1978. Volume II: appendixes

    Christiansen, C.C.

    1978-07-01

    The following appendixes are included: Desert Hot Springs (DHS) Geothermal Project Advisory Board, Geothermal Citizens Advisory Committee, community needs assessment, geothermal resource characterization, a detailed discussion of the geothermal applications considered for DHS, space/water heating, agricultural operations, detailed analysis of a geothermal aquaculture facility, detailed discussion of proposed energy cascading systems for DHS, regulatory requirements, environmental impact assessment, resource management plan, and geothermal resources property rights and powers of cities to regulate indigenous geothermal resources and to finance construction of facilities for utilization of such resources. (MHR)

  9. Variations of Heavy Metals from Geothermal Spring to Surrounding Soil and Mangifera Indica–Siloam Village, Limpopo Province

    Olatunde S. Durowoju

    2016-01-01

    Full Text Available Assessment of seasonal variation in concentration of heavy metals–As, Cd, Co, Cr, Cu, Ni, Pb, and Zn from the Siloam Geothermal Spring and their impacts on surface soils and Mangifera indica were undertaken during winter and summer seasons in South Africa. This was done to determine the environmental pollution status of surface soils and Mangifera indica around the geothermal spring. The geothermal spring water, surface soil (0–15 cm and Mangifera indica (bark and leaves samples were collected during 2014 winter and summer seasons. Soil and Mangifera indica samples were treated and digested using microwave and block digestion methods, respectively. The heavy metal concentrations were determined with inductively coupled plasma-mass spectrometer (ICP-MS (Agilent 7700. The result from this study showed that levels of heavy metals were higher in summer compared to winter season for geothermal spring water, surface soil, and Mangifera indica (barks and leaves. In two-tailed tests (Mann–Whitney U-test, geothermal spring water alone showed significant differences (Z = −2.1035, p < 0.05, whereas the surface soil and barks and leaves of Mangifera indica showed no significant differences (Z = 0.053; 0; −0.524, p > 0.05 in both seasons. Some heavy metals concentrations were above the standard guidelines for drinking water and typical soil, making the soil contaminated. This is a cause for concern as it can affect the environment and the health of the inhabitants of Siloam village, who depend on the geothermal spring as their source of domestic water, irrigation, and other uses. This study also showed that Mangifera indica has a phytoremediative property, which lessens the heavy metal concentrations absorbed from the contaminated soil.

  10. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing

    Allyson Lee Brady

    2015-09-01

    Full Text Available Carbon monoxide (CO is a potential energy and carbon source for thermophilic bacteria in geothermal environments. Geothermal sites ranging in temperature from 45–65°C were investigated for the presence and activity of anaerobic CO-oxidizing bacteria. Anaerobic CO oxidation potentials were measured at up to 48.9 µmoles CO day-1 g (wet weight-1 within 5 selected sites. Active anaerobic carboxydotrophic bacteria were identified using 13CO DNA stable isotope probing (SIP combined with pyrosequencing of 16S rRNA genes amplified from labeled DNA. Bacterial communities identified in heavy DNA fractions were predominated by Firmicutes, which comprised up to 95% of all sequences in 13CO incubations. The predominant bacteria that assimilated 13C derived from CO were closely related (>98% to genera of known carboxydotrophs including Thermincola, Desulfotomaculum, Thermolithobacter and Carboxydocella, although a few species with lower similarity to known bacteria were also found that may represent previously unconfirmed CO-oxidizers. While the distribution was variable, many of the same OTUs were identified across sample sites from different temperature regimes. These results show that bacteria capable of using CO as a carbon source are common in geothermal springs, and that thermophilic carboxydotrophs are probably already quite well known from cultivation studies.

  11. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs.

    Eloe-Fadrosh, Emiley A; Paez-Espino, David; Jarett, Jessica; Dunfield, Peter F; Hedlund, Brian P; Dekas, Anne E; Grasby, Stephen E; Brady, Allyson L; Dong, Hailiang; Briggs, Brandon R; Li, Wen-Jun; Goudeau, Danielle; Malmstrom, Rex; Pati, Amrita; Pett-Ridge, Jennifer; Rubin, Edward M; Woyke, Tanja; Kyrpides, Nikos C; Ivanova, Natalia N

    2016-01-01

    Analysis of the increasing wealth of metagenomic data collected from diverse environments can lead to the discovery of novel branches on the tree of life. Here we analyse 5.2 Tb of metagenomic data collected globally to discover a novel bacterial phylum ('Candidatus Kryptonia') found exclusively in high-temperature pH-neutral geothermal springs. This lineage had remained hidden as a taxonomic 'blind spot' because of mismatches in the primers commonly used for ribosomal gene surveys. Genome reconstruction from metagenomic data combined with single-cell genomics results in several high-quality genomes representing four genera from the new phylum. Metabolic reconstruction indicates a heterotrophic lifestyle with conspicuous nutritional deficiencies, suggesting the need for metabolic complementarity with other microbes. Co-occurrence patterns identifies a number of putative partners, including an uncultured Armatimonadetes lineage. The discovery of Kryptonia within previously studied geothermal springs underscores the importance of globally sampled metagenomic data in detection of microbial novelty, and highlights the extraordinary diversity of microbial life still awaiting discovery. PMID:26814032

  12. Final Report and Strategic Plan on the Feasibility Study to Assess Geothermal Potential on Warm Springs Reservation Lands. Report No. DOE/GO/15177

    James Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates

    2007-05-17

    In 2005 the Confederated Tribes of Warm Springs Tribal Council authorized an evaluation of the geothermal development potential on the Confederated Tribes of Warm Springs Reservation of Oregon. Warm Springs Power & Water Enterprises obtained a grant from the U.S. Department of Energy to conduct a geological assessment and development estimate. Warm Springs Power & Water Enterprises utilized a team of expert consultants to conduct the study and develop a strategic plan. The resource assessment work was completed in 2006 by GeothermEx Inc., a consulting company specializing in geothermal resource assessments worldwide. The GeothermEx report indicates there is a 90% probability that a commercial geothermal resource exists on tribal lands in the Mt. Jefferson area. The geothermal resource assessment and other cost, risk and constraints information has been incorporated into the strategic plan.

  13. Low-temperature geothermal potential of the Ojo Caliente warm springs area, northern New Mexico

    Vuataz, F.D.; Stix, J.; Goff, F.; Pearson, C.F.

    1984-05-01

    A detailed geochemical investigation of 17 waters (thermal and cold, mineralized and dilute) was performed in the Ojo Caliente-La Madera area. Two types of thermomineral waters have separate and distinctive geologic, geochemical, and geothermal characteristics. The water from Ojo Caliente Resort emerges with temperatures less than or equal to 54/sup 0/C from a Precambrian metarhyolite. Its chemistry, typically Na-HCO/sub 3/, has a total mineralization of 3600 mg/l. Isotopic studies have shown that the thermal water emerges from the springs and a hot well without significant mixing with the cold shallow aquifer of the valley alluvium. However, the cold aquifer adjacent to the resort does contain varying amounts of thermal water that originates from the warm spring system. Geothermometry calculations indicate that the thermal water may be as hot as 85/sup 0/C at depth before its ascent toward surface. Thermodynamic computations on the reaction states of numerous mineral phases suggest that the thermal water will not cause major scaling problems if the hot water is utilized for direct-use geothermal applications. By means of a network of very shallow holes, temperature and electrical conductivity anomalies have been found elsewhere in the valley around Ojo Caliente, and resistivity soundings have confirmed the presence of a plume of thermal water entering the shallow aquifer. The group of lukewarm springs around La Madera, with temperatures less than or equal to 29/sup 0/C, chemical type of NaCaMg-HCO/sub 3/Cl and with a total mineralization less than or equal to 1500 mg/l behaves as a different system without any apparent relation to the Ojo Caliente system. Its temperature at depth is not believed to exceed 35 to 40/sup 0/C.

  14. Use of isotope techniques to trace the origin of acidic fluids in geothermal systems

    Realizing the potential contribution of stable isotopes of the water molecule and those of sulphur compounds in tracing the sources of acidic fluids, especially the sulphate type of acidity in geothermal well discharges, the IAEA organized a Coordinated Research Project (CRP) with the objectives of integrating isotope techniques, in particular the isotopes of sulphur compounds, into (1) identification of the origin of the water component in acidic fluids, (2) identification of the origin of sulphur compounds in acidic fluids and (3) study on mixing of waters from different sources to form acidic fluids. In addition to these objectives, the CRP was also to test isotope geothermometry based on sulphur compounds in geothermal fluids. In this CRP, isotopic composition of oxygen-18 and deuterium in waters sampled from acidic wells indicates that these waters are mixtures of meteoric and magmatic waters. Examples of this type of geothermal systems are Miravalles in Costa Rica, Onikobe in Japan, Los Humeros in Mexico and Several fields in the Philippines. It has further shown that acidic fluids are isotopically heavier in some systems, implying a larger fraction of magmatic inputs. This isotopic evidence confirms the hypothesis that some acidic fluids are un-neutralized magmatic water. The aqueous sulphate in geothermal well discharges of a volcanic geothermal system originates from either oxidation of H2S gas similar to that producing acidic hot springs and ponds at the surface, hydrolysis of magmatic SO2 gas or hydrolysis of native sulphur at shallow depth. Isotope geothermometry based on δ34S (H2S) provides estimates of reservoir temperatures that are compatible to measured temperature values for the acidic wells, but not for neutral pH wells. This suggests that fractionation equilibrium is more easily attained in acidic wells as compared to neutral pH wells. Isotope geothermometer based on δ18O in water and aqueous sulphate was found to be generally not applicable

  15. Mycobacterium parascrofulaceum in Acidic Hot Springs in Yellowstone National Park▿

    Santos, Ricardo; Fernandes, João,; Fernandes, Nuno; Oliveira, Fernanda; Cadete, Manuela

    2007-01-01

    Mycobacterium parascrofulaceum was found in Norris Geyser Basin, Yellowstone National Park, in a system composed of two acidic (pH 3.0) springs with temperatures between 56°C at the source and 40°C at the confluence of both springs. Growth and survival assays at 56°C for 60 days were performed, confirming the origin of the strain.

  16. Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.

    Goranson, Colin

    2005-03-01

    Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in

  17. Aqueous Chemistry of Typical Geothermal Springs with Deep Faults in Xinyi and Fengshun in Guangdong Province, China

    Guoping Lu; Runfang Liu

    2015-01-01

    This paper investigated aqueous chemistry for two geothermal spring groups responsive and sensitive to flow fluctuations induced by earthquakes. Quake monitorings are favored for their be-ing in residential areas with well-preserved natural flow systems in Xinyi City’s Xijiang Hot Springs and Fengshun County’s Shihu Hot Spring. The hot springs are typical in temperatures and flow rates in southern China’s Guangdong Province. Physical and chemical conditions deep down in the heat sources are important constraints on earthquake, fluid flow, reactive solute transport and heat transfer, but re-main challenging to address via field observations and numerical experiments. In this paper, we made daily and annual observations on flow rates, temperature, and/or aqueous chemistry. We employed strontium isotopes as tracers for the water sources, equilibrium phase diagram for K-feldspar and albite stability, and Na-K-Mg diagram for heat reservoir temperatures. The abundant sulfite content in Xi-jiang Hot Springs is discussed. Our main finding are that the deep fault springs are characterized by low reduction-oxidation potential at around-200–-150 mV and relatively large daily flow variations. The re-sults provide scientific background features on the field sites regarding earthquake monitoring and pre-dictions and geothermal reservoir.

  18. The Co-Distribution of Nitrifying Archaea and Diazotrophic Bacteria in Geothermal Springs

    Hamilton, T. L.; Jewell, T. N. M.; de la Torre, J. R.; Boyd, E. S.

    2014-12-01

    Microbial processes that regulate availability of nutrients play key roles in shaping community composition. All life requires fixed nitrogen (N), and its bioavailability is what often limits ecosystem productivity. Biological nitrogen fixation, or the reduction of dinitrogen (N2) to ammonia (NH3), is a keystone process in N limited ecosystems, providing nitrogen for members of the community. N2 fixing organisms likely represent a 'bottom up control' on the structure of communities that develop in N limited environments. N2 fixation is catalyzed by a limited number of metabolically diverse bacteria and some methanogenic archaea and occurs in a variety of physically and geochemically diverse environments. Nitrification, or the sequential oxidation of NH4+ to nitrite (NO2-) and ultimately nitrate (NO3-), is catalyzed by several lineages of Proteobacteria at temperatures of Park (YNP) reveals a strong correspondence between the distribution of ammonia oxidizing archaea (AOA) and nitrogen fixing aquificae (NFA) in nitrogen-limited geothermal hot springs over large environmental gradients. Based on the physiology of AOA and NFA, we propose that the strong co-distributional pattern results from interspecies interactions, namely competition for bioavailable ammonia. Our recent work has shown that in springs where the niche dimension of AOA and NFA overlap (e.g., Perpetual Spouter; pH 7.1, 86.4°C), the dissimilar affinities for NH4 result in AOA metabolism maintaining a low NH4(T) pool and selecting for inclusion of NFA during the assembly of these communities. Here, we examine in situ physiological interactions of AOA and NFA, tracking changes in transcript levels of key genes involved in nitrogen metabolism and carbon fixation of these organisms in springs where the niche dimension of AOA and NFA overlap (e.g., Perpetual Spouter). These data suggest affinity for substrate and electron donor use play key roles in structuring the biodiversity of this hydrothermal

  19. Isotope and chemical investigation of geothermal springs and thermal water produced by oil wells in potwat area, Pakistan

    Isotopes and geochemical techniques were applied to investigate the origin, subsurface history and reservoir temperatures of geothermal springs in Potwar. Two sets of water samples were collected. Surface temperatures of geothermal springs ranges from 52 to 68.3 C. Waters produced by oil wells in Potwar area were also investigated. Geothermal springs of Potwar area are Na-HCO/sub 3/ type, while the waters produced by oil wells are Na-Cl and Ca-Cl types. Source of both the categories of water is meteoric water recharged from the outcrops of the formations in the Himalayan foothills. These waters undergo very high /sup 18/O-shift (up to 18%) due to rock-water interaction at higher temperatures. High salinity of the oil field waters is due to dissolution of marine evaporites. Reservoir temperatures of thermal springs determined by the Na-K geo thermometers are in the range of 56-91 deg. C, while Na-K-Ca, Na-K-Mg, Na-K-Ca-Mg and quartz geo thermometers give higher temperatures up to 177 C. Reservoir temperature determined by /sup 18/O(SO/Sub 4/-H/sub 2/O) geo thermometer ranges from 112 to 138 deg. C. There is wide variation in reservoir temperatures (54-297 deg. C) of oil fields estimated by different chemical geo thermometers. Na-K geo thermometer seems more reliable which gives close estimates to real temperature (about 100 deg. C) determined during drilling of oil wells. (author)

  20. Multilocus sequence analysis of Thermoanaerobacter isolates reveals recombining but differentiated subpopulations from geothermal springs of the Uzon Caldera, Kamchatka, Russia

    LittyVarghese; ChristopherLHemme

    2013-01-01

    Abstract: Thermal environments have island-like characteristics and provide a unique opportunity to study population structure and diversity patterns of microbial taxa inhabiting these sites. Strains having ≥98% 16S rRNA gene sequence similarity to the obligately anaerobic Firmicutes Thermoanaerobacter uzonensis were isolated from seven geothermal springs, separated by up to 1600 m, within the Uzon Caldera (Kamchatka, Russian Far East). The intraspecies variation and spatial patterns of di...

  1. Calcite Precipitation at an Arctic Geothermal Spring Leads to Endolith Colonization and Ecological Succession

    Starke, V.; Fogel, M. L.; Steele, A.

    2012-12-01

    A critical question in microbial ecology concerns how environmental conditions affect community makeup. Troll Springs, a geothermal spring at 79°23'N, 13°26'E on Svalbard in the high Arctic, provides an opportunity to study microbial communities and succession along steep environmental gradients that impose strong selective pressures. At Troll, warm water is released into cold, dry climate conditions. Precipitation of calcite from the spring's waters has built terraces that host a range of microbial communities. Microorganisms exist in warm water as periphyton, in moist granular materials, and in cold, dry rock as endoliths. Troll therefore has two distinct ecosystems, aquatic and terrestrial, in close proximity, with different underlying environmental factors shaping their microbial communities. We use microscopic and phylogeny-based molecular methods to study microbial community makeup at Troll Springs. Periphyton are entrapped by precipitation of calcite, becoming precursors for endolithic communities. Much of the pore space originally occupied by periphyton becomes inhabited either by organisms that were already present in minor quantities in the periphyton, or by new organisms that colonized an environment for which they were well suited. This process differs from most endolith colonization, where rock predates the communities that colonize it. In the aquatic environments, the strongest dependence of community makeup is on pH and temperature, with gradual changes in community makeup along a pH/temperature gradient among the pools. Illumination (as limited by calcite precipitation) and thermal stability also appear to exert influence. In contrast, in the granular and endolithic terrestrial environments, where water is scarce and therefore exerts selective pressure, there is a strong relationship between community makeup and water content. The richness, evenness, and diversity of microbial taxa are all strongly correlated at Troll Springs. These parameters all

  2. Idaho: basic data for thermal springs and wells as recorded in GEOTHERM, Part A

    Bliss, J.D.

    1983-07-01

    All chemical data for geothermal fluids in Idaho available as of December 1981 is maintained on GEOTHERM, computerized information system. This report presents summaries and sources of records for Idaho. 7 refs. (ACR)

  3. Nevada: basic data for thermal springs and wells as recorded in GEOTHERM. Part A

    Bliss, J.D.

    1983-06-01

    All chemical data for geothermal fluids in Nevada available as of December 1981 are maintained on GEOTHERM, a computerized information system. This report presents summaries and sources of records for Nevada. 7 refs. (ACR)

  4. Redox stress in geobacilli from geothermal springs: Phenomenon and membrane-associated response mechanisms.

    Ghazaryan, Astghik; Blbulyan, Syuzanna; Poladyan, Anna; Trchounian, Armen

    2015-10-01

    Geobacillus toebii ArzA-8, from Armenian geothermal springs, grew well in nutrient broth. During its growth, changes in pH in opposite directions were observed depending on glucose supplementation. Accordingly, the decrease in the redox potential was determined using titanium-silicate (Eh) and platinum (Eh') electrodes: Eh decreased to -150 ± 3 mV and Eh' to -350 ± 2 mV without glucose; the decrease in these potentials was smaller with glucose. Redox stress due to an oxidizer, K3[Fe(CN)6], or a reducer, dl-dithiothreitol (DTT), inhibited bacterial growth. However, a stimulatory effect of K3[Fe(CN)6] or DTT was observed with or without glucose, respectively. With glucose, the H(+) efflux was sensitive to N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of FoF1FOF1-ATPase and other H(+) translocation mechanisms, but the addition of an oxidizer or reducer suppressed the H(+) efflux. The ATPase activity of membrane vesicles was ~1.3-fold higher in cells grown with glucose compared with cells grown without glucose. DCCD and DTT suppressed ATPase activity in cells grown without glucose, whereas DTT stimulated FOF1-ATPase activity in cells grown with glucose. Thus, G. toebii senses redox stress; this thermophile likely presents specific membrane-associated response mechanisms involving FOF1-ATPase to overcome redox stress and survive; these mechanisms are important for adaptation to extreme environments. PMID:25889504

  5. Characterization and Metal Detoxification Potential of Moderately Thermophilic Bacillus cereus from Geothermal Springs of Himalaya

    Aslam Khan Ghalib

    2014-08-01

    Full Text Available Two thermophilic Bacillus cereus strains (B. cereus-TA2 and B. cereus-TA4 used in the present study were isolated from the geothermal spring of Hunza valley, Gilgit, Pakistan. They showed the ability to withstand and grow at high temperature (85°C. Both these strains could resist multiple metals (copper, cadmium, mercury, manganese, zinc, arsenic, chromium and selenium. Strain B. cereus-TA4 reduced Cr (VI at pH 5.0 to 9.0 but maximum reduction (83% was observed at pH 7.0 after 48 h when initially supplied with 200 µg mL-1of K2CrO4. Lower initial concentrations such as 100 µg mL-1 supported higher reduction (90 to 95% than that of high concentration such as 500 µg mL-1 (20 to 30%. Both the strains reduced nearly 70% of Se (IV after 48 h of growth at pH 7.0 when initially supplied with 200 µg mL-1 of Na2SeO3. The optimum temperature for maximum Se (IV reduction was 45°C for both the strains.

  6. Precipitation of silicic acid from geothermal water by addition of cetyl-trimethyl-ammonium bromide

    Kitsuki, Harumi; Yokoyama, Takushi; Shimada, Kanichi; Yamanaka, Chiho; Nishu, Keisuke; Shimizu, Shin; Tarutani, Toshikazu

    1986-01-25

    Cetyl-trimethyl-ammonium bromide (CTAB) was added to sodium silicate solution and geothermal hot water (Ohtake Geothermal Power Plant and Hatchobaru Geo-thermal Power Plant) to precipitate silica. 1) CTA ions do not react with monosilicic acid, but only the polymerization among the polysilicic acids proceeds and causes silica to precipitate. Optimum pH for the silica precipitation is 6 - 7 and the higher concentration of polysilicic acid will cause more precipitation. 2) When added to geothermal hot water, the silica precipita-tion increases with the increase of CTAB concentration within the range of 10/sup -7/ - 10/sup -4/ mol dm/sup 3/ concentration. Almost all poly-silicic acid precipitated at 10/sup -4/ mol dm/sup 3/ when measured for silica precipitation after 5 minutes. Total concentration of silicic acid was higher in the Hatchobaru geothermal water than that of the Ohtake geothermal water. (10 figs, 14 refs)

  7. The sulphur springs geothermal field, St. Lucia, lesser Antilles: Hydrothermal mineralogy of wells SL-1 and SL-2

    Battaglia, S.; Gianelli, G.; Rossi, R.; Cavarretta, G.

    Two wells have been drilled to depths of 1413 and 2213 meters in the geothermal field of Sulphur Springs, St. Lucia, and reveal a complex volcanic sequence characterized by collapse episodes followed by the emplacement of dacite domes. The geothermal reservoir consists of fractured volcanic rocks and produces superheated steam. Well-bottom temperatures are around 270-290°C. The hydrothermal alteration found in both the productive SL-2 well and the non-productive SL-1 is strongly reminiscent of that of porphyry copper deposits, with (1) an inner, high-temperature potassic zone characterized by the occurrence of dravitic tourmaline, quartz, and biotite, (2) an outer propylitic alteration zone that is partly superimposed on (3) a potassic alteration zone. The alteration mineral assemblages indicate that the hydrothermal system has cooled at the levels sampled.

