WorldWideScience

Sample records for acidic aqueous solutions

  1. Acetic acid extraction from aqueous solutions using fatty acids

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  2. NIR Spectroscopic Properties of Aqueous Acids Solutions

    Mohd Zubir MatJafri

    2012-06-01

    Full Text Available Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R2 above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918–925 nm and 990–996 nm, while at 975 nm for water.

  3. Uranyl fluoride luminescence in acidic aqueous solutions

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 ± 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO4 at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO2F2. Studies on the effect of added LiNO3 or Na2WO4·2H2O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF6 content of WF6 gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF6

  4. Acidities of Water and Methanol in Aqueous Solution and DMSO

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  5. Ionisation constants of inorganic acids and bases in aqueous solution

    Perrin, D D

    2013-01-01

    Ionisation Constants of Inorganic Acids and Bases in Aqueous Solution, Second Edition provides a compilation of tables that summarize relevant data recorded in the literature up to the end of 1980 for the ionization constants of inorganic acids and bases in aqueous solution. This book includes references to acidity functions for strong acids and bases, as well as details about the formation of polynuclear species. This text then explains the details of each column of the tables, wherein column 1 gives the name of the substance and the negative logarithm of the ionization constant and column 2

  6. Study of free acidity determinations in aqueous solution

    The object of this work is the study of the principal methods which can be applied to the measurement of 'free' acidity. In the first part, we define the various types of acidity which can exist in aqueous solution; then, after having studied some hydrolysis reactions, we compare the value of the neutralisation pH of the hydrated cation and that of the precipitation of the hydroxide. In the second part we have started to study the determination of the acidity of an aqueous solution. After having rapidly considered the 'total' acidity determination, we deal with the problem of the 'free' acidity titration. We have considered in particular certain methods: extrapolation of the equivalent point, colorimetric titrations with or without a complexing agent, and finally the use of ion-exchange resins with mixed aqueous and solvent solutions. (author)

  7. Photolysis of Periodate and Periodic Acid in Aqueous Solution

    Sehested, Knud; Kläning, U. K.

    1978-01-01

    The photochemistry of periodate and periodic acid in aqueous solution was studied (i) by quantum yield measurements at low light intensity (ii) by flash photolysis, and (iii) by photolysis of glassy samples at 77 K. The photochemical studies were supplemented with pulse radiolysis studies of...

  8. Polymerization of beta-amino acids in aqueous solution

    Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.

  9. Dephosphorization of Steelmaking Slag by Leaching with Acidic Aqueous Solution

    Qiao, Yong; Diao, Jiang; Liu, Xuan; Li, Xiaosa; Zhang, Tao; Xie, Bing

    2015-12-01

    In the present paper, dephosphorization of steelmaking slag by leaching with acidic aqueous solution composed of citric acid, sodium hydroxide, hydrochloric acid and ion-exchanged water was investigated. The buffer solution of C6H8O7-NaOH-HCl system prevented changes in the pH values. Kinetic parameters including leaching temperature, slag particle size and pH values of the solution were optimized. The results showed that temperature has no obvious effect on the dissolution ratio of phosphorus. However, it has a significant effect on the dissolution ratio of iron. The dephosphorization rate increases with the decrease of slag particle size and the pH value of the solution. Over 90% of the phosphorus can be dissolved in the solution while the corresponding leaching ratio of iron was only 30% below the optimal condition. Leaching kinetics of dephosphorization follow the unreacted shrinking core model with a rate controlled step by the solid diffusion layer, the corresponding apparent activation energy being 1.233 kJ mol-1. A semiempirical kinetic equation was established. After leaching, most of the nC2S-C3P solid solution in the steelmaking slag was selectively dissolved in the aqueous solution and the iron content in the solid residue was correspondingly enriched.

