WorldWideScience

Sample records for acidic aqueous solutions

  1. Acetic acid extraction from aqueous solutions using fatty acids

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  2. NIR Spectroscopic Properties of Aqueous Acids Solutions

    Mohd Zubir MatJafri

    2012-06-01

    Full Text Available Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R2 above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918–925 nm and 990–996 nm, while at 975 nm for water.

  3. Uranyl fluoride luminescence in acidic aqueous solutions

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 ± 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO4 at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO2F2. Studies on the effect of added LiNO3 or Na2WO4·2H2O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF6 content of WF6 gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF6

  4. Acidities of Water and Methanol in Aqueous Solution and DMSO

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  5. Ionisation constants of inorganic acids and bases in aqueous solution

    Perrin, D D

    2013-01-01

    Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution, Second Edition provides a compilation of tables that summarize relevant data recorded in the literature up to the end of 1980 for the ionization constants of inorganic acids and bases in aqueous solution. This book includes references to acidity functions for strong acids and bases, as well as details about the formation of polynuclear species. This text then explains the details of each column of the tables, wherein column 1 gives the name of the substance and the negative logarithm of the ionization constant and column 2

  6. Study of free acidity determinations in aqueous solution

    The object of this work is the study of the principal methods which can be applied to the measurement of 'free' acidity. In the first part, we define the various types of acidity which can exist in aqueous solution; then, after having studied some hydrolysis reactions, we compare the value of the neutralisation pH of the hydrated cation and that of the precipitation of the hydroxide. In the second part we have started to study the determination of the acidity of an aqueous solution. After having rapidly considered the 'total' acidity determination, we deal with the problem of the 'free' acidity titration. We have considered in particular certain methods: extrapolation of the equivalent point, colorimetric titrations with or without a complexing agent, and finally the use of ion-exchange resins with mixed aqueous and solvent solutions. (author)

  7. Photolysis of Periodate and Periodic Acid in Aqueous Solution

    Sehested, Knud; Kläning, U. K.

    1978-01-01

    The photochemistry of periodate and periodic acid in aqueous solution was studied (i) by quantum yield measurements at low light intensity (ii) by flash photolysis, and (iii) by photolysis of glassy samples at 77 K. The photochemical studies were supplemented with pulse radiolysis studies of...

  8. Polymerization of beta-amino acids in aqueous solution

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  9. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2015-12-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  10. Ternary mutual diffusion in aqueous (ethambutol dihydrochloride + hydrochloric acid) solutions

    Highlights: • Ternary diffusion coefficients for aqueous system ethambutol dihydrochloride and hydrochloric acid. • Diffusion of ethambutol dihydrochloride driven by hydrochloric acid gradients. • Coupled diffusion as indicated by cross-diffusion coefficients. - Abstract: Ternary mutual diffusion coefficients measured by the Taylor dispersion method are reported for aqueous solutions of {ethambutol dihydrochloride (1) + HCl (2)} at 25 °C and various carrier solution compositions. Mutual diffusion coefficients estimated from limiting ionic conductivities using Nernst equations are used to discuss the composition dependence of the measured diffusion coefficients. 1H NMR studies, combined with DFT calculations, confirm a fully extended conformation for the diprotonated form of the drug present under these conditions, and are consistent with an electrostatic mechanism for the strongly coupled diffusion of diprotonated ethambutol and HCl

  11. Pulse Radiolysis of Adrenaline in Acid Aqueous Solutions

    Gohn, M.; Getoff, N.; Bjergbakke, Erling

    1976-01-01

    Pulse radiolysis of adrenaline in acid aqueous solutions (pH 1–3) was carried out. The rate constants for the reactions of adrenaline with H and OH were determined: k(H + adr.) = (0·9±0·1) × 109 dm3 mol−1s−1; k(OH + adr.) = (1·65±0·15) × 1010 dm3 mol−1s−1. The H-adduct of adrenaline has two λmax...

  12. Solubility of chlorine in aqueous hydrochloric acid solutions.

    Alkan, Mahir; Oktay, Münir; Kocakerim, M Muhtar; Copur, Mehmet

    2005-03-17

    The solubility of chlorine in aqueous hydrochloric acid solutions was studied. The effects of HCl concentration and temperature on the solubility were evaluated, and the thermodynamic parameters of the dissolution were calculated. It was found that the solubility isotherms had a minimum at about 0.5M HCl concentration at all the temperatures studied and that solubility decreased with the increase of temperature at all the HCl concentration range investigated. PMID:15752843

  13. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    Crawford, C.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  14. Gamma-irradiation of malic acid in aqueous solutions

    Negron-Mendoza, A.; Graff, R.L.; Ponnamperuma, C.

    1980-12-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  15. Radiation chemistry of amino acids and peptides in aqueous solutions

    Radiation chemistry relevant to radiation preservation of high protein foods is reviewed. Some conclusions concerning the chemistry of irradiated amino acids, peptides, and proteins have been derived from product analysis of γ-irradiated solutions while the main mechanistic considerations result from the chemistry and kinetics of free radical intermediates observed by pulse radiolysis. The precursors of chemistry in not too concentrated solutions (-, OH, and H. Their reactivity with molecules and their preference for characteristic groups within the molecule are discussed. The reviewed reactions of the model systems are accountable for a variety of radiolytic products found in irradiated foods. From detailed understanding of radiation chemistry in aqueous and frozen systems formation of many classes of compounds can be predicted or entirely eliminated in order to corroborate and extend the conclusions reached from the animal feeding experiments concerning the formation of toxic, mutagenic, and carcinogenic compounds and/or reduction of the nutritional value of foods

  16. The reducibility of sulphuric acid and sulphate in aqueous solution

    In connection with the Swedish project for final storage of spent fuel elements it was necessary to assess whether dissolved sulphate can corrode the copper canister. A simple reaction between copper and sulphate is thermodynamically impossible, but copper can react to give copper sulphide if an additional electron donor such as iron(II) is available. The problem was extended to the more general question of the reducibility of sulphur(VI) in dilute aqueous solution. Chemical reduction of sulphate does not take place in dilute solution at temperatures below 100oC. In experiments on the reduction of sulphates under hydrothermal conditions a reaction only takes place at temperatures above 275-300oC. The oxidising action of sulphuric acid on metals becomes perceptible only at acid concentrations over 45-50%. In experiments on the cathodic reduction of 74% sulphuric acid the formation of hydrogen sulphide and elementary sulphur starts, depending on the current density, at 50-130oC, and polarographic measurements suggest that the reducible species is not the hydrogen sulphate ion but molecular sulphuric acid. The resistance of copper to oxygen-free sulphuric acid up to a concentration of 60% is well-known. Numerous processes in industrial electrochemistry take place in sulphuric acid or sulphate electrolytes. The reversible metal/metal-sulphate electrodes of lead and cadmium are unstable relative to the corresponding metal sulphides. Nevertheless the reversible lead sulphate electrode does not fail from sulphide formation. All these facts confirm that sulphur(VI) in dilute solution is completely inert towards chemical reducing agents and also to cathodic reduction. Thus corrosion of copper by sulphate under final-storage conditions and in the absence of sulphate reducing bacteria can be almost certainly be ruled out. (author) 5 figs., 85 refs

  17. Adsorption of itaconic acid from aqueous solutions onto alumina

    JELENA J. GULICOVSKI

    2008-08-01

    Full Text Available Itaconic acid, IA (C5H6O4, was investigated as a potential flocculant for the aqueous processing of alumina powders. The adsorption of IA, as a function of its concentration and pH value of the solution, onto the alumina surface was studied by the solution depletion method. The stability of the suspensions in the presence of itaconic acid was evaluated in light of the surface charge of the alumina powder used, the degree of dissociation of IA, as well as the sedimentation behavior and rheology of the suspensions. It was found that the adsorption process is extremely pH dependent; the maximum adsorption of IA onto alumina surface occurring at a pH close to the value of the first IA dissociation constant, pKa1. Also, IA does not influence the value of the point of zero charge of alumina. It was shown that IA represents an efficient flocculant for concentrated acidic alumina suspensions.

  18. Processes for working-up an aqueous fluosilicic acid solution

    Alpha O. Toure

    2012-11-01

    Full Text Available Aqueous fluosilicic acid solutions were once considered to be only adverse by-products of phosphoric acid production, which required treatment to prevent ecosystem destruction when discharged into the sea. However, a range of chemicals can be generated by the transformation of this industrial waste product. Through experiments undertaken in the laboratory, we have shown the possibility of caustic soda production. Volumetric analysis showed caustic soda to be present as a 6%– 7%solution with yields of about 70% – 80%by weight. Two processes were investigated for the caustification of sodium fluoride, using different precipitates: sodium chloride and ethanol and are described by modelling caustification curves. The activation energies of precipitation determined by semi-empirical correlations showed that precipitation by ethanol (EA = 933.536 J/mol was more successful than precipitation by sodium chloride (EA = 7452.405 J/mol. Analyses performed on the precipitates highlighted compositions that are essential and useful constituents in the cement industry.

  19. Humic acid removal from aqueous solutions by peroxielectrocoagulation process

    Ahmad Reza Yazdanbakhsh

    2015-06-01

    Full Text Available Background: Natural organic matter is the cause of many problems associated with water treatment such as the presence of disinfection by-products (DBPs and membrane fouling during water filtration. In this study, the performance of the peroxi-electrocoagulation process (PEP was investigated for the removal of humic acids (HAs from aqueous solutions. Methods: PEP was carried out for the removal of HA using a plexiglas reactor with a volume of 2 L and fitted with iron electrodes and a direct current supply (DC. Samples were taken at various amounts of pH (2-4, current density (1 and 2A/cm2, hydrogen peroxide (50-150 mg/L and reaction time (5-20 minutes and then filtered to remove sludge formed during reaction. Finally, the HA concentration was measured by UV absorbance at 254 nm (UV254. Results: Results indicated that increasing the concentration of H2O2 from 50 to 150 mg/L increased HA removal efficiency from 83% to 94.5%. The highest removal efficiency was observed at pH 3.0; by increasing the pH to the alkaline range, the efficiency of the process was reduced. It was found that HA removal efficiency was high in current density 1A/cm2. Increasing current density up to 1 A cm-2 caused a decrease in removal efficiency. Results of this study showed that under the optimum operating range for the process ([current density] = 1A/cm2, [hydrogen peroxide concentration] = 150 mg/L, [reaction time]= 20 minutes and [pH]= 3.0, HA removal efficiency reached 98%. Conclusion: It can be concluded that PEP has the potential to be utilized for cost-effective removal of HA from aqueous solutions.

  20. ADSORPTION FROM AQUEOUS SOLUTION ONTO NATURAL AND ACID ACTIVATED BENTONITE

    Laila Al-Khatib

    2012-01-01

    Full Text Available Dyes have long been used in dyeing, paper and pulp, textiles, plastics, leather, paint, cosmetics and food industries. Nowadays, more than 100,000 commercial dyes are available with a total production of 700,000 tones manufactured all over the world annually. About 10-15% of dyes are being disposed off as a waste into the environment after dyeing process. This poses certain hazards and environmental problems. The objective of this study is to investigate the adsorption behavior of Methylene Blue (MB from aqueous solution onto natural and acid activated Jordanian bentonite. Both bentonites are firstly characterized using XRD, FTIR and SEM techniques. Then batch adsorption experiments were conducted to investigate the effect of initial MB concentration, contact time, pH and temperature. It was found that the percentage of dye removal was improved from 75.8% for natural bentonite to reach 99.6% for acid treated bentonite. The rate of MB removal followed the pseudo second order model with a high correlation factor. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The Langmuir isotherm model was found more representative. The results indicate that bentonite could be employed as a low cost adsorbent in wastewater treatment for the removal of colour and dyes.

  1. Optical properties of chitosan in aqueous solution of L- and D-ascorbic acids

    Malinkina, Olga N.; Shipovskaya, Anna B.; Kazmicheva, Olga F.

    2016-04-01

    The optical properties of aqueous chitosan solutions in L- and D-ascorbic acids were studied by optical rotatory dispersion and spectrophotometry. The specific optical rotation [α] of all chitosan solutions tested was positive, in contrast to aqueous solutions of the ascorbic acid enantiomers, which exhibit an inverse relationship of [α] values. Significant differences in the absolute values of [α] of the chitosan solutions at polymer-acid ratios exceeding the equimolar one were found.

  2. Neodymium(3) complexing with bischloromethylphosphinic acid in aqueous solution

    High resolution spectrography is used to study Nd3+ complexing with (ClCH2)2POOH(HL) in aqueous solution. NdL2+ complex (lg Kstab = 0.44±0.04) with the corresponding absorption band with a maximum at λ=4283 A is formed in a system

  3. Electrical conductivity of aqueous solutions of perrhenic acid

    The physiocochemical properties of perrhenic acid, HReO4, are studied; its salts form the basis of solutions for electrochemical production of rhenium. Information is presented from which the electrical conductivity of solutions in the temperature range 15-90 degrees can be determined from known concentrations of the acid in water and vice versa

  4. The photochemistry of neptunium in aqueous nitric acid solutions

    Photochemical reactions of Np(IV), (V) and (VI) have been investigated in nitric acid solutions using 254 and 300 nm excitation from standard mercury discharge lamps. Absorption spectrometry was used to monitor the concentrations of the various neptunium species in solution. In the absence of added reagents, all oxidation states of neptunium are converted to the pentavalent state. The effect of adding urea and mild reducing agents such as ethanol and hydrazine on the photolysis has also been examined. Quantum efficiencies for these reactions have been found to vary from 0.001 to 0.1, depending on the acid concentration, wavelength, and reaction conditions. (orig.)

  5. Radiation-induced destruction peculiarities of hydroxyl containing amino acids in diluted aqueous solution

    Amino acids aqueous solution of alpha-alanine and beta-alanine, serine, threonine (concentration 5*10-4 M) were irradiated with dose rate 0.35 Gy/s in range 100-1100 Gy and analysed. Effectiveness of radiation-induced decomposition process depends on row of factors: concentration of amino acid aqueous solution, pH, oxygen presence and other acceptors

  6. Adsorption of organic acids from dilute aqueous solution onto activated carbon

    The radioisotope technique was used to study the removal of organic acid contaminants from dilute aqueous solutions onto activated carbon. Acetic acid, propionic acid, n-butyric acid, n-hexanoic acid and n-heptanoic acid were studied at 278, 298, and 3130K. Three bi-solute acid mixtures (acetic and propionic acids, acetic and butanoic acids, and propionic and butanoic acids) were studied at 278 and 2980K. Isotherms of the single-solute systems were obtained at three different temperatures in the very dilute concentration region (less than 1% by weight). These data are very important in the prediction of bi-solute equilibrium data. A Polanyi-based competitive adsorption potential theory was used to predict the bi-solute equilibrium uptakes. Average errors between calculated and experimental data ranges from 4% to 14%. It was found that the competitive adsorption potential theory gives slightly better results than the ideal adsorbed solution theory

  7. Thermophysical property characterization of aqueous amino acid salt solutions containing α-aminobutyric acid

    Highlights: • Thermophysical properties of aqueous potassium and sodium salt solutions of α-aminobutyric acid were studied. • Density, electrolytic conductivity, refractive index, and viscosity of the solution were measured. • The concentrations of amino acid salt ranges from x1 = 0.009 to 0.06. • The temperature range studied was (303.15 to 343.15) K. • The measured data were represented satisfactorily by using the applied correlations. - Abstract: In this study, density, electrical conductivity, refractive index and viscosity of aqueous potassium and sodium salt solutions of α-aminobutyric acid were presented. Measurements were done over the temperature range (303.15 to 343.15) K and atmospheric pressure for salt compositions from x1 = 0.009 to 0.062. A modified Graber et al. equation was used to correlate the density, electrical conductivity, and refractive index with temperature and composition leading to average absolute deviations (AAD) between the predicted and calculated values of 0.04%, 0.7%, and 0.01%, respectively. The viscosity data were represented as a function of temperature and composition via Vogel–Tamman–Fulcher (VTF) type equation at an AAD of 0.6%

  8. Photodegradation of α-naphthaleneacetic acid in aqueous solution

    2001-01-01

    Kinetic processes of α-naphthaleneacetic acid (NAA) photolysis were studied under different conditions. The results showed that the ultraviolet light was more effective than fluorescent light in promoting degradation, and the degradation of NAA under ultraviolet light followed the first order kinetics with the photolysis rate constant of 1.15 x 10-2 min-1 and half-life time (t1/2) of 60 min. Further, it was proved that the photolysis rate was higher in the presence of oxygen, titanium dioxide (TiO2), and low pH ( acidic solution). At last, two photolysis intermediates were identified by GC-MS and possible photolysis pathways were proposed.

  9. INTERACTION OF AQUEOUS SOLUTIONS OF CHLORINE WITH MALIC ACID, TARTARIC ACID, AND VARIOUS FRUIT JUICES, A SOURCE OF MUTAGENS

    The interactions of aqueous solutions of chlorine with some fruit acids (citric acid, DL-malic acid, and L-tartaric acid) at different pH values were studied. iethyl ether extraction followed by GC/MS analysis indicated that a number of mutagens (certain chlorinated propanones an...

  10. Succinic acid in aqueous solution : connecting microscopic surface composition and macroscopic surface tension

    Werner, Josephina; Julin, Jan; Dalirian, Maryam; Prisle, Nønne; Öhrwall, Gunnar; Persson, Ingmar; Björneholm, Olle; Riipinen, Ilona

    2014-01-01

    The water vapor interface of aqueous solutions of succinic acid, where pH values and bulk concentrations were varied, has been studied using surface sensitive X-ray photoelectron spectroscopy (XPS) and molecular dynamics (MD) simulations. It was found that succinic acid has a considerably higher propensity to reside in the aqueous surface region than its deprotonated form, which is effectively depleted from the surface due to the two strongly hydrated carboxylate groups. From both XPS experim...

  11. Radiation-thermal decomposition of nitric and acetic acids in the aqueous nitrate solution

    Kinetics of radiation, thermal and radiation-thermal decompositions of nitric and acetic acid mixture was investigated in aqueous sodium nitrate solution in homogeneous conditions as well as by interaction of solid phase as sand rock. Temperature dependences of rate of radiation, thermal and radiation-thermal decompositions of the acids were calculated using experimental data. Resulting solutions make possible the calculation of acid decomposition dynamics accounting conditions of underground radioactive waste disposals

  12. Modified density equation for aqueous solution with plutonium(IV) and nitric acid

    In order to calculate criticality parameters for solution systems, the number densities of nuclides are needed and usually calculated by use of density equations. For the system of aqueous solution with Pu(IV) and nitric acid, Maimoni's equation based on Hofstetters' density data was often used, but its reliability was not thoroughly examined. The author, therefore, derived a modified density equation by regression analysis for Hofstetters' data, adding the authors' density data of aqueous solution with nitric acid. Comparison between both equations showed that the modified density equation gives more reliable densities in the wide range of temperature and concentration. (author)

  13. Change in the amino acid composition of calf skin collagen after. gamma. -irradiation in aqueous solution

    Duzhenkova, N.A.; Savich, A.V. (Institut Biofiziki, Moscow (USSR))

    A study was made of the amino acid composition of calf skin collagen after ..gamma..-irradiation (/sup 60/Co) of 2.5x10/sup -6/ M aerated aqueous protein solution within the dose range from 30 to 2000 Gy. The radiosensitivity of amino acid residues was compared.

  14. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  15. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  16. A pulse radiolysis study of salicylic acid and 5-sulpho-salicylic acid in aqueous solutions

    Reactions of H, OH, eaq- and some one-electron oxidants have been studied with salicylic acid and 5-sulpho-salicylic acid in aqueous solutions. Rate constants for the reaction of eaq- with these compounds were of the order of 109dm3mol-1s-1 and this reaction led to the formation of reducing radicals which could transfer electron to methyl viologen. Other one-electron reductants were not able to reduce these compounds. OH radicals reacted with these compounds by addition pathway with very high rate constants (>1010dm3mol-1s-1) while O- radical anions could oxidize these molecules to give phenoxyl type of radicals. Amongst the one-electron oxidants, only N3 radicals and SO4- radicals could oxidize salicylic acid while 5-sulpho-salicylic acid could be oxidized only by SO4- radicals indicating that while one-electron reduction potential for semi-oxidized SA may beo1 for N3? radical), it is more than 1.33V vs. NHE for semi-oxidized SSA species

  17. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  18. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  19. Interfacial structures of acidic and basic aqueous solutions

    Phase-sensitive sum-frequency vibrational spectroscopy was used to study water/vapor interfaces of HCl, HI, and NaOH solutions. The measured imaginary part of the surface spectral responses provided direct characterization of OH stretch vibrations and information about net polar orientations of water species contributing to different regions of the spectrum. We found clear evidence that hydronium ions prefer to emerge at interfaces. Their OH stretches contribute to the 'ice-like' band in the spectrum. Their charges create a positive surface field that tends to reorient water molecules more loosely bonded to the topmost water layer with oxygen toward the interface, and thus enhances significantly the 'liquid-like' band in the spectrum. Iodine ions in solution also like to appear at the interface and alter the positive surface field by forming a narrow double-charge layer with hydronium ions. In NaOH solution, the observed weak change of the 'liquid-like' band and disappearance of the 'ice-like' band in the spectrum indicates that OH- ions must also have excess at the interface. How they are incorporated in the interfacial water structure is however not clear

  20. FT-RAMAN SPECTROSCOPY FOR MONITORING THE POLYMERIZATION OF ACRYLIC ACID IN AQUEOUS SOLUTION

    Jiang Yu; Hui-zhou Liu; Jia-yong Chen

    1999-01-01

    FT-Raman spectroscopy was used to monitor the polymerization of acrylic acid in aqueous solution. A simple method to avoid the noise in the background during the signal processing via Fourier transformation was used in this work. The effects of the amount of initiator used on the polymerization are studied. When the amount of the initiator in the polymerization was increased, both the rate and extent of polymerization of acrylic acid will be increased.

  1. Thermodynamics of uranium and nitric acid extraction from aqueous solution of TBP/diluent

    A thermodynamically consistent procedure for predicting distribution equilibria for uranyl nitrate and nitric acid between an aqueous solution and 30 vol % tributyl phosphate (TBP) in a hydrocarbon diluent is studied. Experimental work is developed in order to obtain equilibrium data for the system uranyl nitrate, nitric acid, water and 30 vol % TBP in n-dodecane, at 250C and 400C. The theoretical equilibrium data, obtained with the aid of a computer, are compared with the experimental results. (Author)

  2. Measuring and modeling aqueous electrolyte/amino-acid solutions with ePC-SAFT

    Highlights: • Amino-acid solubilities and osmotic coefficients in ternary solutions containing one amino acids and one salt measured. • Weak salt influence on amino-acid solubilities except for salts containing Mg[2+] or NO3[−] (salting-in behavior). • Osmotic coefficients dominated by the solute with the highest molality. • Amino-acid solubilities and osmotic coefficients predicted reasonably with ePC-SAFT with deviations of 3.7% and 9.3%. • Predictions based on pure-component parameters for ions and amino acids using no ion/amino-acid fitting parameters. -- Abstract: In this work thermodynamic properties of electrolyte/amino acid/water solutions were measured and modeled. Osmotic coefficients at 298.15 K were measured by means of vapor-pressure osmometry. Amino-acid solubility at 298.15 K was determined gravimetrically. Considered aqueous systems contained one of the four amino acids: glycine, L-/DL-alanine, L-/DL-valine, and L-proline up to the respective amino-acid solubility limit and one of 13 salts composed of the ions Li+, Na+, K+, NH4+, Cl−, Br−, I−, NO3−, and SO42− at salt molalities of 0.5, 1.0, and 3.0 mol · kg−1, respectively. The data show that the salt influence is more pronounced on osmotic coefficients than on amino-acid solubility. The electrolyte Perturbed-Chain Statistical Association Theory (ePC-SAFT) was applied to model thermodynamic properties in aqueous electrolyte/amino-acid solutions. In previous works, this model had been applied to binary salt/water and binary amino acid/water systems. Without fitting any additional parameters, osmotic coefficients and amino-acid solubility in the ternary electrolyte/amino acid/water systems could be predicted with overall deviations of 3.7% and 9.3%, respectively, compared to the experimental data

  3. Radiolytical oxidation of ascorbic acid in aqueous solutions

    Complete text of publication follows. Ascorbic acid, AsA (vitamin c), has been widely studied as an antioxidant or as an initiator of some technological processes, for example polymerization or nanoparticles formation. AsA can be easily oxidized to ascorbyl radical, in the first stage, and to dehydroascorbic acid, DHA, in the second stage. It has been found that several different ascorbyl radicals are formed during AsA oxidation but the main radical exists as the anion with the unpaired electron delocalized on a highly conjugated tricarbonyl system. Absorption spectrum of ascorbyl radical shows two bands with maxima at 300 and 360 nm, however only that at 360 nm is proportional to the dose and thus this wavelength was chosen for observations. We studied the oxidation of AsA by the following oxidizing radicals generated by the pulse radiolysis method ·OH, (SCN)2-·, Cl2-·, N3· and NO2·. The observed dependence of the yield and the formation rate of the AsA radical on the reduction potential of the oxidizing radical is discussed. The results obtained in water are compared with those obtained with AsA enclosed in the water pools of reverse micelles formed by AOT in n-heptane or by Igepal CO-520 in c-hexane. Somewhat surprising observation of different ascorbyl radical in pulse irradiated reverse micelles containing DHA is also commented.

  4. Acid-base chemistry of omeprazole in aqueous solutions

    Yang Rong; Schulman, Stephen G.; Zavala, Pedro J

    2003-03-28

    Omeprazole is a potent anti-acid drug. Its absorption and mode of action are closely related to its prototropic behavior. In the present study, omeprazole samples from different sources and in different forms were studied spectrophotometrically to obtain pK{sub a} values. In the neutral to alkaline pH region, two consistent pK{sub a} values of 7.1 and 14.7 were obtained from various samples. The assignment of these pK{sub a} values was realized by comparison with the prototropic properties of N(1)-methylated omeprazole substituted on the nitrogen at the 1-position of the benzimidazole ring, which was found to have a pK{sub a} of 7.5. The omeprazole pK{sub a} of 14.7 is assigned to the dissociation of the hydrogen from the 1-position of the benzimidazole ring and the pK{sub a} of 7.1 is assigned to the dissociation from the protonated pyridine nitrogen of omeprazole. The results presented are at variance with those of earlier work.

  5. Uptake of hypobromous acid (HOBr by aqueous sulfuric acid solutions: low-temperature solubility and reaction

    L. T. Iraci

    2005-03-01

    Full Text Available Hypobromous acid (HOBr is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45–70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201–252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H*=104-107 mol L-1 atm-1. H* is inversely dependent on temperature, with ΔH=-45.0±5.4 kJ mol-1 and ΔS=-101±24 J mol-1 K-1 for 55–70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into 55–70 wt% H2SO4, the solubility is described by log H*=(2349±280/T–(5.27±1.24. At temperatures colder than ~213 K, the solubility of HOBr in 45 wt% H2SO4 is at least a factor of five larger than in 70 wt% H2SO4, with log H*=(3665±270/T–(10.63±1.23. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Upon uptake of HOBr into aqueous sulfuric acid in the presence of other brominated gases, particularly for 70 wt% H2SO4 solution, our measurements demonstrate chemical reaction of HOBr followed by evolution of gaseous products including Br2O and Br2.

  6. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid

  7. A method for determining thermophysical properties of organic material in aqueous solutions: Succinic acid

    Riipinen, I.; Svenningsson, B.; Bilde, M.; Gaman, A.; Lehtinen, K. E. J.; Kulmala, M.

    2006-12-01

    A method for determining evaporation rates and thermodynamic properties of aqueous solution droplets is introduced. The method combines evaporation rate measurements using modified TDMA technique with data evaluation using an accurate evaporation model. The first set of data has been collected and evaluated for succinic acid aqueous solution droplets. Evaporation rates of succinic acid solution droplets have been measured using a TDMA system at controlled relative humidity (65%) and temperature (298 K). A temperature-dependent expression for the saturation vapour pressure of pure liquid phase succinic acid at atmospheric temperatures has been derived by analysing the evaporation rate data with a numerical model. The obtained saturation vapour pressure of liquid phase succinic acid is ln( p) = 118.41 - 16204.8/ T - 12.452ln( T). The vapour pressure is in unit of Pascal and the temperature in Kelvin. A linear expression for the enthalpy of vaporization for liquid state succinic acid is also presented. According to the results presented in the following, a literature expression for the vapour pressure of liquid phase succinic acid defined for temperatures higher than 461 K [Yaws, C.L., 2003. Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel] can be extrapolated to atmospheric temperatures with very good accuracy. The results also suggest that at 298 K the mass accommodation coefficient of succinic acid is unity or very close to unity.

  8. Adsorption of and acidic dye from aqueous solution by surfactant modified bentonite

    The aim of this paper is to study the adsorption of an acidic dye S. Y. 4 GL (i.e: Supranol yellow 4GL) from aqueous solution on inorgano-organo clay. Bentonite is a kind of natural clay with good exchanging ability. By exchanging its inter lamellar cations with Cetyltrimethylammonium bromide (CTAB) and hydroxy aluminic or chromium poly cations, the properties of natural bentonite can be greatly improved. (Author)

  9. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  10. Highly-acidic aqueous solution as a medium for radiation chemical studies: redox chemistry of phenol

    Although the aqueous medium is a common choice for radiation induced generation of a variety of transients (radicals), typically a non-aqueous solvent (or even a frozen matrix) is employed to study a transient with a labile H+ (TrH.+), mainly to maintain low propensity of its deprotonation reaction TrH.+→Tr. + H+, that otherwise occur promptly in an aqueous type medium. However, in addition to the relative difficulty encountered in routine handling of such specific non-aqueous reaction media, low transient yield (GTrH.+) therein also restrict their use. Furthermore, any comparative study of the two species TrH.+ and Tr. remains unattainable. In this context we have probed the highly acidic aqueous solution as an alternative medium for radiation induced generation and subsequent chemical studies of acidic radical cation, TrH.+ vis-a-vis the de-protonated radical Tr.. This presentation highlights these results in three parts deals with (a) measurement of oxidizing and reducing radical yields for reactions in H2SO4 and HClO4 solutions, with highest acidity maintained at ∼14 M or Hammett acidity constant H0 - 7 in case of former and ∼10 M or H0 -5.2 in case of the latter; (b) measurement of the H-atom (the sole reducing radical) scavenging efficiency of dissolved O2 in such solution for maintaining exclusive oxidizing condition; and (c) employing these results, oxidation of phenol (C6H5OH) in such medium was probed and the reactions of its radical cation C6H5OH.+ against the phenoxyl radical C6H5O. were compared. Consequently, these studies also revealed an error in the previous measurement of the C6H5OH.+ pKa value (-2.0) which was corrected to -2.75. Details of these studies will be presented to show the efficacy of highly-acidic aqueous solutions as a regular medium for radiation chemical studies. (authors)

  11. Effect of temperature on the dilution enthalpies of {alpha},{omega}-amino acids in aqueous solutions

    Romero, C.M., E-mail: cmromeroi@unal.edu.co [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Cadena, J.C., E-mail: jccadena@unal.edu.co [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Lamprecht, I., E-mail: ingolf.lamprecht@t-online.de [Institut fuer Biologie, Freie Universitaet Berlin, Berlin (Germany)

    2011-10-15

    Highlights: > The dilution of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid in water is an exothermic process at T = (293.15, 298.15, 303.15, and 308.15) K. > The limiting experimental slopes of the enthalpies of dilution with respect to the molality change {Delta}m, are negative suggesting that the solutes interact with water primarily through their alkyl groups. > The value of the pairwise coefficient is positive at the temperatures considered, and the magnitude increases linearly with the number of methylene groups. > The comparison between the pairwise interaction coefficients for {alpha},{omega}-amino acids and {alpha}-amino acids shows that the change in the enthalpic interaction coefficient is related to the relative position of the polar groups. - Abstract: Dilution enthalpies of aqueous solutions of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid were determined at T = (293.15, 298.15, 303.15, and 308.15) K using an LKB flow microcalorimeter. The homotactic interaction coefficients were obtained according to the McMillan-Mayer theory from the experimental data. For all the systems studied, the dilution of {alpha},{omega}-amino acids in water is an exothermic process; the pair coefficients have positive values which increases with chain length. The obtained values of the interaction coefficients are interpreted in terms of solute-solvent and solute-solute interactions and are used as indicative of hydrophobic behavior of the amino acid studied.

  12. Comparative analysis of the effect of pretreating aspen wood with aqueous and aqueous-organic solutions of sulfuric and nitric acid on its reactivity during enzymatic hydrolysis

    Dotsenko, Gleb; Osipov, D. O.; Zorov, I. N.;

    2016-01-01

    The effect of aspen wood pretreatment methods with the use of both aqueous solutions of sulfuric and nitric acids and aqueous-organic solutions (ethanol, butanol) of sulfuric acid (organosolv) on the limiting degree of conversion of this type of raw material into simple sugars during enzymatic...... hydrolysis are compared. The effects of temperature, acid concentration, composition of organic phase (for sulfuric acid), and pressure (for nitric acid) on the effectiveness of pretreatment were analyzed. It is shown that the use of organosolv with 0.5% sulfuric acid allows us to increase the reactivity of...

  13. Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution

    Wang, Le; Mu, Wen-ning; Shen, Hong-tao; Liu, Shao-ming; Zhai, Yu-chun

    2015-05-01

    A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaCl2 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were investigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaCl2 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching temperature of 80°C, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.

  14. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH4CN, CH3CN, and C2H4CN, that had received multikilogray doses of 60Co γ radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond

  15. Application of Polyaniline Nano Composite for the Adsorption of Acid Dye from Aqueous Solutions

    Baseri, J.Raffiea; P. N. Palanisamy; P. Sivakumar

    2012-01-01

    In this research, Polyaniline coated sawdust (Polyaniline nano composite) was synthesized via direct chemical polymerization and used as an adsorbent for the removal of acid dye (Acid Violet 49) from aqueous solutions. The effect of some important parameters such as pH, initial concentration of dye, contact time and temperature on the removal efficiency was investigated in batch adsorption system. The adsorption capacity of PAC was high (96.84 %) at a pH of 3-4. The experimental data fitted w...

  16. Removal of copper ions from aqueous solutions by a new sorbent: Polyethyleneiminemethylene phosphonic acid

    Ferrah, Nacer; ABDERRAHIM, Omar; DIDI, Mohamed Amine; VILLEMIN, Didier

    2011-01-01

    The sorption of copper(II) from sulphate medium on an extractant polymer containing phosphonic acid has been studied in batch mode. Since the extraction kinetics were fast, with a mixture of 0.01 g of extractant and 5 mL of copper(II) 31.75 mg/L solution, extraction equilibrium was reached within 20 min of mixing. The sorption process follows a pseudo-second-order kinetics. The influence of some parameters such as initial copper(II) ion concentration, initial pH of aqueous solution, ion stren...

  17. RECOVERY OF CARBOXYLIC ACIDS FROM AQUEOUS SOLUTIONS BY LIQUID-LIQUID EXTRACTION WITH A TRIISOOCTYLAMINE DILUENT SYSTEM

    G. Malmary

    2001-12-01

    Full Text Available Tertiary alkylamines in solution with organic diluents are attractive extractants for the recovery of carboxylic acids from dilute aqueous phases. The aim of this study was to investigate the mechanism for extraction of organic acids from water by a long-chain aliphatic tertiary amine. In order to attain this objective, we studied the liquid-liquid equilibria between the triisooctylamine + 1-octanol + n-heptane system as solvent and an aqueous solution of an individual carboxylic acid such as citric, lactic and malic acids. The experiments showed that the partition coefficient for a particular organic acid depends on the kind of solute, notably when the acid concentration in the aqueous phase is low. A mathematical model, where both chemical association and physical distribution are taken into consideration, is proposed. The model suggests that the various complexes obtained between amine and organic acids contribute to the distribution of the solute between the coexisting phases in equilibrium.

  18. Determination of hydroxyl radicals with salicylic acid in aqueous nitrate and nitrite solutions

    YANG Xi; ZHAN Man-jun; KONG Ling-ren; WANG Lian-sheng

    2004-01-01

    The qualitative and quantitative analyses of reactive oxygen species are essential to determine their steady-state concentration and related reaction mechanisms in environmental aquatic systems. In this study, salicylic acid was employed as an innovative molecular probe of hydroxyl radical(OH) generated in aqueous nitrate and nitrite solutions through photochemical reactions. Kinetic studies showed that the steady-state concentrations of OH in aqueous NO3-(10 mmol/L, pH = 5) and NO2- (10 mmol/L, pH = 5) solutions under ultraviolet irradiation were at a same magnitude, 10-15 mol/L. Apparent quantum yields of OH at 313 nm were measured as 0.011 and 0.07 for NO3- and NO2- respectively, all comparable to the results of previous studies.

  19. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  20. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  1. Hydrogen bonding of single acetic acid with water molecules in dilute aqueous solutions

    2009-01-01

    In separation processes,hydrogen bonding has a very significant effect on the efficiency of isolation of acetic acid (HOAc) from HOAc/H2O mixtures. This intermolecular interaction on aggregates composed of a single HOAc molecule and varying numbers of H2O molecules has been examined by using ab initio molecular dynamics simulations (AIMD) and quantum chemical calculations (QCC). Thermodynamic data in aqueous solution were obtained through the self-consistent reaction field calculations and the polarizable continuum model. The aggregation free energy of the aggregates in gas phase as well as in aqueous system shows that the 6-membered ring is the most favorable structure in both states. The relative stability of the ring structures inferred from the thermodynamic properties of the QCC is consistent with the ring distributions of the AIMD simulation. The study shows that in dilute aqueous solution of HOAc the more favorable molecular interaction is the hydrogen bonding between HOAc and H2O molecules,resulting in the separation of acetic acid from the HOAc/H2O mixtures with more difficulty than usual.

  2. Adsorption of uranium ions by crosslinked polyester resin functionalized with acrylic acid from aqueous solutions

    In this paper, the crosslinked polyester resin containing acrylic acid functional groups was used for the adsorption of uranium ions from aqueous solutions. For this purpose, the crosslinked polyester resin of unsaturated polyester in styrene monomer (Polipol 353, Poliya) and acrylic acid as weight percentage at 80 and 20%, respectively was synthesized by using methyl ethyl ketone peroxide (MEKp, Butanox M60, Azo Nobel)-cobalt octoate initiator system. The adsorption of uranium ions on the sample (0.05 g copolymer and 5 mL of U(VI) solution were mixed) of the crosslinked polyester resin functionalized with acrylic acid was carried out in a batch reactor. The effects of adsorption parameters of the contact time, temperature, pH of solution and initial uranium(VI) concentration for U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid were investigated. The adsorption data obtained from experimental results depending on the initial U(VI) concentration were analyzed by the Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The adsorption capacity and free energy change were determined by using D-R isotherm. The obtained experimental adsorption data depending on temperature were evaluated to calculate the thermodynamic parameters of enthalpy (ΔHo), entropy (ΔSo) and free energy change (ΔGo) for the U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid from aqueous solutions. The obtained adsorption data depending on contact time were analyzed by using adsorption models such as the modified Freundlich, Elovich, pseudo-first order and pseudo-second-order kinetic models. (author)

  3. Removal of Basic Dyes from Aqueous Solution by Chloroacetic Acid Modified Ferula Communis Based Adsorbent: Thermodynamic and Kinetic Studies

    Salih, Shameran Jamal

    2014-01-01

    ABSTRACT: This research aimed to propose an alternative cheap and abundantly available adsorbent (Ferula communis) for the removal of basic dyes from aqueous solutions. Chloroacetic acid modified Ferula communis (MFC) shows a great potential for the removal of basic red 9 dyes (BR9) from aqueous solution with the effects of solution capacity under pH, temperature, contact time, adsorbent dosage, and initial dye concentration condition on BR9 removal were examined. The adsorption equilibrium d...

  4. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    Randel, L.A.; King, C.J.

    1991-07-01

    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  5. Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures

    Densities, ρ, for glycine, L-alanine, L-valine, and L-leucine [(0.05 to 0.30) m] in aqueous lactose solutions ranging from pure water to 6 mass% lactose were determined at T = (293.15, 298.15, 303.15, and 308.15) K. The density was used to compute apparent molar volume, Vφ, partial molar volume at infinite dilution, Vφo, and experimental slope, SV were obtained and interpreted in terms of solute-solvent and solute-solute interactions. These data were used to calculate the (∂Vφ0/∂T)P values. The partial molar volume of transfer, ΔVφ0 from water to aqueous lactose solutions at infinite dilution has also been calculated. In addition to this, the linear correlation of Vφ0 with number of carbon atoms in the alkyl chain of amino acids was utilized to determine the respective contributions of NH3+COO-, and CH2 groups to Vφ0.

  6. Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures

    Pal, Amalendu, E-mail: palchem@sify.co [Department of Chemistry, Kurukshetra University, Kurukshetra 136 119 (India); Chauhan, Nalin [Department of Chemistry, Kurukshetra University, Kurukshetra 136 119 (India)

    2011-02-15

    Densities, {rho}, for glycine, L-alanine, L-valine, and L-leucine [(0.05 to 0.30) m] in aqueous lactose solutions ranging from pure water to 6 mass% lactose were determined at T = (293.15, 298.15, 303.15, and 308.15) K. The density was used to compute apparent molar volume, V{sub {phi}}, partial molar volume at infinite dilution, V{sub {phi}}{sup o}, and experimental slope, S{sub V} were obtained and interpreted in terms of solute-solvent and solute-solute interactions. These data were used to calculate the ({partial_derivative}V{sub {phi}}{sup 0}/{partial_derivative}T){sub P} values. The partial molar volume of transfer, {Delta}V{sub {phi}}{sup 0} from water to aqueous lactose solutions at infinite dilution has also been calculated. In addition to this, the linear correlation of V{sub {phi}}{sup 0} with number of carbon atoms in the alkyl chain of amino acids was utilized to determine the respective contributions of NH{sub 3}{sup +}COO{sup -}, and CH{sub 2} groups to V{sub {phi}}{sup 0}.

  7. Temperature effect on adiolysis of deaerated acid aqueous solutions of ferrous sulfate

    In the course of γ-radiolysis (60Co, dose rate=3.75 Gr/c, doses=1.575-3.375 kGr) of deaerated acid aqueous solution 3.6x10-3 mol/l of ferrous sulfate in the 20-250 deg C range the hydrogen molecules radiochemical yield per 100 eV of absorbed energy G(H2) decreases from 3.82±0.12 to 2.72±0.26, whereas G(Fe3+) independently of temperature is equal 8.34±0.36

  8. Hydrogen peroxide yields in the radiolysis of aerated aqueous solutions of formic acid

    Radiation-chemical yields of hydrogen peroxide during radiolysis of formic acid deaerated aqueous solutions were measured under the action of gamma and accelerated electron radiation in the range of high doses up to (10-15 kGy) and average dose rate of 10 Gy/s. It was ascertained that growth of radiation dose involves at first increase in concentration of hydrogen peroxide formed, passing through a maximum, and then decrease to actually zero values at doses exceeding 1.5 kGy. The character of the dependence is explained by gradual consumption of oxygen with the dose increase

  9. Amination of oxy acids in aqueous solution by gamma-irradiation

    Alanin, β-alanine, glicine, and aspartic, α-amino-n-butyric, and γ-amino-n-butyric acids were obtained by γ-irradiation of aqueous ammonia solutions of lactic, β-oxypropionic, glycolic, malic, α-oxybutyric, and γ-oxybutyric acids, respectively. The yields of amino acids were examined for functions of radiation dose (0.75 - 3.55Mrad), concentrations of oxy acid (0.01 - 0.1M) and ammonia (0.1 - 15M), and substances added as radical (potassium iodide), and hydrated electron (nitrous oxide) scavengers. The maximum G-values were 0.6 for alanine in a solution of 0.1M lactic acid-4M ammonia and some nitrous oxide and 1.14 for β-alanine in a solution of 0.1M β-oxypropionic acid and 0.7M ammonia. The yield of alanine increased with increased concentrations of lactic acid and ammonia due to saturation of nitrous oxide but decreased when potassium iodide (0.03M) was added. The yield of β-alanine showed a maximum increase at ca. 0.7M ammonia and decreased when potassium iodide and nitrous oxide were added. Serine was obtained from G = 0.002 in a solution of β-oxypropionic acid and increased to G = 0.058 due to saturation of nitrous oxide. The manner of chemical amination due to radiation was studied from the above results. In general, oxy acids from which hydrogen has been abstracted by an H or OH radical react with ammonia to form amino acids. The effect of ammonia concentration on the yield of amino acids demonstrates that the NH2 radical abstracts the α-hydrogen of lactic acid but does not react with the β-hydrogen of β-oxypropionic acid. The effect of nitrous oxide indicates that hydrated electrons interfere with alanine formation, contribute to β-alanine formation, react with the carboxyl group of lactic acids to form lactamide, and abstract the β-hydroxyl group of β-oxypropionic acids to form β-alanine. (Bell, E.)

  10. Process optimization of reaction of acid leaching residue of asbestos tailing and sodium hydroxide aqueous solution

    2009-01-01

    Silica is the major component of the acid leaching residue of asbestos tailing. The waterglass solution can be prepared by the reaction of the residue with sodium hydroxide aqueous solution. Compared to the high temperature reaction method, this process is environmental friendly and low cost. In this paper, the reaction process of the residue and the sodium hydroxide aqueous solution is optimized. The optimum reaction process parameters are as follows: the usage of sodium hydroxide is 26.4 g/100 g acid leaching residue, the reaction temperature is 90℃, the reaction time is 1 h, and the ratio of the liquid/solid is 2.0. The significance sequence of the process parameters to the alkali leaching reaction effect is the usage of sodium hydroxide > the ratio of the liquid/solid > the reaction time > the reaction temperature. The significance sequence to the leaching ratio of SiO2 is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. The significance sequence to the modulus of the sodium silicate is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. Under the optimum conditions, the leaching ratio of the SiO2 is 77.5%, and the modulus of the sodium silicate is 3.15. The XRD analysis result indicates that the major components of the alkali leaching residue are serpentine, talc, quartz and some albite.

  11. ADSORPTION OF TANNIN ACID ONTO AN AMINATED MACROPOROUS RESIN FROM AQUEOUS SOLUTIONS

    2007-01-01

    A macroporous polymeric adsorbent NG-8 was synthesized with divinylbenzene using conventional suspension polymerization technique. Its aminated product NG-9 was prepared by introducing tertiary amino groups into NG-8 for removal of tannin acid from aqueous solutions. NG-9 could be used directly without a wetting process and had higher adsorption capacity than NG-8, which might be attributed to the enhanced adsorbent-adsorbate interaction due to the tertiary amino groups on the polymeric matrix. The Langmuir equation was successfully employed to describe the adsorption process. The adsorption enthalpy change further validated the uptake of tannin acid on NG-9 to be an enhanced physical adsorption because of the Lewis acid-base interaction. In addition, adsorption kinetic studies testified that the tertiary amino groups on the polymer matrix could decrease the adsorption rate maybe for the hindrance of the tertiary amino groups and water clusters built up.

  12. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide. PMID:25585639

  13. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    Renwu Zhou

    Full Text Available Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS. Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma.

  14. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  15. Solution properties and taste behavior of lactose monohydrate in aqueous ascorbic acid solutions at different temperatures: Volumetric and rheological approach.

    Sarkar, Abhijit; Sinha, Biswajit

    2016-11-15

    The densities and viscosities of lactose monohydrate in aqueous ascorbic acid solutions with several molal concentrations m=(0.00-0.08)molkg(-1) of ascorbic acid were determined at T=(298.15-318.15)K and pressure p=101kPa. Using experimental data apparent molar volume (ϕV), standard partial molar volume (ϕV(0)), the slope (SV(∗)), apparent specific volumes (ϕVsp), standard isobaric partial molar expansibility (ϕE(0)) and its temperature dependence [Formula: see text] the viscosity B-coefficient and solvation number (Sn) were determined. Viscosity B-coefficients were further employed to obtain the free energies of activation of viscous flow per mole of the solvents (Δμ1(0≠)) and of the solute (Δμ2(0≠)). Effects of molality, solute structure and temperature and taste behavior were analyzed in terms of solute-solute and solute-solvent interactions; results revealed that the solutions are characterized predominantly by solute-solvent interactions and lactose monohydrate behaves as a long-range structure maker. PMID:27283672

  16. The distribution of acid, water, methanol, ethanol and acetone between mixed aqueous-organic nitric acid solutions of trilaurylammoniumnitrate in cyclohexane

    The distribution of acid, water, methanol, ethanol and acetone between mixed aqueous-organic nitric acid solutions and solutions of trilaurylammoniumnitrate in cyclohexane has been investigated. The distribution of acid rises with increasing concentrations of nitric acid, methanol, ethanol and acetone in the mixed aqueous-organic phase. The effect of the organic additives in increasing the distribution of the acid is methanol< ethanol< acetone. The concentration of nitric acid in the organic phase can be calculated by a formula similar to that describing the extraction from pure aqueous solutions. The distribution curves of water, methanol and ethanol resemble each other, all of them showing a minimum, when the distribution ratio is plotted versus the nitric acid concentration in the mixed aqueous-organic phase. The acetone distribution decreases steadily with increasing nitric acid concentration. The shape of the curves is briefly discussed. (T.G.)

  17. Acid-base equilibrium in aqueous solutions of 1,3-dimethylbarbituric acid as studied by 13C NMR spectroscopy

    Gryff-Keller, A.; Kraska-Dziadecka, A.

    2011-12-01

    13C NMR spectra of 1,3-dimethylbarbituric acid in aqueous solutions of various acidities and for various solute concentrations have been recorded and interpreted. The spectra recorded at pH = 2 and below contain the signals of the neutral solute molecule exclusively, while the ones recorded at pH = 7 and above only the signals of the appropriate anion, which has been confirmed by theoretical GIAO-DFT calculations. The signals in the spectra recorded for solutions of pH acid-base equilibrium. The kinetic data determined this way have been used to clarify the mechanisms of these processes. The numerical analysis has shown that under the investigated conditions deprotonation of the neutral solute molecules undergoes not only via a simple transfer of the C-H proton to water molecules but also through a process with participation of the barbiturate anions. Moreover, the importance of tautomerism, or association, or both these phenomena for the kinetics of the acid-base transformations in the investigated system has been shown. Qualitatively similar changes of 13C NMR spectra with the solution pH variation have been observed for the parent barbituric acid.

  18. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L−1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the ∙OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while ∙H and eaq− played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation. - Highlights: • Gamma irradiation was efficient for removing cyclohexanebutyric acid from water. • The degradation kinetics of cyclohexanebutyric acid followed pseudo first-order reaction. • OH radical played a major role for oxidative degradation. • Some possible intermediate products were identified

  19. Density and activity of perrhenic acid aqueous solutions at T = 298.15 K

    Highlights: • Water activity and osmolality measurements on highly concentrated perrhenic acid binary solutions have been carried out. • The study led to a new expression of the stoichiometric activity coefficient γ±vs. m. • The parameters of the two most frequently referenced Pitzer and specific interaction theory models have been determined. • The partial molar volume has been calculated. • The density law of the binary solution as a function of its concentration has been determined. - Abstract: Published isopiestic molalities for aqueous HReO4 solutions at T = 298.15 K are completed. Binary data (variation of the osmotic coefficient and activity coefficient of the electrolyte in solution in the water) at T = 298.15 K for perrhenic acid HReO4 are determined by direct water activity and osmolality measurements. The variation of the osmotic coefficient of this acid in water is represented mathematically according to a model recommended by the National Institute of Standards and Technology and according to the specific interaction theory. The data are also used to evaluate the parameters of the standard three-parameters of Pitzer’s ion-interaction model, along with the parameters of Archer’s four-parameter extended ion-interaction model, to higher molalities than previously advised. Experimental thermodynamic data are well represented by these models. Density variations at T = 298.15 K are also established and used to express the activity coefficient values on both the molar and molal concentration scales

  20. Nanoporous carbon synthesized from sol-gel template for adsorbing gibberellic acid in aqueous solution

    A novel method, based on dynamic carbonization and silica template formed by sol-gel, was developed to prepare nanoporous carbon materials with tailored pore structures. The effects of the sol-gel reaction and carbonization process on the final nanoporous carbon product were investigated by pore features such as specific surface area, the total pore volume, and pore size distribution, which were systemically characterized by iodine index, transmission electron microscopy, and nitrogen adsorption. The experimental results indicate that the pore structures of the prepared nanoporous carbon are tunable on the nano-scale by controlling the preparation process in the proposed method. The nanoporous carbon prepared under the optimal conditions has a high total pore volume of 1.26 cm3/g, a large specific surface area of 1744 m2/g, and a maximal adsorption capacity of 9.2 mg/g to gibberellic acid in aqueous solution, which is nearly 6 times that of commercial activated carbon. Highlights: → Silica formed by sol-gel as template for nanoporous carbon preparation. → Pore structures are tunable on the nano-scale. → High total pore volume and large specific surface developing. → Adsorption of gibberellic acid in aqueous solution carrying out.

  1. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    Negron-Mendoza, A.; Draganic, Z.D.; Navarro-Gonzalez, R.; Graganic, I.G.

    1983-08-01

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH/sub 4/CN, CH/sub 3/CN, and C/sub 2/H/sub 4/CN, that had received multikilogray doses of /sup 60/Co ..gamma.. radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond.

  2. Biosorption of Acid Yellow 17 from aqueous solution by non-living aerobic granular sludge

    Batch biosorption experiments were carried out for the removal of Acid Yellow 17 from aqueous solution using non-living aerobic granular sludge as an effective biosorbent. The effects of solution pH value, biosorbent dosage, initial Acid Yellow 17 concentration, NaCl concentration and temperature on the biosorption were investigated. The experimental results indicate that this process was highly dependent on pH value and the pH value of 2.0 was favorable. The Temkin isotherm was more applicable for describing the biosorption equilibrium at the whole concentration range than the Freundlich and Langmuir isotherm. The results of kinetics study show that the pseudo-second-order model fitted to the experimental data well. Both intraparticle diffusion and boundary layer diffusion might affect the biosorption rate. Thermodynamic studies demonstrate that the biosorption process was spontaneous and exothermic. The FTIR analysis before and after Acid Yellow 17 binding indicated that functional groups such as amine, hydroxyl, carboxyl and either on the non-living aerobic granular sludge would be the active binding sites for the biosorption of the studied dye. These results show that non-living aerobic granular sludge could be effectively used as a low-cost and alternative biosorbent for the removal of Acid Yellow 17 dye from wastewater.

  3. Pulse electrodeposition of Pt and Pt–Ru methanol-oxidation nanocatalysts onto carbon nanotubes in citric acid aqueous solutions

    In this study, platinum nanoparticle/carbon nanotube (Pt NP/CNT) and platinum–ruthenium nanoparticle (Pt–Ru NP/CNT) hybrid nanocatalysts were prepared by the pulse-electrodeposition method in different aqueous solutions containing citric acid (CA) or sulfuric acid (SA). The electrocatalytic properties of the Pt NP/CNT and Pt–Ru NP/CNT electrodes prepared using different aqueous solutions were investigated for methanol oxidation. The results show that the electrochemical mass activities of these hybrid nanocatalysts prepared in the CA aqueous solution were increased by factors of 1.46 and 2.77 for Pt NPs and Pt–Ru NPs, respectively, compared with those prepared in SA aqueous solutions using the same procedure. These increased mass activities are attributed to the CA playing dual roles as both a stabilizing agent and a particle size reducing agent in the aqueous solutions. The approach developed in this work enables further reductions in the particle sizes of noble-metal nanocatalysts. - Highlights: • Pulse-electrodeposition of Pt or Pt–Ru nanoparticles on carbon nanotubes • Carbon nanotubes used as a catalyst-supporting material • Citric acid used as reducing agent in the aqueous electrodeposition solutions • Electrochemical activity for methanol oxidation improved by a factor of 1.46 to 2.77

  4. Deprotonation of salicylic acid and 5-nitrosalicylic acid in aqueous solutions of ethanol

    Faraji Mohammad

    2011-01-01

    Full Text Available The protonation constant values of two hydroxybenzoic acids (salicylic and 5-nitrosalicylic acid were studied in some water-ethanol solutions using spectrophotometric and potentiometric methods at 25°C and in an ionic strength of 0.1 M sodium perchlorate. The results indicated that the pKa values increase with increasing proportion of ethanol in mixed solvent. The dependence of the protonation constants on the variation of the solvent were correlated by the dielectric constants of the media. Furthermore, for a better understanding of the solvent influence, the obtained results were explained in terms of the Kamlet-Taft parameters α (hydrogen-bond donor acidity, π

  5. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions

    Highlights: ► Density of amino acid salt and amine amino acid salt. ► Viscosity of amino acid salt and amine amino acid salt. ► Henry’s law constant/N2O solubility of amino acid salt and amine amino acid salt. ► Schumpe model. Correlations for density, viscosity, and N2O solubility. - Abstract: Physicochemical properties of aqueous amino acid salt (AAS), potassium salt of sarcosine (KSAR) and aqueous amine amino acid salt (AAAS), 3-(methylamino)propylamine/sarcosine (SARMAPA) have been studied. Densities of KSAR were measured for sarcosine mole fraction 0.02 to 0.25 for temperature range 298.15 K to 353.15 K, the viscosities were measured for 0.02 to 0.10 mole fraction sarcosine (293.15 K to 343.15 K) while the N2O solubilities were measured from 0.02 to 0.10 mole fraction sarcosine solutions (298.15 K to 363.15 K). Densities of SARMAPA were measured for sarcosine mole fraction 0.02 to 0.23 for temperature range (298.15 K to 353.15 K), viscosities were measured for 0.02 to 0.16 mole fraction sarcosine (293.15 K to 343.15 K) while the N2O solubilities were measured from 0.02 to 0.16 mole fraction sarcosine solutions (298.15 K to 343.15 K). Experimental results were correlated well with empirical correlations and N2O solubility results for KSAR were predicted adequately by a Schumpe model. The solubilities of N2O in AAS and AAAS are significantly lower than values for amines. The solubilities vary as: amine > AAAS > AAS.

  6. Dissolution of nickel ferrite in aqueous solutions containing oxalic acid and ferrous salts

    The dissolution of nickel ferrite in oxalic acid and in ferrous oxalate-oxalic acid aqueous solution was studied. Nickel ferrite was synthesized by thermal decomposition of a mixed tartrate; the particles were shown to be coated with a thin ferric oxide layer. Dissolution takes place in two stages, the first one corresponding to the dissolution of the ferric oxide outer layer and the second one being the dissolution of Ni1.06Fe1.96O4. The kinetics of dissolution during this first stage is typical of ferric oxides: in oxalic acid, both a ligand-assisted and a redox mechanism operates, whereas in the presence of ferrous ions, redox catalysis leads to a faster dissolution. The rate dependence on both oxalic acid and on ferrous ion is described by the Langmuir-Hinshelwood equation. In the second stage, Langmuir-Hinshelwood kinetics also describes the dissolution of iron and nickel from nickel ferrite. It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel

  7. Interaction preferences between nucleobase mimetics and amino acids in aqueous solutions.

    Hajnic, Matea; Osorio, Juan I; Zagrovic, Bojan

    2015-09-01

    Despite the paramount importance of protein-nucleic acid interactions in different cellular processes, our understanding of such interactions at the atomistic level remains incomplete. We have used molecular dynamics (MD) simulations and 15 μs of sampling time to study the behavior of amino acids and amino-acid sidechain analogs in aqueous solutions of different mimetics of naturally occurring nucleobases, including dimethylpyridine (DMP) and unsubstituted purine and pyrimidine rings. By using structural and energetic analysis, we have derived preference scales for the interaction of amino acids and their sidechain analogs with different nucleobase mimetics and have exhaustively compared them with each other. A close correspondence with a standard hydrophobicity measure in the case of the pyrimidine mimetic DMP and purines suggests that the hydrophobic effect is the main defining factor behind such interactions. We analyze our findings in the context of the origin of the genetic code and the recently proposed cognate mRNA-protein complementarity hypothesis. Most importantly, we show that unsubstituted purine and pyrimidine rings alone cannot differentiate between predominantly purine- and pyrimidine-coded amino acids, suggesting that for such specificity to exist, it must primarily reside in ring substituents. PMID:26219945

  8. [Changes in the collagen amino acid composition of calf skin after gamma-irradiation in an aqueous solution].