  8. Evaluation of the solute geothermometry of thermal springs and drilled wells of La Primavera (Cerritos Colorados) geothermal field, Mexico: A geochemometrics approach

    Pandarinath, Kailasa; Domínguez-Domínguez, Humberto

    2015-10-01

    A detailed study on the solute geothermometry of thermal water (18 springs and 8 drilled wells) of La Primavera geothermal field (LPGF) in Mexico has been carried out by employing a geochemical database compiled from the literature and by applying all the available solute geothermometers. The performance of these geothermometers in predicting the reservoir temperatures has been evaluated by applying a geochemometrics (geochemical and statistical) method. The springs of the LPGF are of bicarbonate type and the majority have attained partial-equilibrium chemical conditions and the remaining have shown non-equilibrium conditions. In the case of geothermal wells, water is dominantly of chloride-type and, among the studied eight geothermal wells, four have shown full-equilibrium chemical conditions and another four have indicated partial-equilibrium conditions. All springs of HCO3-​ type water have provided unreliable reservoir temperatures, whereas the only one available spring of SO42- type water has provided the reservoir temperature nearer to the average BHT of the wells. Contrary to the general expected behavior, spring water of non-equilibrium and geothermal well water of partial-equilibrium chemical conditions have indicated more reliable reservoir temperatures than those of partially-equilibrated and fully-equilibrated water, respectively. Among the chemical concentration data, Li and SiO2 of two springs, SO42- and Mg of four springs, and HCO3 and Na concentrations of two geothermal wells were identified as outliers and this has been reflected in very low reservoir temperatures predicted by the geothermometers associated with them (Li-Mg, Na-Li, Na-K-Mg, SiO2 etc.). Identification of the outlier data points may be useful in differentiating the chemical characteristics, lithology and the physico-chemical and geological processes at the sample locations of the study area. In general, the solute geothermometry of the spring waters of LPGF indicated a dominantly

  9. Deep Production Well for Geothermal Direct-Use Heating of A Large Commercial Greenhouse, Radium Springs, Rio Grande Rift, New Mexico; FINAL

    Expansion of a large commercial geothermally-heated greenhouse is underway and requires additional geothermal fluid production. This report discusses the results of a cost-shared U.S. Department of Energy (DOE) and A.R. Masson, Inc. drilling project designed to construct a highly productive geothermal production well for expansion of the large commercial greenhouse at Radium Springs. The well should eliminate the potential for future thermal breakthrough from existing injection wells and the inducement of inflow from shallow cold water aquifers by geothermal production drawdown in the shallow reservoir. An 800 feet deep production well, Masson 36, was drilled on a US Bureau of Land Management (BLM) Geothermal Lease NM-3479 at Radium Springs adjacent to the A. R. Masson Radium Springs Farm commercial greenhouse 15 miles north of Las Cruces in Dona Ana County, New Mexico just west of Interstate 25 near the east bank of the Rio Grande. The area is in the Rio Grande rift, a tectonically-active region with high heat flow, and is one of the major geothermal provinces in the western United State

  10. Distribution of ether lipids and composition of the archaeal community in terrestrial geothermal springs: impact of environmental variables.

    Xie, Wei; Zhang, Chuanlun L; Wang, Jinxiang; Chen, Yufei; Zhu, Yuanqing; de la Torre, José R; Dong, Hailiang; Hartnett, Hilairy E; Hedlund, Brian P; Klotz, Martin G

    2015-05-01

    Archaea can respond to changes in the environment by altering the composition of their membrane lipids, for example, by modification of the abundance and composition of glycerol dialkyl glycerol tetraethers (GDGTs). Here, we investigated the abundance and proportions of polar GDGTs (P-GDGTs) and core GDGTs (C-GDGTs) sampled in different seasons from Tengchong hot springs (Yunnan, China), which encompassed a pH range of 2.5-10.1 and a temperature range of 43.7-93.6°C. The phylogenetic composition of the archaeal community (reanalysed from published work) divided the Archaea in spring sediment samples into three major groups that corresponded with spring pH: acidic, circumneutral and alkaline. Cluster analysis showed correlation between spring pH and the composition of P- and C-GDGTs and archaeal 16S rRNA genes, indicating an intimate link between resident Archaea and the distribution of P- and C-GDGTs in Tengchong hot springs. The distribution of GDGTs in Tengchong springs was also significantly affected by temperature; however, the relationship was weaker than with pH. Analysis of published datasets including samples from Tibet, Yellowstone and the US Great Basin hot springs revealed a similar relationship between pH and GDGT content. Specifically, low pH springs had higher concentrations of GDGTs with high numbers of cyclopentyl rings than neutral and alkaline springs, which is consistent with the predominance of high cyclopentyl ring-characterized Sulfolobales and Thermoplasmatales present in some of the low pH springs. Our study suggests that the resident Archaea in these hot springs are acclimated if not adapted to low pH by their genetic capacity to effect the packing density of their membranes by increasing cyclopentyl rings in GDGTs at the rank of community. PMID:25142282

  11. Geochemical Patterns of Geothermal Elements in Southern Italian Fumaroles and Thermal Springs in Relation with Mantle Intrusions

    Boudreau, A. E.; Minissale, A.; Donato, A.; Procesi, M.; Pizzino, L.; Giammanco, S.

    2015-12-01

    The review of published data together with some new data specifically made to fill gaps, to make a database of chemical and isotopic data for thermal emergences (springs, fumaroles and gas vents) in southern Italy, to be used for the publication of a Geothermal Atlas, has hallowed the re-interpretation of all the geochemical data gathered. The main conclusions are as follows. All active volcanic areas (Solfatara, Vesuvius, Ischia Isle, Mt Etna, Aeolian Islands and Pantelleria Isle) have i) high 3He/4He rations coupled with ii) high CO2 emissions and iii) geo-thermometric (isotopic) signatures that suggest the presence of active geothermal systems in all places at shallow depth. In spite of this, no one of these areas, is exploited for geothermal power generation. There are three further Quaternary volcanic areas at: Iblei Mts in Sicily, Vulture volcano in Basilicata region and Logudoro area in Sardinia Island that also have CO2-rich gas emissions, high in 3He/4He ratio, but they are not associated to any relevant thermal emission nearby. In terms of regional patterns, apart from the Calabria subduction arc area (Calabria region), the stable flat cratonic areas of Apulia in SE Italy, the Iblean Platform in SE Sicily, and most of Sardinia, the latter not involved in the Apennine Orogeny, the remaining southern Italy along the Tyrrhenian sector has huge emission of hydrothermally generated CO2 crossed, in counterflow, by descending topographically driven N2 solubilized in recharge meteoric water from the main Apennine belt. Iso-distribution maps of several of the parameters investigated even more clearly show the sectors of southern Italy affected by the intrusion of mantle magma and therefore the areas where the geothermal heat-flow is maximized by active tectonics.

  12. Thermocrinis jamiesonii sp. nov., a thiosulfate-oxidizing, autotropic thermophile isolated from a geothermal spring

    Dodsworth, Jeremy A.; Ong, John C.; Williams, Amanda; Dohnalkova, Alice; Hedlund, Brian P.

    2015-12-12

    An obligately thermophilic, chemolithotrophic, microaerophilic bacterium, designated strain GBS1T, was isolated from the water column of Great Boiling Spring, Nevada, USA. Thiosulfate was required for growth. Although capable of autotrophy, growth of GBS1T was enhanced in the presence of acetate, peptone, or Casamino acids. Growth occurred at 70-85 °C with an optimum at 80 °C, at pH 6.5-7.75 with an optimum at pH 7.25, at 0.5-8% oxygen with an optimum at 1-2%, and at ≤200 mM sodium chloride. The doubling time under optimal growth conditions was 1.3 hrs, with a final cell density of 6.2±0.5 x 107 cells/mL. Non-motile, rod-shaped cells 1.4-2.4 x 0.4-0.6 µm occurred singly or in pairs. Major cellular fatty acids (>5% of total) were C20:1ω9c (44.8%), C18:0 (26.0%), C16:0 (9.9%) and C20:0 (5.4%). Phylogenetic analysis of the GBS1T 16S rRNA gene sequence indicated an affiliation with Thermocrinis ruber and other Thermocrinis spp., but comparisons of 16S rRNA gene identity (≤97.10%) and in silico estimated DNA-DNA hybridization values (≤18.4%) with Thermocrinis spp. indicate that his strain is distinct from described species. Based on phenotypic, genotypic, and phylogenetic characteristics, the name Thermocrinis jamiesonii sp. nov. is proposed, with GBS1T (= JCM 19133T = DSM 27162T) as the type strain.

  13. Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey

    Balk, M.; Heilig, G.H.J.; Eekert, van M.H.A.; Stams, A.J.M.; Rijpstra, W.I.C.; Sinninghe-Damsté, J.S.; Vos, de W.M.; Kengen, S.W.M.

    2009-01-01

    A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Aya¿, Turkey. The cells were straight to curved rods, 0.4-0.6 mum in diameter and 3.5-10 mum in length. Spores were terminal and round. The temperature

  14. Investigation of Microbial Diversity in Geothermal Hot Springs in Unkeshwar, India, Based on 16S rRNA Amplicon Metagenome Sequencing

    Mehetre, Gajanan T.; Paranjpe, Aditi; Dastager, Syed G.; Dharne, Mahesh S.

    2016-01-01

    Microbial diversity in geothermal waters of the Unkeshwar hot springs in Maharashtra, India, was studied using 16S rRNA amplicon metagenomic sequencing. Taxonomic analysis revealed the presence of Bacteroidetes, Proteobacteria, Cyanobacteria, Actinobacteria, Archeae, and OD1 phyla. Metabolic function prediction analysis indicated a battery of biological information systems indicating rich and novel microbial diversity, with potential biotechnological applications in this niche.

  15. Effectiveness of acidizing geothermal wells in the South German Molasse Basin

    Schumacher, S.; Schulz, R.

    2013-10-01

    In Germany, many hydro-geothermal plants have been constructed in recent years, primarily in the region of Munich. As the host formation here mainly consists of carbonates, nearly all recently drilled wells have been acidized in order to improve the well yield. In this study, the effectiveness of these acid treatments is analyzed with respect to the amount of acid used and the number of acid treatments carried out per well. The results show that the first acid treatment has the largest effect, while subsequent acidizing improves the well only marginally. Data also indicate that continued acidizing can lead to degradation of the well. These findings may not only be important for geothermal installations in Germany but also for projects, for example, in Austria, France or China where geothermal energy is produced from carbonate formations as well.

  16. Thermocrinis jamiesonii sp. nov., a thiosulfate-oxidizing, autotropic thermophile isolated from a geothermal spring.

    Dodsworth, Jeremy A; Ong, John C; Williams, Amanda J; Dohnalkova, Alice C; Hedlund, Brian P

    2015-12-01

    An obligately thermophilic, chemolithotrophic, microaerophilic bacterium, designated strain GBS1T, was isolated from the water column of Great Boiling Spring, Nevada, USA. Thiosulfate was required for growth. Although capable of autotrophy, growth of GBS1T was enhanced in the presence of acetate, peptone or Casamino acids. Growth occurred at 70-85 °C with an optimum at 80 °C, at pH 6.50-7.75 with an optimum at pH 7.25, with 0.5-8 % oxygen with an optimum at 1-2 % and with ≤ 200 mM NaCl. The doubling time under optimal growth conditions was 1.3 h, with a final mean cell density of 6.2 ± 0.5 × 107 cells ml- 1. Non-motile, rod-shaped cells 1.4-2.4 × 0.4-0.6 μm in size occurred singly or in pairs. The major cellular fatty acids (>5 % of the total) were C20 : 1ω9c, C18 : 0, C16 : 0 and C20 : 0. Phylogenetic analysis of the GBS1T 16S rRNA gene sequence indicated an affiliation with Thermocrinis ruber and other species of the genus Thermocrinis, but determination of 16S rRNA gene sequence similarity ( ≤ 97.10 %) and in silico estimated DNA-DNA hybridization values ( ≤ 18.4 %) with the type strains of recognized Thermocrinis species indicate that the novel strain is distinct from described species. Based on phenotypic, genotypic and phylogenetic characteristics, a novel species, Thermocrinis jamiesonii sp. nov., is proposed, with GBS1T ( = JCM 19133T = DSM 27162T) as the type strain. PMID:26419502

  17. Analysis of potential geothermal resources and their use: Lebanon Springs area, New York

    1981-04-01

    The feasibility of using thermal waters at Lebanon Springs or elsewhere in the Capital District of New York as an energy source was studied. To evaluate the area, geologic mapping of the Lebanon Springs, New York, to Williamstown, Massachusetts, area was conducted, and efforts made to locate additional thermal waters besides those already known. In addition to mapping, thermal gradients where measured in twenty-five abandoned water wells, and the silica contents and water temperatures of seventy-eight active domestic water wells were determined. Based on the results of that work, Lebanon Springs appears to be the first choice for a demonstration project, but further exploration may confirm that other areas with good potential exist. A preliminary economic analysis of possible uses in the Town of Lebanon Springs was made, and it was determined that a system combining groundwater heat pumps and a microhydroelectric plant could be applied to heating the town hall, town garage, and high school with significant savings.

  18. Geothermal investment analysis with site-specific applications to Roosevelt Hot Springs and Cove Fort-Sulphurdale, Utah

    Cassel, T.A.V.; Edelstein, R.H.; Blair, P.D.

    1978-12-01

    The analysis and modeling of investment behavior in the development of hydrothermal electric power facilities are reported. This investment behavior reflects a degree of sensitivity to public policy alternatives concerning taxation and regulation of the resource and its related energy conversion facilities. The objective of the current research is to provide a realistic and theoretically sound means for estimating the impacts of such public policy alternatives. A stochastic simulation model was developed which offers an efficient means for site-specific investment analysis of private sector firms and investors. The results of the first year of work are discussed including the identification, analysis, quantification and modeling of: a decision tree reflecting the sequence of procedures, timing and stochastic elements of hydrothermal resource development projects; investment requirements, expenses and revenues incurred in the exploration, development and utilization of hydrothermal resources for electric power generation; and multiattribute investment decision criteria of the several types of firms in the geothermal industry. An application of the investment model to specific resource sites in the state of Utah is also described. Site specific data for the Known Geothermal Resource Areas of Roosevelt Hot Springs and Cove Fort-Sulphurdale are given together with hypothesized generation capacity growth rates.

  19. Geology and surface geochemistry of the Roosevelt Springs Known Geothermal Resource Area, Utah

    Lovell, J.S.; Meyer, W.T.; Atkinson, D.J.

    1980-01-01

    Available data on the Roosevelt area were synthesized to determine the spatial arrangement of the rocks, and the patterns of mass and energy flow within them. The resulting model lead to a new interpretation of the geothermal system, and provided ground truth for evaluating the application of soil geochemistry to exploration for concealed geothermal fields. Preliminary geochemical studies comparing the surface microlayer to conventional soil sampling methods indicated both practical and chemical advantages for the surface microlayer technique, which was particularly evident in the case of As, Sb and Cs. Subsequent multi-element analyses of surface microlayer samples collected over an area of 100 square miles were processed to produce single element contour maps for 41 chemical parameters. Computer manipulation of the multi-element data using R-mode factor analysis provided the optimum method of interpretation of the surface microlayer data. A trace element association of As, Sb and Cs in the surface microlayer provided the best indication of the leakage of geothermal solutions to the surface, while regional mercury trends may reflect the presence of a mercury vapour anomaly above a concealed heat source.

  20. Silicon isotope fractionation during silica precipitation from hot-spring waters: Evidence from the Geysir geothermal field, Iceland

    Geilert, Sonja; Vroon, Pieter Z.; Keller, Nicole S.; Gudbrandsson, Snorri; Stefánsson, Andri; van Bergen, Manfred J.

    2015-09-01

    This study aims to explore the extent and controls of silicon isotope fractionation in hot spring systems of the Geysir geothermal area (Iceland), a setting where sinter deposits are actively formed. The δ30Si values of dissolved silica measured in the spring water and sampling sites along outflowing streams, covering a temperature range between 20 and 100 °C, were relatively constant around +0.2‰, whereas the δ30Si signatures of associated opaline sinters from the streambeds were between -0.1‰ and -4.0‰, becoming progressively more negative in the downstream parts of the aprons. Here, the deposited sinters represent some of the most 30Si depleted abiotically produced terrestrial materials documented to date. Compared to the data reported for Icelandic basalts, considered to be the source of the silicon, the δ30Si values of the fluids and sinter deposits are higher and lower, respectively. The resulting values for apparent solid-water isotope fractionation (Δ30Sisolid-water) decreased with decreasing temperature from ca. -0.7‰ at ∼80 °C to -3.7‰ at ∼20 °C, locally down to -4.4‰. This temperature relationship was reproducible in each of the investigated hot spring systems and is qualitatively consistent with recent findings in laboratory experiments on kinetic fractionation for a flowing fluid. However, the apparent fractionation magnitudes observed in the field are ca. -2‰ more negative and thus significantly larger. We infer that solid-water silicon isotope fractionation during deposition of amorphous silica from a flowing fluid correlates inversely with temperature, but is essentially a function of the precipitation rate, such that the fractionation factor decreases with increasing rate. As an important corollary, the effective fractionation behavior during precipitation of silica from saturated solutions is a system-dependent feature, which should be taken into account when using silicon isotopes for paleo-environmental reconstructions.

  1. Natural radioactivity in geothermal waters, Alhambra Hot Springs and nearby areas, Jefferson County, Montana

    Leonard, Robert B.; Janzer, Victor J.

    1978-01-01

    Radioactive hot springs issue from a fault zone in crystalline rock of the Boulder batholith at Alhambra, Jefferson County, in southwestern Montana. The discharge contains high concentrations of radon, and the gross alpha activity and the concentration of adium-226 exceed maximum levels recommended by the Environmental Protection Agency for drinking water. Part of the discharge is diverted for space heating, bathing, and domestic use. The radioactive thermal waters at measured temperatures of about 60°C are of the sodium bicarbonate type and saturated with respect to calcium carbonate. Radium-226 in the rock and on fractured surfaces or coprecipitated with calcium carbonate probably is the principal source of radon that is dissolved in the thermal water and discharged with other gases from some wells and springs. Local surface water and shallow ground water are of the calcium bicarbonate type and exhibit low background activity. The temperature, percent sodium, and radioactivity of mixed waters adjacent to the fault zone increase with depth. Samples from most of the major hot springs in southwestern Montana have been analyzed for gross alpha and beta activity. The high level of radioactivity at Alhambra appears to be related to leaching of radioactive material from siliceous veins by ascending thermal waters and is not a normal characteristic of hot springs issuing from fractured crystalline rock in Montana.

  2. Laboratory study of acid stimulation of drilling-mud-damaged geothermal-reservoir materials. Final report

    1983-05-01

    Presented here are the results of laboratory testing performed to provide site specific information in support of geothermal reservoir acidizing programs. The testing program included laboratory tests performed to determine the effectiveness of acid treatments in restoring permeability of geologic materials infiltrated with hydrothermally altered sepiolite drilling mud. Additionally, autoclave tests were performed to determine the degree of hydrothermal alteration and effects of acid digestion on drilling muds and drill cuttings from two KGRA's. Four laboratory scale permeability/acidizing tests were conducted on specimens prepared from drill cuttings taken from two geothermal formations. Two tests were performed on material from the East Mesa KGRA Well No. 78-30, from a depth of approximately 5500 feet, and two tests were performed on material from the Roosevelt KGRA Well No. 52-21, from depths of approximately 7000 to 7500 feet. Tests were performed at simulated in situ geothermal conditions of temperature and pressure.

  3. CRISPR Spacer Arrays for Detection of Viral Signatures from Acidic Hot Springs

    Snyder, J. C.; Bateson, M. M.; Suciu, D.; Young, M. J.

    2010-04-01

    Viruses are the most abundant life-like entities on the planet Earth. Using CRISPR spacer sequences, we have developed a microarray-based approach to detecting viral signatures in the acidic hot springs of Yellowstone.

  4. Environmental Assessment and Finding of No Significant Impact: Kalina Geothermal Demonstration Project Steamboat Springs, Nevada

    N/A

    1999-02-22

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) to provide the DOE and other public agency decision makers with the environmental documentation required to take informed discretionary action on the proposed Kalina Geothermal Demonstration project. The EA assesses the potential environmental impacts and cumulative impacts, possible ways to minimize effects associated with partial funding of the proposed project, and discusses alternatives to DOE actions. The DOE will use this EA as a basis for their decision to provide financial assistance to Exergy, Inc. (Exergy), the project applicant. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human or physical environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  5. Investigation of Microbial Diversity in Geothermal Hot Springs in Unkeshwar, India, Based on 16S rRNA Amplicon Metagenome Sequencing.

    Mehetre, Gajanan T; Paranjpe, Aditi; Dastager, Syed G; Dharne, Mahesh S

    2016-01-01

    Microbial diversity in geothermal waters of the Unkeshwar hot springs in Maharashtra, India, was studied using 16S rRNA amplicon metagenomic sequencing. Taxonomic analysis revealed the presence of Bacteroidetes, Proteobacteria, Cyanobacteria, Actinobacteria, Archeae, and OD1 phyla. Metabolic function prediction analysis indicated a battery of biological information systems indicating rich and novel microbial diversity, with potential biotechnological applications in this niche. PMID:26950332

  6. Structure, mineralogy, and microbial diversity of geothermal spring microbialites associated with a deep oil drilling in Romania

    Coman, Cristian; Chiriac, Cecilia M.; Robeson, Michael S.; Ionescu, Corina; Dragos, Nicolae; Barbu-Tudoran, Lucian; Andrei, Adrian-Ştefan; Banciu, Horia L.; Sicora, Cosmin; Podar, Mircea

    2015-01-01

    Modern mineral deposits play an important role in evolutionary studies by providing clues to the formation of ancient lithified microbial communities. Here we report the presence of microbialite-forming microbial mats in different microenvironments at 32°C, 49°C, and 65°C around the geothermal spring from an abandoned oil drill in Ciocaia, Romania. The mineralogy and the macro- and microstructure of the microbialites were investigated, together with their microbial diversity based on a 16S rRNA gene amplicon sequencing approach. The calcium carbonate is deposited mainly in the form of calcite. At 32°C and 49°C, the microbialites show a laminated structure with visible microbial mat-carbonate crystal interactions. At 65°C, the mineral deposit is clotted, without obvious organic residues. Partial 16S rRNA gene amplicon sequencing showed that the relative abundance of the phylum Archaea was low at 32°C (1%. The dominant bacterial groups at 32°C were Cyanobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, Thermi, Actinobacteria, Planctomycetes, and Defferibacteres. At 49°C, there was a striking dominance of the Gammaproteobacteria, followed by Firmicutes, Bacteroidetes, and Armantimonadetes. The 65°C sample was dominated by Betaproteobacteria, Firmicutes, [OP1], Defferibacteres, Thermi, Thermotogae, [EM3], and Nitrospirae. Several groups from Proteobacteria and Firmicutes, together with Halobacteria and Melainabacteria were described for the first time in calcium carbonate deposits. Overall, the spring from Ciocaia emerges as a valuable site to probe microbes-minerals interrelationships along thermal and geochemical gradients. PMID:25870594

  7. Investigation of origin, subsurface processes and reservoir temperature of geothermal springs around Koh-i-Sultan volcano, Chagai, Pakistan

    In Chagai area, seven springs with maximum surface temperature of 32.2 deg. C located in the vicinity of Miri Crater of Koh-i-Sultan Volcano were investigated using isotope and chemical techniques. Two springs of Padagi Kaur are MgSO/sub 4/ type, while all the other springs at Batal Kaur, Miri Kaur and Chigin Dik are Na-Cl type. Alteration of water to SO/sub 4/ type takes place by absorption of magmatic H/sub 2/S and the acidic solution is further responsible to dissolve rock salt and carbonate minerals. EC increases from Padagi springs (4940 and 8170 S/cm) to Chigin Dik springs (45600 S/cm). Chagai thermal manifestations receive recharge from meteoric waters in the vicinity of Padagi Kaur (east side of Miri Crater), which is heated by the hot magma chamber of Koh-i-Sultan most probably through deep circulation. Movement of the thermal water is from Miri Crater towards Chigin Dik area. Residence time is more than 60 years. The thermal waters do not have any contribution of shallow young groundwater and they have high 1/sup 8/O-shift (6 to 8%) due to rock-water interaction. Reservoir temperatures estimated by different chemical geo thermometers like Na-K, Na-K-Ca, Na-K-Mg 1/2 (triangular plot) are quite high (200-300 deg. C), while the silica and (SO/sub 4/-H/sub 2/O) geo thermometers give relatively low temperature ranges (107-144 deg. C and 112-206 deg. C respectively). (author)

  8. Biogeophysical interactions control the formation of iron oxide microbial biofilms in acidic geothermal outflow channels of Yellowstone National Park

    Beam, J.; Berstein, H. C.; Jay, Z.; Kozubal, M. A.; Jennings, R. D.; Inskeep, W. P.