  10. Ternary mutual diffusion in aqueous (ethambutol dihydrochloride + hydrochloric acid) solutions

    Highlights: • Ternary diffusion coefficients for aqueous system ethambutol dihydrochloride and hydrochloric acid. • Diffusion of ethambutol dihydrochloride driven by hydrochloric acid gradients. • Coupled diffusion as indicated by cross-diffusion coefficients. - Abstract: Ternary mutual diffusion coefficients measured by the Taylor dispersion method are reported for aqueous solutions of {ethambutol dihydrochloride (1) + HCl (2)} at 25 °C and various carrier solution compositions. Mutual diffusion coefficients estimated from limiting ionic conductivities using Nernst equations are used to discuss the composition dependence of the measured diffusion coefficients. 1H NMR studies, combined with DFT calculations, confirm a fully extended conformation for the diprotonated form of the drug present under these conditions, and are consistent with an electrostatic mechanism for the strongly coupled diffusion of diprotonated ethambutol and HCl

  11. Pulse Radiolysis of Adrenaline in Acid Aqueous Solutions

    Gohn, M.; Getoff, N.; Bjergbakke, Erling

    1976-01-01

    Pulse radiolysis of adrenaline in acid aqueous solutions (pH 1–3) was carried out. The rate constants for the reactions of adrenaline with H and OH were determined: k(H + adr.) = (0·9±0·1) × 109 dm3 mol−1s−1; k(OH + adr.) = (1·65±0·15) × 1010 dm3 mol−1s−1. The H-adduct of adrenaline has two λmax...

  12. Solubility of chlorine in aqueous hydrochloric acid solutions.

    Alkan, Mahir; Oktay, Münir; Kocakerim, M Muhtar; Copur, Mehmet

    2005-03-17

    The solubility of chlorine in aqueous hydrochloric acid solutions was studied. The effects of HCl concentration and temperature on the solubility were evaluated, and the thermodynamic parameters of the dissolution were calculated. It was found that the solubility isotherms had a minimum at about 0.5M HCl concentration at all the temperatures studied and that solubility decreased with the increase of temperature at all the HCl concentration range investigated. PMID:15752843

  13. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    Crawford, C.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Peterson, R. A.

    1997-02-11

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  14. Gamma-irradiation of malic acid in aqueous solutions

    Negron-Mendoza, A.; Graff, R.L.; Ponnamperuma, C.

    1980-12-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  15. Radiation chemistry of amino acids and peptides in aqueous solutions

    Radiation chemistry relevant to radiation preservation of high protein foods is reviewed. Some conclusions concerning the chemistry of irradiated amino acids, peptides, and proteins have been derived from product analysis of γ-irradiated solutions while the main mechanistic considerations result from the chemistry and kinetics of free radical intermediates observed by pulse radiolysis. The precursors of chemistry in not too concentrated solutions (-, OH, and H. Their reactivity with molecules and their preference for characteristic groups within the molecule are discussed. The reviewed reactions of the model systems are accountable for a variety of radiolytic products found in irradiated foods. From detailed understanding of radiation chemistry in aqueous and frozen systems formation of many classes of compounds can be predicted or entirely eliminated in order to corroborate and extend the conclusions reached from the animal feeding experiments concerning the formation of toxic, mutagenic, and carcinogenic compounds and/or reduction of the nutritional value of foods

  16. The reducibility of sulphuric acid and sulphate in aqueous solution

    In connection with the Swedish project for final storage of spent fuel elements it was necessary to assess whether dissolved sulphate can corrode the copper canister. A simple reaction between copper and sulphate is thermodynamically impossible, but copper can react to give copper sulphide if an additional electron donor such as iron(II) is available. The problem was extended to the more general question of the reducibility of sulphur(VI) in dilute aqueous solution. Chemical reduction of sulphate does not take place in dilute solution at temperatures below 100oC. In experiments on the reduction of sulphates under hydrothermal conditions a reaction only takes place at temperatures above 275-300oC. The oxidising action of sulphuric acid on metals becomes perceptible only at acid concentrations over 45-50%. In experiments on the cathodic reduction of 74% sulphuric acid the formation of hydrogen sulphide and elementary sulphur starts, depending on the current density, at 50-130oC, and polarographic measurements suggest that the reducible species is not the hydrogen sulphate ion but molecular sulphuric acid. The resistance of copper to oxygen-free sulphuric acid up to a concentration of 60% is well-known. Numerous processes in industrial electrochemistry take place in sulphuric acid or sulphate electrolytes. The reversible metal/metal-sulphate electrodes of lead and cadmium are unstable relative to the corresponding metal sulphides. Nevertheless the reversible lead sulphate electrode does not fail from sulphide formation. All these facts confirm that sulphur(VI) in dilute solution is completely inert towards chemical reducing agents and also to cathodic reduction. Thus corrosion of copper by sulphate under final-storage conditions and in the absence of sulphate reducing bacteria can be almost certainly be ruled out. (author) 5 figs., 85 refs