    Duzhenkova, N A; Savich, A V

    1983-01-01

    A study was made of the amino acid composition of calf skin collagen after gamma-irradiation (60Co) of 2.5 X 10(-6) M aerated aqueous protein solution within the dose range from 30 to 2000 Gy. The radiosensitivity of amino acid residues was compared. PMID:6657935

  9. Physicochemical Properties of Amino Acids in Aqueous Caffeine Solution at 25, 30, 35 and 40 ℃

    ALI A.; SABIR S.; SHAHJAHAN; HYDER S.

    2006-01-01

    Density, viscosity, and refractive index, for glycine, DL-alanine, L-serine and DL-valine have been determined in aqueous solution of 0.05 mol/kg caffeine as a function of amino acid (AA) concentration at 25, 30, 35, and 40 ℃.The density data have been used to compute apparent molar volume. The partial molar volume (limiting apparent molar volume) was obtained by applying the Masson's equation. The viscosity data have been analyzed by means of Jones-Dole equation. The values of Falkenhagen coefficient and Jones-Dole coefficient thus obtained are used to interpret the solute-solute and solute-solvent interactions, respectively. Hydration number was also computed. The transition-state theory was applied to obtain the activation parameters of viscous flow, I.e., free energy of activation per mole of solvent, and solute. The enthalpy and entropy of activation of viscous flow were computed for the system. Refractive index was used to calculate molar refractivity of the mixtures. The results have been interpreted in the lightof various interactions occurring between the components of the mixtures under applied experimental conditions.

  10. Process optimization of reaction of acid leaching residue of asbestos tailing and sodium hydroxide aqueous solution

    DU GaoXiang; ZHENG ShuiLin; DING Hao

    2009-01-01

    Silica is the major component of the acid leaching residue of asbestos tailing. The waterglass solution can be prepared by the reaction of the residue with sodium hydroxide aqueous solution. Compared to the high temperature reaction method, this process is environmental friendly and low cost. In this paper, the reaction process of the residue and the sodium hydroxide aqueous solution is optimized. The op-timum reaction process parameters are as follows: the usage of sodium hydroxide is 26.4 g/100 g acid leaching residue, the reaction temperature is 90℃, the reaction time is 1 h, and the ratio of the liq-uid/solid is 2.0. The significance sequence of the process parameters to the alkali leaching reaction effect is the usage of sodium hydroxide > the ratio of the liquid/solid > the reaction time > the reaction temperature. The significance sequence to the leaching ratio of SiO2 is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. The significance sequence to the modulus of the sodium silicate is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. Under the optimum conditions, the leaching ratio of the SiO2 is 77.5%, and the modulus of the sodium silicate is 3.15. The XRD analysis result indicates that the major components of the alkali leaching residue are serpentine, talc, quartz and some albite.

  11. Diffusion of levodopa in aqueous solutions of hydrochloric acid at 25 °C

    Graphical abstract: - Highlights: • Ternary mutual diffusion coefficients of aqueous L-dopa plus hydrochloric acid at 25 °C. • Diffusion of L-dopa driven by HCl gradients. • Coupled diffusion of L-dopa and HCl. - Abstract: Ternary mutual diffusion coefficients (D11, D22, D12 and D21) measured by the Taylor dispersion method are reported for aqueous solutions of {levodopa (L-dopa) + HCl} solutions at 25 °C and HCl concentrations up to 0.100 mol · dm−3. The coupled diffusion of L-dopa (1) and HCl (2) is significant, as indicated by large negative cross-diffusion coefficients. D21, for example, reaches values that are larger than D11, the main coefficient of L-dopa. Combined Fick and Nernst–Planck equations are used to analyze the proton coupled diffusion of L-dopa and HCl in terms of the binding of H+ ions to L-dopa and ion migration in the electric field generated by L-dopa and HCl concentration gradients

  12. Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution

    Yao Shuhua

    2012-12-01

    Full Text Available Abstract Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made this material a suitable adsorbent to remove methyl blue. The adsorption capacity of modified wheat bran was about 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that the overall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methyl blue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment.

  13. Biosorption of Methyl Blue Onto Tartaric Acid Modified Wheat Bran From Aqueous Solution

    Shuhua Yao

    2012-12-01

    Full Text Available Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made thismaterial a suitable adsorbent to remove 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that theoverall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of theLangmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methylblue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment.

  14. Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution.

    Yao, Shuhua; Lai, Hong; Shi, Zhongliang

    2012-01-01

    Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made this material a suitable adsorbent to remove methyl blue. The adsorption capacity of modified wheat bran was about 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that the overall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methyl blue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment. PMID:23369295

  15. Solubility and metastable zone width of DL-tartaric acid in aqueous solution

    Zhang, Xiang-Yang; Wang, Xiaofang; Hao, Lin; Yang, Xiaowu; Dang, Leping; Wei, Hongyuan [School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin (China)

    2012-11-15

    Solubility and metastable zone width (MSZW) of DL-tartaric acid (DL-TA) in aqueous solution have been determined. Solubility of DL-TA was measured in the temperature range from 0 to 50 C at atmospheric pressure by means of the conventional polythermal method using Turbidity Monitoring Technique, which was verified by a gravimetric method. The dissolution enthalpy and entropy of DL-TA were then calculated from the solubility data using van't Hoff equation. Two approaches was used to estimate the nucleation kinetics from the measured metastable zone width data, the self-consistent approach and the approach based on 3D nucleation. In addition, the metastable zone width slightly decreases with increasing agitation rate and was independent of working volume. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Interpolymer reactions of nonionic polymers with polyacrylic acid in aqueous solutions

    E. Shaikhutdinov

    2012-03-01

    Full Text Available Results of fundamental investigations in the intermacromolecular reactions and interpolymer complexes to be performed by authors with co-workes within last 20 years have been intergrated and summarized in the present review. The raw of fundamental regularities in the effect of factors of different nature (pH, ionic strength, temperature, hydrophilic-hydrophobic balance of macrochain, etc. on the complexation of nonionic polymers with polycarboxylic acids in aqueous solutions has been revealed. Critical pH upon complexation (pHcrit. has been used for evaluation of the complexing ability of the polymers. It was shown tha tdepending on pHcrit. all systems can be divided into 2 groups, namely, weak complexing and strongly complexing. The existence of two critical pH upon complexation responsible for formation typical interpolymer complexes and hydrophilic associations has been demonstrated by the method of luminescence spectroscopy.

  17. Kinetic of the COLUMBO-TANTALITE dissolution in aqueous solutions of hydrofluoric acid

    The dissolution rate of a columbo-tantalite of the San Luis Province in aqueous solutions of hydrofluoric acid has been studied.Experiments at different temperatures were carried out in a pressure reactor.The experimental results show that the mineral dissolution increases with the reaction time.This effect is greater when the temperature increases from 348 up to 396 K, but it is little 493 K. The experimental data were treated with different models, which have been deduced for the kinetic study of solid-fluid non-catalytic heterogeneous reactions. As a result, the better model that fit the experimental data is a model based on the nucleation and growth theory.This model is physically according to the attack observed by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDXS) on the mineral residues.These residues show an irregular located-type attack

  18. Removal of Basic Violet 14 from aqueous solution using sulphuric acid activated materials.

    Suresh, S

    2016-01-01

    In this study the adsorption of Basic Violet, 14 from aqueous solution onto sulphuric acid activated materials prepared from Calophyllum inophyllum (CS) and Theobroma cacao (TS) shells were investigated. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models. The results showed that CS has a superior adsorption capacity compared to the TS. The adsorption capacity was found to be 1416.43 mg/g for CS and 980.39 mg/g for TS. The kinetic data results at different concentrations were analysed using pseudo first-order and pseudo-second order model. Boyd plot indicates that the dye adsorption onto CS and TS is controlled by film diffusion. The adsorbents were characterised by scanning electron microscopy. The materials used in this study were economical waste products and hence can be an attractive alternative to costlier adsorbents for dye removal in industrial wastewater treatment processes. PMID:27330899

  19. Effects of ultrasonic processing on degradation of salvianolic acid B in aqueous solution.

    Guo, Y X; Zhang, L; Lu, L; Liu, E H; Shi, C Z

    2016-09-10

    To evaluate the stability of salvianolic acid B (Sal B) under ultrasound-assisted extraction in the pharmaceutical industry, degradation of Sal B under ultrasonic irradiation was investigated as the function of buffer concentration, pH, and temperature. With regard to Sal-B concentration, a first-order degradation process was determined, with 10% change in assay from its initial concentration as t90=4.81h, under maximum stability acidic conditions (pH 2.0) and at 25°C. The logkpH-pH profile described by specific acid-base catalysis and water molecules supported the experimental results. Liquid chromatography-mass spectrometry (LC-MS) analyses revealed 7 major degradation products whose structures were characterized by electrospray ionization/mass spectrometry. A primary degradation pathway involved cleavage of the ester bond and ring-opening of benzofuran in Sal B was proposed. The complete degradation pathway of Sal B was also proposed. Results showed that ultrasonic irradiation leads to degradation of Sal B in aqueous solution. PMID:27442887

  20. STRUCTURE AND REDOX TRANSFORMATIONS OF IRON(III COMPLEXES WITH SOME BIOLOGICALLY IMPORTANT INDOLE-3-ALKANOIC ACIDS IN AQUEOUS SOLUTIONS

    Krisztina Kovács

    2007-06-01

    Full Text Available Interactions of a series of indole-3-alkanoic acids (with n-alkanoic acid side-chains from C1 to C4 with iron(III in acidic aqueous solutions have been shown to comprise two parallel processes including complexation and redox transformations giving iron(II hexaaquo complexes. The structure and composition of the reaction products are discussed, as analysed using a combination of instrumental techniques including 57Fe Mössbauer, vibrational and HNMR spectroscopies.

  1. Adsorption of Bezanyl Red and Nylomine Green from aqueous solutions by natural and acid-activated bentonite

    BENGUELLA, B.; YACOUTA-NOUR, A.

    2009-01-01

    The adsorption of two acid dyes, namely, Red Bezanyl and Green Nylomine, onto natural bentonite and acid activated bentonite from aqueous solutions were studied in a batch system. The kinetic data show that at the equilibrium, the acid-activated bentonite fixes more Bezanyl Red and Nylomine Green than the natural bentonite. Adsorption equilibrium was reached within 2 h. The results also showed that the kinetics of adsorption is best descibed by a pseudo second-order expression than a first or...

  2. Theoretical insights into the properties of amino acid ionic liquids in aqueous solution.

    Zhu, Xueying; Ai, Hongqi

    2016-07-01

    This report presents a systematic investigation of the interactions of water molecule(s) with a series of amino acid cations (Gly(+), Ala(+), Val(+), and Leu(+)), halogen anions (Cl(-), Br(-), BF4 (-), and PF6 (-)), and clusters (GlyCl) n (n = 1-5). The results reveal that H-bonds between amino acid ionic liquids (AAILs) and water molecules are crucial to the properties of aqueous solution of AAILs. The properties of AAIL in water solution depend on the alkyl chain of the amino acid cation, the size of the halogen anion, and the number of water molecules, which provides a certain theoretical basis for the design and application of new AAILs. A series of calculations for some different models showed that quadruple-GlyCl hydrate represents a basic unit for the Gly-water binary system, and can be employed as the simplest model for studying an AAIL-water cluster. On the basis of this model, the effects of water on the hygroscopicity, speed of solubility, viscosity, density, solution enthalpy, and polarity of the AAIL were also predicted. Most importantly, unlike traditional ILs, the novel GlyCl-type AAIL favors interaction of its cationic part, rather than its anionic part, with surrounding water molecules, thus amino acid cationic ILs expand the types of IL available, increasing the choice of ILs for different purposes. We hope that the application of this AAIL in many fields will lead to optimization of this class of compound and be of benefit to the environment. Graphical Abstract Quadruple-GlyCl hydrate represents the basic unit for a GlyCl-water binary system, which can be employed as the simplest model for studying an amino acid ionic liquid (AAIL)-water cluster. The effects of available water on some properties of AAIL are predicted. GlyCl-type AAIL is a novel IL, which prefers its cationic part over its anionic part for interaction with surrounding water molecules. The properties of AAIL in water solution can be adjusted by varying the ion used and the

  3. Treatment of sugi (Cryptomeria japonica D.) sapwood with aqueous solution of acetic acid

    LUBao-wang; DUGuang-hua; MATSUITakanao; MATSUSHITAYoh-ichi

    2003-01-01

    Sugi sapwood samples were processed with aqueous solution of acetic acid in order to find the response of the weight of sugi sapwood and the treatment of aqueous solution of acetic acid. The result showed that loss of weight for the treated sugisapwood was about equal to yield of extracts from sugi sapwood, and increased with the increment of the concentration of aqueous solution of acetic acid. Fourier transform infrared spectroscopy spectra changes of the treated sugi wood and extracts from sugi sapwood were analyzed by FT-IR spectroscopic technique. Increasing tendency of absorption intensities of the stretching vibration at 3 400 cm-1 of hydroxyl group (OH) and C=C in lignin stretching vibration at 1510 cm-1 of benzene ring inlignin were observed from FT-IR of the treated sugi sapwood. From FT-IR spectra of extracts from sugi sapwood by aqueoussolution of acetic acid, the dissolution of lignin was observed during the treatment with 30% acetic acid solution aqueous.

  4. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Wei, Wei [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China); Yang, Lei; Zhong, Wenhui; Cui, Jing [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Wei, Zhenggui, E-mail: weizhenggui@gmail.com [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Poorly crystalline HAP was firstly used for FA removal from aqueous solution. • The maximum adsorption capacity was determined to be 90.20 mg/g at 318 K. • Adsorption kinetics, isotherms and thermodynamic have been studied in detail. • Adsorption mechanism involved surface complexation, electrostatic interaction and hydrogen bonding. - Abstract: In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (X{sub c} = 0.23) and had better adsorption capacity for FA than those (X{sub c} = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long

  5. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Wei, Wei; Yang, Lei; Zhong, Wenhui; Cui, Jing; Wei, Zhenggui

    2015-03-01

    In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (Xc = 0.23) and had better adsorption capacity for FA than those (Xc = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long term. Findings of the present work highlight the potential for using poorly crystalline HAP nanoparticles as an effective and recyclable adsorbent for FA removal from aqueous solution.

  6. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  7. Enhanced ozonation of dichloroacetic acid in aqueous solution using nanometer ZnO powders

    Xu Zhai; Zhonglin Chen; Shuqing Zhao; He Wang; Lei Yang

    2010-01-01

    Nanometer zinc oxide (ZnO) powders were used as a catalyst to enhance the ozonation for the degradation of dichloroacetic acid (DCAA) in aqueous solution.The batch experiments were carried out to investigate the effects of key factors such as catalyst dosage,ozone dosage,solution pH and ten-butyl alcohol (t-BuOH) on the degradation efficiency of DCAA.Density functional theory (DFT) and ozonation processes were not effective for DCAA removal,and the addition of ZnO catalyst improved the degradation efficiency of DCAA during ozonation,which caused an increase of 22.8% for DCAA decomposition compared to the case of ozonation alone after 25 min.Under the same experimental conditions,the DCAA decomposition was enhanced by increasing catalyst dosage from 100 to 500 mg/L and ozone dosage from 0.83 to 3.2 mg/L,The catalytic ozonation process is more pronounced than the ozonation process alone at pH 3.93,6.88,and 10.With increasing the concentration of t-BuOH from 10 to 200 mg/L,the degradation of DCAA was significantly molecule ozone followed by the interaction of adsorbed ozone with active sites of the catalyst surface.It is also concluded that ZnO of ozone.

  8. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1.Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW

  9. Solute-enhanced production of gamma-valerolactone (GVL) from aqueous solutions of levulinic acid

    Dumesic, James A; Wettstein, Stephanie G; Alonso, David Martin; Gurbuz, Elif Ispir

    2015-02-24

    A method to produce levulinic acid (LA) and gamma-valerolactone (GVL) from biomass-derived cellulose or lignocellulose by selective extraction of LA using GVL and optionally converting the LA so isolated into GVL, with no purifications steps required to yield the GVL.

  10. Photocatalytic CO2 reduction to formic acid using a Ru(II)-Re(I) supramolecular complex in an aqueous solution.

    Nakada, Akinobu; Koike, Kazuhide; Nakashima, Takuya; Morimoto, Tatsuki; Ishitani, Osamu

    2015-02-16

    In an aqueous solution, photophysical, photochemical, and photocatalytic abilities of a Ru(II)-Re(I) binuclear complex (RuReCl), of which Ru(II) photosensitizer and Re(I) catalyst units were connected with a bridging ligand, have been investigated in details. RuReCl could photocatalyze CO2 reduction using ascorbate as an electron donor, even in an aqueous solution. The main product of the photocatalytic reaction was formic acid in the aqueous solution; this is very different in product distribution from that in a dimethylformamide (DMF) and triethanolamine (TEOA) mixed solution in which the main product was CO. A (13)CO2 labeling experiment clearly showed that formic acid was produced from CO2. The turnover number and selectivity of the formic acid production were 25 and 83%, respectively. The quantum yield of the formic acid formation was 0.2%, which was much lower, compared to that in the DMF-TEOA mixed solution. Detail studies of the photochemical electron-transfer process showed back-electron transfer from the one-electron-reduced species (OERS) of the photosensitizer unit to an oxidized ascorbate efficiently proceeded, and this should be one of the main reasons why the photocatalytic efficiency was lower in the aqueous solution. In the aqueous solution, ligand substitution of the Ru(II) photosensitizer unit proceeded during the photocatalytic reaction, which was a main deactivation process of the photocatalytic reaction. The product of the ligand substitution was a Ru(II) bisdiimine complex or complexes with ascorbate as a ligand or ligands. PMID:25654586

  11. Diglycolamic acid modified silica gel for the separation of hazardous trivalent metal ions from aqueous solution.

    Suneesh, A S; Syamala, K V; Venkatesan, K A; Antony, M P; Vasudeva Rao, P R

    2015-01-15

    The surface of the silica gel was modified with diglycolamic acid moieties and the product (Si-DGAH) was characterized by elemental analysis, TG-DTA, (1)H and (29)Si NMR and scanning electron microscopy (SEM). The adsorption behavior of hazardous americium (III) and europium (III) in Si-DGAH was studied from aqueous nitric acid medium to examine the feasibility using the modified silica for the separation of Am(III) and Eu(III) from aqueous wastes. In this context, the effect of various parameters such as the duration of equilibration, and concentrations of europium, nitric acid, sodium nitrate and diethylenetriaminepentaacetic acid (DTPA) in aqueous phase, on the distribution coefficient (K(d)) of Am(III) and Eu(III) was investigated. The distribution coefficient of ∼10(3) mL/g (>99.9% extraction) was obtained for both Am(III) and Eu(III) at pH 3, and the K(d) values decreased with increase in the concentration of nitric acid. Rapid kinetics of extraction in the initial stages of equilibration, followed by the establishment of equilibrium occurred within 30 min. The extraction data were fitted into Langmuir adsorption model and the apparent europium extraction capacity was determined. Europium loading capacity of the sorbent was determined at various feed pH by column method. The study indicated the possibility of using diglycolamic acid-modified silica for the separation of Eu(III) and Am(III) from aqueous wastes. PMID:25454425

  12. Influence if acidity and concentration of aqueous uranyl nitrate solutions on the efficiency of uranium absorption by hydrolytic wood lignin

    Efficiency of uranium(VI) absorption by hydrolytic wood lignin from uranyl nitrate aqueous solutions under static conditions at room temperature, depending on solution acidity and uranium concentration, was studied using the methods of elementary analysis and IR spectroscopy. It was ascertained that hydrolytic lignin manifests a high ability to strong uranium(VI) absorption from low-acid and alkaline solutions. Interaction of uranium(VI) and hydrolytic lignin occurs both according to ion exchange mechanism and at the expense of donor-acceptor bonds formation

  13. Polyvinyl alcohol fibers with functional phosphonic acid group. Synthesis and adsorption of uranyl (VI) ions in aqueous solutions

    PVA functionalized with vinylphosphonic acid was prepared as a new adsorbent for uranyl (VI) adsorption from aqueous solutions. The vinylphosphonic acid was cografted onto PVA fibers by preirradiation grafting technique. The adsorbent were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The adsorbent was observed to possess a fibrous structure and was bonded with phosphonic acid groups successfully. The adsorbent was used for the adsorption of low levels uranyl (VI) ions from aqueous solutions. The influence of analytical parameters including pH, adsorption time, amount of adsorbent, metal ion concentration, and temperature were investigated on the recovery of uranyl (VI) ion in aqueous solution. The maximum adsorption capacity (32.1 mg g-1) and fast equilibrium time (30 min) were achieved at pH of 4.5 at room temperature. Thermodynamic parameters (ΔH° = 2.695 kJ mol-1; ΔS° = 31.15 J mol-1 K-1; ΔG° = -6.748 kJ mol-1) show the adsorption of an exothermic process and spontaneous nature, respectively. The possible coordination mechanism was illustrated. Adsorption and desorption coexist in aqueous solutions and then the system becomes equilibrium. (author)

  14. Alginic acid and hyaluronic acid, effective stabilizers of carthamin red colour in aqueous solutions

    Koshi Saito

    2014-02-01

    Full Text Available Sodium salts and free forms of two heterosaccharides, alginic and hyaluronic acids were mixed with carthamin in a buffer at pH 5.5 and their preservation effects of carthamin red colour were screened after incubation for 24 h at 3-5oC in the dark. The effects observed were (alginic acid/hyaluronic acid, % on average: 69.3/60.3, for which the values are higher by 40.9 and 29.1%, respectively, compared with those of the control which was conducted with no addition of heterosaccharides. Alginic acid is a more promising stabilizer than haluronic acid, indicating that active groups such as hydroxyls, carboxyls and amino groups on the building units of the macromolecules are associated closely with the carthamin red colour preservation. The empirical outcomes are referred to the practical application of carthamin as a colourant of food products.

  15. Uranium(VI) sequestration by polyacrylic and fulvic acids in aqueous solution

    Stability data on the formation of dioxouranium(VI) species with polyacrylic (PAA) and fulvic acids (FA) are reported with the aim to define quantitatively the sequestering capacity of these high molecular weight synthetic and naturally occurring ligands toward uranium(VI), in aqueous solution. Investigations were carried out at t = 25 deg C in NaCl medium at different ionic strengths and in absence of supporting electrolyte for uranyl-fulvate (UO22+-FA) and uranyl-polyacrylate (UO22+-PAA, PAA MW 2 kDa) systems respectively. The experimental data are consistent with the following speciation models for the two systems investigated: (i) UO2(FA1), UO2(FA1)(FA2), UO2(FA1)(FA2)(H) for UO22+-fulvate (where FA1 and FA2 represent the carboxylic and phenolic fractions, respectively, both present in the structure of FA), and (ii) UO2(PAA), UO2(PAA)(OH), (UO2)2(PAA)(OH)2 for UO22+-polyacrylate. By using the stability data obtained for all the complex species formed, the uranium(VI) sequestration by PAA and FA was expressed by the pL50 parameter [i.e. the -log(total ligand concentration) necessary to bind 50% of uranyl ion] at different pH values. A comparison between pL50 values of FA and PAA and some low molecular weight carboxylic ligands toward uranyl ion is also given. (author)

  16. Formation of an 8-hydroxyguanine moiety in deoxyribonucleic acid on gamma-irradiation in aqueous solution

    Isolation and characterization of a novel radiation-induced product, i.e., the 8-hydroxyguanine residue, produced in deoxyribonucleic acid (DNA), 2'-deoxyguanosine, and 2'-deoxyguanosine 5'-monophosphate by gamma-irradiation in aqueous solution, are described. For this purpose, gamma-irradiated DNA was first hydrolyzed with a mixture of four enzymes, i.e., DNase I, spleen and snake venom exonucleases, and alkaline phosphatase. Analysis of the resulting mixture by capillary gas chromatography-mass spectrometry after trimethylsilylation revealed the presence of a product, which was identified as 8-hydroxy-2'-deoxyguanosine on the basis of the typical fragment ions of its trimethylsilyl (Me3Si) derivative. This product was then isolated by using reversed-phase high-performance liquid chromatography. The UV and proton nuclear magnetic resonance spectra taken from the isolated product confirmed the structure suggested by the mass spectrum of its Me3Si derivative. The yield of 8-hydroxyguanine was also measured. Its mechanism of formation is believed to involve OH radical addition to the C-8 position of guanine followed by oxidation of the radical adduct

  17. Kinetic study of CO2 with various amino acid salts in aqueous solution

    Holst, van J.; Versteeg, G.F.; Brilman, D.W.F.; Hogendoorn, J.A.

    2009-01-01

    A study towards the kinetics of CO2 with several aqueous salts of amino acids was performed at a temperature of 298 K. Absorption rate experiments were carried out in the pseudo-first-order regime, enabling the determination of the kinetic rate constant from the flux. In a preliminary screening at a

  18. Kinetic study of CO2 with various amino acid salts in aqueous solution

    van Hoist, J.; Versteeg, G. F.; Brilman, D. W. F.; Hogendoorn, J. A.; Holst, J. v

    2009-01-01

    A study towards the kinetics Of CO2 with several aqueous salts of amino acids was performed at a temperature of 298 K. Absorption rate experiments were carried out in the pseudo-first-order regime, enabling the determination of the kinetic rate constant from the flux. In a preliminary screening at a

  19. Radiation induced depolymerization of hyaluronic acid (HA) in aqueous solutions at pH 7.4

    Radiolytic depolymerization of hyaluronic acid (HA, a heteropolysaccharide) in aqueous solutions under a variety of conditions demonstrates that the damaging effect of radiolytic radical species is in the following order: OH>esub(aq)sup(-)>Osub(2). Cysteine, penicillamine and dithiothreitol were found to protect against primary radiolytic species. The results point out that the enzyme superoxide dismutase (SOD) and the above three thiols do not protect against the radiolytic species generated by the Mg-irradiation of aerated sodium formate solutions. The results also indicate that the reaction between COsub(2) anion and hyaluronic acid is faster than that between Osub(2) and hyaluronic acid and that COsub(2) anions are not scavenged by superoxide dismutase. The results further suggest that t-buthanol radicals interact with hyaluronic acid and reduce the viscosity of HA solutions. Preliminary pulse radiolysis experiments do demonstrate a reaction between COsub(2) radical and hyaluronic acid. (author)

  20. Radiation induced depolymerization of hyaluronic acid (HA) in aqueous solutions at pH 7. 4. [Gamma radiation

    Lal, M.

    1985-10-01

    Radiolytic depolymerization of hyaluronic acid (HA, a heteropolysaccharide) in aqueous solutions under a variety of conditions demonstrates that the damaging effect of radiolytic radical species is in the following order: OH > esub(aq)sup(-) > Osub(2). Cysteine, penicillamine and dithiothreitol were found to protect against primary radiolytic species. The results point out that the enzyme superoxide dismutase (SOD) and the above three thiols do not protect against the radiolytic species generated by the Mg-irradiation of aerated sodium formate solutions. The results also indicate that the reaction between COsub(2) anion and hyaluronic acid is faster than that between Osub(2) and hyaluronic acid and that COsub(2) anions are not scavenged by superoxide dismutase. The results further suggest that t-buthanol radicals interact with hyaluronic acid and reduce the viscosity of HA solutions. Preliminary pulse radiolysis experiments do demonstrate a reaction between COsub(2) radical and hyaluronic acid.

  1. Extraction of uranium from aqueous solution by phosphonic acid-imbedded polyurethane foam

    Phenylphosphonic acid was imbedded into the matrix of the polyurethane foam during the fabrication process of the polymer. The extraction of uranium by phosphonic acid-imbedded polyurethane foam and blank polyurethane (i.e., foam without phosphonic acid functional groups) was investigated. Phosphonic acid-imbedded foam showed superior extractability of uranium from solutions with pH = 7.0 ± 1.5 over a wide range of temperatures. (author)

  2. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

    Ryshetti, Suresh; Raghuram, Noothi; Rani, Emmadi Jayanthi; Tangeda, Savitha Jyostna

    2016-04-01

    Densities (ρ ) of (0.01 to 0.07) {mol}{\\cdot } {kg}^{-1} L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) {mol}{\\cdot } {kg}^{-1} solutions have been reported as a function of temperature at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure. The accurate density (ρ ) values are used to estimate the various parameters such as the apparent molar volume (V_{2,{\\upphi }}), the partial molar volume (V2^{∞}), the isobaric thermal expansion coefficient (α 2), the partial molar expansion (E2^{∞}), and Hepler's constant (partial 2V2^{∞}/partial T2)P. The Cosphere overlap model is used to understand the solute-solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler's constant (partial 2V2^{∞}/partial T2)_P is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

  3. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660±0.092 at 25 C, and extraction enthalpy is -5. 46±0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 x 106±3.56 x 104 at 25 C; reaction enthalpy was -9.610±0.594 kcal/mol. Nitration complexation constant is 8.412±0.579, with an enthalpy of -10.72±1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured

  4. Aqueous polyethylene oxide solutions

    A number of aspects concerning the reorientation of polymer, water and ion hydration complexes have been studied in aqueous solution of polyethylene oxide (PEO). The polymer dynamics are investigated by 1H-PEO and 13C-PEO nuclear relaxation experiments. 162 refs.; 30 figs.; 19 tabs

  5. Bioreversible Derivatives of Phenol. 2. Reactivity of Carbonate Esters with Fatty Acid-like Structures Towards Hydrolysis in Aqueous Solutions

    Claus Larsen

    2007-10-01

    Full Text Available A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 – 12.5 at 37°C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents. The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from ω-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.

  6. THERMODYNAMIC STUDY ON ADSORPTION OF AROMATIC SULFONIC ACIDS ONTO MACROPOROUS WEAK BASE ANION EXCHANGER FROM AQUEOUS SOLUTIONS

    Chao Long; Quan-xing Zhang; Ai-min Li; Jin-long Chen

    2004-01-01

    The adsorption equilibrium isotherms of three aromatic sulfonic acid compounds, 2-naphthalenesulfonic acid, ptoluenesulfonic acid and p-chlorobenzenesulfonic acid, from aqueous solutions by macroporous weak base anion exchanger within the temperature range of 293 K-313 K were obtained. Several isotherm equations were correlated with the equilibrium data, and the experimental data was found to fit the three-parameter Redlich-Peterson equation best within the entire range of concentrations. The study showed that the hydrophobicity of solute has distinct influence on adsorption capacity of the anion exchanger for the aromatic sulfonic acid. Moreover, estimations of the isosteric enthalpy, free energy,and entropy change of adsorption were also reported. The positive isosteric enthalpy and entropy change for adsorption indicate an endothermic and entropy driven process in the present study.

  7. Degradation of acid red 14 by silver ion-catalyzed peroxydisulfate oxidation in an aqueous solution

    RASOULIFARD, Mohammad Hossein; MOHAMMADI, Seied Mohammad Mahdi DOUST

    2012-01-01

    Silver ion (Ag1+)-catalyzed peroxydisulfate was studied for the degradation of acid red 14 (AR-14) in an aqueous medium. The effect of different parameters, such as temperature, peroxydisulfate concentration, and dye and Ag1+ concentrations, were investigated. Application of Ag1+-catalyzed peroxydisulfate, as an advanced oxidation process, introduces an effectual method for wastewater treatment. An accelerated reaction using S2O82- to destroy dyes can be achieved via chemical activat...

  8. Analysis of. gamma. -radiolysis products of aqueous solutions of esters of aliphatic amino acids by the PMR method

    Panin, V.I.; Sidorov, P.S.; Usatyi, A.F.

    1987-09-01

    The ..gamma..-radiolysis of aqueous solutions of methyl esters of aliphatic amino acids and peptides was investigated by the method of nuclear (proton) magnetic resonance (PMR). The resonance lines appearing in the PMR spectra of the irradiated systems were identified, and a conclusion was drawn about the molecular structure of the radiolysis products. The kinetics of the accumulation of radiolysis products was studied, and the values of their radiation yields were estimated.

  9. REMOVAL OF TRICHLOROACETIC ACID FROM THE AQUEOUS SOLUTIONS USING NATURAL AND ACTIVATED LIGNITE COALS

    Hüseyin GÜLENSOY

    1998-02-01

    Full Text Available In these studies, a typical lignite coal found near Istanbul (Yeniköy and its activated products were used to adsorb TCA from aqueous solutions. Particle sizes of coal samples and the concentrations of TCA solutions were chosen as parameters against the fixed amount of adsorbent. The maximum efficiency has been obtained for the coal having (-120 + 150 mesh size fraction activated by heating. As a result, it was shown that these kinds of lignite coals could be used as a good adsorbent. In addition, it was also proved that both the removal and recovery of TCA from some waste waters would easily be possible.

  10. Spectroscopic studies of solutes in aqueous solution.

    Chai, Bing-hua; Zheng, Jian-ming; Zhao, Qing; Pollack, Gerald H

    2008-03-20

    Absorption and fluorescence characteristics of aqueous solutions of salts, sugars, and amino acids were studied using UV-vis spectroscopy and spectrofluorometry. Motivation stemmed from unanticipated absorption spectral and fluorescence features of the "exclusion zone" seen adjacent to various hydrophilic surfaces. Those features implied a structure distinct from that of bulk water (Adv. Colloid Interface Sci. 2006, 127, 19). Absorption peaks at approximately 270 nm similar to those observed in the exclusion zone were seen in solutions of the following substances: salts, Nafion 117 solution/film, l-lysine, d-alanine, d-glucose and sucrose. To determine the fate of the absorbed energy, we studied the fluorescence properties of these solutions. The salts showed fluorescence emission around 480-490 nm under different excitation wavelengths. The fluorescence intensity of LiCl was higher than NaCl, which was in turn higher than KCl-the same ordering as the absorption intensities. Fluorescence of Nafion 117 solution/film, l-lysine, d-alanine, d-glucose and sucrose were observed as well, with multiple excitation wavelengths. Hence, at least some of the absorbed energy is released as fluorescence. The results show features closely similar to those observed in the exclusion zone, implying that the aqueous region around the solutes resembles the aqueous zone adjacent to hydrophilic surfaces. Both may be more extensively ordered than previously thought. PMID:18298105

  11. The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass.

    Swift, T; Swanson, L.; Geoghegan, M; Rimmer, S.

    2016-01-01

    Fluorescence spectroscopy on a series of aqueous solutions of poly(acrylic acid) containing a luminescent label showed that polymers with molar mass, Mn < 16.5 kDa did not exhibit a pH responsive conformational change, which is typical of higher molar mass poly(acrylic acid). Below this molar mass, polymers remained in an extended conformation, regardless of pH. Above this molar mass, a pH-dependent conformational change was observed. Diffusion-ordered nuclear magnetic resonance spectroscopy ...

  12. CYCLIC VOLTAMMETRY STUDIES OF COPPER (II) AND TELLURIUM (IV) IONS IN ACIDIC AQUEOUS SOLUTIONS FOR THIN FILM DEPOSITION

    SARAVANAN NAGALINGAM; GEOK BEE TEH

    2014-01-01

    Cyclic voltammetry studies of copper (II) and tellurium (IV) ions in acidic aqueous solutions were carried out to determine the optimum condition for copper telluride thin film deposition. The voltammetry studies include reversible scans at different solution pH. Based on the voltammogram, suitable deposition conditions was determined to be in the range of -0.35 V to -0.45 V versus Ag/AgCl at pH values between 2.0 to 2.2 under non diffusion-limited conditions.

  13. Determination of free acid in highly concentrated organic and aqueous solutions of plutonium (IV) and uranium (VI) nitrate

    Free acidity is an important parameter in the nuclear reprocessing control. The accuracy on the determination of free acidity is not really required in the nuclear reprocessing control itself but is necessary for certain types of analysis such as spectrophotometry (Pu (VI), Am (III),...), density determinations. A new titripotentiometric method for free acidity determination in concentrated U(VI) and Pu(IV) solutions is presented. This method is based on the complexing properties of dipicolinic acid (pyridine 2.6 dicarboxylic acid) and medium effect with H2O/DMSO mixture. This method can be used either in organic or aqueous phases with ratio /H+I/ metal ≥ 5.10-2 and a relative standard deviation of 1%

  14. Kinetics of bromide catalysed oxidation of dextrose by cerium (IV) in aqueous sulphuric acid solution

    Kinetics of bromide catalysed oxidation of dextrose by CeIV in aqueous sulphuric acid medium show first order dependence each in dextrose and cerium(IV). The reaction rate decreases on increasing the concentration of hydrogen ion. The increase in [HSO4-] or [SO42-] decreases the rate. The bromide ion shows positive catalytic effect on the reaction rate. The value of activation energy has been calculated and a suitable mechanism confirming to the kinetic data is proposed. (author). 3 refs., 3 tabs

  15. Electron beam process for decoloration of reactive and acid dyes in aqueous solution in presence of H2O2

    In this study, degradation and decoloration of reactive and acid commercial dyes (C.I. Reactive Black 5 and C.I. Acid Red 151) in water under the irradiation with electron beams were investigated. Both dyes in aqueous solutions with the concentration of 100 ppm were irradiated at different doses of 1, 3, 6 and 9 k Gy. The changes of the absorption spectra, degree of decoloration, p H, and chemical oxygen demand were analyzed. In addition to the influence of the absorbed dose the hydrogen peroxide additions on RB 5 dye are discussed. The experimental results show that the reactive and acid dyes in aqueous solutions can be effectively degradiated by irradiation with the electron beam. The absorption bands for RB 5 and AR151 decreased rapidly at 1 k Gy irradiation dose and disappeared almost completely at 9 k Gy. Also the degree of decoloration of RB 5 solution at 1 k Gy dose and with the concentrations of H2O2 up to 5mmo1/L was higher than 99.78%. Due to the production of organic and inorganic acidic anions the p H decreased during the irradiation.

  16. Comparison of CO2 and oxygen DC submerged thermal plasmas for decomposition of carboxylic acid in aqueous solution

    The feasibility of the carboxylic acid decomposition with two different direct current (DC) thermal plasma torches was investigated. An oxygen DC submerged thermal plasma torch and a newly designed submerged DC plasma torch operating with a mixture of carbon dioxide and methane (CO2/CH4) were used. Sebacic acid was selected as a representative of pollutants in the most wastewater produced by chemical process industries. The effect of different operational conditions including treatment time, the reactor pressure as well as the role of oxidizing agents such as (H2O2) were investigated on the decomposition rate of sebacic acid. Concentration of sebacic acid was quantified by Ion Chromatography/Mass Spectrometry (IC/MS). The oxygen plasma showed higher decomposition rate in basic medium. Adding H2O2 into aqueous solution enhanced the sebacic acid decomposition rate with the CO2/CH4 plasma up to the same decomposition rate of the oxygen plasma. Increasing the pressure also increased the decomposition rate for both plasmas with an increase twice higher for the CO2/CH4 plasma than that of the oxygen plasma. This work therefore presents the conditions in which these plasmas can provide the same decomposition rate for contaminants in aqueous solution

  17. Comparison of CO2 and oxygen DC submerged thermal plasmas for decomposition of carboxylic acid in aqueous solution

    Safa, S.; Hekmat-Ardakan, A.; Soucy, G.

    2014-11-01

    The feasibility of the carboxylic acid decomposition with two different direct current (DC) thermal plasma torches was investigated. An oxygen DC submerged thermal plasma torch and a newly designed submerged DC plasma torch operating with a mixture of carbon dioxide and methane (CO2/CH4) were used. Sebacic acid was selected as a representative of pollutants in the most wastewater produced by chemical process industries. The effect of different operational conditions including treatment time, the reactor pressure as well as the role of oxidizing agents such as (H2O2) were investigated on the decomposition rate of sebacic acid. Concentration of sebacic acid was quantified by Ion Chromatography/Mass Spectrometry (IC/MS). The oxygen plasma showed higher decomposition rate in basic medium. Adding H2O2 into aqueous solution enhanced the sebacic acid decomposition rate with the CO2/CH4 plasma up to the same decomposition rate of the oxygen plasma. Increasing the pressure also increased the decomposition rate for both plasmas with an increase twice higher for the CO2/CH4 plasma than that of the oxygen plasma. This work therefore presents the conditions in which these plasmas can provide the same decomposition rate for contaminants in aqueous solution.

  18. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte.

    Carter, Brian; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    In the cellulosic ethanol process, furfural, 5-hydroxymethylfurfural (HMF), and acetic acid are formed during the high temperature acidic pretreatment step needed to convert biomass into fermentable sugars. These compounds can inhibit cellulase enzymes and fermentation organisms at relatively low concentrations (≥ 1 g/L). Effective removal of these inhibitory compounds would allow the use of more severe pretreatment conditions to improve sugar yields and lead to more efficient fermentations; if recovered and purified, they could also be sold as valuable by-products. This study investigated the separation of aldhehydes (furfural and HMF) and organic acid (acetic acid) inhibitory compounds from simple aqueous solutions by using polyethyleneimene (PEI), a soluble cationic polyelectrolyte. PEI added to simple solutions of each inhibitor at a ratio of 1 mol of functional group to 1 mol inhibitor removed up to 89.1, 58.6, and 81.5 wt% of acetic acid, HMF, and furfural, respectively. Furfural and HMF were recovered after removal by washing the polyelectrolyte/inhibitor complex with dilute sulfuric acid solution. Recoveries up to 81.0 and 97.0 wt% were achieved for furfural and HMF, respectively. The interaction between PEI and acetic acid was easily disrupted by the addition of chloride ions, sulfate ions, or hydroxide ions. The use of soluble polymers for the removal and recovery of inhibitory compounds from biomass slurries is a promising approach to enhance the efficiency and economics of an envisioned biorefinery. PMID:21455937

  19. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    Gomez-Gonzalez, Sergio Efrain [Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico); Carbajal-Arizaga, Gregorio Guadalupe [Departamento de Química, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico); Manriquez-Gonzalez, Ricardo [Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, carretera Guadalajara-Nogales, Las Agujas, C.P. 45020 Zapopan, Jalisco (Mexico); De la Cruz-Hernandez, Wencel [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, C.P. 22830 Ensenada, Baja California (Mexico); Gomez-Salazar, Sergio, E-mail: sergio.gomez@cucei.udg.mx [Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico)

    2014-11-15

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.

  20. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH3COO)2Cr+ ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. 13C, 29Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level

  1. Density and sound speed study of hydration of 1-butyl-3-methylimidazolium based amino acid ionic liquids in aqueous solutions

    Highlights: • Apparent and partial molar volumes of aqueous AAILs at T = (293.15 to 313.15) K. • Isothermal and adiabatic compressibilities of AAILs in aqueous solution at T = 298.15 K. • Method for direct estimation of hydration numbers due to electrostriction is given. • Internal pressure and hydration numbers for AAILs at T = 298.15 K. • Results obtained demonstrate kosmotropic behavior of AAILs. - Abstract: Amino acid ionic liquids (AAILs) have huge potential in the field of protein chemistry, enzymatic reactions, templates for synthetic study etc. which is due to their distinctive properties like unique acid-base characteristics, tunable hydrophobicity, hydrogen bonding ability and strong hydration effects. To explore the field of bio-ionic liquids for its real life applications and sustainable technology development, it is essential to have better understanding of these newly researched liquid salts in life’s most chosen medium, i.e. in aqueous medium, through study of their physicochemical properties in aqueous solutions. In this context, we are reporting herewith measurements and analysis of volumetric properties in the temperature range of (293.15 to 313.25) K and acoustic properties at 298.15 K in the concentration range of (0.05 to 0.5) mol · kg−1 for aqueous solutions of 1-butyl-3-methylimidazolium [Bmim] based amino acid ionic liquids, prepared from glycine, L-alanine, L-valine, L-leucine and L-isoleucine. The experimental density and sound speed data were used to obtain apparent, partial and limiting molar volumes as well as isentropic and isothermal compressibility properties. These data have been further used to understand electrostriction as well as concentration dependence of internal pressure. The hydration numbers for AAILs in aqueous medium were estimated from compressibility data using Passynski method and the estimated ionic hydration numbers are compared with those obtained using activity data. The results are explained in

  2. Spectrofluorimetric study of the interaction of ciprofloxacin with amino acids in aqueous solution following solvatochromic studies

    Alizadeh, Kamal; Mobarrez, Mahsa; Ganjali, Mohammad Reza; Norouzi, Parviz; Chaichi, Mohammad Javad

    Complexation of a fluoroquinolone derivative (ciprofloxacin), L, and some amino acids has been studied using spectrofluorimetric method. Results indicated that ciprofloxacin have a greater tendency to form a 1:1 complex with aspartic acid and arginine than the other tested molecules. The fluorescence of ciprofloxacin exhibits quenching process while it has been titrated with these amino acids. Formation constant values (Kf) for complex formed between ciprofloxacin and amino acids were also calculated. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were studied too. Possible reasons for the observed stability sequence were discussed based on the structures proposed for the resulting complexes. Besides the solution studies, solvatochromic properties of the ciprofloxacin are discussed by studying its spectra in a selection of different solvents.

  3. Photocatalytic decomposition of humic acids in anoxic aqueous solutions producing hydrogen, oxygen and light hydrocarbons.

    Klauson, Deniss; Budarnaja, Olga; Beltran, Ignacio Castellanos; Krichevskaya, Marina; Preis, Sergei

    2014-01-01

    Photocatalytic water splitting for hydrogen and oxygen production requires sacrificial electron donors, for example, organic compounds. Titanium dioxide catalysts doped with platinum, cobalt, tungsten, copper and iron were experimentally tested for the production of hydrogen, oxygen and low molecular weight hydrocarbons from aqueous solutions of humic substances (HS). Platinum-doped catalyst showed the best results in hydrogen generation, also producing methane, ethene and ethane, whereas the best oxygen production was exhibited by P25, followed by copper--and cobalt-containing photocatalysts. Iron-containing photocatalyst produced carbon monoxide as a major product. HS undergoing anoxic photocatalytic degradation produce hydrogen with minor hydrocarbons, and/or oxygen. It appears that better hydrogen yield is achieved when direct HS splitting takes place, as opposed to HS acting as electron donors for water splitting. PMID:25145176

  4. The reducibility of sulphuric acid and sulphate in aqueous solution (translated from German)

    In connection with the Swedish project for the final storage of spent fuel elements it was necessary to assess whether dissolved sulphate can corrode the copper canister without the intervention of sulphate-reducing bacteria. A simple reaction between copper and sulphate is thermodynamically impossible. On the other hand, copper can react to give copper sulphide if an additional electron donor such as iron is available. Because little specific information is available about this subject the problem was extended to the much more general question of the reducibility of sulphur in dilute aqueous solution. It is a part of the general knowledge of chemistry, and there is also unanimity about it in the geochemical literature, that purely chemical reduction of sulphate does not take place in dilute solution at temperatures below 100 degrees C. This fact is, however, poorly documented and it was therefore necessary to substantiate it by drawing on numerous individual findings from different areas of pure and applied chemistry. The investigation confirms that sulphur in dilute solution is completely inert towards chemical reducing agents and also to cathodic reduction. Thus corrosion of copper by sulphate under final-storage conditions and in the absence of sulphate reducing bacteria can be ruled out with a probability verging on certainty. (85 refs.)

  5. The effect of high-energy radiation on aqueous solution of Acid Red 1 textile dye

    The effect of high-energy radiation on Acid Red 1 (AR1) azo-dye solution was investigated by UV-Vis spectroscopy and chemical oxygen demand (COD) measurements. Doses in the order of 10 kGy cause complete decolouration of the 10-3-10-4 mol dm-3 solutions; however, for complete mineralization doses higher by 1-2 order of magnitude are needed. Hydrated electrons and H · atom are more effective in fading reaction, while the ·OH radicals have higher efficiency in mineralization. The HO2·/O2·- radical-radical anion pair is rather inefficient in fading reaction

  6. EFFECT OF TEMPERATURE AND CONCENTRATION ON THE VISCOSITY OF AQUEOUS SOLUTIONS OF 3-AMINOPROPANOIC ACID, 4-AMINOBUTANOIC ACID, 5-AMINOPENTANOIC ACID, 6-AMINOHEXANOIC ACID

    Carmen María Romero

    2011-12-01

    Full Text Available In this work we present the effect of temperatureon the viscosities of aqueous solutionsof 3-aminopropanoic acid, 4-aminobutanoicacid, 5-aminopentanoic acidand 6-aminohexanoic acid as a functionof concentration. The experimental measurementswere done from 293.15 K to308.15 K. At each temperature the experimentaldata were fi tted to the Tsangaris-Martin equation and the B viscosity coefficient was determined. The dependenceof the B coeffi cients on the number ofcarbon atoms of the amino acids is linear,so the contribution of polar and apolargroups was established. The results areinterpreted in terms of amino acid hydration.

  7. Surface characterisation of ethylene-propylene-diene rubber upon exposure to aqueous acidic solution

    Mitra, S.; Ghanbari-Siahkali, Afshin; Kingshott, P.;

    2006-01-01

    but significantly different with respect to molar mass and the presence of long chain branching. Both rubbers contained 5-ethylidene-2-norbomene (ENB) as diene. Solution cast films of pure EPDM samples were exposed in two different acidic solutions, viz. chromosulphuric (Cr (VI)/H2SO4) and sulphuric acid (H2SO4....... Furthermore, 20% Cr (VI)/H2SO4 also attacked the allylic carbon-hydrogen (C-H) bonds of ENB resulting in more oxygenated species on the surface compared to 20% H2SO4 under identical conditions. Cr (VI) in the 20% Cr (VI)/H2SO4 was found to play an important role in alteration of surface chemistry. Studies...

  8. Novel Ag/Kaolin Nanocomposite as Adsorbent for Removal of Acid Cyanine 5R from Aqueous Solution

    Saeedeh Hashemian; Mohammad Reza Shahedi

    2013-01-01

    Ag/kaolin nanocomposite was prepared by reduction of Ag+ ion with ethanol at alkaline condition on kaolin surface. Nanocomposite was characterized by FTIR, XRD, TEM, and BET methods. Results showed the Ag/kaolin composite has particle size 50 nm. The surface area was increased from kaolin to Ag/kaolin from 1.0215 to 7.409 m2 g−1, respectively. Ag/kaolin nanocomposite was used for adsorption of acid cyanine 5R (AC5R) from aqueous solution. The effect of parameters such as contact time, pH, an...

  9. Sequestration of U(VI) from aqueous solutions using precipitate ion imprinted polymers endowed with oleic acid functionalized magnetite

    The use of a polymeric sorbent material embedded with oleic acid coated magnetic particles as selective sorbents for the removal of U(VI) ions from industrial waste effluents was studied. In the presence of other competing ions [Th(IV) and Ni(II)], U(VI) was preferentially adsorbed. Inclusion of nano-magnetic particles in the polymer matrix aided the separation of the sorbents from aqueous solutions by application of external magnetic field. High recoveries indicated that the sorbent is suitable for application in contaminated water. (author)

  10. Identification of major degradation products of 5-aminosalicylic acid formed in aqueous solutions and in pharmaceuticals

    Jensen, J.; Cornett, Claus; Olsen, C. E.;

    1992-01-01

    The formation of four major degradation products of 5-aminosalicylic acid (5-ASA) in buffered solutions at pH 7.0 was demonstrated by gradient HPLC analysis. The isolation and structural elucidation of the resulting degradation products showed that the degradation of 5-ASA led to the formation of......-containing pharmaceuticals, which had not been stored as prescribed, but in diffuse daylight for up to 2 years....

  11. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions

    The hexavalent chromium, Cr(VI), biosorption by raw and acid-treated Oedogonium hatei were studied from aqueous solutions. Batch experiments were conducted to determine the biosorption properties of the biomass. The optimum conditions of biosorption were found to be: a biomass dose of 0.8 g/L, contact time of 110 min, pH and temperature 2.0 and 318 K respectively. Both Langmuir and Freundlich isotherm equations could fit the equilibrium data. Under the optimal conditions, the biosorption capacities of the raw and acid-treated algae were 31 and 35.2 mg Cr(VI) per g of dry adsorbent, respectively. Thermodynamic parameters showed that the adsorption of Cr(VI) onto algal biomass was feasible, spontaneous and endothermic under studied conditions. The pseudo-first-order kinetic model adequately describe the kinetic data in comparison to second-order model and the process involving rate-controlling step is much complex involving both boundary layer and intra-particle diffusion processes. The physical and chemical properties of the biosorbent were determined and the nature of biomass-metal ions interactions were evaluated by FTIR analysis, which showed the participation of -COOH, -OH and -NH2 groups in the biosorption process. Biosorbents could be regenerated using 0.1 M NaOH solution, with up to 75% recovery. Thus, the biomass used in this work proved to be effective materials for the treatment of chromium bearing aqueous solutions

  12. Silica gel modified with ethylenediamine and succinic acid-adsorption and calorimetry of cations in aqueous solution

    Highlights: ► Succinic acid-modified silica acted as an adsorbent for Cu (II), Ni (II), and Co (II) from aqueous solutions. ► Modified silica adsorbed metallic cations in the order Cu2+ > Co2+ > Ni2+. ► Succinic acid-modified silica could be employed as low-cost material for the removal of cations from aqueous solution. ► Thermodynamic data for these systems are favorable at the solid/liquid interface. - Abstract: Ethylenediamine molecules were covalently immobilized onto silica gel previously functionalized with 3-chlorosilylpropyltrimethoxysilane (Sil–Cl), producing a Sil–N surface. The Sil–N surface reacted with succinic acid, yielding a Sil–NSuc surface. This new synthesized silica gel surface was used to adsorb divalent cations from aqueous solutions at room temperature. The adsorption isotherms were fit to a modified Langmuir equation using the data obtained by suspending the solid in MCl2 (M = Cu, Ni, and Co) aqueous solutions, yielding the maximum number of moles adsorbed as 1.04 ± 0.01, 1.89 ± 0.02 and 1.85 ± 0.02 mmol g−1 for divalent copper, nickel and cobalt, respectively. The metal-basic center ratio for complexes on the surfaces varied with the nature of the metal. The spontaneity of these systems was reflected in the negative values of the Gibbs free energy calculated using calorimetric data. The net thermal effects obtained from the calorimetric titration measurements were adjusted to a modified Langmuir equation, and the calculation of the enthalpies of the interaction for the complexation with Sil–NSuc yielded the following exothermic values: 2.81 ± 0.08, 0.35 ± 0.04 ± and 0.69 ± 0.05 kJ mol−1 for Cu2+, Co2+ and Ni2+, respectively. Based on these values, the metals are preferentially adsorbed in the order Cu2+ > Co2+ > Ni2+. The other thermodynamic data for these systems are favorable at the solid/liquid interface, suggesting the efficacy of this modified silica for cation removal from solution

  13. Radiolysis of Aqueous Benzene Solutions

    Aerated and deaerated aqueous solutions of benzene have been irradiated with 60Co γ-rays. The products of radiolysis in deaerated, unbuffered or acid, solutions were phenol, biphenyl, hydrogen and in acid solutions also hydrogen peroxide with the following yields: G(phenol) = 0. 37 (0. 37), G(biphenyl) = 1.3 (1.7), G(H2) = 0.44 (0. 43) and G(H2O2) = 0 (0.60), the figures in brackets giving the results for acid solutions. The results are shown to agree with the conclusion that k(e-aq + H2O2) >> k(H + H2O2). Furthermore, the results indicate that a competition takes place between the reactions: 2 C6H6OH · -> dimer -> biphenyl. C6H7 · + C6H6OH · -> dimer -> biphenyl. The yields in aerated, unbuffered or acid, solutions were: G(phenol) = 2.1 (2.3), G(biphenyl) = 0 (0), and G(H2O2) = 2.2 (3.1), the figures in brackets being valid for acid solutions. The ratio k(H + C6H6)/k(H + O2) was 1.4x10-2. The results indicate that peroxides, or more probably hydroperoxides, take part in the reactions. After the addition of Fe2+ or Fe3+ to aerated acid solutions G(phenol) was increased to 6.6 and 3.4 respectively. Oxygen was consumed more rapidly in the presence of Fe. Reaction mechanisms are discussed

  14. Radiolysis of Aqueous Toluene Solutions

    Aqueous toluene solutions have been irradiated with Co γ-rays. In unbuffered solutions the various cresol isomers are formed in a total yield of 0.45, 0.87 and 0.94 molecules/100 eV absorbed energy in argon-, N2O- and air - saturated solutions, respectively. The yields are reduced in acid (pH 3) solutions (G 0.14, 0.14 and 0.52, respectively) but the reduction is compensated by the formation of 1,2-di-phenylethane in yields of 0.49 and 1.60 in argon- and N2O-saturated solutions, respectively. Benzyl radicals are formed through an acid catalysed water elimination reaction from the initially formed hydroxymethylcyclohexadienyl radical. Phenyltolylmethanes, dimethylbiphenyls and partly reduced dimers are also formed during the radiolysis. Hydrogen is formed in the same yield as the molecular yield, g(H2). Xylene isomers and benzene are formed in trace quantities. The most remarkable effects of the addition of Fe(III) ions to deaerated acid toluene solutions are the formation of benzyl alcohol and benzaldehyde and an increase in the yield of 1,2-diphenylethane

  15. Sodium phthalamates as corrosion inhibitors for carbon steel in aqueous hydrochloric acid solution

    Highlights: → N-Alkyl-sodium phthalamates as corrosion inhibitors for industry in acidic medium. → Compounds behaved as mixed type inhibitors and followed Langmuir adsorption isotherm. → Efficiencies were proportional to aliphatic chain length and inhibitor concentration. → Iron complexes and chelates with phthalamates contributed to carbon steel protection. - Abstract: Three compounds of N-alkyl-sodium phthalamates were synthesized and tested as corrosion inhibitors for carbon steel in 0.5 M aqueous hydrochloric acid. Tests showed that inhibitor efficiencies were related to aliphatic chain length and dependent on concentration. N-1-n-tetradecyl-sodium phthalamate displayed moderate efficiency against uniform corrosion, 42-86% at 25 deg. C and 25-60% at 40 oC. Tests indicated that compounds behave as mixed type inhibitors where molecular adsorption on steel followed Langmuir isotherm, whereas thermodynamic suggested that a physisorption process occurred. XPS analysis confirmed film formation on surface, where Fe+2 complexes and Fe+2 chelates with phthalamates prevented steel from further corrosion.

  16. Coefficients of interphase distribution and Gibbs energy of the transfer of nicotinic acid from water into aqueous solutions of ethanol and dimethylsulfoxide

    Grazhdan, K. V.; Gamov, G. A.; Dushina, S. V.; Sharnin, V. A.