    2012-12-01

    Amorphous iron oxyhydroxide microbial mats in acidic (pH ~ 3) geothermal outflow channels of Yellowstone National Park (YNP) are habitats for diverse populations of autotrophic and heterotrophic microorganisms from the domains Archaea and Bacteria. These systems have been extensively characterized with regards to geochemical, physical, and microbiological (e.g., metagenomics) analyses; however, there is minimal data describing the formation of these iron oxide microbial mats. A conceptual model of Fe(III)-oxide microbial mat development was created, which includes four distinct stages. Autotrophic archaea (Metallosphaera yellowstonensis) and bacteria (Hydrogenobaculum spp.) are the first colonizers (Stage I) that provide pools of organic carbon for heterotrophic thermophiles (Stage II). M. yellowstonensis is an autotrophic Sulfolobales that is responsible for the oxidation of Fe(II) and can thus be defined as the mat 'architect' creating suitable habitats for microbial niches (e.g., anaerobic microorganisms) (Stage III). The last phase of mat formation (Stage IV) represents a pseudo-steady state mature microbial mat, which has been the subject of all previous microbial surveys of these systems. The conceptual model for Fe(III)-oxide microbial mat development was tested by inserting glass (SiO2) microscope slides into the main flow channels of two acidic geothermal springs in YNP. Slides were removed at various time intervals and analyzed for total iron accretion, microbial community structure (i.e., 16S rRNA gene abundance), and mRNA expression of community members. Routine geochemical and physical (e.g., flow) parameters were also measured to decipher their relative contribution to mat development. Initial and previous results show that autotrophic microorganisms (e.g, M. yellowstonensis) are often the first to colonize the glass slides and their activity was confirmed by mRNA expression of genes related to iron oxidation and carbon fixation. Heterotrophs are rare

  9. Biogeophysical interactions control the formation of iron oxide microbial biofilms in acidic geothermal outflow channels of Yellowstone National Park

    Beam, J.; Berstein, H. C.; Jay, Z.; Kozubal, M. A.; Jennings, R. D.; Inskeep, W. P.

    2012-12-01

    Amorphous iron oxyhydroxide microbial mats in acidic (pH ~ 3) geothermal outflow channels of Yellowstone National Park (YNP) are habitats for diverse populations of autotrophic and heterotrophic microorganisms from the domains Archaea and Bacteria. These systems have been extensively characterized with regards to geochemical, physical, and microbiological (e.g., metagenomics) analyses; however, there is minimal data describing the formation of these iron oxide microbial mats. A conceptual model of Fe(III)-oxide microbial mat development was created, which includes four distinct stages. Autotrophic archaea (Metallosphaera yellowstonensis) and bacteria (Hydrogenobaculum spp.) are the first colonizers (Stage I) that provide pools of organic carbon for heterotrophic thermophiles (Stage II). M. yellowstonensis is an autotrophic Sulfolobales that is responsible for the oxidation of Fe(II) and can thus be defined as the mat 'architect' creating suitable habitats for microbial niches (e.g., anaerobic microorganisms) (Stage III). The last phase of mat formation (Stage IV) represents a pseudo-steady state mature microbial mat, which has been the subject of all previous microbial surveys of these systems. The conceptual model for Fe(III)-oxide microbial mat development was tested by inserting glass (SiO2) microscope slides into the main flow channels of two acidic geothermal springs in YNP. Slides were removed at various time intervals and analyzed for total iron accretion, microbial community structure (i.e., 16S rRNA gene abundance), and mRNA expression of community members. Routine geochemical and physical (e.g., flow) parameters were also measured to decipher their relative contribution to mat development. Initial and previous results show that autotrophic microorganisms (e.g, M. yellowstonensis) are often the first to colonize the glass slides and their activity was confirmed by mRNA expression of genes related to iron oxidation and carbon fixation. Heterotrophs are rare

  10. Reactive geothermal transport simulation to study the formation mechanism of impermeable barrier between acidic and neutral fluid zones in the Onikobe Geothermal Field, Japan

    Todaka, Norifumi; Akasaka, Chitosi; Xu, Tianfu; Pruess, Karsten

    2003-04-09

    Two types of fluids are encountered in the Onikobe geothermal reservoir, one is neutral and the other is acidic (pH=3). It is hypothesized that acidic fluid might be upwelling along a fault zone and that an impermeable barrier might be present between the acidic and neutral fluid zones. We carried out reactive geothermal transport simulations using TOUGHREACT (Xu and Pruess, 1998 and 2001) to test such a conceptual model. Mn-rich smectite precipitated near the mixing front and is likely to form an impermeable barrier between regions with acidic and neutral fluids.

  11. Calculation of total free energy yield as an alternative approach for predicting the importance of potential chemolithotrophic reactions in geothermal springs.

    Dodsworth, Jeremy A; McDonald, Austin I; Hedlund, Brian P

    2012-08-01

    To inform hypotheses regarding the relative importance of chemolithotrophic metabolisms in geothermal environments, we calculated free energy yields of 26 chemical reactions potentially supporting chemolithotrophy in two US Great Basin hot springs, taking into account the effects of changing reactant and product activities on the Gibbs free energy as each reaction progressed. Results ranged from 1.2 × 10(-5) to 3.6 J kg(-1) spring water, or 3.7 × 10(-5) to 11.5 J s(-1) based on measured flow rates, with aerobic oxidation of CH(4) or NH4 + giving the highest average yields. Energy yields calculated without constraining pH were similar to those at constant pH except for reactions where H(+) was consumed, which often had significantly lower yields when pH was unconstrained. In contrast to the commonly used normalization of reaction chemical affinities per mole of electrons transferred, reaction energy yields for a given oxidant varied by several orders of magnitude and were more sensitive to differences in the activities of products and reactants. The high energy yield of aerobic ammonia oxidation is consistent with previous observations of significant ammonia oxidation rates and abundant ammonia-oxidizing archaea in sediments of these springs. This approach offers an additional lens through which to view the thermodynamic landscape of geothermal springs. PMID:22443686

  12. Oil yield and fatty acid composition of spring sunflower

    Shahbaz Ahmad; Fayyaz-ul-Hassan

    2000-01-01

    Five sunflower hybrids were grown at four sowing dates to have variable maturity temperatures. The hybrids having the same oil yield potential may differ for the oil quality. Oil yield and oleic acid increased while linoleic acid decreased with increasing maturity temperature. The intersection point of oil yield and linoleic acid lines at 2000 growing degree days (GDD) may be the best compromise for high oil yield with the best quality.

  13. Chronic gamma radiation-induced changes in the content of fatty acids in spring rape seeds

    Chronic gamma irradiation of spring rape plants having no erucic acid and eicosanoic acid in seed oil induced changes both in the growth and in the morphological composition of the plants. The contents of erucic acid and eicosanoic acid did not increase. The greatest changes occurred in unsaturated acids, especially in macromutants resulting from irradiated plants located in the closest proximity of the radiation source or in places with the most significant plant growth inhibition. Nutants with a low, or a high, content of linolenic acid were obtained. (author)

  14. Reactive geothermal transport simulation to study the formation mechanism of impermeable barrier between acidic and neutral fluid zones in the Onikobe Geothermal Field, Japan

    Todaka, Norifumi; Akasaka, Chitoshi; Xu, Tianfu; Pruess, Karsten

    2003-01-01

    Two types of fluids are encountered in the Onikobe geothermal reservoir, one is neutral and the other is acidic (pH=3). It is hypothesized that acidic fluid might be upwelling along a fault zone and that an impermeable barrier might be present between the acidic and neutral fluid zones. We carried out reactive geothermal transport simulations using TOUGHREACT (Xu and Pruess, 1998 and 2001) to test such a conceptual model. Mn-rich smectite precipitated near the mixing front and is likely...

  15. Modeling of geochemical interactions between acidic and neutral fluids in the Onikobe Geothermal Reservoir

    Todaka, Norifumi; Akasaka, Chitoshi; Xu, Tianfu; Pruess, Karsten

    2003-01-10

    Two types of fluids are encountered in the Onikobe geothermal reservoir, one is neutral and the other is acidic (pH=3). It is hypothesized that acidic fluid might be upwelling along a fault zone and that an impermeable barrier might be present between the acidic and neutral fluid zones. We carried out reactive geothermal transport simulations using TOUGHREACT (Xu and Pruess, 1998 and 2001) to test such a conceptual model. One-dimensional models were used to study the geochemical behavior due to mixing of the two fluids. Mn-rich smectite precipitated near the mixing front and is likely to form an impermeable barrier between regions with acidic and neutral fluids.

  16. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand

    Katrin eHug

    2014-11-01

    Full Text Available Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand. Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic, and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  17. Production and mitigation of acid chlorides in geothermal steam

    Simonson, J.M.; Palmer, D.A.

    1995-06-01

    Measurements of the equilibrium distribution of relatively nonvolatile solutes between aqueous liquid and vapor phases have been made at temperatures to 350{degrees}C for HCl(aq) and chloride salts. These data are directly applicable to problems of corrosive-steam production in geothermal steam systems. Compositions of high-temperature brines which could produce steam having given concentrations of chlorides may be estimated at various boiling temperatures. Effects of mitigation methods (e.g., desuperheating) can be calculated based on liquid-vapor equilibrium constants and solute mass balances under vapor-saturation conditions.

  18. Review of methods for long term monitoring of the environmental effects of geothermal development (hot spring). part 2. Chinetsu kaihatsu ni kakawaru choki kankyo monitoring donyu chosa. 2 (chikasui onsen(center dot)suishitsukei). ; Data sheet shu

    1990-03-01

    Pertaining to the geothermal development, this is a data sheet collection of domestic and foreign review documentation to establish environmental monitoring system. Global chemistry and physics review comprise examples in Shikano Hot Spring in Tottori Prefecture, deep portion in Shimosuwa region, etc. Hydrologic fluidization study of geothermal water system explained Kakkonda, Matsukawa, Sengan region, Asaseishikawa fault, Tateshina highland, Hakone Yumot, Beppu, etc. Apart, simulation is being made by geothermal structure model. As for the content of hot spring water, there are review results from Noboribetsu, Izu/Hakone, Shimabara, Beppu, etc. Relation between the discharge flow rate of hot spring and rainfall quantity comprises examples in Onikobe, Kusatsu, etc. As for the influence of hot spring development, secular statistic is made of the dynamic water level, temperature and quality of hot spring in Aomori, Bunpi, etc. Influence review of power generation plant installation comprises reports from Hatchobaru, Onikobe, Onuma, Mori, etc. Regarding the geothermal development and environmental assessment, study is made of the scenery, water quality, atmospheric pollution, land subsidence, hot spring exhaustion, change in hydrothermal system, etc. Foreign examples were also explained. 121 figs., 14 tabs.

  19. Biomineralization of radioactive sulfide minerals in strong acidic Tamagawa hot springs

    Bioaccumulation of radioactive sulfide minerals by bacteria in strong acidic hot spring water was found at Tamagawa Hot Springs, Akita prefecture in Japan. The hot spring water produces Hokutolite of radioactive minerals high radium and radon. The β-ray measurements of sediments and biofilms indicate 1850-2420 and 5700 cpm, respectively, which are 50-100 times higher than that of the water and the air (50-90 cpm). The characteristics of hot spring water show pH (1.2), Eh (140 mV), EC (29 mS/cm), DO (0.8 mg/l), and water temperature (99.5degC), indicating extremely strong acidic and reducing conditions. The hot spring water contains mainly HCl associated with high concentrations of Ca2+, Al3+, Fe2+, HSO4- and SO42-. SEM-EDX and TEM demonstrate some insight into how microorganisms affect the chemistry and microbiological characteristics of the strong acidic surroundings with high S, As, Ba, and Ca contents in biofilms. Especially SEM-EDX, ED-XRF, and STEM-EDX elemental content maps illustrate the distribution of sulfur-bearing compounds of barite (BaSO4), gypsum (CaSO4·2H2O), elemental sulfur (S) and orpiment(As2S3) in the reddish orange biofilms. The presence of a hydrogen sulfide-rich (H2S) thermal spring and gypsum deposits suggest the volatilization of H2S from the spring water, oxidation of the H2S gas to sulfuric acid, and reaction of the sulfuric acid. TEM micrographs of bacteria in the biofilms reveal in detail the intimate connections between biological and mineralogical processes that the cells are entirely accumulated with spherical grains, 100∼200 nm in diameter. The relationship among sulfide minerals, such as barite, gypsum, sulfur, orpiment, and Hakutolite, associated with bacteria implies that heavy metals have been transported from strong acidic hot spring water to sediments through bacteria metabolism. It is possible that the capability of radioactive sulfide biofilms for heavy metal immobilization can be used to counteract the disastrous

  20. Separating natural acidity from anthropogenic acidification in the spring flood of northern Sweden

    Spring flood is an occasion for transient hydrochemical changes that profoundly effect the biodiversity of the aquatic ecosystem. Spring flood is also very susceptible to anthropogenic acidification. Belief that acid deposition is primarily responsible for pH decline during spring flood has been an important factor in the decision to spend close to one billion Swedish crowns to lime surface waters in northern Sweden during the last decade. The objective of this work is to present an operational tool, the Boreal Dilution Model (BDM), for separating and quantifying the anthropogenic and natural contributions to episodic acidification during spring flood episodes in northern Sweden. The limited data requirements of 10-15 stream water samples before and during spring flood make the BDM suitable for widespread use in environmental monitoring programs. This creates a possibility for distinguishing trends and spatial patterns in the human impact as well as natural pH decline. The results from applying the BDM, and a one point 'pBDM' version of the model, in northern Sweden demonstrate that the anthropogenic component associated with spring flood episodes is now generally limited. Instead it is the combination of natural organic acidity and dilution of the buffering capacity that is the major driving mechanism of episodic acidity during spring flood events in the region. While the anthropogenic component of episodic acidification generally contributes 0.1 to 0.3 pH units to the natural pH decline of up to 2.5 pH units, the current regional extent of areas that are severely affected by anthropogenically driven episodes is approximately 6%. Prior to the initiation of the Swedish Environmental Protection Agency's 'Episode Project' the limited spring flood data together with lack of a systematic methodology for determining liming candidates forced the liming authorities to base the remediation strategy in northern Sweden on biological indications. But, since there are more

  1. An evaluation of ambient sulphur dioxide concentrations from passive degassing of the Sulphur Springs, Saint Lucia geothermal system: Implications for human health

    Joseph, Erouscilla P.; Beckles, Denise M.; Cox, Leonette; Jackson, Viveka B.; Alexander, Dominic

    2015-10-01

    Sulphur Springs Park in Saint Lucia is a site of energetic geothermal activity associated with the potentially active Soufrière Volcanic Centre. The Park is one of Saint Lucia's most important tourist attractions, and is marketed as the 'world's only drive-in volcano'. It has an on-site staff of tour guides and vendors, as well as over 200,000 visitors annually. There are also a number of residents living in the areas bordering the Park. Recreational use is made of the geothermal waters for bathing, application of mud masques, and in some cases drinking. As part of the University of the West Indies, Seismic Research Centre's (UWI-SRC's) overall volcano monitoring programme for Saint Lucia, the volcanic emissions at Sulphur Springs (hot springs, mud pools and fumaroles) have been regularly monitored since 2001. In recent years, visitors, staff, and management at the Park have expressed concern about the health effects of exposure to volcanic emissions from the hydrothermal system. In response to this, SRC has expanded its regular geothermal monitoring programme to include a preliminary evaluation of ambient sulphur dioxide (SO2) concentrations in and around the Park, to assess the possible implications for human health. Passive diffusion tubes were used to measure the atmospheric SO2 concentrations at various sites in Sulphur Springs Park (SSP), in the town of Soufrière and in the capital of Castries. Measurements of average monthly ambient SO2 with the passive samplers indicated that during the dry season period of April to July 2014 concentration at sites closest to the main vents at SSP (Group 1), which are routinely used by staff and visitors, frequently exceeded the WHO 10-minute AQG for SO2 of 500 μg/m3. However, for sites that were more distal to the main venting area (Groups 2 and 3), the average monthly ambient SO2 did not exceed the WHO 10-minute AQG for SO2 of 500 μg/m3 during the entire monitoring period. The measured concentrations and dispersion

  2. Characteristic Solutes in Geothermal Water from the Rehai Hydrothermal System, Southwestern China

    Mingliang Liu; Qinghai Guo; Xiaobo Zhang; Yanxin Wang

    2015-01-01

    Rehai, a high-temperature hydrothermal system located in the southern part of the Tengchong volcanic geothermal area of Yunnan Province, is characterized by intensive hydrothermal activities. The hot springs at Rehai that have been sampled so far are Na-HCO3-Cl or Na-HCO3 springs except for the one at Diretiyanqu (experience geothermal area) which is an acid sulfate spring. As typi-cal characteristic solution constituents in high-temperature hydrothermal systems with magma as heat source, Cl, B and As in the Rehai geothermal waters originate mainly from the addition of magmatic fluid. However, both the mixing of magmatic fluid and the dissolution of reservoir hostrocks contribute to the enrichment of fluoride in the Rehai geothermal waters, although their fluoride concentrations are primarily controlled by the solubility of fluorite as indicated by a clear negative relation between solu-tion fluoride and calcium concentrations. The much higher concentration of SO42- in the Diretiyanqu Spring as compared to the other springs outcropping at Rehai implies a quite different geochemical genesis for this spring. The H2S-rich vapor, separated from the deep geothermal fluid during boiling process (i.e., adiabatic cooling), can ascend to shallow aquifers where it is mixed with cold groundwa-ters and oxidized. Acid sulfate-rich hot springs are generally formed in this manner although only one spring of this type has been sampled during the field investigation of this study.

  3. Final Scientific/Technical Report – DE-EE0002960 Recovery Act. Detachment faulting and Geothermal Resources - An Innovative Integrated Geological and Geophysical Investigation of Pearl Hot Spring, Nevada

    Stockli, Daniel F. [Univ. of Texas, Austin, TX (United States)

    2015-11-30

    The Pearl Host Spring Geothermal Project funded by the DoE Geothermal Program was a joint academic (KU/UT & OU) and industry collaboration (Sierra and Ram Power) to investigate structural controls and the importance of low-angle normal faults on geothermal fluid flow through a multifaceted geological, geophysical, and geochemical investigation in west-central Nevada. The study clearly showed that the geothermal resources in Clayton Valley are controlled by the interplay between low-angle normal faults and active deformation related to the Walker Lane. The study not only identified potentially feasible blind geothermal resource plays in eastern Clayton Valley, but also provide a transportable template for exploration in the area of west-central Nevada and other regional and actively-deforming releasing fault bends. The study showed that deep-seated low-angle normal faults likely act as crustal scale permeability boundaries and could play an important role in geothermal circulation and funneling geothermal fluid into active fault zones. Not unique to this study, active deformation is viewed as an important gradient to rejuvenated fracture permeability aiding the long-term viability of blind geothermal resources. The technical approach for Phase I included the following components, (1) Structural and geological analysis of Pearl Hot Spring Resource, (2) (U-Th)/He thermochronometry and geothermometry, (3) detailed gravity data and modeling (plus some magnetic and resistivity), (4) Reflection and Refraction Seismic (Active Source), (5) Integration with existing and new geological/geophysical data, and (6) 3-D Earth Model, combining all data in an innovative approach combining classic work with new geochemical and geophysical methodology to detect blind geothermal resources in a cost-effective fashion.

  4. Geochemistry of sericite and chlorite in well 14-2 Roosevelt Hot Springs geothermal system and in mineralized hydrothermal systems

    Ballantyne, J.M.

    1980-06-01

    Chemical compositions of chlorite and sericite from one production well in the Roosevelt geothermal system have been determined by electron probe methods and compared with compositions of chlorite and sericite from porphyry copper deposits. Modern system sericite and chlorite occur over a depth interval of 2 km and a temperature interval of 250/sup 0/C.

  5. Thermal springs of Wyoming

    Breckenridge, R.M.; Hinckley, B.S.

    1978-01-01

    This bulletin attempts, first, to provide a comprehensive inventory of the thermal springs of Wyoming; second, to explore the geologic and hydrologic factors producing these springs; and, third, to analyze the springs collectively as an indicator of the geothermal resources of the state. A general discussion of the state's geology and the mechanisms of thermal spring production, along with a brief comparison of Wyoming's springs with worldwide thermal features are included. A discussion of geothermal energy resources, a guide for visitors, and an analysis of the flora of Wyoming's springs follow the spring inventory. The listing and analysis of Wyoming's thermal springs are arranged alphabetically by county. Tabulated data are given on elevation, ownership, access, water temperature, and flow rate. Each spring system is described and its history, general characteristics and uses, geology, hydrology, and chemistry are discussed. (MHR)

  6. FY 1998 geothermal development promotion survey. Report on the environmental effect survey (hot spring/water level/spring water, No. C-3 Akinomiya area); 1998 nendo chinetsu kaihatsu sokushin chosa. Kankyo eikyo chosa hokokusho (onsen suii yusui, No.C-3 Akinomiya chiiki)

    NONE

    1999-04-01

    As a part of the FY 1998 geothermal development promotion survey, the results were summed up of the environmental effect survey conducted at the Akinomiya area of Ogachi-gun, Akita prefecture. In the survey, the drilling of N9-AY-4 exploration well and short-term injection tests of N8-AY-2/N9-AY-3 were carried out in the area. The survey was made aiming at grasping the effects on hot spring/ground water level/spring water in the area. The methods used for survey were surveys of hot spring variation, ground water level variation, precipitation, rivers, all spring sources, and analyses of hot spring water/spring water in the Akinomiya area. As a result of the survey, in hot spring/ground water level/spring water, no variations were recognized which were caused by the drilling of N9-AY-3/N9-AY-4/N9-AY-5 exploration wells and short-term injection tests of N8-AY-2/N9-AY-3 exploration wells. Moreover, since few changes of spring water quality were seen also in the result of the survey of all spring sources, it was judged that the drilling and short-term injection tests of the exploration wells described above have no effects on the hot spring, ground water level and spring water in the Akinomiya area. (NEDO)

  7. Reactive geothermal transport simulations to study the formation mechanism of an impermeable barrier between acidic and neutral fluid zones in the Onikobe Geothermal Field, Japan

    Todaka, Norifumi; Akasaka, Chitoshi; Xu, Tianfu; Pruess, Karsten

    2004-05-01

    Two types of fluids are encountered in the Onikobe geothermal reservoir (Japan): one is neutral and the other is acidic. It is hypothesized that acidic fluid might be upwelling along a fault zone from magma and that an impermeable barrier might be present between the acidic and neutral fluid zones. To test such a conceptual model and to study the geochemical behavior due to mixing of the two fluids, reactive geothermal transport simulations under both natural and production conditions were carried out using the code TOUGHREACT. Results indicate Mn-rich smectite precipitates near the mixing front. Precipitation of sphalerite and galena occurs in a similar region as the Mn-rich smectite. Precipitation of these minerals depends on pH and temperature. In addition, quartz, pyrite, and calcite precipitate in the shallow zone resulting in further development of caprock. The changes in porosity and permeability due to precipitation of Mn-rich smectite are small compared with that of quartz, calcite, and pyrite. However, the smectite precipitation is likely to fill open fractures and to form an impermeable barrier between acidic and neutral fluid regions. The simulated mineral assemblage is generally consistent with observations in the Onikobe field. The numerical simulations described here provide useful insight into geochemical behavior and formation of impermeable barriers from fluid mixing. The method presented in this paper may be useful in fundamental analysis of hydrothermal systems and in the exploration of geothermal reservoirs, including chemical evolution, mineral alteration, mineral scaling, and changes in porosity and permeability.