  17. Adsorption of itaconic acid from aqueous solutions onto alumina

    JELENA J. GULICOVSKI

    2008-08-01

    Full Text Available Itaconic acid, IA (C5H6O4, was investigated as a potential flocculant for the aqueous processing of alumina powders. The adsorption of IA, as a function of its concentration and pH value of the solution, onto the alumina surface was studied by the solution depletion method. The stability of the suspensions in the presence of itaconic acid was evaluated in light of the surface charge of the alumina powder used, the degree of dissociation of IA, as well as the sedimentation behavior and rheology of the suspensions. It was found that the adsorption process is extremely pH dependent; the maximum adsorption of IA onto alumina surface occurring at a pH close to the value of the first IA dissociation constant, pKa1. Also, IA does not influence the value of the point of zero charge of alumina. It was shown that IA represents an efficient flocculant for concentrated acidic alumina suspensions.

  18. Processes for working-up an aqueous fluosilicic acid solution

    Alpha O. Toure

    2012-11-01

    Full Text Available Aqueous fluosilicic acid solutions were once considered to be only adverse by-products of phosphoric acid production, which required treatment to prevent ecosystem destruction when discharged into the sea. However, a range of chemicals can be generated by the transformation of this industrial waste product. Through experiments undertaken in the laboratory, we have shown the possibility of caustic soda production. Volumetric analysis showed caustic soda to be present as a 6%– 7%solution with yields of about 70% – 80%by weight. Two processes were investigated for the caustification of sodium fluoride, using different precipitates: sodium chloride and ethanol and are described by modelling caustification curves. The activation energies of precipitation determined by semi-empirical correlations showed that precipitation by ethanol (EA = 933.536 J/mol was more successful than precipitation by sodium chloride (EA = 7452.405 J/mol. Analyses performed on the precipitates highlighted compositions that are essential and useful constituents in the cement industry.

  19. Humic acid removal from aqueous solutions by peroxielectrocoagulation process

    Ahmad Reza Yazdanbakhsh

    2015-06-01

    Full Text Available Background: Natural organic matter is the cause of many problems associated with water treatment such as the presence of disinfection by-products (DBPs and membrane fouling during water filtration. In this study, the performance of the peroxi-electrocoagulation process (PEP was investigated for the removal of humic acids (HAs from aqueous solutions. Methods: PEP was carried out for the removal of HA using a plexiglas reactor with a volume of 2 L and fitted with iron electrodes and a direct current supply (DC. Samples were taken at various amounts of pH (2-4, current density (1 and 2A/cm2, hydrogen peroxide (50-150 mg/L and reaction time (5-20 minutes and then filtered to remove sludge formed during reaction. Finally, the HA concentration was measured by UV absorbance at 254 nm (UV254. Results: Results indicated that increasing the concentration of H2O2 from 50 to 150 mg/L increased HA removal efficiency from 83% to 94.5%. The highest removal efficiency was observed at pH 3.0; by increasing the pH to the alkaline range, the efficiency of the process was reduced. It was found that HA removal efficiency was high in current density 1A/cm2. Increasing current density up to 1 A cm-2 caused a decrease in removal efficiency. Results of this study showed that under the optimum operating range for the process ([current density] = 1A/cm2, [hydrogen peroxide concentration] = 150 mg/L, [reaction time]= 20 minutes and [pH]= 3.0, HA removal efficiency reached 98%. Conclusion: It can be concluded that PEP has the potential to be utilized for cost-effective removal of HA from aqueous solutions.

  20. ADSORPTION FROM AQUEOUS SOLUTION ONTO NATURAL AND ACID ACTIVATED BENTONITE

    Laila Al-Khatib

    2012-01-01

    Full Text Available Dyes have long been used in dyeing, paper and pulp, textiles, plastics, leather, paint, cosmetics and food industries. Nowadays, more than 100,000 commercial dyes are available with a total production of 700,000 tones manufactured all over the world annually. About 10-15% of dyes are being disposed off as a waste into the environment after dyeing process. This poses certain hazards and environmental problems. The objective of this study is to investigate the adsorption behavior of Methylene Blue (MB from aqueous solution onto natural and acid activated Jordanian bentonite. Both bentonites are firstly characterized using XRD, FTIR and SEM techniques. Then batch adsorption experiments were conducted to investigate the effect of initial MB concentration, contact time, pH and temperature. It was found that the percentage of dye removal was improved from 75.8% for natural bentonite to reach 99.6% for acid treated bentonite. The rate of MB removal followed the pseudo second order model with a high correlation factor. The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms. The Langmuir isotherm model was found more representative. The results indicate that bentonite could be employed as a low cost adsorbent in wastewater treatment for the removal of colour and dyes.