    2012-11-01

    Coefficients of the interphase distribution of nicotinic acid are determined in aqueous solution systems of ethanol-hexane and DMSO-hexane at 25.0 ± 0.1°C. They are used to calculate the Gibbs energy of the transfer of nicotinic acid from water into aqueous solutions of ethanol and dimethylsulfoxide. The Gibbs energy values for the transfer of the molecular and zwitterionic forms of nicotinic acid are obtained by means of UV spectroscopy. The diametrically opposite effect of the composition of binary solvents on the transfer of the molecular and zwitterionic forms of nicotinic acid is noted.

  17. Self-consistent field theory investigation of the behavior of hyaluronic acid chains in aqueous salt solutions

    Nogovitsin, E. A.; Budkov, Yu. A.

    2012-04-01

    In this work we continue to develop a field-theoretic methodology, which combines the technique of Gaussian equivalent representation for the calculation of functional integrals with the continuous Gaussian thread model of flexible polymers for solving statistical-mechanical problems of polyelectrolyte solutions. We present new analytic expressions for the osmotic pressure, the potential of mean force, and the monomer-monomer pair distribution function, and employ them to investigate the structural and thermodynamic quantities of the polyelectrolyte system. We demonstrate the applicability of the method for systems of polyelectrolyte chains in which the monomers interact via a Yukawa-type pair potential. As a specific example, the present work focuses on aqueous solutions of hyaluronic acid with added salts NaCl and CaCl2. Hyaluronic acid is a high molecular weight linear polysaccharide, which has a multitude of roles in biological tissues. We conclude that the effect of sodium chloride and calcium chloride on the osmotic properties of hyaluronic acid solutions can be accounted for by their contributions to the ionic strength. Nevertheless, the effects of coiling and self-association can be stimulated in solution by added salt.

  18. Removal of Dyes from Aqueous Solutions Using Radiation Synthesized (2-Hydroxyethyl Methacrylate/Acrylic acid) Hydrogels

    Acrylic acid/2-hydroxyethyl methacrylate super absorbent hydrogels (AAc/ HEMA) were prepared by γ-radiation copolymerization of 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AAc). Characterization of AAc/HEMA hydrogel was done by FTIR, TGA, SEM and XRD. The swelling properties were studied as a function of time, ph and irradiation dose. The diffusion behavior of water into these hydrogels followed the Fickian character at all investigated irradiation doses. The adsorption of Direct Congo Red and Direct Blue dyes onto the AAc/ HEMA hydrogel was studied. Physico-chemical parameters like dye concentration, solution ph and temperature were varied to characterize the adsorption phenomenon. Experimental data were modeled by Freundlich isotherm. Thermodynamic parameters ( ΔHo, ΔGo and ΔSo ) were evaluated for the dyes adsorbent systems, which suggest that the adsorption process is a typical physical process and endothermic in nature

  19. Removal of Acid Alizarin Black Dye from Aqueous Solution by Adsorption using Zinc Oxide

    Haydar A. Mohammad Salim

    2016-01-01

    The adsorption of Acid Alizarin Black (AAB) dye (C.I. 21725) on zinc oxide was investigated in this study. The adsorption was carried out under different operating conditions. The operating conditions were adsorbent dosage (10, 30, 50, 70 and 100 mg), initial dye concentration (10, 20, 30, 40, 50, 60 and 70 mg/L), pH of solution (2, 4, 6, 7, 8, 10 and 12) and temperature (20, 30, 40, 50 and 60 oC). The removal percentage of dye on ZnO decreases from 67 % to 54 % with increase in initial dye c...

  20. Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution

    Zhang, Ze; Chen, Jie-Jie; Lyu, Xian-Jin; Yin, Hao; Sheng, Guo-Ping

    2014-12-01

    Decomposition of perfluorooctanoic acid (C7F15COOH, PFOA) has been gaining increasing interests because it is a ubiquitous environmental contaminant and resistant to the most conventional treatment processes. In this work, the rapid and complete mineralization of PFOA and simultaneous defluorination were achieved by γ-ray irradiation with a 60Co source. The degradation rate of PFOA by γ-ray irradiation would be high, and a pseudo-first-order kinetic rate constant of 0.67 h-1 could be achieved in the N2 satured condition at pH 13.0. The experimental results and quantum chemical calculation confirmed that two radicals, i.e., hydroxyl radical (.OH) and aqueous electrons (eaq-), were responsible for the degradation of PFOA, while only either eaq- or .OH might not be able to accomplish complete mineralization of PFOA. The synergistic effects of .OH and eaq- involved in the cleavage of C-C and C-F bonds, and therefore complete mineralization of PFOA were achieved. The intermediate products were identified and the degradation pathway was also proposed. The results of this study may offer a useful, high-efficient approach for complete mineralizing fluorochemicals and other persistent pollutants.

  1. Enhanced Stability of the Model Mini-protein in Amino Acid Ionic Liquids and Their Aqueous Solutions

    Chevrot, Guillaume; Chaban, Vitaly V

    2015-01-01

    Using molecular dynamics simulations, the structure of model mini-protein was thoroughly characterized in the imidazolium-based amino acid ionic liquids and their aqueous solutions. We report that the mini-protein is more stable when AAIL is added as a cosolvent. Complete substitution of water by organic cations and anions further results in hindered conformational flexibility of the mini-protein. This observation suggests that AAILs are able to defend proteins from thermally induced denaturation. We show by means of radial distributions that the mini-protein is efficiently solvated by both solvents due to agood mutual miscibility. However, amino acid based anions prevail in the first coordination sphere of the mini-protein.

  2. Studies on size variation of U(IV) colloids formed in aqueous nitric acid solutions. Contributed Paper RD-06

    Tetravalent Uranium readily undergoes hydrolysis even in highly acidic aqueous solutions. In the present work, solutions with concentration and pH ranges of 0.4 - 19 mM (total U) and 1- 4 respectively were investigated by light scattering technique with special emphasis on polymerization leading to colloid formation. Size variation of colloids formed at different pH was monitored. The results clearly indicate that the concentration has significant effect on particle size as well as stability of colloids. With increasing concentration, the size of colloids formed is smaller due to more crystalline nature of the colloids. Stability of colloids formed at lower concentration is greater than that of colloids formed at higher concentration. The results of this work are a clear indication that U(IV) hydrolysis does not differ from that of Pu(IV). (author)

  3. Determination of equilibrium constant of decomposition reaction of molybdovanadophosphoric heteropolyacid of the twelfth series in aqueous acid solutions

    Spectrophotometric method has been used to determine the equilibrium constant of decomposition reaction of the H5PMo10V2O40 heteropolyacid (HPA-2) to H4PMo11V1O40 (HPA-1), VO2+, H3PO4 with the medium acidity varying from pH=3 to zero. The equilibrium constant, as determined at the temperature of 25 deg and ionic strengt. of the solutions of 0.3, permits to calculate the composition of HPA-2 aqueous solutions in a wide concentration range: 3x10-1 to 1x10-3 mol/l. The conducted investigation shows that both the existence of HPAs of a definite type and their protonAation depend on medium pH and HP concentration

  4. Biosorption of clofibric acid and carbamazepine in aqueous solution by agricultural waste rice straw.

    Liu, Zhanguang; Zhou, Xuefei; Chen, Xiaohua; Dai, Chaomeng; Zhang, Juan; Zhang, Yalei

    2013-12-01

    Due to their widespread use, clofibric acid (CA) and carbamazepine (CBZ) have been frequently detected simultaneously at relatively high concentrations in aquatic environments. In this study, agricultural waste rice straw was employed as a potentially low-cost, effective and easy-to-operate biosorbent (RSB) to remove CA and CBZ. The adsorption of both pharmaceuticals followed pseudo second-order kinetics, and intraparticle diffusion was an important rate-limiting step. The adsorption isotherms of both drugs were fit well with Freundlich model. The adsorption of CA onto RSB was exothermic and was more likely to be dominated by physical processes, while the adsorption of CBZ was endothermic. Solution pH was determined to be the most important factor for CA adsorption, such that the adsorption capacity of CA onto RSB increased with the decline of solution pH. In the lower range of solution pH below 3.1, the CA removal efficiency was enhanced with the increase of biosorbent dosage. The CBZ removal efficiency was enhanced with the increase of RSB dosage without pH control. The maximum adsorption capacities were 126.3 mg/g for CA and 40.0 mg/g for CBZ. PMID:24649668

  5. Electrochemiluminescence of Tris(2,2'-bipyridyl)ruthenium(II) with Ascorbic Acid and Dehydroascorbic Acid in Aqueous and Non-aqueous Solutions.

    Takahashi, Fumiki; Hattori, Kaoru; Matsuoka, Masanori; Jin, Jiye

    2016-01-01

    The electrochemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+)) is studied in non-aqueous media using dehydroascorbic acid (DHA) as coreactant to validate the evidence for the mechanism of the ascorbic acid (H2A)/Ru(bpy)3(2+) ECL system in an aqueous media. DHA is electrochemically reduced around -1.2 V vs. Ag/Ag(+) in pure acetonitrile to generate the ascorbyl radical anion (A(•-)), which is confirmed by in-situ UV-visible absorption measurements using a thin-layer spectroelectrochemical cell. The ECL of the DHA/Ru(bpy)3(2+) system in non-aqueous media is not observed in the potential range from 0 to +1.4 V in anodic potential sweep mode; however, distinct ECL is detected using double potential step electrolysis from -1.2 to +1.4 V vs. Ag/Ag(+). The ECL may be generated by a homogeneous charge-transfer process between A(•-) produced during the first pulse potential step (-1.2 V) and Ru(bpy)3(3+) generated during the second pulse potential step (+1.4 V). The calculated standard enthalpy (-ΔH°) for the charge-transfer reaction between A(•-) and Ru(bpy)3(3+) is 2.29 eV, which is larger than the lowest excited singlet state energy of Ru(bpy)3(2+) (*Ru(bpy)3(2+); 2.03 eV, 610 nm). It is determined that the generated intermediate A(•-) is crucial in the Ru(bpy)3(2+) ECL reaction. PMID:27063718

  6. Oxygen uptake in the radiolysis of aqueous solutions of nucleic acids and their constituents

    G (O2 uptake) has been measured for 27 compounds in N2O/O2 (4:1)- saturated solutions using an oxygen sensitive electrode. G (O2 uptake) (measured at 200C and dose rate of 0.4 Gy s-1) for isopropanol (3.0), sodium formate (3.0), D-glucose (3.2), 2deoxy-D-ribose (3.0), t-butanol (4.2) and diethyl ether (4.5) were found to be in agreement with the expectation based on product yields and/or known mechanisms. High O2 uptake was observed with polyethyleneoxide (10.2), which increases with decreasing dose rate and/or increasing temperature (G(O2 uptake) = 40 at 0.04 Gy s-1 and 500C). These results are explained by assuming a chain reaction. The nucleotides 5'-thymidylic acid (4.4), 5'-deoxy-cytidylic acid (4.8), 5'-deoxyadenylic acid (1.9) and 5'-deoxyguanylic acid (1.6) show that the pyrimidine derivatives consume considerably more oxygen than the purine derivatives. Analogous results are obtained with the nucleobases and nucleosides. The pyrimidine-purine difference is even more pronounced in the corresponding polymer, poly U (21) and poly A (3.5). The large value of poly U shows that a significant contribution of a chain reaction is present. G(O2 uptake) for DNA is dose-rate, temperature and concentration-dependent. The O2 uptake for single-stranded DNA (6.8) and double-stranded DNA (4.6) is higher than for an equivalent mixture of nucleotides (3.2). These results indicate that in DNA also a short chain reaction takes place. (author)

  7. Structural and vibrational investigation on species derived from the cyclamic acid in aqueous solution by using HATR and Raman spectroscopies and SCRF calculations

    Brizuela, Alicia B.; Raschi, Ana B.; Castillo, María V.; Davies, Lilian; Romano, Elida; Brandán, Silvia A.

    2014-09-01

    In this study, aqueous solutions at different molar concentrations of sodium cyclamate in water were completely characterized by HATR (Horizontal Attenuated Total Reflectance) and Raman spectroscopies. The theoretical structures of cyclamate ion, the zwitterionic and neutral forms of the cyclamic acid and its dimer were optimized in gas and aqueous solution phases by using the hybrid B3LYP/6-31G* method. The solvent effects for the four species in aqueous solutions were simulated by using self-consistent reaction field (SCRF) calculations employing the integral equation formalism variant (IEFPCM) model. The complete assignments of the vibrational spectra of all the forms of cyclamic acid were performed taking into account the factor group analysis with the Scaled Quantum Mechanics Force Field (SQMFF) methodology. The existence of the zwitterionic and neutral forms of the cyclamic acid and its dimer in a solution of cyclamate in water is evidenced by characteristic bands in the HATR and Raman spectra. The dimerization of cyclamate in aqueous solution was previously reported by conductimetric method. The natural population analysis (NPA) and Merz-Kollman (MK) charges, molecular electrostatic potential (MEP), natural bond orbital (NBO) and atoms in molecules (AIM) calculations predict for all the species the principal donor and acceptor sites for the H bonds formation in aqueous solution. The SQM force fields for the cyclamate ion, the zwitterionic and neutral species of the cyclamic acid were obtained and their corresponding force constants in both phases were reported. Additionally, the solvation energies for those species were reported.

  8. Kinetic studies for sorption of some metal ions from aqueous acid solutions onto TDA impregnated resin

    Kinetic studies for sorption of uranium, thorium and cobalt ions from hydrochloric acid solutions using tri-dodecyl amine (TDA) loaded on Amberlite XAD4 (polystyrene resin supplied by Rohm and Haas) using the batch technique, have been evaluated and assessed. Analysis of the respective data in accordance with three kinetic models revealed that the particle diffusion mechanism is the rate determining step, and the sorption for each metal ion on the impregnated sorbent follows the first order reversible kinetics. Values of the first order rate constants, rate constants of intraparticle transport, and the particle diffusion coefficients for the studied ions were determined. Sorption isotherms, which have been evaluated from the distribution coefficients for these ions, were found in good fit with the Langmuir and Freundlich isotherms. (author)

  9. Rapid decolorization of Acid Orange Ⅱ aqueous solution by amorphous zero-valent iron

    Changqin Zhang; Zhengwang Zhu; Haifeng Zhang; Zhuangqi Hu

    2012-01-01

    Some problems including low treatment capacity,agglomeration and clogging phenomena,and short working life,limit the application of pre-treatment methods involving zero-valent iron (ZVI).In this article,ZVI was frozen in an amorphous state through a melt-spinning technique,and the decolorization effect of amorphous ZVI on Acid Orange Ⅱ solution was investigated under varied conditions of experimental variables such as reaction temperature,ribbon dosage,and initial pH.Batch experiments suggested that the decolorization rate was enhanced with the increase of reaction temperature and ribbon dosage,but decreased with increasing initial solution pH.Kinetic analyses indicated that the decolorization process followed a first order exponential kinetic model,and the surface-normalized decolorization rate could reach 2.09 L/(m2·min) at room temperature,which was about ten times larger than any previously reported under similar conditions.Recycling experiments also proved that the ribbons could be reused at least four times without obvious decay of decolorization rate and efficiency.This study suggests a tremendous application potential for amorphous ZVI in remediation of groundwater or wastewater contaminated with azo dyes.

  10. Removal of cationic dyes by poly(acrylamide-co-acrylic acid) hydrogels in aqueous solutions

    Poly(acrylamide-co-acrylic acid (poly(AAm-co-AAc)) hydrogels prepared by irradiating with γ-radiation were used in experiments on swelling, diffusion, and uptake of some cationic dyes such as Safranine-O (SO) and Magenta (M). Poly(AAm-co-AAc) hydrogels irradiated at 8.0 kGy have been used for swelling and diffusion studies in water and cationic dye solutions. The maximum swellings in water, and SO, and M solutions observed are 2700%, 3500%, and 4000%, respectively. Diffusions of water and cationic dyes within hydrogels have been found to be non-Fickian in character. Adsorption of the cationic dyes onto poly(AAm-co-AAc) hydrogels is studied by the batch adsorption technique. The adsorption type was found Langmuir type in the Giles classification system. The moles of adsorbed dye for SO and M per repeating unit in hydrogel (binding ratio, r) have been calculated as 3834x10-6 and 1323x10-6, respectively. These results show that poly(AAm-co-AAc) hydrogels can be used as adsorbent for water pollutants such as cationic dyes

  11. Equilibrium adsorption of rhodamine B on used black tea leaves from acidic aqueous solution

    Mohammad Abul Hossain

    2012-10-01

    Full Text Available The presence of carcinogenic dye like rhodamine B (Rh-B in textile wastewater affects the quality of water to consumers. The adsorption of Rh-B on used black tea leaves (UBTL was studied in batch process to investigate its removal efficiency. The effects of contact time, concentration, temperature, pH etc. on adsorption have been investigated. The UV-visible spectrophotometer was used for analysis of Rh-B at constant pH. The adsorption isotherms were constructed for different temperatures using acidic solution of pH 2.0. Freundlich, Langmuir and Dubinin–Raduskevich (D-R equations were used to analyze the equilibrium adsorption data. The experimental data follows Freundlich equation more precisely compare with the Langmuir one. The maximum amount adsorbed calculated from Langmuir equation is 72.5 mg/g at 30 oC which is increased with increasing temperature. Separation factor and thermodynamic parameters revealed that the process is favorable, spontaneous and endothermic nature. Possible mechanism of the process was elucidated from the effect of solution pH on amount adsorbed. The endothermic nature of the adsorption might be due to the fragmentation of Rh-B molecules during the adsorption process.

  12. Dodecylsulfate and dodecybenzenesulfonate intercalated hydrotalcites as adsorbent materials for the removal of BBR acid dye from aqueous solutions

    Mohamed Bouraada

    2016-07-01

    Full Text Available Two modified layered double hydroxides (HT have been synthesized by intercalating both sodium dodecylsulfate (SDS and sodium dodecylbenzenesulfonate (SDBS surfactants into Mg-Al layered double hydroxides using the calcination–rehydratation method. The prepared materials HT-SDS and HT-SDBS were characterized by X-ray diffraction, FTIR, thermal analysis and BET. The obtained materials were used for Brilliant Blue R (BBR dye removal from aqueous solution. Batch studies were carried out to address various experimental parameters such as kinetic, pH, sorption isotherm and temperature. Sorption experiments of acid dye BBR from aqueous solution by HT-SDS and HT-SDBS were investigated in the batch system. Kinetic studies indicate that the sorption of BBR follows the pseudo-second-order model. Sorption capacities of HT-SDS (357.1 mg/g for BBR dye were much higher than those of HT-SDBS (204.1 mg/g. The intercalated Mg-Al layered double hydroxides with SDS and SDBS could possibly be used to remove anionic dyes of relatively high concentrations, whereas HT-CO3 may only be used to remove anionic dyes of low concentrations.

  13. Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull

    This paper deals with the application of Soy Meal Hull (SMH), an agricultural by-product, for the removal of direct and acid dyes from aqueous solutions. Four textile dyes, C.I.Direct red 80 (DR80), C.I.Direct red 81 (DR81), C.I.Acid blue 92 (AB92) and C.I.Acid red 14 (AR14) were used as model compounds. Physical characteristics of SMH such as surface area, Fourier transform infra-red (FTIR) and scanning electron microscopy (SEM) were obtained. The surface area of SMH was found to be 0.7623 m2/g and the presence of functional groups such as hydroxyl, amine and carbonyl groups were detected. The effect of initial dye concentration, pH, contact time and SMH doses were elucidated at 20 ± 1 deg. C. Results show that the pH value of 2 is favorable for the adsorption of all four dyes. The data evaluated for compliance with the Langmuir, Freundlich and BET isotherm models. It was found that data for DR80 and DR81 fitted well with Langmuir isotherm, for AB92, BET isotherm is preferred, while for AR14, the Freundlich isotherm is the most applicable. The adsorption capacities of SMH for DR80, DR81, AB92 and AR14 were, 178.57, 120.48, 114.94 and 109.89 mg/g of adsorbent, respectively. Also, adsorption kinetics of dyes was studied and the rates of sorption were found to conform to pseudo-second order kinetics with good correlation (R 2 ≥ 0.9977). Maximum desorption of ≥99.8% was achieved for DR80, DR81 and AB92 and 86% for AR14 in aqueous solution at pH 10. Based on the data of present investigation, one could conclude that the SMH being a natural, eco-friendly and low-cost adsorbent with relatively large adsorption capacity might be a suitable local alternative for elimination of dyes from colored aqueous solutions

  14. Structural transformations of the synthetic salt 4`, 7-dihydroxyflavylium chloride in acid and basic aqueous solutions. Part 1-Ground state

    Pina, F.; Benedito, L.; Melo, M.J.; Parola, A.J. [Centro de Quimica Fina e Biotecnologia. Departamento de Quimica FCT/UNL, Portugal (Portugal); Lima, J.C.; Macanita, A.L. [Instituto de Tecnologia Quimica e Biologica, Portugal (Portugal)

    1997-09-01

    A complete study of the structural pH dependent transformations of the synthetic flavylium salt 4`-7-dihydroxyflavylium chloride (DHF), occurring in aqueous solutions, including the basic region, is described. The kinetics study of the transformations occurring in acidic media (quinoidal base (A) {l_reversible} flavylium cation (AH{sup +}) {l_reversible} hemiacetal (B) {l_reversible} cis-chalcone (C-cis) {l_reversible} trans-chalcone (C-trans)) allowed to conclude that the cis-transisomerization is faster than the tautomerization and the hydration processes, which is unique in the anthocyanins family. Results obtained with the parent compound 4`-7-dimethoxyflavylium chloride (DMF)with relevance to this study are also presented. In equilibrated basic solutions the existence of acid-base equilibria involving the trans-Chalcone (C-trans) and its conjugated bases, (C-trans, and C``2-trans), was detected. Freshly prepared solutions at pH>7 show also the presence of a transient species identified as the ionized quinoidal base (A``-), which is almost completely converted into C``2-trans with a Ph dependent rate constant, (Author) 17 refs.

  15. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment. PMID:26618263

  16. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon

    Powdered activated carbon (PAC) was applied to remove perfluorooctanoic acid (PFOA) from the aqueous PFOA solution in this study. Contact time, adsorbent dose and temperature were analyzed as the effect factors in the adsorption reaction. The contact time of maximum PFOA uptake was around 1 h while the sorption removal efficiency increased with the PAC concentrations. And the process of adsorption increased from 303 K to 313 K and then decreased from 313 K to 323 K. Among four applied models, the experimental isotherm data were discovered to follow Langmuir isotherm model more closely. Thermodynamically, adsorption was endothermic because enthalpy, entropy and Gibbs constants were 198.5 kJ/mol, 0.709 kJ/mol/K and negative, respectively, which also indicated that the adsorption process was spontaneous and feasible. From kinetic analysis, the adsorption was suggested to be pseudo-second-order model. The adsorption of PFOA on the PAC was mainly controlled by particle diffusion.

  17. Influence of external magnetic field on the etching of a steel ball in an aqueous solution of nitric acid

    The effect of change of shape of a steel ball was revealed as a result of its etching in an aqueous solution of nitric acid under influence of an external magnetic field. The elongation of a ferromagnetic ball was observed along the direction of an external magnetic field while etching took place uniformly in all the directions without magnetic field application. The steel ball etching in a magnetic field is characterized by formation of three cylindrically symmetric regions with different etching rates and surface structures, divided from each other by clear borders (namely, the pole, equator and transition regions are formed). The non-monotone dependences of etching rate, surface structure of a sample and sample shape after etching on an external magnetic field are observed.

  18. Morphological and phase evolution of TiO 2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2009-04-01

    Nanosized anatase and rutile TiO 2 having different shape, phase and size have been prepared from aqueous solutions of peroxo titanium complex starting from titanium(IV) isopropoxide (TTIP), acetic acid and hydrogen peroxide (H 2O 2) in water/isopropanol media by a facile sol-gel process. The TiO 2 nanocrystals are characterized by powder X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, TEM, high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques. The influence of pH and the sequence of addition of reaction contents on the phase and morphology of TiO 2 are studied. The reasons for the observation of only anatase and/or mixture of anatase and rutile are given.

  19. Fast and highly-efficient removal of methylene blue from aqueous solution by poly(styrenesulfonic acid-co-maleic acid)-sodium-modified magnetic colloidal nanocrystal clusters

    Song, Yu-Bei; Lv, Shao-Nan; Cheng, Chang-Jing, E-mail: changjing_cheng@163.com; Ni, Guo-Li; Xie, Xiao-Wa; Huang, Wei; Zhao, Zhi-Gang

    2015-01-01

    Graphical abstract: - Highlights: • Magnetic colloid nanoclusters (MCNCs) are used for adsorption of methylene blue (MB). • The MCNCs exhibit fast and highly-efficient removal capacity for MB. • The MB adsorption onto the MCNCs is due to the strong electrostatic interactions. - Abstract: Magnetic colloidal nanocrystal clusters (MCNCs) modified with different amounts of poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSMA) have been prepared through simple one-step solvothermal method for removal of methylene blue (MB) from aqueous solution. The prepared MCNCs are characterized by Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), nitrogen adsorption–desorption technique and dynamic light scattering (DLS). Moreover, effects of the solution pH, contact time, adsorbent dosage, ionic strength and initial dye concentration on MB adsorption onto the MCNCs are systematically investigated. The PSSMA-modified MCNCs show fast and highly-efficient MB removal capacity, which dramatically depends on the immobilization amounts of PSSMA, solution pH and adsorbent dosage. Their adsorption kinetics and isotherms exhibit that the kinetics and equilibrium adsorptions can be well-described by pseudo-second-order kinetic and Langmuir model, respectively. These magnetic nanocomposites, with high separation efficiency, low production cost and recyclable property, are promising as functional adsorbents for efficient removal of cationic organic pollutants from aqueous solution.

  20. Fast and highly-efficient removal of methylene blue from aqueous solution by poly(styrenesulfonic acid-co-maleic acid)-sodium-modified magnetic colloidal nanocrystal clusters

    Song, Yu-Bei; Lv, Shao-Nan; Cheng, Chang-Jing; Ni, Guo-Li; Xie, Xiao-Wa; Huang, Wei; Zhao, Zhi-Gang

    2015-01-01

    Magnetic colloidal nanocrystal clusters (MCNCs) modified with different amounts of poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSMA) have been prepared through simple one-step solvothermal method for removal of methylene blue (MB) from aqueous solution. The prepared MCNCs are characterized by Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), nitrogen adsorption-desorption technique and dynamic light scattering (DLS). Moreover, effects of the solution pH, contact time, adsorbent dosage, ionic strength and initial dye concentration on MB adsorption onto the MCNCs are systematically investigated. The PSSMA-modified MCNCs show fast and highly-efficient MB removal capacity, which dramatically depends on the immobilization amounts of PSSMA, solution pH and adsorbent dosage. Their adsorption kinetics and isotherms exhibit that the kinetics and equilibrium adsorptions can be well-described by pseudo-second-order kinetic and Langmuir model, respectively. These magnetic nanocomposites, with high separation efficiency, low production cost and recyclable property, are promising as functional adsorbents for efficient removal of cationic organic pollutants from aqueous solution.

  1. Fast and highly-efficient removal of methylene blue from aqueous solution by poly(styrenesulfonic acid-co-maleic acid)-sodium-modified magnetic colloidal nanocrystal clusters

    Graphical abstract: - Highlights: • Magnetic colloid nanoclusters (MCNCs) are used for adsorption of methylene blue (MB). • The MCNCs exhibit fast and highly-efficient removal capacity for MB. • The MB adsorption onto the MCNCs is due to the strong electrostatic interactions. - Abstract: Magnetic colloidal nanocrystal clusters (MCNCs) modified with different amounts of poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSMA) have been prepared through simple one-step solvothermal method for removal of methylene blue (MB) from aqueous solution. The prepared MCNCs are characterized by Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), nitrogen adsorption–desorption technique and dynamic light scattering (DLS). Moreover, effects of the solution pH, contact time, adsorbent dosage, ionic strength and initial dye concentration on MB adsorption onto the MCNCs are systematically investigated. The PSSMA-modified MCNCs show fast and highly-efficient MB removal capacity, which dramatically depends on the immobilization amounts of PSSMA, solution pH and adsorbent dosage. Their adsorption kinetics and isotherms exhibit that the kinetics and equilibrium adsorptions can be well-described by pseudo-second-order kinetic and Langmuir model, respectively. These magnetic nanocomposites, with high separation efficiency, low production cost and recyclable property, are promising as functional adsorbents for efficient removal of cationic organic pollutants from aqueous solution

  2. Application of the spin-trap HPLC-ESR method to radiation chemistry of amino acids in aqueous solutions. [Gamma radiation

    Makino, K.; Moriya, F.; Hatano, H. (Kyoto Univ. (Japan). Faculty of Science)

    1984-01-01

    Our recent studies of the application of the newly developed spin-trap HPLC-ESR method to ..gamma..-radiolysis of aqueous solutions containing amino acids are reviewed. 2-Methyl-2-nitrosopropane (MNP) was used as a spin trap to convert generated unstable free radicals into relatively stable aminoxyl radicals, which were separated individually by HPLC with cation-exchange columns. Compounds derived from MNP during the preparation of aqueous MNP solutions were found to be t-butylnitrosohydroxylamine, t-butyl alcohol and isobutene. The preparation procedure of the solution in which these undesirable products are minimized is proposed. ..gamma..-Radiolysis of aqueous MNP solutions resulted in the formation of five aminoxyl radicals. The chromatographic retention times of the radicals were found to be different from those of the spin adducts from the amino acids studied here. Amino acids investigated in the present work were glycine, L-alanine, L-valine, L-isoleucine, L-leucine and DL-methionine. Twenty-five spin adducts from the amino acids were detected and identified by the method. The reactions by which short-lived radicals are produced in ..gamma..-irradiated aqueous solutions of the amino acids have been found to be H-abstraction by hydroxyl radicals and deamination by hydrated electrons.

  3. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles.

    Callejas, Juan F; McEnaney, Joshua M; Read, Carlos G; Crompton, J Chance; Biacchi, Adam J; Popczun, Eric J; Gordon, Thomas R; Lewis, Nathan S; Schaak, Raymond E

    2014-11-25

    Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically. PMID:25250976

  4. Study of the dose response of the system ferrous ammonium sulfate–sucrose–xylenol orange in acid aqueous solution

    An aqueous solution of ammonium ferrous sulfate–sucrose–xylenol orange in sulfuric acid (FSX) is proposed as a dosimetric system for the processes of gamma irradiation in a range between 0.3 and 6 Gy. This system is based on the indirect oxidation of ferrous ion by an organic compound (sucrose) to ferric ion and on the formation of a color complex of Fe3+ in an acidic medium with xylenol orange (a dye). After gamma radiation, an observable change occurs in the color of the system. Irradiation was executed at three different temperatures (13 °C, 22 °C, and 40 °C). A spectrometric readout method at 585 nm was employed to evaluate the system's dose response. In all of the cases analyzed, the responses had a linear behavior, and a slight effect of irradiation temperature was observed. Post-irradiation response was also evaluated and showed the stability of the solutions 24 h after the irradiation. The results obtained suggest that FSX might be used as a dosimeter for low doses of gamma irradiation because it provides a stable signal, good reproducibility, and an accessible technique for analysis. - Highlights: • The system ferrous-sucrose-xylenol is reproducibility with less than 5% error. • The dosimeter has low cost and easy readout using UV-vis spectrometry, and the response is stable for several days. • The system proposed is suitable for low irradiation doses

  5. Recovery of salicylic acid from aqueous solution by solvent extraction and supported liquid membrane using TOMAC as carrier

    Conventional sewage treatment plants do not fully degrade residues of pharmaceuticals, so that they are introduced into the aquatic environment. On this basis, the demand for the development of efficient systems for removing these compounds from water has assumed a great research interest. Membrane operations are increasingly employed in many industrial sectors as important alternative technologies to the classical processes of separation. Among membrane-based separation processes, the use of supported liquid membranes (SLMs) has received growing attention during recent years. In our work we had tried to recover a pharmaceutical product, salicylic acid (S.A), from an aqueous solution by solvent extraction and supported liquid membrane using an ionic liquid: the tri octylmethylammonium chloride (TOMAC) as carrier. Ionic liquids has been revealed as interesting clean alternatives to classical solvents and their use as a liquid phase results in the stabilization of the SLMs duo to their negligible vapour pressure, the possibility of minimising their solubility in the surrounding phases by adequate selection of the cation and anion, and the greater capillary force associated with their high viscosity. For this reason we had studied the influence of different parameters which could affect the efficiency of the transport: pH of the feed phase, the nature of the strippant, the concentration of the strippant, the nature of the support and the initial concentration of the salicylic acid in the feed phase. We had noticed that the pH of the feed solution had no effect of the percentage extraction and after 24 hours we can extract completely our solute. TOMAC seemed to be a good extractant but we found difficult to strip salicylic acid from the TOMAC phase and this could be related to the formation of water micro environments in the ionic liquid membrane.

  6. Measurement and COrrelation on Viscosity and Apparent Molar Volume of Ternary System for L—ascorbic Acid in Aqueous D—Glucose and Sucrose Solutions

    赵长伟; 马沛生

    2003-01-01

    Visosities and densities at ,several temperatures from 293.15 K to 313.15K are reported for L-ascorbic acid in aqueous glucose and sucrose solutions at different concentrations.The parameters of density,Viscosity coefficient B and partial molar volume are calculated by regression.The experimental results show that densities and viscositis decrease as temperature increases at the same solute and solvent (glucose and sucrose aueous solution)concentrations,and increase with concentration of glucose and sucrose at the same solute concentration and temperature,B increases with concentration of glucose and sucrose and temaperature,L-ascorbic acid is sturcture-breaker or structure-making for the glucose and sucrose aqueous solutions ,Furthermore,the solute-solvent interactions in ternary systems of water-glucose-electrolyte and water-sucrose-electrolyte are discussed.

  7. Gamma irradiation of isocitric and citric acid in aqueous solution: Relevance in prebiotic chemistry

    The radiation chemistry of hydroxy acids like citric and isocitric acids is rather scarce, even though they are crucial compounds in biological systems and for food irradiation. The aim of this work is to study the radiolytic behavior of these acids focused on the interconversion induced by radiation of citric and isocitric acid into other members of the Krebs cycle. The results showed that among the products formed were succinic, malonic, malic and other acids related to metabolic pathways, and these results are correlated with its possible role in chemical evolution processes

  8. Gamma irradiation of isocitric and citric acid in aqueous solution: Relevance in prebiotic chemistry

    Negrón-Mendoza, A., E-mail: negron@nucleares.unam.mx; Ramos-Bernal, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, UNAM. Cd. Universitaria, A. P. 70-543, 04510 México, D. F. México (Mexico)

    2015-07-23

    The radiation chemistry of hydroxy acids like citric and isocitric acids is rather scarce, even though they are crucial compounds in biological systems and for food irradiation. The aim of this work is to study the radiolytic behavior of these acids focused on the interconversion induced by radiation of citric and isocitric acid into other members of the Krebs cycle. The results showed that among the products formed were succinic, malonic, malic and other acids related to metabolic pathways, and these results are correlated with its possible role in chemical evolution processes.

  9. Study of solvent effects on complex formation of tungsten (VI) with ethylenediaminediacetic acid in aqueous solutions of propanol

    Spectrophotometric and potentiometric techniques were used to determine the formation constants of the species formed in the systems H+ + W(VI) + ethylenediaminediacetic acid and H+ + ethylenediaminediacetic acid in aqueous solutions of propanol at 25 deg C and constant ionic strength 0.1 mol dm-3 of sodium perchlorate. The composition of the complex was determined by the continuous variations method. It was shown that tungsten (VI) forms a mononuclear 1 : 1 complex with ethylenediaminediacetic acid of the type WO3L3- at -log[H+] = 5.8. The formation constants in various media were analyzed in terms of Kamlet and Taft's parameters. Solvents have been parameterized by scales of dipolarity/polarizability π*, hydrogen-bond donor strength α, and hydrogen-bond acceptor strength β. Linear dependence on these solvent parameters are used to correlate and predict a wide variety of solvent effects, as well as to provide an analysis of them. Linear relationships are observed when logKS is plotted versus π*. Finally, the results are discussed in terms of the effect of solvent on complexation

  10. Preparation and characterization of irradiated carboxymethyl sago starch-acid hydrogel and its application as metal scavenger in aqueous solution.

    Basri, Sri Norleha; Zainuddin, Norhazlin; Hashim, Kamaruddin; Yusof, Nor Azah

    2016-03-15

    Carboxymethyl sago starch-acid hydrogel was prepared via irradiation technique to remove divalent metal ions (Pb, Cu and Cd) from their aqueous solution. The hydrogel was characterized by using Fourier Transform Infrared (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The removal of these metal ions was analyzed by using inductively coupled plasma-optic emission spectra (ICP-OES) to study the amount of metal uptake by the hydrogel. Parameters of study include effect of pH, amount of sample, contact time, initial concentration of metal solution and reaction temperature. FTIR spectroscopy shows the CMSS hydrogel absorption peaks at 1741cm(-1), 1605cm(-1) and 1430cm(-1) which indicates the substitution of carboxymethyl group of modified sago starch. The degradation temperature of CMSS hydrogel is higher compared to CMSS due to the crosslinking by electron beam radiation and formed a porous hydrogel. From the data obtained, about 93.5%, 88.4% and 85.5% of Pb, Cu and Cd ions has been respectively removed from their solution under optimum condition. PMID:26794735

  11. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    Gonzalez Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James A.; Curtiss, Larry A.

    2012-02-14

    The conversion of furfuryl alcohol (FAL) to levulinic acid over Amberlyst TM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5- trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  12. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid

    Zohdi, Nima; Mahdavi, Fariba; Abdullah, Luqman Chuah; Choong, Thomas SY

    2014-01-01

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of ad...

  13. Reaction of the hydrated electron with amino acids, peptides, and proteins in aqueous solutions

    Faraggi, M. (Ohio State Univ., Columbus); Bettelheim, A.

    1977-08-01

    The reaction rate constants of e/sup -//sub aq/ with glycyl-histidine (Gly-His) and ..beta..-alanylhistidine (Carnosine, ..beta..-Ala-His) were determined and compared to those of ..beta..-alanylalanine (..beta..-Ala-Ala), alanyl-alanine ((Ala)/sub 2/), and histidine (His). The rate constants were found to be pH dependent. Below the pK value of the imidazole ring, the rate constants of the histidyl peptides are similar to that of His. This indicates that the main site of the e/sup -//sub aq/ reaction is the protonated ring. Above this pK value the pH dependent rate constants were less in the His amino acids than in the His peptides. This difference was attributed to the presence of the carbonyl grup in the peptides. This group, which is known to react quite rapidly with e/sup -//sub aq/, exhibits its presence when the imidazole ring loses its reactivity after deprotonation. The difference in reactivity toward e/sup -//sub aq/ between the ..cap alpha.. and ..beta.. His peptides is explained by the relative position of the protonated amino groups with respect to the carbonyl groups. A similar difference was also found in (Ala)/sub 2/ and ..beta..-Ala-Ala. The transient absorption spectra resulting from the reaction of e/sup -//sub aq/ with the His peptides were recorded and examined with respect to peptide concentration and pH dependence. Here again, at pH values below the pK of the imidazole, the transient absorption spectra are similar to that of histidine. In alkaline solutions, however, proper experimental conditions could be attained only for Gly-His. In His and ..beta..-Ala-His the interference of the OH radical reaction was observed. In Gly/sup -/His it was found that the band characterizing the imidazole transient (lambda/sub max/ = 360 nm) disappears with a simultaneous appearance of a band at lambda/sub max/ similarly ordered 410 nm.

  14. Equilibria in aqueous solution between Be(II) and nitrilotriacetic, methyl-C-nitrilotriacetic, nitrilodiaceticpropionic, nitriloaceticdipropionic and nitrilotripropionic acids

    The complex species formed in aqueous solution between Be(II) and nitrilotriacetic acid (NTA),methyl-C-nitrilotriacetic acid (MNTA), nitrilodiaceticpropionic acid (NDAP), nitriloaceticdipropionic acid (NADP) and nitrilotripropionic acid (NTP) were studied at 250C and ionic strength 0.5 M in NaClO4. The application of the calculus program LETAGROP to the experimental potentiometric data, taking into account hydrolysis of the ion Be(II), indicates that, upon varying the ligand-metal relationships, the following complex species are formed (H3C ligands): NTA(BeC:-, log K = 6.84); MNTA (:BeC: -, log K = 7.39: BeHC, log K = 1.79); NDAP (:BeC:-, log K 8.10: BeHC, log K = 1.96; [BeH2C]+, log K = 1.37; NADP ([BeC]-, log K = 9.25; BeHC, log K 2.37); and NTP ([BeC]-, log K = 9.23). The values of the stability constants (:BeC: -, log K) indicate the following order of coordinating capacity: NTA < MNTA < NDAP < NADP approx. NTP. This order is attributed to the increase in propionic groups. It has been confirmed that six-membered ring chelates are the most stable for Be(II), in a similar manner to other elements of the first short period, such as boron and carbon, while Cu(II), Ni(II), lanthanides and other heavier elements prefer five-membered ring chelates. (author)

  15. Equilibria in aqueous solution between Be(II) and nitrilotriacetic, methyl-C-nitrilotriacetic, nitrilodiaceticpropionic, nitriloaceticdipropionic and nitrilotripropionic acids

    Mederos, A.; Dominguez, S.; Medina, A.M.; Brito, F.; Chinea, E.; Bazdikian, K.

    1987-01-01

    The complex species formed in aqueous solution between Be(II) and nitrilotriacetic acid (NTA),methyl-C-nitrilotriacetic acid (MNTA), nitrilodiaceticpropionic acid (NDAP), nitriloaceticdipropionic acid (NADP) and nitrilotripropionic acid (NTP) were studied at 25/sup 0/C and ionic strength 0.5 M in NaClO/sub 4/. The application of the calculus program LETAGROP to the experimental potentiometric data, taking into account hydrolysis of the ion Be(II), indicates that, upon varying the ligand-metal relationships, the following complex species are formed (H/sub 3/C ligands): NTA(BeC:/sup -/, log K = 6.84); MNTA (:BeC: /sup -/, log K = 7.39: BeHC, log K = 1.79); NDAP (:BeC:/sup -/, log K 8.10: BeHC, log K = 1.96; (BeH/sub 2/C)/sup +/, log K = 1.37; NADP ((BeC)/sup -/, log K = 9.25; BeHC, log K 2.37); and NTP ((BeC)/sup -/, log K = 9.23). The values of the stability constants (:BeC: /sup -/, log K) indicate the following order of coordinating capacity: NTA < MNTA < NDAP < NADP approx. NTP. This order is attributed to the increase in propionic groups. It has been confirmed that six-membered ring chelates are the most stable for Be(II), in a similar manner to other elements of the first short period, such as boron and carbon, while Cu(II), Ni(II), lanthanides and other heavier elements prefer five-membered ring chelates.

  16. Removal of dicyclohexyl acetic acid from aqueous solution using ultrasound, ozone and their combination.

    Kumar, Pardeep; Headley, John; Peru, Kerry; Bailey, Jon; Dalai, Ajay

    2014-01-01

    Naphthenic acids are a complex mixture of organic components, some of which include saturated alkyl-substituted cycloaliphatic carboxylic acids and acyclic aliphatic acids. They are naturally found in hydrocarbon deposits like oil sand, petroleum, bitumen and crude oil. In this study, the oxidation of a relatively high molecular weight naphthenic acid (Dicyclohexyl acetic acid) was investigated using ozonation, ultrasonication and hydrogen peroxide alone and their combinations. Effects on oxidation of dicyclohexyl acetic acid (DAA) were measured for different concentrations of ozone ranging between 0.7 to 3.3 mg L(-1) and pH in the range 6 to 10. Ultrasonication and hydrogen peroxide alone were not effective to oxidize dicyclohexyl acetic acid, but combining ultrasonication with H2O2 had a significant effect on oxidation of dicyclohexyl acetic acid with maximum removal reaching to 84 ± 2.2% with 81 ± 2.1% reduction in chemical oxygen demand (COD). Synergistic effects were observed for combining ultrasonication with ozonation and resulted in 100% DAA removal with 98 ± 0.8% reduction in COD within 15 min at 3.3 mg L(-1) ozone concentration and 130 Watts ultrasonication power. The reaction conditions obtained for the maximum oxidation of DAA and COD removal were used for the degradation of naphthenic acids mixture extracted from oil sands process water (OSPW). The percentage oxidation of NAs mixture extracted from OSPW was 89.3 ± 1.1% in ozonation and combined ozonation and ultrasonication, but COD removal observed was 65 ± 1.2% and 78 ± 1.4% for ozonation and combined ozonation and ultrasonication treatments, respectively. PMID:25137539

  17. Silver colloidal effects on excited-state structure and intramolecular charge transfer of p-N, N-dimethylaminobenzoic acid in aqueous cyclodextrin solutions

    The silver colloidal effects on the excited-state structure and intramolecular charge transfer (ICT) of p-N,N-dimethylaminobenzoic acid (DMABA) in aqueous cyclodextrin (CD) solutions have been investigated by UV-VIS absorption, steady-state and time-resolved fluorescence, and transient Raman spectroscopy. As the concentration of silver colloids increases, the ratio of the ICT emission to the normal emission (Ia/Ib) of DMABA in the aqueous α-CD solutions are greatly decreased while the Ia/Ib values in the aqueous β-CD solutions are significantly enhanced. It is also noteworthy that the ICT emission maxima are red-shifted by 15-40 nm upon addition of silver colloids, implying that DMABA encapsulated in α-CD or β-CD cavity is exposed to more polar environment. The transient resonance Raman spectra of DMABA in silver colloidal solutions demonstrate that DMABA in the excited-state is desorbed from silver colloidal surfaces as demonstrated by the disappearance of vs(CO2-)(1380 cm-1) with appearance of v (C-OH)(1280 cm-1) band, respectively. Thus, in the aqueous β-CD solutions the carboxylic acid group of DMABA in the excited-state can be readily hydrogen bonded with the secondary hydroxyl group of β-CD while in aqueous and α-CD solutions the carboxylic acid group of DMABA has the hydrogen-bonding interaction with water. Consequently, in the aqueous β-CD solutions the enhancement of the Ia/Ib value arises from the intermolecular hydrogen-bonding interaction between DMABA and the secondary hydroxyl group of β-CD as well as the lower polarity of the rim of the β-CD cavity compared to bulk water. This is also supported by the increase of the association constant for DMABA/β-CD complex in the presence of silver colloids

  18. Extraction of Phthalic Acid from Aqueous Solution by Using Ionic Liquids: A Quantum Chemical Approach

    Pilli, S; Mohanty, Kaustubha; Banerjee, Tamal

    2014-01-01

    Phthalic acid is an industrial chemical and it comes under the domain of endocrine disrupting chemicals (EDCs). Green solvents such as ionic liquids (ILs) posses good extractable capabilities for EDCs. COSMO–RS methodology is a widely accepted method for the design or selection of ionic liquids. COSMO–RS is a quantum chemical based method based on COSMO polarization charge densities. In this work the model has been used to screen the potential ionic liquids for the removal of phthalic acid fr...

  19. Corrosion Inhibition of Aluminum in Acidic Solution by Aqueous Extract of Ajowan Plant as Green Inhibitor

    Aisha M. Al-Turkustani; Mona M. Al-Solmi

    2011-01-01

    The inhibition of aluminum corrosion in 0.5 M hydrochloric acid by Ajowan plant was studied using chemical (weight loss) and ectrochemical (impedance and polarization) methods. The Ajowan plant extract was found to be good inhibitor for aluminum corrosion in 0.5 M hydrochloric acid in the studied concentration range of inhibitor. Corrosion inhibition could be explained by considering an interaction between metal surface and the inhibitor molecules. Electrochemical measurements showed that Ajo...

  20. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  1. Temperature-Induced Aggregate Transitions in Mixtures of Cationic Ammonium Gemini Surfactant with Anionic Glutamic Acid Surfactant in Aqueous Solution.

    Ji, Xiuling; Tian, Maozhang; Wang, Yilin

    2016-02-01

    The aggregation behaviors of the mixtures of cationic gemini surfactant 1,4-bis(dodecyl-N,N-dimethylammonium bromide)-2,3-butanediol (C12C4(OH)2C12Br2) and anionic amino acid surfactant N-dodecanoylglutamic acid (C12Glu) in aqueous solution of pH = 10.0 have been studied. The mixture forms spherical micelles, vesicles, and wormlike micelles at 25 °C by changing mixing ratios and/or total surfactant concentration. Then these aggregates undergo a series of transitions upon increasing the temperature. Smaller spherical micelles transfer into larger vesicles, vesicles transfer into solid spherical aggregates and then into larger irregular aggregates, and entangled wormlike micelles transfer into branched wormlike micelles. Moreover, the larger irregular aggregates and branched micelles finally lead to precipitation and clouding phenomenon, respectively. All these transitions are thermally reversible, and the transition temperatures can be tuned by varying the mixing ratios and/or total concentration. These temperature-dependent aggregate transitions can be elucidated on the basis of the temperature-induced variations in the dehydration, electrostatic interaction, and hydrogen bonds of the headgroup area and in the hydrophobic interaction between the hydrocarbon chains. The results suggest that the surfactants carrying multiple binding sites will greatly improve the regulation ability and temperature sensitivity. PMID:26750978

  2. Preparation of novel magnetic chitosan nanoparticle and its application for removal of humic acid from aqueous solution

    Dong, Changlong, E-mail: jutimake@126.com [College of Environment, Hohai University, Nanjing 210098 (China); Chen, Wei; Liu, Cheng [Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China)

    2014-02-15

    A novel magnetic chitosan nanoparticle (MCNP) with a BET surface area of 108.32 m{sup 2}/g was prepared using a time and energy saving method at mild condition. MCNP exhibits an excellent ability to adsorb humic acid (HA) from aqueous solution in a wide range of initial HA concentration. The rate of HA adsorption is rapid with more than 50% of HA can be adsorbed in initial 10 min, and the equilibrium state can be reached in 60 min. The adsorption kinetics data fits well to the pseudo-second-order model, and the adsorption process is transport-limited at low initial HA concentration and attachment-limited at high initial HA concentration. The Langmuir isotherm model fits the equilibrium data better than the Freundlich isotherm model, indicating that the adsorption of HA onto MCNP is a monolayer adsorption. Based on the Langmuir isotherm model, the maximum adsorption capacity of HA is 32.6 mg/g at 25 °C. Thermodynamic parameters presents that the adsorption of HA onto MCNP is spontaneous and endothermic in nature. The mechanism for the adsorption of HA onto MCNP involves electrostatic interaction and hydrogen bonding. Regeneration studies indicate that MCNP can be recyclable for a long term. All the experimental results suggest that MCNP is a promising adsorbent for treating water that is contaminated with humic acid.

  3. Degradation of Acid Orange 7 in aqueous solution by dioxygen activation in a pyrite/H₂O/O₂ system.

    Hao, Feifei; Guo, Weilin; Lin, Xin; Leng, Yanqiu; Wang, Anqi; Yue, Xinxin; Yan, Liangguo

    2014-05-01

    Increasing attention has been paid to pyrite due to its ability to generate hydroxyl radicals in air-saturated solutions. In this study, the mineral pyrite was studied as a catalyst to activate molecular oxygen to degrade Acid Orange 7 (AO7) in aqueous solution. A complete set of control experiments were conducted to optimize the reaction conditions, including the dosage of pyrite, the AO7 concentration, as well as the initial pH value. The role of reactive oxygen species (ROS) generated by pyrite in the process was elucidated by free radical quenching reactions. Furthermore, the concentrations of Fe(II) and total Fe formed were also measured. The mechanism for the production of ROS in the pyrite/H2O/O2 system was that H2O2 was formed by hydrogen ion and superoxide anion (O2(·-)) which was produced by the reaction of pyrite activating O2 and then reacted with Fe(II) dissolved from pyrite to produce (·)OH through Fenton reaction. The findings suggest that pyrite/H2O/O2 system is potentially practical in pollution treatment. Moreover, the results provide a new insight into the understanding of the mechanism for degradation of organic pollutants by pyrite. PMID:24510532

  4. Evaluation of Performance Catalytic Ozonation Process with Activated Carbon in the Removal of Humic Acids from Aqueous Solutions

    Gh. Asgari

    2011-01-01

    Full Text Available Introduction & Objective: In recent years, the use of alternative disinfectants and the control of natural organic matters are two approaches that are typically applied in water treatment utilities to reduce the formation of chlorinated disinfection by-products. Catalytic ozonation is a new technology used to promote the efficiency of ozonation. The goal of this study was to survey the feasibility application of activated carbon as a catalyst in ozonation process for removal of humic acids from aqueous solution. Materials & Methods: This experimental study has been done in laboratory of water and wastewater chemistry, Tarbiat Modarres University. The solid structure and chemical composition of activated carbon were analyzed by X-ray fluorescence (XRF. Ozonation and catalytic ozonation experiments were performed in a semi-batch reactor and the mass of ozone produced was measured by iodometric titration methods. Concentration changes of humic acid in samples with a concentration of 15 mg/l were determined by using spectrophotometer at an absorbance wavelength of 254 nm. To evaluate the performance of catalytic ozonation in humic acid removal, total organic carbon and trihalomethane formation potential were evaluated and the results were analyzed by Excel software. Results: Catalytic ozone results showed that using activated carbon as a catalyst increased humic acid decomposition up to 11 times and removal efficiency increased with increasing pH (4-12 and catalyst dosage (0.25-1.5 g/250cc. The experimental results showed that catalytic ozonation was most effective in less time (10 min with considerable efficiency (95% compared to the sole ozonation process (SOP. Conclusion: The results indicated that the catalytic ozonation process, compared to SOP, was less affected by radical scavenger, and total organic carbon, and trihalomethane formation potential removal achieved were 30% and 83%, respectively. (Sci J Hamadan Univ Med Sci 2011;17(4:25-33

  5. Environmental degradation of fiber reinforced plastic materials in neutral, acidic, and basic aqueous solutions

    Barkatt, A.; Bank, L.C.; Gentry, T.R.; Prian, L.; Shan, R.; Sang, J.C.; Pollard, R. [Catholic Univ. of America, Washington, DC (United States)

    1995-10-01

    Kinetic measurements on the dissolution of oxide components of fiber-reinforced plastics show that the dissolution in aqueous media is a complex phenomenon and that changes in the nature of the controlling mechanism during the time of exposure can lead to an increase in rate. As a result, thorough understanding of the mechanisms is imperative in developing models for prediction of the long-term degradation of these composites. Thermogravimetric analysis has been found to be a promising indicator of the structural changes associated with the degradation process. Results obtained on specimens of concrete reinforcement rods made out of a E-glass/vinylester FRP material show that weight loss between 150 and 300 C is sensitively dependent on the nature of the corroding medium, the duration of exposure, and, in particular, the temperature at which the material was previously exposed. This weight loss correlates with the extent of moisture absorption. The enhanced weight loss between 150 and 300 C observed in the cases of samples previously exposed to attack by an aqueous media apparently reflects the increase in number of monomeric species as a result of the exposure. Increase in the effective area out of which monomers may volatilize as a result of the formation or propagation of microcracks, pores, or fiber-matrix interfacial gaps in the course of exposure may also contribute to enhanced weight loss. The conclusion that the extent of weight loss is indicative of the extent of degradation is supported by chemical, infrared and NMR analysis of the evolved vapors and by determination of their molecular weight. Both the weight loss at elevated temperatures and the tensile strength show a strong dependence on temperature and a parabolic time dependence. Raman spectroscopy is a highly sensitive and convenient technique of following structural changes. The techniques explored here can provide important data for modeling of the environmental degradation process.

  6. Complexes of Al(3), Ga(3) and In(3) ions with sodium salt of morin-5'-sulfonic acid (NaMSA) in aqueous solutions

    The complexation equilibria of Al(3), Ga(3) and In(3) with NaMSA in acid aqueous solutions have been investigated. The composition and the equilibrium constants of the reaction as well as the concentration stability constants of the complexes have been determined. The probable mechanisms of the complexation reaction have been suggested. (author)

  7. Batch coparative study of sorptive study of sorptive properties of two varieties of almond peels for bezanyl red (acid dye) from synthetic aqueous solutions

    BENAISSA, H.; Boumediene, M

    2012-01-01

    The ability of two varieties (hard and soft) of almond peels, as inexpensive sorbents for the removal of bezanyl red (acid dye) from synthetic aqueous solutions has been studied. After their characterization by different techniques, (elemental analysis, biochemical analysis, IR spectroscopy, thermogravimetric analysis, scanning electron microscopy and mercury porosimetry), the dye sorption kinetics and equilibrium isotherm have been investigated in batch conditions. The in...

  8. Removal of corper(II) Ions from aqueous solution by a lactic acid bacterium

    M. Yilmaz(Department of Physics, Gazi University, Ankara); T. Tay; M. Kivanc; H. Turk

    2010-01-01

    Enterococcus faecium, a lactic acid bacterium (LAB), was evaluated for its ability to remove copper(II) ions from water. The effects of the pH, contact time, initial concentration of copper(II) ions, and temperature on the biosorption rate and capacity were studied. The initial concentrations of copper(II) ions used to determine the maximum amount of biosorbed copper(II) ions onto lyophilised lactic acid bacterium varied from 25 mg L-1 to 500 mg L-1. Maximum biosorption capacities were attain...

  9. Co(II) complexes of amino acids and peptides in aqueous solution studied by 170 NMR

    Structural, dynamic and kinetic 170 NMR investigations of the complexation of metal ions with amino acids and peptides were performed in Glicine, proling cyclo(Ala '1'70-Ala), cyclo-(Gly170-Pro) and cyclo(Pro170-Gly). The 170 carboxyl and carbonylsignals of paramagnetic complexes with amino acids were observed and allowed for the determinatio, in several cases, of the stoichiometry of the ocmplexes formed and the kinetic and thermodynamic parameters characterizing ligand exchange. It was found that the paramagnetic ions bind to the oxygen of the peptide carboxyl group. (H.W.). 25 refs.; 10 figs.; 3 tabs

  10. Dissolution of metal oxides in an acid-saturated ionic liquid solution and investigation of the back-extraction behaviour to the aqueous phase

    Wellens, Sil; Vander Hoogerstraete, Tom; Möller, Claudia; Thijs, Ben; Luyten, Jan; Binnemans, Koen

    2014-01-01

    The dissolution of metal oxides in an acid-saturated ionic liquid, followed by selective stripping of the dissolved metal ions to an aqueous phase is proposed as a new ionometallurgical approach for the processing of metals in ionic liquids. The hydrophobic ionic liquid trihexyl(tetradecyl)phosphonium chloride (Cyphos IL 101) saturated with a concentrated aqueous hydrochloric acid solution was used to dissolve CaO, NiO, MnO, CoO, CuO, ZnO and Fe2O3. It was found that nickel(II) and calcium...

  11. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  12. Binding constants of Eu and Th with humic acids in aqueous solutions

    The binding constants for Eu and Th fulvate complexes were measured by the solvent extraction technique. For comparison, the binding constant for the Eu humate complex was also investigated. The measurements were carried out radiometrically using 152,154Eu and 234Th. The results indicate that, in case of fulvic acid, one parameter, β1, was required to fit the binding as a function of carboxylate concentration. With humic acid, Eu3+ formed 1 : 1 and 1 : 2 complexes, and two parameters, β1 and β2, were required. In both cases, the strength of binding increased with pKa and degree of ionization of the ligands and with the valence of the metal ions

  13. Removal of lead ions from acid aqueous solutions using zeolite bearing tuff

    Golomeova, Mirjana; Zendelska, Afrodita; Golomeov, Blagoj; Krstev, Boris; Jakupi, Shaban

    2016-01-01

    Water pollution come from a number of different sources, and pollutants are divided up into various classes, such as organic pollutants, inorganic fertilizers, metals and radioactive isotopes. Organic pollutants are susceptible to biological degradation, unlike heavy metals which are not degrade into harmless products. Heavy metals are a common pollutant found in various industrial effluents. They are often encountered in mining operations and acid mine drainage. Because heavy metals are high...