  8. Joint inversion of VES and TEM data for investigation of geothermal resources and sea water intrusion at Hammam Mousa hot spring, Sinai, Egypt

    Complete text of publication follows. Geoelectrical methods are pioneer in geothermal resources exploration. With the advent of computing technology, it has become convenient to apply sophisticated data analysis and joint inversion to different field data sets. Numerous studies have shown that, the joint interpretation of galvanic and inductive data, where a single model satisfies both data sets, will generally enhance the resolution of the subsurface resistivity structure. Thus, the inclusion of inductive data in the VES data set is expected to reduce problems with layer suppression, reduce the low and high resistivity equivalences that may be encountered with this method. In this work, DC resistivity and transient electromagnetic surveys were conducted at Hammam Mousa area, Sinai, Egypt to explore the geothermal resources, groundwater aquifer and the effect of sea water invasion on this aquifer. The field survey comprises 19 DC resistivity soundings (VESes) with AB/2 up to 1000m and 27 transient electromagnetic (TEM) stations using a square loop of 25 m side length. Both data sets were firstly inverted in 1-D scheme using a nonlinear least-squares method and gave a layered-earth resistivity model. Besides, the joint interpretation of both VES and TEM data, using the available geological information as a constraining factor, could successfully enhance the inversion results. The geoelectrical cross section resulted from the inversion process shows the effect of the Suez Gulf water intrusion in the western part of the study area. Meanwhile, hot water reduces the resistivity values drastically near the hot spring.

  9. Environmental isotopes of geothermal fluids in Sibayak geothermal field

    Sibayak is located in a young volcanic area of North Sumatra, Indonesia. The surface manifestations such as acid springs, fumaroles and acid alterations indicate that Sibayak geothermal field is probably associated with the volcanic system. The aims of this study are to define the origin of the geothermal fluids, reservoir temperature and interactions between the volcanic system and the geothermal reservoir. Chemical composition, stable isotopes 18OH2O, 18OSO4, DH2O, 34SH2S, and 34SSO4 of water and gas samples from the geothermal surface manifestations and exploration wells are analyzed. δ18O and δD values show that the reservoir fluids of Sibayak geothermal field come from meteoric water that is recharged at an elevation of 1300-1500 masl. Geothermometers based on δ18OH2O-SO4, water chemistry (TNa-K-Ca) and gas chemistry (TH2-Ar) show similar reservoir temperatures that range from 250 to 280 deg. C. δ18O, δD isotope composition of the steam vents at the cone of Sibayak mountain, having the value of -2.9 per mille for δ18O and -44.9 per mille for δ D, shows magmatic inputs. (author)

  10. Thermal springs, fumaroles and gas vents of continental Yemen: Their relation with active tectonics, regional hydrology and the country's geothermal potential

    Minissale, Angelo [CNR - Italian Council for Research, Institute of Geosciences and Earth Resources of Florence, Via La Pira 4, 50121 Florence (Italy)]. E-mail: minissa@igg.cnr.it; Mattash, Mohamed A. [Ministry of Oil and Mineral Resources, Geological Survey and Minerals Resources Board, P.O. Box 297, Sana' a (Yemen); Vaselli, Orlando [Department of Earth Sciences, Via La Pira 4, 50121 Firenze (Italy); CNR - Italian Council for Research, Institute of Geosciences and Earth Resources of Florence, Via La Pira 4, 50121 Firenze (Italy); Tassi, Franco [Department of Earth Sciences, Via La Pira 4, 50121 Firenze (Italy); Al-Ganad, Ismail N. [Ministry of Oil and Mineral Resources, Geological Survey and Minerals Resources Board, P.O. Box 297, Sana' a (Yemen); Selmo, Enrico [Department of Earth Sciences, Parco Area delle Scienze 157A, 43100 Parma (Italy); Shawki, Nasr M. [Department of Geology, University of Ta' iz, P.O. Box 5679, Ta' iz (Yemen); Tedesco, Dario [Department of Environmental Sciences, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy); Poreda, Robert [Department of Earth and Environmental Sciences, 227 Hutchinson Hall, Rochester, NY 14627 (United States); Ad-Dukhain, Abdassalam M. [Ministry of Oil and Mineral Resources, Geological Survey and Minerals Resources Board, P.O. Box 297, Sana' a (Yemen); Hazzae, Mohammad K. [Ministry of Oil and Mineral Resources, Geological Survey and Minerals Resources Board, P.O. Box 297, Sana' a (Yemen)

    2007-04-15

    Most thermal springs of continental Yemen (about 65 emergences at 48 sampling sites) and a couple of fumaroles and boiling water pools have been sampled and analyzed for chemical and isotopic composition in the liquid phase and the associated free-gas phase. Whatever the emergence, all the water discharges have an isotopic signature of meteoric origin. Springs seeping out from high altitudes in the central volcanic plateau show a prevalent Na-HCO{sub 3}-composition, clearly affected by an anomalous flux of deep CO{sub 2} deriving from active hydrothermal systems located in the Jurassic Amran Group limestone sequence and/or the Cretaceous Tawilah Group, likely underlying the 2000-3000 m thick volcanic suite. At lower elevations, CO{sub 2} also affects the composition of some springs emerging at the borders of the central volcanic plateau. Although mixing to a limited extent with organic CO{sub 2} infiltrating together with the meteoric recharge waters cannot be ruled out, all the CO{sub 2}-rich gas samples have a {delta} {sup 13}C-CO{sub 2} signature that falls in the range of mantle CO{sub 2} (-3 < {delta} {sup 13}C < -7 per mille V-PDB). The relatively high {sup 3}He/{sup 4}He (1 < R/R {sub a} < 3.2) ratios measured in all the CO{sub 2}-rich springs and also some mixed N{sub 2}-CO{sub 2} gas vents in the far east Hadramaut region support the presence of mantle magmas and related hydrothermal systems residing at the crust level in several areas of Yemen. This well agrees with the presence of Quaternary basaltic magmatic activity along the Gulf of Aden, as well as inside the central Yemen volcanic plateau. Presently, the thermal springs of Yemen are prevalently used for spas and/or bathing. Nevertheless, liquid- and gas-geothermometry and geological considerations suggest that there are at least three areas (Al Lisi, Al Makhaya and Damt) inside the Yemen volcanic plateau (around Dhamar) that may be promising prospects for the future development of geothermal energy

  11. Diversity of putative archaeal RNA viruses in metagenomic datasets of a yellowstone acidic hot spring.

    Hongming WANG; Yu, Yongxin; Liu, Taigang; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-01-01

    Two genomic fragments (5,662 and 1,269 nt in size, GenBank accession no. JQ756122 and JQ756123, respectively) of novel, positive-strand RNA viruses that infect archaea were first discovered in an acidic hot spring in Yellowstone National Park (Bolduc et al., 2012). To investigate the diversity of these newly identified putative archaeal RNA viruses, global metagenomic datasets were searched for sequences that were significantly similar to those of the viruses. A total of 3,757 associated read...

  12. Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes.

    Becraft, Eric D; Dodsworth, Jeremy A; Murugapiran, Senthil K; Ohlsson, J Ingemar; Briggs, Brandon R; Kanbar, Jad; De Vlaminck, Iwijn; Quake, Stephen R; Dong, Hailiang; Hedlund, Brian P; Swingley, Wesley D

    2016-02-01

    The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This "microbial dark matter" represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum "Calescamantes" (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs. PMID:26637598

  13. Quantifying Rates of Complete Microbial Iron Redox Cycling in Acidic Hot Springs

    St Clair, B.; Pottenger, J. W.; Shock, E.

    2013-12-01

    Large accumulations of iron oxide commonly occur in shallow outflows of acidic hot springs, and culturing, molecular techniques, and microscopy by others indicate that this iron oxide (often ferrihydrite) is largely biogenic in Yellowstone National Park. The hot springs that support iron mats have several consistent geochemical features including combinations of pH, temperature, sulfide, dissolved oxygen, depth and ferrous iron concentration appropriate to support iron oxidation. These springs nearly always have a point source leading to a large shallow outflow apron. Microbial zones often, but not always, include a small clear zone near the source, followed by a sulfide oxidation zone, iron mat, and finally photosynthesis. The yellow sulfide oxidation zone is separated from the red iron mat by a sharp transition resulting from increasing dissolved oxygen from atmospheric contact and microbial depletion of sulfide. The iron mat is typically the largest microbial zone in the feature by area. Further down the outflow, iron oxidation appears to be outcompeted by phototrophs as the temperature cools. Occasionally there is overlap in these zones, but one metabolism always appears dominant. Our experiments at diverse hot springs indicate that microbial reduction is less geochemically restricted than oxidation, requiring only organic carbon, ferric minerals and an anoxic environment. With iron oxidizers fixing carbon and producing layers of ferric minerals that become rapidly anoxic with depth, iron reduction is invariably proximal to where biogenic iron oxides are forming. To characterize the interplay of oxidation and reduction rates that permit oxide accumulation, we conducted rate experiments at geochemically diverse Yellowstone hot springs featuring visible iron oxides in thermal areas throughout the park. These experiments were performed during two summer field seasons to determine in situ and maximum rates of iron oxidation and reduction by measuring changing

  14. Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey.

    Balk, Melike

    2009-08-23

    A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Ayaş, Turkey. The cells were straight to curved rods, 0.4-0.6 microm in diameter and 3.5-10 microm in length. Spores were terminal and round. The temperature range for growth was 40-80 degrees C, with an optimum at 70 degrees C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H(2), and CO(2). Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H(2) and CO(2) formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA-DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans.

  15. Viral assemblage composition in Yellowstone acidic hot springs assessed by network analysis.

    Bolduc, Benjamin; Wirth, Jennifer F; Mazurie, Aurélien; Young, Mark J

    2015-10-01

    Understanding of viral assemblage structure in natural environments remains a daunting task. Total viral assemblage sequencing (for example, viral metagenomics) provides a tractable approach. However, even with the availability of next-generation sequencing technology it is usually only possible to obtain a fragmented view of viral assemblages in natural ecosystems. In this study, we applied a network-based approach in combination with viral metagenomics to investigate viral assemblage structure in the high temperature, acidic hot springs of Yellowstone National Park, USA. Our results show that this approach can identify distinct viral groups and provide insights into the viral assemblage structure. We identified 110 viral groups in the hot springs environment, with each viral group likely representing a viral family at the sub-family taxonomic level. Most of these viral groups are previously unknown DNA viruses likely infecting archaeal hosts. Overall, this study demonstrates the utility of combining viral assemblage sequencing approaches with network analysis to gain insights into viral assemblage structure in natural ecosystems. PMID:26125684

  16. Bioaccumulation of metals in reeds collected from an acid mine drainage contaminated site in winter and spring.

    Guo, Lin; Cutright, Teresa J

    2016-07-01

    Wetland plants such as Phragmites australis has been used to treat acid mine drainage (AMD) contaminated soil which is a serious environmental issue worldwide. This project investigated metal plaque content(s) and metal uptake in reeds grown in an AMD field in winter and spring. The results indicated that the level of Fe plaque was much higher than Mn and Al plaque as the soil contained more Fe than Al and Mn. The amounts of Mn and Al plaque formed on reeds in spring were not significantly different from that in winter (p > .05). However, more Fe plaque was formed on reeds collected in spring. The concentrations of metals in underground organs were positively related to the metal levels in soils. More Mn and Al transferred to the aboveground tissues of reeds during the spring while the Fe levels in reeds did not significantly vary with seasons. Roots and rhizomes were the main organs for Fe sequestration (16.3 ± 4.15 mg/g in roots in spring) while most Al was sequestered in the shoots of reeds (2.05 ± 0.09 mg/g in shoots in spring). Further research may be needed to enhance the translocation of metals in reeds and increase the phytoremediation efficiency. PMID:26789500

  17. Direct use geothermal energy utilization for ethanol production and commercial mushroom growing at Brady's Hot Springs, Nevada. Volume 1. Technical feasibility

    1981-09-01

    The report is concerned with the technical and economic viability of constructing and operating two geothermally cascaded facilities, a bio-mass fuel ethanol production facility and a mushroom growing facility, where Geothermal Food Processors presently operates the world's largest direct-use geothermal vegetable dehydration facility. A review and analysis of the data generated from the various project tasks indicates that existing, state-of-the-art, ethanol production and mushroom growing technologies can be successfully adapted to include the use of geothermal energy. Additionally, a carefully performed assessment of the geothermal reservoir indicates that this resource is capable of supporting the yearly production of 10 million gallons of fuel ethanol and 1.5 million pounds of mushrooms, in addition to the demands of the dehydration plant. Further, data indicates that the two facilities can be logistically supported from existing agricultural and commerce sources located within economical distances from the geothermal source.

  18. Spring flood pH decline in northern Sweden: Towards an operational model separating natural acidity from anthropogenic acidification

    Laudon, H.

    1999-10-01

    The spring flood is a defining feature of the ecosystem in northern Sweden. In this region, spring flood is an occasion for dramatic hydrochemical changes that profoundly effect the biodiversity of the aquatic ecosystem. Spring flood is also the period most susceptible to anthropogenic acidification. A belief in the anthropogenic component to pH decline during spring flood has been an important factor in spending over half a billion crowns to lime surface waters in Northern Sweden during the last decade. The natural component of episodic pH decline during spring flood, however, has received less attention. The main objective of this work is to present an operational model for separating and quantifying the anthropogenic and natural contributions of episodic acidification during high flow events in Northern Sweden. The key assumptions in this model are that baseflow ANC has not been affected by anthropogenic acidification, that DOC has not changed due to modern land-use practice and that natural dilution during hydrological episodes can be quantified. The limited data requirements of 10-15 stream water samples before and during spring flood make the model suitable for widespread use in environmental monitoring programs. This makes it possible to distinguish trends of human impact as well as natural pH decline in space and time. Modeling results from northern Sweden demonstrate that the natural driving mechanisms of dilution and organic acidity were the dominant factors in the episodic acidification of spring flood in the region. The anthropogenic contribution to spring pH decline was similar in size to the natural contribution in only two of the more than 30 events where this model was applied. Natural factors alone were found to cause pH values below 4.5 in some streams. Anthropogenic sources of acidity can be superimposed on this natural dynamics. In the sites studied, the magnitude of the anthropogenic ANC decline was correlated to the winter deposition of

  19. Experiences from the acid stimulation of geothermal aquifers and plants; Erfahrungen bei der Saeurestimulation geothermaler Aquifere und Anlagen

    Wolfgramm, Markus; Birner, Johannes; Lenz, Gerhard; Hoffmann, Frank; Rinke, Manfred [Geothermie Neubrandenburg GmbH, Berlin (Germany)

    2012-10-16

    In the course of the exploration of geothermal aquifers up to the operation of geothermal power plants, the utilization of acids and other substances such as inhibitors or powerful oxidants to secure enhanced productivities are of great significance. At the molasses basin, drillings which explore the carbonates of the Malm are stimulated repeatedly by means of hydrochloric acid after the sinking. Information from the drilling operation such as mud losses and cutting analyses are the basis for the design of stimulations. The subsequent implementation of test operations (cleaning lift, casing-lift-test in several stages) is used to estimate the short production run and the efficiency of the specific acidification. It also can be decided whether further acidifications are reasonable. Within the operation of geothermal power plants, different failures occur in the drillings as well as in the aboveground facility components. Failures can be minimized by means of the production management and inhibitors. Nevertheless, not all reasons of the scaling can be excluded fully so that regular measures are necessary in order to eliminate the failures. These measures range from mechanical methods through the combined utilization of mechanical-chemical procedures up to different methods of acidification. Beside the so-called soft acidification, stimulations via 'coiled tubing' or via utilization of acid threads with 'packer' also are possible. The investigation of the causes of the operational disturbances as well as the correct planning of the measures are significant for the application of the said stimulation processes.

  20. Geothermal energy worldwide

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  1. First research coordination meeting for the coordinated research programme on the use of isotope techniques in investigating acidic fluids in geothermal exploitation. Report

    Geothermal exploration and development for electrical and non-electrical applications is taking place in more than 36 countries worldwide. Although the technology has fully emerged, there are still hindrances to the full exploitation of the available heat. Most of the high temperature geothermal areas are situated in volcanic environments that produce acidic fluids which are corrosive for wells, as well as pipelines. Incidental drilling in those areas, for lack of better data, cause high economic losses ar a cost of about US D 2 million per well. In addition, a potential natural resource for electricity remains untapped. In realization of the problems associated with with geothermal exploitation and the potential role that isotope techniques could provide for a greater understanding of the complex behavior of geothermal systems, particularly those affected by acidic fluids, the Coordinated Research Programme (CRP) on the Use of Isotope Techniques in Problems Associated with Geothermal Exploitation is implemented in 1997-2000. An understanding of the phenomena will assist the scientific community involved in geothermal development. The information generated from the scientific investigations will be an input to management of the resource as well as to decision-making for monitoring and development of geothermal areas. The First Research Coordination Meeting for this CRP was held on 21-23 October 1997 in the IAEA Headquarters, Vienna, Austria. The results of the current investigations relating to acid fluids in the various geothermal systems were presented by the participants. The report provides the hydrological concept on which research on acid fluids is based. The report includes also the summaries of the researches under the CRP as well as the agreed actions for follow-up work

  2. Salicylic acid induces differential antioxidant response in spring maize under high temperature stress.

    Khanna, Palak; Kaur, Kamaljit; Gupta, Anil K

    2016-06-01

    High temperature is one of the important stress factors that affect crops in tropical countries. Plants do evolve or adopt different mechanisms to overcome such stress for survival. It is an interesting subject and has attracted many researchers to work upon. Here, we studied the effect of salicylic acid (SA) on seedling growth and antioxidative defense system in two spring maize (Zea mays L.) genotypes viz., CML-32 (relatively heat tolerant) and LM-11 (relatively heat susceptible), under high temperature stress. High temperature induced greater reduction in dry biomass of LM-1 1 seedlings as compared to those of CML-32. There was a parallel increase in ascorbate peroxidase and glutathione reductase activities in the roots of CML-32 seedlings. However, the activities of catalase and superoxide dismutase decreased and the contents of H202, proline and malonaldialdehyde (MDA) increased in seedlings of both the genotypes. Application of SA (400 µM) led to increased dry biomass in heat stressed CML-32 seedlings. It improved the efficiency of Halliwell-Asada pathway in roots of CML-32 seedlings as was evidenced by the enhanced ascorbate peroxidase and glutathione reductase activities. The activities of catalase and superoxide dismutase increased in both the tissues of LM-11 seedlings, whereas in CML-32, it was only in shoots, after SA application. Peroxidase activity increased in SA treated seedlings of both the genotypes, though the increase was comparatively higher in CML-32. The contents of H₂O₂ and MDA decreased and that of proline increased in SA treated seedlings of both the genotypes, under stress conditions. It may be concluded that SA induced differential antioxidant response by upregulating Halliwell-Asada pathway in roots and attaining high POX activity in both the tissues of CML-32 seedlings, under high temperature stress. PMID:27468465

  3. Global geothermal energy scenario

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  4. Blueprint for financing geothermal district heating in California

    Grattan, J.P.; Hansen, D.P.

    1981-03-01

    The current legal and investment climate surrounding geothermal development is depicted. Changes that would make the climate more favorable to direct heat geothermal development are recommended. The Boise, Susanville, and Brady Hot Springs projects are analyzed. (MHR)

  5. Boron isotope variations in geothermal systems on Java, Indonesia

    Purnomo, Budi Joko; Pichler, Thomas; You, Chen-Feng

    2016-02-01

    This paper presents δ11B data for hot springs, hot acid crater lakes, geothermal brines and a steam vent from Java, Indonesia. The processes that produce a large range of the δ11B values were investigated, including the possible input of seawater as well as the contrast δ11B compositions of acid sulfate and acid chloride crater lakes. The δ11B values of hot springs ranged from - 2.4 to + 28.7‰ and acid crater lakes ranged from + 0.6 to + 34.9‰. The δ11B and Cl/B values in waters from the Parangtritis and Krakal geothermal systems confirmed seawater input. The δ11B values of acid sulfate crater lakes ranged from + 5.5 to + 34.9‰ and were higher than the δ11B of + 0.6‰ of the acid chloride crater lake. The heavier δ11B in the acid sulfate crater lakes was caused by a combination of vapor phase addition and further enrichment due to evaporation and B adsorption onto clay minerals. In contrast, the light δ11B of the acid chloride crater lake was a result of acid water-rocks interaction. The correlations of δ11B composition with δ18O and δ2H indicated that the B isotope corresponded to their groundwater mixing sources, but not for J21 (Segaran) and J48 (Cikundul) that underwent 11B isotope enrichment by B adsorption into minerals.

  6. Geothermal resource data base: Arizona

    Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

    1995-09-01

    This report provides a compilation of geothermal well and spring information in Arizona up to 1993. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low-Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction. In recent years, the primary growth in geothermal use in Arizona has occurred in aquaculture. Other uses include minor space heating and supply of warm mineral waters for health spas.

  7. Geothermal Energy.

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    An introduction to geothermal energy is provided in this discussion of: (1) how a geothermal reservoir works; (2) how to find geothermal energy; (3) where it is located; (4) electric power generation using geothermal energy; (5) use of geothermal energy as a direct source of heat; (6) geopressured reservoirs; (7) environmental effects; (8)…

  8. Geothermal system 'Toplec' and geothermal potential of Dojran Region

    The Toplec geothermal spring that expands into a wide geothermal net in the watershed of Lake Dojran along the geophysical exploration work carried out in the terrain, indicated the presence of a significant geothermal potential in the region. In the future it may become the major factor for the development of vegetable growing, the use of the medicinal properties of the mineral spas and tourism as well cis the prosperity of the region. Water temperature in Lake Dojran amounts from 15 to 28oC during the year that is much higher compared with the temperatures of water lakes in neighbouring Greece. This indicates that beneath Lake Dojran there are other geothermal sources that replenish the lake with thermal water. Such manifestations of geothermal energy in the region along with other thermal phenomena speak for the presence of large reserves of geothermal energy in the Dojran depression. (Author)

  9. Geothermal potential of Egypt

    Swanberg, Chandler A.; Morgan, Paul; Boulos, F. K.

    1983-04-01

    One hundred and sixty samples of groundwater from nearly all parts of Egypt have been collected and chemically analyzed in order to assess the country's geothermal potential. The samples considered to be thermal include 20 wells ( T > 35° C), 4 springs ( T > 30° C) and 1 spring not included in the present inventory. The remaining samples, together with data from the literature, establish background chemistry. The hottest springs are located along the east shore of the Gulf of Suez: Uyun Musa (48°C) and 'Ain Hammam Faraoun (70°C). Additional warm springs are located along both shores of the Gulf of Suez and this region is the most promising for geothermal development. The Eastern Desert of Egypt, particularly the coastal area adjacent to the Red Sea has above normal heat flow ( ~ 72.0 Egypt can be considered thermal including several reported "hot springs." Application of the silica, NaKCa. and NaKCaMg geothermometers does not indicate the presence of a high temperature geothermal resource at any area we visited.

  10. Structural and Functional Insights from the Metagenome of an Acidic Hot Spring Microbial Planktonic Community in the Colombian Andes

    Jiménez, Diego Javier; Andreote, Fernando Dini; Chaves, Diego; Montaña, José Salvador; Osorio-Forero, Cesar; Junca, Howard; Zambrano, María Mercedes; Baena, Sandra

    2012-01-01

    A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level) acidic hot spring El Coquito (EC). A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation), and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ), associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA) indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment. PMID:23251687

  11. Structural and functional insights from the metagenome of an acidic hot spring microbial planktonic community in the Colombian Andes.