  1. Optical properties of chitosan in aqueous solution of L- and D-ascorbic acids

    Malinkina, Olga N.; Shipovskaya, Anna B.; Kazmicheva, Olga F.

    2016-04-01

    The optical properties of aqueous chitosan solutions in L- and D-ascorbic acids were studied by optical rotatory dispersion and spectrophotometry. The specific optical rotation [α] of all chitosan solutions tested was positive, in contrast to aqueous solutions of the ascorbic acid enantiomers, which exhibit an inverse relationship of [α] values. Significant differences in the absolute values of [α] of the chitosan solutions at polymer-acid ratios exceeding the equimolar one were found.

  2. Neodymium(3) complexing with bischloromethylphosphinic acid in aqueous solution

    High resolution spectrography is used to study Nd3+ complexing with (ClCH2)2POOH(HL) in aqueous solution. NdL2+ complex (lg Kstab = 0.44±0.04) with the corresponding absorption band with a maximum at λ=4283 A is formed in a system

  3. Electrical conductivity of aqueous solutions of perrhenic acid

    The physiocochemical properties of perrhenic acid, HReO4, are studied; its salts form the basis of solutions for electrochemical production of rhenium. Information is presented from which the electrical conductivity of solutions in the temperature range 15-90 degrees can be determined from known concentrations of the acid in water and vice versa

  4. The photochemistry of neptunium in aqueous nitric acid solutions

    Photochemical reactions of Np(IV), (V) and (VI) have been investigated in nitric acid solutions using 254 and 300 nm excitation from standard mercury discharge lamps. Absorption spectrometry was used to monitor the concentrations of the various neptunium species in solution. In the absence of added reagents, all oxidation states of neptunium are converted to the pentavalent state. The effect of adding urea and mild reducing agents such as ethanol and hydrazine on the photolysis has also been examined. Quantum efficiencies for these reactions have been found to vary from 0.001 to 0.1, depending on the acid concentration, wavelength, and reaction conditions. (orig.)

  5. Radiation-induced destruction peculiarities of hydroxyl containing amino acids in diluted aqueous solution

    Amino acids aqueous solution of alpha-alanine and beta-alanine, serine, threonine (concentration 5*10-4 M) were irradiated with dose rate 0.35 Gy/s in range 100-1100 Gy and analysed. Effectiveness of radiation-induced decomposition process depends on row of factors: concentration of amino acid aqueous solution, pH, oxygen presence and other acceptors

  6. Adsorption of organic acids from dilute aqueous solution onto activated carbon

    The radioisotope technique was used to study the removal of organic acid contaminants from dilute aqueous solutions onto activated carbon. Acetic acid, propionic acid, n-butyric acid, n-hexanoic acid and n-heptanoic acid were studied at 278, 298, and 3130K. Three bi-solute acid mixtures (acetic and propionic acids, acetic and butanoic acids, and propionic and butanoic acids) were studied at 278 and 2980K. Isotherms of the single-solute systems were obtained at three different temperatures in the very dilute concentration region (less than 1% by weight). These data are very important in the prediction of bi-solute equilibrium data. A Polanyi-based competitive adsorption potential theory was used to predict the bi-solute equilibrium uptakes. Average errors between calculated and experimental data ranges from 4% to 14%. It was found that the competitive adsorption potential theory gives slightly better results than the ideal adsorbed solution theory

  7. Thermophysical property characterization of aqueous amino acid salt solutions containing α-aminobutyric acid

    Highlights: • Thermophysical properties of aqueous potassium and sodium salt solutions of α-aminobutyric acid were studied. • Density, electrolytic conductivity, refractive index, and viscosity of the solution were measured. • The concentrations of amino acid salt ranges from x1 = 0.009 to 0.06. • The temperature range studied was (303.15 to 343.15) K. • The measured data were represented satisfactorily by using the applied correlations. - Abstract: In this study, density, electrical conductivity, refractive index and viscosity of aqueous potassium and sodium salt solutions of α-aminobutyric acid were presented. Measurements were done over the temperature range (303.15 to 343.15) K and atmospheric pressure for salt compositions from x1 = 0.009 to 0.062. A modified Graber et al. equation was used to correlate the density, electrical conductivity, and refractive index with temperature and composition leading to average absolute deviations (AAD) between the predicted and calculated values of 0.04%, 0.7%, and 0.01%, respectively. The viscosity data were represented as a function of temperature and composition via Vogel–Tamman–Fulcher (VTF) type equation at an AAD of 0.6%