  14. Salinity, dissolved organic carbon and water hardness affect peracetic acid (PAA) degradation in aqueous solutions

    Liu, Dibo; Steinberg, Christian E.W.; Straus, David L.; Pedersen, Lars-Flemming; Meinelt, Thomas

    2014-01-01

    Peracetic acid (PAA) is used in aquaculture under different conditions for disinfection and therapeutic purposes. There is limited information about its environmental fate, particularly its persistence in aquatic systems with different physical–chemical conditions. This study investigated PAA...... hardness had only minor impact. For commercial aquaculture, actual PAA concentration in the raw product needs to be measured; the fate of PAA in individual facilities must be carefully monitored and feasible application strategies need to be investigated to achieve maximal disinfection and therapeutic...

  15. Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions salicylic, 3-nitrosalicylic, 5-nitrosalicylic and 3,5 dinitrosalicylic acids, Part 2

    In this work electrochemical and Ultraviolet-Visible studies were performed in solutions of salicylic acid models of humic and nitrohumic acids, a laboratory artifact, and molybdenum in order to determine the affinity of these models towards the metal ion. Molybdenum, which plays a very important role in the soil chemistry, and together with humic substances, impart fertility to soil and water and is a key element in the activity of nitrogenase. The obtained results showed that at least one complexed species is present at the pH range of 6.3 to 8.0, even for the less basic chosen models, the nitrosalicylic acids. Previous study showed that phthalic and nitrophthalic, also humic and nitrohumic acids model compounds, presented complexed species with molybdenum only till pH 6.5. The calculated formation constants showed that the substitution of the nitro group in the orto position was less favoured than in the para substitution, probably due to a steric hindrance in the former, which was clearly seen in the double substituted salicylic nitro derivative. The cyclic voltammetry as well as the Ultraviolet-Visible obtained spectra were able to show that the chemistry of molybdenum in aqueous solutions as the pH is increased is very complex, and the molybdate stops acting as an anion only after pH around 4, when it finally becomes a cation MoO22+ (M). (author)

  16. Shikimic acid ozonolysis kinetics of the transition from liquid aqueous solution to highly viscous glass.

    Steimer, Sarah S; Berkemeier, Thomas; Gilgen, Anina; Krieger, Ulrich K; Peter, Thomas; Shiraiwa, Manabu; Ammann, Markus

    2015-12-14

    Ageing of particulate organic matter affects the composition and properties of atmospheric aerosol particles. Driven by temperature and humidity, the organic fraction can vary its physical state between liquid and amorphous solid, or rarely even crystalline. These transitions can influence the reaction kinetics due to limitations of mass transport in such (semi-) solid states, which in turn may influence the chemical ageing of particles containing such compounds. We have used coated wall flow tube experiments to investigate the reaction kinetics of the ozonolysis of shikimic acid, which serves as a proxy for oxygenated, water-soluble organic matter and can form a glass at room temperature. Particular attention was paid to how the presence of water influences the reaction, since it acts a plasticiser and thereby induces changes in the physical state. We analysed the results by means of a traditional resistor model, which assumes steady-state conditions. The ozonolysis rate of shikimic acid is strongly increased in the presence of water, a fact we attribute to the increased transport of O3 and shikimic acid through the condensed phase at lower viscosities. The analysis using the resistor model suggests that the system undergoes both surface and bulk reaction. The second-order rate coefficient of the bulk reaction is 3.7 (+1.5/-3.2) × 10(3) L mol(-1) s(-1). At low humidity and long timescales, the resistor model fails to describe the measurements appropriately. The persistent O3 uptake at very low humidity suggests contribution of a self-reaction of O3 on the surface. PMID:26536455

  17. Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution

    Ze Zhang; Jie-Jie Chen; Xian-Jin Lyu; Hao Yin; Guo-Ping Sheng

    2014-01-01

    Decomposition of perfluorooctanoic acid (C7F15COOH, PFOA) has been gaining increasing interests because it is a ubiquitous environmental contaminant and resistant to the most conventional treatment processes. In this work, the rapid and complete mineralization of PFOA and simultaneous defluorination were achieved by γ-ray irradiation with a 60Co source. The degradation rate of PFOA by γ-ray irradiation would be high, and a pseudo-first-order kinetic rate constant of 0.67 h−1 could be achieved...

  18. Fluorescence of lanthanide(3) complexes with aminopolyacetic acids in aqueous solutions

    The fluorescence of Eu(3), Gd(3), Tb(3) and Dy(3) ions complexed with aminopolyacetic acids was investigated. The influence of temperature and the dimensions of the ligand molecules and of their electric charge on the intensity of the emission bands is discussed as well as the ratio of the hypersensitive (forbidden) band to the allowed band intensity. On the basis of the fluorescence measurements a simple theoretical model is discussed and certain generalizations concerning the fluorescence of the lanthanides group are derived. (Author)

  19. Adsorption of Acid Orange 8 Dye from Aqueous Solution Onto Unmodified and Modified Zeolites

    Tharcila Colachite Rodrigues Bertolini

    2015-12-01

    Full Text Available The adsorption of the acid dye Acid Orange 8 (AO8 onto unmodified and modified zeolites from coal fly ash and bottom ash was evaluated. The coal fly ash and bottom ash used in the synthesis of the zeolites by alkaline hydrothermal treatment were collected in the Thermoelectric Complex Jorge Lacerda, located in the Santa Catarina State, Brazil, the largest coal burning thermoelectric complex of Latin America. The modified zeolites were modified using the surfactant hexadecyltrimethylammonium bromide. The zeolitic materials were characterized predominantly as hydroxysodalite and NaX. The kinetics studies indicated that the adsorption followed the pseudo-second order kinetics. Linear and non-linear regression methods were used to determine the best fit of equilibrium data. The Freundlich model was better adjusted to the experimental data for all systems studied. The parameters of adsorption isotherms were used to predict the design of the equipment for performing adsorption discontinuous single stage. DOI: http://dx.doi.org/10.17807/orbital.v7i4.764 

  20. Removal of corper(II Ions from aqueous solution by a lactic acid bacterium

    M. Yilmaz

    2010-06-01

    Full Text Available Enterococcus faecium, a lactic acid bacterium (LAB, was evaluated for its ability to remove copper(II ions from water. The effects of the pH, contact time, initial concentration of copper(II ions, and temperature on the biosorption rate and capacity were studied. The initial concentrations of copper(II ions used to determine the maximum amount of biosorbed copper(II ions onto lyophilised lactic acid bacterium varied from 25 mg L-1 to 500 mg L-1. Maximum biosorption capacities were attained at pH 5.0 and 6.0. Temperature variation between 20°C and 40°C did not affect the biosorption capacity of the bacterial biomass. The highest copper(II ion removal capacity was 106.4 mg per g dry biomass. The correlation regression coefficients show that the biosorption process can be well defined by the Freundlich equation. The change in biosorption capacity with time was found to fit a pseudo-second-order equation.

  1. Spectrophotometric determination of Rare Earth Elements in aqueous nitric acid solutions for process control.

    Rodionova, Oxana Ye; Tikhomirova, Tatyana I; Pomerantsev, Alexey L

    2015-04-15

    Noninvasive analytical control is of special interest for the complicated and hazardous production processes. On-line monitoring provides a unique opportunity to determine critical concentrations rapidly and without serious risks to operating personnel and the environment. Models for quantitative determination of concentrations of Rare Earth Elements in complex mixtures in nitric acid serve for these purposes. Here, the feasibility of simultaneous determination of cerium, praseodymium, and neodymium using the whole UV-vis spectroscopic range, together with chemometric data processing, is studied. The predictability of two chemometric techniques, partial least squares regression and correlation constrained multivariate curve resolution-alternating least squares are compared. Models' performances are analyzed in out-of-control cases. PMID:25818140

  2. Kinetics of oxidation and dissolution of uranium dioxide in aqueous acid solutions

    The oxidation and dissolution of UO2 has been studied using electrochemical methods with an UO2 rotating disc electrode in acidic (pH 3) and non-complexing (trifluoromethanesulfonate: 0.1 mol L−1 NaCF3SO3) media. The effect of the experimental parameters such as scan rate (v) and rotation rate (ω) on the electrochemical signal has been studied. The rotation rate of the electrode does not influence the resulting signal, which indicates that only a charge transfer is involved in the UO2 oxidation kinetic. However, scan rate variations show different reactions involved in the UO2 oxidation. Linear sweep voltammetry and cyclic voltammetry coupled to X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) measurements suggest two successive electrochemical reactions with an exchange of one electron for each of them and the formation of one intermediate species of U(V).

  3. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA. PMID:26469934

  4. Thermodynamic studies on the interaction between some amino acids with some rare earth metal ions in aqueous solutions

    Mohamed, AbdAllah A.; Bakr, Moustafa F.; Abd El-Fattah, Khaled A

    2003-11-06

    The interactions between the amino acids (glycine and L-threonine) with some rare earth metal ions (Pr{sup 3+}, Nd{sup 3+}, Eu{sup 3+}, Gd{sup 3+}, Dy{sup 3+}, Ho{sup 3+} and Yb{sup 3+}) were studied at a wide range from ionic strengths (0.07-0.32 M KNO{sub 3}) and temperatures (25-45 deg. C) in aqueous solutions by using Bjerrum potentiometric method. The stoichiometric and thermodynamic stability constants were calculated as well as the standard thermodynamic parameters ({delta}G deg., {delta}H deg. and {delta}S deg. ) for all possible reactions that occur. The degree of formation (n-bar) for all studied systems was determined and discussed. The thermodynamic parameters differences ({delta}{delta}G deg., {delta}{delta}H deg. and {delta}{delta}S deg. ) were calculated and discussed to determine the factors which control these complexation processes from the thermodynamic point of view.

  5. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation

    Li, Xianghui; Guo, Weilin; Liu, Zhonghua; Wang, Ruiqin; Liu, Hua

    2016-04-01

    Fe-based metal-organic frameworks (MOFs) including MIL-101(Fe), MIL-100(Fe), MIL-53(Fe), and MIL-88B(Fe) prepared via a facile solvothermal process were introduced as both adsorbents and catalysts to generate powerful radicals from persulfate for acid orange 7 (AO7) removal in aqueous solution. Various catalysts were described and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray photoelectron spectra. Because of the high specific surface area of the materials, we studied the adsorption isotherms of the four MILs by the fitting of Langmuir adsorption isotherm. Meanwhile, the catalytic activities in persulfate oxidation system were investigated. The results showed that the sequence of the materials ability in the combination of adsorption and degradation was MIL-101(Fe) > MIL-100(Fe) > MIL-53(Fe) > MIL-88B(Fe), which had a close connection with the activity of metal ion in active site of the catalysts and their different cages in size. Moreover, the reactive species in MILs/persulfate system were identified as sulfate radicals and hydroxyl radicals. The reaction mechanism for persulfate activation over MILs was also studied.

  6. Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon

    Peng, Xiaoming; Hu, Xijun; Fu, Dafang; Lam, Frank L. Y.

    2014-03-01

    A novel ordered mesoporous carbon CMK-3 and synthetic CMK-3 containing nitrogen functional groups by ammonia-treated were applied for acid black 1(AB1) dye adsorption. The ammonia-treated(chemical vapor deposition method) before and after CMK-3 were characterized by using a Micrometitics ASAP 2020 surface area analyzer (ASAP 2020), Fourier transform infrared spectrophotometer (FT-IR), X-ray Photoelectron Spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM) and equilibrium studies. This result indicates that the prepared CMK-3 and modified CMK-3 were almost uniform, as rope-like domains and their uniform mesopore with diameter centered at 3.2 nm and 3.7 nm. The FIIR analysis depicted that the presence of a variety of new basic functional groups on the modified CMK-3 surface. Several effect variables of pH, dye concentration and temperature were studied. The pseudo second-order model showed the fitter well to agree with the kinetic data. The experimental data were analyzed by the Langmuir and Freundlich models, with the latter found to closely the isotherm model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The results show that CMK-3 using ammonia gas modified by thermal treatment system is an effective method to improvement capacity as it shows the highest adsorption capacity of AB1, as compared to the unmodified CMK-3 and the bamboo-based carbon, respectively.

  7. On interaction of rubidium, cesium and iron(3) sulfates in aqueous solutions of sulfuric acid

    Solubility of the salts in the systems Me2SO4-Fe2(SO4)3-H2SO4-H2O (Me is Rb, Cs) has been studied at 25 deg C and concentration regions of existing ferric rubidium and ferric cesium alum have been determined. Solubility has been studied under isothermal conditions. The solid phases of the systems have been identified by the 'residue' method, by X-ray method and thermogravimetrically. It has been shown that the systems are characterized by the formation of the compounds 2Me2SO4xFe2(SO4)3x12H2O and of anomalous solid solutions. Physicochemical properties of the synthesized alum have been studied; their derivatograms and roentgenograms have been obtained. The alum are colourless greyish crystals crystallizing in cubic syngony and having the following values of the density and of the parameter of elementary cell at 25 deg C: for RbFe(SO4)2x12H2O - 1.942 g/cm3 and 12.328 A; for CsFe(SO4)2x12H2O - 2.044 g/cm3 and 12.434 A

  8. Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon

    Peng, Xiaoming, E-mail: pengxiaoming70@126.com [School of Civil Engineering, Southeast University, Nanjing 210096 (China); Hu, Xijun [Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,China (China); Fu, Dafang, E-mail: fdf@seu.edu.cn [School of Civil Engineering, Southeast University, Nanjing 210096 (China); Lam, Frank L.Y. [Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,China (China)

    2014-03-01

    Highlights: • Ordered mesoporous carbon was prepared using template. • Ordered mesoporous carbon was introduced of N-containing group by Chemical vapor deposition method. • Modified CMK-3 have better adsorption capacity and efficiency than virgin CMK-3 to removal AB1 dye. - Abstract: A novel ordered mesoporous carbon CMK-3 and synthetic CMK-3 containing nitrogen functional groups by ammonia-treated were applied for acid black 1(AB1) dye adsorption. The ammonia-treated(chemical vapor deposition method) before and after CMK-3 were characterized by using a Micrometitics ASAP 2020 surface area analyzer (ASAP 2020), Fourier transform infrared spectrophotometer (FT–IR), X-ray Photoelectron Spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM) and equilibrium studies. This result indicates that the prepared CMK-3 and modified CMK-3 were almost uniform, as rope-like domains and their uniform mesopore with diameter centered at 3.2 nm and 3.7 nm. The FIIR analysis depicted that the presence of a variety of new basic functional groups on the modified CMK-3 surface. Several effect variables of pH, dye concentration and temperature were studied. The pseudo second-order model showed the fitter well to agree with the kinetic data. The experimental data were analyzed by the Langmuir and Freundlich models, with the latter found to closely the isotherm model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The results show that CMK-3 using ammonia gas modified by thermal treatment system is an effective method to improvement capacity as it shows the highest adsorption capacity of AB1, as compared to the unmodified CMK-3 and the bamboo-based carbon, respectively.

  9. Degradation of H-acid in aqueous solution by microwave assisted wet air oxidation using Ni-loaded GAC as catalyst

    ZHANG Yao-bin; QUAN Xie; ZHAO Hui-min; CHEN Shuo; YANG Feng-lin

    2005-01-01

    A novel process, microwave assisted catalytic wet air oxidation(MW-CWO), was applied for the degradation of H-acid( 1-amino8-naphthol-3, 6-disulfonic acid) in aqueous solution. Ni-loaded granular activated carbon (GAG), prepared by immersion-calcination method, was used as catalyst. The results showed that the MW-CWO process was very effective for the degradation of H-acid in aqueous solution under atmospheric pressure with 87.4% TOC (total organic carbon) reduction in 20 min. Ni on GAC existed in the form of NiO as specified by XRD. Loss of Ni was significant in the initial stage, and then remained almost constant after 20 min reaction. BET surface area results showed that the surface property of GAC after MW-CWO process was superior to that of blank GAC.

  10. Cd(II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan

    The present study developed an α-ketoglutaric acid-modified magnetic chitosan (α-KA-Fe3O4/CS) for highly efficient adsorption of Cd(II) from aqueous solution. Several techniques, including transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and vibrating sample magnetometer (VSM), were applied to characterize the adsorbent. Batch tests were conducted to investigate the Cd(II) adsorption performance of α-KA-Fe3O4/CS. The maximum adsorption efficiency of Cd(II) appeared at pH 6.0 with the value of 93%. The adsorption amount was large and even reached 201.2 mg/g with the initial Cd(II) concentration of 1000 mg/L. The adsorption equilibrium was reached within 30 min and commendably described by pseudo-second-order model, and Langmuir model fitted the adsorption isotherm better. Furthermore, thermodynamic parameters, free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) of Cd(II) adsorption were also calculated and showed that the overall adsorption process was endothermic and spontaneous in nature because of positive ΔH values and negative ΔG values, respectively. Moreover, the Cd(II)-loaded α-KA-Fe3O4/CS could be regenerated by 0.02 mol/L NaOH solution, and the cadmium removal capacity could still be kept around 89% in the sixth cycle. All the results indicated that α-KA-Fe3O4/CS was a promising adsorbent in environment pollution cleanup.

  11. Selective removal of Cr(VI) from aqueous solution by polypyrrole/2,5-diaminobenzene sulfonic acid composite.

    Kera, Nazia H; Bhaumik, Madhumita; Ballav, Niladri; Pillay, Kriveshini; Ray, Suprakas Sinha; Maity, Arjun

    2016-08-15

    A polypyrrole/2,5-diaminobenzenesulfonic acid (PPy/DABSA) composite, synthesised by the in situ oxidative polymerization of pyrrole in the presence of DABSA, was studied as an adsorbent for the removal of Cr(VI) from aqueous solution. The structure and morphology of the composite were investigated by ATR-FTIR, FE-SEM, EDX, TGA, XRD and XPS studies. The adsorption of Cr(VI) by PPy/DABSA composite was highly pH dependent and optimum removal was achieved at pH 2. Adsorption of Cr(VI) was confirmed by EDX and XPS studies. The isotherm data fitted the linear Langmuir model well, with a maximum adsorption capacity of 303mg/g at 25°C. Thermodynamic parameters (ΔG°, ΔH° and ΔS°) were calculated using isotherm data and confirmed that the adsorption process was spontaneous and endothermic. Adsorption kinetics was best described by the pseudo-second-order model. The activation energy of the adsorption process suggested that Cr(VI) was chemisorbed by PPy/DABSA composite. PPy/DABSA composite could be used for three consecutive adsorption-desorption cycles without loss of its original adsorption capacity. Highly selective removal of Cr(VI) was observed even when co-existing ions such as Cu(2+), Zn(2+), Ni(2+), Cl(-), SO4(2)(-) and NO3(-) were present in the solution. In summary, the potential of PPy/DABSA composite for remediating industrial wastewater contaminated by Cr(VI) has been demonstrated. PMID:27209399

  12. Pulse radiolysis studies on 8-hydroxyquinoline 5-sulphonic acid in aqueous solutions

    Reactions of e-aq, H atoms, OH/O- radicals and specific one-electron reductants/oxidants such as CO2-, (CH3)2COH, CH3CHOH, CH2OH, N3., Br2- and SO4- radicals with 8-hydroxyquinoline 5-sulphonic acid (8-HQSA) were studied at different pHs using pulse radiolysis technique. e-aq was found to react with 8-HQSA with rate constants of 1.1x1010 and 4.3x109 dm3 mol-1 s-1 at pH 7 and 13, respectively. CO2-·radicals transfer an electron to 8-HQSA (k=1x107 dm3 mol-1 s-1) at pH 7, whereas (CH3)2COH radicals undergo addition reaction. (CH3)2CO- radicals could transfer an electron to 8-HQSA at pH 13 only. The reduction potential of the semi-reduced 8-HQSA at pH 13 is thus estimated to be congruent with -2.0 V versus NHE. At pH 2.5, H atoms were found to react with 8-HQSA giving a mixture of semi-reduced species and an H-adduct. The yield of the semi-reduced species was estimated to be ∼30% by measuring the yield of MV+ radical cation formed by electron transfer. At pH 2.5, CO2-, (CH3)2COH, CH3CHOH, and CH2OH radicals react with 8-HQSA by addition giving species which were reducing in nature. OH radicals react with 8-HQSA by addition to the benzene ring giving hydroxycyclohexadienyl type of radical. The OH-adducts were found to react with oxygen to give peroxyl-type radicals. N3 and Br2- radicals were able to oxidize 8-HQSA at pH 13. Only SO4- radicals could bring about one electron oxidation of 8-HQSA at pH 7 and 3.2. (author)

  13. SEPARATION OF SCANDIUM FROM AQUEOUS SOLUTIONS

    Peppard, D.F.; Nachtman, E.S.

    1958-02-25

    This patent relates to a process for the separation of scandium from yttrium, thorium, and trivalent rare earths and with their separation from each other. It has been found that scandium and yttrium can be separated from trivalent rare earths in acidic solution, for example, a solution 6 M in HCl, by contacting with tributyl phosphate, whereupon the scandum is preferentially extracted into the organic phase, leaving the yttrium and trivalent rare earths in the aqueous phase.

  14. Study of aqueous solutions of sodium linoleate

    Van der Linde, G.J. (Phosphate Development Corporation, Phalaborwa); Van Berge, P.C. (Rand Afrikaans Univ., Johannesburg (South Africa))

    1983-12-01

    During the development of a technique for measuring fatty acid absorption on finely divided minerals using a radiochemical method, absorption isotherms were obtained which displayed maxima. It was found that these results were due to the presence of stable micelles in the solutions. This has been established by measuring the surface tension, surface film pressure, and specific conductance of dilute aqueous solutions of sodium linoleate.

  15. Adsorption of sulphuric acid on smectite from acidic aqueous solutions Adsorção de ácido sulfúrico em esmectita de soluções aquosas ácidas

    E. L. Tavani; C. Volzone

    1999-01-01

    The adsorption of sulphuric acid on smectite from acidic aqueous solutions was studied. The amounts of cations dissolved in each equilibrium solution were determined by chemical analysis. Simultaneously, the original smectite and the smectite after each test were characterized by infrared, X-ray diffraction and swelling index. The results obtained permitted us to determine that the substitutions of the exchange cations and the chemical attack occurred at very different acid concentrations and...

  16. Extraction of scandium from various media with triisoamyl phosphate. Communication 1. extraction of Sc and impurity metals from aqueous nitric acid solutions

    The main features of extraction of Sc from aqueous nitric acid solutions with triisoamyl phosphate (TIAP) were studied. It was shown that Sc passes into the organic phase in the form of Sc(NO3)3·3TIAP. The extraction isotherms of Sc from its aqueous HNO3 solutions and from those containing salting-out agents (LiNO3, NH4NO3) with TIAP in dodecane were obtained. The distribution factor of Sc was studied in relation to the concentrations of TIAP, salting-out agent, and HNO3. The extraction of Sc and impurity metals (Zr, Th, REE) with TIAP was studied using a tracer technique at widely varied HNO3 concentration in the aqueous phase. The separation factors of Sc from impurity metals were determined

  17. 2010 Water & Aqueous Solutions

    Dor Ben-Amotz

    2010-08-13

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  18. Sorption of estrogens and pesticides from aqueous solution by a humic acid and raw and processed plant materials

    Loffredo, Elisabetta; Taskin, Eren

    2016-04-01

    The huge number of organic contaminants released in water as a consequence of anthropogenic activities have detrimental effects to environmental systems and human health. Industrial products and byproducts, pharmaceuticals, pesticides, detergents and so on impose increasing costs for wastewater decontamination. Adsorption techniques can be successfully used for the treatment of wastewaters to remove contaminants of various nature. Humic acids (HA) have well-known adsorptive capacities towards hydrophilic and, especially, hydrophobic compounds. In the recent years, alternative low-cost adsorbents, especially originated from agricultural wastes and food industries residues, such as wood chips, almond and coconut shells, peanut and rice husks, are under investigation. Biochar is also considered a promising and relatively low-cost adsorbent, even if there are still knowledge gaps about the influence of feedstock type, pyrolysis conditions, physical and chemical properties on its potential and safe use. In the present work, a HA from a green compost was used along with three other materials of plant origin to remove two estrogens, 4-tert-octylphenol and 17-β-estradiol, and two pesticides, carbaryl and fenuron, from an aqueous solution. The four molecules were spiked in water each at a concentration of 1 mg L-1. The materials were: a biochar obtained from 100% red spruce pellet pyrolysed at 550 °C, spent coffee grounds and spent tea leaves. Kinetics curves and adsorption isotherms studies were performed using a batch equilibrium method. Adsorption data obtained for each compound were fitted to a linear equation and non-linear Freundlich and Langmuir models. Kinetics data of the four compounds onto all adsorbents showed an initial very rapid adsorption which was completed in few hours when it reached equilibrium. The two estrogens were adsorbed onto all materials more quickly than the two less hydrophobic pesticides. Significant differences among adsorbents and the

  19. Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV-Vis irradiation.

    Wang, Jingjing; Bai, Renbi

    2016-09-15

    Developing efficient technologies to treat recalcitrant organic dye wastewater has long been of great research and practical interest. In this study, a small molecule, formic acid (FA), was applied as a process enhancer for the degradation of methyl orange (MO) dye as a model recalcitrant organic pollutant in aqueous solutions under the condition of UV-Vis light irradiation and air aeration at the ambient temperature of 25 °C. It was found that the decolouration of the dye solutions can be rapidly achieved, reducing the time, for example, from around 17.6 h without FA to mostly about less than 2 h with the presence of FA. The mineralization rate of MO dye reached as high as 81.8% in 1.5 h in the case of initial MO dye concentration at 25 mg L(-1), which is in contrast to nearly no mineralization of the MO dye for a similar system without the FA added. The study revealed that the generation of the H2O2 species in the system was enhanced and the produced OH radicals effectively contributed to the degradation of the MO dye. Process parameters such as the initial concentration of MO dye, FA dosage and solution pH were all found to have some effect on the degradation efficiency under the same condition of UV-Vis light irradiation and air aeration. The MO dye degradation performance was found to follow a first-order reaction rate to the MO dye concentration in most cases and there existed a positive correlation between the reaction rate constant and the initial FA concentration. Compared to the traditional H2O2/UV-Vis oxidation system, the use of FA as a process-enhancing agent can have the advantages of low cost, easy availability, and safe to use. The study hence demonstrates a promising approach to use a readily available small molecule of FA to enhance the degradation of recalcitrant organic pollutants, such as MO dye, especially for their pre-treatment. PMID:27258621

  20. Removal of Mefenamic acid from aqueous solutions by oxidative process: Optimization through experimental design and HPLC/UV analysis.

    Colombo, Renata; Ferreira, Tanare C R; Ferreira, Renato A; Lanza, Marcos R V

    2016-02-01

    Mefenamic acid (MEF) is a non-steroidal anti-inflammatory drug indicated for relief of mild to moderate pain, and for the treatment of primary dysmenorrhea. The presence of MEF in raw and sewage waters has been detected worldwide at concentrations exceeding the predicted no-effect concentration. In this study, using experimental designs, different oxidative processes (H2O2, H2O2/UV, fenton and Photo-fenton) were simultaneously evaluated for MEF degradation efficiency. The influence and interaction effects of the most important variables in the oxidative process (concentration and addition mode of hydrogen peroxide, concentration and type of catalyst, pH, reaction period and presence/absence of light) were investigated. The parameters were determined based on the maximum efficiency to save time and minimize the consumption of reagents. According to the results, the photo-Fenton process is the best procedure to remove the drug from water. A reaction mixture containing 1.005 mmol L(-1) of ferrioxalate and 17.5 mmol L(-1) of hydrogen peroxide, added at the initial reaction period, pH of 6.1 and 60 min of degradation indicated the most efficient degradation, promoting 95% of MEF removal. The development and validation of a rapid and efficient qualitative and quantitative HPLC/UV methodology for detecting this pollutant in aqueous solution is also reported. The method can be applied in water quality control that is generated and/or treated in municipal or industrial wastewater treatment plants. PMID:26686073

  1. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. PMID:26891355

  2. Dodecylsulfate and dodecybenzenesulfonate intercalated hydrotalcites as adsorbent materials for the removal of BBR acid dye from aqueous solutions

    Mohamed Bouraada; Mohand Said Ouali; Louis Charles de Ménorval

    2016-01-01

    Two modified layered double hydroxides (HT) have been synthesized by intercalating both sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS) surfactants into Mg-Al layered double hydroxides using the calcination–rehydratation method. The prepared materials HT-SDS and HT-SDBS were characterized by X-ray diffraction, FTIR, thermal analysis and BET. The obtained materials were used for Brilliant Blue R (BBR) dye removal from aqueous solution. Batch studies were carried out to ad...

  3. Radium removal from aqueous sulphate solutions

    A process for removing radium from an aqueous sulphate solution also containing magnesium is claimed. The pH of the solution is less than 10. A soluble barium salt is added to the solution to precipitate radium as barium radium sulphate. The pH of the solution is then raised to at least 11 to precipitate an insoluble magnesium compound which collects the barium radium sulphate precipitate. The precipitates are separated from the solution. If the sulphate solution contains dissolved magnesium and other impurities at a pH not greater than 7, then the first step in the process involves raising the pH of the solution to a value not greater than 10 to precipitate some of the magnesium and a substantial proportion of the other impurities and separating the precipitate from the solution. The radium removal is a step in the treatment of liquids resulting from the sulphuric acid leaching of uranium ores

  4. Radiation Crosslinking of a Mixture of Poly vinyle Alcohol Methacrylic acid and 2-Hydroxy ethyle Methacrylate to Removal of Pollutant Dyes from its Aqueous Solution

    Hydrogels based on poly vinyle alcohol methacrylic acid/ 2-hydroxy ethyle methacrylate [P(PVA-MAAc/HEMA)] were synthesized by gamma-radiation. The prepared hydrogels were characterized by infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). The results of the adsorption studies reveals the higher adsorption capacity of P(PVA-MAAc/ HEMA), hydrogel for the removal of methylene blue and xylenol orange dyes from aqueous solution.

  5. Kinetics and Equilibrium Studies on Adsorption of Acid Red 18 (Azo-Dye) Using Multiwall Carbon Nanotubes (MWCNTs) from Aqueous Solution

    Shirmardi, Mohammad; Mesdaghinia, Alireza; MAHVI, Amir Hossein; Nasseri, Simin; Nabizadeh, Ramin

    2012-01-01

    Azo dyes are one of the synthetic dyes that are used in many textile industries. Adsorption is one of the most effective techniques for removal of dye-contaminated wastewater. In this work, efficiency of multiwalled carbon nanotubes (MWCNTs) as an adsorbent for removal of Acid Red 18 (azo-dye) from aqueous solution was determined. The parameters affecting the adsorption process such as contact time, pH, adsorbent dosage, and initial dye concentration were studied. Experimental results have sh...

  6. Carbon dioxide solubility in aqueous potassium salt solutions of L-proline and DL-α-aminobutyric acid at high pressures

    Highlights: • CO2 solubility in aqueous potassium salt solutions of L-proline and DL-α-aminobutyric acid were studied. • The CO2 partial pressures studied was up to 1000 kPa. • The temperatures studied were (313.2, 333.2, 353.2) K. • The measured data were represented satisfactorily by using the applied correlations. • The CO2 absorption capacity of the studied systems was high and comparable with monoethanolamine. - Abstract: In the present work, the solubility of CO2 in aqueous solutions of potassium prolinate (KPr) and potassium α-aminobutyrate (KAABA) was measured at temperatures (313.2, 333.2, and 353.2) K and CO2 partial pressures up to 1000 kPa for amino acid salt concentrations: KPr, w = (7.5, 14.5, and 27.4 wt%) and KAABA, w = (6.9, 13.4, and 25.6 wt%). It was found that the CO2 absorption capacities of the studied amino acid salt systems were considerably high and comparable with that of industrially important alkanolamines including monoethanolamine. The CO2 loadings in aqueous potassium α-aminobutyrate at high pressures were also found to be generally higher than the loadings in aqueous potassium prolinate. A modified Kent–Eisenberg model was applied to correlate the CO2 solubility in the amino acid salt solution as function of CO2 partial pressure, temperature, and concentration. The model gave good representation of the (vapour + liquid) equilibrium data obtained for the amino acid salt systems studied, and provided accurate predictions of the solubility

  7. Kinetics and Mechanism of the Reaction between Chromium(III and 2,3-Dihydroxybenzoic Acid in Weak Acidic Aqueous Solutions

    Athinoula L. Petrou

    2010-01-01

    Full Text Available The reaction between chromium(III and 2,3-dihydroxybenzoic acid (2,3-DHBA takes place in at least three stages, involving various intermediates. The ligand (2,3-DHBA-to-chromium(III ratio in the final product of the reaction is 1 : 1. The first stage is suggested to be the reaction of [Cr(H2O5(OH]2+ with the ligand in weak acidic aqueous solutions that follows an Id mechanism. The second and third stages do not depend on the concentrations of chromium(III, and their activation parameters are ΔH≠=61.2±3.1 kJmol−1, ΔS≠=−91.1±11.0 JK−1mol−1, ΔH≠=124.5±8.7 kJmol−1, and ΔS≠=95.1±29.0 JK−1mol−1. These two stages are proposed to proceed via associative mechanisms. The positive value of ΔS≠ can be explained by the opening of a four-membered ring (positive entropy change and the breaking of a hydrogen bond (positive entropy change at the associative step of the replacement of the carboxyl group by the hydroxyl group at the chromium(III center (negative entropy change in associative mechanisms. The reactions are accompanied by proton release, as shown by the pH decrease.

  8. Oxidative photodegradation of herbicide fenuron in aqueous solution by natural iron oxide α-Fe2O3, influence of polycarboxylic acids.

    Kribéche, Mohamed El Amine; Mechakra, Hind; Sehili, Tahar; Brosillon, Stephan

    2016-01-01

    The photodegradation of the herbicide fenuron (1,1-dimethyl-3-phenylurea) by using a natural iron oxide (NIO), α-Fe2O3, in aqueous solution at acidic pH has been undertaken. The NIO was characterized by the Raman spectroscopy method. The degradation pathways and the formation of degradation products were studied. A high-pressure mercury lamp and sunlight were employed as light source. Fenuron photodegradation using NIO with oxalic acid followed the pseudo-first-order kinetics, the optimal experimental conditions were [oxalic acid]0 = 10(-3) M and [NIO] = 0.1 g L(-1) at pH 3. A UVA/NIO/oxalic acid system led to a low fenuron half-life (60 min). The results were even better when solar light is used (30 min). The variables studied were the doses of iron oxide, of carboxylic acids, the solution pH and the effect of sunlight irradiation. The effects of four carboxylic acids, oxalic, citric, tartaric and malic acids, on the fenuron photodegradation with NIO have been investigated, oxalic acid was the most effective carboxylic acid used at pH 3. A similar trend was observed for the removal of total organic carbon (TOC), 75% of TOC was removed. The analytical study showed many aromatic intermediates, short-chain carboxylic acids and inorganic ion. PMID:26102217

  9. Reaction of Chromium(III with 3,4-Dihydroxybenzoic Acid: Kinetics and Mechanism in Weak Acidic Aqueous Solutions

    Athinoula L. Petrou

    2009-02-01

    Full Text Available The interactions between chromium(III and 3,4-dihydroxybenzoic acid (3,4-DHBA were studied resulting in the formation of oxygen-bonded complexes upon substitution of water molecules in the chromium(III coordination sphere. The experimental results show that the reaction takes place in at least three stages, involving various intermediates. The first stage was found to be linearly dependent on ligand concentration k1(obs_=k0+k1(obs[3,4-DHBA], and the corresponding activation parameters were calculated as follows: ΔH1(obs≠=51.2±11.5 kJ mol−1, ΔS1(obs≠=−97.3±28.9 J mol−1 K−1 (composite activation parameters . The second and third stages, which are kinetically indistinguishable, do not depend on the concentrations of ligand and chromium(III, accounting for isomerization and chelation processes, respectively. The corresponding activation parameters are ΔH2(obs≠=44.5±5.0 kJ mol−1, ΔS2(obs≠=−175.8±70.3 J mol−1 K−1. The observed stages are proposed to proceed via interchange dissociative (Id, first stage and associative (second and third stages mechanisms. The reactions are accompanied by proton release, as is shown by the pH decrease.

  10. Formation of cage-like particles by poly(amino acid)-based block copolymers in aqueous solution.

    Cudd, A; Bhogal, M; O'Mullane, J; Goddard, P.

    1991-01-01

    When dissolved in N,N-dimethylformamide and then dialyzed against phosphate-buffered saline, A-B-A block copolymers composed of poly [N5-(2-hydroxyethyl)-L-glutamine]-block-poly(gamma-benzyl-L-glutamate)- block-poly [N5-(2-hydroxyethyl)-L-glutamine] form particles. The particles are cage-like structures with average diameters of 300 nm (average polydispersity, 0.3-0.5). They are stable in aqueous solution at 4 degrees C for up to 3 weeks, at which time flocculation becomes apparent. Negative ...

  11. Reusable nanocomposite of CoFe2O4/chitosan-graft-poly(acrylic acid) for removal of Ni(II) from aqueous solution

    In this paper, CoFe2O4/chitosan-graft-poly(acrylic acid) (CoFe2O4/CS-graft-PAA) nanocomposites were prepared successfully by coprecipitation of the compounds in alkaline solution and were used for removal of nickel (II) ions from aqueous solution. The sorption rate was affected significantly by the initial concentration of the solution, sorbent amount, and pH value of the solution. Batch experiments were conducted to investigate the adsorption capacity under different initial concentration (ranging from 25 to 150 mg L−1), solution pH (4.1, 5.3, 6.4 and 7.6), and contact time. These nanocomposites can be recycled conveniently from water with the assistance of an external magnet because of their exceptional properties. The prepared nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), x-ray powder diffraction (XRD), and thermogravimetric analysis (TGA). (papers)

  12. Rheological Properties of Aqueous Acid Solutions of Chitosan: Experiment and Calculations of the Viscometric Functions on the Basis of a Mesoscopic Model

    Shipovskaya, A. B.; Abramov, A. Yu.; Pyshnograi, G. V.; Aziz, Al Joda Hyder Nadom

    2016-05-01

    The rheological properties of chitosan solutions in acetic acid at 20°C in the range of polymer concentrations from 0.5 to 8 mass% and acid concentrations from 2 to 70% have been investigated. With the use of a modified Vinogradov-Pokrovskii model based on the microstructural approach to the description of polymer fluid dynamics, numerical solutions of gradient dependences of viscometric functions of aqueous acid solutions of chitosan have been obtained. It has been established that the numerical solution describes with good accuracy the experimental viscosity rheograms. The values of the highest Newton viscosity ηmax have been calculated. The concentration modes of semidiluted and concentrated solutions have been determined by the dependence of ηmax on the polymer concentration, and the range of concentrations in which the mass transfer mechanism changes and a fluctuation network is formed has been found. It has been shown that the concentration of acetic acid practically does not influence the structure and character of flow of chitosan solutions, the formation concentration of a network, and the efficiency of its labile nodes.

  13. Aqueous Extract of Kalmegh (Andrographis paniculata) Leaves as Green Inhibitor for Mild Steel in Hydrochloric Acid Solution

    Ambrish Singh; Singh, V. K.; M.A. Quraishi

    2010-01-01

    The inhibition of the corrosion of mild steel in hydrochloric acid solution by the extract of Kalmegh (Andrographis paniculata) leaves extract has been studied using weight loss, electrochemical impedance spectroscopy, linear polarization, and potentiodynamic polarization techniques. Inhibition was found to increase with increasing concentration of the extract. The effect of temperature, immersion time, and acid concentration on the corrosion behavior of mild steel in 1 M HCl with addition of...

  14. Thermodynamic characteristics of molecular interactions between L-tryptophan and nicotinic acid and uracyl in aqueous buffer solutions at 298 K

    Badelin, V. G.; Tyunina, E. Yu.; Mezhevoi, I. N.; Tarasova, G. N.

    2015-12-01

    The interaction between L-tryptophan (Trp) and nicotinic acid (NA) and uracyl (Ur) in aqueous buffer solutions (pH 7.35) at different ratios of reagents is studied via the calorimetry of dissolution. The enthalpies of dissolution of the amino acid in the buffer solutions of the ligands at 298.15 K are obtained. The stoichiometric compositions of the complexes being formed and binding constants have been determined. The values of the thermodynamic characteristics for the complex formation of L-tryptophan with nicotinic acid and uracyl are calculated. It is shown that the formation of molecular complexes with 1 : 2 composition is stabilized by the entropy factor for the Trp-NA system, and by the enthalpy factor for the Trp-Ur system.

  15. A magnetic resonance study of the segmental motion and local conformations of poly-(L-glutamic acid) in aqueous solutions

    A study was made on: ESR of spin labeled poly (L-glutamic acid) (PLGA); proton chemical shifts and vicinal coupling constants; pH dependences of proton and deuteron relaxations; proton relaxation enhancement in spin labeled PLGA; proton and carbon 13 relaxations in neutral solutions

  16. Thermodynamic Modeling of Several Aqueous Alkanol Solutions Containing Amino Acids with the Perturbed-Chain Statistical Associated Fluid Theory Equation of State

    Ferreira, Luisa; Breil, Martin Peter; Pinho, S. P.;

    2009-01-01

    and a fluid phase. The hypothetical melting properties of each amino acid were fitted, to accurately correlate the solubilities in pure water. Only one temperature independent binary parameter is required for each amino acid/solvent pair. The model can accurately describe the solubility of the amino......The perturbed-chain statistical associated fluid theory EoS was applied to model the solubilities of glycine, DL-alanine, L-serine, L-threonine, and L-isoleucine in pure water, pure alcohols (ethanol, I-propanol, and 2-propanol) and in mixed solvent systems. Three pure component nonassociating...... parameters for the amino acids were fitted to the densities, activity and osmotic coefficients, vapor pressures, and water activity of their aqueous solutions. The solubilities of amino acids in pure and mixed solvent systems were calculated on the basis of the phase equilibrium conditions for a pure solid...

  17. OPTICAL PROPERTIES OF CARBAMIDE AQUEOUS SOLUTIONS

    E. V. Avramenko

    2016-03-01

    Full Text Available Subject of Research. The paper presents the results of measurements of refractometric properties (refractive index n, its temperature factor dn/dt and the ultraviolet spectral absorption in carbonic acid diamide aqueous solutions (carbamide depending on solid residue mass fraction md = 0-50 % and on temperaturet = 10-70 °C.Method of Research. Laboratory methods ofliquid-phase medium refractometry and ultraviolet spectrophotometry were applied for the research. We carried out computational modeling of electronic states spectrum for the carbonic acid diamide molecule and theoretical calculation of the fundamental electronic absorption of the molecule in the ultraviolet wavelenght region.Main Results. We have established that the solution concentration md has a nonlinear character and may be represented by the quadratic polynomial with the error Δn= ± 0,0005. We have shown the refractive indexdependence on temperature n(t changes in linear fashion att = 10-70 °C.At that, the inclination of lines n(t increases at the increase of md; so, the temperature factor dn/dt may be approximated by the quadratic polynomial. Transmission spectra of solutions in the spectral region λ= 225-760 nm have no special features except for the sharp edge in the short-wavelength region; the fundamental electronic absorptionis responsible for it. We have established that dispersion dependences of the refraction index n(λ;md in aqueous solutions of carbamide at λ= 360-760 nm and at md = 0-50 % may be calculated with the satisfactory error without additional adjustable parameters from the ultraviolet absorption data in terms of the one-dimentional oscillator Lorentz model.PracticalRelevance. Representedmeasurements of carbonic acid diamide aqueous solutions optical properties may be applied for the adjustment and calibration of commercial refractometers at processing lines of the AdBlue reagent manufacture for the selective catalytic reduction (SCR of motor transport

  18. Adsorption of thorium by alkylammonium salts of iso and heteropolyacids of transition metals from aqueous solutions. III. Investigation of the coprecipitation of thorium with alkyltrimethylammonium phosphomolybdates as a function of solution acidity

    Results are presented of investigations on the isolation of thorium from aqueous solution by coprecipitation with hydrophobic compounds resulting from the direct interaction of 12-phosphomolybdic heteropolyacid (HPA) with alkyltrimethylammonium chloride, as a function of the acidity of the aqueous phase. It was established that the degree of extraction of thorium grew with an increase in pH value and on going to more dilute HPA solution. At a solution concentration of HPA equal to 3.1 x 10-3 mole/liter thorium in hydrochloric acid medium begins to be removed at a higher acidity of the aqueous phase in comparison with sulfuric acid. The interaction of thorium with hydrophobic precipitates occurs as a result of complex-forming processes with HPA or with products of its decomposition. Data are presented of IR spectroscopic investigations of the composition of the hydrophobic precipitates obtained under different conditions. It was shown that the differences in the character of thorium distribution between the precipitate and solution were determined by the change in composition of the solid phase

  19. Calcium Binding to Amino Acids and Small Glycine Peptides in Aqueous Solution: Toward Peptide Design for Better Calcium Bioavailability.

    Tang, Ning; Skibsted, Leif H

    2016-06-01

    Deprotonation of amino acids as occurs during transfer from stomach to intestines during food digestion was found by comparison of complex formation constants as determined electrochemically for increasing pH to increase calcium binding (i) by a factor of around 6 for the neutral amino acids, (ii) by a factor of around 4 for anions of the acidic amino acids aspartic and glutamic acid, and (iii) by a factor of around 5.5 for basic amino acids. Optimized structures of the 1:1 complexes and ΔHbinding for calcium binding as calculated by density functional theory (DFT) confirmed in all complexes a stronger calcium binding and shorter calcium-oxygen bond length in the deprotonated form. In addition, the stronger calcium binding was also accompanied by a binding site shift from carboxylate binding to chelation by α-amino group and carboxylate oxygen for leucine, aspartate, glutamate, alanine, and asparagine. For binary amino acid mixtures, the calcium-binding constant was close to the predicted geometric mean of the individual amino acid binding constants indicating separate binding of calcium to two amino acids when present together in solution. At high pH, corresponding to conditions for calcium absorption, the binding affinity increased in the order Lys < Arg < Cys < Gln < Gly ∼ Ala < Asn < His < Leu < Glu< Asp. In a series of glycine peptides, calcium-binding affinity was found to increase in the order Gly-Leu ∼ Gly-Gly < Ala-Gly < Gly-His ∼ Gly-Lys-Gly < Glu-Cys-Gly < Gly-Glu, an ordering confirmed by DFT calculations for the dipeptides and which also accounted for large synergistic effects in calcium binding for up to 6 kJ/mol when compared to the corresponding amino acid mixtures. PMID:27159329

  20. Hydrolysis and transesterification of parabens in an aqueous solution in the presence of glycerol and boric acid

    Oldrich Farsa

    2011-06-01

    Full Text Available In a solution containing 0.067% methylparaben, 0.033% propylparaben, 3.4% glycerol and 2.0% boric acid,concentrations of both parabens, 4-hydroxybenzoic acid and 2,3-dihydroxypropyl 4-hydroxybenzoate weremonitored for up to 68 months storage. 4-hydroxybenzoic acid is the main hydrolysis product of parabens,while 2,3-dihydroxypropyl 4-hydroxybenzoate was proposed as the main product of transesterification of parabens with glycerol. Results of an HPLC evaluation of parabens, 4-hydroxybenzoic acid and 2,3-dihydroxypropyl 4-hydroxybenzoate showed that the decomposition of 68 months old samples stored at room temperature did not exceed 2.0%. The stability of both parabens in a medicinal preparation of the statedcomposition has thus been satisfactorily demonstrated after more than 5 years of storage under ambient conditions. The transesterification reaction was shown to influence the chemical stability of parabens to an extent comparable to hydrolysis. Moreover, the presence of 2,3-dihydroxypropyl 4-hydroxybenzoate in the solution containing glycerol and boric acid was confirmed by 1H-NMR spectroscopy.

  1. Composite ferric oxyhydroxide-containing phases formed in neutral aqueous solutions of tryptophan and indole-3-acetic acid

    Moessbauer, FTIR and XRD analyses showed that in aqueous medium in air in the presence of L-tryptophan (Trp) or indole-3-acetic acid (IAA) the ambient-temperature ageing of the precipitates formed from ferrous sulphate at pH ∼ 7 gave composite phases with varying proportions of γ-FeOOH (a dominating crystalline phase), α-FeOOH (both fine-grained, showing superparamagnetic behaviour at 298 K, and relatively better crystallized) and amorphous ferric hydroxide. The experimental data suggested a competition for adsorption sites at the oxyhydroxide surface in the suspension during phase transformations, as well as the transformation of γ-FeOOH (and/or amorphous ferric hydroxide) to α-FeOOH via the dissolution-reprecipitation mechanism. The formation of certain ferric oxyhydroxide phases in the presence of Trp and IAA - released e.g., in the course of bacterial and plant metabolism - can contribute to the regulation of soil mineral composition. (author)

  2. Interaction of 4-aminosalieylic Acid and Surfactants in Aqueous Solutions Using UV-Vis Spectra and Steady-state Fluorescence Spectroscopy

    XU Dongying; REN Jiaoyan; LIAO Zhengfu; WANG Hui; ZHAO Mouming; LI Guangji

    2011-01-01

    The interactions of 4-aminosalicylic acid (4-ASA) and surfactants in aqueous solutions were investigated by using UV-Vis spectra and steady-state fluorescence spectroscopy.The results showed that the strongest peak at UV-vis spectra of 4-ASA aqueous solution in the presence of cationic surfactant and cetyltrimethyl ammonium bromide (CTAB) appeared at 206 nm and took.a red shift from 206 nm to 221 nm with the increase of 4-ASA concentrations from 0.8× 10-5 to 4.4× 10-4 mol/L.Similarly,the strongest peak at UV-vis spectra of 4-ASA aqueous solution in the presence of nonionic surfactant and polyvinylpyrrolidone (PVP)appeared at 206 nm and took a red shift from 206 nm to 219 nm with the increase of 4-ASA concentrations from 0.8× 10-5 to 4.4x 10-4 mol/L.However,the similar phenomena did not appeared in the presence of anion surfactant,sodium dodecyl sulfate (SDS),the UV-vis spectra of 4-ASA aqueous solution remained the same peak position and the peak value increased with the 4-ASA concentration increase.The results could be attributed to the electrostatic attraction between 4-ASA and CTAB or PVP,as well as the electrostatic repulsion between 4-ASA and SDS.Furthermore,the value of critical micelle concentration (CMC) of surfactants in the presence of 4-ASA was determined with Fluorescence method.The first and second CMC of CTAB was 1.2×10-4 M and 2.4x10-4 M,respectively.The first and second CMC of PVP was 1.2×10 4 M and 2.8x 10 4 M.SDS realized the multiple micellizations to form multiple CMC.

  3. DEHYDRATION CONDENSATION IN AQUEOUS SOLUTION

    Steinman, Gary; Kenyon, Dean H.; Calvin, Melvin

    1965-04-01

    EARLIER investigations have demonstrated that di-cyandiamide (DCDA), the dimer of cyanamide, can successfully promote the dehydration condensation of: (1) glucose and orthophosphate to give glucose-6-phosphate; (2) adenosine and orthophosphate to give adenosine-5'-monophosphate; (3) orthophosphate to give pyrophosphate; (4) alanine to give alanylalanine and alanylalanylalanine. These reactions were carried out in dilute aqueous solutions in the dark. (It was also demonstrated that the combination of ultra-violet light and dicyandiamide could promote the synthesis of dipeptides. This observation has since been confirmed by other investigators.) These experiments were designed to demonstrate one possible means by which such compounds could have been formed on the prebiotic Earth, thus providing materials needed for the origin of living systems. Dicyandiamide itself could have been, present on the primitive Earth as was demonstrated with the ultra-violet irradiation of cyanide solution.

  4. Equilibria in aqueous solution between Be(II) and iminodiacetic, N-methyliminodiacetic, N-ethyliminodiacetic and N-propyliminodiacetic acids

    Mederos, A.; Dominguez, S.; Morales, M.J.; Brito, F.; Chinea, E.

    1987-01-01

    The complex species formed in aqueous solution between Be(II) and iminodiacetic, N-methyliminodiacetic, N-ethyliminodiacetic and N-propyliminodiacetic acids were studied at 25/sup 0/C and ionic strength 0.5 M in Na ClO/sub 4/. The application of the least-squares computer program LETAGROP to the experimental potentiometric data, indicates that, upon varying the ligand-metal relationship, only the monohydroxide complex (Be(OH)C)/sup -/(H/sub 2/C ligand) is formed in significant amounts for the four systems studied.

  5. Equilibria in aqueous solution between Be(II) and iminodiacetic, N-methyliminodiacetic, N-ethyliminodiacetic and N-propyliminodiacetic acids

    The complex species formed in aqueous solution between Be(II) and iminodiacetic, N-methyliminodiacetic, N-ethyliminodiacetic and N-propyliminodiacetic acids were studied at 250C and ionic strength 0.5 M in Na ClO4. The application of the least-squares computer program LETAGROP to the experimental potentiometric data, indicates that, upon varying the ligand-metal relationship, only the monohydroxide complex [Be(OH)C]-(H2C ligand) is formed in significant amounts for the four systems studied. (author)

  6. Aqueous Extract of Kalmegh (Andrographis paniculata Leaves as Green Inhibitor for Mild Steel in Hydrochloric Acid Solution

    Ambrish Singh

    2010-01-01

    Full Text Available The inhibition of the corrosion of mild steel in hydrochloric acid solution by the extract of Kalmegh (Andrographis paniculata leaves extract has been studied using weight loss, electrochemical impedance spectroscopy, linear polarization, and potentiodynamic polarization techniques. Inhibition was found to increase with increasing concentration of the extract. The effect of temperature, immersion time, and acid concentration on the corrosion behavior of mild steel in 1 M HCl with addition of extract was also studied. The inhibition was assumed to occur via adsorption of the inhibitor molecules on the metal surface. The adsorption of the molecules of the extract on the mild steel surface obeyed the Langmuir adsorption isotherm. The protective film formed on the metal surface was analyzed by FTIR spectroscopy. The results obtained showed that the extract of Kalmegh (Andrographis paniculata leaves extract could serve as an effective inhibitor of the corrosion of mild steel in hydrochloric acid media.

  7. Sorption of Some Heavy Metal Ions from Aqueous Solutions by Polypropylene Fibers Grafted with Acrylic Acid under the Effect of Gamma Irradiation

    Polypropylene Fibers (PP) grafted with poly acrylic acid (PAAc) were prepared under the effect of gamma irradiation to be used as an adsorbent matrix for Co2+ and Ni2+ ions from aqueous solutions. The different factors which affect the grafting process such as grafting solution, inhibitor concentration, irradiation dose and the monomer concentration were investigated. The grafted PP fibers were characterized by using Fourier-transform infrared (FTIR), X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Differential scanning calorimetery (DSC) and Scanning electron microscopy (SEM). The effect of grafting yield on the mechanical properties of grafted PP fibers was also studied. The different conditions which affect the adsorption capacity of grafted PP fibers towards the metal ions, such as solution pH and contact time were investigated. The adsorption isotherm was studied according to the Langmuir isotherm model. The effect of regeneration cycles on the adsorption capacity of grafted PP fibers was investigated. Keywords: Polypropylene, γ-rays, Metal ions, adsorption.

  8. Catalyzed reduction of nitrate in aqueous solutions

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH3, hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250 degree C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs 3 or NH4NO3 is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO3 to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions

  9. Mutual diffusion coefficients of L-glutamic acid and monosodium L-glutamate in aqueous solutions at T = 298.15 K

    Highlights: • Interdiffusion coefficients of L-glutamic acid and sodium L-glutamate were measured. • The L-glutamic acid behaves as a monoprotic weak acid. • The sodium L-glutamate shows a symmetrical 1:1 non-associated behaviour. • Limiting diffusion coefficients and ionic conductivities were estimated. • Diffusion coefficients were discussed on the basis of the Onsager–Fuoss equations. - Abstract: Mutual diffusion coefficient values for binary aqueous solutions of both L-glutamic acid (H2Glu) and sodium L-glutamate (NaHGlu) were measured with the Taylor dispersion technique, at T = 298.15 K, and concentrations ranging from (0.001 to 0.100) mol · dm−3. The results were discussed on the basis of the Onsager–Fuoss and the Nernst theoretical equations, by considering the H2Glu as a weak acid (monoprotic acid, with K2 = 5.62 · 10−5). The smaller values found for the acid with respect to those of the salt, confirm this association hypothesis. From the diffusion coefficient values at infinitesimal concentration, limiting ionic conductivities as well as the hydrodynamic radius of the hydrogen glutamate ion (HGlu−) were derived and analyzed in terms of the chain methylene groups. The effect of different phenomena, such as association or complexation, were also taken into consideration and discussed. Values for the dissociation degree for H2Glu were also estimated

  10. The formation of amino acid and dipeptide complexes with α-cyclodextrin and cucurbit[6]uril in aqueous solutions studied by titration calorimetry

    The complex stabilities and the thermodynamic data for the complexation of α-cyclodextrin and cucurbit[6]uril with some amino acids (glycine, L-alanine, L-valine, L-phenylalanine, 6-amino hexanoic acid, 8-amino octanoic acid, 11-amino undecanoic acid) and dipeptides (glycyl-glycine, glycyl-L-valine, glycyl-L-leucine and glycyl-L-phenylalanine) have been determined in aqueous solution by calorimetric titrations. The complex formation with α-cyclodextrin is mainly favoured by entropic contributions due to the release of water molecules from the cavity of the ligand. The values of the reaction enthalpies are small with the exception of 11-amino undecanoic acid. In case of the ligand cucurbit[6]uril, ion-dipole interactions between the protonated amino groups of the amino acids and the carbonyl groups take place. By steric reasons these interactions are lowered for native amino acids because the polar carboxylic groups are always located outside the hydrophobic cavity of cucurbit[6]uril. The complexes of both ligands with dipeptides in water are characterised by hydrophobic interactions and in case of cucurbit[6]uril by additional ion-dipole interactions

  11. Effect of Ascorbic Acid on the Degradation of Cyanocobalamin and Hydroxocobalamin in Aqueous Solution: A Kinetic Study

    Ahmad, Iqbal; Qadeer, Kiran; Zahid, Saima; SHERAZ, MUHAMMAD ALI; Ismail, Tehmina; Hussain, Waqar; Ansari, Izhar Ahmad

    2014-01-01

    The degradation kinetics of 5 × 10−5 M cyanocobalamin (B12) and hydroxocobalamin (B12b) in the presence of ascorbic acid (AH2) was studied in the pH range of 1.0–8.0. B12 is degraded to B12b which undergoes oxidation to corrin ring cleavage products. B12b alone is directly oxidized to the ring cleavage products. B12 and B12b in degraded solutions were simultaneously assayed by a two-component spectrometric method at 525 and 550 nm without interference from AH2. Both degrade by first-order kin...