    Diego Javier Jiménez

    Full Text Available A taxonomic and annotated functional description of microbial life was deduced from 53 Mb of metagenomic sequence retrieved from a planktonic fraction of the Neotropical high Andean (3,973 meters above sea level acidic hot spring El Coquito (EC. A classification of unassembled metagenomic reads using different databases showed a high proportion of Gammaproteobacteria and Alphaproteobacteria (in total read affiliation, and through taxonomic affiliation of 16S rRNA gene fragments we observed the presence of Proteobacteria, micro-algae chloroplast and Firmicutes. Reads mapped against the genomes Acidiphilium cryptum JF-5, Legionella pneumophila str. Corby and Acidithiobacillus caldus revealed the presence of transposase-like sequences, potentially involved in horizontal gene transfer. Functional annotation and hierarchical comparison with different datasets obtained by pyrosequencing in different ecosystems showed that the microbial community also contained extensive DNA repair systems, possibly to cope with ultraviolet radiation at such high altitudes. Analysis of genes involved in the nitrogen cycle indicated the presence of dissimilatory nitrate reduction to N2 (narGHI, nirS, norBCDQ and nosZ, associated with Proteobacteria-like sequences. Genes involved in the sulfur cycle (cysDN, cysNC and aprA indicated adenylsulfate and sulfite production that were affiliated to several bacterial species. In summary, metagenomic sequence data provided insight regarding the structure and possible functions of this hot spring microbial community, describing some groups potentially involved in the nitrogen and sulfur cycling in this environment.

  12. Geothermal energy

    Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP)

  13. Investigation of the Movement of Infiltrating Acidic Hot-Spring Water in the Ground by Means of Radioisotopes

    Tamagawa hot spring in Akita Prefecture gushes hot water of 1 pH hydrochloric acid at some 140 1/s. This quantity flows into the River Tama with the result that the river has been hindered from any significant hydropower development thus far. For the purpose of mitigating die acidity of the water river, the hot spring water is carried away through channels and infiltrated into the soil of a mountain-side for chemical neutralizing through seepage before flowing into the river. To select the sites where the water can infiltrate and to determine its distribution, the authors studied, with the aid of radioisotope tracers, the capacity and ability for neutralization by mountain soil and the mechanism of the process. They carried out a total of nine experiments at the site from 1956 to 1960. Such radioisotopes as I131, P32, Rb46, Co60 and H3 as tracers were poured into holes with carriers. The radioactivity of the water appeared in fissures of the river bed located over 200 m away from the input holes; this was measured and the movement of underground water was analysed by using the time variation of radioactivity obtained. As a result, it was found that the radioactivity increased considerably at sporadic intervals, that several holes had connections to one fissure for water, that the creeping time ranged from 6 to 82 h, that the radioactivity found was less than the input, that behaviours were different among the nuclides applied and that the aging of the underground water course was noticeable. (author)

  14. Scythe (57% pelargonic acid) broadcast application for broadleaf weed control in spring-transplanted onions

    Although previous studies yielded important information concerning use of pelargonic acid as a potential organic herbicide, further research is indicated to increase the understanding of the relationship among application volumes, weed species, and weed maturity on herbicidal efficacy and crop injur...

  15. Geothermal Turbine

    None

    1979-05-01

    The first geothermal power generation in the world was started at Larderello, Italy in 1904. Then, New Zealand succeeded in the geothermal power generating country. These developments were then followed by the United States, Mexico, Japan and the Soviet Union, and at present, about 25 countries are utilizing geothermal power, or investigating geothermal resources.

  16. Geothermal Energy

    A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined

  17. SAMPLING AND ANALYSIS OF POTENTIAL GEOTHERMAL SITES

    This document contains general information on the physical, chemical and radiochemical data of geothermal manifestations (wells and springs) in areas with the most probable potential for development. Information contained in this document, together with other existing data, can b...

  18. 基于温泉地热能利用的动力循环系统研究%Study on power cycle system of hot springs geothermal energy

    梁泽德; 王树杰

    2013-01-01

    Three systems of this article described all use water vapor as the working fluid, which characteristics were analyzed and compared, respectively. Analysis found that, when the demand was only for power generation and non-condensable gas content in hot springs geothermal water was not too high, given the relatively simple structure and the larger actual power generation of a single-stage flash power generation system, the single-stage flash evaporation electrical system was more favorable. Because of hot springs primarily for leisure travel and medical care function, and the demand for air conditioning and refrigeration was large, view of the single effect lithium bromide absorption power generation and refrigeration combined system not only to generate electricity but also refrigeration, the combined system was more favorable.%文章分别对3种以水蒸气为工作介质的发电系统的特点进行了分析和比较.通过分析发现:当仅有发电需求,并且温泉地热水不凝性气体含量不算太高时,鉴于单级闪蒸发电系统结构相对简单和实际发电功率较大的特点,采用单级闪蒸发电系统较为有利;由于温泉地热主要为休闲旅游及医疗保健功能,空调制冷的需求很大,鉴于单效溴化锂吸收式发电制冷联合系统即可发电又能制冷的特点,采用单效溴化锂吸收式发电制冷联合系统较为有利.

  19. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying

    Du, Yan-Lei; Wang, Zhen-Yu; Fan, Jing-Wei; Turner, Neil C.; Wang, Tao; Li, Feng-Min

    2012-01-01

    A pot experiment was conducted to investigate the effect of the non-protein amino acid, β-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100...

  20. Fluids acidity in Los Humeros geothermal reservoir, Puebla, Mexico: Mineralogical evaluation; Acidez de los fluidos del yacimiento geotermico de Los Humeros, Puebla, Mexico: Evaluacion mineralogica

    Izquierdo M, Georgina; Arellano G, Victor Manuel; Portugal M, Enrique; Aragon A, Alfonso [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico); Martinez, Ignasio [Comision Federal de Electricidad (Mexico)

    2000-12-01

    The occurrence of the acidity in fluids from Los Humeros geothermal reservoir has been noticeable due to the accelerated corrosion of pipes lines of wells located mainly in the area known as Collapse Central and wells along the East direction of the field. On the base of the evaluation of all available chemical and mineralogical information for Los Humeros geothermal field the main objective of this work was to recognize evidences on the origin of geothermal fluids acidity. Considering the occurrence of HCl in other geothermal systems, no relation to the available information from Los Humeros was found. It is possible that the geothermal fluids acidity would be recent. It could be generated when the deep reservoir was reached by drilling wells. However, the occurrence of H{sub 2}SO{sub 4} is evident due to the advance argillic alteration of surface rocks in some areas of the field. It is probable that the model proposed by D' Amore, may be valid for the geothermal field of Los Humeros. Considering that the origin of the vapor phase from the deep reservoir would be a fluid (of very high salinity) that favored the formation of the HCl gas; which moved to the vapor zone when exploitation began being transported in the vapor phase toward the upper reservoir forming aqueous HCl. [Spanish] La presencia de acidez en los fluidos producidos por el yacimiento geotermico de Los Humeros se ha evidenciado por la acelerada corrosion de las tuberias de algunos pozos localizados principalmente en la zona conocida como Colapso central y en direccion Este del campo. Con el objeto de identificar evidencias que permitan establecer el origen de la acidez en los fluidos geotermicos, se llevo a cabo la evaluacion de la informacion quimica y mineralogica existente para el campo geotermico de Los Humeros. Empleando los criterios conocidos sobre la presencia de HCl en otros sistemas geotermicos no se encontro relacion con la informacion evaluada. Por lo que se sugiere que la acidez en

  1. GEOTHERMICS GEOLOGY

    2009-01-01

    <正>20091762 Guo Wancheng(Xining Jiulong Engineering Investigation Ltd.,Xining 810700,China);Shi Xingmei Development and Utilization of Guide Basin’s Geothermal Resources of Qinghai Province(Hydrogeology and Engineering Geology,ISSN1000-3665,CN11-2202/P,35(3),2008,p.79-80,92,2 illus.,2 tables,2 refs.)Key words:geothermal resources,QinghaiThis paper introduced the background of geothermal conditions and the many years of geothermal exploration data in Guide Basin.Then,the authors discussed the geothermal resources feature of Guide basin and raised some opinions on the reasonable development and utilization of geothermal resources.

  2. Chemistry of neutral and acid production fluids from the Onikobe geothermal field, Miyagi prefecture, Honshu, Japan

    This investigation has shown that production fluids at Onikobe vary widely in chemical composition and concentration but have certain characteristics in common. These characteristics include a rather narrow range of reservoir temperatures from 230 to 255 deg. C measured temperatures; 225 to 280 deg. C calculated from enthalpy assuming no excess steam; 241 to 270 deg. C calculated from the quartz saturation geothermometer and 253 to 280 deg. C calculated from the most reasonable Na/K geothermometer. The agreement between enthalpy derived and other temperatures suggests that there is little excess steam as does inlet vapour fraction (IVF) values, which are less than 0.1 for almost all samples. The largest variations in concentration are in pH and acid sensitive constituents including Fe, Mg, Ca which are dissolved from reservoir rocks and casings by low pH waters and other constituents with volatility depending on pH (NH4, HBO3). The pH varies from 2.8 to 8 and Fe varies from 0.01 to 371 ppm. The variation of other acid sensitive constituents, although not as large, is also significant. The source of the acid is not yet understood. The large 'chloride excess' and the strong correlation of low pH with high chloride indicate that the acid enters the water as HCl, but some SO4 acidity could have been removed by reaction with plagioclase to form anhydrite. There is a consistent increase in salinity with time along with indications that the waters are gas depleted. These observations are interpreted as showing that injected waters enriched in salts and depleted in gases are contributing to production waters. The acid reservoir seems to be limited to moderate depths in the middle of the drilled area. Drilling either to the NW where wells 134, 135 and 128 (before its casing leak) produced neutral waters or to the S where well 129 produces neutral waters would seem to be the best strategy. The relative homogeneity of the neutral waters suggests that there is a large

  3. Survival of brown trout during spring flood in DOC-rich streams in northern Sweden: the effect of present acid deposition and modelled pre-industrial water quality

    Mortality and physiological responses in brown trout (Salmo trutta) were studied during spring snow melt in six streams in northern Sweden that differed in concentrations of dissolved organic carbon (DOC) and pH declines. Data from these streams were used to create an empirical model for predicting fish responses (mortality and physiological disturbances) in DOC-rich streams using readily accessible water chemistry parameters. The results suggest that fish in these systems can tolerate higher acidity and inorganic aluminium levels than fish in low DOC streams. But even with the relatively low contemporary deposition load, anthropogenic deposition can cause fish mortality in the most acid-sensitive surface waters in northern Sweden during spring flood. However, the results suggests that it is only in streams with high levels of organically complexed aluminium in combination with a natural pH decline to below 5.0 during the spring where current sulphur deposition can cause irreversible damage to brown trout in the region. This study support earlier studies suggesting that DOC has an ameliorating effect on physiological disturbances in humic waters but the study also shows that surviving fish recover physiologically when the water quality returns to less toxic conditions following a toxic high flow period. The physiological response under natural, pre-industrial conditions was also estimated. - High levels of complexed aluminum, at pH levels below 5.0, predisposes brown trout to sulfur-caused damage in the spring

  4. Isotope study in geothermal fields in Java Island

    Study in two geothermal fields, Dieng and Kamojang, in Java island by utilizing isotope technique has been carried out. Isotopic data of wells, springs and other geothermal manifestations providing informations on the recharge area of precipitation contributed to geothermal resources, flow paths and origin of geothermal fluids. The data of oxygen shift has also provided information on the characteristic the fields. (author). 8 refs, 5 figs, 3 tabs

  5. Geothermal Energy

    Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.

    1996-02-01

    Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

  6. Geothermal energy

    A brief article reviews the development of geothermal energy within the OECD countries. Topics covered include power generation, direct use, hot dry rocks and geothermal heat pumps. The limited exploitation in the UK is also described. (UK)

  7. Geothermal energy

    Manzella A.

    2015-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with p...

  8. Geothermal systems

    Mohl, C.

    1978-01-01

    Several tasks of JPL related to geothermal energy are discussed. The major task is the procurement and test and evaluation of a helical screw drive (wellhead unit). A general review of geothermal energy systems is given. The presentation focuses attention on geothermal reservoirs in California, with graphs and charts to support the discussion. Included are discussions on cost analysis, systems maintenance, and a comparison of geothermal and conventional heating and cooling systems.

  9. Geothermal energy

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  10. Results of geothermal gradient core hole TCB-1, Tecuamburro volcano geothermal site, Guatemala, Central America

    Adams, A.I.; Chipera, S.; Counce, D.; Gardner, J.; Goff, S.; Goff, F.; Heiken, G.; Laughlin, A.W.; Musgrave, J.; Trujillo, P.E. Jr. (Los Alamos National Lab., NM (United States)); Aycinena, S.; Martinelli, L. (Swissboring Overseas Corp. Ltd., Guatemala City (Guatemala)); Castaneda, O.; Revolorio, M.; Roldan, A. (Unidad de Desarrollo Geotermico, Guatemala City (Guatemala). Inst. Nacional de Electrificacion); D

    1992-02-01

    Results of geological, volcanological, hydrogeochemical, and geophysical field studies conducted in 1988 and 1989 at the Tecuamburro volcano geothermal site in Guatemala indicated that there is a substantial shallow heat source beneath the area of youngest volcanism. To obtain information on subsurface temperatures and temperature gradients, stratigraphy, hydrothermal alteration, fracturing, and possible inflows of hydrothermal fluids, a geothermal gradient core hole (TCB-1) was drilled to 808 m low on the northern flank of the Tecuamburro volcano Complex, 300 km south of a 300-m-diameter phreatic crater, Laguna Ixpaco, dated at 2,910 years. Gases from acid-sulfate springs near Laguna Ixpaco consistently yield maximum estimated subsurface temperatures of 250--300{degrees}C. The temperature versus depth curve from TCB-1 does not show isothermal conditions and the calculated thermal gradients from 500--800 m is 230{degrees}C/km. Bottom hole temperature is 238{degrees}C. Calculated heat flow values are nearly 9 heat flow units (HFU). The integration of results from the TCB-1 gradient core hole with results from field studies provides strong evidence that the Tecuamburro area holds great promise for containing a commercial geothermal resource.

  11. 1992--1993 low-temperature geothermal assessment program, Colorada

    Cappa, J.A.; Hemborg, H.T.

    1995-01-01

    Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992--1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the US Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases. For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

  12. Validation of Multicomponent Equilibrium Geothermometry at Four Geothermal Power Plants

    Ghanashyam Neupane; Jeffrey S Baum; Earl D Mattson; Gregory L Mines; Carl D Palmer; Robert W Smith

    2001-01-01

    This paper evaluates our ability to predict geothermal reservoir temperatures using water compositions measured from surface hot springs or shallow subsurface wells at four geothermal sites prior to the startup of geothermal energy production using RTEst, a multicomponent equilibrium geothermometer we have developed and are testing. The estimated reservoir temperatures of these thermal expressions are compared to measured bottom-hole temperatures of production wells at Raft River, ID; Neal Hot Springs, OR; Roosevelt Hot Springs, UT; and Steamboat Springs, NV geothermal sites. In general, temperatures of the producing reservoir estimated from the composition of water from surface expressions/shallow wells using RTEst are similar to the measured bottom-hole temperatures. For example, estimates for the Neal Hot Springs system are within ±10 ºC of the production temperatures. However, some caution must be exercised in evaluating RTEst predictions. Estimated temperature for a shallow Raft River well (Frazier well) is found to be slightly lower (ca. 15 ºC) than the bottom-hole temperatures from the geothermal plant production wells. For the Raft River system, local geology and fluid mixing model indicate that the fluid source for this shallow well may not have originated from the production reservoir. Similarly, RTEst results for Roosevelt Hot springs and Steamboat Springs geothermal areas were found consistent with the reservoir temperatures obtained from deep wells. These results suggest that the RTEst could be a valuable tool for estimating temperatures and evaluation geothermal resources.

  13. Framework Spring

    Bobkov, Pavel

    2010-01-01

    The aim of the thesis is to introduce reader to the Spring framework and describe it as a convenient tool for rapid application development and launching projects. It is necessary to grab the Spring issue in a broader context. That's why thesis is trying to note all the relevant technologies that are closely related to Spring, or which is Spring based on. The first step to understanding Spring is a basic knowledge of Java EE. Thesis presents the architecture of Java EE while arguing its flaws...

  14. Lessons from geothermal gases at Yellowstone

    Lowenstern, J. B.; Bergfeld, D.; Evans, W.; Hurwitz, S.

    2015-12-01

    The magma-hydrothermal system of the Yellowstone Plateau Volcanic Field encompasses over ten thousand individual springs, seeps, and fumaroles spread out over >9000 square kilometers, and produces a range of acid, neutral and alkaline waters. A prominent model (Fournier, 1989 and related papers) concludes that many neutral and alkaline fluids found in hot springs and geysers are derived from a uniform, high-enthalpy parent fluid through processes such as deep boiling and mixing with dilute meteoric groundwater. Acid waters are generally condensates of gas-bearing steam that boils off of subsurface geothermal waters. Our recent studies of gases at Yellowstone (Lowenstern et al., 2015 and references therein) are compatible with such a model, but also reveal that gases are largely decoupled from thermal waters due to open-system addition of abundant deep gas to (comparatively) shallow circulating thermal waters. Fumarole emissions at Yellowstone range from gas-rich (up to 15 mol%) composed of deeply derived CO2, He and CH4, to steam-rich emissions (Yellowstone fits into two general categories: 1) mantle-derived CO2 with a hotspot He isotope signature (>16 RA) and low CH4 and He concentrations and 2) mantle-derived CO2 with much higher CH4 and/or He concentrations and abundant radiogenic He picked up from crustal degassing. Individual thermal areas have distinct CH4/He. It remains unclear whether some gas ratios mainly reflect subsurface geothermal temperatures. Instead, they may simply reflect signatures imparted by local rock types and mixing on timescales too fast for reequilibration. Overall, the gas chemistry reflects a broader view of mantle-crust dynamics than can be appreciated by studies of only dissolved solutes in the neutral and alkaline waters from Yellowstone geysers. Fournier (1989) Ann. Rev. Earth Planet. Sci. v. 17, p. 13-53. Lowenstern et al. (2015) JVGR, v. 302, 87-101.

  15. GEOTHERMICS GEOLOGY

    2012-01-01

    <正>20122531 Hu Lingzhi ( Institute of Geological Engineering Design & Research of Beijing,Miyun 101500,China );Wang Jiankang Discussion on the Feasibility of Geothermal Resources Development and Utilization in Miyun District,Beijing ( City Geology,ISSN1007-1903,CN11-5519 / P,6 ( 3 ), 2011,p.34-35,59 ,) Key words:geothermal resources,Beijing Geothermal,as a new type of clean energy with the integrated trinity of " heat energy-mineral resource-water resource ",

  16. GEOTHERMICS GEOLOGY

    2014-01-01

    <正>20141588 Guo Shiyan(Green Energy Geothermai Development Co.,SINOPEC,Xianyang 712000,China);Li Xiaojun Reservoir Stratum Characteristics and Geothermal Resources Potential of Rongcheng Uplift Geothermal Field in Baoding,Hebei Province(Chinese Journal of Geology,ISSN0563-5020,CN11-1937/P,48(3),2013,p.922-931,2 illus.,4 tables,10 refs.)Key words:geothermal fields,Hebei Province

  17. Development of geothermal energy

    The earth is a large reservoir of natural heat energy, but the potential has not been explored satisfactorily. It is estimated that 7 km2 of crust contains enough energy to supply 6% of the world's total annual consumption. Geothermal energy production is environmentally safe and its development needs little investment as compared with other conventional energy sources. India has a vast potential for geothermal energy with more than 300 hot springs. There is scope for utilization of geoheat specially for the development of the backward regions of India. The technology has been developed and tested successfully in other countries and it is for India's scientists, technologists and planners to develop appropriate technology to suit local conditions and needs. (author). 3 refs., 1 tab

  18. GEOTHERMICS GEOLOGY

    2015-01-01

    20150342Guan Yu(Geo-Environment Monitoring Station of Anhui Province,Hefei230001,China);Chen Xun On Shallow Geothermal Energy Investigation in Urban Planning Zone of Bengbu in Anhui Province(Journal of Geology,ISSN1674-3636,CN32-1796/P,38(1),2014,p.88-93,2illus.,4tables,6refs.)Key words:geothermal energy,Anhui Province The authors conducted studies on shallow geothermal energy in urban planning zone in Bengbu of Anhui Province,depicted the geological settings of shallow geothermal energy,analyzed the natural features,heat exchange

  19. Geothermal Handbook

    Leffel, C.S., Jr.; Eisenberg, R.A.

    1977-06-01

    This handbook is intended to assist the physicist, chemist, engineer, and geologist engaged in discovering and developing geothermal energy resources. This first section contains a glossary of the approximately 500 most frequently occurring geological, physical, and engineering terms, chosen from the geothermal literature. Sections 2 through 8 are fact sheets that discuss such subjects as geothermal gradients, rock classification, and geological time scales. Section 9 contains conversion tables for the physical quantities of interest for energy research in general and for geothermal research in particular.

  20. Geothermal energy

    Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)

  1. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you

  2. Hydrothermal surface alteration in the Copahue Geothermal Field (Argentina)

    Mas, Graciela R.; Mas, Luis C.; Bengochea, Leandro

    1996-01-24

    In the area of the Copahue Geothermal Field, there are five active geothermal manifestations, which mainly consist of fumaroles, hot springs and mud pots. Four of these manifestations are located in Argentina: Las Máquinas, Termas de Copahue, Las Maquinitas and El Anfiteatro, and the fifth on the Chilean side: Chancho Co. All of them present a strong acid sulfate country rock alteration, characterized by the assemblage alunite + kaolinite + quartz + cristobalite + pyrite + sulfur + jarosite, as the result of the base leaching by fluids concentrated in H2SO4 by atmospheric oxidation at the water table in a steam heated environment of H2S released by deeper boiling fluids. Another alteration zone in this area, called COP-2, is a fossil geothermal manifestation which shows characteristics of neutral to alkaline alteration represented mainly by the siliceous sinter superimposed over the acid alteration. The mineralogy and zoning of these alteration zones, and their relation with the hidrothermal solutions and the major structures of the area are analized.

  3. CENOZOIC VOLCANISM AND GEOTHERMAL RESOURCES IN NORTHEAST CHINA

    2001-01-01

    This paper is concentrated on Cenozoic volcanism and geothermal resources in Northeast China. There are a lot of Cenozoic volcanoes, a large area of volcanic rocks, a large number of active faults and rich geothermal resources in Northeast China. The time and space characteristics of Cenozoic volcanism and the space distribution characters of hot springs and high geothermal flux regions in Northeast China are described and discussed on the basis of geological, geothermal, drilling and volcanological data. It is revealed that the hot springs and high geothermal flux regions are re lated to the Cenozoic volcanism, rifting and faulting in Northeast China. It is especially emphasized that the hot springs and high geothermal anomaly areas are controlled by active deep faults. It is proposed that the Cenozoic volcanism re gions, rift basins, active fault belts, activated plate suture zones and large earthquake occurrence points are the best areas for prospecting geothermal resources. The geothermal resources in younger volcanic zones are richer than those in older volcanic belts. The hot springs and active or activated faults might be a very good clue for looking for geothermal resources.

  4. Thermal and Thermomineral springs related to the seismotectonic activity of faults in the Republic of Macedonia

    Petrov, Gose; Mircovski, Vojo; Delipetrov, Todor

    2007-01-01

    The aim of the paper is to present the correlation dependence of geothermal energy present as active thermal and geothermal springs and the seismicity in the territory of the Republic of Macedonia. In that regard, analysis has been carried out on existing data for geothermal occurrences and anticipated seismicity of fault structures (mostly geotectonic).

  5. Characteristics and origins of hot springs in the Tatun Volcano Group, northern Taiwan

    Song, S.; Liu, C.; Tsao, S.