  8. Photodegradation of α-naphthaleneacetic acid in aqueous solution

    2001-01-01

    Kinetic processes of α-naphthaleneacetic acid (NAA) photolysis were studied under different conditions. The results showed that the ultraviolet light was more effective than fluorescent light in promoting degradation, and the degradation of NAA under ultraviolet light followed the first order kinetics with the photolysis rate constant of 1.15 x 10-2 min-1 and half-life time (t1/2) of 60 min. Further, it was proved that the photolysis rate was higher in the presence of oxygen, titanium dioxide (TiO2), and low pH ( acidic solution). At last, two photolysis intermediates were identified by GC-MS and possible photolysis pathways were proposed.

  9. INTERACTION OF AQUEOUS SOLUTIONS OF CHLORINE WITH MALIC ACID, TARTARIC ACID, AND VARIOUS FRUIT JUICES, A SOURCE OF MUTAGENS

    The interactions of aqueous solutions of chlorine with some fruit acids (citric acid, DL-malic acid, and L-tartaric acid) at different pH values were studied. iethyl ether extraction followed by GC/MS analysis indicated that a number of mutagens (certain chlorinated propanones an...

  10. Succinic acid in aqueous solution : connecting microscopic surface composition and macroscopic surface tension

    Werner, Josephina; Julin, Jan; Dalirian, Maryam; Prisle, Nønne; Öhrwall, Gunnar; Persson, Ingmar; Björneholm, Olle; Riipinen, Ilona

    2014-01-01

    The water vapor interface of aqueous solutions of succinic acid, where pH values and bulk concentrations were varied, has been studied using surface sensitive X-ray photoelectron spectroscopy (XPS) and molecular dynamics (MD) simulations. It was found that succinic acid has a considerably higher propensity to reside in the aqueous surface region than its deprotonated form, which is effectively depleted from the surface due to the two strongly hydrated carboxylate groups. From both XPS experim...

  11. Radiation-thermal decomposition of nitric and acetic acids in the aqueous nitrate solution

    Kinetics of radiation, thermal and radiation-thermal decompositions of nitric and acetic acid mixture was investigated in aqueous sodium nitrate solution in homogeneous conditions as well as by interaction of solid phase as sand rock. Temperature dependences of rate of radiation, thermal and radiation-thermal decompositions of the acids were calculated using experimental data. Resulting solutions make possible the calculation of acid decomposition dynamics accounting conditions of underground radioactive waste disposals

  12. Modified density equation for aqueous solution with plutonium(IV) and nitric acid

    In order to calculate criticality parameters for solution systems, the number densities of nuclides are needed and usually calculated by use of density equations. For the system of aqueous solution with Pu(IV) and nitric acid, Maimoni's equation based on Hofstetters' density data was often used, but its reliability was not thoroughly examined. The author, therefore, derived a modified density equation by regression analysis for Hofstetters' data, adding the authors' density data of aqueous solution with nitric acid. Comparison between both equations showed that the modified density equation gives more reliable densities in the wide range of temperature and concentration. (author)

  13. Change in the amino acid composition of calf skin collagen after. gamma. -irradiation in aqueous solution

    Duzhenkova, N.A.; Savich, A.V. (Institut Biofiziki, Moscow (USSR))

    A study was made of the amino acid composition of calf skin collagen after ..gamma..-irradiation (/sup 60/Co) of 2.5x10/sup -6/ M aerated aqueous protein solution within the dose range from 30 to 2000 Gy. The radiosensitivity of amino acid residues was compared.

  14. Uptake of Hypobromous Acid (HOBr) by Aqueous Sulfuric Acid Solutions: Low-Temperature Solubility and Reaction

    Iraci, Laura T.; Michelsen, Rebecca R.; Ashbourn, Samatha F. M.; Rammer, Thomas A.; Golden, David M.