  12. Corrosion inhibitor activity of 1,3-diketone malonates for mild steel in aqueous hydrochloric acid solution

    Highlights: ► 1,3-Diketone malonates displayed relatively high corrosion inhibition efficiency. ► Inhibition efficiency is improved when temperature is increased within 25–55 °C. ► Corrosion inhibitor efficiency of diketone malonates is dependent on diketo population tautomer. ► Diketone malonates act as mixed corrosion inhibitors with a Langmuir isotherm. - Abstract: Four 1,3-diketone malonates compounds were synthesized and tested as corrosion inhibitors for mild steel in 1.0 M aqueous hydrochloric acid. Gravimetric and polarization tests showed that inhibitor efficiencies were related to molecular moiety and depended on tautomer concentration, i.e. enol–keto and diketo. Both tautomers displayed relatively high corrosion inhibition efficiency (75–96%) at 100 mg L−1, which increased with temperature (25–55 °C) and dependent on diketo population. Improvement in corrosion resistance was related to the presence of different substituent groups, from which hydrogen substituent contributed the most, apparently due to easiness of electron acceptance as confirmed by quantum chemical calculations.

  13. REACT-Mod: a mathematical model for transient calculation of chemical reactions with U-Pu-Np-Tc in the aqueous nitric acid solution

    A computer code REACT-Mod which simulates various chemical reactions in an aqueous nitric acid solution involving uranium, plutonium, neptunium, technetium etc. e.g., redox, radiolytic and disproportionation reactions of 68, was developed based on the kinetics model. The numerical solution method adopted in the code are two, a kinetics model totally based on the rate law of which differential equations are solved by the modified Porsing method, and a two-step model based on both the rate law and equilibrium law. Only the former treats 27 radiolytic reactions. The latter is beneficially used to have a quick and approximate result by economical computation. The present report aims not only to explain the concept, chemical reactions treated and characteristics of the model but also to provide details of the program for users of the REACT-Mod code. (author)

  14. Kinetics of Cd2+ and Cr3+ Sorption from Aqueous Solutions Using Mercaptoacetic Acid Modified and Unmodified Oil Palm Fruit Fibre(Elaeis guineensis) Adsorbents

    2007-01-01

    The kinetics of the sorption of Cd2+ and Cr3+ from aqueous solutions by mercaptoacetic acid modified and unmodified oil palm fruit fibre adsorbents were investigated. The results indicate that sorption equilibrium was reached within 60 min for both metals. Also, the removal efficiency of the three adsorbents was observed to increase for both metals with stronger treatments with mercaptoacetic acid. This may be attributed to the influence of the thiolation of the adsorbents. Furthermore, Cr3+ had higher removal percentages than Cd2+ for all the adsorbents. The sorption mechanism based on the intraparticle diffusion model shows that Cd2+ sorption is better described than Cr3+. The intraparticle diffusion rate constants, K1d, for Cd2+are 62.04 min-1 (untreated), 67.01 min-1 (treated with 0.5 mol/L mercaptoacetic acid), and 71.43 min-1(treated with 1.0 mol/L mercaptocacetic acid) while those for Cr3+ are 63.41 min-1 (untreated), 65.79 min-1(0.5 mol/L acid treated), and 66.25 min-1 (1.0 mol/L acid treated).

  15. Partial molar volume and partial molar compressibility of four homologous {alpha}-amino acids in aqueous sodium fluoride solutions at different temperatures

    Rajagopal, K., E-mail: krpal25@yahoo.co [Department of Physics, Government College of Engg., Tirunelveli 627 007, Tamilnadu (India); Edwin Gladson, S., E-mail: aseg_win@rediffmail.co [Department of Physics, St. Xavier' s Catholic College of Engg., Chunkankadai 629 003, Tamilnadu (India)

    2011-06-15

    Research highlights: Partial molar volume indicates strong solute-cosolute interaction in the NaF solution. Partial molar compressibility results compliment partial molar volume results. Hydration number proves that sodium fluoride has dehydration effect on amino acids. Interactions between sodium fluoride and (NH{sub 3}{sup +},COO{sup -}) group of amino acid are stronger. - Abstract: Density and ultrasonic speed of four amino acids (glycine, L-alanine, L-valine, and L-leucine) in aqueous sodium fluoride solutions {l_brace}(0.1 to 0.5) M{r_brace} have been measured at T = (308.15, 313.15, and 318.15) K. Apparent molar volumes (V{sub {phi}}), partial molar volumes (V{sub {phi}}{sup 0}), transfer volumes ({Delta}V{sub {phi}}{sup 0}) and hydration number (n{sub H}) are evaluated using density data. Adiabatic compressibility ({beta}{sub s}), change ({Delta}{beta}{sub s}), and relative change in compressibility ({Delta}{beta}{sub s}/{beta}{sub 0}), apparent molar compressibility (K{sub {phi}}), partial molar compressibility (K{sub {phi}}{sup 0}), transfer compressibility ({Delta}K{sub {phi}}{sup 0}), and hydration number (n{sub H}) have been calculated using ultrasonic speed data. The linear correlation of V{sub {phi}}{sup 0},{Delta}V{sub {phi}}{sup 0},K{sub {phi}}{sup 0} and {Delta}K{sub {phi}}{sup 0} for a homologous series of amino acids have been used utilised to calculate the contribution of charged end groups (NH{sub 3}{sup +}, COO{sup -}), CH{sub 2} group and other alkyl chain of the amino acids. The analysis shows that the ion-ion interactions are much stronger than ion-hydrophobic interactions over the entire concentration range of sodium fluoride. It is observed that sodium fluoride has a strong dehydration effect on amino acids.

  16. Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids

    Zhang, Jizhe

    2014-01-01

    Formic acid is an important commodity chemical as well as a promising medium for hydrogen storage and hydrogen production. In this paper, we report that formic acid can be produced through selective oxidation of glycerol, a low-cost by-product of biodiesel, by using vanadium-substituted phosphomolybdic acids as catalysts and molecular oxygen as the oxidant. Significantly, this catalytic system allows for high-concentration conversions and thus leads to exceptional efficiency. Specifically, 3.64 g of formic acid was produced from 10 g of glycerol/water (50/50 in weight) solution. © 2014 the Partner Organisations.

  17. Dissolution and carbonation of a serpentinite: Inferences from acid attack and high P-T experiments performed in aqueous solutions at variable salinity

    Highlights: → In order to perform geological sequestration of CO2, serpentinite should be dissolved by acids or by aqueous solutions. → At atmospheric pressure serpentinite is efficaciously dissolved at 70 deg. C using acid attacks. → At higher P-T conditions, significant carbonation occurs at 30 MPa and 300 deg. C using CO2 saturated aqueous solutions. - Abstract: Dissolution experiments on a serpentinite were performed at 70 deg. C, 0.1 MPa, in H2SO4 solution, in open and closed systems, in order to evaluate the overall dissolution rate of mineral components over different times (4, 9 and 24 h). In addition, the serpentinite powder was reacted with a NaCl-bearing aqueous solution and supercritical CO2 for 24 h at higher pressures (9-30 MPa) and temperatures (250-300 deg. C) either in a stirred reactor or in an externally-heated pressure vessel to assess both the dissolution rate of serpentinite minerals and the progress of the carbonation reaction. Results show that, at 0.1 MPa, MgO extraction from serpentinite ranges from 82% to 98% and dissolution rate varies from 8.5 x 10-10 mole m-2 s-1 to 4.2 x 10-9 mole m-2 s-1. Attempts to obtain carbonates from the Mg-rich solutions by increasing their pH failed since Mg- and NH4- bearing sulfates promptly precipitated. On the other hand, at higher pressures, significant crystallization (5.0-10.4 wt%) of Ca- and Fe-bearing magnesite was accomplished at 30 MPa and 300 deg. C using 100 g L-1 NaCl aqueous solutions. The corresponding amount of CO2 sequestered by crystallization of carbonates is 9.4-15.9 mole%. Dissolution rate (from 6.3 x 10-11 mole m-2 s-1 to 1.3 x 10-10 mole m-2 s-1) is lower than that obtained at 0.1 MPa and 70 deg. C but it is related to pH values much higher (3.3-4.4) than that (-0.65) calculated for the H2SO4 solution. Through a thorough review of previous experimental investigations on the dissolution kinetics of serpentine minerals the authors propose adopting: (i) the log rate [mole m-2 s-1

  18. Dissolution and carbonation of a serpentinite: Inferences from acid attack and high P-T experiments performed in aqueous solutions at variable salinity

    Orlando, Andrea, E-mail: orlando@igg.cnr.it [C.N.R., Istituto di Geoscienze e Georisorse, U.O.S. di Firenze, Via G. La Pira, 4, I-50121 Firenze (Italy); Borrini, Daniele [Dipartimento di Scienze della Terra, Universita degli Studi di Firenze, Via G. La Pira, 4, I-50121 Firenze (Italy); Marini, Luigi [Consultant in Applied Geochemistry, Via A. Fratti 253, I-55049 Viareggio (Italy)

    2011-08-15

    Highlights: > In order to perform geological sequestration of CO{sub 2}, serpentinite should be dissolved by acids or by aqueous solutions. > At atmospheric pressure serpentinite is efficaciously dissolved at 70 deg. C using acid attacks. > At higher P-T conditions, significant carbonation occurs at 30 MPa and 300 deg. C using CO{sub 2} saturated aqueous solutions. - Abstract: Dissolution experiments on a serpentinite were performed at 70 deg. C, 0.1 MPa, in H{sub 2}SO{sub 4} solution, in open and closed systems, in order to evaluate the overall dissolution rate of mineral components over different times (4, 9 and 24 h). In addition, the serpentinite powder was reacted with a NaCl-bearing aqueous solution and supercritical CO{sub 2} for 24 h at higher pressures (9-30 MPa) and temperatures (250-300 deg. C) either in a stirred reactor or in an externally-heated pressure vessel to assess both the dissolution rate of serpentinite minerals and the progress of the carbonation reaction. Results show that, at 0.1 MPa, MgO extraction from serpentinite ranges from 82% to 98% and dissolution rate varies from 8.5 x 10{sup -10} mole m{sup -2} s{sup -1} to 4.2 x 10{sup -9} mole m{sup -2} s{sup -1}. Attempts to obtain carbonates from the Mg-rich solutions by increasing their pH failed since Mg- and NH{sub 4}- bearing sulfates promptly precipitated. On the other hand, at higher pressures, significant crystallization (5.0-10.4 wt%) of Ca- and Fe-bearing magnesite was accomplished at 30 MPa and 300 deg. C using 100 g L{sup -1} NaCl aqueous solutions. The corresponding amount of CO{sub 2} sequestered by crystallization of carbonates is 9.4-15.9 mole%. Dissolution rate (from 6.3 x 10{sup -11} mole m{sup -2} s{sup -1} to 1.3 x 10{sup -10} mole m{sup -2} s{sup -1}) is lower than that obtained at 0.1 MPa and 70 deg. C but it is related to pH values much higher (3.3-4.4) than that (-0.65) calculated for the H{sub 2}SO{sub 4} solution. Through a thorough review of previous experimental

  19. Rapid degradation of p-arsanilic acid with simultaneous arsenic removal from aqueous solution using Fenton process.

    Xie, Xiande; Hu, Yuanan; Cheng, Hefa

    2016-02-01

    Although banned in some developed countries, p-arsanilic acid (p-ASA) is still used widely as a feed additive for swine production in many countries. With little uptake and transformation in animal bodies, nearly all the p-ASA administered to animals is excreted chemically unchanged in animal wastes, which can subsequently release the more toxic inorganic arsenic species upon degradation in the environment. For safe disposal of the animal wastes laden with p-ASA, we proposed a method of leaching the highly water-soluble p-ASA out of the manure first, followed by treatment of the leachate using the Fenton process to achieve fast oxidation of p-ASA and removal of the inorganic arsenic species released (predominantly arsenate) from solution simultaneously. The effects of solution pH, dosages of H2O2 and Fe(2+), and the presence of dissolved organic matter (DOM) on the treatment efficiency were systematically investigated. Under the optimum treatment conditions (0.53 mmol L(-1) Fe(2+), 2.12 mmol L(-1) H2O2, and initial pH of 3.0), p-ASA (10 mg-As L(-1)) could be completely oxidized to As(V) within 30 min in pure water and 4 natural water samples, and at the final pH of 4.0, the residual arsenic levels in solution phase were as low as 1.1 and 20.1-43.4 μg L(-1) in the two types of water matrixes, respectively. The presence of humic acid significantly retarded the oxidation of p-ASA by scavenging HO, and inhibited the As(V) removal through competitive adsorption on ferric hydroxide. Due to the high contents of DOM in the swine manure leachate samples (TOC at ∼500 mg L(-1)), much higher dosages of Fe(2+) (10.0 mmol L(-1)) and H2O2 (40.0 mmol L(-1)) and a longer treatment time (120 min) were required to achieve near complete oxidation of p-ASA (98.0%), while maintaining the levels of residual arsenic in the solution at products detected. Together, the results demonstrate that the Fenton process is promising as an efficient, robust, and low-cost treatment

  20. An NMR and ab initio quantum chemical study of acid-base equilibria for conformationally constrained acidic alpha-amino acids in aqueous solution

    Nielsen, Peter Aadal; Jaroszewski, Jerzy W.; Norrby, Per-Ola;

    2001-01-01

    The protonation states of a series of piperidinedicarboxylic acids (PDAs), which are conformationally constrained acidic alpha -amino acids, have been studied by C-13 NMR titration in water. The resulting data have been correlated with theoretical results obtained by HF/6-31+G* calculations using...

  1. Uranium, thorium and rare earth extraction and separation process by processing their chloride aqueous solutions

    The different steps of the process are the following: uranium and iron extraction by a neutral organic phosphorus compound and thorium and rare earth recovery in an aqueous solution, iron recovery in acid aqueous phase, concentration of the thorium and rare earth aqueous solution followed by thorium extraction with a organic phosphorus compound and rare earth recovery in the aqueous phase, thorium recovery in acid aqueous phase

  2. Rheological Properties of the Aqueous Solution for Fluorocarbon-containing Hydrophobically Modified Sodium PolyacrylicAcid with Various Surfactants

    GUO,Jin-Feng(郭金峰); ZHUANG,Dong-Qing(庄东青); ZHOU,Hui(周晖); ZHANG,Yun-Xiang(章云祥)

    2001-01-01

    The interaction of fluorocarbon-containing hydrophobicallymodified sodiun polyacryiic acid (FMPAANa) (0.5 wt% )with various surfactants (anionic,nonionic and cationic) hasbeen investigated by theological measurements.Different rhe-ological behaviors are displayed for ionic surfactants and non-ionic surfactants.Fluorinated surfactants have stronger affini-ty with polyelectrolyte hydrophobes comparing with hydro-genated surfactants.The hydrophobic association of FM-PAANa with a cationic surfactant (CTAB) and a fluorinatednonionic surfactant (FC171) is much stronger than with anonionic surfactant (NP7.5 ) and an anionic surfactant(FC143).Further investigation of the effects of temperatureon solution properties shows that the dissociation energy Em iscorrelated to the strength of the aggregated junctions.``

  3. Extraction of polonium from aqueous lactic acid solutions using dioctyl sulphide, Cyanex 272, Cyanex 301 or Cyanex 302 in toluene

    The extraction of polonium from lactic acid (HLac) solutions has been studied with di-n-octyl sulphide (DOS), Cyanex 272, Cyanex 301 and Cyanex 302 extractants dissolved in toluene. For the extraction with DOS, the extracted species is most likely PoO(Lac)2 x 3DOS. The results for Cyanex 272 also indicate extraction via a solvation mechanism rather than cation exchange. The extracted species is probably PoO(Lac)2 x 2HA. The major species extracted with Cyanex 301 or Cyanex 302 do not contain any lactate molecules. The extracted species is most likely PoOA2 at low extractant concentrations, while at higher concentrations an adduct complex of the type PoOA2 x 2HA is formed. The extraction of polonium increases in the order Cyanex 272 < Cyanex 302 < DOS < Cyanex 301, which is the same order as the increase of the number of sulphur atoms in the reagents. (author)

  4. Effects of reactive oxygen and nitrogen species induced by ammonium dinitramide decomposition in aqueous solutions of deoxyribose nucleic acid.

    Steel-Goodwin, L; Kuhlman, K J; Miller, C; Pace, M D; Carmichael, A J

    1997-01-01

    Ammonium dinitramide (ADN), a potential rocket fuel, decomposes in water forming NO2. The chemistry of this ADN-released NO2 in oxygenated biological systems is complex both in the number of potential chemical species and in the number of parallel and consecutive reactions that can theoretically occur. High-pressure liquid chromatography (HPLC) studies revealed ADN fragmented deoxyribose nucleic acid (DNA). Damage to DNA standard solutions was caused by at least two major pathways, one arising from reactions of NO2 with oxygen and one arising from a reaction with superoxide (O2-.). The radical species generated when ADN is incubated with standard solutions of DNA, pH 7.5, in the presence of the spin trap agent n-tert-butyl-alpha-nitrone (PBN) was compared with the PBN-radical adducts generated in the presence of ADN and O2-. or of ADN and hydrogen peroxide (H2O2). The ADN-induced PBN radical adducts increased linearly over the 90-minute study period. The values of peak intensity in the presence of O2-. and in the presence of H2O2, were 828% and 7.08%, respectively, of the ADN-induced radicals alone. The synergistic effect of ADN with O2- may provide an understanding of the sensitivity of the rat blastocyst to aDN at the preimplantation stage of development and the lack of toxicity in in vivo studies in tissues high in catalase. PMID:9142377

  5. Photocatalytic discoloration of Acid Red 14 aqueous solution using titania nanoparticles immobilized on graphene oxide fabricated plate.

    Akerdi, Abdollah Gholami; Bahrami, S Hajir; Arami, Mokhtar; Pajootan, Elmira

    2016-09-01

    Textile industry consumes remarkable amounts of water during various operations. A significant portion of the water discharge to environment is in the form of colored contaminant. The present research reports the photocatalytic degradation of anionic dye effluent using immobilized TiO2 nanoparticle on graphene oxide (GO) fabricated carbon electrodes. Acid Red 14 (AR 14) was used as model compound. Graphene oxide nanosheets were synthesized from graphite powder using modified Hummer's method. The nanosheets were characterized with field emission scanning electron microscope (FESEM) images, X-ray diffraction (XRD) and FTIR spectrum. The GO nanoparticles were deposited on carbon electrode (GO-CE) by electrochemical deposition (ECD) method and used as catalyst bed. TiO2 nanoparticles were fixed on the bed (GO-CE- TiO2) with thermal process. Photocatalytic processes were carried out using a 500 ml solution containing dye in batch mode. Each photocatalytic treatment were carried out for 120 min. Effect of dye concentration (mg/L), pH of solution, time (min) and TiO2 content (g/L) on the photocatalytic decolorization was investigated. PMID:27309674

  6. Functionalized polymers for binding to solutes in aqueous solutions

    Smith, Barbara F.; Robison, Thomas W.

    2006-11-21

    A functionalized polymer for binding a dissolved molecule in an aqueous solution is presented. The polymer has a backbone polymer to which one or more functional groups are covalently linked. The backbone polymer can be such polymers as polyethylenimine, polyvinylamine, polyallylamine, and polypropylamine. These polymers are generally water-soluble, but can be insoluble when cross-linked. The functional group can be for example diol derivatives, polyol derivatives, thiol and dithiol derivatives, guest-host groups, affinity groups, beta-diphosphonic acids, and beta-diamides

  7. Aggregates of Isotactic Poly(methacrylic acid) Chains in Aqueous CsCl Solutions: a Static and Dynamic Light Scattering Study.

    Hočevar, Katarina; Sitar, Simona; Kogej, Ksenija

    2015-01-01

    Properties of isotactic polymethacrylic acid, iPMA, chains were studied at 25°C in aqueous solutions at various CsCl concentrations, c(s) (= 0.05-0.20 M), in dependence on degree of neutralization of the polyion's carboxyl groups, α(N), using static, SLS, and dynamic light scattering, DLS, measurements. It was demonstrated that iPMA chains with α(N) somewhat above the solubility limit of iPMA in aqueous solutions (in the present case at α(N) ≈ 0.27) are strongly aggregated. The size of the aggregates increases with increasing c(s), whereas the shape parameter, ρ, is approximately constant (ρ ≈ 0.6), irrespective of c(s). The low ρ value suggests that the aggregates have characteristics of microgel particles with a dense core surrounded by a less dense corona. The diffusion of iPMA chains was investigated also at higher α(N), up to α(N) = 1. The polyion slow mode arising from electrostatic interactions between charged chains was observed for α(N) exceeding the value 0.27 even at the highest c(s) (= 0.20 M). The diffusion coefficients for the show mode were nearly independent of α(N) and cs at the studied polymer concentration. PMID:26454588

  8. Flotation separation of hafnium(IV) from aqueous solutions

    A simple, rapid method for the separation of hafnium from aqueous solutions was investigated using sup(175+181)Hf tracer. Cationic hafnium complex ions were floated from dilute acid solutions with sodium lauryl sulfate (SLS) and anionic hafnium complexes were floated from basic and oxalic acid solutions with hexadecyltrimethyl ammonium bromide (HTMAB). The conditions necessary for quantitative recovery of the metal and mechanisms of flotation are described. (author)

  9. The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study

    The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO2, O3, O3/UV, O3/UV/TiO2, Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O3/UV and O3/UV/TiO2 processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O3 dose = 45 mg/L; (2) the optimum pH and ratio of [H2O2]/[Fe2+] found for the Fenton process, are pH 4 and [H2O2]/[Fe2+] = 6.58. The optimum [H2O2] and [Fe2+] under the same HF value are 58.82 and 8.93 mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80 V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O3 3/UV = O3/UV/TiO2 3 = Fenton 3/UV 3/UV/TiO2 for 30 min of reaction time

  10. Synthesis and evaluation of different thio-modified cellulose resins for the removal of mercury (II) ion from highly acidic aqueous solutions.

    Takagai, Yoshitaka; Shibata, Atsushi; Kiyokawa, Shigemi; Takase, Tsugiko

    2011-01-15

    Seven different types of thio- and/or amine-modified cellulose resin materials were synthesized and their mercury (II) ion adsorption properties determined. All seven resins showed good mercury (II) adsorption capability in the more neutral pH regions. However, the o-benzenedithiol- and o-aminothiophenol-modified cellulosic resins were found to be very effective in removing mercury (II) ions from strongly acidic media. For example, 93.5-100% mercury (II) ion recoveries from very acid aqueous solutions (nitric acid concentration ranged from 0.1 to 2.0 mol/L) were obtained using the o-benzenedithiol-modified resin while recoveries ranged from ca. 50% to 60% for the o-aminothiophenol-modified resin. An adsorption capacity of 23 mg (as Hg atoms) per gram of resin was observed for the o-benzenedithiol-modified cellulose in the presence of 1.0 mol/L nitric acid. This same resin shows very good selectivity for mercury (II) as only ruthenium (II) also somewhat adsorbed onto it out of 14 other metal ions studied (Ag(+), Al(3+), As(3+), Co(2+), Cd(2+), Cr(3+), Cu(2+), Fe(3+), Mn(2+), Ni(2+), Pt(2+), Pb(2+), Ru(2+), and Zn(2+)). PMID:20974469

  11. Polar modified post-cross-linked resin and its adsorption toward salicylic acid from aqueous solution: Equilibrium, kinetics and breakthrough studies.

    Fu, Zhenyu; He, Chunlian; Huang, Jianhan; Liu, You-Nian

    2015-08-01

    A novel polar modified post-cross-linked resin PDMPA was synthesized, characterized and evaluated for adsorption of salicylic acid from aqueous solution. PDMPA was prepared by a suspension polymerization of methyl acrylate (MA) and divinylbenzene (DVB), a Friedel-Crafts reaction and an amination reaction. After characterization of the chemical and pore structure of PDMPA, the adsorption behaviors of salicylic acid on PDMPA were determined in comparison with the precursor resins. The equilibrium adsorption capacity of salicylic acid on PDMPA was much larger than the precursor resins and the equilibrium data were correlated by both of the Langmuir and Freundlich models. The pseudo-second-order rate equation fitted the kinetic data better than the pseudo-first-order rate equation, and the micropore diffusion model could characterize the kinetic data very well. The dynamic experimental results showed that the breakthrough point and saturated point of salicylic acid on PDMPA were 40.3 and 92.4BV (1BV=10mL) at a feed concentration of 995.8mg/L and a flow rate of 1.4mL/min, and the resin column could be regenerated by 16.0BV of a mixture desorption solvent containing 0.01mol/L of NaOH (w/v) and 50% of ethanol (v/v). PMID:25863446

  12. An NMR and ab initio quantum chemical study of acid-base equilibria for conformationally constrained acidic alpha-amino acids in aqueous solution

    Nielsen, Peter Aadal; Jaroszewski, Jerzy W.; Norrby, Per-Ola; Liljefors, Tommy

    2001-01-01

    The protonation states of a series of piperidinedicarboxylic acids (PDAs), which are conformationally constrained acidic alpha -amino acids, have been studied by C-13 NMR titration in water. The resulting data have been correlated with theoretical results obtained by HF/6-31+G* calculations using...... the polarizable continuum model (PCM) fore the description of water. The PDAs are highly ionizable and contain one or two possible internal hydrogen bonds. In the present study, we show that the PCM model is able to reproduce the relative stabilities of the different protonation states of the PDAs...

  13. Adsorption of dyestuff from aqueous solutions through oxalic acid-modified swede rape straw: adsorption process and disposal methodology of depleted bioadsorbents.

    Feng, Yanfang; Dionysiou, Dionysios D; Wu, Yonghong; Zhou, Hui; Xue, Lihong; He, Shiying; Yang, Linzhang

    2013-06-01

    Swede rape straw (Brassica napus L.) was modified by oxalic acid under mild conditions producing an efficient dye adsorbent (SRSOA). This low-cost and environmental friendly bioadsorbent was characterized by various techniques and then applied to purify dye-contaminated aqueous solutions. Equilibrium study showed that the Langmuir model demonstrated the best fit to the equilibrium data and the methylene blue (MB) adsorption capacity calculated by this model was 432mgg(-1). The adsorption process and mechanism is also discussed. To properly deal with the dye-loaded bioadsorbents, the disposal methodology is discussed and a biochar based on depleted bioadsorbents was for the first time produced and examined. This method both solved the disposal problem of contaminant-loaded bioadsorbents and produced an useful adsorbent thereafter. The study indicates that SRSOA is a promising substitute for ACs in purifying dye-contaminated wastewater and that producing biochars from contaminant-loaded bioadsorbents maybe a feasible disposal method. PMID:23612179

  14. Use of Chitosan-modified Bentonite for Removal of Cu2+, Cl- and 2,4-Dichlorophenoxyacetic Acid (2,4-D from Aqueous Solution

    Ba, K.

    2014-07-01

    Full Text Available Batch experiments were performed to investigate the removal of Cu2+ , Cl- , and 2,4-dichlorophe- noxyacetic acid (2,4-D from aqueous solution using chitosan-modified bentonite. When the chi-tosan was loaded on the bentonite, the inter-layer space of the montmorillonite increased and the adsorption efficiency enhanced, as chitosan contains large numbers of -NH2 and -OH functional groups that could serve as coordination sites to bind heavy metals. In this study, the bentonite that was prepared through three procedures: Na2CO3 treatment, thermal treatment and compound treatment, was modified by chitosan. Experimental results demonstrated that the average removal rates of Cu2+ , Cl-, and 2,4-D effectively were 94.87 %, 86.19 % and 91.06 %, respectively.

  15. Tri-iso-amyl phosphate: a new indigenous extractant for U(VI) and Pu(IV) from aqueous nitric acid solutions

    The extraction behaviour of U(VI), Pu(IV) and some long lived fission products into dodecane from aqueous HNO3 solutions with an indigenously prepared extractant, namely tri-iso-amyl phosphate (TAP) was examined systematically. The distribution data revealed a quantitative extraction of both U(VI) and Pu(IV) from moderate nitric acidities in the range 2-7 M. Slope analyses proved predominant formation of the disolvated organic phase complex of the type UO2(NO3)2.2TAP and Pu(NO3)4.2TAP with U(VI) and Pu(IV), respectively. On the contrary, the extraction of fission product contaminants was almost negligible indicating its potential application in actinide partitioning. (author). 3 refs., 2 tabs

  16. A Long-Wavelength Fluorescent Squarylium Cyanine Dye Possessing Boronic Acid for Sensing Monosaccharides and Glycoproteins with High Enhancement in Aqueous Solution

    Hiroyuki Nakazumi

    2012-04-01

    Full Text Available Fluorescence sensing of saccharides and glycoproteins using a boronic acid functionalized squarylium cyanine dye (“SQ-BA” is characterized in terms of synthetic, fluorometric, thermodynamic and kinetic parameters. In our previous work, this newly synthesized dye was successfully applied to the separation and quantification of Gram-positive bacteria by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF; however, the fundamental properties of the dye and its saccharide complexes still required elucidation, as presented in this paper. The dye itself forms nonemissive, soluble aggregates in aqueous solution. With the addition of a monosaccharide, the dye aggregate dissociates to form an emissive monomer accompanied by the formation of a cyclic cis-diol ester with long-wavelength emission (lex = 630 nm, lem = 660 nm. A very large fluorescence enhancement factor of 18× was observed for the sensing dye as a fructose complex at pH 10, yielding a limit of detection of 10 mM fructose. The relative order of fluorescence enhancement of SQ-BA with other monosaccharides was found to be: fructose > ribose > arabinose ≈ galactose > xylose > mannose > rhamnose > fucose ≈ glucose; and apparent affinity constants of 102.80, 102.08 and 100.86 M−1 were determined for fructose, ribose and glucose, respectively. Formation of the emissive complexes occurred within minutes, proving the kinetics of the sugar-dye interactions to be suitable for on-column labeling methods in CE-LIF. Furthermore, the sensing dye was successfully applied to glycoproteins, mucin type I–S and type III, which were detected with high sensitivity in batch aqueous solution as a result of the sugar-selective boronic acid-diol esterification as well as hydrophobic interactions.

  17. A Long-Wavelength Fluorescent Squarylium Cyanine Dye Possessing Boronic Acid for Sensing Monosaccharides and Glycoproteins with High Enhancement in Aqueous Solution

    Saito, Shingo; Massie, Tara L.; Maeda, Takeshi; Nakazumi, Hiroyuki; Colyer, Christa L.

    2012-01-01

    Fluorescence sensing of saccharides and glycoproteins using a boronic acid functionalized squarylium cyanine dye (“SQ-BA”) is characterized in terms of synthetic, fluorometric, thermodynamic and kinetic parameters. In our previous work, this newly synthesized dye was successfully applied to the separation and quantification of Gram-positive bacteria by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF); however, the fundamental properties of the dye and its saccharide complexes still required elucidation, as presented in this paper. The dye itself forms nonemissive, soluble aggregates in aqueous solution. With the addition of a monosaccharide, the dye aggregate dissociates to form an emissive monomer accompanied by the formation of a cyclic cis-diol ester with long-wavelength emission (λex = 630 nm, λem = 660 nm). A very large fluorescence enhancement factor of 18× was observed for the sensing dye as a fructose complex at pH 10, yielding a limit of detection of 10 μM fructose. The relative order of fluorescence enhancement of SQ-BA with other monosaccharides was found to be: fructose > ribose > arabinose ≈ galactose > xylose > mannose > rhamnose > fucose ≈ glucose; and apparent affinity constants of 102.80, 102.08 and 100.86 M−1 were determined for fructose, ribose and glucose, respectively. Formation of the emissive complexes occurred within minutes, proving the kinetics of the sugar-dye interactions to be suitable for on-column labeling methods in CE-LIF. Furthermore, the sensing dye was successfully applied to glycoproteins, mucin type I–S and type III, which were detected with high sensitivity in batch aqueous solution as a result of the sugar-selective boronic acid-diol esterification as well as hydrophobic interactions. PMID:22778592

  18. The decolorization and mineralization of Acid Orange 6 azo dye in aqueous solution by advanced oxidation processes: A comparative study

    Hsing, H.-J. [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China); Chiang, P.-C. [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China)]. E-mail: pcchiang@ntu.edu.tw; Chang, E.-E. [Department of Biochemistry, Taipei Medical University, 25 Wu-Shin Street, Taipei 106, Taiwan (China); Chen, M.-Y. [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Road, Taipei 106, Taiwan (China)

    2007-03-06

    The comparison of different advanced oxidation processes (AOPs), i.e. ultraviolet (UV)/TiO{sub 2}, O{sub 3}, O{sub 3}/UV, O{sub 3}/UV/TiO{sub 2}, Fenton and electrocoagulation (EC), is of interest to determine the best removal performance for the destruction of the target compound in an Acid Orange 6 (AO6) solution, exploring the most efficient experimental conditions as well; on the other hand, the results may provide baseline information of the combination of different AOPs in treating industrial wastewater. The following conclusions can be drawn: (1) in the effects of individual and combined ozonation and photocatalytic UV irradiation, both O{sub 3}/UV and O{sub 3}/UV/TiO{sub 2} processes exhibit remarkable TOC removal capability that can achieve a 65% removal efficiency at pH 7 and O{sub 3} dose = 45 mg/L; (2) the optimum pH and ratio of [H{sub 2}O{sub 2}]/[Fe{sup 2+}] found for the Fenton process, are pH 4 and [H{sub 2}O{sub 2}]/[Fe{sup 2+}] = 6.58. The optimum [H{sub 2}O{sub 2}] and [Fe{sup 2+}] under the same HF value are 58.82 and 8.93 mM, respectively; (3) the optimum applied voltage found in the EC experiment is 80 V, and the initial pH will affect the AO6 and TOC removal rates in that acidic conditions may be favorable for a higher removal rate; (4) the AO6 decolorization rate ranking was obtained in the order of O{sub 3} < O{sub 3}/UV = O{sub 3}/UV/TiO{sub 2} < EC < Fenton; (5) the ranking of TOC removal efficiency of selected AOPs was in the order of O{sub 3} = Fenton < EC < O{sub 3}/UV < O{sub 3}/UV/TiO{sub 2} for 30 min of reaction time.

  19. Water structure at aqueous solution surfaces of atmospherically relevant dimethyl sulfoxide and methanesulfonic acid revealed by phase-sensitive sum frequency spectroscopy.

    Chen, Xiangke; Allen, Heather C

    2010-11-25

    Interfacial water structures of aqueous dimethyl sulfoxide (DMSO) and methanesulfonic acid (MSA) were studied by Raman, infrared, and conventional and phase-sensitive vibrational sum frequency generation (VSFG) spectroscopies. Through isotopic dilution, we probed bulk water hydrogen bonding strength using the vibrational frequency of dilute OD in H(2)O. As indicated by the frequency shift of the OD frequency, it is shown that DMSO has little influence on the average water hydrogen bonding strength at low concentrations in contrast with an overall weakening effect for MSA. For the water structure at the surface of aqueous solutions, although conventional VSFG spectra suggest only slight structural changes with DMSO and a red shift of hydrogen-bonded water OH frequency, phase-sensitive VSFG reveals more thoroughly structural changes in the presence of both DMSO and MSA. In the case of DMSO, reorientation of interfacial water molecules with their hydrogens pointing up toward the oxygen of the S=O group is observed. For MSA, the interfacial water structure is affected by both the dissociated methanesulfonate anions and the hydronium ions residing at the surface. Both the methanesulfonate anions and the hydronium ions have surface preference; therefore, the electric double layer (EDL) formed at the surface is relatively thin, which leads to partial reorientation of interface water molecules with net orientation of water hydrogens up. Surface DMSO molecules are more effective at reorienting surface water relative to MSA molecules. PMID:21047087

  20. Inhibiting properties and adsorption of an amine based fatty acid corrosion inhibitor on carbon steel in aqueous carbon dioxide solutions

    Buchweishaija, Joseph

    1997-12-31

    Carbon dioxide corrosion is a major corrosion problem in oil and gas production systems and many organic inhibitors have been tested and used to protect the substrate from corrosion. This thesis studies the mechanism of interaction of the inhibitor molecule with the metallic substrate and how this affects the dissolution rate of the metal. The performance of a commercial amine based fatty acid corrosion inhibitor has been investigated using rotating cylinder electrodes and carbon steel electrodes in CO{sub 2} saturated formation water in the temperature range between 35 to 80{sup o}C. The corrosion process was monitored by electrochemical impedance measurements, and at the end of each experiment full polarization curves were recorded. When the inhibitor was applied on noncorroded electrodes, high inhibitor performance, over 99.7%, was observed independent of temperature. On precorroded electrodes inhibitor performance was found to depend on temperature and time of precorrosion. Above 60{sup o}C, the inhibitor performance decreased with increasing time of precorrosion, presumably because of the formation of a corrosion film of either iron carbonate or a combination of iron carbonate and iron carbide which prevent the inhibitor from reaching the surface. The inhibitor protection efficiency was assumed to be associated with the degree of inhibitor coverage at the material surface, and adsorption isotherms have been calculated in the concentration range between 0.1 ppm and 100 ppm. A Langmuir isotherm was found to give the best fit. The inhibitor performance on a 2 days precorroded rotating electrode was investigated at different solution pH ranging between 4.5 and 6.5 at 35{sup o}C. 130 refs., 80 figs., 22 tabs.

  1. Kinetic and mechanism of the oxidation of chromium(III) complex with anthranil- N, N-diacetic acid by periodate ion in acidic aqueous solutions

    Ali, Ismat H.

    2015-06-01

    The kinetics of oxidation of [CrIII(atda)(H2O)2] (atda = anthranil- N, N-diacetato) complex by IO{4/-} was studied spectrophotometrically in aqueous solutions with pH range 2.20-3.34, 0.30 M ionic strength and in 20.0-40.0°C temperature range. The rate law of the reaction exhibited saturation kinetics. Values of the rate constant for the electron transfer process, the equilibrium constant for dissociation of [CrIII (atda)(H2O)2] to [CrIII (atda) (H2O)OH]+ + H+ and the pre-equilibrium formation constant were calculated. The thermodynamic activation parameters are reported. It is proposed that electron transfer proceeds through an inner-sphere mechanism via coordination of the IVII to chromium(III).

  2. Degradation of C. I. Acid Orange 7 in aqueous solution by a novel electro/Fe3O4/PDS process

    Graphical abstract: - Highlights: • A novel electro/Fe3O4/PDS process was employed to degrade Acid Orange 7 in water. • The effect of operating parameters on the degradation was investigated. • The surface properties of Fe3O4 before and after reaction was investigated by XPS. • A plausible degradation pathway of Acid Orange 7 was proposed. - Abstract: The decolorization of C. I. Acid Orange 7 (AO7) in aqueous solution by Fe3O4 activated peroxydisulfate (PDS) oxidation in an electrochemical reactor (EC/Fe3O4/PDS process) was performed in this study. Various parameters were investigated to optimize the process, including initial pH, current density, PDS concentration and Fe3O4 dosage. The stability of Fe3O4 particles was observed by recycle experiments. The X-ray photoelectron spectroscopy (XPS) was applied to investigate the surface properties of Fe3O4 before and after reaction. GC–MS analysis was employed to identify the intermediate products and a plausible degradation pathway of AO7 was proposed. The change of acute toxicity during the treatment was investigated by activated sludge inhibition test. The TOC removal efficiency was 30.0% in a 90 min reaction

  3. Interfacial Thermodynamics of Coexisting Aqueous Polymer Solutions

    Vis, M.

    2015-01-01

    Phase separation is commonly observed when two different polymers are present in aqueous solution, forming aqueous two-phase systems which typically consist for 90% of water. It is demonstrated that the presence of charge on one of the polymers results in an electric potential difference between the

  4. Degradation of the herbicide 2, 4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt by gamma radiation from cobalt-60 in aqueous solution containing humic acid

    In this study, gamma radiation from cobalt-60 was used to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt in water in the presence of humic acid. The 2,4-D dimethylamine salt 1.13x10-4 mol dm-3 solution was irradiated with different doses. HPLC was used as an analytical technique to determine the degradation rate of herbicide studied. The results showed that the herbicide was completely degraded at an absorbed dose of 3 kGy. Degradation decreased when humic acid was added to all the doses. ESI/MS and MS/MS were used to identify the radiolytic degradation products. A fragmentation path for production of 4.6-dichlororesorcinol, is suggested. The radiolytic yields (G) were calculated

  5. Tannin (Polyphenol) Stability in Aqueous Solutions

    Understanding the chemical stability of tannins (polyphenolics) in soils is critical to understanding their biological activities and fate. We examined the stability of chemically defined tannins in aqueous solutions under conditions simulating natural and laboratory conditions. We evaluated tanni...

  6. Determination of Nitric Acid in Aqueous Solution of Uranium and Plutonium Purification Cycle by Near Infrared Spectroscopy

    LI; Ding-ming; WANG; Lin; ZHANG; Li-hua; GONG; Yan-ping; MU; Ling; WU; Ji-zong

    2012-01-01

    <正>The concentration of nitric acid interfered with the distribution of uranium and plutonium in nuclear fuel reprocessing process. So, in the reprocessing process control analysis, the determination of the free acid plays an important role. Traditional laboratory analytical method of free acid needs large size sample and is time-consuming. Hence, development of fast analytical method for free acid has important significance for the reprocessing process control analysis. Near-infrared spectroscopy (NIRS) has been proved to be a powerful analytical tool and used in various fields, it’s seldom, however, used in spent

  7. Oxidation by-products and ecotoxicity assessment during the photodegradation of fenofibric acid in aqueous solution with UV and UV/H{sub 2}O{sub 2}

    Santiago, Javier [Department of Chemical Engineering, University of Alcala, E-28771 Alcala de Henares (Spain); Agueera, Ana; Mar Gomez-Ramos, Maria del [Department of Analytical Chemistry, University of Almeria, E-04010 Almeria (Spain); Fernandez Alba, Amadeo R. [Department of Analytical Chemistry, University of Almeria, E-04010 Almeria (Spain); Advanced Study Institute of Madrid, IMDEA-Agua, Parque Cientifico Tecnologico, E-28805 Alcala de Henares, Madrid (Spain); Garcia-Calvo, Eloy [Department of Chemical Engineering, University of Alcala, E-28771 Alcala de Henares (Spain); Advanced Study Institute of Madrid, IMDEA-Agua, Parque Cientifico Tecnologico, E-28805 Alcala de Henares, Madrid (Spain); Rosal, Roberto, E-mail: roberto.rosal@uah.es [Department of Chemical Engineering, University of Alcala, E-28771 Alcala de Henares (Spain); Advanced Study Institute of Madrid, IMDEA-Agua, Parque Cientifico Tecnologico, E-28805 Alcala de Henares, Madrid (Spain)

    2011-10-30

    Highlights: {yields} UV and UV/H{sub 2}O{sub 2} photolysis of fenofibric acid. {yields} Identification of reaction intermediates using exact mass measurements. {yields} UV/H{sub 2}O{sub 2} removed toxicity towards Pseudokirchneriella subcapitata. {yields} Irradiated samples contain a number of chlorinated products. - Abstract: The degradation of an aqueous solution of fenofibric acid was investigated using ultraviolet (UV) photolysis and UV/H{sub 2}O{sub 2} with a low-pressure mercury lamp. We obtained quantum yields at different temperatures and the rate constant for the reaction of fenofibric acid with hydroxyl radicals. The maximum radical exposure per fluence ratio obtained was 1.4 x 10{sup -10} M L{sup -1} mW{sup -1}. Several reaction intermediates were detected by means of exact mass measurements performed by liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-ESI-QTOF-MS). UV and UV/H{sub 2}O{sub 2} pathways involve the decarboxylation of fenofibric acid to 4-chloro-4'-(1-hydroxy-1-methylethyl)benzophenone and other minor products, predominantly chlorinated aromatics. We detected several intermediates from reactions with hydroxyl radicals and some lower molecular weight products from the scission of the carbonyl carbon-to-aromatic-carbon bond. We recorded high toxicity in UV irradiated samples for the growth of Pseudokirchneriella subcapitata even after the total depletion of fenofibric acid; this was probably due to the presence of chlorinated aromatics. A degree of toxicity reappeared in highly irradiated UV/H{sub 2}O{sub 2} samples, probably because of the formation of ring-opening products. The degree of mineralization was closely related to that of dechlorination and reached values of over 50% after 3-4 min before stabilizing thereafter.

  8. Mechanism of protection of adenosine from sulphate radical anion and repair of adenosine radicals by caffeic acid in aqueous solution

    M Sudha Swaraga; L Charitha; M Adinarayana

    2005-07-01

    The photooxidation of adenosine in presence of peroxydisulphate (PDS) has been studied by spectrophotometrically measuring the absorbance of adenosine at 260 nm. The rates of oxidation of adenosine by sulphate radical anion have been determined in the presence of different concentrations of caffeic acid. Increase in [caffeic acid] is found to decrease the rate of oxidation of adenosine suggesting that caffeic acid acts as an efficient scavenger of $SO_{4}^{\\bullet-}$ and protects adenosine from it. Sulphate radical anion competes for adenosine as well as for caffeic acid. The quantum yields of photooxidation of adenosine have been calculated from the rates of oxidation of adenosine and the light intensity absorbed by PDS at 254 nm, the wavelength at which PDS is activated to sulphate radical anion. From the results of experimentally determined quantum yields (exptl) and the quantum yields calculated (cal) assuming caffeic acid acting only as a scavenger of $SO_{4}^{\\bullet-}$ show that exptl values are lower than cal values. The ' values, which are experimentally found quantum yield values at each caffeic acid concentration and corrected for $SO_{4}^{\\bullet-}$ scavenging by caffeic acid, are also found to be greater than exptl values. These observations suggest that the transient adenosine radicals are repaired by caffeic acid in addition to scavenging of sulphate radical anions.

  9. Effect of ultrasonic frequency on H2O2 sonochemical formation rate in aqueous nitric acid solutions in the presence of oxygen.

    Dalodière, Elodie; Virot, Matthieu; Moisy, Philippe; Nikitenko, Sergey I

    2016-03-01

    The influence of the ultrasonic frequency (20 kHz, 207 kHz, and 615 kHz) towards the formation kinetics of H2O2 under Ar and Ar/(20 vol.%)O2 atmospheres was evaluated in pure water and aqueous nitric solutions. Results obtained at low frequency ultrasound demonstrate that hydrogen peroxide formation is enhanced under an Ar/O2 gas mixture whatever the sonicated medium. Nevertheless, H2O2 yields are higher in aqueous nitric solutions whatever the nature of the saturating gas. These observations are consistent at high frequency ultrasound under Ar gas notwithstanding higher yields for H2O2. Surprisingly, an inverse tendency is observed for high frequency sonolysis carried out under an Ar/O2 atmosphere: higher yields of H2O2 are measured in pure water. Further studies in the presence of pure Ar revealed a more important decomposition of nitric acid under high frequency ultrasound leading to higher yields of both HNO2 in the liquid phase and NO in the gas phase. In the presence of Ar/O2 mixture, the intrabubble oxidation of NO causes cavitation bubble depletion in O2 leading to the drop of H2O2 yield. On the other hand, it was found that for Ar/(20 vol.%)O2 mixture there is no influence of oxygen on HNO2 yield whatever the ultrasonic frequency; this is most likely explained by two processes: (i) HNO2 formation results from nitrate-ion thermolysis in the liquid reaction zone surrounding the cavitation bubble, and (ii) effective intrabubble oxidation of NOx species by oxygen to nitrate-ion. PMID:26584999

  10. Aqueous Photochemistry of Glyoxylic Acid.

    Eugene, Alexis J; Xia, Sha-Sha; Guzman, Marcelo I

    2016-06-01

    Aerosols affect climate change, the energy balance of the atmosphere, and public health due to their variable chemical composition, size, and shape. While the formation of secondary organic aerosols (SOA) from gas phase precursors is relatively well understood, studying aqueous chemical reactions contributing to the total SOA budget is the current focus of major attention. Field measurements have revealed that mono-, di-, and oxo-carboxylic acids are abundant species present in SOA and atmospheric waters. This work explores the fate of one of these 2-oxocarboxylic acids, glyoxylic acid, which can photogenerate reactive species under solar irradiation. Additionally, the dark thermal aging of photoproducts is studied by UV-visible and fluorescence spectroscopies to reveal that the optical properties are altered by the glyoxal produced. The optical properties display periodicity in the time domain of the UV-visible spectrum of chromophores with absorption enhancement (thermochromism) or loss (photobleaching) during nighttime and daytime cycles, respectively. During irradiation, excited state glyoxylic acid can undergo α-cleavage or participate in hydrogen abstractions. The use of (13)C nuclear magnetic resonance spectroscopy (NMR) analysis shows that glyoxal is an important intermediate produced during direct photolysis. Glyoxal quickly reaches a quasi-steady state as confirmed by UHPLC-MS analysis of its corresponding (E) and (Z) 2,4-dinitrophenylhydrazones. The homolytic cleavage of glyoxylic acid is proposed as a fundamental step for the production of glyoxal. Both carbon oxides, CO2(g) and CO(g) evolving to the gas-phase, are quantified by FTIR spectroscopy. Finally, formic acid, oxalic acid, and tartaric acid photoproducts are identified by ion chromatography (IC) with conductivity and electrospray (ESI) mass spectrometry (MS) detection and (1)H NMR spectroscopy. A reaction mechanism is proposed based on all experimental observations. PMID:27192089

  11. Investigation of complexing reactions of terbium(3) ions with anions of salicylic and 5-sulfosalicylic acids in aqueous solutions

    Complexing of terbium(3) ions with anions of salicylic and 5-sulfosalicylic acids was investigated by luminescence-kinetic method. Values of stability and dissociation constants of formed complexes were obtained

  12. The Prediction of Nanoscale Drug Molecular Structure and Acid Dissociation Constants of 5-Fluorouracil in Aqueous Solution Using DFT Methods

    Baghery SMS

    2013-09-01

    Full Text Available Background and Objective : In this work, dissociation of nano drug 5 -Fluorouracil derivatives was studied theoretically. Methodology : For this purpose, Gibbs free energy values for neutral and deprotonated forms of 5 -Fluorouracil were calculated at gas and aqueous phases by using density functional theory (DFT method. Solvent effects are taken into account by means of polarizable continuum model (PCM. Result : It was shown that, theoretically calculated pKa values are in good agreement with the existing experimental pKa values, which are determined from capillary electrophoresis, potentiometric titration and UV visible spectrophotometric measurements. Conclusion : In summary, cluster continuum method with implicit - explicit solvent molecules was used for calculation of pKa values.Total energies and molecular parameters were obtained for 5 - FUra nanoscale drug systems, at B3LYP6-31G(d level of theory for the anion, cation, and neutral species.

  13. Equilibrium and kinetic studies on the removal of Acid Red 114 from aqueous solutions using activated carbons prepared from seed shells

    The use of low-cost and ecofriendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This paper deals with the removal of Acid Red 114 (AR 114) from aqueous solutions using activated carbons prepared from agricultural waste materials such as gingelly (sesame) (Sp), cotton (Cp) and pongam (Pp) seed shells. Optimum conditions for AR 114 removal were found to be pH 3, adsorbent dosage = 3 g/L of solution and equilibrium time = 4 h. Higher removal percentages were observed at lower concentrations of AR 114. The adsorption isotherm data were fitted to Langmuir and Freundlich equation, and the adsorption capacity of the studied adsorbents was in the order Sp > Cp > Pp. Kinetic studies showed that the adsorption followed both pseudo-second-order and Elovich equation. The thermodynamics parameters such as ΔGo, ΔHo, ΔSo were also evaluated. The activated carbons prepared were characterized by FT-IR, SEM and BET analysis

  14. Thermodynamics of inclusion complexes of natural and modified cyclodextrins with acetylsalicylic acid and ibuprofen in aqueous solution at 298 K

    Graphical abstract: Complexation forces acting in the association between natural and modified α- and β-cyclodextrins and acetylsalicylic acid (aspirin) or ibuprofen are examined through the analysis of the thermodynamic parameters obtained by isothermal calorimetry. Highlights: ► A calorimetric method is reported to study the association of natural and substituted cyclodextrins with acetylsalicylic acid and ibuprofen. ► The study aims to propose a hypothesis about the forces involved in the interaction. That can be useful for designing new cyclodextrins having suitable characteristics to include specific drugs. ► Enthalpic and entropic contributions on the association are discussed. The differences in the cavity dimensions of the cyclodextrins determine the values of the thermodynamic properties to be very different. - Abstract: Thermodynamic parameters for the association of natural and substituted α-, β-, and γ-cyclodextrins with acetylsalicylic acid, salicylic acid and ibuprofen have been determined by isothermal titration calorimetry. Analysis of the data shows that complexes form, all having 1:1 stoichiometry. The shape-matching between the host and guest is the factor determining the values of the thermodynamic quantities. In the case of the smallest cyclodextrin interacting with acetylsalicylic acid and salicylic acid, the parameters indicate that hydrophobic interactions play the major role. Association occurs through the shallow inclusion of the benzene ring into the cavity. In the case of substituted β-cyclodextrins, instead, inclusion of the benzene ring is deeper and the tight fitting of the guest molecule to the cavity makes the enthalpy and entropy to be both negative. Ibuprofen interacts through its isobutyl group: the values of the association constants are very high for β-cyclodextrins as determined by the large and positive entropies due to the relaxation of water molecules from the cavity and the hydration spheres of the interacting

  15. Thermodynamics of inclusion complexes of natural and modified cyclodextrins with acetylsalicylic acid and ibuprofen in aqueous solution at 298 K

    Castronuovo, Giuseppina, E-mail: giuseppina.castronuovo@unina.it [Department of Chemistry, University Federico II of Naples, Complesso Universitario a Monte S. Angelo, via Cintia, 80126 Naples (Italy); Niccoli, Marcella [Department of Chemistry, University Federico II of Naples, Complesso Universitario a Monte S. Angelo, via Cintia, 80126 Naples (Italy)

    2013-04-10

    Graphical abstract: Complexation forces acting in the association between natural and modified α- and β-cyclodextrins and acetylsalicylic acid (aspirin) or ibuprofen are examined through the analysis of the thermodynamic parameters obtained by isothermal calorimetry. Highlights: ► A calorimetric method is reported to study the association of natural and substituted cyclodextrins with acetylsalicylic acid and ibuprofen. ► The study aims to propose a hypothesis about the forces involved in the interaction. That can be useful for designing new cyclodextrins having suitable characteristics to include specific drugs. ► Enthalpic and entropic contributions on the association are discussed. The differences in the cavity dimensions of the cyclodextrins determine the values of the thermodynamic properties to be very different. - Abstract: Thermodynamic parameters for the association of natural and substituted α-, β-, and γ-cyclodextrins with acetylsalicylic acid, salicylic acid and ibuprofen have been determined by isothermal titration calorimetry. Analysis of the data shows that complexes form, all having 1:1 stoichiometry. The shape-matching between the host and guest is the factor determining the values of the thermodynamic quantities. In the case of the smallest cyclodextrin interacting with acetylsalicylic acid and salicylic acid, the parameters indicate that hydrophobic interactions play the major role. Association occurs through the shallow inclusion of the benzene ring into the cavity. In the case of substituted β-cyclodextrins, instead, inclusion of the benzene ring is deeper and the tight fitting of the guest molecule to the cavity makes the enthalpy and entropy to be both negative. Ibuprofen interacts through its isobutyl group: the values of the association constants are very high for β-cyclodextrins as determined by the large and positive entropies due to the relaxation of water molecules from the cavity and the hydration spheres of the interacting

  16. Distribution coefficient correlations for nitric acid, U(VI) and Pu(IV) in two-phase system with aqueous nitric acid and 30% tri-n-butylphosphate solutions

    Distribution coefficient correlations are obtained for nitric acid, U(VI) and Pu(IV) extracted with 30% tri-n-butylphosphate (TBP) diluted by n-dodecane from aqueous nitric acid solutions. The correlation functions are described as a mathematical model that takes account of activity coefficients expressed by a function of ionic strength. The correlations include the temperature effect on distribution coefficient, and works successfully for the experimental distribution coefficients in the literature within the temperature range of 10 to 70degC. The concentrations of nitric acid, U(VI) and Pu(IV) in a multi-stage extraction experiment previously reported have been simulated well with the new distribution correlations at room and elevated temperatures. (author)

  17. Removal of the hazardous, volatile, and organic compound benzene from aqueous solution using phosphoric acid activated carbon from rice husk

    Yakout, Sobhy M

    2014-01-01

    Background Benzene is one of the most hazardous organic pollutants in groundwater. The removal of benzene from water is very important from a health point of view and for environmental protection. In this study, benzene adsorption kinetics was investigated using phosphoric acid activated carbon, prepared from rice husk. Results An initial rapid uptake of benzene was observed and became almost constant after 40 minutes of contact. Kinetic data was analyzed using pseudo first order, pseudo seco...

  18. Mechanism of azo dye degradation by ionizing radiation. Degradation of sulfanilic acid azochromotrop and its parent compounds in aqueous solution

    Complete text of publication follows. Mechanistic studies were made on ·OH radical and hydrated electron reaction with Sulfanilic Acid Azochromotrop (SPADNS) as model azo dye. SPADNS contains 4,5-dihydroxynaphtalene 2,7-disulfonic acid part and 4-sulfophenylazo group. To establish the details of the reaction mechanism the reactions of two simpler molecules without 4-sulfophenylazo part were also studied: one of them contained one (in position 4, II), the other two (in positions 4 and 5, III) -OH groups. ·OH radicals react with these molecules with radical addition to the naphthalene 2,7-disulfonic acid part. The adduct cyclohexadienyl type radical may decay in radical-radical reactions, or undergoes a (pH dependent) water elimination to naphthoxy radical, radical decay takes place on the ms timescale. ·OH radical addition on the azo bond in dyes has low importance. Degradation efficiencies are 0.6-0.8. The hydrated electron in the case of the two simpler molecules reacts with the rings, while in the case of dye with the azo bond. Electron scavenging is followed by protonation, this reaction in the case of II and III yields cyclohexadienyl, while with the dye hydrazo radical. The efficiency of degradation with II and III is 0.2-0.6, while for the dye it is close to 1.

  19. 苯丙氨酸和天冬氨酸水溶液的纳滤分离过程研究%The Nanofiltration Process of Aqueous Solution of Phenylalanine and Aspartic Acid

    营爱玲; 王晓琳

    2001-01-01

    The permeation experiments on the aqueous solution of phenylalanine and aspartic acid were carried out with nanofiltration membranes. Results show that amino acids with different isoelectric points (pI) can be separated satisfactorily by adjusting the pH values. The concentration and separation process of phenylalanine and aspartic acid solution was also simulated.%选择L-苯丙氨酸和L-天冬氨酸水溶液进行了纳滤分离过程研究,讨论了不同pH下氨基酸的透过特性,并进行了模拟计算.