    2009-12-01

    This paper systematically surveys the distributions, field occurrences of 14 hot springs and sampling for geochemical investigations in geothermal area of Tatun Volcano Group (TVG). Based on the Piper diagram, pH value, field occurrence and water-rock interaction, these hot springs are classified into three types: (1) Type I, the SO42--rich acidic water including the LFK, QG, SYK, TYK, SHP, and BY thermal springs which the reservoir is located in the Wuchishan Formation; (2) Type II, the near neutral spring including the TBQ, HS, MT, and LSK thermal waters, which the reservoir is located in volcanic rock body (andesite); and (3) Type III, the Cl--rich acidic one consisting of the SPT, TP and JT thermal waters except CC hot spring, which is the Cl--rich near neutral solution, and the reservoir is located in the Wuchishan Formation. For the isotopic ratio, the δD and δ18O values are close to the right of meteoric water line of the Tatun areas with the values ranging from -26.2 ‰ to -3.5 ‰ and -3.2 ‰ to 1.6 ‰, respectively. However, the δD and δ18O values of hot springs for the samples away from the meteoric water line of Tatun area are -28.4 ‰ to -13.6 ‰ and -5.5 ‰ to -4.2 ‰, respectively. In addition, the δ34S value of thermal water can be distinguished into two groups: one ranges from 25‰ to 29‰ and the other from 1‰ to 8‰. Based on the field occurrences and geochemical characteristics, a model has been provided to illustrate the origin of those geothermal waters.

  6. Geothermal energy

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70oC is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50oC to 70oC, is high. The necessary total investment per MWth installed capacity is in the order of 5 Mio- DM/MWth (3 Mio $/MWth). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MWe. About 15 000 MWth of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  7. Carboxydothermus pertinax sp. nov., a thermophilic, hydrogenogenic, Fe(III)-reducing, sulfur-reducing carboxydotrophic bacterium from an acidic hot spring

    Yoneda, Yasuko; Yoshida, Takashi; Kawaichi, Satoshi;

    2012-01-01

    growth on CO, H(2) and CO(2) were produced. Growth occurred on molecular hydrogen as an energy source and carbon dioxide as a sole carbon source. Growth was observed on various organic compounds under an N(2) atmosphere with the reduction of ferric iron. The temperature range for carboxydotrophic growth......A novel anaerobic, Fe(III)-reducing, hydrogenogenic, carboxydotrophic bacterium, designated strain Ug1(T), was isolated from a volcanic acidic hot spring in southern Kyushu Island, Japan. Cells of the isolate were rod-shaped (1.0-3.0 µm long) and motile due to peritrichous flagella. Strain Ug1(T...

  8. Spring Tire

    Asnani, Vivake M.; Benzing, Jim; Kish, Jim C.

    2011-01-01

    The spring tire is made from helical springs, requires no air or rubber, and consumes nearly zero energy. The tire design provides greater traction in sandy and/or rocky soil, can operate in microgravity and under harsh conditions (vastly varying temperatures), and is non-pneumatic. Like any tire, the spring tire is approximately a toroidal-shaped object intended to be mounted on a transportation wheel. Its basic function is also similar to a traditional tire, in that the spring tire contours to the surface on which it is driven to facilitate traction, and to reduce the transmission of vibration to the vehicle. The essential difference between other tires and the spring tire is the use of helical springs to support and/or distribute load. They are coiled wires that deform elastically under load with little energy loss.

  9. Chemical composition, hydrogen and oxygen isotope ratios and tritium content of hot waters and steam condensates from the Oyasu-Doroyu-Akinomiya geothermal area in Akita prefecturs, Japan

    The major and minor chemical components, hydrogen and oxygen isotope ratios and tritium content of river, cold spring and hot spring waters and fumarolic condensates in the Oyasu-Doroyu-Akinomiya geothermal area were analyzed. The hot water and steam condensate blown off from explorative wells and the hot waters collected from different depth of a bore in the Oyasu area were also analyzed. The hot springs and fumaroles in this area erupt mostly from Neogene system, and are distributed predominantly in the NE-SW direction regionally but in the NW-SE direction locally. The acidic Cl- and (SO4)2- types of hot spring water show distinct oxygen shift accompanied by hydrogen shift, but the neutral Na+.Cl- type of hot spring water and the hot water from geothermal wells hardly showed the oxygen shift as compared with the river and cold spring waters. The tritium content of hot water is relatively high in case of the acidic Cl- and (SO4)2- types, but in case of the neutral Na+.Cl- type, it did not exceed 1T.U., and the origin of the water is supposed to be precipitation of probably more than thirty years ago. (Kobatake, H.)

  10. Beginning Spring

    Caliskan, Mert

    2015-01-01

    Get up to speed quickly with this comprehensive guide toSpring Beginning Spring is the complete beginner's guide toJava's most popular framework. Written with an eye towardreal-world enterprises, the book covers all aspects of applicationdevelopment within the Spring Framework. Extensive samples withineach chapter allow developers to get up to speed quickly byproviding concrete references for experimentation, building askillset that drives successful application development byexploiting the full capabilities of Java's latest advances. Spring provides the exact toolset required to build anent

  11. Just Spring

    Konda, Madhusudhan

    2011-01-01

    Get a concise introduction to Spring, the increasingly popular open source framework for building lightweight enterprise applications on the Java platform. This example-driven book for Java developers delves into the framework's basic features, as well as advanced concepts such as containers. You'll learn how Spring makes Java Messaging Service easier to work with, and how its support for Hibernate helps you work with data persistence and retrieval. Throughout Just Spring, you'll get your hands deep into sample code, beginning with a problem that illustrates dependency injection, Spring's co

  12. GEOTHERMICS GEOLOGY

    2013-01-01

    <正>20131088 Fan Difu (Geological Survey of Jiangsu Province , Nanjing 210018 , China ); Xu Xueqiu Origin Study of Geothermal Field in Xiaoyangkou of Rudong County in Jiangsu (Journal of Geology , ISSN1674-3636 , CN32-1796/P , 36 (2), 2012 , p.192-197 , 3illus. , 9refs.) Key words : geothermal fields , Jiangsu Province

  13. Geothermal system 'Toplets' and geothermal potential of Dojran region

    The Toplets geothermal spring that expands into a wide geothermal net in the watershed of Lake Dojran along the geophysical exploration work carried out in the terrain, indicated the presence of a significant geothermal potential in the region. In the future it may become the major factor for the development of vegetable growing, the use of the medicinal properties of the mineral spas and tourism as well as the prosperity of the region. Water temperature in Lake Dojran amounts 15°C to 28°C during the year that is mach higher compared with the temperature of water lakes in neighbouring Greece. This indicates that beneath Lake Dojran there are other geothermal sources that replenish the lake with thermal water. Such manifestations of geothermal energy in the region along with other thermal phenomena speak for the presence of large reserves of geothermal energy in the Dojran depression. (Author)

  14. Geothermal energy renewable energy and the environment

    Glassley, William E; Nelson, Vaughn

    2010-01-01

    Historically, cost effective, reliable, sustainable, and environmentally friendly, use of geothermal energy has been limited to areas where obvious surface features pointed to the presence of a shallow local heat source, such as hot springs and volcanoes. However, recent technological advances have dramatically expanded the range and size of viable resources, especially for applications such as modular power generation, home heating, and other applications that can use heat directly. These recent developments have greatly expanded opportunities for utilizing geothermal energy. Reflecting cu

  15. Nevada low-temperaure geothermal resource assessment: 1994. Final report

    Garside, L.J.

    1994-12-31

    Data compilation for the low-temperature program is being done by State Teams in two western states. Final products of the study include: a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate- temperature springs and wells in Nevada; a 1:1,000,000-scale map displaying these geothermal localities, and a bibliography of references on Nevada geothermal resources.

  16. Geothermal energy in Montana: site data base and development status

    Brown, K.E.

    1979-11-01

    A short description of the state's geothermal characteristics, economy, and climate is presented. More specific information is included under the planning regions and site specific data summaries. A brief discussion of the geothermal characteristics and a listing of a majority of the known hot springs is included. The factors which influence geothermal development were researched and presented, including: economics, financing, state leasing, federal leasing, direct-use technology, water quality laws, water rights, and the Major Facility Siting Act. (MHR)

  17. Geothermal energy in Montana: site data base and development status

    Brown, K.E.

    1979-11-01

    A short description of the state's geothermal characteristics, economy, and climate is presented. A listing of the majority of the known hot springs is included. A discussion of present and projected demand is included. The results of the site specific studies are addressed within the state energy picture. Possible uses and process requirements of geothermal resources are discussed. The factors which influence geothermal development were researched and presented according to relative importance. (MHR)

  18. Geothermal energy in Alaska: site data base and development status

    Markle, D.

    1979-04-01

    The following are presented: the history of geothermal energy in Alaska; a history of Alaska land ownership; legal and institutional barriers; and economics. Development, the socio-economic and physical data concerning geothermal energy are documented by regions. The six regions presented are those of the present Alaska State Planning Activities and those of the Federal Land Use Commission. Site data summaries of the one hundred and four separate geothermal spring locations are presented by these regions. (MHR)

  19. Geochemical and hydrologic data for wells and springs in thermal-spring areas of the Appalachians

    Hobba, W.A. Jr.; Chemerys, J.C.; Fisher, D.W.; Pearson, F.J. Jr.

    1976-07-01

    Current interest in geothermal potential of thermal-spring areas in the Appalachians makes all data on thermal springs and wells in these areas valuable. Presented here without interpretive comment are maps showing selected springs and wells and tables of physical and chemical data pertaining to these wells and springs. The chemical tables show compositions of gases (oxygen, nitrogen, argon, methane, carbon dioxide, and helium), isotope contents (tritium, carbon (13), and oxygen (18)), trace and minor element chemical data, and the usual complete chemical data.

  20. Boise geothermal district heating system

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  1. Earthquake and Geothermal Energy

    Kapoor, Surya Prakash

    2013-01-01

    The origin of earthquake has long been recognized as resulting from strike-slip instability of plate tectonics along the fault lines. Several events of earthquake around the globe have happened which cannot be explained by this theory. In this work we investigated the earthquake data along with other observed facts like heat flow profiles etc... of the Indian subcontinent. In our studies we found a high-quality correlation between the earthquake events, seismic prone zones, heat flow regions and the geothermal hot springs. As a consequence, we proposed a hypothesis which can adequately explain all the earthquake events around the globe as well as the overall geo-dynamics. It is basically the geothermal power, which makes the plates to stand still, strike and slip over. The plates are merely a working solid while the driving force is the geothermal energy. The violent flow and enormous pressure of this power shake the earth along the plate boundaries and also triggers the intra-plate seismicity. In the light o...

  2. GEOTHERMICS GEOLOGY

    2010-01-01

    <正>20101802 Fang Bin (China University of Geosciences,Beijing 100083,China);Yang Yunjun Characteristics and Resource Evaluation of the Jiwa Geothermal Field in Central Qiangtang,Northern Tibet,China (Geological Bulletin of China,ISSN1671-

  3. GEOTHERMICS GEOLOGY

    2011-01-01

    <正>20112453 Li Qing (First Design and Research Institute,Ministry of Mechanical Industry, Bengbu 233000, China); Li Yixiang Application of Shallow Geothermal Energy Resources in the Hefei Area(Geology

  4. Initial Characterization of Carbon Metabolism in Iron Oxidizing Microbial Communities of Acidic Hot Springs in Norris Geyser Basin, Yellowstone National Park

    Kreuzer, H. W.; Jennings, R. D.; Whitmore, L.; Inskeep, W. P.; Moran, J.

    2012-12-01

    Norris Geyser Basin in Yellowstone National Park is home to several acidic, sulfidic hot springs. Visual inspection of the springs reveals distinct geochemical regions starting with a sulfur deposition zone followed by a transition to iron oxide deposition downstream. The microbial communities in the iron oxidation zones are dominated by Archaea, including several members that appear to define previously unrecognized taxa. Abiotic iron oxidation rates are very slow at these temperatures (typically ~ 65-70 oC) and pH's (typically ~3). Therefore, the relatively rapid iron oxide deposition rate strongly suggests the process is microbially mediated, and an organism previously isolated from these springs, Metallosphaera yellowstonensis, has been shown to oxide iron in culture. M. yellowstonensis has been observed in the all microbial communities analyzed in the iron oxidizing zones of these springs, though metagenomic profiling suggests it constitutes only ~20% of the community membership. When we began our studies of C flow in the iron-oxidizing community, no C source had been demonstrated. Observed potential carbon sources in the springs include dissolved inorganic carbon, dissolved organic carbon, and methane, as well as random inputs of heterotrophic carbon in the forms of insect carcasses, pine needles, and animal scat. The temperatures in the iron oxidation zones are above the photosynthetic upper temperature limit, thus precluding photosynthetic-based autotrophy within the community itself. We are employing geochemical and stable isotope techniques to assess carbon inventories in the system. We have demonstrated that M. yellowstonensis as well as excised samples of iron oxide mat communities can fix CO2, and our estimated isotopic fractionation factor is consistent with the 3-hydroxypropionate 4-hydroxybutyrate pathway. Genes of this pathway have been identified in the M. yellowstonensis genome. We have tentatively identified small amounts of organic compounds

  5. GEOTHERMICS GEOLOGY

    2015-01-01

    20151782 Ding Zhaoqin(Institute of Geophysical Exploration of Jilin Province,Changchun130012,China);Xu Zhihe The Possibility of Structure and Occurrence Geothermal Resources in Dunhua-Mishan Fault Zone(Huinan Section)(Jilin Geology,ISSN1001-2427,CN22-1099/P,33(2),2014,p.98-102,5illus.,1table,4refs.)Key words:geothermal resources,fracture

  6. Southwest Alaska Regional Geothermal Energy Project

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    The village of Elim, Alaska is 96 miles west of Nome, on the Seward Peninsula. The Darby Mountains north of the village are rich with hydrothermal systems associated with the Darby granitic pluton(s). In addition to the hot springs that have been recorded and studied over the last 100 years, additional hot springs exist. They are known through a rich oral history of the region, though they are not labeled on geothermal maps. This research primarily focused on Kwiniuk Hot Springs, Clear Creek Hot Springs and Molly’s Hot Springs. The highest recorded surface temperatures of these resources exist at Clear Creek Hot Springs (67°C). Repeated water sampling of the resources shows that maximum temperatures at all of the systems are below boiling.

  7. GEOTHERMICS GEOLOGY

    2011-01-01

    <正>20111059 Gao Jinghong(Engineering Group Co.Ltd.of the Second Institute of China Railway,Chengdu 610031,China);Tong Tiegang A Magnetotelluric Study of Geothermal Resources in Kaifeng Depression,Henan Province(Geophysical and Geochemical Exploration,ISSN1000-8918,CN11-1906/P,34(4),2010,p.440-443,6 illus.,12 refs.)Key words:geothermal resources,telluric electromagnetic sounding,Henan Province Kaifeng Depression,located in the southeast corner of the Jiyuan-Kaifeng Depression,is enriched with deep-seated groundwater sources.The rich geothermal water rock(thermal reservoir)commonly has lower resistivity than the in-situ rock,and the reduction degree of its resistivity is related to the extent of water content,water temperature and mineralization.Based on geo-electrical anomaly,the authors inferred the distribution of the thermal reservoirs.A study of the magnetotelluric sounding method(MT)shows that the resistivity values of the basement are lowest in most surveying points north of F1 fault,implying the existence of the relationship with the geothermal water in the strata.According to the distribution of geo-electrical anomalies in the survey area,the authors locate the relatively enriched area of geothermal water in the basement of this area,thus providing an important basis

  8. Geothermal energy

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  9. Geothermal energy

    Manzella, A.

    2015-08-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  10. GEOTHERMICS GEOLOGY

    2014-01-01

    <正>20140332 Jiang Lin(School of Earth and Space Sciences,Peking University,Beijing100871,China);Ji Jianqing Geologic Analysis on the Prospects of the Enhanced Geothermal System(EGS)in the Bohaiwan Basin(Geology and Prospecting,ISSN0495-5331,CN11-2043/P,49(1),2013,p.167-178,5illus.,4tables,41refs.)Key words:geothermal systems,Bohaiwan Basin Great amounts of thermal energy is stored ubiquitously in rocks with high tempera-

  11. GEOTHERMICS GEOLOGY

    2011-01-01

    <正>20111836 Gao Jian(Sichuan Institute of Geological Survey for Nuclear Industry,Chengdu 610061,China);Shi Yuzhen Feasibility Study of Exploitation of Geothermal Resource in the Lugu Lake Region,Yanyuan,Sichuan Province(Acta Geologica Sichuan,ISSN1006-0995,CN51-1273/P,30(3),2010,p.291-294,1 illus.,1 table,1 ref.,with English abstract)Key words:geothermal water,Sichuan Province20111837 He Jianhua(Geological Brigade 102,Bureau of Geolog

  12. Geothermal resource area 10: Lincoln County, Nevada. Area development plan

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 10 includes all of the land in Lincoln County, Nevada. Within this area are 10 known geothermal anomalies: Caliente Hot Springs, Panaca Warm Springs, Delume's Springs, Flatnose Ranch Spring, Hiko Springs, Crystal Springs, Ash Springs, Geyser Ranch Springs, Hammond Ranch Springs, Sand Springs, and Bennett's Springs. The geothermal resource in Lincoln County, though somewhat limited, has some potential for development. All of the known geothermal areas have measured temperatures of less than 160/sup 0/F. Most have temperatures of less than 100/sup 0/F. Because of the low temperature of the resource and, for the most part, the distance of the resource from any population base, the potential application types are somewhat restricted. Two of the 10 sites have significant potential in relation to local energy and economic requirements. Caliente has already partially developed the resource located under the community. It is now supplying some hot water and space heating needs for a trailer court, several homes, and a hospital. The energy already on-line in Caliente is making a significant impact on the economic base of the community and decreasing the demand for conventional energy resources. Recent studies have indicated the technical and economic feasibility of installing a district space heating system. If such a system were developed, it could only increase the economic benefits receeived from this alternative energy resource. Ash Springs has already been developed into a recreational area. Because of the high flow rate and the adequate water temperature of the resource, prawn or fish farming may have good potential at this site.

  13. Geothermal energy

    To put it simply, geothermal power is the utilization of the earth's natural heat. At many locations around the world, heat from the earth's mantle approaches close to the surface, chiefly in volcanically and or seismically active zones. Magnificent examples include the Big Island of Hawaii, Mount Pinatubo in the Philippines, Yellowstone, and Mt. St. Helens. Commercially viable sources of geothermal energy exist when the heat is close to the surface, a source of water can act as a heat transfer medium, and a geologic setting exists that contains the heat so it concentrates and doesn't dissipate. In addition, the heat must be adequate to provide temperatures at least above 290 degrees F to take advantage of currently available energy conversion technologies. This paper is directed toward the utilization of geothermal energy for power generation. It describes the industry today, the author's view of the benefits of geothermal power, and some measures that could increase the beneficial use of this power source

  14. GEOTHERMICS GEOLOGY

    2015-01-01

    20151090 Bian Huiying(School of Environmental Sciences and Engineering,Chang’an University,Xi’an 10054,China);Wang Shuangming Hydrodynamic Conditions of Geothermal Water in Gushi Depression of Guanzhong Basin(Coal Geology&Exploration;,ISSN1001-1986,CN61-1155/P,42(3),2014,p.50-54,60,9illus.,11refs.,

  15. GEOTHERMICS GEOLOGY

    2014-01-01

    <正>20140958 Mei Huicheng(No.915GeologicalBrigade,Jiangxi Bureau of Geology and Mineral Resources,Nanchang 330002,China);Li Zhongshe Geological Features and Causes of the Huihuang Geotherm in Xiushui,Jiangxi Province(Journal of Geological Hazards and

  16. Biological Sources of Branched Glycerol Dialkyl Glycerol Tetraethers (brGDGTs) in Terrestrial Hot Springs: A Possible Link Between Nitrogen-cycling Bacteria and brGDGT Production

    Wang, J. X.; Xie, W.; Boyd, E. S.; Hedlund, B. P.; Zhang, C.

    2014-12-01

    Branched glycerol dialkyl glycerol tetraethers (brGDGTs) are common in peat, soil, lakes, rivers and hot springs. To seek the potential biological sources of brGDGTs in geothermal environments, we investigated 65 hot springs in the Yellowstone National Park (USA) and Tengchong (China). Together with previously published data from hot springs in the Great Basin (USA) and Tibet (China), we found that the abundance of brGDGTs tended to peak in springs with pH > 8. This contrasts with previous observations indicating an abundance of brGDGTs in acidic soils and peat bogs, suggesting a different biological source and function for lipids in these environments. In support of this hypothesis, a comparison of Cyclization ratios of Branched Tetraethers (CBT) between hot springs and surrounding soils indicated that more brGDGTs with cyclopentane moieties were produced in alkaline hot springs than in nearby low-temperature soils. Since Acidobacteria (the likely source of brGDGTs in peat bog environments) tend to have low CBT ratios, these data suggest a different source for brGDGTs in hot spring environments. RDA and regression analysis integrating brGDGT compounds and nitrogen species indicate that Bacteria involved in the nitrogen biogeochemical cycle (ammonia oxidation and nitrite reduction) may be related to the production of brGDGTs in terrestrial hot springs. However, direct evidence showing the link between nitrogen-cycling bacteria and brGDGT production has yet to be demonstrated under laboratory conditions. Nevertheless, our study expands the possibility of brGDGT sources into bacterial communities in terrestrial geothermal systems where Acidobacteria are absent or only a minor component.

  17. 2012 geothermal energy congress. Proceedings

    ); (15) GEOGRUND*: Transfer of the TCS process into the borehole (David Sauer); (16) 'Heat-in-place-density' - An example for the evaluation of the geothermal potential in Saarland (Hagen Deckert); (17) Experiences of the acidity stimulation of geothermal aquifers and plants (Markus Wolfgramm); (18) Geothermal Atlas for the depiction of possible utilization competitions between CCS and deep geothermy - Methodology and results (E. Suchi); (19) Development of a cooling system for geothermal bore hole probes (Benedict Holbein); (20) Geothermal energy in the context of international radiation protection recommendations (Sebastian Feige); (21) Innovative treatment of groundwater as a condition of an efficient air conditioning in buildings by utilization of near-surface geothermal energy (C. Meyer); (22) Preparation of planning maps for the utilization of near-surface geothermal energy with geo-physical methods (Reinhard Kirsch); (23) Deep geothermal probe Heubach - Progress of the project and facility planning by using an application example (David Kuntz); (24) Realistic numeric models for the simulation of potential geothermal reservoirs in the north-west German basin (Dorothea Reyer); (25) Monobore tracer test sensitivity compared with crack parameters and rock parameter: Lection Horstberg (Iulia Ghergut); (26) Infrastructure of fault zones in red sandstone of the Upper Rhine basin - Digestion analogue studies (Johanna F. Bauer); (27) Characterization of fault zones in shell limestone of the Upper Rhine basin - Digestion analogue studies (Silke Meier).

  18. Geothermal resources in the Republic of Macedonia

    The Republic of Macedonia is situated in the central part of the Balcan Peninsula and covers a surface of 25. 713 km2 Its territory is found in one of the most significant geothermal zones in this part of Balkans. The earths crust in this region suffers poli phase structural deformations, which as a result gives different structural features. The geothermal explorations in the Republic of Macedonia intensively started to conduct after 1970, after the first effects of the energy crisis. As a result of these explorations, more than 50 springs of mineral and thermo mineral waters with a total yield of more than 1.400 I./sec. And proved exploitation reservoirs of more than 1.000 I./sec. with temperatures higher than the medium year seasons hesitations for this part of the Earth in the boundaries of 20-75oC with significant quantities of geothermal energy. This paper will shortly present the available geothermal resources and classification, according the type of geothermal energy, hydro geothermal, lithogeothermal and according the way of transport of the geothermal energy, convective and conductive systems. The next will present short descriptions of the resources, the degree of exploitation and the prognosis dimensions of the reservoirs. (Original)

  19. Geothermal tomorrow 2008

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  20. GEOTHERMICS GEOLOGY

    2013-01-01

    <正>20132568 Du Guilin(Seismological Bureau of Weihai City,Weihai 264200,China);Cao Wenhai Genesis of Baoquantang Hot Spring in Weihai and Its Influence on Faulting and Seismic Activities(Marine Geology&Quaternary Geology,ISSN0256-1492,CN37-1117/P,32(5),2012,p.67-72,3illus.,2tables,18refs.)Key words:hot springs,seismicity,Shandong Province

  1. Results of investigation at the Miravalles geothermal field, Costa Rica. Resultados de las investigaciones en el campo geotermico de Miravalles, Costa Rica; Parte 2, Muestreo de fluidos pozo abajo

    Grigsby, C.O.; Goff, F.; Trujillo, P.E. Jr.; Counce, D.A.; Dennis, B.; Kolar, J.; Corrales, R. (Los Alamos National Lab., NM (USA); Instituto Costarricense de Electricidad, San Jose (Costa Rica))

    1989-10-01

    Samples of the geothermal fluids in the Miravalles, Costa Rica, geothermal system were collected from production wellbores using downhole fluid samplers, from flowing wellheads using miniseparators, and from hot springs that discharge in the area. The reservoir fluid at Miravalles is a neutral-chloride-type water, but fumaroles and acid-sulfate springs are present within the main thermal area, and there are bicarbonate-rich hot springs that are clearly related to the neutral-chloride reservoir fluids. Dissolved gases are primarily a mixture of CO{sub 2} with air, but samples collected in the fumarolic areas also contain H{sub 2}S. Water-stable isotope analyses suggest local meteoric recharge, and the reservoir fluid shows oxygen isotopic shifts of about 2.5% due to high-temperature oxygen exchange between water and rock. Chemical geothermometer temperatures are consistent with the measured downhole temperature of 220{degrees} to 255{degrees}C. This pattern of neutral-chloride reservoir fluids with acid-sulfate springs near the source region and bicarbonate-rich chloride hot springs at the periphery of the system suggests a lateral outflow type of hydrothermal system. In addition to the geochemical evidence, temperature profiles from several of the wells show temperature reversals that are characteristic of lateral outflow plumes. We find no evidence for the underlying, higher temperature (300{degrees}C) system, which has been suggested by other investigators. 24 refs., 14 figs., 6 tabs.

  2. NANA Geothermal Assessment Program Final Report

    Jay Hermanson

    2010-06-22

    In 2008, NANA Regional Corporation (NRC) assessed geothermal energy potential in the NANA region for both heat and/or electricity production. The Geothermal Assessment Project (GAP) was a systematic process that looked at community resources and the community's capacity and desire to develop these resources. In October 2007, the US Department of Energy's Tribal Energy Program awarded grant DE-FG36-07GO17075 to NRC for the GAP studies. Two moderately remote sites in the NANA region were judged to have the most potential for geothermal development: (1) Granite Mountain, about 40 miles south of Buckland, and (2) the Division Hot Springs area in the Purcell Mountains, about 40 miles south of Shungnak and Kobuk. Data were collected on-site at Granite Mountain Hot Springs in September 2009, and at Division Hot Springs in April 2010. Although both target geothermal areas could be further investigated with a variety of exploration techniques such as a remote sensing study, a soil geochemical study, or ground-based geophysical surveys, it was recommended that on-site or direct heat use development options are more attractive at this time, rather than investigations aimed more at electric power generation.

  3. GEOTHERMICS GEOLOGY

    2011-01-01

    <正>20110367 Cheng Jian(College of Energy Resources,Chengdu University of Technology,Chengdu 610059,China);Wang Duoyi Research on the Wenchuan Earthquake "Endpoint Effect":On the Geothermal Anomaly in Longquanyi,Chengdu,Sichuan Province,China(Journal of Chengdu University of Technology,ISSN1671-9727,CN51-1634/N,37(2),2010,p.155-159,4 illus.,15 refs.)Key words:seismic effects,thermal

  4. GEOTHERMICS GEOLOGY

    2010-01-01

    <正>20102475 Chen Shiliang(No.4 Geological Party of Fujian Province,Ningde 352100,China)A Brief Analysis on Geothermy in the Nantai Isle of Fuzhou Municipality,Fujian Province(Geology of Fujian,ISSN1001-3970,CN35-1080/P,28(4),2009,p.310-314,1 illus.,1 table,3 refs.)Key words:geothermal exploration,Fujian ProvinceBased on the geochemistry and geophysical

  5. SPP retains interest in geothermal project

    Slovensky plynarensky priemysel (SPP) officially indicated that it intended to drop its project of using geothermal energy in the Kosicka kotlina. This spring it published an advert that it was looking for a company that wished to acquire a majority stake in the company, Geoterm Kosice. The company was established to commercially develop this geothermal source. But it seems SPP does not want to drop the project completely. It has kept some important cards, such as control over the land where the boreholes are located. Any company that wants to use geothermal energy needs a ruling issued by the Ministry of Environment defining the exploration area. Geothermal sources were found in the villages of Durkov, Svinica, Bidovce and Olsovany. Not so long ago the area was assigned to Geoterm but from May 9 2008 the area can be explored by Slovgeoterm. Both companies have the same majority shareholder - SPP. It controls 96% of Geoterm shares and 50% of Slovgeoterm. So far it has only officially announced its intention to sell the Geoterm shares. But as far as the use of the geothermal resource is concerned since May Slovgeoterm has played a key role.The company focuses on the utilization of geothermal energy. In addition to the project in the Kosice region, it has also participated in a project to heat more than a thousand flats using geothermal water in Galanta and a project to heat greenhouses in Podhajske. There are also other geothermal projects running in Presov and Michalovce. Icelandic company, Enex, with the same specialisation controls 28% of the company and a further 20% is owned by the investment group, NEFCO based in Helsinki. Two percent of the company is owned by its general director and the general proxy of Geoterm, Otto Halas. And so without the agreement of this company no-one can start any activities related to the utilization of geothermal energy. (authors)

  6. SPP retains interest in geothermal project

    Slovensky plynarensky priemysel (SPP) officially indicated that it intended to drop its project of using geothermal energy in the Kosicka kotlina. This spring it published an advert that it was looking for a company that wished to acquire a majority stake in the company, Geoterm Kosice. The company was established to commercially develop this geothermal source. But it seems SPP does not want to drop the project completely. It has kept some important cards, such as control over the land where the boreholes are located Any company that wants to use geothermal energy needs a ruling issued by the Ministry of Environment defining the exploration area. Geothermal sources were found in the villages of Durkov, Svinica, Bidovce and Olsovany. Not so long ago the area was assigned to Geoterm but from May 9 the area can be explored by Slovgeoterm. Both companies have the same majority shareholder - SPP. It controls 96% of Geoterm shares and 50% of Slovgeoterm. So far it has only officially announced its intention to sell the Geoterm shares. But as far as the use of the geothermal resource is concerned since May Slovgeoterm has played a key role.The company focuses on the utilization of geothermal energy. In addition to the project in the Kosice region, it has also participated in a project to heat more than a thousand flats using geothermal water in Galanta and a project to heat greenhouses in Podhajske. There are also other geothermal projects running in Presov and Michalovce. Icelandic company, Enex, with the same specialisation controls 28% of the company and a further 20% is owned by the investment group, NEFCO based in Helsinki. Two percent of the company is owned by its general director and the general proxy of Geoterm, Otto Halas. And so without the agreement of this company no-one can start any activities related to the utilization of geothermal energy. (authors)

  7. Site-specific analysis of hybrid geothermal/fossil power plants

    1977-06-01

    A preliminary economic analysis of a hybrid geothermal/coal power plant has been completed for four geothermal Resource areas: Roosevelt Hot Springs, Coso Hot Springs, East Mesa and Long Valley. A hybrid plant would be economically viable at Roosevelt Hot Springs and somewhat less so at Coso Hot Springs. East Mesa and Long Valley show no economic promise. A well-designed hybrid plant could use geothermal energy for boiler feedwater heating, auxiliary power, auxiliary heating, and cooling water. Construction and operation of a hybrid plant at either Roosevelt Hot Springs or Coso Hot Springs is recommended. Brown University provided the theoretical basis for the hybrid study. A modified version of the Lawrence Berkeley Livermore GEOTHM Program is the major analytical tool used in the analysis. The Intermountain Power Project is the reference all coal-fired plant. Costing methods followed recommendations issued by the Energy research and Development Administration.

  8. Fairbanks Geothermal Energy Project Final Report

    Karl, Bernie [CHSR,LLC Owner

    2013-05-31

    The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

  9. INTERACTIONS BETWEEN SOIL TEMPERATURE AND PLANT GROWTH STAGE ON NITROGEN UPTAKE AND AMINO ACID CONTENT OF APPLE NURSERY STOCK DURING EARLY SPRING GROWTH

    In the spring, nitrogen (N) uptake by apple roots is known to be delayed about three weeks after bud break. We used one-year-old 'Fuji' (Malus domestica Borkh) on M26 bare-root apple trees to determine whether timing of N uptake in the spring is dependant solely on the growth st...

  10. Geothermal energy in Washington: site data base and development status

    Bloomquist, R.G.

    1979-04-01

    This is an attempt to identify the factors which have affected and will continue to affect geothermal assessment and development in the state. The eight potential sites chosen for detailed analysis include: Indian Heaven KGRA, Mount St. Helens KGRA, Kennedy Hot Springs KGRA, Mount Adams PGRA (Potential Geothermal Resource Area), Mount Rainier PGRA, Mount Baker PGRA, Olympic-Sol Duc Hot Springs, and Yakima. The following information is included for each site: site data, site location and physical description, geological/geophysical description, reservoir characteristics, land ownership and leasing, geothermal development status, institutional characteristics, environmental factors, transportation and utilities, and population. A number of serious impediments to geothermal development were identified which can be solved only by legislative action at the state or federal level and/or changes in attitudes by regulatory agencies. (MHR)

  11. Applying spatial analysis techniques to assess the suitability of multipurpose uses of spring water in the Jiaosi Hot Spring Region, Taiwan

    Jang, Cheng-Shin

    2016-04-01

    The Jiaosi Hot Spring Region is located in northeastern Taiwan and is rich in geothermal springs. The geothermal development of the Jiaosi Hot Spring Region dates back to the 18th century and currently, the spring water is processed for various uses, including irrigation, aquaculture, swimming, bathing, foot spas, and recreational tourism. Because of the proximity of the Jiaosi Hot Spring Region to the metropolitan area of Taipei City, the hot spring resources in this region attract millions of tourists annually. Recently, the Taiwan government is paying more attention to surveying the spring water temperatures in the Jiaosi Hot Spring Region because of the severe spring water overexploitation, causing a significant decline in spring water temperatures. Furthermore, the temperature of spring water is a reliable indicator for exploring the occurrence and evolution of springs and strongly affects hydrochemical reactions, components, and magnitudes. The multipurpose uses of spring water can be dictated by the temperature of the water. Therefore, accurately estimating the temperature distribution of the spring water is critical in the Jiaosi Hot Spring Region to facilitate the sustainable development and management of the multipurpose uses of the hot spring resources. To evaluate the suitability of spring water for these various uses, this study spatially characterized the spring water temperatures of the Jiaosi Hot Spring Region by using ordinary kriging (OK), sequential Gaussian simulation (SGS), and geographical information system (GIS). First, variogram analyses were used to determine the spatial variability of spring water temperatures. Next, OK and SGS were adopted to model the spatial distributions and uncertainty of the spring water temperatures. Finally, the land use (i.e., agriculture, dwelling, public land, and recreation) was determined and combined with the estimated distributions of the spring water temperatures using GIS. A suitable development strategy

  12. [History of hot spring bath treatment in China].

    Hao, Wanpeng; Wang, Xiaojun; Xiang, Yinghong; Gu Li, A Man; Li, Ming; Zhang, Xin

    2011-07-01

    As early as the 7th century B.C. (Western Zhou Dynasty), there is a recording as 'spring which contains sulfur could treat disease' on the Wentang Stele written by WANG Bao. Wenquan Fu written by ZHANG Heng in the Easten Han Dynasty also mentioned hot spring bath treatment. The distribution of hot springs in China has been summarized by LI Daoyuan in the Northern Wei Dynasty in his Shuijingzhu which recorded hot springs in 41 places and interpreted the definition of hot spring. Bencao Shiyi (by CHEN Cangqi, Tang Dynasty) discussed the formation of and indications for hot springs. HU Zai in the Song Dynasty pointed out distinguishing hot springs according to water quality in his book Yuyin Conghua. TANG Shenwei in the Song Dynasty noted in Jingshi Zhenglei Beiji Bencao that hot spring bath treatment should be combined with diet. Shiwu Bencao (Ming Dynasty) classified hot springs into sulfur springs, arsenicum springs, cinnabar springs, aluminite springs, etc. and pointed out their individual indications. Geologists did not start the work on distribution and water quality analysis of hot springs until the first half of the 20th century. There are 972 hot springs in Wenquan Jiyao (written by geologist ZHANG Hongzhao and published in 1956). In July 1982, the First National Geothermal Conference was held and it reported that there were more than 2600 hot springs in China. Since the second half of the 20th century, hot spring sanatoriums and rehabilitation centers have been established, which promoted the development of hot spring bath treatment. PMID:22169492

  13. Alaska geothermal bibliography

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  14. Fault controlled geochemical properties in Lahendong geothermal reservoir Indonesia

    Brehme, Maren; Deon, Fiorenza; Haase, Christoph; Wiegand, Bettina; Kamah, Yustin; Sauter, Martin; Regenspurg, Simona

    2016-03-01

    Rock and fluid geochemical data from Lahendong, Indonesia, were analyzed to evaluate the influence of fault zones on reservoir properties. It was found that these properties depend on fault-permeability controlled fluid flow. Results from measurements of spring and well water as well as rocks and their hydraulic properties were combined with hydrochemical numerical modeling. The models show that the geothermal field consists of two geochemically distinct reservoir sections. One section is characterized by acidic water, considerable gas discharge and high geothermal-power productivity—all related to increased fault zone permeability. The other section is characterized by neutral water and lower productivity. Increased fluid flow in the highly fractured and permeable areas enhances chemical reaction rates. This results in strong alteration of their surrounding rocks. Numerical models of reactions between water and rock at Lahendong indicate the main alteration products are clay minerals. A geochemical conceptual model illustrates the relation between geochemistry and permeability and their distribution within the area. Our conceptual model illustrates the relation between geochemistry and fault-zone permeability within the Lahendong area. Further mapping of fault-related permeability would support sustainable energy exploitation by avoiding low-productive wells or the production of highly corroding waters, both there and elsewhere in the world.

  15. A preliminary conceptual geothermal model of the geothermal system of Kibiro, Uganda

    Kibiro hot springs discharge water of Na-Cl type, and of neutral pH with 5 g/L of total dissolved solids. In order to provide hydrological information for the assessment of fluid origin and geothermal energy potential of hot springs in the geothermal prospect, water and rock samples from 39 sampling sites (30 cold water, 4 hot water and 5 rocks) including Lake Albert, rivers, boreholes, dug wells and a rainfall sample as well as hot springs were collected for chemical, isotopic (δ18O and δ2H), Tritium, δ34SSO4 and δ18OSO4 and 87Sr/86Sr isotope analyses from 1999 to 2002. (author)

  16. Structural control on geothermal circulation in the Tocomar geothermal volcanic area (Puna plateau, Argentina)

    Giordano, Guido

    2016-04-01

    The reconstruction of the stratigraphical-structural framework and the hydrogeology of geothermal areas is fundamental for understanding the relationships between cap rocks, reservoir and circulation of geothermal fluids and for planning the exploitation of the field. The Tocomar geothermal volcanic area (Puna plateau, Central Andes, NW Argentina) has a high geothermal potential. It is crossed by the active NW-SE trans-Andean tectonic lineament known as the Calama-Olacapato-Toro (COT) fault system, which favours a high secondary permeability testified by the presence of numerous thermal springs. This study presents new stratigraphic, structural, volcanological, geochemical and hydrogeological data on the geothermal field. Our data suggest that the main geothermal reservoir is located within or below the Pre-Palaeozoic-Ordovician basement units, characterised by unevenly distributed secondary permeability. The reservoir is recharged by infiltration in the ridges above 4500 m a.s.l., where basement rocks are in outcrop. Below 4500 m a.s.l., the reservoir is covered by the low permeable Miocene-Quaternary units that allow a poor circulation of shallow groundwater. Geothermal fluids upwell in areas with more intense fracturing, especially where main regional structures, particularly NW-SE COT-parallel lineaments, intersect with secondary structures, such as at the Tocomar field.

  17. Resource investigation of low- and moderate-temperature geothermal areas in San Bernardino, California. Part of the third year report, 1980-81, of the US Department of Energy-California State-Coupled Program for Reservoir Assessment and Confirmation

    Youngs, L.G.; Bezore, S.P.; Chapman, R.H.; Chase, G.W.

    1981-08-01

    Ninety-seven geothermal wells and springs were identified and plotted on a compiled geologic map of the 40-square-mile study area. These wells and springs were concentrated in three distinguishable resource areas: Arrowhead Hot Springs; South San Bernardino; and Harlem Hot Springs - in each of which detailed geophysical, geochemical, and geological surveys were conducted. The Arrowhead Hot Springs geothermal area lies just north of the City of San Bernardino in the San Bernardino Mountains astride a shear zone (offshoot of the San Andreas fault) in pre-Cambrian gneiss and schist. The Harlem Hot Springs geothermal area, on the east side of the City, and the south San Bernardino geothermal area, on the south side, have geothermal reservoirs in Quaternary alluvial material which overlies a moderately deep sedimentary basin bound on the southwest by the San Jacinto fault (a ground water barrier). Geothermometry calculations suggest that the Arrowhead Hot Springs geothermal area, with a maximum reservoir temperature of 142/sup 0/C, may have the highest maximum reservoir temperature of the three geothermal areas. The maximum temperature recorded by CDMG in the south San Bernardino geothermal area was 56/sup 0/C from an artesian well, while the maximum temperature recorded in the Harlem Hot Springs geothermal area was 49.5/sup 0/C at 174 meters (570 feet) in an abandoned water well. The geophysical and geological surveys delineated fault traces in association with all three of the designated geothermal areas.

  18. Prefeasibility geothermal assessment of Platanares, Department of Copan, Honduras

    Goff, S.; Goff, F.; Heiken, G.; Duffield, W.A.; Truesdell, A.H.; Laughlin, A.W.; Flores, W.

    1989-01-01

    The Platanares geothermal system is located in a region of active Quaternary tectonism in western Honduras. Although the geothermal area is partially blanketed by Miocene ignimbrites (14.5 m.y.), there are no nearby Quaternary volcanic rocks to act as a young magmatic heat source. No acid-sulfate waters, indicative of vapor-dominated conditions, exist in the area. Hot spring activity is most vigorous along a 2 km stretch of the Quebrada del Agua Caliente fault zone. Natural discharge is high (/approximately/3300 l/min), temperatures range from 35 to 100/degree/C, pH ranges from 7 to 9, and totally dissolved solids are low (/approximately/1100 mg/kg). Chemical geothermometers indicate a subsurface reservoir temperature of about 225/degree/C. Three exploration core holes (7.8 cm diameter) have been drilled to a maximum depth of 680 m and maximum temperature of 165/degree/C. Two holes produce copious amounts of water under artesian conditions (/approximately/500 l/min max; 5 bars flowing) from fractured red beds of Cretaceous to Eocene age (Valle de Angeles Group). Maximum power output is /approximately/4.5 MW (thermal) but CO/sub 2/ released during flashing formed some aragonite scale in one hole. The third core hole has an ''apparent'' conductive gradient of 139/degree/C/km at 400 m. Downward continuation of this gradient implies that the minimum depth to the geothermal resource (225/degree/C) is 1.5 to 2.0 km. 13 refs., 4 figs.

  19. Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2004-01-01

    "Hidden" geothermal systems are those systems above which hydrothermal surface features (e.g., hot springs, fumaroles, elevated ground temperatures, hydrothermal alteration) are lacking. Emissions of moderate to low solubility gases (e.g., CO2, CH4, He) may be one of the primary near-surface signals from these systems. Detection of anomalous gas emissions related to hidden geothermal systems may therefore be an important tool to discover new geothermal resources. This study investigates ...

  20. Industrial application of geothermal energy in Southeast Idaho

    Batdorf, J.A.; McClain, D.W.; Gross, M.; Simmons, G.M.

    1980-02-01

    Those phosphate related and food processing industries in Southeastern Idaho are identified which require large energy inputs and the potential for direct application of geothermal energy is assessed. The total energy demand is given along with that fractional demand that can be satisfied by a geothermal source of known temperature. The potential for geothermal resource development is analyzed by examining the location of known thermal springs and wells, the location of state and federal geothermal exploration leases, and the location of federal and state oil and gas leasing activity in Southeast Idaho. Information is also presented regarding the location of geothermal, oil, and gas exploration wells in Southeast Idaho. The location of state and federal phosphate mining leases is also presented. This information is presented in table and map formats to show the proximity of exploration and development activities to current food and phosphate processing facilities and phosphate mining activities. (MHR)

  1. Geothermal energy from theoretical models to exploration and development

    Stober, Ingrid

    2013-01-01

    The internal heat of the planet Earth represents an inexhaustible reservoir of thermal energy. This form of energy, known as geothermal energy has been utilized throughout human history in the form of hot water from hot springs. Modern utilization of geothermal energy includes direct use of the heat and its conversion to other forms of energy, mainly electricity. Geothermal energy is a form of renewable energy and its use is associated with very little or no CO2-emissions and its importance as an energy source has greatly increased as the effects of climate change become more prominent. Becaus

  2. Characteristics and Origins of Hot Springs in the Tatun Volcano Group in Northern Taiwan

    Chia-Mei Liu

    2011-01-01

    Full Text Available This paper systematically surveyed distribution and field occurrences of 13 hot springs as well as geochemical investigation on the geothermal area of the Tatun Volcano Group (TVG. According to Piper diagrams, pH values, field occurrences and water-rock interactions, these hot springs can be classified into three types: (1 Type I, SO42- acidic water where the reservoir is located in the Wuchishan Formation; (2 Type II, HCO3- a near neutral spring where waters originate from the volcanic terrane (andesite; and (3 Type III, Cl- -rich acidic water where waters emanate from shallower Wuchishan Formation. In terms of isotopic ratio, δD and δ18O values, two groups of hot spring can be recognized. One is far away from the meteoric water line of the Tatun area with values ranging between -26.2‰ and -3.5‰, and from -3.2‰ to 1.6‰, respectively. However, another close to the meteoric water line of the Tatun area is between -28.4‰ and -13.6‰, and from -5.5‰ to -4.2‰, respectively. In addition, the δ34S value of thermal waters can also be distinguished into two groups, one ranging from 26.1‰ to 28.5‰, and the other between 0.8‰ and 7.8‰. Based on field occurrences and geochemical characteristics, a model has been proposed to illustrate the origin of these hot springs.

  3. Low-temperature geothermal resources of Washington

    Schuster, J.E. [Washington State Dept. of Natural Resources, Olympia, WA (United States). Div. of Geology and Earth Resources; Bloomquist, R.G. [Washington State Energy Office, Olympia, WA (United States)

    1994-06-01

    This report presents information on the location, physical characteristics, and water chemistry of low-temperature geothermal resources in Washington. The database includes 941 thermal (>20C or 68F) wells, 34 thermal springs, lakes, and fumaroles, and 238 chemical analyses. Most thermal springs occur in the Cascade Range, and many are associated with stratovolcanoes. In contrast, 97 percent of thermal wells are located in the Columbia Basin of southeastern Washington. Some 83.5 percent are located in Adams, Benton, Franklin, Grant, Walla Walla, and Yakima Counties. Yakima County, with 259 thermal wells, has the most. Thermal wells do not seem to owe their origin to local sources of heat, such as cooling magma in the Earth`s upper crust, but to moderate to deep circulation of ground water in extensive aquifers of the Columbia River Basalt Group and interflow sedimentary deposits, under the influence of a moderately elevated (41C/km) average geothermal gradient.