  20. The coacervation of aqueous solutions of tetraalkylammonium halides

    The coacervation of aqueous solutions of tatraalkylammonium halides in the presence of not of inorganic halides and acids has been studied, considering thermodynamic and spectroscopic aspects. The importance of dispersion forces as well as forces resulting from hydrophobic hydration has been assessed. The analogy between these systems and anionic ion exchange resins has been shown especially for Uranium VI extraction

  1. Reactions of alkoxy radicals in aqueous solutions

    The kinetic and mechanistic properties of alkoxy radicals in organic solvents are briefly reviewed. Owing to the scarcity of such data in aqueous solutions and since reactions at the membrane/water interface may be also biologically important, we have studied the reactivity of these radicals in water and the results of our investigations are reported. Alkoxy radicals were generated by photolytic or radiolytic cleavage of peroxide precursors (tert-butyl hydroperoxide and di-tert-butyl peroxide as well as hydroperoxides of polyunsaturated fatty acids). A quantitative correlation between the structure of various substances, in particular, phenolic antioxidants, and their activity in inhibiting the alkoxy radical-induced bleaching of the water-soluble carotenoid crocin will be discussed. Rate constants for intermolecular reactions of t-BuO. radicals were determined by pulse radiolysis. The diffusion-controlled reaction with the catechol antioxidant nordihydroguaiaretic acid demonstrates an effective competition with the very rapid intra molecular β-fragmentation in water. The results aupport the view that a considerable amount of alkoxy radicals interact with substrates before they can rearrange intramolecularly

  2. Reactions of alkoxy radicals in aqueous solutions

    Bors, W.; Tait, D.; Michel, C.; Saran, M.; Erben-Russ, M. (Gesellschaft fuer Strahlen- und Umweltforschung m.b.H. Muenchen, Neuherberg (Germany, F.R.). Abt. fuer Strahlenbiologie)

    1984-01-01

    The kinetic and mechanistic properties of alkoxy radicals in organic solvents are briefly reviewed. Owing to the scarcity of such data in aqueous solutions and since reactions at the membrane/water interface may be also biologically important, we have studied the reactivity of these radicals in water and the results of our investigations are reported. Alkoxy radicals were generated by photolytic or radiolytic cleavage of peroxide precursors (tert-butyl hydroperoxide and di-tert-butyl peroxide as well as hydroperoxides of polyunsaturated fatty acids). A quantitative correlation between the structure of various substances, in particular, phenolic antioxidants, and their activity in inhibiting the alkoxy radical-induced bleaching of the water-soluble carotenoid crocin will be discussed. Rate constants for intermolecular reactions of t-BuO. radicals were determined by pulse radiolysis. The diffusion-controlled reaction with the catechol antioxidant nordihydroguaiaretic acid demonstrates an effective competition with the very rapid intra molecular ..beta..-fragmentation in water. The results aupport the view that a considerable amount of alkoxy radicals interact with substrates before they can rearrange intramolecularly.

  3. The radiation chemistry of aqueous dihydropyrimidine solutions

    The radiation chemistry of N2O-saturated aqueous solutions of dihydropyrimidines in the presence pf various oxidants has been studied. From dihydrouracil (DHU) solutions in the presence of Fe(CN)63- the major products are uracil and 5-hydro-6-hydroxyuracil which have been isolated by chromatographic techniques using DHU-14C. From 6-methyldihydrouracil (6-MeDHU), under similar conditions, the parent pyrimidine and the 6-hydroxy compound are also formed. The pH-dependence of the yields of these products in the above DHU and 6-MeDHU systems have been determined and the results interpreted in terms of an electron transfer reaction from the organic radicals to the oxidant. Pulse radiolysis has shown that the isomerisation of the isopyrimidine is base catalysed. The influence of the oxidants IO4-, S2O82-, H2O2 and p-nitroacetophenone has been investigated using various dihydropyrimidines. Specific effects have been noted, particularly a chain reaction in the case of IO4- and S2O82-, and also the formation of barbituric acid derivatives in addition to pyrimidines and the 6-hydroxy compounds, more particularly in the case of IO4- and H2O2. The pH-dependencies of the yields have been studied and possible specific mechanisms discussed. These particular studies are of interest with regard to radiation sensitisation in vivo. (author)

  4. Electrochemical efficacy of a carboxylated multiwalled carbon nanotube filter for the removal of ibuprofen from aqueous solutions under acidic conditions.

    Bakr, Ahmed Refaat; Rahaman, Md Saifur

    2016-06-01

    This study provides insight into the efficiency of a functionalized multiwalled carbon nanotube filter for the removal of an anti-inflammatory drug, ibuprofen, through conventional filtration and electrochemical filtration processes. A comparison was made between carboxylated multiwalled carbon nanotubes (MWNTs-COOH) and pristine multiwalled carbon nanotubes (MWNTs) in order to emphasize the enhanced performance of MWNTs-COOH for the removal of ibuprofen using an electrochemical filtration process under acidic conditions. Ibuprofen-removal trials were evaluated based on absorbance values obtained using a UV/Vis spectrophotometer, and possible degradation products were identified using liquid chromatography mass spectrometry (LC-MS). The results exhibited near complete removal of ibuprofen by MWNTs-COOH at lower applied potentials (2 V), at lower flow rates, and under acidic conditions, which can be attributed to the generation of superoxides and their active participation in simultaneous degradation of ibuprofen, and its by-products, under these conditions. At higher applied potential (3 V), the possible participation of both bulk indirect oxidation reactions, and direct electron transfer were hypothesized for the removal behavior over time (breakthrough). At 3 V under acidic conditions, near 100% removal of the target molecule was achieved and was attributed to the enhanced generation of electroactive species toward bulk chemical reactions and a possible contribution from direct electron transfer under these conditions. The degradation by-products of ibuprofen were effectively removed by allowing longer residence time during the filtration process. Moreover, the effect of temperature was studied, yet showed a non-significant effect on the overall removal process. PMID:27035389

  5. Interfacial Thermodynamics of Coexisting Aqueous Polymer Solutions

    Vis, M

    2015-01-01

    Phase separation is commonly observed when two different polymers are present in aqueous solution, forming aqueous two-phase systems which typically consist for 90% of water. It is demonstrated that the presence of charge on one of the polymers results in an electric potential difference between the two phases. Upon phase separation, the polyelectrolyte is confined in majority to one of the phases. Although small ions can equilibrate freely between the phases, the restriction of macroscopic c...

  6. Preparation of Quarternized Acrylic Acid Grafted Cotton Fabric Waste for the Removal of Sulphate from Aqueous Solution

    Acrylic acid (AAc) grafted cotton fabric was prepared by radiation- induced graft polymerization. Grafting conditions were optimized and the sample with grafting percentage 160% were used for further experiments. (AAc) grafted chains were quaternized by introduction of a tertiary amine function onto the sample by the estrification of the carboxylic groups, via an acid chloride intermediate, with 4-hydroxy-N-methyl piperidine. The tertiary amine of the piperidine ring was then quarternized with benzyl chloride. The prepared anion exchanger was characterized by FTIR and SEM. Adsorption experiments were conducted with quarternized (AAc) grafted cotton fabric for sulphate removal at concentration (100-500 ppm) at different ph values. Adsorbed sulphate amounts were found to be (60, 32.5 and 22.5 mg/g) at ph 3, 7 and 9, respectively, showing the efficiency of the adsorbent material in the removing sulphate. Also the results showed that the adsorption data fit the Freundlich isotherm model. Kinetic data were fitted using pseudo-first-order, pseudo-second order equations and with the pseudo-second-order equation generated being in best agreement with the experimental data for the adsorption systems

  7. Precipitation of neptunium dioxide from aqueous solution

    Roberts, K E

    1999-12-01

    Tens of thousands of metric tons of highly radioactive, nuclear waste have been generated in the US. Currently, there is no treatment or disposal facility for these wastes. Of the radioactive elements in high-level nuclear waste, neptunium (Np) is of particular concern because it has a long half-life and may potentially be very mobile in groundwaters associated with a proposed underground disposal site at Yucca Mountain, Nevada. Aqueous Np concentrations observed in previous, short-term solubility experiments led to calculated potential doses exceeding proposed long-term regulatory limits. However, thermodynamic data for Np at 25 C showed that these observed aqueous Np concentrations were supersaturated with respect to crystalline NpO{sub 2}. It was hypothesized that NpO{sub 2} is the thermodynamically stable solid phase in aqueous solution, but it is slow to form in an aqueous solution of NpO{sub 2}{sup +} on the time scale of previous experiments. The precipitation of NpO{sub 2} would provide significantly lower aqueous Np concentrations leading to calculated doses below proposed regulatory limits. To test this hypothesis, solubility experiments were performed at elevated temperature to accelerate any slow precipitation kinetics. Ionic NpO{sub 2}{sup +} (aq) was introduced into very dilute aqueous solutions of NaCl with initial pH values ranging from 6 to 10. The reaction vessels were placed in an oven and allowed to react at 200 C until steady-state aqueous Np concentrations were observed. In all cases, aqueous Np concentrations decreased significantly from the initial value of 10{sup {minus}4} M. The solids that formed were analyzed by x-ray powder diffraction, x-ray absorption spectroscopy, and scanning electron microscopy. The solids were determined to be high-purity crystals of NpO{sub 2}. This is the first time that crystalline NpO{sub 2} has been observed to precipitate from NpO{sub 2}{sup +}(aq) in near-neutral aqueous solutions. The results obtained

  8. Acidizing carbonate reservoirs with chlorocarboxylic acid salt solutions

    Richardson, E.A.; Scheuerman, R.F.; Templeton, C.C.

    1978-10-31

    A carbonate reservoir is acidized slowly by injecting an aqueous solution of a chlorocarboxylic acid salt so that the rate of the acidization is limited to the rate at which an acid is formed by the hydrolyzing of the chlorocarboxylate ions. The rate at which a chlorocarboxylic acid salt hydrolyzes to form an acid provides the desired rate of acid-release. A more complete acid-base reaction by chloroacetic acid, as compared to formic, acetic, and proprionic, is due to its being a much stronger acid. The pKa of chloroacetic acid is 2.86, whereas that of formic acid is 3.75, and that of acetic acid is 4.75. The pKa of a solution of a weak acid is the pH exhibited when the concentration of undissociated acid equals the concentration of the acid anion. 14 claims.

  9. Chelation of some transitions, lanthanides and uranium elements with nitrilotriacetic acid and radiolysis of their aqueous solutions

    The present thesis contains chelation studies of some transition metal ions (iron fe (III), cobalt Co (II) and nickel Ni (II), trivalent lanthanide ions (praseodymium pr(III) neodymium nd (III), samarium sm(III), europium Eu(III), gadolinium Gd (III), dysprosium dy (III), erbium Er(III) and ytterbium Yb(III) and uranium (U(IV) and U (V I)) with nitrilotriacetic acid (NTA). spectrophotometric techniques are used to investigate the effectiveness of NTA as a decontaminating agent for radioactive nuclides and to evaluate the optimum conditions under which stable and soluble complexes can be formed. these studies include the effect of PH on the formed complexes and determination of stability constants of the formed species. potentiometric analysis are also performed to follow the formation of binary complexes of some sulpha drugs with investigated metal ions and mixed ligand complexes arising to determine their formation constants

  10. Effect of Hyaluronic Acid on the Self Assembling Behaviour of PEO-PPO Copolymers in Aqueous Solution

    Mayol, L.; Borzacchiello, A.; Quaglia, F.; La Rotonda, M. I.; Ambrosio, L.

    2008-07-01

    The influence of hyaluronic acid (HA) on the self assembling properties of pluronic (PEO-PPO-PEO block copolymers) blends has been studied with the aim of engineering thermosensitive and mucoadhesive polymeric platforms for drug delivery. The gelation temperature (Tgel), viscoelastic properties and mucoadhesive force of the systems were investigated and optimised by means of rheological analyses. Pluronic micellar radius was evaluated by Photon Correlation Spectroscopy (PCS). The addition of Low Molecular Weight HA did not hamper the self assembling process of pluronics just delaying the gelation temperature of few Celsius degrees. Furthermore, HA presence led to a strong increase of the pluronics gel rheological properties. PCS results show, in formulations containing HA, aggregates with hydrodynamic diameters values much higher than those of pluronic micelles. Mucoadhesive experiments indicate the possibility of interactions between the pluronic/HA gel and mucus glycoproteins.

  11. Removal of uranium (VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium pillared clay

    Removal of uranium U(VI) from water and nuclear industrial effluent with humic acid immobilized zirconium-pillared clay (HA-Zr-PILC) was investigated using batch adsorption technique. The adsorbent was characterized using FTIR, XRD, SEM, surface area analyzer and potentiometric titration. The effects of pH, contact time, initial concentration, adsorbent dose, and adsorption isotherm on removal process were evaluated. The monolayer adsorption capacity for U(VI) removal was found to be 134.65 mg/g. Adsorption efficiency was tested using a simulated nuclear industry effluent sample. Repeated adsorption/desorption cycles show the feasibility of the adsorbent for the removal of U(VI) from water and nuclear industry effluents. (author)

  12. Neural network modeling of the photocatalytic degradation of 2,4-di-hydroxybenzoic acid in aqueous solution

    Oliveros, E. [Karlsruhe Univ. (T.H.) (Germany). Lehrstuhl fur Umweltmesstechnik, Engler-Bunte-Institut; Benoit-Marquie, F.; Puech-Costes, E.; Maurette, M.T. [Universite Paul Sabatier, 31 - Toulouse (France). Laboratoire des IMRCP; Nascimento, C.A.O. [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    1998-10-01

    Artificial neural networks have been used for modeling the TiO{sub 2} photocatalytic degradation of 2,4-di-hydroxybenzoic acid, chosen as a model water contaminant, as a function of the concentrations of substrate and catalyst. The experimental design methodology was applied to the choice of an appropriate set of experiments well distributed in the experimental region (Doehlert uniform array). Contrary to a classical treatment of the data, based on apparent rate constants modeled by a quadratic polynomial function, neural network analysis of the same experimental data does not require the use of an kinetic or phenomenological equations and allows the simulation and the prediction of the pollutant degradation as a function of irradiation time, as well as prediction of reaction rates, under varying conditions within the experimental region. (authors) 31 refs.

  13. Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution II: Solvent Coordinate-Dependent Reaction Path.

    Daschakraborty, Snehasis; Kiefer, Philip M; Miller, Yifat; Motro, Yair; Pines, Dina; Pines, Ehud; Hynes, James T

    2016-03-10

    The protonation of methylamine base CH3NH2 by carbonic acid H2CO3 within a hydrogen (H)-bonded complex in aqueous solution was studied via Car-Parrinello dynamics in the preceding paper (Daschakraborty, S.; Kiefer, P. M.; Miller, Y.; Motro, Y.; Pines, D.; Pines, E.; Hynes, J. T. J. Phys. Chem. B 2016, DOI: 10.1021/acs.jpcb.5b12742 ). Here some important further details of the reaction path are presented, with specific emphasis on the water solvent's role. The overall reaction is barrierless and very rapid, on an ∼100 fs time scale, with the proton transfer (PT) event itself being very sudden (ion pair, stabilizing it by establishment of equilibrium solvation. The solvent water's short time scale ∼120 fs response to the incipient ion pair formation is primarily associated with librational modes and H-bond compression of water molecules around the carboxylate anion and the protonated base. This is consistent with this stabilization involving significant increase in H-bonding of hydration shell waters to the negatively charged carboxylate group oxygens' (especially the former H2CO3 donor oxygen) and the nitrogen of the positively charged protonated base's NH3(+). PMID:26876428

  14. Production of a fluorescence probe in ion-beam radiolysis of aqueous coumarin-3-carboxylic acid solution-2: Effects of nuclear fragmentation and its simulation with PHITS

    Maeyama, Takuya [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Yamashita, Shinichi; Taguchi, Mitsumasa [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Baldacchino, Gerard [CEA Saclay, IRAMIS, UMR 3299 CEA-CNRS SIS2M, Laboratoire de Radiolyse, F-91191 Gif sur Yvette Cedex (France); Sihver, Lembit [Department of Physics, University of Houston, Houston, TX 77204-5005 (United States); Department of Nuclear Engineering, Texas A and M University, TX 77843-3133 (United States); Department of Roanoke College, Salem, VA 24153 (United States); Department of Nuclear Engineering, Applied Physics, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Murakami, Takeshi [Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Katsumura, Yosuke, E-mail: katsu@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nuclear Professional School, School of Engineering, University of Tokyo, 2-22 Shirakata-shirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2011-12-15

    The G(OH) values in aqueous coumarin-3-carboxylic-acid (3-CCA) solutions irradiated with {sup 12}C{sup 6+} beams having the energies of 135, 290 and 400 MeV/u were measured by a fluorescent method around the Bragg peak, with 0.6 mm intervals, and quartz cells of 1 cm optical lengths, at the Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences (NIRS). For each ion, the G(OH) has been calculated as a function of dose average LET and position. The calculated results have been compared to measurements, and the results, reproducibility and reliability of the calculations are discussed in the paper. - Highlights: > Therapeutic ion beam has energy of several hundred MeV/u because it is necessary for a few tens cm range. > With such high energy, nuclear fragmentations of carbon ions occur resulting in production of lighter ions. > In this study, OH yield in water radiolysis near the Bragg peak of therapeutic ion beams was measured. > Measured yields are discussed considering nuclear fragmentation by PHITS code.

  15. Application of L-Aspartic Acid-Capped ZnS:Mn Colloidal Nanocrystals as a Photosensor for the Detection of Copper (II Ions in Aqueous Solution

    Jungho Heo

    2016-04-01

    Full Text Available Water-dispersible ZnS:Mn nanocrystals (NCs were synthesized by capping the surface with polar L-aspartic acid (Asp molecules. The obtained ZnS:Mn-Asp NC product was optically and physically characterized using the corresponding spectroscopic methods. The ultra violet-visible (UV-VIS absorption spectrum and photoluminescence (PL emission spectrum of the NCs showed broad peaks at 320 and 590 nm, respectively. The average particle size measured from the obtained high resolution-transmission electron microscopy (HR-TEM image was 5.25 nm, which was also in accordance with the Debye-Scherrer calculations using the X-ray diffraction (XRD data. Moreover, the surface charge and degree of aggregation of the ZnS:Mn-Asp NCs were determined by electrophoretic and hydrodynamic light scattering methods, respectively. These results indicated the formation of agglomerates in water with an average size of 19.8 nm, and a negative surface charge (−4.58 mV in water at ambient temperature. The negatively-charged NCs were applied as a photosensor for the detection of specific cations in aqueous solution. Accordingly, the ZnS:Mn-Asp NCs showed an exclusive luminescence quenching upon addition of copper (II cations. The kinetic mechanism study on the luminescence quenching of the NCs by the addition of the Cu2+ ions proposed an energy transfer through the ionic binding between the two oppositely-charged ZnS:Mn-Asp NCs and Cu2+ ions.

  16. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-04-01

    In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid-liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions. PMID:25576783

  17. Static and dynamic investigations of poly(aspartic acid) and Pluronic F127 complex prepared by self-assembling in aqueous solution

    Nita, Loredana E.; Chiriac, Aurica P.; Bercea, Maria; Nistor, Manuela T.

    2015-12-01

    The present investigation is focused on evaluation of self-assembling ability in aqueous solutions of two water soluble polymers: poly(aspartic acid) (PAS) and Pluronic F127 (PL). The intermolecular complexes, realized between polyacid and neutral copolymer surfactant in different ratios, have been studied by combining various characterization techniques as rheology, DLS, spectroscopy, microscopy, chemical imaging, and zeta potential determination, measurements performed in static and/or dynamic conditions. In static conditions, when the equilibrium state between PAS/PL polymeric pair was reached, and depending on the polymers mixture composition, and of experimental rheological conditions, positive or negative deviations from the additive rule are registered. Conformational changes of the macromolecular chains and correspondingly physical interactions are generated between PL and PAS for self-assembly and the formation of interpolymer complex as suprastructure with micellar configuration. The phenomenon was better evidenced in case of 1/1 wt ratio between the two polymers. In dynamic conditions of determination, during "in situ" evaluation of the hydrodynamic diameter, zeta potential and conductivity, when the equilibrium state is not reached and as result either the intermolecular bonds are not achieved, the self-assembling process is not so obvious evidenced.

  18. Extraction of polonium from aqueous α-hydroxyisobutyric acid solutions using dioctyl sulphide, Cyanex 272, Cyanex 301 or Cyanex 302 in toluene

    A study of the extraction of polonium from aqueous solutions containing α-hydroxyisobutyric acid (α-HIBA) was performed with four different extractants, di-n-octyl sulphide (DOS), Cyanex 272, Cyanex 301 and Cyanex 302, dissolved in toluene. The extracted complex for DOS at low α-HIBA concentrations is most likely PoO(α-HIB)2 x 2DOS, while at higher α-HIBA concentrations there seems to be a solvating effect implicating an extracted complex of the type PoO(α-HIB)2(α-HIBA)2 x 2DOS. For the extraction of polonium with Cyanex 272 the results are inconclusive. The extracted complex is either PoOA2 or PoO(α-HIB)2 x 2HA. For extraction with Cyanex 301 or Cyanex 302 the major extracted species does not contain any α-HIBA molecules. The neutral species in both cases is PoOA2, extracted at low extractant concentrations, while at higher extractant concentrations a complex of the type PoOA2 x xHA is extracted. The extraction of polonium increases in the order Cyanex 272 < DOS < Cyanex 302 < Cyanex 301. (author)

  19. A study of aqueous solutions of nucleic acid constituents exposed to monochromatic 160 nm vacuum-UV light by spin-trapping method

    Spin-trapping technique was employed to detect and identify free radical intermediates produced in aqueous solutions of nucleic acid constituents (pyrimidine bases and pyrimidine nucleosides) after irradiation by monochromatic 160 nm vacuum-UV light from the electron storage ring. Short-lived free radicals produced in the molecules were converted into relatively long-lived free radicals (spin-adducts) by the reaction with MNP used as a spin trap. The resulting nitroxide radicals were subsequently analysed by esr. Clear evidence that most of the radicals were not formed by H-addition but formed by OH-addition at the C5 position of the 5,6 double bond were obtained for pyrimidine bases. For pyrimidine nucleosides, although the effect of H2O-D2O exchange was not recognized on resolution improvement of the hyperfine structure of the esr spectra, careful analysis of the hyperfine structure made it possible to identify the radical structures: OH-addition radicals at the C6 of the double bond of the base moiety in addition to the OH-addition radicals at the C5 position for all except for 2'-deoxycytidine. Evidence for the formation of free radicals at the sugar moiety was not clear. (author)

  20. Solubility and modeling acid-base properties of adrenaline in NaCl aqueous solutions at different ionic strengths and temperatures.

    Bretti, Clemente; Cigala, Rosalia Maria; Crea, Francesco; De Stefano, Concetta; Vianelli, Giuseppina

    2015-10-12

    Solubility and acid-base properties of adrenaline were studied in NaCl aqueous solutions at different ionic strengths (0solubility of the ligand was calculated from simple mass balance equations, by using the free hydrogen concentration and the protonation constants of the ligand determined in the same experimental conditions of the solubility measurements. The salting-In or Out parameters and the activity coefficient of the neutral species were calculated by means of the Setschenow equation. The dependence of the protonation constants on the ionic strength was modeled by means of the Debye-Hückel type equation and of the SIT (Specific ion Interaction Theory) approach. The specific interaction parameters of the ion pairs were also reported. For the protonation constants, the following thermodynamic values at infinite dilution were obtained: T=298.15 K, logK1(H0)=10.674±0.018 and logK2(H0)=8.954±0.022; T=310.15K, logK1(H0)=10.355±0.018 and logK2(H0)=8.749±0.030. PMID:26122929

  1. Efficacy of chlorine, acidic electrolyzed water and aqueous chlorine dioxide solutions to decontaminate Escherichia coli O157:H7 from lettuce leaves

    This study compared the efficacy of chlorine (20 – 200 ppm), acidic electrolyzed water (50 ppm chlorine, pH 2.6), acidified sodium chlorite (20 – 200 ppm chlorite ion concentration, Sanova), and aqueous chlorine dioxide (20 – 200 ppm chlorite ion concentration, TriNova) washes in reducing population...

  2. Diffusion coefficients of paracetamol in aqueous solutions

    Highlights: ► Mutual diffusion coefficients of paracetamol in aqueous dilute solutions. ► Influence of the thermodynamic factors on the variation of their mutual diffusion coefficients. ► Estimation of the mutual limiting diffusion coefficients of the molecular, Dm0, and ionized forms, D±0, of this drug. - Abstract: Binary mutual diffusion coefficients measured by the Taylor dispersion method, for aqueous solutions of paracetamol (PA) at concentrations from (0.001 to 0.050) mol·dm−3 at T = 298.15 K, are reported. From the Nernst–Hartley equation and our experimental results, the limiting diffusion coefficient of this drug and its thermodynamic factors are estimated, thereby contributing in this way to a better understanding of the structure of such systems and of their thermodynamic behaviour in aqueous solution at different concentrations.

  3. Formation of fractals by the self-assembly of interpolymer adducts of polymethacrylic acid with complementary polymers in aqueous solution

    Kandhasamy Durai Murugan; Arlin Jose Amali; Paramasivam Natarajan

    2012-03-01

    Interpolymer adducts of poly(methacrylic acid), (PMAA), with poly(vinylpyrrolidone) in presence of sodium chloride or potassium chloride form highly ordered fractal patterns in films on glass surface on drying at ambient temperature. The structure, morphology and the conditions under which the formation of fractal patterns occurs were investigated by SEM, EDX and confocal microscopic techniques. Self-organization of PMAA with complementary polymers such as poly(vinylpyrrolidone) is well-known and in the presence of sodium chloride formation of the fractals in films of the adducts is a novel observation. Fractal formation occurs due to the aggregation of interpolymer adducts. The composition of the fractals in the film is studied by EDX and confocal microscopic images of the fluorophores covalently bound to PMAA. In presence of salts, sodium chloride or potassium chloride, micellar like entities of 80 nm size were formed which further aggregate to form fractal patterns. It is suggested that the fractals result from the interpolymer adduct by Diffusion Limited Aggregation mechanism.

  4. Adsorption of phthalic acid esters (PAEs) by amphiphilic polypropylene nonwoven from aqueous solution: The study of hydrophilic and hydrophobic microdomain

    Highlights: • Amphiphilic PP-g-GMA-OA nonwoven was prepared and characterized. • Synergy between hydrophilic and hydrophobic microdomain was elucidated. • The effects of hydrophilic microdomain on diffusion resistance and energy barrier were elucidated. • Adsorbent material with amphiphilic structures showed faster adsorption rate and lager adsorption capacity. - Abstract: A kind of amphiphilic polypropylene nonwoven with hydrophilic and hydrophobic microdomain was prepared through electron beam induced graft polymerization and subsequent ring opening reaction and then utilized in the adsorption of phthalic acid esters (PAEs). To elucidate the superiority of such amphiphilic microdomain, a unique structure without hydrophilic part was constructed as comparison. In addition, the adsorption behaviors including adsorption kinetics, isotherms and pH effect were systematically investigated. The result indicated that the amphiphilic structure and the synergy between hydrophilic and hydrophobic microdomain could considerably improve the adsorption capacities, rate and affinity. Particularly the existence of hydrophilic microdomain could reduce the diffusion resistance and energy barrier in the adsorption process. These adsorption results showed that the amphiphilic PP nonwoven have the potential to be used in environmental application

  5. Adsorption of phthalic acid esters (PAEs) by amphiphilic polypropylene nonwoven from aqueous solution: The study of hydrophilic and hydrophobic microdomain

    Zhou, Xiangyu [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Wei, Junfu, E-mail: weijunfu1963@163.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Zhang, Huan; Liu, Kai; Wang, Han [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2014-05-01

    Highlights: • Amphiphilic PP-g-GMA-OA nonwoven was prepared and characterized. • Synergy between hydrophilic and hydrophobic microdomain was elucidated. • The effects of hydrophilic microdomain on diffusion resistance and energy barrier were elucidated. • Adsorbent material with amphiphilic structures showed faster adsorption rate and lager adsorption capacity. - Abstract: A kind of amphiphilic polypropylene nonwoven with hydrophilic and hydrophobic microdomain was prepared through electron beam induced graft polymerization and subsequent ring opening reaction and then utilized in the adsorption of phthalic acid esters (PAEs). To elucidate the superiority of such amphiphilic microdomain, a unique structure without hydrophilic part was constructed as comparison. In addition, the adsorption behaviors including adsorption kinetics, isotherms and pH effect were systematically investigated. The result indicated that the amphiphilic structure and the synergy between hydrophilic and hydrophobic microdomain could considerably improve the adsorption capacities, rate and affinity. Particularly the existence of hydrophilic microdomain could reduce the diffusion resistance and energy barrier in the adsorption process. These adsorption results showed that the amphiphilic PP nonwoven have the potential to be used in environmental application.

  6. Hydrophobic Solvation: Aqueous Methane Solutions

    Konrod, Oliver; Lankau, Timm

    2007-01-01

    A basic introduction to concept of a solvation shell around an apolar solute as well as its detection is presented. The hydrophobic solvation of toluene is found to be a good teaching example which connects macroscopic, phenomenological thermodynamic results with an atomistic point of view.

  7. Cr(VI) removal in acidic aqueous solution using iron-bearing industrial solid wastes and their stabilisation with cement.

    Singh, I B; Singh, D R

    2002-01-01

    In this study, iron-bearing industrial solid wastes iron filings, ETP sludge of steel and red mud of aluminium industries; were used for Cr(VI) removal at pH 3. A complete removal of Cr(VI) was found for initial 10 mg 1(-1) of 100 ml solutions in the presence of 2.5 g iron filings, 8 g ETP sludge and 10 g red mud for up to one hour of shaking at room temperature. After Cr(VI) removal, inclusion of chromium on the reacted iron filing surface was demonstrated by EDAX analysis. Leachability of chromium and iron from the reacted wastes was determined by using Toxicity Characteristics Leaching Procedure (TCLP). This test showed a very low level of leachability of chromium as Cr(III) and iron from the reacted wastes. To minimise their leachability further, Cr(VI)-reacted solid wastes were stabilised with Portland cement in their 3:1 ratio. Leachability tests of stabilised wastes by TCLP indicated a considerable decrease in leachability of chromium and iron compared with the that of reacted wastes alone. To explore the possibility of utilisation in building materials, bricks of cement-mixed Cr(VI)-reacted wastes were made and their comprehensive strength, durability and leachability under immersion conditions were measured. PMID:11918404

  8. Monopolar Electro-Coagulation Process for Azo Dye C.I. Acid Red 18 Removal from Aqueous Solutions

    Ghasem Azarian

    2014-12-01

    Full Text Available The discharge of wastewaters containing an untreated dye results in aesthetic problems and an increase in gases solubility, which causes light transmission inhibition into water bodies. In spite of advantages of physicochemical and biological methods, these processes produce huge amounts of sludge, toxic by-products and require several oxidant chemicals. By contrast, electrochemical processes because of their high versatility, high efficiency and eco-friendly properties are more acceptable. In the present study, the removal of azo dye Acid Red 18 and chemical oxygen demand (COD from synthetic wastewater by monopolar (EC process was investigated and key parameters such as operating time, current density (CD, initial pH and energy, and electrode consumption were optimized. It was found that the process had a very good efficiency in the removal of both COD and color; for the iron electrode, the maximum amounts of color and COD removal were 99.5% and 59.0%, respectively. An operating time of 45 min, pH of 7 and CD of 1.2 mA/cm2 was selected as the optimized condition. The optimization of variables is extremely crucial as it results in a decrease in costs, energy and electrode consumption. Overall, the iron electrode used less energy than the aluminum electrode and was more acceptable for use in this process due to economical reasons. The findings of UV/vis spectra illustrated that the structures of this dye were removed by the process. In comparison with traditional methods such as aerobic and anaerobic systems, the EC process is a suitable alternative for the treatment of wastewaters containing dye pollutants.

  9. Issues in Freeze Drying of Aqueous Solutions

    王维; 陈墨; 陈国华

    2012-01-01

    Freeze drying or lyophilization of aqueous solutions is widely used in pharmaceutical industry. The in-creased importance Of the process is gaining a worldwide interest of research. A growing body of literature has demonstrated that the scientific approach can result in improved product quality with minimum trial and error em-piricism. Formulation and process development need a systematical understanding of the physical chemistry of freezing and freeze drying, material science and mechanisms of heat and mass transfer. This paper presents an overview on freeze ding of aqueous solutions based on publications in the past few decades. The important issuesof the process are analyzed.

  10. A study of aqueous solutions of sodium linoleate

    During the development of a technique for measuring fatty acid absorption on finely divided minerals using a radiochemical method, absorption isotherms were obtained which displayed maxima. It was found that these results were due to the presence of stable micelles in the solutions. This has been established by measuring the surface tension, surface film pressure, and specific conductance of dilute aqueous solutions of sodium linoleate

  11. Molecular Weight and Aggregation of Erwinia Gum in Aqueous Solutions

    2000-01-01

    Erwinia(E) gum is composed of glucose, fucose, galactose and glucuronic acid. The weight-average molecular weights Mw, number-average molecular weights Mn and intrinsic viscosities[η] of the four fractions and the unfractionated E gum in aqueous solutions at desired temperatures were studied by light scattering, membrane osmometry, size exclusion chromatography(SEC) and viscometry. The experimental results prove that E gum formed aggregates in the aqueous solution at 25 ℃ and the aggregates were broken gradually with increasing temperature. The dissociation of the aggregates of E gum in the aqueous solution started at 36 ℃, and was completed at around 90 ℃. The [η] values of E gum and its fractions are much higher than those of the conventional polymers with the similar molecular weights, and decrease with increasing NaCl concentration.

  12. Volumetric studies of some amino acids in binary aqueous solutions of MgCl2.6H2O at 288.15, and 308.15 K

    Amalendu Pal; Suresh Kumar

    2005-05-01

    Densities () of glycine, L-alanine, and L-valine in aqueous solutions of MgCl2.6H2O (0.1-0.8 mol kg-1) have been measured at 288.15, and 308.15 K. Apparent molar volumes (), and limiting partial molar volumes ($V^{0}_{\\phi}$) of each amino acid have been calculated. These data were combined with the earlier reported $V^{0}_{\\phi}$ values of glycine, L-alanine, and L-valine in aqueous MgCl2.6H2O solutions at 298.15 K in order to describe the temperature dependence behaviour of partial molar quantities. Group contributions to partial molar volumes have been determined for the amino acids. The trends of transfer volumes ($\\Delta V^{0}_{\\phi}$) have been interpreted in terms of solute-cosolute interactions on the basis of a cosphere overlap model. Pair and triplet interaction coefficients have also been calculated from transfer parameters.

  13. Investigation of heterogeneous equilibria in saturated aqueous solutions of uranosilicates of uranophane-kasolite group

    State of mineral-like uranosilicates of uranophane-kasolite group in saturated aqueous solutions at 25 Deg Cis investigated. Using experimental data on solubility quantitative physicochemical model of state of heterogeneous crystalline uranosilicate - aqueous solution system is built. Using this model equilibrium constants of solution reactions and formation standard Gibbs functions of the investigated compounds are calculated. The model permits forecasting the processes of solution of uranosilicates in a wide range of aqueous phase acidity at standard conditions

  14. Nanofiltration of L-phenylalanine and L-aspartic acid aqueous solution and its process simulation%苯丙氨酸和天冬氨酸水溶液的纳滤分离及其过程模拟

    王晓琳; 营爱玲

    2001-01-01

    选择苯丙氨酸和天冬氨酸水溶液进行了纳滤分离过程研究,讨论了不同pH下氨基酸的透过特性,并就该体系的浓缩分离进行了模拟计算.%The permeation experiments of aqueous solution of amino acids (L-phenylalanine and L-Aspartic acid) were carried out with nanofiltration membranes. The rejections of phenylalanine and aspartic acid are about 0 and 90%, respectively. The results show that the amino acids having large differences of isoelectric points (pI) can be separated satisfactorily by adjusting the value of pH. Then the concentration and separation process of phenylalanine and aspartic acid solution was simulated. A batchwise concentration and diafiltration system was designed. The results show that it is feasible to separate phenylalanine and aspartic acid in viewpoint of technology.

  15. Quasi-Immiscible Spreading of Aqueous Surfactant Solutions on Entangled Aqueous Polymer Solution Subphases

    Sharma, Ramankur; Corcoran, Timothy E.; Garoff, Stephen; Przybycien, Todd M.; Swanson, Ellen R.; Tilton, Robert D.

    2013-01-01

    Motivated by the possibility of enhancing aerosol drug delivery to mucus-obstructed lungs, the spreading of a drop of aqueous surfactant solution on a physically entangled aqueous poly(acrylamide) solution subphase that mimics lung airway surface liquid was investigated. Sodium dodecyl sulfate was used as the surfactant. To visualize spreading of the drop and mimic the inclusion of a drug substance, fluorescein, a hydrophilic and non-surface active dye, was added to the surfactant solution. T...

  16. Aqueous solutions of ionic liquids: microscopic assembly

    J.M. Vicent-Luna; D. Dubbeldam; P. Gómez-Álvarez; S. Calero

    2016-01-01

    Aqueous solutions of ionic liquids are of special interest, due to the distinctive properties of ionic liquids, in particular, their amphiphilic character. A better understanding of the structure-property relationships of such systems is hence desirable. One of the crucial molecular-level interactio

  17. Electron beam irradiation induced degradation of polyvinyl alcohol in aqueous solution

    Background: Polyvinyl alcohol (PVA) has been widely used in the industry of textile, however, its aqueous solution was difficult to be biodegraded under natural conditions. Purpose: In this study, the PVA in aqueous solution was degraded by electron beam irradiation. Methods: Radioactive ray from electron accelerator was used for degradation of PVA aqueous solution. The effects of different radiation dose and pH on the CODCr and BOD5 values of PVA aqueous solution were investigated. The precipitation generated from acidic irradiated PVA aqueous solution was used for infrared spectroscopy analysis. Results: CODCr values of neutral and alkaline PVA aqueous solution were not significantly changed in the radiation dose range of 0-30 kGy. Acidic PVA aqueous solution after 20-30 kGy dose irradiation produced precipitation obviously. The CODCr values were significantly reduced by 97%-98%. Infrared spectrum analysis showed that precipitation was cross-linked PVA. With radiation dose increasing, BOD5 values of different pH of PVA aqueous solution was gradually reduced, the acidic BOD5 values were minimal under the same radiation dose. The B/C values of neutral and alkaline PVA aqueous solution irradiated by the dose range of 0-30 kGy was no significantly changed. However, the B/C values of acidic PVA aqueous solution increased obviously after 20-30 kGy irradiation, and it increased 14-16 times. Conclusions: This study indicated that under the acidic circumstance, the CODCr values of PVA aqueous solution decreased significantly, PVA in aqueous solution was removed efficiently by electron beam irradiation, and the potential of biodegradation was also improved. (authors)

  18. Ozone photolysis of paracetamol in aqueous solution.

    Neamţu, Mariana; Bobu, Maria; Kettrup, Antonius; Siminiceanu, Ilie

    2013-01-01

    The degradation of a paracetamol (N-acetil-para-aminofenol) aqueous solution (C (0) P = 5 mmol L(-1)) is studied in a bench-scale setup by means of simple ozonation (O3) and ozonation catalyzed with UV light (O3/UV) in order to quantify the influence of UV light on the degradation process. The results have shown that under the adopted experimental conditions (25°C, applied ozone dose = 9.8 mg L(-1) and gas flow rate of 20 L h(-1)) both oxidative systems are capable of removing the substrate with mineralization degrees up to 51% for ozonation and 53% for O3/UV. HPICE chromatography allowed the detection of nitrate ions and maleic and oxalic acids as ultimate carboxylic acids. The experimental data have been interpreted through 5 indicators: the conversion of paracetamol (XP ), the conversion degree of TOC (XTOC ), the apparent rate constant (kap ), the Hatta number (Ha) and the enhancement factor (E). The main advantage of photo-ozonation compared to simple ozonation was a more advanced conversion (79% vs. 92% after 90 min). The paracetamol decay follows a pseudo-first-order reaction with a superior rate constant (higher by 54%) for the UV catalyzed system in comparison with direct ozonation. Mineralization is slightly accelerated (+4%) in the O3/UV system, due to the additional production of hydroxyl radicals induced by the UV light and a higher Hatta number (+24%). Nevertheless, the process was still in the slow reaction kinetic regime (Ha < 0.3), and the enhancement factor was not significantly increased. The results are useful for the design and scale-up of the gas-liquid processes. PMID:23647117

  19. Solubility of disodium 4,4′-dinitrostilbene-2,2′-disulfonate and sodium 4-nitrotoluene-2-sulfonate in aqueous organic solutions and its application feasibility in oxidation stage of DSD acid synthesis

    Highlights: • Solubility of sodium 4-nitrotoluene-2-sulfonate in two aqueous organic solution were measured using dynamic method. • Solubility of disodium 4,4′-dinitrostilbene-2,2′-disulfonate in corresponding solution were measured using dynamic method. • The experimental data were correlated with electrolyte non-random two-liquid (E-NRTL) model. • A synergistic effect on disodium 4,4′-dinitrostilbene-2,2′-disulfonate solubility was observed. • A suitable solvent for oxidation of 4-nitrotoluene-2-sulfonic to 4,4′-dinitrostilbene-2,2′-disulfonic has been suggested. -- Abstract: Solid–liquid equilibrium (SLE) measurements for disodium 4,4′-dinitrostilbene-2,2′-disulfonate (DNSNa) and sodium 4-nitrotoluene-2-sulfonate (NTSNa) in aqueous ethylene glycol monoethyl ether solution and aqueous ethylene glycol monobutyl ether solution were conducted using a dynamic method over the temperature range from (280 to 335) K. A synergistic effect on DNSNa solubility was observed with the maximum solubility at solute-free mass fraction of ethylene glycol monoethyl ether w30=0.4000 and solute-free mass fraction of ethylene glycol monobutyl ether w40=0.5999, respectively. The solubility data were correlated using the thermodynamic electrolyte non-random two-liquid (E-NRTL) model and model parameters were determined simultaneously. Aqueous ethylene glycol monobutyl ether solution at solute-free mass fraction of ethylene glycol monobutyl ether w40=0.2000 was found to be suitable solvent medium for the oxidation of 4-nitrotoluene-2-sulfonic acid (NTS) to 4,4′-dinitrostilbene-2,2′-disulfonic acid (DNS) and the conclusion was confirmed using the static analytical method combined with UV–VIS spectrophotometer

  20. Reactive Extraction of Alcohols from Apolar Hydrocarbons with Aqueous Solutions

    2006-01-01

    The aqueous solutions are evaluated as sustainable reactive extraction solvents for the recovery of monohydroxyl alcohols (benzyl alcohol, 1-hexanol, cyclohexanol) present in few-percent concentrations in apolar hydrocarbons (toluene, n-hexane, and cyclohexane) by considering two approaches. An aqueous solution containing a reactive extractant, like borate salts, borate complexes, a monosalt of dicarboxylic acid,hydroxypropyl-cyclodextrins, and silver nitrate, shows limited potential to be used. Another approach, in which the alcohol is chemically modified prior to the extraction into an easy-extractable form, in this case a monoesterlcarboxylic acid, shows much more potential. An environmentally benign aqueous solution of sodium hydrogen carbonate can provide a distribution ratio of benzyl alcohol up to 200, leaving the solubility of the organic solvent in the aqueous solution unchanged relative to pure water and therefore increasing the selectivity with two orders of magnitude. The modification of aromatic, cyclo-aliphatic, and linear aliphatic alcohols can be performed efficiently in the apolar organic solvent without need for a catalyst. The recovery of the modified alcohol can be performed by back-extraction in combination with a spontaneous hydrolysis.

  1. Modeling reactive geochemical transport of concentrated aqueous solutions

    Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin

    2005-02-01

    Aqueous solutions with ionic strength larger than 1 M are usually considered concentrated aqueous solutions. These solutions can be found in some natural systems and are also industrially produced and released into accessible natural environments, and as such, they pose a big environmental problem. Concentrated aqueous solutions have unique thermodynamic and physical properties. They are usually strongly acidic or strongly alkaline, with the ionic strength possibly reaching 30 M or higher. Chemical components in such solutions are incompletely dissociated. The thermodynamic activities of both ionic and molecular species in these solutions are determined by the ionic interactions. In geological media the problem is further complicated by the interactions between the solutions and sediments and rocks. The chemical composition of concentrated aqueous solutions when migrating through the geological media may be drastically altered by these strong fluid-rock interactions. To effectively model reactive transport of concentrated aqueous solutions, we must take into account the ionic interactions. For this purpose we substantially extended an existing reactive transport code, BIO-CORE2D©, by incorporating a Pitzer ion interaction model to calculate the ionic activity. In the present paper, the model and two test cases of the model are briefly introduced. We also simulate a laboratory column experiment in which the leakage of highly alkaline waste fluid stored at Hanford (a U.S. Department of Energy site, located in Washington State) was studied. Our simulation captures the measured pH evolution and indicates that all the reactions controlling the pH evolution, including cation exchanges and mineral dissolution/precipitation, are coupled.

  2. DILUTE SOLUTION BEHAVIOR OF CHITOSAN IN DIFFERENT ACID SOLVENTS

    WANG Wei; WANG Lihua; QIN Wen

    1994-01-01

    Dilute solution behavior of chitosan was studied in formic acid, acetic acid,lactic acid and hydrochloric acid aqueous solution under different pH values. The reduced viscosities, ηsp/C,of chitosan solutions were dependent on the properties of acid and pH value of solvents. For a given chitosan concentration, ηsp/C decreased with the increase of acid concentration, or decreasing pH of solvent, indicating shielding effect of excessive acid similar to adding salt into solution. The stabilities of dilute chitosan solution in formic acid and lactic acid were better than that in acetic acid and hydrochloric acid.

  3. Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation.

    Shakir, Kamal; Elkafrawy, Ahmed Faouzy; Ghoneimy, Hussein Fouad; Elrab Beheir, Shokry Gad; Refaat, Mamdoh

    2010-03-01

    The present work deals with removal, by ion flotation, of two dyes: a basic dye (rhodamine B (RB)) and an acidic one (thoron (TH)) from dilute aqueous solutions and simulated wastewaters. These dyes are widely used for analytical and biological staining purposes. Besides, RB is commonly used in dyeing of various industrial products. Therefore, wastewaters emanating from chemical and radiochemical laboratories, and biomedical and biological research laboratories may be contaminated with RB and TH. Ion flotation of these dyes has been investigated over a wide range of pH using the anionic surfactant, sodium lauryl sulfate (NaLS) and the cationic surfactant, cetyltrimethylammonium bromide (CTAB) as collectors. Successful removals could be achieved for RB and TH with the anionic collector, NaLS, and the cationic collector, CTAB, respectively. In addition to the effects of pH and type of collector on the efficiency of removal of each dye, the effects of collector and dye concentrations, frother dosage, ionic strength, bubbling time period and presence of foreign salts were investigated and the optimal removal conditions have been established. Removals exceeding 99.5 % and 99.9% could be achieved for RB and TH, respectively. The results obtained are discussed with respect to dissociation of dye, type of collector, ionic strength and sign and magnitude of charge of added foreign ions. Kinetics of flotation were also studied. Further studies demonstrate that under optimum conditions the developed flotation processes can be applied for the treatment of dye-contaminated wastewaters simulated to those generated at dyeing industries and radiochemical laboratories. PMID:19942250

  4. A novel use of TiO2 fiber for photocatalytic ozonation of 2,4-dichlorophenoxyacetic acid in aqueous solution

    GIRI Rabindra Raj; OZAKI Hiroaki; TAKANAMI Ryohei; TANIGUCHI Shogo

    2008-01-01

    More efficient oxidation methods are needed to degrade especially newly emerging recalcitrant organic contaminants at low concentrations in the water environment. Reduced photonic efficiency of immobilized TiO2 is a major challenge in TiO2-assisted advanced oxidation processes (AOP). Mineralization of 2,4-dichllorophenoxyacetic acid (2,4-D) in low aqueous solution by O3/UV/TiO2 using the world's first high-strength TiO2 fiber was investigated and compared with O3UV/TiO2 and O3/TiO2 in laboratory batch experiments. The 2,4-D degradation and total organic carbon (TOC) removal followed pseudo first-order reaction kinetic, while their rates in O3/UV/TiO2 were respectively about 1.5 and 2.4 times larger than the summation of the values in O3 and UV/TiO2. The O3/UV/TiO2 was characterized by few aromatics with very low abundance, fast disappearance of aliphatics and more than 95% dechlorination. The discrepancies in organic carbon mass balance among the intermediates and 2,4-D were attributed mainly to few apparently major unidentified intermediates. The significantly enhanced 2,4-D mineralization in O3/UV/TiO2 was attributed to increased ozone dissolution followed by its decomposition, and reduced electron-hole recombination in presence of dissolved ozone resulting in a large number of hydroxyl radical (·OH) generation from more than one parallel path. The removal efficiencies of the systems can further be enhanced by optimizing design parameters, and O3/UV/TiO2 with the TiO2 fiber is promising to mineralize recalcitrant organic contaminants in water at low concentrations.

  5. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid

    Highlights: • The objective of the study is to investigate the potential application of a selective EIR for sorption of U(VI) and Th(IV) ions. • The effects of several physiochemical parameters were investigated. • The sorption kinetics and sorption isotherms were used to explain the sorption mechanism. • The thermodynamic studies showed the feasibility of sorption process. • The EIR beads showed a great potential for effective removal of U(VI) and Th(IV) ions. - Abstract: In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid–liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions

  6. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid

    Rahmani-Sani, Abolfazl [Wastewater Division, Faculty of Health, Sabzevar University of Medical Sciences, PO Box 319, Sabzevar (Iran, Islamic Republic of); Hosseini-Bandegharaei, Ahmad, E-mail: ahoseinib@yahoo.com [Wastewater Division, Faculty of Health, Sabzevar University of Medical Sciences, PO Box 319, Sabzevar (Iran, Islamic Republic of); Department of Engineering, Kashmar Branch, Islamic Azad University, PO Box 161, Kashmar (Iran, Islamic Republic of); Hosseini, Seyyed-Hossein [Department of Engineering, Kashmar Branch, Islamic Azad University, PO Box 161, Kashmar (Iran, Islamic Republic of); Kharghani, Keivan [Water Division, Department of Engineering, Torbat-e-Hydarieh Branch, Islamic Azad University, PO Box 121, Torbat-e-Hydarieh (Iran, Islamic Republic of); Zarei, Hossein [Department of Engineering, Kashmar Branch, Islamic Azad University, PO Box 161, Kashmar (Iran, Islamic Republic of); Rastegar, Ayoob [Wastewater Division, Faculty of Health, Sabzevar University of Medical Sciences, PO Box 319, Sabzevar (Iran, Islamic Republic of); Department of Engineering, Kashmar Branch, Islamic Azad University, PO Box 161, Kashmar (Iran, Islamic Republic of)

    2015-04-09

    Highlights: • The objective of the study is to investigate the potential application of a selective EIR for sorption of U(VI) and Th(IV) ions. • The effects of several physiochemical parameters were investigated. • The sorption kinetics and sorption isotherms were used to explain the sorption mechanism. • The thermodynamic studies showed the feasibility of sorption process. • The EIR beads showed a great potential for effective removal of U(VI) and Th(IV) ions. - Abstract: In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid–liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions.

  7. Removal of C.I. Acid Orange 7 from aqueous solution by UV irradiation in the presence of ZnO nanopowder

    The removal of C.I. Acid Orange 7 (AO7) from aqueous solution under UV irradiation in the presence of ZnO nanopowder has been studied. The average crystallite size of ZnO powder was determined from XRD pattern using the Scherrer equation in the range of 33 nm. The experiments showed that ZnO nanopowder and UV light had a negligible effect when they were used on their own. The effects of some operational parameters such as pH, the amount of ZnO nanopowder and initial dye concentration were also examined. The photodegradation of AO7 was enhanced by the addition of proper amount of hydrogen peroxide, but it was inhibited by ethanol. From the inhibitive effect of ethanol, it was deducted that hydroxyl radicals played a significant role in the photodegradation of the dye. The kinetic of the removal of AO7 can be explained in terms of the Langmuir-Hinshelwood model. The values of the adsorption equilibrium constant, K AO7, and the kinetic rate constant of surface reaction, k c, were 0.354 (mg l-1)-1 and 1.99 mg l-1 min-1, respectively. The electrical energy consumption per order of magnitude for photocatalytic degradation of AO7 was lower in the UV/ZnO/H2O2 process than that in the UV/ZnO process. Accordingly, it could be stated that the complete removal of color, after selecting desired operational parameters could be achieved in a relatively short time, about 60 min

  8. γ-radiation induced tetracycline removal in an aqueous solution

    Degradation effect of tetracycline (TC) by γ-radiation was investigated in an aqueous solution. The effects of initial concentrations of TC, pH values, combining with H2O2 or CH3OH on degradation of TC were studied. Results showed that TC can be effectively degradated by γ-irradiation in an aqueous solution. Degradation of TC could be remarkably improved both in acid solution and alkaline solution, especially when pH value was 9.0. In addition, H2O2 could gently promote degradation of TC induced by γ-radiation. While, CH3OH markedly restrained degradation of TC induced by γ-radiation. The degradation mechanism of TC was supposed by results of quantum chemical calculations and LC-MS. Results proved that degradation of TC induced by γ-radiation was mainly ascribed to · OH oxidation. (authors)

  9. The Removal of Dye from Aqueous Solution by Adsorption on Low Cost Adsorbents

    J. J. Chamargore; Bharad, J. V.; Madje, B. R.; Ubale, M. B.

    2010-01-01

    Removal of color from aqueous solution by using low cost easily available adsorbent was conducted by batch experiment. The potential of the low cost adsorbent (Marble powder-treated and untreated) to remove methylene red from aqueous solution were assessed at room temperature. Laboratory investigation of the potential of marble powder and sulphuric acid treated marble powder to remove dye color from aqueous solution has been studied. Parameters studied included pH, adsorbent dose, initial dye...

  10. Application of acidic treated pumice as an adsorbent for the removal of azo dye from aqueous solutions: kinetic, equilibrium and thermodynamic studies

    Saied Bashiri; Gholam Hossein Safari; Abdeltif Amrane; Mohammad Noori Sepehr; Mansur Zarrabi; Mohammad Reza Samarghandi

    2012-01-01

    Abstract Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as an efficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the e...

  11. Nanoporous activated carbon cloth for capacitive deionization of aqueous solution

    Oh, Han-Jun [Department of Materials Science, Hanseo University, Seosan, 352-820 (Korea, Republic of); Lee, Jong-Ho [Department of Chemistry, Hanseo University, Seosan, 352-820 (Korea, Republic of); Ahn, Hong-Joo [Korea Atomic Energy Research Institute, Daejeon, 305-600 (Korea, Republic of); Jeong, Yongsoo [Korea Institute of Machinery and Materials, Changwon, 641-010 (Korea, Republic of); Kim, Young-Jig [Department of Metallurgical Engineering, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Chi, Choong-Soo [School of Advanced Materials Engineering, Kookmin University, Seoul, 136-702 (Korea, Republic of)]. E-mail: cschi@kookmin.ac.kr

    2006-09-25

    Activated nanostructured-carbon cloths with a high ratio of surface area to volume are used as electrode for capacitive deionization. The electrochemical properties on capacitive deionization for NaCl solution have been investigated to improve efficiency of capacitive deionization properties from aqueous solution, employing chemical surface-modification by etching in alkaline and acidic solution. The removal efficiency of inorganic salts of activated carbon cloths by chemical modification significantly increased. Specially the carbon cloth surface modified in HNO{sub 3} showed an effect of improvement in the CDI efficiency due to not only ion adsorption by an electric double layer, but also electron transfer by Faradaic reaction.

  12. Removal of radium from aqueous sulphate solutions

    Radium is often present in ores and an aqueous solution associated with the ore may consequently contain dissolved radium. It is frequently necessary to remove radium from such solutions to reduce the total radium content to a prescribed low level before the solution can be returned to the environment. The present invention is based on the discovery that the total radium content can be reduced to a satisfactory level within a reasonable time by adding a soluble barium salt to a radium-containing sulphate solution which also contains dissolved magnesium at a pH not greater than about 0 to precipitate radium as barium radium sulphate, raising the pH to at least 11 to precipitate an insoluble magnesium compound which collects the barium radium sulphate precipitate, and separating substantially all of the precipitates from the solution

  13. Zeolites as alcohol adsorbents from aqueous solutions

    Cekova Blagica

    2006-01-01

    Full Text Available The potential usage of zeolites as adsorbents for the removal of organic molecules from water was investigated in a series of experiments with aqueous solutions of lower alcohols. This could represent a simple solution to the problem of cleaning up industrial wastewater as well as recovering valuable chemicals at relatively low costs. Adsorption isotherms of the Langmuir type were applied, and calculations showed that the amount of propanol adsorbed on silicalite corresponded to approximately 70% of the pore volume. The adsorption process is simple, and recovery of the more concentrated products is easily done by heat treatment and/or at lowered pressures. Adsorption experiments with aqueous acetone showed that silicalite had approximately the same adsorption capacity for acetone as for n-propanol. Heats of adsorption were determined calorimetrically.

  14. Thermochemistry of aqueous pyridine-3-carboxylic acid (nicotinic acid)

    Goncalves, Elsa M. [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto Politecnico de Setubal, ESTBarreiro, Rua Americo da Silva Marinho, 2839-001 Lavradio (Portugal); Rego, Talita S. [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Minas da Piedade, Manuel E., E-mail: memp@fc.ul.p [Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade de Lisboa, 1749-016 Lisboa (Portugal)

    2011-06-15

    Research highlights: {yields} We determined the {Delta}{sub sol}H{sub m} of solid nicotinic acid (NA) in water by solution calorimetry. {yields} We determined {Delta}{sub dil}H{sub m} of an aqueous nicotinic acid solution by flow calorimetry. {yields} We determined (aq, {infinity}) for the 3 NA species involved in acid/base equilibria. {yields} We determined the enthalpy of formation of NA(aq) under saturation conditions.. - Abstract: The molar enthalpy of solution of solid nicotinic acid (NA) at T = 298.15 K, to give an aqueous solution of molality m = 3.748 . 10{sup -3} mol {center_dot} kg{sup -1}, was determined as {Delta}{sub sol}H{sub m} = (19,927 {+-} 48) J {center_dot} mol{sup -1}, by solution calorimetry. Enthalpies of dilution, {Delta}{sub dil}H{sub m}, of 0.1005 mol {center_dot} kg{sup -1} aqueous nicotinic acid to yield final solutions with molality in the approximate range (0.03 to 0.09) mol {center_dot} kg{sup -1} were also measured by flow calorimetry. Combining the two sets of data and the results of pH measurements, with values of proton dissociation enthalpies and {Delta}{sub f}H{sub m}{sup 0}(NA, cr) selected from the literature, it was possible to derive the standard molar enthalpies of formation of the three nicotinic acid species involved in protonation/deprotonation equilibria, at infinite dilution: {Delta}{sub f}H{sub m}{sup 0}(HN{sup +}C{sub 5}H{sub 4}COOH.{infinity}H{sub 2}O,aq) = (328.2 {+-} 1.2) kJ {center_dot} mol{sup -1}, {Delta}{sub f}H{sub m}{sup 0}(HN{sup +}C{sub 5}H{sub 4}COO{sup -}.{infinity}H{sub 2}O,aq) = (325.0 {+-} 1.2) kJ {center_dot} mol{sup -1}, and {Delta}{sub f}H{sub m}{sup 0}(NC{sub 5}H{sub 4}COO{sup -}.{infinity}H{sub 2}O,aq) = (313.7 {+-} 1.2) kJ {center_dot} mol{sup -1}. Finally, the enthalpy of solution of nicotinic acid at T = 298.15 K, under saturation conditions (m = 0.138 mol {center_dot} kg{sup -1}), and the standard molar enthalpy of formation of the corresponding solution could also be obtained as {Delta

  15. Does Dimeric Melittin Occur in Aqueous Solutions?

    Schubert, D; Pappert, G.; Boss, K.

    1985-01-01

    Melittin, a peptide from bee venom, is known to undergo a monomer / tetramer conversion in aqueous solutions. We have studied the possible participation of dimers in the association equilibrium of melittin by sedimentation equilibrium experiments in the analytical ultracentrifuge and subsequent mathematical analysis of the concentration distributions obtained. It was found that the dimeric state is not significantly populated, the contribution of dimer to the total peptide weight probably bei...