  4. Biogeographic patterns of desert springs in the Great Basin with an emphasis on regional aquifer thermal springs as refugia for vulnerable crenobiotic species

    Forrest, M.; Sada, D. W.; Norris, R. D.

    2013-12-01

    The desert springs of the Great Basin Region in western North America provide ideal systems to study biogeographic and evolutionary patterns. In arid regions, springs are biodiversity hotspots because they often provide the sole source of water for the biota within and around them. In the Great Basin, springs provide critical habitat for diverse and extensive crenobiotic flora and fauna comprising over 125 endemic species. These aquatic environments represent island ecosystems surrounded by seas of desert, and researchers have compiled large databases of their biota and chemistry. Consequently, desert springs are excellent systems for biogeographic studies and multivariate statistical analyses of relationships between the chemical and physical characteristics of the springs and the biological communities that they support. The purpose of this study is to elucidate the relationships between the physicochemical characteristics of springs and their biota using multivariate statistical analyses to characterize 1325 springs, including regional aquifer springs, local aquifer cold springs and geothermal springs. The analyses reveal that regional aquifer thermal springs harbor disproportionate numbers of crenobiotic species including endemic gastropods, fishes, and aquatic insects. However, these regional aquifer springs also contain significantly more introduced species than cold and geothermal local aquifer springs. Springs are threatened by anthropogenic impacts including groundwater depletion and pollution, alteration of flow regimes, and the introduction of exotic species. In this study, one of the major factors that distinguished regional aquifer thermal springs from cold and geothermal local aquifer springs was the higher number of introduced species found in regional aquifer springs. This may be due to the influences of the same physicochemical characteristics that allow regional aquifer springs to serve as refugia for endemic species--species that are able to gain

  5. Biomass and Neutral Lipid Production in Geothermal Microalgal Consortia

    Kathryn Faye Bywaters

    2015-02-01

    Full Text Available Recently, technologies have been developed that offer the possibility of using algal biomass as feedstocks to energy producing systems- in addition to oil-derived fuels (Bird et al., 2011;Bird et al., 2012. Growing native mixed microalgal consortia for biomass in association with geothermal resources has the potential to mitigate negative impacts of seasonally low temperatures on biomass production systems as well as mitigate some of the challenges associated with growing unialgal strains. We assessed community composition, growth rates, biomass and neutral lipid production of microalgal consortia obtained from geothermal hot springs in the Great Basin/Nevada area that were cultured under different thermal and light conditions. Biomass production rates ranged from 368 to 3246 mg C L-1 d-1. The neutral lipid production in these consortia with and without shifts to lower temperatures and additions of bicarbonate (both environmental parameters that have been shown to enhance neutral lipid production ranged from zero to 38.74 mg free fatty acids and triacylglycerols L-1 d-1, the upper value was approximately 6% of the biomass produced. The higher lipid values were most likely due to the presence of Achnanthidium sp. Palmitic and stearic acids were the dominant free fatty acids. The S/U ratio (the saturated to unsaturated FA ratio decreased for cultures shifted from their original temperature to 15°C. Biomass production was within the upper limits of those reported for individual strains, and production of neutral lipids was increased with secondary treatment – all results demonstrate a potential of culturing and manipulating resultant microalgal consortia for biomass-based energy production and perhaps even for biofuels.

  6. Variable stiffness torsion springs

    Alhorn, Dean C. (Inventor); Polites, Michael E. (Inventor)

    1995-01-01

    In a torsion spring the spring action is a result of the relationships between the torque applied in twisting the spring, the angle through which the torsion spring twists, and the modulus of elasticity of the spring material in shear. Torsion springs employed industrially have been strips, rods, or bars, generally termed shafts, capabable of being flexed by twisting their axes. They rely on the variations in shearing forces to furnish an internal restoring torque. In the torsion springs herein the restoring torque is external and therefore independent of the shearing modulus of elasticity of the torsion spring shaft. Also provided herein is a variable stiffness torsion spring. This torsion spring can be so adjusted as to have a given spring constant. Such variable stiffness torsion springs are extremely useful in gimballed payloads such as sensors, telescopes, and electronic devices on such platforms as a space shuttle or a space station.

  7. Southwest Alaska Regional Geothermal Energy Projec

    Holdmann, Gwen [Univ. of Alaska, Fairbanks, AK (United States)

    2015-04-30

    Drilling and temperature logging campaigns between the late 1970's and early 1980’s measured temperatures at Pilgrim Hot Springs in excess of 90°C. Between 2010 and 2014 the University of Alaska used a variety of methods including geophysical surveys, remote sensing techniques, heat budget modeling, and additional drilling to better understand the resource and estimate the available geothermal energy.

  8. Guidebook to Geothermal Finance

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  9. Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas

    Foley, D.; Dorscher, M.

    1982-11-01

    Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

  10. Geothermal reservoir at Tatapani Geothermal field, Surguja district, Madhya Pradesh, IN

    Pitale, U.L.; Sarolkar, P.B.; Rawat, H.S.; Shukia, S.N.

    1996-01-24

    The Tatapani Geothermal field, located on the Son-Narmada mega lineament is one of the most intense geothermal manifestation, with hot spring temperature of 98°c. in Central India. 21 Exploratory and thermal gradient boreholes followed by 5 production wells for proposed 300 KWe binary cycle power plant, have revealed specific reservoir parameters of shallow geothermal reservoir of 110°c in upper 350 m of geothermal system and their possible continuation to deeper reservoir of anticipated temperature of 160 ± 10°c. Testing of five production wells done by Oil and Natural Gas Corporation concurrently with drilling at different depths and also on completion of drilling, have established feeder zones of thermal water at depth of 175-200 m, 280-300 m, maximum temperature of 112.5°c and bottom hole pressure of 42 kg/cm². Further interpretation of temperature and pressure profiles, injection test, well head discharges and chemical analysis data has revealed thermal characteristics of individual production wells and overall configuration of .thermal production zones with their permeability, temperature, and discharge characteristics in the shallow thermal reservoir area. Well testing data and interpretation of reservoir parameters therefrom, for upper 350 m part of geothermal system and possible model of deeper geothermal reservoir at Tatapani have been presented in the paper.

  11. Monitoring Biological Activity at Geothermal Power Plants

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  12. South Dakota geothermal handbook

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  13. 春天%Spring

    2009-01-01

    @@ Days get longer and warmer in the spring. There are new leaves on the trees. Flowers begin to grow. Spring rain makes the grass green and helps the plants grow. Nature wears new clothes in many colors red, yellow, blue, white and purple. Spring is the time of new life. I love spring.

  14. Geothermal power engineering abroad

    The history, status and development prospects of geothermal power engineering in different countries are discussed. The role of geothermal electric power plants in energy balance of most of countries is not large nowadays. It is supposed that the total power of the World geothermal plants will achieve 17600 MW till 2000

  15. A preliminary conceptual geothermal model of the geothermal system of Kibiro, Uganda

    Full text: The most relevant results obtained through the present study, carried out in the frame of a cooperation project 'Isotope Hydrology for Exploring Geothermal Resources - UGA/8/003' between GSMD and IAEA are as follows: Hot springs, cold ground waters, surface waters and the lone precipitation water all plot on the local water meteoric line, confirming the meteoric origin of the water circulating in the geothermal system. The source of recharge is tentatively taken to be the high ground comprising the fault-controlled Mukihani-Waisembe ridge, 20km east of Kibiro. However, the hot springs and a lone warm spring at Kibiro geothermal system show δ18O enrichment of about 1 per mille, which is indicative of water-rock interaction, consequent upon high-temperature conditions prevalent in the reservoir. Limited δ18O enrichment is observed in a few ground water boreholes, also as a result of water-rock interaction due to the influence of the hydrothermal system. This is corroborated by geology, where the escarpment zone rocks are found to be relatively more altered than those farther away. The warm spring (T=39.5 deg. C) plots differently from the rest of the hot springs for it presents the highest values for SiO2 (135mg/l), but still shows an oxygen shift of about the same magnitude. This may be explained by conductive cooling without loosing silica. The chemical composition of the hot springs at Kibiro geothermal area are dominated by sodium chloride, which is likely to be hydrothermal in origin, making the application of conventional geothermometers to the geochemical evaluation of the geothermal system possible. There is evidence that a little gypsum (CaSO4 · 2H2O) is present at Kibiro. Relatively high fluoride and the geothermal conservative species (Cl, B, Li) concentrations in the hot springs are related to the underground temperature (SiO2 content), suggesting that their source is likely hydrothermal. The 1993 geochemistry indicates a mixing process in

  16. Isotope and hydrogeochemical studies of southern Jiangxi geothermal systems, China

    Southern Jiangxi is a geothermally active region, especially in Hengjing area. According to the work plan of IAEA Regional Collaboration in the Development of Geothermal Energy Resources and Environment Management through Isotope Techniques in East Asia and the Pacific (RAS-8-075), field investigation was carried out in Hengjing, southern Jiangxi Province, to demonstrate the use of isotope and geochemical techniques in low to medium temperature geothermal system. During the field investigation, 19 samples were taken from cold springs, hot springs and surface water in the area to determine their hydrochemical and gas compositions, hydrogen, oxygen, carbon and helium isotopes. The results of the study have shown that the geothermal waters in the studying region are of the same characteristics with the local meteoric water in oxygen and hydrogen isotope composition, indicating the geothermal waters are mainly derived from the local precipitation, while the gas composition and carbon and helium isotopes reveal that some gases in the geothermal waters have mantle origin. (author)

  17. Geothermal Direct Heat Applications Program Summary

    None

    1981-09-25

    Because of the undefined risk in the development and use of geothermal energy as a thermal energy source, the Department of Energy Division of Geothermal Energy solicited competitive proposals for field experiments in the direct use of geothermal energy. Twenty-two proposals were selected for cost-shared funding with one additional project co-funded by the State of New Mexico. As expected, the critical parameter was developing a viable resource. So far, of the twenty resources drilled, fourteen have proved to be useful resources. These are: Boise, Idaho; Elko heating Company in Nevada; Pagosa Springs, Colorado; Philip School, Philip, South Dakota; St. Mary's Hospital, Pierre, South Dakota; Utah Roses near Salt Lake City; Utah State Prison, Utah; Warm Springs State Hospital, Montana; T-H-S Hospital, Marlin, Texas; Aquafarms International in the Cochella Valley, California; Klamath County YMCA and Klamath Falls in Oregon; Susanville, California and Monroe, utah. Monroe's 164 F and 600 gpm peak flow was inadequate for the planned project, but is expected to be used in a private development. Three wells encountered a resource insufficient for an economical project. These were Madison County at Rexburg, Idaho; Ore-Ida Foods at Ontario, Oregon and Holly Sugar at Brawley, California. Three projects have yet to confirm their resource. The Navarro College well in Corsicana, Texas is being tested; the Reno, Moana, Nevada well is being drilled and the El Centro, California well is scheduled to be drilled in January 1982. The agribusiness project at Kelly Hot Springs was terminated because a significant archeological find was encountered at the proposed site. The Diamond Ring Ranch in South Dakota, and the additional project, Carrie Tingley Hospital in Truth or Consequences, New Mexico both used existing wells. The projects that encountered viable resources have proceeded to design, construct, and in the most advanced projects, to operate geothermal systems for

  18. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1

  19. World geothermal congress

    The World geothermal congress took place in the period from 28 May up to 10 June 2000 in Japan. About 2000 men from 43 countries, including specialists in the area of developing geothermal fields, creating and operating geothermal electrical and thermal plants and various systems for the earth heat application, participated in the work of the Congress. It was noted at the Congress, that development of the geothermal power engineering in the world is characterized by the large-scale application of geothermal resources for the electrical energy generation

  20. The indication of geothermal events by helium and carbon isotopes of hydrothermal fluids in south China

    Helium and carbon isotopes are important indicators for identifying the origin of volatiles dissolved in groundwater. Four thermal springs and another twelve normal springs are hosted by local deep faults in south China, which are considered to have significant connection to deep geothermal activity. Between 4% and 6% mantle He in thermal springs reveals that significant mantle He migration in deep faults can bring a certain amount of energy, along with thermal volatiles, and contribute to thermal spring formation according to 3He/4He. While δ13C reveals that dissolved inorganic carbon in thermal springs is from rock metamorphism that occurred in certain deep crust as geothermal activity, which is potentially the main energy source of the thermal springs. (authors)

  1. Geothermal for kids

    This paper reports that educating children about geothermal energy is crucial to the future growth of the geothermal industry. The Geothermal Education Office (GEO) was founded in 1989 to provide materials and support to teachers and the geothermal community in educating grades K-12 about geothermal energy. GEO's goals are to: provide easy access to or referral to appropriate sources of geothermal information; foster teacher interest; create posters, booklets, lesson plans and other educational materials; monitor and review textbooks, encyclopedias and other educational materials distributed by educational groups to ensure inclusion of appropriate, accurate information and to encourage fair treatment of alternative energy resources; contribute articles to industry, science and educational publications; and foster communication and cooperation among GEO, the geothermal industry, government agencies, and educational and environmental groups

  2. Geothermal energy in Jordan

    The potential of geothermal energy utilization in Jordan was discussed. The report gave a summary of the location of geothermal anomalies in Jordan, and of ongoing projects that utilize geothermal energy for greenhouse heating, fish farming, refrigeration by absorption, and water desalination of deep aquifers. The problems facing the utilization of geothermal energy in Jordan were identified to be financial (i.e. insufficient allocation of local funding, and difficulty in getting foreign financing), and inadequate expertise in the field of geothermal energy applications. The report gave a historical account of geothermal energy utilization activities in Jordan, including cooperation activities with international organizations and foreign countries. A total of 19 reports already prepared in the areas of geochemical and hydrological studies were identified. The report concluded that the utilization of geothermal energy offers some interesting economic possibilities. (A.M.H.). 4 refs. 1 map

  3. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes

    Highlights: • Unique geothermal resources in Tibetan Plateau were discussed. • Isotopes were used to trace circulation of geothermal water. • Magmatic water mixing dominates geothermal water evolution. - Abstract: With the uplift of the Tibetan Plateau, many of the world’s rarest and most unique geothermal fields have been developed. This study aims to systematically analyze the characteristics of the hydrogen and oxygen isotopic data of geothermal, river, and lake waters to understand the circulation of groundwater and to uncover the mechanism of geothermal formation in the Tibetan Plateau. Field observations and isotopic data show that geothermal water has higher temperatures and hydraulic pressures, as well as more depleted D and 18O isotopic compositions than river and lake waters. Thus, neither lakes nor those larger river waters are the recharge source of geothermal water. Snow-melt water in high mountains can vertically infiltrate and deeply circulate along some stretching tensile active tectonic belts or sutures and recharge geothermal water. After deep circulation, cold surface water evolves into high-temperature thermal water and is then discharged as springs at the surface again in a low area, under high water-head difference and cold–hot water density difference. Therefore, the large-scale, high-temperature, high-hydraulic-pressure geothermal systems in the Tibetan Plateau are developed and maintained by rapid groundwater circulation and the heat source of upwelled residual magmatic water. Inevitably, the amount of geothermal water will increase if global warming accelerates the melting of glaciers in high mountains

  4. Korarchaeota diversity, biogeography, and abundance in Yellowstone and Great Basin hot springs and ecological niche modeling based on machine learning.

    Robin L Miller-Coleman

    Full Text Available Over 100 hot spring sediment samples were collected from 28 sites in 12 areas/regions, while recording as many coincident geochemical properties as feasible (>60 analytes. PCR was used to screen samples for Korarchaeota 16S rRNA genes. Over 500 Korarchaeota 16S rRNA genes were screened by RFLP analysis and 90 were sequenced, resulting in identification of novel Korarchaeota phylotypes and exclusive geographical variants. Korarchaeota diversity was low, as in other terrestrial geothermal systems, suggesting a marine origin for Korarchaeota with subsequent niche-invasion into terrestrial systems. Korarchaeota endemism is consistent with endemism of other terrestrial thermophiles and supports the existence of dispersal barriers. Korarchaeota were found predominantly in >55°C springs at pH 4.7-8.5 at concentrations up to 6.6×10(6 16S rRNA gene copies g(-1 wet sediment. In Yellowstone National Park (YNP, Korarchaeota were most abundant in springs with a pH range of 5.7 to 7.0. High sulfate concentrations suggest these fluids are influenced by contributions from hydrothermal vapors that may be neutralized to some extent by mixing with water from deep geothermal sources or meteoric water. In the Great Basin (GB, Korarchaeota were most abundant at spring sources of pH<7.2 with high particulate C content and high alkalinity, which are likely to be buffered by the carbonic acid system. It is therefore likely that at least two different geological mechanisms in YNP and GB springs create the neutral to mildly acidic pH that is optimal for Korarchaeota. A classification support vector machine (C-SVM trained on single analytes, two analyte combinations, or vectors from non-metric multidimensional scaling models was able to predict springs as Korarchaeota-optimal or sub-optimal habitats with accuracies up to 95%. To our knowledge, this is the most extensive analysis of the geochemical habitat of any high-level microbial taxon and the first application of a C

  5. Corrosion Properties of a Volcanic Hot Spring

    Lichti, K. L.; Braham, V. J.; Engelberg, D.; Sanada, N.; Kurata, J.; Nanjo, H.; Ikeuchi, J.; Christenson, B.W.

    1998-01-01

    Volcanic hot pools on White Island, New Zealand provide ready access to acidic fluids at atmospheric pressure. These hot pools can be used to study the corrosion properties of construction materials that might be used for energy production from deep-seated and magma-ambient geothermal systems, or from shallow resources producing acidic fluids. corrosion results for a 1,hot pool are presented. A select group of moderate and high alloy materials appear suitable for energy plant applications. Ch...

  6. Geothermal energy: opportunities for California commerce. Phase I report

    1982-01-01

    California's geographic and end-use markets which could directly use low and moderate temperature geothermal resources are ranked and described, as well as those which have the highest potential for near-term commercial development of these resources. Building on previous market surveys, the assessment determined that out of 38 geothermal resource areas with characteristics for direct use development, five areas have no perceived impediments to near-term development: Susanville, Litchfield, Ontario Hot Springs, Lake Elsinore, and the Salton Sea Geothermal Field. Twenty-nine applications were compared with previously selected criteria to determine their near-term potential for direct use of geothermal fluids. Seven categories were found to have the least impediments to development; agriculture and district heating applications are considered the highest. Ten-year projections were conducted for fossil fuel displacement from the higher rated applications. It is concluded that greenhouses have the greatest displacement of 18 x 10/sup 6/ therms per year.

  7. Instant Spring Tool Suite

    Chiang, Geoff

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. A tutorial guide that walks you through how to use the features of Spring Tool Suite using well defined sections for the different parts of Spring.Instant Spring Tool Suite is for novice to intermediate Java developers looking to get a head-start in enterprise application development using Spring Tool Suite and the Spring framework. If you are looking for a guide for effective application development using Spring Tool Suite, then this book is for you.

  8. 温泉旅游产业带动阜新经济转型%Impetus of thermal spring tourism to Fuxin economic transformation

    刘彦鸿

    2013-01-01

    To promote Fuxin economic transformation, based on the guidance of industrial structure adjustment, analyses were made of the reserves, quality, and development condi-tions of thermal spring in Fuxin. Findings confirmed that the thermal spring of Fuxin be-longs to medium temperature, medium-sized geothermal field. Tests show that Fuxin geo-thermal thermal spring is a weak alkaline thermal spring and rich in multiple minerals such as borate, silica acid, lithium, selenium and trace elements. In order to drive the Fux-in economic transformation, measures of developing thermal spring industry are offered in planning and designing of high quality, steady construction of the infrastructure facilities, and quickly propelling the construction of zone-entering projects.%  针对阜新经济转型问题,以产业结构理论调整为指导,分析了阜新温泉储量、品质、开发条件等,确定阜新温泉属于中温、中型地热田,阜新地热温泉中含有丰富的偏硼酸、偏硅酸、锂、硒等多种矿物质和微量元素,属于弱碱性温泉,提出高标准规划设计、扎实作好温泉城基础设施建设、加快推进入园项目建设等措施发展温泉产业,带动阜新经济转型。

  9. Geothermal energy statistics 2002-2003 for Switzerland

    Herein, the Swiss geothermal energy production of the years 2002 and 2003 is statistically compiled. Again, an increase of the total geothermal-driven energy can be noted, reaching more than 1.1 TWh, with a geothermal energy share greater than 860 GWh. (The difference is the non-geothermal energy needed by the heat pump systems involved.) Since 2000 the installed capacity could be increased by 20%, i.e. 40 MW per year. Geothermal energy is mainly used in combination with heat pump- (HP-) systems for heating purposes (>700 GWh), of which >80% are produced by borehole heat exchanger (BHE) systems. The remaining HP-utilization splits up into ground water utilization (about 15%), deep BHE, foundation pile systems and tunnel water. Non HP-dependent geothermal utilizations are mainly thermal-springs applications for balneological use. Their contribution is nearly constant over the year. Together with the HP sales figures, the BHE drilling meters are now included in the present statistics. Since 2003, the compilation of the drilled lengths also includes the specifications of BHE fields with more than 10 BHE each. Such BHE fields make up >10% of the total drilled length. More and more frequently, such fields are used for the cooling of buildings as well. In order to clearly display these geothermal applications in the future, such BHE fields should be systematically registered, as it is now done for foundation pile systems and BHE systems. Of great importance for the promotion of geothermal energy are the activities of the Center of Competence 'Geothermal energy' and its regional information centers. The currently available funding allows the financing of information and know-how dissemination as well as education. All of these activities are essential for a further increase in geothermal energy production. (author)

  10. Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico

    Hydrothermal alteration at Los Azufres geothermal field is mostly propylitic with a progressive dehydration with depth and temperature increase. Argillic and advanced argillic zones overlie the propylitic zone owing to the activity of gases in the system. The deepest fluid inclusions (proto-fluid) are liquid-rich with low salinity, with NaCl dominant fluid type and ice melting temperatures (Tmi) near zero (0 deg C), and salinities of 0.8 wt% NaCl equivalent. The homogenization temperature (Th) = 325 ± 5 deg C. The boiling zone shows Th = ±300 deg C and apparent salinities between 1 and 4.9 wt% NaCl equivalent, implying a vaporization process and a very important participation of non-condensable gases (NCGs), mostly CO2. Positive clathrate melting temperatures (fusion) with Th = 150 deg C are observed in the upper part of the geothermal reservoir (from 0 to 700 m depth). These could well be the evidence of a high gas concentration. The current water produced at the geothermal wells is NaCl rich (geothermal brine) and is fully equilibrated with the host rock at temperatures between T = 300 and 340 deg C. The hot spring waters are acid-sulfate, indicating that they are derived from meteoric water heated by geothermal steam. The NCGs related to the steam dominant zone are composed mostly of CO2 (80-98% of all the gases). The gases represent between 2 and 9 wt% of the total mass of the fluid of the reservoir. The authors interpret the evolution of this system as deep liquid water boiling when ascending through fractures connected to the surface. Boiling is caused by a drop of pressure, which favors an increase in the steam phase within the brine ascending towards the surface. During this ascent, the fluid becomes steam-dominant in the shallowest zone, and mixes with meteoric water in perched aquifers. Stable isotope compositions (δ18O-δD) of the geothermal brine indicate mixing between meteoric water and a minor magmatic component. The enrichment in δ18O is due to