  16. Aqueous solution dispersement of carbon nanotubes

    Kim, Jae-Woo (Inventor); Park, Cheol (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)

    2011-01-01

    Carbon nanotubes (CNTs) are dispersed in an aqueous buffer solution consisting of at least 50 weight percent water and a remainder weight percent that includes a buffer material. The buffer material has a molecular structure defined by a first end, a second end, and a middle disposed between the first and second ends. The first end is a cyclic ring with nitrogen and oxygen heteroatomes, the middle is a hydrophobic alkyl chain, and the second end is a charged group.

  17. Photolysis of imidacloprid in aqueous solution

    The photolysis of the insecticide imidacloprid in aqueous solution has been examined. Irradiation at 290 nm resulted in 90 % substrate transformation in 4 h. The degradation approximately followed first order kinetics; the rate constant is 1.6 × 10−4s−1 and half-life 1.2 h. 6-Chloronicotinaldehyde, N-methylnicotinacidamide, 1-(6-chloronicotinyl)imidazolidone and 6-chloro-3-pyridyl-methylethylendiamine were the main photoproducts identified by CG-MS analysis. (author)

  18. Simple Molecular Models of Aqueous Solutions

    Jirsák, Jan; Škvor, J.; Nezbeda, Ivo

    - : -, 2013. ISBN N. [EMLG - JMLG Annual Meeting 2013 Global Perspectives in the Structure and Dynamics in Liquids and Mixtures: Experiment and Simulation. Lille (FR), 09.09.2013-13.09.2013] Grant ostatní: GA ČR(CZ) GPP208/12/P710 Institutional support: RVO:67985858 Keywords : aqueous solutions * thermodynamic modeling * simulation data Subject RIV: CF - Physical ; Theoretical Chemistry http://emlg2013.univ-lille1.fr/

  19. Photocatalytic oxidation of fuel oxygenated additives in aqueous solutions

    Krichevskaya, M.; Kachina, A.; T. Malygina; Preis, S.; J. Kallas

    2003-01-01

    Experimental research of photocatalytical oxidation (PCO) of aqueous solutions of de-icing agents (ethylene glycol and ethylene glycol monoethyl ether) and methyl tert-butyl ether (MTBE) was undertaken. These chemicals are water-soluble components of jet and motor fuels accidentally disposed to the environment. Titanium dioxide (Degussa P25) under near-UV irradiation was selected as a photocatalyst. A slightly acidic medium was preferable for the process efficiency for MTBE, whereas a neutral...

  20. Specific features complexation of copper(2), manganese(2) and gadolinium(3) with salicylic, benzoic and sulfosalicylic acids in aqueous solutions of nonionic surfactant

    Impact of nonionic surfactant Triton-X-100 (TX) on acid-basic and complex-forming properties of benzoic (HR) and sulfosalicylic (H3X) acids is studied through the pH-metric titration and NMR-relaxation methods. The H3X acidic properties in water and in the H surfactant solution are practically similar. Significant increase in the proton relaxation rate values is observed in the solutions of the salicylic acid and TX mixtures by ions presence. The complexes of the [Gd(HL)3(TX)2] composition with lgK 0.22±0.05 are established for the Gd(3). The benzoic acid forms ternary particles in presence of Gadolinium(3): [GdR(TX)] with lgK = 2.17±0.04

  1. Autoxidation of tryptophan in aqueous solutions

    LJUBICA R. JOSIMOVIC; IVANA A. JANKOVIC

    2001-01-01

    Autoxidation of tryptophan was investigated in aqueous solutions by the gamma radiolytic technique. The oxygen uptake and formation of peroxide materials was followed as a function of pH, dose rate and concentration of tryptophan. The results obtained indicate that TrpH(OH)OO. radicals react with tryptophan by adduct formation thus propagating autoxidation. The chain propagation length (CPL) for a 2·102 mol dm3 tryptophan solution at pH 9.5 and a dose rate 0.01 Gy s1 was estimated to be ~ 5.8...

  2. Characterisation of chitosan solubilised in aqueous formic and acetic acids

    Esam A. El-Hefian

    2009-01-01

    The intrinsic viscosity of chitosan (MW 7.9 x 105 g mol-1) having a high degree of deacetylation and solubilised in aqueous formic and acetic acids was determined at room temperature. Contact angle and conductivity of the chitosan solutions were also studied. The values of critical coagulation concentration (CCC) were then obtained from the plots of contact angle or conductivity versus concentration.

  3. Poly (ethylene oxide)-block-poly (n-butyl acrylate)-blockpoly (acrylic acid) triblock terpolymers with highly asymmetric hydrophilic blocks: synthesis and aqueous solution properties

    Petrov, P; Yoncheva, K. (Krassimira); Mokreva, P. (Pavlina); Konstantinov, S.; J M Irache; Müller, A.H.E. (Axel H.E.)

    2013-01-01

    The synthesis and aggregation behaviour in aqueous media of novel amphiphilic poly(ethylene oxide)- block-poly(n-butyl acrylate)-block-poly(acrylic acid) (PEO–PnBA–PAA) triblock terpolymers were studied. Terpolymers composed of two highly asymmetric hydrophilic PEO (113 monomer units) and PAA (10–17 units) blocks, and a longer soft hydrophobic PnBA block (163 or 223 units) were synthesized by atom transfer radical polymerisation (ATRP) of n-butyl acrylate and tert-butyl acrylate ...

  4. 扫描微量热法研究稀腐植酸水溶液%A Study of Dilute Aqueous Solutions of Humic Acids by Scanning Microcalorimetry

    A. N. Danilenko; E.E.Braudo; N.E.Pavlovskaya; E.I.Yushkova; I.L.Zhuravleva; 尹晗迪(译)

    2014-01-01

    It has been found by reversed-phase chromatography that humic acids obtained from vermicomposts of dif-ferent duration of vermicomposting consist of a hydrophilic and a hydrophobic fractions, the hydrophobic fraction having a substantially lower content of charged, probably carboxylic, groups. A change in the sign of the temperature dependence of the heat capacity of dilute aqueous solutions of humic acids at ~58 °C has been found by differential scanning microcalorimetry, which indicates an increase in the hydration of hydrophobic groups. A jump-wise increase in heat capacity in the temperature range from 86 to 90 °C was also found, which is perhaps due to hydration of hy-drophobic groups in the interior of“micelles”, because of“devitriifcation”of the hydrophobic nucleus of micelle-like structures. It was shown that increasing the duration of vermicomposting leads to an increase in the relative content of the hydrophobic fraction of humic acids and in the cooperativity of the thermodynamic transition, which manifests itself as the jump of heat capacity, which probably results from the increase in the“micelle”size.%用反相柱色谱检测发现,经过不同时间的动物扰动堆肥堆制所获得的腐植酸是由亲水组分和疏水组分组成的,其中疏水组分大体上含有较低的带电基团,这些带电基团很可能是羧酸。在差示扫描量热法测定腐植酸的稀溶液做出的热容-温度图中发现了在约58℃时有一个转折,这表明疏水基团水合作用的增加。我们还发现了在86~90℃的温度区间内有一个热容的突增,这可能是由于“胶束”内部的疏水基团的水合作用,因为类似胶束结构的疏水核有“脱玻作用”。这表明了随着堆肥时间的增加,腐植酸疏水组分的相对含量和热转变的协同性也增加,它以热容突增的形式表现出来,这很可能是因为“胶束”大小的增加。

  5. Radiolysis of HA in aqueous solutions using gamma rays

    The present work investigated the radiolysis of HA (Humic acids) in aqueous solutions and under gamma radiation. Absorbances at the range of 200-800 nm and chemical oxygen demand (COD) were used to characterize the degree of degradation of HA, The results indicated that absorbances and the concentrations of COD were decreased with increasing of irradiation dose while with increasing of irradiation dose the pH of the solutions was decreased at first and then increase. In addition, the effects of initial pH and primary solution concentrations on HA degradation were also investigated. It is shown that the higher primary solution concentrations, the lower degradation efficiency under the same irradiation dose. And the degradation efficiency of HA under neutral conditions is better than in acidic or alkaline conditions. (authors)

  6. Quantum-chemical modeling of the adsorption of 2-aminopropanoic acid on iron depending on the active acidity of an aqueous solution

    Andrei Sikachina

    2015-01-01

    Full Text Available In research attempt to simulate passing of reaction (on an example of 2-aminopropanic acids with the iron cluster is made, and to identify that reaction with representation about adsorption nitroorganic substance on iron. That is a key to understanding of the corrosion-preventive inhibitor protection. Changes of value following quanto -chemical descriptors are examined: partial efficient charges by Mulliken, energy boundary of orbitals.

  7. Density of aqueous solutions of CO2

    Garcia, Julio E.

    2001-10-10

    In this report, we present a numerical representation for the partial molar volume of CO2 in water and the calculation of the corresponding aqueous solution density. The motivation behind this work is related to the importance of having accurate representations for aqueous phase properties in the numerical simulation of carbon dioxide disposal into aquifers as well as in geothermal applications. According to reported experimental data the density of aqueous solutions of CO2 can be as much as 2-3% higher than pure water density. This density variation might produce an influence on the groundwater flow regime. For instance, in geologic sequestration of CO2, convective transport mixing might occur when, several years after injection of carbon dioxide has stopped, the CO2-rich gas phase is concentrated at the top of the formation, just below an overlaying caprock. In this particular case the heavier CO2 saturated water will flow downward and will be replaced by water with a lesser CO2 content.

  8. E-beam radiolysis of aqueous dimethyl phthalate solution

    To investigate the influence of radiolysis on kinetics and factors of dimethyl phthalate (DMP), the aqueous DMP solution is degraded by 1.8 MeV E-beam, following pseudo-first-order kinetics. The rate constant of DMP degradation decreased exponentially with increasing initial DMP concentration. The DMP is favorably degraded by radical scavengers under its low concentration and alkaline condition. At high doses, the DMP is attacked by eaq- and ·OH, producing monomethyl phthalate, phthalate acid, and a series of aliphatic carboxylic acids, which are completely mineralized into H2O and CO2. (authors)

  9. Optical manipulation of proteins in aqueous solution

    Optical trapping of lysozyme, cytochrome c, or myoglobin based on photon pressure generated by focusing 1064 nm laser beam in an aqueous solution was explored. For all the proteins, microparticle formation was observed at the focal point under an optical microscope. Furthermore, the microparticles were identified to the molecular assemblies of the corresponding protein by means of confocal Raman microspectroscopy. For lysozyme, molecular clusters in solution were optically trapped to form the microparticle and it took more than 1 h to produce the microparticle. By contrast, molecular assembling proceeded within 1 min for cytochrome c and myoglobin. Since heme in cytochrome c or myoglobin would have a high polarizability, that would contribute to rapid assembling of the protein. Thus we demonstrated that a focused laser beam was a powerful tool to manipulate protein molecules in solution.

  10. Some reactions of oxidizing radicals with enzymes in aqueous solution

    A range of oxidizing radicals including some inorganic radical anions and the superoxide radical, can be generated by radiolysis of aqueous solutions. These radicals are more selective in their reactions with amino acids than the hydroxyl radical. Factors controlling the apparent reactivity of radical anions with proteins, such as free radical equilibria and ion-binding, are described. The superoxide radical inactivates papain by reaction with the cysteine residue. This reaction has been studied in solutions subjected to radiations of varying linear energy transfer. (Auth.)

  11. Characterization of Li4Ti5O12 and LiMn2O4 spinel materials treated with aqueous acidic solutions

    Simon, D.R.

    2007-01-01

    In this thesis an investigation of two spinel materials, Li4Ti5O12 and LiMn2O4 used for Li-ion battery applications is performed interms of formation and reactivity towards acidic solutions. Subsequent characterizations such as structural, magnetic, chemical, and electrochemical characterizations ar

  12. Aqueous Solution Vessel Thermal Model Development II

    Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-28

    The work presented in this report is a continuation of the work described in the May 2015 report, “Aqueous Solution Vessel Thermal Model Development”. This computational fluid dynamics (CFD) model aims to predict the temperature and bubble volume fraction in an aqueous solution of uranium. These values affect the reactivity of the fissile solution, so it is important to be able to calculate them and determine their effects on the reaction. Part A of this report describes some of the parameter comparisons performed on the CFD model using Fluent. Part B describes the coupling of the Fluent model with a Monte-Carlo N-Particle (MCNP) neutron transport model. The fuel tank geometry is the same as it was in the May 2015 report, annular with a thickness-to-height ratio of 0.16. An accelerator-driven neutron source provides the excitation for the reaction, and internal and external water cooling channels remove the heat. The model used in this work incorporates the Eulerian multiphase model with lift, wall lubrication, turbulent dispersion and turbulence interaction. The buoyancy-driven flow is modeled using the Boussinesq approximation, and the flow turbulence is determined using the k-ω Shear-Stress-Transport (SST) model. The dispersed turbulence multiphase model is employed to capture the multiphase turbulence effects.

  13. Purification and concentration of DNA from aqueous solutions.

    Moore, David; Dowhan, Dennis

    2007-09-01

    This unit presents basic procedures for manipulating solutions of single- or double-stranded DNA through purification and concentration steps. These techniques are useful when proteins or solute molecules need to be removed from aqueous solutions, or when DNA solutions need to be concentrated. The Basic Protocol, using phenol extraction and ethanol (or isopropanol) precipitation, is appropriate for purification of DNA from small volumes (DNA using butanol, and extract residual organic solvents with ether, respectively. An alternative to these methods is nucleic acid purification using glass beads, and this technique is also presented. These protocols may also be used for purifying RNA. The final two alternate protocols are used for concentrating RNA and extracting and precipitating DNA from larger volumes and from dilute solutions, and for removing low-molecular-weight oligonucleotides and triphosphates. PMID:21948158

  14. Enthalpy of solution of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol

    The enthalpies of solution of CO2 in aqueous solution of 2-amino-2-methyl-1-propanol (AMP) 15 wt% and 30 wt% were measured at 322.5 K and pressures range from (0.2 to 5) MPa using a flow calorimetric technique. The gas solubilities were simultaneously determined from the calorimetric data. The solubilities were compared to available literature values obtained by direct measurements. The experimental enthalpies of solution were compared to the values derived from the literature vapor liquid equilibrium data. This work provides calorimetric data that will be used later for the development of a thermodynamic model to predict both solubilities and enthalpies of solution of acid gases in aqueous amine solutions

  15. Correlated ab inito Study of Nucleic Acid Bases and Their Tautomers in the Gas Phase, in a Microhydrated Environment and in Aqueous Solution. Guanine: Surprising Stabilization of Rare Tautomers in Aqueous Solution

    Hanus, Michal; Ryjáček, Filip; Kubař, Tomáš; Bogdan, T. V.; Trygubenko, S. A.; Kabeláč, Martin; Hobza, Pavel

    2003-01-01

    Roč. 125, č. 25 (2003), s. 7678-7688. ISSN 0002-7863 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : nucleic acid bases * gas phase * guanine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.516, year: 2003

  16. Spatial structure of oligopeptide PAP(248-261), the N-terminal fragment of the HIV enhancer prostatic acid phosphatase peptide PAP(248-286), in aqueous and SDS micelle solutions

    Blokhin, Dmitriy S.; Filippov, Andrei V.; Antzutkin, Oleg N.; Karataeva, Farida Kh.; Klochkov, Vladimir V.

    2014-07-01

    Prostatic acid phosphatase (PAP) is an enzyme that facilitates infection of cells by HIV. Its peptide fragment PAP(248-286) forms amyloid fibrils known as SEVI, which enhance attachment of the virus by viral adhesion to the host cell prior to receptor-specific binding via reducing the electrostatic repulsion between the membranes of the virus and the target cell. The secondary structure of PAP(248-286) in aqueous and SDS solutions can be divided into an N-terminal disordered region, an α-helical central part and an α/310-helical C-terminal region (Nanga et al., 2009). In this work, we used NMR spectroscopy to study the spatial structure of the isolated N-terminal fragment of PAP(248-286), PAP(248-261) (GIHKQKEKSRLQGG), in aqueous and SDS micelle solutions. Formation of a PAP(248-261)-SDS complex was confirmed by chemical shift alterations in the 1H NMR spectra of the peptide, as well as by the signs and values of Nuclear Overhauser Effect (NOE). In addition, the PAP(248-261) peptide does not form any specified secondary structure in either aqueous or SDS solutions.

  17. Pulse Radiolysis of Aqueous Thiocyanate Solution

    The pulse radiolysis of N2O saturated aqueous solutions of KSCN was studied under neutral pH conditions. The observed optical absorption spectrum of the SCN#lgbullet# radical in solution is more complex than previously reported, but it is in good agreement with that measured in the gas phase. Kinetic traces at 330 nm and 472 nm corresponding to SCN#lgbullet# and (SCN)2#lgbullet#-, respectively, were fit using a Monte Carlo simulation kinetic model. The rate coefficient for the oxidation of SCN- ions by OH radicals, an important reaction used in competition kinetics measurements, was found to be 1.4 ± 0.1 x 1010 M-1 s-1, about 30% higher than the normally accepted value. A detailed discussion of the reaction mechanism is presented

  18. Sensitizing effect of cerium (4) sulfate on photooxidation of organic compounds in aqueous solutions

    Influence of Ce(SO4)2 addition on the photooxidation rate of organic substances in aqueous solutions has been discussed. It is shown that to a certain value, the rate constant of oxalic acid oxidation increases linearly with increasing oxidant amount. Using a combination of chemical and photochemical oxidation of oxalic acid in aqueous solution with Ce(SO4)2 as a sensitizer, one can increase the oxidation rate by a factor of 45 and to reduce the time required for carbon determination in aqueous solutions from 4-5 hours down to 8-9 min

  19. Anion Recognition Triggered Nanoribbon-Like Self-Assembly: A Fluorescent Chemosensor for Nitrate in Acidic Aqueous Solution and Living Cells.

    Yang, Yaping; Chen, Shiyan; Ni, Xin-Long

    2015-07-21

    A water-soluble π-conjugated bispyridinium phenylenevinylene-based fluorogenic probe has been developed as a novel fluorescent chemosensor for highly selective, sensitive, and rapid detection of NO3(-) anion in acidic aqueous media. This system self-assembles to a nanoribbon as a result of ionic interaction. The positively charged chemosensor generates a nearly instantaneous significant fluorescence signal (475 vs 605 nm) in response to NO3(-) in the green/yellow spectral region, with a large Stokes shift (130 nm). The fluorescence changes can be attributed to the self-aggregation of the sensor triggered by ionic interaction, which occurs as a consequence of the subtle cooperation of electrostatic ionic bonding, van der Waals forces, and π-stacking of the π-conjugated aromatic moieties. Importantly, this chemosensor has been employed for the first time for the fluorescence detection of intracellular NO3(-) anion in cultured cells. PMID:26084357

  20. Radiolytic degradation of malathion and lindane in aqueous solutions

    Degradation of malathion and lindane pesticides present in an aqueous solution was investigated on a laboratory scale upon gamma-irradiation from a 60Co source. The effects of pesticide group, presence of various additives and absorbed dose on efficiency of pesticide degradation were investigated. Gamma-irradiation was carried out in distilled water solutions (malathion and lindane) and in combination with humic solution (HS), nitrous oxide (N2O) and HS/N2O (lindane) over the range 0.1-2 kGy (malathion) and 5-30 kGy (lindane). Malathion was easily degraded at low absorbed doses compared to lindane in distilled water solutions. Absorbed doses required to remove 50% and 90% of initial malathion and lindane concentrations in distilled water solutions were 0.53 and 1.77 kGy (malathion) and 17.97 and 28.79 kGy (lindane), respectively. The presence of HS, N2O and HS/N2O additives in aqueous solutions, significantly improved the effectiveness of radiolytic degradation of lindane. Chemical analysis of the pesticides and the by-products resulted from the radiolytic degradation were made using a gas chromatography associated with mass spectrometry (GC-MS). Additionally, the final degradation products of irradiation as detected by ion chromatography (IC) were acetic acid and traces of some anions (phosphate and chloride).

  1. RHEOLOGICAL BEHAVIOR OF ERWINIA GUM IN AQUEOUS SOLUTION

    Li-na Zhang; Mei Zhang; Jing-hua Chen; Hideki Iijima; Hiromichi Tsuchiya

    1999-01-01

    Erwinia (E) gum, an extracellular polysaccharide, is composed of fucose, galatose, glucose and glucuronic acid. Its viscosity behavior was investigated by a low-shear-rate multiball viscometer and a rotational viscometer. Its weight-average molecular weight Mw and intrinsic viscosity [η] in 0.2 mol/L NaCl aqueous solution were measured by light scattering method at 35℃ and viscometry at 25℃ and found to be 1.06 × 106 g/mol and 1050 mL/g, respectively, and its aggregates in aqueous solution were proved by gel permeation chromatography (GPC). These results indicated that E gum in water has exceedingly high viscosity and exhibits Binham fluid behavior, owing to its aggregation. The viscosity of E gum decreased with increasing temperature, and the turning point appeared at 38℃ for dilute solution and 80℃ for concentrated solution suggesting that the aggregates of E gum in water started to disaggregate under these temperatures. In addition, the aggregates can be disrupted by adding either acid or base. The experimental results indicated that the E gum is a good thickening agent, and its fluid behavior is similar to xanthan.

  2. Extraction of scandium from hydrochloric solutions by phosphinic acids

    Distribution of scandium between aqueous solutions of HCl and solutions of dioctyl- and diarylphosphinic acids in organic solvents and so acids containing two phosphoryl groups bonded by methylene fragment is investigated. Extraction ability with respect to scandium in hydrochloric acid media increases in dialkylphosphoric acid < dialkylphosphinic acid < diarylphosphinic acid row and with aryl substituent electronegativity increase. Increase of a number of phosphoryl groups in extractant molecule leads to increase of scandium extraction

  3. Extraction and Chromatographic Determination of Shikimic Acid in Chinese Conifer Needles with 1-Benzyl-3-methylimidazolium Bromide Ionic Liquid Aqueous Solutions

    2014-01-01

    An ionic liquids-based ultrasound-assisted extraction (ILUAE) method was successfully developed for extracting shikimic acid from conifer needles. Eleven 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were investigated and 1-benzyl-3-methylimidazolium bromide solution was selected as the solvent. The conditions for ILUAE, including the ionic liquid concentration, ultrasound power, ultrasound time, and liquid-solid ratio, were optimized. The proposed method had goo...

  4. Stability of selenourea in aqueous solutions

    Mel' chekova, Z.E.

    1983-06-10

    Studies of the synthesis of metal selenides from aqueous solutions are being conducted within the framework of investigations on the creation of new semiconductor materials. Selenourea in solution is a complex multicomponent system. The products of hydrolytic decomposition are H/sub 2/CN/sub 2/, Se/sup 2 -/, and HSe/sup -/. As a result of the oxidation of selenium-containing decomposition products by atmospheric oxygen, elementary selenium is formed. The decomposition of selenourea in alkaline sulfite solutions is accompanied by the dissolution of Se/sup 2 -/ and HSe/sup 0/ ions (Se/sup 0/), with the formation of selenosulfate. A study of the kinetics of decomposition was conducted under the conditions of formation of metal selenides, which do not exclude the oxidation process. The end product of the decomposition of selenourea in alkaline sulfite solutions is selenosulfate. The formation of selenosulfate was demonstrated by the isolation of elementary selenium under the action of formaldehyde. The rate constants of the decomposition of selenourea were calculated by the method of changes in concentration, slope of the straight lines, and a logarithmic method. The use of methods of monitoring of selenourea and its decomposition products permitted a theoretical substantiation of the selection of the optimum conditions of formation of metal selenides.

  5. Heterogeneous nucleation of aspartame from aqueous solutions

    Kubota, Noriaki; Kinno, Hiroaki; Shimizu, Kenji

    1990-03-01

    Waiting times, the time from the instant of quenching needed for a first nucleus to appear, were measured at constant supercoolings for primary nucleation of aspartame (α-L-aspartyl-L-phenylalanine methylester) from aqueous solutions, which were sealed into glass ampoules (solution volume = 3.16 cm 3). Since the waiting time became shorter by filtering the solution prior to quenching, the nucleation was concluded to be heterogeneously induced. The measured waiting time consisted of two parts: time needed for the nucleus to grow to a detactable size (growth time) and stochastic time needed for nucleation (true waiting time). The distribution of the true waiting time, is well explained by a stochastic model, in which nucleation is regarded to occur heterogeneously and in a stochastic manner by two kinds of active sites. The active sites are estimated to be located on foreign particles in which such elements as Si, Al and Mg were contained. The amount of each element is very small in the order of magnitude of ppb (mass basis) of the whole solution. The growth time was correlated with the degree of supercooling.

  6. Development of a Novel Solid-State Sensor Electrode Based on Titanium Thin Film as an Indicator Electrode in Potentiometric and Conductometric Acid-Base Titration in Aqueous Solution

    Nasser Abu Ghalwa

    2012-01-01

    Full Text Available A modified Ti/(SnO2 + Sb2O3 electrode was prepared by thermal deposition on titanium substrate and its use as indicator electrode to potentiometric and conductometric acid-base titration in aqueous solution at 298 K was developed. The E-pH curve is linear with slope of 0.0512 V/dec at 298 K. The standard potential of this electrode, E0, was determined with respect to the SCE as reference electrode. The recovery percentages for potentiometric and conductometric acid-base titration for acetic acid against NaOH were calculated. The cell constant, specific conductance, and the molar conductance with dilution for some common electrolytes were measured.

  7. Biconical tapered optical fiber biosensor for measuring refractive index of a-amino acids in aqueous D-glucose and sucrose solution

    Zibaii, M. I.; Latifi, H.; Karami, M.; Gholami, M.; Hosseini, S. M.; Ghezelayagh, M. H.

    2010-04-01

    A single-mode biconical tapered optical fiber (BTOF) sensor was utilized for sensing the variation of refractive index (RI) with concentration of D-glucose in double distilled deionized water and measuring of RI of amino acids (AAs) in carbohydrate solutions. This method showed a rewarding ability in understanding the basis of biomolecular interactions in biological systems. The BTOF is fabricated by heat pulling method, utilizing a CO2 laser. The detection limit of the BTOF was 50 ppb for the D-glucose concentration ranging from 0 to 80 ppm, and RI detection limit corresponding to these concentrations in the range at 1.3333 to 1.3404 was 5.4×10-6 as a refractometer sensor. The response of the BTOF shows that the different kinds of interactions of various groups of AAs such as L-alanine, L-leucine, and L-cystein with D-glucose, sucrose and water molecules depend on functional groups in AAs such as OH, SH;CH2;NH3+ ,COO-. These results can be interpreted in terms of solute-solute and solute-solvent interactions and structure making/breaking ability of solutes in the given solution.

  8. Effect of temperature on the protonation of N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid in aqueous solutions: Potentiometric and calorimetric studies

    Li, Xingliang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Div.; China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Zhang, Zhicheng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Div.; Endrizzi, Francesco [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Div.; Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luo, Shunzhong [China Academy of Engineering Physics, Mianyang (China). Inst. of Nuclear Physics and Chemistry; Rao, Linfeng [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Chemical Sciences Div.

    2015-06-01

    The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Komplexes) has been demonstrated in several pilot-scale operations to be effective at separating trivalent actinides (An3+) from trivalent lanthanides (Ln3+). However, fundamental studies have revealed undesired aspects of TALSPEAK, such as the significant partitioning of Na+, lactic acid, and water into the organic phase, thermodynamically unpredictable pH dependence, and the slow extraction kinetics. In the modified TALSPEAK process, the combination of the aqueous holdback complexant HEDTA (N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid) with the extractant HEH[EHP] (2-ethyl(hexyl) phosphonic acid mono-2-ethylhexyl ester) in the organic phase has been found to exhibit a nearly flat pH dependence between 2.5 and 4.5 and more rapid phase transfer kinetics for the heavier lanthanides. To help understand the speciation of Ln3+ and An3+ in the modified TALSPEAK, systematic studies are underway on the thermodynamics of major reactions in the HEDTA system under conditions relevant to the process (e.g., higher temperatures). Thermodynamics of the protonation and complexation of HEDTA with Ln3+ were studied at variable temperatures. Equilibrium constants and enthalpies were determined by a combination of techniques including potentiometry and calorimetry. This paper presents the protonation constants of HEDTA at T = (25 to 70) °C. The potentiometric titrations have demonstrated that, stepwise, the first two protonation constants decrease and the third one slightly increases with the increase of temperature. This trend is in good agreement with the enthalpy of protonation directly determined by calorimetry. The results of NMR analysis further confirm that the first two protonation reactions occur on the diamine nitrogen atoms, while the third protonation reaction occurs on the

  9. Ions in hyaluronic acid solutions

    Horkay, Ferenc; Basser, Peter J.; Londono, David J.; Hecht, Anne-Marie; Geissler, Erik

    2009-11-01

    Hyaluronic acid (HA) is an anionic biopolymer that is almost ubiquitous in biological tissues. An attempt is made to determine the dominant features that account for both its abundance and its multifunctional role, and which set it apart from other types of biopolymers. A combination of osmotic and scattering techniques is employed to quantify its dynamic and static properties in near-physiological solution conditions, where it is exposed both to mono- and divalent counterions. An equation of state is derived for the osmotic pressure Π in the semidilute concentration region, in terms of two variables, the polymer concentration c and the ionic strength J of the added salt, according to which Π =1.4×103c9/4/J3/4 kPa, where c and J are expressed in mole. Over the physiological ion concentration range, the effect of the sodium chloride and calcium chloride on the osmotic properties of HA solutions is fully accounted for by their contributions to the ionic strength. The absence of precipitation, even at high CaCl2 concentrations, distinguishes this molecule from other biopolymers such as DNA. Dynamic light scattering measurements reveal that the collective diffusion coefficient in HA solutions exceeds that in aqueous solutions of typical neutral polymers by a factor of approximately 5. This property ensures rapid adjustment to, and recovery from, stress applied to HA-containing tissue. Small angle x-ray scattering measurements confirm the absence of appreciable structural reorganization over the observed length scale range 10-1000 Å, as a result of calcium-sodium ion exchange. The scattered intensity in the transfer momentum range q >0.03 Å-1 varies as 1/q, indicating that the HA chain segments in semidilute solutions are linear over an extended concentration range. The osmotic compression modulus c ∂Π/∂c, a high value of which is a prerequisite in structural biopolymers, is several times greater than in typical neutral polymer solutions.

  10. [Photochemical degradation of chlorothalonil in aqueous solution].

    Li, Xuede; Hua, Rimao; Yue, Yongde; Li, Ying; Tang, Feng; Tang, Jun

    2006-06-01

    The study on the effects of light source, solution pH and temperature, and surfactant on the photochemical degradation of chlorothalonil showed that the half-life of chlorothalonil photodegradation under high pressure mercury lamp (HPML), UV lamp and sunlight was 22.4, 82.5 and 123.8 min, respectively. Under HPML and sunlight, chlorothalonil had a higher photolysis rate in alkaline solution than in neutral and acid solution. The photolysis rate increased with increasing solution temperature in the range of 10 degrees C - 40 degrees C, which was doubled when the temperature increased every 10 degrees C. Sodium laurylsulfonate (SDS), sodium dodecylbenzene sulfonate (SDBS), Tween 60 and Span 20 showed significant photosensitizing effects, while cetyltrimethylammonium bromide (CTAB) had significant photoquench effect on the photolysis of chlorothalonil. PMID:16964947

  11. Rheological properties of aqueous solutions of biopolymeric hyaluronan

    Szwajczak, Elzbieta

    2004-09-01

    Aqueous solutions of hyaluronic acid (hyaluronan, HA) were studied. The HA compound is a natural polysaccharide, bipolymer. It plays an important role in numerous biological processes as a component of the extracellular matrix, connective tissues and, especially, human and animal synovial joints. Natural and artificial solutions of the HA have demonstrated the viscoelastic nature. These properties are shown to be related to the microstructure parameters (bulk concentration, molecular weight) and external parameters (temperature, stress, shear rate). We emphasize the role of the flow properties of polymeric systems. It is found a liquid crystalline "order" can be "induced" during the material flow. The dynamic properties, such as the elastic shear modulus and viscous shear modulus, are given. These results are discussed in relation to the postulated function of hyaluronic acid in synovial joint and with respect to possibilities o their application in medicine and pharmacology.

  12. Cr(VI) reduction in aqueous solutions by siderite.

    Erdem, Mehmet; Gür, Faruk; Tümen, Fikret

    2004-09-10

    Hexavalent chromium is a common and toxic pollutant in soils and wastewaters. Reduction of the mobile Cr(VI) to less mobile and less toxic Cr(III) is a solution for decontamination of industrial effluents. In this study, the reduction of hexavalent chromium in aqueous solutions by siderite was investigated. The influences of amount of acid, contact time, siderite dosage, initial Cr(VI) concentration, temperature and particle size of siderite have been tested in batch runs. The process was found to be acid, temperature and concentration dependent. The amount of acid is the most effective parameter affecting the Cr(VI) reduction since carbonaceous gangue minerals consume acid by side reactions. The highest Cr(VI) reduction efficiency (100%) occurred in the 50 mg/l Cr(VI) solution containing two times acid with respect to stoichiometric amount of Cr(VI) and at the conditions of siderite dosage 20 g/l, contact time 120 min and temperature 25 degrees C. Reduction efficiency increased with increase in temperature and decrease in particle size. The reduction capacity of siderite was found to be 17 mg-Cr(VI)/g. PMID:15363534

  13. Photodegradation of Lincomycin in Aqueous Solution

    2006-01-01

    Full Text Available Aqueous solutions of lincomycin were irradiated with UV light in homogeneous and heterogeneous systems. Lincomycin disappeared in both systems but the presence of TiO 2 noticeably accelerated the degradation of the antibiotic in comparison with direct photolysis. The rate of decomposition was dependent on the concentration of lincomycin and followed a pseudo-first-order kinetics. Photolysis involved only the oxidation of lincomycin without mineralization. Differently, the treatment with TiO 2 and UV light resulted in a complete mineralization of the antibiotic. The degradation pathways involved S- and N-demethylation and propyldealkylation. The mineralization of the molecule led to the formation of sulfate, ammonium, and nitrate ions.

  14. Radiolysis of paracetamol in dilute aqueous solution

    Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2–3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily. - Highlights: ► Paracetamol is easily degraded in aqueous solution by low dose irradiation. ► Main degradation products are hydroxylated molecules, acetamide and hydroquinone. ► Toxicity of solutions goes through a maximum as a function of dose.

  15. Physical chemistry of the interface between oxide and aqueous solution

    The behavior and properties of small oxide particles in aqueous suspension are dominated by the physico-chemistry of their surface. It is electrostatically charged and strongly solvated. The origin of the surface charge is discussed through the MUSIC model [Hiemstra 1996], allowing to estimate the acid-base behavior of surface oxygen atoms. The stability of aqueous dispersions of particles is analysed following the DLVO model, with a special attention on the hydration layers allowing the peptization of flocs. Different adsorption mechanisms of metal cations are presented in terms of coordination chemistry (outer- and inner-sphere complexes) emphasizing the coordinating ability of the surface towards metal complexes in solution. The anion adsorption is also studied in relation with some interesting consequences on spinel iron oxide nano-particles. (author)

  16. Recovery of niobium anions from aqueous solutions by ion flotation

    In principle the feasibility of recovering niobates (K2NbOF5 and K2NbF7) from aqueous media by ion flotation was established. When using quaternary ammonium bases or amines as the collectors, the optimal conditions lie in the interval pH = 5.0-9.0. The interaction of niobates with cationic surfactants may proceed through an anion-exchange mechanism. The presence of acid in the solution suppresses this interaction, owing to the competition from the anions that are present and owing to binding of the surface-active collectors into a complex. 3 figures

  17. Gamma radiolytic degradation of naphthalene in aqueous solution

    Chu, Libing; Yu, Shaoqing; Wang, Jianlong

    2016-06-01

    The decomposition of naphthalene in aqueous solution was studied using gamma irradiation combined with both H2O2 and TiO2 nanoparticles. Gamma irradiation led to a complete degradation of naphthalene and a partial mineralization. With initial concentration of 5-32 mg/L, more than 98% of naphthalene was removed and TOC reduction reached 28-31% at an absorbed dose of 3.0 kGy. The degradation of naphthalene was faster at neutral pH and the initial degradation rate increased with increasing the initial concentration of naphthalene. Addition of H2O2 and TiO2 nanoparticles all enhanced the degradation and mineralization of naphthalene. TOC removal efficiency increased from 28% (irradiation alone) to 35% with addition of H2O2 (40 mg/L), and to 48% with addition of TiO2 (0.8 g/L). The degradation of naphthalene in aqueous solution by gamma irradiation was mainly through the oxidation by ·OH radicals. The intermediate naphthol and carboxylic acids such as formic acid and oxalic acid were identified by LC-MS and IC.

  18. Process for separating cesium ions from aqueous solutions

    A precipitation agent is added to the aqueous solution and the resulting precipitate containing Cs+ ions is separated from the solution. By this process, caesium is to be separated selectively compared with other alkaline metal ions with great efficiency from aqueous solutions, particularly aqueous MAW (medium activity waste). This is achieved by using a sodium tetraphenyl borate attracting electrons to the phenyl rings and having substitutes. (orig./PW)

  19. Preferential adsorption of uranium ions in aqueous solutions by polymers

    Amidoxime fiber and triazine fiber were prepared by chemical modification of commercially available polyacrylonitril fiber. It was found that the Amidoxime fiber is efficient to adsorb uranium ions in the artificial sea water. The efficiency of the preferential adsorption decreases by treatment the material with an acid-or an alkaline-solution. The triazine fiber adsorbs uranium ions only in aqueous solutions of such uranyl acetate, in the absence of other ions. In the artificial sea water, it adsorbs other ions instead of uranium. The preferential adsorption of uranium ions was further investigated with a series of polystyrenesulfonamides. Among the polystyrene derivatives, those having carboxyl groups, derived from imino diacetic acid (PSt-Imi), β-alanine (PSt-Ala), glycine (PSt-Gly), and sarcosine (PSt-Sar) were qualified for further discussion. However, it was found that the amount of adsorption of uranium ions by PSt-Imi decreases with increasing the volume of the artificial sea water and/or the duration of the treatment. Taking into account the facts, the preferential adsorption of uranium ions by PSt-Imi in aqueous solution was discussed in detail. (author)

  20. Sequential study on reactive blue 29 dye removal from aqueous solution by peroxy acid and single wall carbon nanotubes: experiment and theory

    Jahangiri-Rad Mahsa

    2013-01-01

    Full Text Available Abstract The majority of anthraquinone dye released to the environment come from antrapogenic sources. Several techniques are available for dyes' removal. In this study removal of reactive blue 29 (RB29 by an advanced oxidation process sequenced with single wall carbon nanotubes was investigated. Advanced oxidation process was optimized over a period of 60 minutes by changing the ratio of acetic acid to hydrogen peroxide, the compounds which form peroxy acid. Reduction of 20.2% -56.4% of reactive blue 29 was observed when the ratio of hydrogen peroxide/acetic acid/dye changed from 344/344/1 to 344/344/0.08 at different times (60, 120 and 180 min. The optimum ratio of acetic acid/hydrogen peroxide/dye was found to be 344/344/0.16 over 60 min. The resultant then was introduced for further removal by single wall carbon nanotubes(SWCNTs as adsorbent. The adsorption of reactive blue 29 onto SWCNTs was also investigated. Langmuir, Freundlich and BET isotherms were determined and the results revealed that the adsorption of RB29 onto SWCNTs was well explained by BET model and changed to Freundlich isotherm when SWCNTs was used after the application of peroxy acid. Kinetic study showed that the equilibrium time for adsorption of RB 29 on to SWCNT is 4 h. Experiments were carried out to investigate adsorption kinetics, adsorbent capacity and the effect of solution pH on the removal of reactive blue29. The pseudo-second order kinetic equation could best describe the sorption kinetics. The most efficient pH for color removal (amongst pH=3, 5 and 8 was pH= 5. Further studies are needed to identify the peroxy acid degradation intermediates and to investigate their effects on SWCNTs.

  1. Sequential study on Reactive Blue 29 Dye Removal from Aqueous Solution by Peroxy Acid and Single Wall Carbon Nanotubes: Experiment and Theory

    Mahsa Jahangiri-Rad

    2012-01-01

    Full Text Available The majority of anthraquinone dye released to the environment come from antrapogenic sources. Several techniques are available for dyes' removal. In this study removal of reactive blue 29 (RB29 by an advanced oxidation process sequenced with single wall carbon nanotubes was investigated. Advanced oxidation process wasoptimized over a period of 60 minutes by changing the ratio of acetic acid to hydrogen peroxide, the compounds which form peroxy acid. Reduction of 20.2% -56.4% of reactive blue 29 was observed when the ratio of hydrogen peroxide/acetic acid/dye changed from 344/344/1 to 344/344/0.08 at different times (60, 120 and 180 min. Theoptimum ratio of acetic acid/hydrogen peroxide/dye was found to be 344/344/0.16 over 60 min. The resultant then was introduced for further removal by single wall carbon nanotubes(SWCNTs as adsorbent. The adsorption of reactive blue 29 onto SWCNTs was also investigated. Langmuir, Freundlich and BET isotherms were determined and the results revealed that the adsorption of RB29 onto SWCNTs was well explained by BET model and changed to Freundlich isotherm when SWCNTs was used after the application of peroxy acid. Kinetic study showed that the equilibrium time for adsorption of RB 29 on to SWCNT is 4 h. Experiments were carried out to investigate adsorption kinetics, adsorbent capacity and the effect of solution pH on the removal of reactive blue29. The pseudo-second order kinetic equation could best describe the sorption kinetics. The most efficient pH for colorremoval (amongst pH=3, 5 and 8 was pH= 5. Further studies are needed to identify the peroxy acid degradation intermediates and to investigate their effects on SWCNTs.

  2. Extraction and Chromatographic Determination of Shikimic Acid in Chinese Conifer Needles with 1-Benzyl-3-methylimidazolium Bromide Ionic Liquid Aqueous Solutions

    Fengli Chen

    2014-01-01

    Full Text Available An ionic liquids-based ultrasound-assisted extraction (ILUAE method was successfully developed for extracting shikimic acid from conifer needles. Eleven 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were investigated and 1-benzyl-3-methylimidazolium bromide solution was selected as the solvent. The conditions for ILUAE, including the ionic liquid concentration, ultrasound power, ultrasound time, and liquid-solid ratio, were optimized. The proposed method had good recovery (99.37%–100.11% and reproducibility (RSD, n = 6; 3.6%. ILUAE was an efficient, rapid, and simple sample preparation technique that showed high reproducibility. Based on the results, a number of plant species, namely, Picea koraiensis, Picea meyeri, Pinus elliottii, and Pinus banksiana, were identified as among the best resources of shikimic acid.

  3. Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(Ⅱ) from aqueous solutions

    Maryam Irani; Hanafi Ismail; Zulkifli Ahmad; Maohong Fan

    2015-01-01

    The purpose of this work is to remove Pb(Ⅱ) from the aqueous solution using a type of hydrogel composite.A hydrogel composite consisting of waste linear low density polyethylene,acrylic acid,starch,and organo-montmorillonite was prepared through emulsion polymerization method.Fourier transform infrared spectroscopy (FTIR),Solid carbon nuclear magnetic resonance spectroscopy (CNMR)),silicon-29 nuclear magnetic resonance spectroscopy (Si NMR)),and X-ray diffraction spectroscope ((XRD) were applied to characterize the hydrogel composite.The hydrogel composite was then employed as an adsorbent for the removal of Pb(Ⅱ) from the aqueous solution.The Pb(Ⅱ)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy (FTIR)),scanning electron microscopy (SEM)),and X-ray photoelectron spectroscopy ((XPS)).From XPS results,it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(Ⅱ).Kinetic studies indicated that the adsorption of Pb(Ⅱ)followed the pseudo-second-order equation.It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm.The maximum removal capacity of the hydrogel composite for Pb(Ⅱ) ions was 430 mg/g.Thus,the waste linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(Ⅱ) adsorbent.

  4. Kinetic measurements on the reactivity of hydrogen peroxide and ozone towards small atmospherically relevant aldehydes, ketones and organic acids in aqueous solution

    L. Schöne

    2013-10-01

    Full Text Available Within the aqueous atmospheric environment free radical reactions are an important degradation process for organic compounds. Nevertheless, non-radical oxidants like hydrogen peroxide and ozone also contribute to the degradation and conversion of this substance group (Tilgner und Herrmann, 2010. In this work kinetic investigations of non-radical reactions were conducted using UV/Vis spectroscopy (dual-beam spectrophotometer and Stopped Flow technique and a capillary electrophoresis system applying pseudo-first order kinetics of glyoxal, methylglyoxal, glycolaldehyde, glyoxylic, pyruvic and glycolic acids as well as methacrolein (MACR and methyl vinyl ketone (MVK towards H2O2 and ozone. The measurements indicate rather small rate constants at room temperature of k2nd −1 s−1 (except for the unsaturated compounds exposed to ozone. Compared to radical reaction rate constants the values are about 10 orders of magnitude smaller (kOH· ~ 109 M−1 s−1. However, when considering the much larger non-radical oxidant concentrations compared to radical concentrations in urban cloud droplets, calculated turnovers change the picture to more important H2O2 reactions especially when compared to the nitrate radical. For some reactions also mechanistic suggestions are given.

  5. Luminescence quenching of [Os(bpy)3]2+ by Mn7+, Cr6+ and Ce4+ ions in acidic aqueous solution

    Luminescence quenching of [Os(bpy)3]2+ by Mn7+, Cr6+ and Ce4+ ions in acidic aqueous media are studied. Ground state interactions between [Os(bpy)3]2+ and these ions show ground state association with stoichiometric ratios in accordance with the electron transfer process. Positive deviation is observed from the linear Stern–Volmer relationship which with the ground state association is in support of static quenching mechanism. Benesi-HildEbrand equation was used to evaluate the association constant which were found to be 5×103 M−1, 6.6×104 M−1 and be 1.1×105 M−1 for association of [Os(bpy)3]2+ with Ce4+, Cr6+ and Mn7+, respectively, based on luminescence intensity measurements. Different models for static luminescence quenching were employed to discuss the results. - Highlights: • Pure luminescence static quenching of [Os(bpy)3]2+ by strong oxidizing agents are reported. • Ground state association is observed between [Os(bpy)3]2+ and Ce4+, Cr6+ and Mn7+ ions. • Interaction of [Os(bpy)3]2+ with these ions was found to depend on their stoichiometric ratios. • Emission intensity of [Os(bpy)3]2+ was found to depend on its uncomplexed concentration

  6. Characterisation of chitosan solubilised in aqueous formic and acetic acids

    Esam A. El-hefian

    2009-11-01

    Full Text Available The intrinsic viscosity of chitosan (MW 7.9 x 105 g mol-1 having a high degree of deacetylation and solubilised in aqueous formic and acetic acids was determined at room temperature. Contact angle and conductivity of the chitosan solutions were also studied. The values of critical coagulation concentration (CCC were then obtained from the plots of contact angle or conductivity versus concentration.

  7. Measurement and Correlation on Viscosity and Apparent Molar Volume of Ternary System for L-ascorbic Acid in Aqueous D-Glucose and Sucrose Solutions%L-抗坏血酸在葡萄糖和蔗糖溶液中的黏度及其热力学性质的研究

    赵长伟; 马沛生

    2003-01-01

    Viscosities and densities at several temperatures from 293.15 K to 313.15 K are reported for L-ascorbic acid in aqueous glucose and sucrose solutions at different concentrations. The parameters of density, viscosity coefficient B and partial molar volume are calculated by regression. The experimental results show that densities and viscosities decrease as temperature increases at the same solute and solvent (glucose and sucrose aqueous solution) concentrations, and increase with concentration of glucose and sucrose at the same solute concentration and temperature. B increases with concentration of glucose and sucrose and temperature. L-ascorbic acid is structure-breaker or structure-making for the glucose and sucrose aqueous solutions. Furthermore, the solute-solvent interactions in ternary systems of water-glucose-electrolyte and water-sucrose-electrolyte are discussed.

  8. Electron beam induced degradation of clopyralid in aqueous solutions

    The degradation characteristics of clopyralid irradiated by electron beam (EB) was studied in aqueous solutions. The effects of factors, such as initial clopyralid concentrations, addition of radicals scavenger, initial solution pH and addition of H2O2, were investigated on clopyralid degradation efficiency and mechanism. It was found that the EB-radiolysis was an effective way to degrade clopyralid and its degradation rate decreased with the increasing of substrate concentration. In the investigated initial concentrations range of 100-400 mg L-1, the radiolytic degradation of clopyralid followed a pseudo-first kinetic order. The results from addition of radicals scavenger indicated that both ·OH and eaq- played significant roles in the degradation of clopyralid. Furthermore, the alkaline condition and addition of H2O2 (<10 mM) in the solution also slightly enhanced the efficiency of clopyralid degradation. The ion chromatography analysis showed that some organic acids (formic acid, acetic acid and oxalic acid) were formed, while the completely dechlorination of the substrate was achieved and organic nitrogen was recovered in the form of ammonium and nitrate ions during the irradiation process. (author)

  9. Controllable synthesis of thioglycolic acid capped ZnS(Pn)0.5 nanotubes via simple aqueous solution route at low temperatures and conversion to wurtzite ZnS nanorods via thermal decompose of precursor

    In the present paper, we report the successful synthesis of a thioglycolic acid capped ZnS(Pn)0.5 nanotubes (Pn = propanediamine) by a simple aqueous solution route employing ZnS(Pn)2 and TGA as a reactant at relatively low temperature. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) spectroscopy, photoluminescence spectroscopy (PL), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric-differential thermal analysis (TG-DTA). The effect of TGA concentration, on shapes and size of as-prepared product has been investigated. The thioglycolic acid capped ZnS(Pn)0.5 nanotubes showed considerable blue shift in comparison of bulk ZnS because of quantum confinement effect.

  10. Densimetric and spectrophotometric investigation of aqueous solutions containing UO22+ and Fe3+ ions in the medium of hydrochloric and sulfuric acids

    Formation of complex ions from UO22+ and Fe3+ ions in the HCl, H2SO4, DCl and D2SO4 basic electrolyte was studied using the method of molar volumes and the absorption spectra in the region of 200 to 600 nm. Ion UO22+ exists in solutions in form of the aquo ion [UO2(H2O)4]2+, which is transformed into ion [UO2(H2O)3Cl]+ at csub(HCl)2(H2O)2Cl2] is dominant at 1 to 5 mol/l HCl. Complex anions [UO2(H2O)Cl3]- and [UO2Cl4]2- are formed at csub(Cl-)>7 mol/l only. The ion of tetraaquodioxouranium and the cation of triaquomonosulphate uranyl were found spectrophotochemically in the sulphuric acid medium. For ion Fe3+ the coordination number 6 was proved for the aquo ion. The FeCl2+ and FeCl2+ ions were formed at increased concentration of chlorides. In HCl solutions, the tetrachloroferrate anion was found at concentrations higher than 9 mol/l. In the sulphuric acid medium, ion Fe3+ remains in the form of hexaaquoferric cation, and at csub(H2SO4) higher than 5 mol/l it is transformed into the monosulphate complex preserving coordination number 6. (author)

  11. Actinide and lanthanide extraction from nitric acid solutions by flotation

    Flotation of thorium, plutonium(IV), uranium(VI) and gadolinium from aqueous nitric acid solutions (HNO3) was investigated using lauryl phosphoric acid (LPA) as a SAS-collector. It is established that the extent of removal of the metal ions increases with the amount of LPA introduced, regardless of the solution acidity. It is shown that in principle ∼ 100% extraction of plutonium(IV) and thorium by flotation is possible regardless of the acidity of aqueous solutions. Ca(NO3)2 added to the system does not significantly affect the flotation extraction of thorium. (author) 14 refs.; 5 figs

  12. The kinetics of dye formation by pulse radiolysis of pararosaniline cyanide in aqueous or organic solution

    The radiation-induced conversion of the leucocyanide of pararosaniline dye to the highly colored salt-isomer of the dye in acidic aqueous solution (wavelength of maximum absorption lambda sub(max)=540 nm) or polar organic solution (lambda sub(max)=550 nm), takes place in two separate processes. The first is very fast (within 3 s-1 to 106 s-1, as the acidity or concentration of an oxidizing agent increases. In oxygen-free acidic aqueous or organic solutions (argon saturated) there is an unstable transient species (lambdasub(max)=380 nm). When using O2 or N2O-saturated aqueous or organic solution, there is no intermediate absorption band at 380 nm, but the slow process of dye formation at 540 or 550 nm is still sequential to the initial fast process having somewhat faster kinetics than in Ar-saturated solution. (author)

  13. Application of Acidic Treated Pumice as an Adsorbent for the Removal of Azo Dye from Aqueous Solutions:kinetic, Equilibrium and Thermodynamic Studies

    Saied Bashiri

    2012-11-01

    Full Text Available Colored effluents are one of the important environment pollution sources since they contain unused dye compounds which are toxic and less-biodegradable. In this work removal of Acid Red 14 and Acid Red 18 azo dyes was investigated by acidic treated pumice stone as anefficient adsorbent at various experimental conditions. Removal of dye increased with increase in contact time and initial dye concentration, while decreased for increment in solution temperature and pH. Results of the equilibrium study showed that the removal ofAR14 and AR18 followed Freundlich (r2>0.99 and Langmuir (r2>0.99 isotherm models.Maximum sorption capacities were 3.1 and 29.7 mg/g for AR 14 and AR18, namely significantly higher than those reported in the literature, even for activated carbon. Fitting of experimental data onto kinetic models showed the relevance of the pseudo-second order (r2>0.99 and intra-particle diffusion (r2>0.98 models for AR14 and AR18, respectively. For both dyes, the values of external mass transfer coefficient decreased for increasing initial dye concentrations, showing increasing external mass transfer resistance at solid/liquid layer.Desorption experiments confirmed the relevance of pumice stone for dye removal, since the pH regeneration method showed 86% and 89 % regeneration for AR14 and AR18,respectively.

  14. Chemical denitration of aqueous nitrate solutions

    The Plant for Active Waste Liquids (PAWL) at CRNL will immobilize in glass the fission products in waste from Mo-99 production. The nitrate ions in the waste can be destroyed by heating, but also by chemical reaction with formic acid (HCOOH). Since chemical denitration has several advantages over thermal denitration it was studied in the course of vitrification process development. Two free radical mechanisms are examined here to explain kinetic data on chemical denitration of nitric acid solutions with formic acid. One mechanism is applicable at > 1 mol/L HNO3 and involves the formate radical (HCOO.). The second mechanism holds at 3 and involves the hyponitrous radical (HNO.). Mass balances for various species were written based on the law of mass action applied to the equations describing the reaction mechanism. Analytical and numerical solutions were obtained and compared. Literature data on batch denitration were used to determine some of the rate constants while others were set arbitrarily. Observed stoichiometry and trends in reactant concentrations are predicted accurately for batch data. There are no literature data to compare with the prediction of negligible induction time

  15. Cyclopiazonic acid degradation by aqueous ozone

    Silva, Otniel Freitas; Venâncio, Armando

    2011-01-01

    Ozone is a chemical agent with great potential to reduce mycotoxins, it was effective against to reduce some mycotoxins. In view of this it was aimed of this work study the Cyclopiazonic acid (CPA) degradation by aqueous ozone. The degradation of exogenously CPA introduced in mobile phase was confirmed by High performance liquid Chromatography (HPLC). In parallel it was tested the effect of sodium formate (SF), to evaluate the influence of this chemical to neutralize ...

  16. Reactant-solute encounters in aqueous solutions studied by kinetic methods : hydration cosphere overlap and camouflage effects

    Engberts, Jan B.F.N.; Blandamer, Michael J.

    1998-01-01

    Rates of chemical reactions in aqueous solutions are often sensitive to low concentrations of added solutes such as ureas, alcohols, α-amino acids and carbohydrates. In this work, several simple chemical reactions were used to probe this sensitivity, which arises from interactions between added solu

  17. Alkaline earth cation extraction from acid solution

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  18. Lead removal from aqueous solutions by a Tunisian smectitic clay

    Chaari, Islem [Laboratoire de Georessources CERTE BP 95, 2050 Hamam-Lif (Tunisia)], E-mail: chaariislem@yahoo.fr; Fakhfakh, Emna; Chakroun, Salima [Laboratoire de Georessources CERTE BP 95, 2050 Hamam-Lif (Tunisia); Bouzid, Jalel; Boujelben, Nesrine [Laboratoire Eau Energie et Environnement, departement de genie geologique, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia); Feki, Mongi [Unite de chimie industrielle I, Ecole Nationale d' Ingenieurs de Sfax, BP W 3038 Sfax (Tunisia); Rocha, Fernando [MIA, Universite d' Aveiro, Campus de Santiago, 3810 Aveiro (Portugal)], E-mail: frocha@geo.ua.pt; Jamoussi, Fakher [Laboratoire de Georessources CERTE BP 95, 2050 Hamam-Lif (Tunisia)

    2008-08-15

    The adsorption of Pb{sup 2+} ions onto Tunisian smectite-rich clay in aqueous solution was studied in a batch system. Four samples of clay (AYD, AYDh, AYDs, AYDc) were used. The raw AYD clay was sampled in the Coniacian-Early Campanian of Jebel Aidoudi in El Hamma area (South of Tunisia). AYDh and AYDs corresponds to AYD activated by 2.5 mol/l hydrochloric acid and 2.5 mol/l sulphuric acid, respectively. AYDc corresponds to AYD calcined at different temperatures (100, 200, 300, 400, 500 and 600 deg. C). The raw AYD clay was characterized by X-ray diffraction, chemical analysis, infrared spectroscopy and coupled DTA-TGA. Specific surface area of all the clay samples was determined from nitrogen adsorption isotherms. Preliminary adsorption tests showed that sulphuric acid and hydrochloric acid activation of raw AYD clay enhanced its adsorption capacity for Pb{sup 2+} ions. However, the uptake of Pb{sup 2+} by AYDs was very high compared to that by AYDh. This fact was attributed to the greater solubility of clay minerals in sulphuric acid compared to hydrochloric acid. Thermic activation of AYD clay reduced the Pb{sup 2+} uptake as soon as calcination temperature reaches 200 deg. C. All these preliminary results were well correlated to the variation of the specific surface area of the clay samples. The ability of AYDs sample to remove Pb{sup 2+} from aqueous solutions has been studied at different operating conditions: contact time, adsorbent amount, metal ion concentration and pH. Kinetic experiments showed that the sorption of lead ions on AYDs was very fast and the equilibrium was practically reached after only 20 min. The results revealed also that the adsorption of lead increases with an increase in the solution pH from 1 to 4.5 and then decreases, slightly between pH 4.5 and 6, and rapidly at pH 6.5 due to the precipitation of some Pb{sup 2+} ions. The equilibrium data were analysed using Langmuir isotherm model. The maximum adsorption capacity (Q{sub 0

  19. ESR study on carboxymethyl chitosan radicals in an aqueous solution

    Saiki, Seiichi, E-mail: saiki.seiichi@jaea.go.j [Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Nagasawa, Naotsugu; Hiroki, Akihiro; Morishita, Norio; Tamada, Masao [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Muroya, Yusa; Kudo, Hisaaki [Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Katsumura, Yosuke [Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Naka, Ibaraki 319-1195 (Japan)

    2010-03-15

    Carboxymethyl chitosan (CMCTS) at a highly concentrated aqueous solution forms hydrogel by ionizing irradiation. To study on radiation-induced reaction mechanism of CMCTS in an aqueous solution, CMCTS radicals formed by reactions with OH radical were observed by ESR method. As a result of ESR spectral analysis, CMCTS radicals were identified as radicals on carboxymethyl groups.

  20. Raman spectroscopy application to analyses of components in aqueous solutions

    Li, Gang; Zhang, Guoping

    2006-09-01

    The characterization of species in aqueous solutions has presented a challenge to analytical and physical chemist, because the JR absorption of the aqueous solvent is so intense that it becomes difficult to observe the solute in the water by JR absorption. In contrast, Raman spectrum of the solute is unaffected by the water, so the weak scattering of water makes the technique well suited to aqueous samples, and the Raman spectrum exhibits well-defined bands corresponding to fundamental modes of vibration. In addition, Raman spectroscopy has some inherent advantages in aqueous solution analysis, because the spectral features of signals from different species are much more distinct, and it provides characteristic signatures for samples, such as blood, protein and cholesterol. All the advantages make Raman spectroscopy be a potential alternative for the study of aqueous solutions. Now, Raman spectroscopy has been applied to studying samples in aqueous solutions, blood serum, intracellular protein levels. Now, industrial wasted water contains many organic contaminants, and it is necessary to determine and monitor these contaminants. The paper first introduces Raman spectroscopy, and then describes its applications to determining the components in aqueous solutions, analyzes and assignes the Raman spectra of o-dichlorobenzene, o-xylene, m-xyiene and p-xylene in detail. The experimental results demonstrate that Raman spectroscopy is a particularly powerful technique for aqueous solutions analyses.

  1. Adsorption of Anthraquinone Dyes from Aqueous Solutions by Penicillium Terrestre

    XIN Bao-ping; LIU Xiao-mei

    2006-01-01

    Penicillium terrestre was used for removing four anthraquinone dyes from aqueous solution. The experiments were performed in Erlenmeyer flasks and spore suspension was used for inoculation. The results show that the mechanism of dye removal by penicillium terrestre is biosorption and the growing pellets exhibit higher adsorptive capacity than the resting or dead ones. The maximum removals of disperse blue 2BLN, reactive brilliant blue KN-R, acid anthraquinone blue and bromamine acid at the concentration of 120 mg/L by biosorption of growing pellets are 100 %, 100 %, 96 % and 91%, respectively. The 100.0 % and 91.4 % KN-R removals are achieved respectively at the much higher concentration of 250 and 400 mg/L. 2.5 g/L glucose is sufficient for 100% KN-R removal by growing pellets. Salinity (NaC1) increase from 0 to 2% (W/V) moderately accelerates both mycelium growth and KN-R removal.

  2. Removal of radium from aqueous solutions

    Adsorption of radium from aqueous solution with montmorillonite clay was investigated. Adsorption isotherm data of the radium and montmorillonite clay system were developed and fitted to both the Langmuir and Freundlich isotherm equations. The Langmuir isotherm equation was determined to be q = 6.700 C/1 + 8.447 x 10-5C and the Freundlich isotherm equation is q = 45.431 C/sup 1/1.401/. A rotary precoat filtration technique was used for dewatering the slurries of the montmorillonite clay and diatomaceous earth mixture. The rate of filtration was found to be a function of the weight percent of the clay, applied vacuum, drum speed and precoat thickness. The functional relationship is of the form Q = (0.682 + 0.035 X1 - 0.014 X2 + 0.140 X3 + 0.007 X1X2)/1 + (3.744 - 0.767 X3 + 0.079 X1X2)C125. 15 figures, 11 tables

  3. Partitioning of U, Np, Th, and Eu between acidic aqueous Al(NO3)3 solutions and various TOPO extraction chromatographic materials

    As the Hanford site undergoes remediation, it is noted that significant economies could be realized by minimizing the amount of aluminum deposited in High-Level Waste glass. Though such a step is not planned, an acidic scrub of the Hanford sludge could enhance Al removal. It is likely that the resulting Al(NO3)3 solution would contain measurable amounts of transuranic elements, thus the solution might require some secondary treatment to remove TRU contamination. Thus far, extraction chromatography (EXC) has shown promise as an alternative to a liquid-liquid remediation of the Hanford site. Previous EXC studies have shown >99% of the Eu can be extracted from simulated Al/Cr waste. This study continues an examination of a hypothetical secondary cleanup of the waste by studying the removal of UO22+, NpO2+, NpO22+ and Th4+ from using tri-n-octyl phospine oxide (TOPO) impregnated XAD7 resins. Neptunium was held in the V and VI oxidation states using ascorbic acid and chromate, respectively. Initial results show extraction following classical metal recovery trends, wherein an increased Zeff correlates with increased distribution of the metal into the organic resin phase. The uptake of Eu3+ (representative of An3+) on a column of the same material was also investigated. Uptake kinetics were improved by wetting the TOPO-XAD7 resin with n-dodecane (TOPO-XAD7n). The presence of n-dodecane also provided consistency between batch mode and column mode metal recovery. Preliminary data show >99% recovery of metal ions with a Zeff ≥ 3 under various simulated conditions.

  4. Influence of coal properties on mercury uptake from aqueous solution

    Lakatos, J.; Brown, S.D.; Snape, C.E. [Miskolc University, Miskolc-Egyetemvaros (Hungary). Research Inst. of Applied Chemistry

    1999-10-01

    The uptake of mercury (II) from aqueous solution by a range of coals has been studied and the results have been compared to those for a number of other sorbents, including commercial active carbons and cation-exchange resins. At pH 5 in a buffer medium, the capacities for mercury removal of the low-rank coals and the oxidized bituminous coals investigated are comparable to those of the other sorbents tested. For the lignites investigated, a high content of organic sulfur does not markedly affect the capacity for mercury uptake in relatively neutral and low chloride media, owing to redox reactions being the most likely mechanism involved. However, in highly acidic solutions, the capacities for mercury uptake are considerably greater for the high-sulfur coals investigated than for their low-sulfur counterparts due to chelation being the major sorption process involved. 36 refs., 4 figs., 7 tabs.

  5. Oxidative aromatization of Hantzsch 1,4-dihydropyridines by aqueous hydrogen peroxide-acetic acid

    2007-01-01

    A simple method for the oxidative aromatization of Hantzsch 1,4-dihydropyridines to the corresponding pyridines is achieved by using hydrogen peroxide as green oxidant and acetic acid as catalyst in aqueous solution.

  6. Solvent extraction of scandium by TBP from inorganic acid solutions

    Studied has been the distribution of scandium between the 100% TBP and the aqueous solutions of the nitric and hydrochloric acids with the various concentrations of scandium and acids. A relationship has been determined between the concentration constants of the scandium extraction from the solutions of the nitric, hydrochloric, sulfuric and chlorous acid solutions, the hydration energies of the extracting ions and the stability constants of the complexes, comprising scandium and anions

  7. Ruthenium nitrosyl complexes in nitric acid solutions

    Nine nitrosyl ruthenium complexes have been separated and identified in aqueous solutions of nitric acid. The separation method was low temperature, gradient elution, reverse phase partition chromatography using tri-n-butyl phosphate on a kiesel gel 60 support using 106Ru labelled complexes in the nitric acid phase. The identification of the complexes was deduced from the relationships between the products of aquation and nitration and paper chromatography using both methyl-iso-propyl ketone and nitric acid-acetone elutions. The proportion of each complex at equilibrium in various concentrations of nitric acid have been measured. The rates of nitration in 10 M nitric acid, and of aquation in 0.45 M nitric acid have been determined at 00C. (author)

  8. Thermodynamic Analysis of the Conformational Transition in Aqueous Solutions of Isotactic and Atactic Poly(Methacrylic Acid and the Hydrophobic Effect

    Ksenija Kogej

    2016-04-01

    Full Text Available The affinity of amphiphilic compounds for water is important in various processes, e.g., in conformational transitions of biopolymers, protein folding/unfolding, partitioning of drugs in the living systems, and many others. Herein, we study the conformational transition of two isomer forms of poly(methacrylic acid (PMA, isotactic (iPMA and atactic (aPMA, in water. These isomers are chemically equivalent and differ only in the arrangement of functional groups along the chain. A complete thermodynamic analysis of the transition of the PMA chains from the compact to the extended form (comprising the conformational transition in water in the presence of three alkali chlorides is conducted by determining the free energy, enthalpy, and entropy changes of the process as a function of temperature, and therefrom also the heat capacity change. The heat capacity change of the transition is positive (+20 J/K mol for aPMA and negative (−50 J/K mol for iPMA. This result suggests a different affinity of PMA isomers for water. The conformational transition of iPMA is parallel to the transfer of polar solutes into water, whereas that of aPMA agrees with the transfer of nonpolar solutes into water.

  9. Hydroxyl radical induced degradation of salicylates in aerated aqueous solution

    Ionizing radiation induced degradation of acetylsalicylic acid, its hydrolysis product salicylic acid and a salicylic acid derivative 5-sulpho-salicylic acid, was investigated in dilute aqueous solutions by UV–vis spectrophotometry, HPLC separation and diode-array or MS/MS detection, chemical oxygen demand, total organic carbon content and by Vibrio fischeri toxicity measurements. Hydroxyl radicals were shown to degrade these molecules readily, and first degradation products were hydroxylated derivatives in all cases. Due to the by-products, among them hydrogen peroxide, the toxicity first increased and then decreased with the absorbed dose. With prolonged irradiation complete mineralization was achieved. - Highlights: • In OH induced reactions of salicylates first products are hydroxylated derivatives. • With prolonged irradiation dihydroxy derivatives also form. • In aerated solutions the one-electron oxidant OH induces 3–4 oxidations. • Toxicity first increases and then decreases with dose mainly due to H2O2 formation. • The toxicity in tap water is smaller than in pure water

  10. Compositions for preparation of aqueous solutions of salts of lower valence /sup 99/Tc

    Schmidt-Dunker, M.; Greb, W.

    1979-01-09

    Aqueous solutions of /sup 99/Tc salts in which the /sup 99/Tc is in reduced valencey state, when administered to mammals, permit identification of the skeleton and of calcareous tumors by scintigraphy (radiographic scanning). The solutions are conveniently prepared by mixing one or more phosphonic acids (or their salts) with one or more reducing salts, and adding the mixture to an aqueous solution of a pharmaceutically acceptable /sup 99/pertechnetate salt. Reduction of the valence of the technetium occurs rapidly, and the resulting solution is adequately stable for use in scintigraphy. The phosphonic acid and reducing salt components can be premixed. Aqueous solutions of the premix are stable for long periods of time in the absence of free oxygen and the premix is stable to air so long as it is dry.

  11. Enhanced diffusion of polycyclic aromatic hydrocarbons in artificial and natural aqueous solutions

    Mayer, Philipp; Fernqvist, M.M.; Christensen, P.S.; Karlson, U.; Trapp, Stefan

    2007-01-01

    solutions, humic acid solutions, aqueous soil and horse manure extracts, digestive fluid of a deposit-feeding worm, and root exudates from willow plants. In most cases the diffusive mass transfer of PAHs was much higher through the tested media than through water, and the enhancement factors increased with...

  12. Basic physical and chemical properties of ReillexTM-HPQ anion exchange resin and its sorption behavior of halides in aqueous nitric acid solution

    The ReillexTM-HPQ anion exchange resin has a good potential toward the pretreatment of liquid nuclear wastes. In this work, a short procedure was devised to convert 99.997% of the resin from its chloride form to the nitrate form as a foundation of all quantitative measurements. It is determined that the resin can be dried to a constant mass at 60 degree C in 28 hours and the electrostatic effect during weighings can hence be eliminated. The weight ratio between resins dried at 110 degree C and 60 degree C is 0.927±0.005 (one standard deviation). The resin has an apparent pKa of 3.36±0.05. The sorption capacity from primarily the weakly basic ionogenic sites (RNH+) is 1.08±0.04 meq/g for resins dried at 60 degree C. In highly basic solutions, the resin became unstable and started to release a substantial amount of methanol. In nitric acid solutions, the selectivity sequence of halide ions versus nitrate and pertechnetate ions is: TcO4- > I- > NO3- > Br- > Cl- > F-. The HPQ resin showed no sorption of fluoride ions. Although the sorption of chloride ions is also low the data can be modeled well by an equation similar to the Freundlich isotherm at a pH range between 2.0 and 3.0. Both bromide and iodide ions showed moderate sorptions when [HNO3] = 1.00 M and the sorption data can be fitted well to an equation closely related to the Temkin isotherm. 25 refs., 6 figs., 5 tabs

  13. Thermophysical Properties of Aqueous Solutions Used as Secondary Working Fluids

    Melinder, Åke

    2007-01-01

    Secondary working fluids (secondary refrigerants, heat transfer fluids, antifreezes, brines) have long been used in various indirect re-frigeration and heat pump systems. Aqueous solutions (water solu-tions) have long been used as single phase (liquid only) secondary working fluids for cooling in supermarkets, ice rinks, heat recovery systems, heat pumps and other applications. However, aqueous solutions are increasingly used also for freezers in supermarkets and other applications in low tem...

  14. Removal of Some Chelators from Aqueous Solutions Using Polymeric Ingredients

    This work tries to throw a light on the removal of thenoyl trifluoroacetone (TTA) and ethylene diamine tetraacetic acid (EDTA), extractants extensively used in many nuclear facilities, from aqueous solutions under different experimental conditions using Amberlite XAD resins. The applied resins exhibit high retention ability for the studied chelators with a maximum sorption capacity has the values of 23.9 and 38.0 mgg-1 for sorption of TTA and EDTA on Amberlite XAD4 and 18.6 and 21.2 mgg-1 for their sorption of on Amberlite XAD7. Factors affecting the resin retention ability such as ph value of aqueous solution and presence of co solvent have been studied. The kinetics of sorption behavior, in the applied system, indicate the process to be controlled by more than one diffusion mechanism. Therefore, two diffusion models were utilized to understand and verify the mechanism of sorption processes; they are the film mass transfer model and the interparticle diffusion model. The first model, based on film resistance, gave a successful depiction for sorption of TTA onto Amberlite XAD4 and XAD7 and the second one displayed an acceptable prediction for sorption of EDTA onto Amberlite XAD4

  15. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution

    Coria-Monroy, C. Selene; Sotelo-Lerma, Mérida; Hu, Hailin

    2016-06-01

    CdSe is a widely researched material for photovoltaic applications. One of the most important parameters of the synthesis is the pH value, since it determines the kinetics and the mechanism of the reaction and in consequence, the optical and morphological properties of the products. We present the synthesis of CdSe in solution with strict control of pH and the comparison of ammonia and KOH as alkaline sources and diluted HCl as acid medium. CdSe formation was monitored with photoluminescence emission spectra (main peak in 490 nm, bandgap of CdSe nanoparticles). XRD patterns indicated that CdSe nanoparticles are mainly of cubic structure for ammonia and HCl, but the hexagonal planes appear with KOH. Product yield decreases with pH and also decreases with KOH at constant pH value since ammonia has a double function, as complexing agent and alkaline source. Changes in morphology were observed in SEM images as well with the different alkaline source. The effect of alkaline sources on photovoltaic performance of hybrid organic solar cells with CdSe and poly(3-hexylthiophene) as active layers was clearly observed, indicating the importance of synthesis conditions on optoelectronic properties of promising semiconductor nanomaterials for solar cell applications.

  16. Radiolysis of aqueous-ethanolic solution of tryptophan

    The effect of ethanol on radiation stability of tryptophan during γ-irradiation of its aqueous solutions was investigated. In comparison with radiation losses of tryptophan irradiated in pure water, the losses in aqueous-ethanolic solutions are considerably higher and they increase with increasing ethanol concentration. Basic radiation products of tryptophan formed on irradiation of its aqueous-ethanolic solutions in consequence of the reaction of tryptophan with acetaldehyde as the main product of radiolysis of ethanol were followed by paper electrophoresis. (author)

  17. Examination of rheological properties of aqueous solutions of sodium caseinate

    Jolanta Gawałek

    2012-12-01

    Full Text Available Application of sodium caseinate as a functional additive in manufacturing processes requires production of its concentrated aqueous solutions which, in industrial conditions, presents a number of difficulties. In order to develop an effective and optimal industrial process of mixing – manufacturing a concentrated solution of sodium caseinate, it is essential to know rheological properties in a definite range of concentrations changing in the course of the dissolving process. The material for investigations was typical commercial sodium caseinate in the form of dry powder manufactured in Poland from acid casein using the method of extrusion. The objective of the undertaken empirical studies was the assessment of the impact of the concentration on rheological properties of sodium caseinate concentrates. Investigations were carried out for five concentrates manufactured in a mixer equipped in a mechanical agitator at concentrations ranging X (% Î (2.5¸12.5 and changing mass proportions of sodium caseinate in the aqueous solution as follows: GS/G (kgS·kg-1 = 0.025. On the basis of the obtained research results, classical flow curves were plotted for individual concentrates. The determined values of viscosity and density of the examined solutions were correlated in the form of h = f(GS/G and r = f(GS/G dependencies which were used during the determination of classical characteristics of mixing forces essential for the assessment of energetic expenditures required to manufacture concentrates in a mixer equipped in a mechanical agitator. The density of the examined concentrates increased in a way directly proportional, while the dynamic viscosity coefficient increased exponentially together with the increase of sodium caseinate concentration. Sodium caseinate concentrates exhibited Newtonian character in the examined range of concentrations.

  18. Radiation-induced degradation of 4-chloroaniline in aqueous solution

    The radiation-induced decomposition of 4-chloroaniline (4-ClA) was studied under steady-state conditions using aqueous solutions saturated with air, pure oxygen, N2O, argon and argon in the presence of t-Butanol. Using HPLC-method, the initial G-values of the substrate degradation as well as of a number of radiolytic products were determined. The formation of aminophenols, chlorophenols, aniline and phenol in addition to chloride, ammonia, formaldehyde and mixture of aldehydes as well as carboxylic acids was studied as a function of absorbed dose. Based on the experimental data, probable reaction mechanisms for the degradation of 4-ClA by γ-rays and the formation of the identified products are presented

  19. Adsorption of basic dye from aqueous solution onto fly ash

    J.X. Lin; S.L. Zhan; M.H. Fang; X.Q. Qian; H. Yang [Zhejiang University, Hangzhou (China). College of Civil Engineering and Architecture

    2008-04-15

    The fly ash treated by H{sub 2}SO{sub 4} was used as a low-cost adsorbent for the removal of a typical dye, methylene blue, from aqueous solution. An increase in the specific surface area and dye-adsorption capacity was observed after the acid treatment. The adsorption isotherm and kinetics of the treated fly ash were studied. The experimental results were fitted using Langmuir and Freundlich isotherms. It shows that the Freundlich isotherm is better in describing the adsorption process. Two kinetic models, pseudo-first order and pseudo-second order, were employed to analyze the kinetic data. It was found that the pseudo-second-order model is the better choice to describe the adsorption behavior. The thermodynamic study reveals that the enthalpy ({Delta}H{sup 0}) value is positive (5.63 kJ/mol), suggesting an endothermic nature of the adsorption.

  20. Aqueous dispersions of silver nanoparticles in polyelectrolyte solutions

    Dan Donescu; Raluca Somoghi; Marius Ghiurea; Raluca Ianchis; Cristian Petcu; Stefania Gavriliu; Magdalena Lungu; Claudia Groza; Carmen R Ionescu; Carmen Panzaru

    2013-03-01

    In this report, we present the versatile and effective technique, using environmental friendly reductant glucose, to prepare stable silver nanodispersions by reduction of Ag+ ions. Alternant copolymers of maleic anhydride with vinyl acetate and styrene sulphonate sodium acid salt polyelectrolytes were synthesized in aqueous solution and used as stabilizers. The formation of nano silver particles was confirmed by UV-Vis spectrophotometry and TEM measurements. Dynamic Light Scattering (DLS) measurements were needed to study how the reagents and their concentrations influence particle size. SEM images show the nanostructure of the hybrid films and indicate a strong interaction between the polyelectrolyte and the silver NPs. Moreover, the silver NPs could be stored for one year without observation of aggregates or sedimentation. The final solid products obtained after evaporating to dryness can be used to produce stable dispersions upon mixing with water. Few of the final products were found to exhibit a high antibacterial and antifungal activity.

  1. Acidic aqueous uranium electrodeposition for target fabrication

    Direct irradiation of targets inside nuclear research or multiple purpose reactors is a common route to produce 99Mo-99mTc radioisotopes. The electroplating of low enriched uranium over nickel substrate might be a potential alternative to produce targets of 235U. The electrochemistry of uranium at low temperature might be beneficial for an alternative route to produce 99Mo irradiation LEU targets. Electrodeposition of uranium can be made using ionic and aqueous solutions producing uranium oxide deposits. The performance of uranium electrodeposition is relatively low because a big competition with H2 evolution happens inside the window of electrochemical reduction potential. This work explores possibilities of electroplating uranium as UO22+ (Uranium-VI) in order to achieve electroplating uranium in a sufficient amount to be commercially irradiated in the future Brazilian RMB reactor. Electroplated nickel substrate was followed by cathodic current electrodeposition from aqueous UO2(NO3)2 solution. EIS tests and modeling showed that a film formed differently in the three tested cathodic potentials. At the lower level, (-1.8V) there was an indication of a double film formation, one overlaying the other with ionic mass diffusion impaired at the interface with nickel substrate as showed by the relatively lower admittance of Warburg component. (author)

  2. Nanoscale lubricating film formation by linear polymer in aqueous solution

    Liu, Shuhai; Guo, Dan; Xie, Guoxin

    2012-11-01

    Film-forming properties of polymer in aqueous solution flowing through a nanogap have been investigated by using a thin film interferometry. The film properties of linear polymer in aqueous solution flowing through a confined nanogap depend on the ratio of water film thickness to averaged radius of polymer chains H0/RPolymer. It was found that the lubrication film thickness of linear polymer in aqueous solution decreases as the polymer molecular weight increasing when H0/RPolymer < 2 ˜ 3. A new lubrication map was proposed, which includes the lubrication regime of weak confinement influence, the lubrication regime of strong confinement influence (LRSCI), and the transition regime of confinement influence. It is very difficult to increase the lubrication film thickness using the higher molecule weight in the LRSCI regime. The lubrication mechanism inferred from our experimental results may help to better understand the dynamic film properties of linear polymer in aqueous solution flowing through a nanogap.

  3. Surface tension and related thermodynamic quantities of aqueous electrolyte solutions

    Matubayasi, Norihiro

    2013-01-01

    Surface tension provides a thermodynamic avenue for analyzing systems in equilibrium and formulating phenomenological explanations for the behavior of constituent molecules in the surface region. While there are extensive experimental observations and established ideas regarding desorption of ions from the surfaces of aqueous salt solutions, a more successful discussion of the theory has recently emerged, which allows the quantitative calculation of the distribution of ions in the surface region. Surface Tension and Related Thermodynamic Quantities of Aqueous Electrolyte Solutions provides a d

  4. γ-Irradiation-induced radiolysis of inulin in aqueous solutions

    Radiochemical transformations of inulin in aqueous solutions, in air, in the presence of inert gases, helium, nitrogen and in nitrous oxide exposed to various doses of 60Co γ-irradiation were investigated. It was shown that interactions in inulin with OH radicals are principally responsible for radiolytic decomposition of inulin. The data on radiolysis of more simple model systems were used to make available decomposition spectra of γ-irradiated aerated aqueous solution of inulin. 9 refs., 6 figs

  5. Visible-Light-Induced Specific Desulfurization of Cysteinyl Peptide and Glycopeptide in Aqueous Solution.

    Gao, Xiao-Fei; Du, Jing-Jing; Liu, Zheng; Guo, Jun

    2016-03-01

    Visible-light-induced specific desulfurization of cysteinyl peptides has been explored. The photocatalytic desulfurization catalyzed by Ru(bpy)3(2+) can proceed efficiently at room temperature in aqueous solution or in binary mixtures of aqueous/organic solvent and be compatible with the presence of residues of amino acids, carbohydrates, and various sulfur-containing functional groups. This approach was successfully applied to synthesize linear and cyclic peptides through the ligation-desulfurization protocol. PMID:26892036

  6. Pulse Radiolysis of Aqueous Solutions of Aniline and Substituted Anilines

    The primary reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals with aniline and the aniline cation in aqueous solutions have been studied by the technique of pulse radiolysis and by determination of end products after y-radiolysis. Hydrogen atoms and hydrated electrons react with aniline under formation of the cyclohexadienyl type radical with absorption maximum at 355 nm and an extinction coefficient of 4100/M/cm. A similar radical formed by reaction of hydrogen atoms with the aniline cation has its absorption maximum at 31 0 nm and an extinction coefficient of 3200/M/cm. Hydrogen atoms react with the acid and neutral forms of aniline with rate constants of (1.3 ± 0.2 ) x 109/M/s and (2.9 ± 0.7) x 109/M/s, respectively. OH radicals react with aniline with a rate constant of (1.4 ± 0.3) x 1010/M/s under formation of the cyclohexadienyl radical with absorption maximum at 355 nm and the anilino radical with absorption maxima at 300 and 400 nm. The cyclohexadienyl radical decayed in a first order process with a rate constant of 1.4 x 105/s by elimination of NH3, whereas the anilino radical disappeared in a second order reaction under formation of hydrazobenzene. O- radicals react with aniline at pH 13.3 with a rate constant of (3.1 ± 0.6) x 109 under formation of anilino radicals. The reaction of OH radicals with the aniline cation produced the anilino radical cation with a rate constant of (4.8 ± 0.8) x 109 . The absorption maximum was placed at 415 nm, The cyclohexadienyl type radical with absorption maximum at 350 nm was also found in aqueous solutions of 2-amino-1,3-dimethylbenzene but was not formed in solutions of N,N' -dimethylaniline

  7. Absolute rate constants of alkoxyl radical reactions in aqueous solution

    The pulse radiolysis technique was used to generate the alkoxyl radical derived from tert-butyl hydroperoxide (/sup t/BuOOH) in aqueous solution. The reactions of this radical with 2,2'-azinobis(3-ethyl-6-benzothiazolinesulfonate) (ABTS) and promethazine were monitored by kinetic spectroscopy. The unimolecular decay rate constant of the tert-butoxyl radical (/sup t/BuO) was determined to be 1.4 x 106 s-1. On the basis of this value, the rate constants for /sup t/BuO attack on quercetin, crocin, crocetin, ascorbate, isoascorbate, trolox c, glutathione, thymidine, adenosine, guanosine, and unsaturated fatty acids were determined. In addition, the reaction of /sup t/BuO with the polyunsaturated fatty acids (PUFA) was observed by directly monitoring the formation of the fatty acid pentadienyl radicals. Interestingly, the attack of /sup t/BuO on PUFA was found to be faster by about one order of magnitude as compared to the same reaction in a nonpolar solvent

  8. Ultrasonic Measurements of Temperature in Aqueous Solutions: Why and How

    A. Afaneh

    2011-01-01

    Full Text Available The paper describes two different approaches to ultrasonic measurements of temperature in aqueous solutions. The first approach uses two narrowband ultrasonic transducers and support electronics that form an oscillating sensor which output frequency is related to the measured temperature. This low-cost sensor demonstrated sensitivity of about 40 Hz/K at the distance of 190 mm and the operating frequency of about 25 kHz. The second approach utilised pulse-echo mode at the centre frequency of 20 MHz. The reflector featured a cavity that was filled with deionised water. The ultrasound propagation delay in the cavity was related to the temperature in the solution. The experiments were conducted for deionised water, and solutions of sodium persulfate, sodium chloride, and acetic acid with concentrations up to 0.5 M. In the experiments (conducted within the temperature range from 15 to 30°C, we observed increases in the ultrasound velocity for increased temperatures and concentrations as was expected. Measurement results were compared with literature data for pure and seawater. It was concluded that ultrasonic measurements of temperature were conducted with the resolution well below 0.1 K for both methods. Advantages of ultrasonic temperature measurements over conventional thermometers were discussed.

  9. Actinide phosphonate complexes in aqueous solutions

    Complexes formed by actinides with carboxylic acids, polycarboxylic acids, and aminopolycarboxylic acids play a central role in both the basic and process chemistry of the actinides. Recent studies of f-element complexes with phosphonic acid ligands indicate that new ligands incorporating doubly ionizable phosphonate groups (-PO3H2) have many properties which are unique chemically, and promise more efficient separation processes for waste cleanup and environmental restoration. Simple diphosphonate ligands form much stronger complexes than isostructural carboxylates, often exhibiting higher solubility as well. In this manuscript recent studies of the thermodynamics and kinetics of f-element complexation by 1,1 and 1,2 diphosphonic acid ligands are described

  10. Partial molar volumes and viscosity B-coefficients of arginine in aqueous glucose, sucrose and L-ascorbic acid solutions at T = 298.15 K

    Densities and viscosities of arginine in (glucose + water), (sucrose + water) and (L-ascorbic acid + water) mixed solvents have been measured at T 298.15 K by an oscillating-tube densimeter and viscometer. Standard-state partial molar volume, hydration number and viscosity B-coefficients of arginine have been calculated. The transfer volumes from water to (sugar + water) or (L-ascorbic acid + water) mixed solvents have been obtained and discussed in terms of the structural hydration interaction model. The results indicate that the partial molar volumes of transfer and viscosity B-coefficients of arginine increase with increasing the mass concentration of sugar or L-ascorbic acid, and the hydration number of arginine decreases owing to the interaction of sugar or L-ascorbic acid and the zwitterionic groups. It is concluded that the magnitude of the enhancement effect on volume and hydration number is related to the number of OH groups and the structure of mixture solvent

  11. Sequential study on reactive blue 29 dye removal from aqueous solution by peroxy acid and single wall carbon nanotubes: experiment and theory

    Jahangiri-Rad Mahsa; Nadafi Kazem; Mesdaghinia Alireza; Nabizadeh Ramin; Younesian Masood; Rafiee Mohammad

    2013-01-01

    Abstract The majority of anthraquinone dye released to the environment come from antrapogenic sources. Several techniques are available for dyes' removal. In this study removal of reactive blue 29 (RB29) by an advanced oxidation process sequenced with single wall carbon nanotubes was investigated. Advanced oxidation process was optimized over a period of 60 minutes by changing the ratio of acetic acid to hydrogen peroxide, the compounds which form peroxy acid. Reduction of 20.2% -56.4% of rea...

  12. Uranium (VI) complexing by macrocyclic or chelating ligands in aqueous solutions stability, formation kinetics, polarographic properties

    Stability of chelates (with EDTA,N,N ethylenediamine diacetic acid EDDA nitrilotriacetic acid NTA and iminodiacetic acid) of UO22+ and UO4 species of uranium VI is studied in aqueous solution (NaClO4 3M at 25 deg celcius). Structure in solution are proposed and discussed for mononuclear species. Only complexing kinetics (formation and acid hydrolysis) of UO4 with EDDA and NTA are studied by spectrophotometry (other reactions are too fast). Besides UO22+ complexes are formed with crown ethers I5C5 and I8C6 in aqueous solution (TEA ClO4 M/10 at 25 deg celcius. Complexes are probably stabilized by solvation. Results are confirmed by voltametry and reduction mechanisms of UO22+ and its complexes on mercury drop are proposed. 143 refs

  13. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    Hata, Kuniki [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Urushibara, Ayumi; Yamashita, Shinichi; Shikazono, Naoya; Yokoya, Akinari [Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Katsumura, Yosuke, E-mail: katsu@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering and Management, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nuclear Professional School, School of Engineering, The University of Tokyo, 2-22 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 319-1188 (Japan)

    2013-05-03

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield of DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems.

  14. Chemical repair of base lesions, AP-sites, and strand breaks on plasmid DNA in dilute aqueous solution by ascorbic acid

    Highlights: •We report a novel mechanism of radiation protection of DNA by chemical activity of ascorbic acid. •The “chemical repair” of DNA damage was revealed using biochemical assay and chemical kinetics analysis. •We found that ascorbic acid significantly repairs precursors of nucleobase lesions and abasic sites. •However, ascorbic acid seldom repairs precursors of DNA-strand breaks. -- Abstract: We quantified the damage yields produced in plasmid DNA by γ-irradiation in the presence of low concentrations (10–100 μM) of ascorbic acid, which is a major antioxidant in living systems, to clarify whether it chemically repairs radiation damage in DNA. The yield of DNA single strand breaks induced by irradiation was analyzed with agarose gel electrophoresis as conformational changes in closed circular plasmids. Base lesions and abasic sites were also observed as additional conformational changes by treating irradiated samples with glycosylase proteins. By comparing the suppression efficiencies to the induction of each DNA lesion, in addition to scavenging of the OH radicals derived from water radiolysis, it was found that ascorbic acid promotes the chemical repair of precursors of AP-sites and base lesions more effectively than those of single strand breaks. We estimated the efficiency of the chemical repair of each lesion using a kinetic model. Approximately 50–60% of base lesions and AP-sites were repaired by 10 μM ascorbic acid, although strand breaks were largely unrepaired by ascorbic acid at low concentrations. The methods in this study will provide a route to understanding the mechanistic aspects of antioxidant activity in living systems

  15. Interaction of ferroceneboronic acid with diols at aqueous and non-aqueous conditions - signalling and binding abilities of an electrochemical probe for saccharides

    Highlights: • Electrochemical characterisation of ferroceneboronic acid-diol interactions in non-aqueous solutions. • Elucidation of the signalling process and signalling mechanism of the ferroceneboronic acid upon interaction with diols in aqueous and non-aqueous solutions. • Effect of coordination of boron atom on electrochemistry of ferroceneboronic acid in free and bound forms with diols. - Abstract: Ferroceneboronic acid (FcBA) was employed as a model compound for clarification of binding and signalling properties of molecular probe for saccharides. As the simplest electrochemically active boronic acid, its interactions with diverse diols were studied in homogeneous phase under aqueous and non-aqueous conditions. The FcBA-diol system was examined by cyclic voltammetry resulting in two redox pairs corresponding to free and bound forms of FcBA. Redox potential of the bound form of FcBA was shifted in the cathodic direction in aqueous conditions due to coordination of the hydroxyl group to the boron atom. Oppositely, the anodic shift of the redox potential was observed upon the interaction of FcBA with diols in non-aqueous solvents. The binding properties and signalling mechanism of electrochemically active boronic acids were deduced and the assumptions resulting from the electrochemical behaviour were confirmed by 1H and 11B NMR spectroscopies. The binding constants of the tested diols in aqueous and non-aqueous media were determined and compared

  16. Degradation of 2,4-dihydroxibenzoic acid by vacuum UV process in aqueous solution: Kinetic, identification of intermediates and reaction pathway

    Azrague, Kamal [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France); Department for Water and Environment, SINTEF, Klaebuveien 153, Trondheim 7465 (Norway); Pradines, Vincent; Bonnefille, Eric [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France); Laboratoire LCC, CNRS, 205 route de Narbonne, F31077 Toulouse Cedex 4 (France); Claparols, Catherine [Laboratoire LCC, CNRS, 205 route de Narbonne, F31077 Toulouse Cedex 4 (France); Universite de Toulouse, UPS, Service Commun de Spectrometrie de Masse, 118 route de Narbonne, F31062 Toulouse Cedex 9 (France); Maurette, Marie-Therese [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France); Benoit-Marquie, Florence, E-mail: florence@chimie.ups-tlse.fr [Laboratoire IMRCP, CNRS UMR 5623, University of Toulouse, 118 route de Narbonne, 31062 Toulouse (France)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer Degradation of 2,4-dihydroxybenzoic acid (DHBA) by vacuum UV photolysis of water. Black-Right-Pointing-Pointer V-UV Xe-excimer lamps produced essentially hydroxyl radicals (HO Degree-Sign ). Black-Right-Pointing-Pointer Identification of all intermediates formed allowed us to propose a reaction pathway. Black-Right-Pointing-Pointer This reaction pathway showed that DHBA reacts differently with HO Degree-Sign and h+. Black-Right-Pointing-Pointer DHBA would be used as a probe to determine which of these entities were involved. - Abstract: 2,4-Dihydroxybenzoic acid (2,4-DHBA) is found frequently as a pollutant in natural waters and represents a threat to water quality because it is a precursor to the formation of quinones which are highly toxic. The degradation of 2,4-DHBA using the vacuum UV photolysis of water has been investigated. Irradiation was carried out in an annular photoreactor equipped with a Xe-excimer lamp situated in the centre and emitting at 172 nm. The degradation kinetic followed a pseudo first order and the reaction has been found to be very heterogeneous, especially at low concentration. Impacts of oxygen or temperature have also been investigated but no effect has been shown. LC-MS and HPLC-UV combined with other analytical techniques allowed the identification of the formation of trihydroxybenzoiec acids and trihydroxybenzenes which underwent a ring opening, conducting to the formation of aliphatic products named {alpha}, {beta}, {delta} and {gamma}. These products were in turn degraded successively into maleiec acid, malic and succinic acid, malonic acid, glyoxalic acid and oxalic acid before reaching the complete mineralization in about 180 min. The proposed reaction pathway has shown to be very different from the one observed for the TiO{sub 2} photocatalysis which involves only holes (h{sup +}) without any formation of aromatic intermediates. The different behaviours of 2,4-DHBA towards the h

  17. Study on specific enthalpy of ice including solute in aqueous solution

    Kumano, Hiroyuki; Hirata, Tetsuo; Izumi, Yasuyuki [Department of Mechanical Systems Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553 (Japan)

    2010-05-15

    Effects of solute included in a sample on the specific enthalpy of ice are investigated experimentally. In the experiments, ice including the solute was made from an aqueous solution, and the specific enthalpy was measured by melting the ice in the aqueous solution. Moreover, a physical model of the ice including the solute is proposed. As a result, when the concentration of the aqueous solution is set at a value equivalent to the concentration of the sample, the specific enthalpy of the sample increases with the concentration of the sample. The measurement results and the calculated values agree well, and it was found that the method for calculating the specific enthalpy of the sample is valid. Moreover, when the concentration of the aqueous solution is higher than that of the ice including the solute, it was found the calculation method for the specific enthalpy of the sample is appropriate. (author)

  18. SEPARATION OF TECHNETIUM FROM AQUEOUS SOLUTIONS BY COPRECIPITATION WITH MAGNETITE

    Rimshaw, S.J.

    1961-10-24

    A method of separating technetium in the 4+ oxidation state from an aqueous basic solution containing products of uranium fission is described. The method consists of contacting the solution with finely divided magnetite and recovering a technetium-bearing precipitate. (AEC)

  19. Radiolysis of aqueous solutions of sodium sulfides. Chapter 8

    To study the radiolysis of the aqueous solutions of sodium sulphide, use was made of infrared spectroscopy, mass-spectrometry and iodometric titration. During the γ-irradiation of the aqueous solutions of sodium sulphide one can observe the appearance of various stable sulphur-containing products. Data are discussed on the radiolysis in a nitrous environment, on oxygen bubbling, at varying radiation doses, pH and temperature values. Consideration is also given to the low-temperature radiolysis of the aqueous solutions of sodium sulphide by the EPR method. In the radiolysis of both crystalline and glassy solutions of Na2S there appear an ion-radical S- and a radical SO2-

  20. Antiscalant properties of Spergularia rubra and Parietaria officinalis aqueous solutions

    Cheap-Charpentier, Hélène; Gelus, Dominique; Pécoul, Nathalie; Perrot, Hubert; Lédion, Jean; Horner, Olivier; Sadoun, Jonathan; Cachet, Xavier; Litaudon, Marc; Roussi, Fanny

    2016-06-01

    The formation of calcium carbonate in water has important implications in industry. Chemical antiscalant is usually used to control scale depositions. Plant extracts have been recently used as new green antiscalant agents, as they can be easily prepared and are environmentally friendly. In this study, stock aqueous solutions of Spergularia rubra and Parietaria officinalis, two plants used in traditional medicine to treat or prevent urolithiasis, were obtained by infusion. The antiscaling properties of these extracts towards CaCO3 formation were tested by using chronoamperometry and Fast Controlled Precipitation methods. The aqueous solution of S. rubra was further fractionated to isolate compounds of lower polarity. Their efficiency towards CaCO3 precipitation was characterized by Fast Controlled Precipitation method. The inhibiting efficiency of this fractionated solution was greater than that of the stock aqueous solution.

  1. Tritium exchange reactions in imidazole in aqueous and organic solutions

    Tritium exchange reactions were studied in aqueous and organic solutions of imidazole and methylimidazole. For the exchange in an aqueous solution the mechanism through ylide intermediate formation postulated by VAUGHAN et al. was modified in this study. The rate constant obtained by MASLOVA et al. was found to be too small compared to ours. For the exchange reaction of methylimidazole in an aqueous solution the rate decreased due to the effect of a methyl group attached to the aromatic ring. The C-2 tritiation of imidazole was studied in chloroform, acetone and dioxane for the first time. It was dependent on polymer properties. An intramolecular exchange mechanism was applicable to the trimer while an intermolecular exchange mechanism was applicable to the dimer. The rate constants of the exchange reactions in organic solutions were obtained for both mechanisms. (orig.)

  2. Synthesis and Aqueous Solution Viscosity of Hydrophobically Modified Xanthan Gum

    QIAN Xiao-lin; WU Wen-hui; YU Pei-zhi; WANG Jian-quan

    2007-01-01

    Two xanthan gum derivatives hydrophobically modified by 4 or 8 tetradecyl chains per 100 xanthan gum structure units were synthesized. The derivatives were studied by scanning electron microscope and pyrene fluorescence spectrometry. And the aqueous solution apparent viscosity of the derivatives was investigated. The results indicate that the network of the derivatives with more hydrophobic groups is closer and tighter. With increasing of alkyl chain substitution degree, the hydrophobically associating interactions enhance in aqueous solution. Aqueous solution apparent viscosity of the derivatives increases with increasing of polymer concentration and alkyl substitution degree, and decreases with the increase of temperature. In the brine solution, the strong viscosity enhancement phenomenon appears. The interaction between the derivatives and surfactant sodium dodecylbenzene sulfonate is strong.

  3. Multi-walled carbon nanotubes in aqueous phytic acid for enhancing biosensor

    The poor dispersion of carbon based nanomaterials without strong acid pretreatment in aqueous solution is a fundamental problem, limiting its applications in biology-related fields. A good dispersion of multi-walled carbon nanotubes (MWCNTs) in water was realized by 50 wt.% phytic acid (PA) solution. As an application case, the PA–MWCNTs dispersion in aqueous solution was used for the immobilization of horseradish peroxidase (HRP) and its direct electrochemistry was realized. The constructed biosensor has a sound limit of detection, wide linear range, and high affinity for hydrogen peroxide (H2O2) as well as being free from interference of co-existing electro-active species. (papers)

  4. Multi-walled carbon nanotubes in aqueous phytic acid for enhancing biosensor

    Guo, Xiaoyu; Miao, Yun; Ye, Pingping; Wen, Ying; Yang, Haifeng

    2014-04-01

    The poor dispersion of carbon based nanomaterials without strong acid pretreatment in aqueous solution is a fundamental problem, limiting its applications in biology-related fields. A good dispersion of multi-walled carbon nanotubes (MWCNTs) in water was realized by 50 wt.% phytic acid (PA) solution. As an application case, the PA-MWCNTs dispersion in aqueous solution was used for the immobilization of horseradish peroxidase (HRP) and its direct electrochemistry was realized. The constructed biosensor has a sound limit of detection, wide linear range, and high affinity for hydrogen peroxide (H2O2) as well as being free from interference of co-existing electro-active species.

  5. Specific staining of nuclei with aqueous solutions of celestin blue B and gallocyanine.

    Dutt, M K

    1982-09-01

    This paper presents methods for specific staining of nuclei with aqueous solutions of celestin blue B and gallocyanine in tissue sections from which RNA has been extracted selectively with concentrated phosphoric acid at 5 degrees C for 20 min or by hydrolysis in 6 N HCl at 28 degrees C for 15 min. It has been found that pH of the freshly prepared celestin blue B dye solution is 3.0 and that of an aqueous solution of gallocyanine is 2.8. These pHs can be lowered to 1.5 with concentrated sulphuric or nitric acid and at this pH staining of the nuclei is possible. But with concentrated sulphuric or nitric acid and at this pH staining of the nuclei is possible. But if the pHs are lowered with concentrated hydrochloric or phosphoric acid, effective use of these dyes is not possible. It has been suggested that some dispersion of the two dyes takes place with concentrated sulphuric or nitric acid which are used to lower the pH. Staining of the nuclei is also possible with an aqueous solution of celestin blue B at pH 3.0 but the same is not possible with gallocyanine at pH 2.8. The absorption spectra of nuclei stained with an aqueous solution of celestin blue B at pH 1.5 and 3.0 are fairly identical, the peak of maximum absorption being at 620 nm. Those of nuclei stained with an aqueous solution of gallocyanine reveal irregular peaks. Possible implications of these findings have been discussed. PMID:6183561

  6. Interfacial Molecular Organization at Aqueous Solution Surfaces of Atmospherically Relevant Dimethyl Sulfoxide and Methanesulfonic Acid Using Sum Frequency Spectroscopy and Molecular Dynamics Simulation

    Chen, X.; Minofar, Babak; Jungwirth, Pavel; Allen, H. C.

    2010-01-01

    Roč. 114, č. 47 (2010), s. 15546-15553. ISSN 1520-6106 R&D Projects: GA MŠk LC512 Grant ostatní: NSF(US) CHE0749807; NSF(US) CHE0909227 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z60870520 Keywords : dimethyl sulfoxide * methanesulfonic acid * molecular dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.603, year: 2010

  7. 18O isotope effect in 13C nuclear magnetic resonance spectroscopy. Part 9. Hydrolysis of benzyl phosphate by phosphatase enzymes and in acidic aqueous solutions

    The 18O isotope-induced shifts in 13C and 31P nuclear magnetic resonance (NMR) spectroscopy were used to establish the position of bond cleavage in the phosphatase-catalyzed and acid-catalyzed hydrolysis reactions of benzyl phosphate. The application of the 18O-isotope effect in NMR spectroscopy affords a continuous, nondestructive assay method for following the kinetics and position of bond cleavage in the hydrolytic process. The technique provides advantages over most discontinuous methods in which the reaction components must be isolated and converted to volatile derivatives prior to analysis. In the present study, [α-13C,ester-18O]benzyl phosphate and [ester-18O]benzyl phosphate were synthesized for use in enzymatic and nonenzymatic studies. Hydrolysis reactions catalyzed by the alkaline phosphatase from E. coli and by the acid phosphatases isolated from human prostate and human liver were all accompanied by cleavage of the substrate phosphorus-oxygen bond consistent with previously postulated mechanisms involving covalent phosphoenzyme intermediates. An extensive study of the acid-catalyzed hydrolysis of benzyl phosphate at 750C revealed that the site of bond cleavage is dependent on pH. At pH less than or equal to 1.3, the hydrolysis proceeds with C-O bond cleavage; at 1.3 2H]Benzyl phosphate was also synthesized. Hydrolysis of this chiral benzyl derivative demonstrated that the acid-catalyzed C-O bond scission of benzyl phosphate proceeds by an A-1 (S/sub N/1) mechanism with 70% racemization and 30% inversion at carbon. 37 references, 4 figures, 2 tables

  8. CYCLIC VOLTAMMETRY OF ORGANIC AND INORGANIC N-CHLORAMINES IN AQUEOUS SOLUTION

    Aqueous solutions or organic and inorganic N-chloramines as well as hypochlorite were examined by cyclic voltammetry at DH 8 and in strong acid (pH<2) with platinum and glassy carbon electrodes. The inorganic N-chloramines were characterized in 1 M HC104. NHC12 is reduced at abou...

  9. A magnetic relaxation study on anisotropic reorientation in aqueous polyelectrolyte solutions

    The present thesis proposes a study on anisotropic reorientation of aqueous polyelectrolyte solutions. In particular, it is directed to the question to what extent information may be obtained on anisotropic reorientation by nuclear magnetic relaxation experiments. The polymethacrylic acid/water system has been chosen as probe system. (Auth.)

  10. Plasmon interactions between gold nanoparticles in aqueous solution with controlled spatial separation

    Sendroiu, I.E.; Mertens, Stijn; Schiffrin, D.J.

    2006-01-01

    The effects of interparticle distance on the UV-visible absorption spectrum of gold nanocrystals aggregates in aqueous solution have been investigated. The aggregates were produced by ion-templated chelation of omega-mercaptocarboxylic acid ligands covalently attached to the nanoparticles surface...

  11. Growth kinetics of sulfur nanoparticles in aqueous surfactant solutions.

    Chaudhuri, Rajib Ghosh; Paria, Santanu

    2011-02-15

    Sulfur is an important element has many practical applications when present as nanoparticles. Despite the practicable applications, limited studies are available in the literature related to synthesis of sulfur nanoparticles. Growth kinetics of colloidal sulfur particles synthesized from aqueous solutions using different surfactants have been studied here. The effects of different parameters such as reactant concentration, temperature, sonication, types of acids, types of surfactants, and even surfactant concentration are studied on the growth kinetics. Since the reaction rate is fast, particle growth depends on the parameters which affect diffusion of sulfur molecules. There is a linear relationship found among the reactant concentration and the particle coarsening rate constant. The growth kinetics was studied in the presence of different surfactants such as nonionic (poly(oxyethylene) p-tert-octylphenyl ether, TX-100), anionic (sodium dodecylbenzene sulfonate, SDBS), cationic (cetyltrimethyammonium bromide, CTAB) and results show the coarsening constant changes according to the following order: water>TX-100>SDBS>CTAB. The particle growth rate also depends on the surfactant concentration, coarsening rate constant decreases with the increase in surfactant concentration and become constant close to the critical micellar concentration (CMC). The coarsening rate constant also highly depends on the types of acid used as catalyst. PMID:21147482

  12. Speciation of aluminum in aqueous solutions using ion chromatography

    Bertsch, P.M.; Anderson, M.A.

    1989-03-15

    An ion chromatographic method in which aluminum (AI) is quantitatively determined via postcolumn derivatization with Tiron (4,5-dihydroxy-m-benzenedisulfonic acid) was evaluated for its utility as a method for speciating AI in aqueous solutions. Fluro-, oxalato-, and citratoaluminum complexes were identified by distinct peaks within chromatograms of AI solutions when the appropriate ligand was added. Excellent quantitative agreement between predicted species concentrations (via the thermodynamic speciation model GEOCHEM) and those determined by ion chromatography was obtained for samples prepared in the eluent matrix. The predominantly outer sphere sulfatoaluminum complexes were not observed to elute as singly charged species, but rather exhibited a retention time indistinguishable from the AI(H/sub 2/O)6(3+) species. It is concluded that inner sphere AI complexes (generally possessing relatively high association constants) possess adequate kinetic stability to withstand degradation during the ion exchange process, whereas outer sphere complexes apparently readily dissociate in the presence of the sulfonate exchange sites. Deviations in sample ionic strength (mu) and pH from that of the eluent resulted in some redistribution among species, the degree of which was ligand specific.

  13. Studies on Complexation of ATMP, PBTCA, PAA and PMAAA with Ca2+ in Aqueous Solutions

    WEN Rui-mei; DENG Shou-quan; ZHU Zhi-liang; FAN Wei; ZHANG Ya-feng

    2004-01-01

    By means of acid-base potentiometric titration and the advanced BEST computer program developed by Martell et al., the deprotonation constants of four inhibitors[Aminotrimethylenephosphoinic acid(ATMP), 2-phosphino-tutane-1,2,4-tricarboxylic acid(PBTCA), polyacrylic acid(PAA, Mw=2000), poly(maleic, acrylic) acid(PMAAA, Mw=3000)], and the stability constants of the complexes of these inhibitors with Ca2+ have been determined. And the distribution curves of ATMP at different pH values in aqueous solutions have also been given out. The result of this study can be applied to explaining the inhibition mechanism.

  14. Adsorption of lanthanum (III) from aqueous solution using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester-grafted magnetic silica nanocomposites

    Highlights: • P507 functionalized magnetic silica nanocomposites were synthesized. • Adsorption behavior of La (III) with P507 functionalized magnetic silica nanocomposite was investigated. • Influencing factors for La (III) adsorption was discussed in batch experiments. • Adsorption mechanism was confirmed by FT-IR and XPS techniques. • Regeneration and repeated use for magnetic adsorbent was studied. -- Abstract: In view of increasing attention of magnetic materials in the field of separation science and technology, we provide an effective route for fabrication of a new magnetic material with high adsorption capacity and selectivity toward metal ions, excellent acid resistance property and long service life. Silica was firstly coated on the magnetic particles, and then silane-coupling agent (3-chloropropyltryethosysilane) was used for grating 2-ethylhexyl phosphonic acid mono-2-ethylhexyl (P507), an organophosphorous acid extractant, on the surface of magnetic silica nanocomposite. The amount of P507 anchored on the particle was estimated to be 0.43 mmol/g. The P507-grafted magnetic silica nanocomposite was stable over pH range of 0–14. The maximum adsorption capacity of La (III) was 55.9 mg/g at the optimized pH 5.5. The adsorption of La (III) on our nanocomposites was found to follow the second order kinetics equation and fit Langmuir isotherm model well. The P=O functional groups took an important role in the coordination and adsorption mechanism, which was confirmed by FTIR and XPS techniques. After 10 adsorption/desorption cycles, no obvious decrease in adsorption capacity or obvious loss in saturation magnetization were observed

  15. Formation of malonic dialdehyde and other 2-thiobarbituric-acid-active products in γ-radiolysis of DNA and DNA model substances in aqueous solution

    During radiation-induced DNA strand break, a product was observed which reacts positively with 2-thiobarbituric acid (TBA) to malonic dialdehyde (MDA) but is not a free MDA. The paper therefore discusses the formation of products during γ irradiation of DNA and DNA model substances which react positively with TBA to MDA. This reaction is highly sensitive but has low specificity, so that further analytical techniques were used for characterisation. These were: kinematic studies on chromophore formation using TBA, UV spectroscopy, and chromatography. The investigations comprised 1. Irradiation of sugars and polyalcohols. 2. Irradiation of nucleosides and nucleotides. 3. Irradiation of DNA. (orig./PW)

  16. Preparation and characterization of anion exchange resin decorated with magnetite nanoparticles for removal of p-toluic acid from aqueous solution

    Davarpanah, Morteza, E-mail: Davarpanah.morteza@gmail.com; Ahmadpour, Ali; Rohani Bastami, Tahereh

    2015-02-01

    Polystyrene resin was covalently functionalized with diethanolamine and then decorated with magnetite nanoparticles by a novel and simple co-precipitation method using iron(II) sulfate as precursor. The products were characterized by Fourier transform infrared spectroscopy, elemental analysis, X-ray diffraction, Mössbauer spectroscopy, field-emission scanning electron microscopy and vibrating sample magnetometer. Adsorption of p-toluic acid (p-TA) onto magnetite-decorated polystyrene (MAG-PS) was studied and compared with that of diethanolamine-functionalized polystyrene and a commercial anion exchange resin. Results showed that the magnetite nanoparticles with an average size of 20.4 nm were successfully formed on the surface of polystyrene resin, and MAG-PS was exhibited high affinity for the removal of p-TA. - Highlights: • .Polystyrene resin was covalently functionalized with diethanolamine. • .The functionalized adsorbents were decorated with magnetite nanoparticles (∼20 nm). • .Proposed magnetization procedure was high-efficient and relatively simple. • .Magnetic adsorbent was presented high affinity for removal of p-toluic acid.

  17. Preparation and characterization of anion exchange resin decorated with magnetite nanoparticles for removal of p-toluic acid from aqueous solution

    Polystyrene resin was covalently functionalized with diethanolamine and then decorated with magnetite nanoparticles by a novel and simple co-precipitation method using iron(II) sulfate as precursor. The products were characterized by Fourier transform infrared spectroscopy, elemental analysis, X-ray diffraction, Mössbauer spectroscopy, field-emission scanning electron microscopy and vibrating sample magnetometer. Adsorption of p-toluic acid (p-TA) onto magnetite-decorated polystyrene (MAG-PS) was studied and compared with that of diethanolamine-functionalized polystyrene and a commercial anion exchange resin. Results showed that the magnetite nanoparticles with an average size of 20.4 nm were successfully formed on the surface of polystyrene resin, and MAG-PS was exhibited high affinity for the removal of p-TA. - Highlights: • .Polystyrene resin was covalently functionalized with diethanolamine. • .The functionalized adsorbents were decorated with magnetite nanoparticles (∼20 nm). • .Proposed magnetization procedure was high-efficient and relatively simple. • .Magnetic adsorbent was presented high affinity for removal of p-toluic acid

  18. Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions.

    Sangsanoh, Pakakrong; Supaphol, Pitt

    2006-10-01

    Further utilization of chitosan nanofibrous membranes that are electrospun from chitosan solutions in trifluoroacetic acid (TFA) with or without dichloromethane (DCM) as the modifying cosolvent is limited by the loss of the fibrous structure as soon as the membranes are in contact with neutral or weak basic aqueous solutions due to complete dissolution of the membranes. Dissolution occurs as a result of the high solubility in these aqueous media of -NH(3)(+)CF(3)COO(-) salt residues that are formed when chitosan is dissolved in TFA. Traditional neutralization with a NaOH aqueous solution only maintained partial fibrous structure. Much improvement in the neutralization method was achieved with the saturated Na(2)CO(3) aqueous solution with an excess amount of Na(2)CO(3)(s) in the solution. We showed that electrospun chitosan nanofibrous membranes, after neutralization in the Na(2)CO(3) aqueous solution, could maintain its fibrous structure even after continuous submersion in phosphate buffer saline (pH = 7.4) or distilled water for 12 weeks. PMID:17025342

  19. Molecular dynamics simulations of dodecylamine adsorption on iron surfaces in aqueous solution

    Tang Yongming, E-mail: tangym@njut.edu.c [School of Science, Nanjing University of Technology, Nanjing 210009 (China); Yao Lala; Kong Chunmei; Yang Wenzhong [School of Science, Nanjing University of Technology, Nanjing 210009 (China); Chen Yizhong [School of Environmental and Safety Engineering, Jiangsu Polytechnic University, Changzhou 213164 (China)

    2011-05-15

    Research highlights: {yields} MD simulations results of the adsorption of DDA on iron surfaces are strongly related to the simulation conditions. {yields} DDAH is main adsorption form in strong acidic solution. {yields} Chloride ions play an important role on the adsorption of DDA in weak acidic solution. - Abstract: Molecular dynamics (MD) simulations have been used to study the adsorption of dodecylamine (DDA) on iron surfaces in aqueous solution in this paper. In strong acidic solution the protonated form of DDA, DDAH, can adsorb on the iron surface preferentially, while in weak acidic solution containing chloride ions the adsorption of DDA and DDAH forms can occur simultaneously. Different results were obtained when different simulation factors were considered. In order to obtain the correct results, a model close to the realistic inhibition system was fabricated.

  20. Molecular dynamics simulations of dodecylamine adsorption on iron surfaces in aqueous solution

    Research highlights: → MD simulations results of the adsorption of DDA on iron surfaces are strongly related to the simulation conditions. → DDAH is main adsorption form in strong acidic solution. → Chloride ions play an important role on the adsorption of DDA in weak acidic solution. - Abstract: Molecular dynamics (MD) simulations have been used to study the adsorption of dodecylamine (DDA) on iron surfaces in aqueous solution in this paper. In strong acidic solution the protonated form of DDA, DDAH, can adsorb on the iron surface preferentially, while in weak acidic solution containing chloride ions the adsorption of DDA and DDAH forms can occur simultaneously. Different results were obtained when different simulation factors were considered. In order to obtain the correct results, a model close to the realistic inhibition system was fabricated.