    2005-01-01

    Hypobromous acid (HOBr) is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45 - 70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201 - 252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H* = 10(exp 4) - 10(exp 7) mol/L/atm. H* is inversely dependent on temperature, with Delta H = -46.2 kJ/mol and Delta S = -106.2 J/mol/K for 55 - 70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into aqueous 45 wt% H2SO4, the solubility can be described by log H* = 3665/T - 10.63. For 55 - 70 wt% H2SO4, log H* = 2412/T - 5.55. At temperatures colder than approx. 213 K, the solubility of HOBr in 45 wt% H2SO4 is noticeably larger than in 70 wt% H2SO4. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Our measurements indicate chemical reaction of HOBr upon uptake into aqueous sulfuric acid in the presence of other brominated gases followed by evolution of gaseous products including Br2O and Br2, particularly at 70 wt% H2SO4.

  15. Aqueous solutions of acidic ionic liquids for enhanced stability of polyoxometalate-carbon supercapacitor electrodes

    Hu, Chenchen; Zhao, Enbo; Nitta, Naoki; Magasinski, Alexandre; Berdichevsky, Gene; Yushin, Gleb

    2016-09-01

    Nanocomposites based on polyoxometalates (POMs) nanoconfined in microporous carbons have been synthesized and used as electrodes for supercapacitors. The addition of the pseudocapacitance from highly reversible redox reaction of POMs to the electric double-layer capacitance of carbon lead to an increase in specific capacitance of ∼90% at 1 mV s-1. However, high solubility of POM in traditional aqueous electrolytes leads to rapid capacity fading. Here we demonstrate that the use of aqueous solutions of protic ionic liquids (P-IL) as electrolyte instead of aqueous sulfuric acid solutions offers an opportunity to significantly improve POM cycling stability. Virtually no degradation in capacitance was observed in POM-based positive electrode after 10,000 cycles in an asymmetric capacitor with P-IL aqueous electrolyte. As such, POM-based carbon composites may now present a viable solution for enhancing energy density of electrical double layer capacitors (EDLC) based on pure carbon electrodes.

  16. A pulse radiolysis study of salicylic acid and 5-sulpho-salicylic acid in aqueous solutions

    Reactions of H, OH, eaq- and some one-electron oxidants have been studied with salicylic acid and 5-sulpho-salicylic acid in aqueous solutions. Rate constants for the reaction of eaq- with these compounds were of the order of 109dm3mol-1s-1 and this reaction led to the formation of reducing radicals which could transfer electron to methyl viologen. Other one-electron reductants were not able to reduce these compounds. OH radicals reacted with these compounds by addition pathway with very high rate constants (>1010dm3mol-1s-1) while O- radical anions could oxidize these molecules to give phenoxyl type of radicals. Amongst the one-electron oxidants, only N3 radicals and SO4- radicals could oxidize salicylic acid while 5-sulpho-salicylic acid could be oxidized only by SO4- radicals indicating that while one-electron reduction potential for semi-oxidized SA may beo1 for N3? radical), it is more than 1.33V vs. NHE for semi-oxidized SSA species

  17. 49 CFR 173.195 - Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution).

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen cyanide, anhydrous, stabilized... Hazardous Materials Other Than Class 1 and Class 7 § 173.195 Hydrogen cyanide, anhydrous, stabilized (hydrocyanic acid, aqueous solution). (a) Hydrogen cyanide, anhydrous, stabilized, must be packed...

  18. Composition and process for separating cesium ions from an acidic aqueous solution also containing other ions

    Dietz, M.L.; Horwitz, E.P.; Bartsch, R.A.; Barrans, R.E. Jr.; Rausch, D.

    1999-03-30

    A crown ether cesium ion extractant is disclosed as is its synthesis. The crown ether cesium ion extractant is useful for the selective purification of cesium ions from aqueous acidic media, and more particularly useful for the isolation of radioactive cesium-137 from nuclear waste streams. Processes for isolating cesium ions from aqueous acidic media using the crown ether cesium extractant are disclosed as are processes for recycling the crown ether cesium extractant and processes for recovering cesium from a crown ether cesium extractant solution. 4 figs.

  19. Interfacial structures of acidic and basic aqueous solutions

    Phase-sensitive sum-frequency vibrational spectroscopy was used to study water/vapor interfaces of HCl, HI, and NaOH solutions. The measured imaginary part of the surface spectral responses provided direct characterization of OH stretch vibrations and information about net polar orientations of water species contributing to different regions of the spectrum. We found clear evidence that hydronium ions prefer to emerge at interfaces. Their OH stretches contribute to the 'ice-like' band in the spectrum. Their charges create a positive surface field that tends to reorient water molecules more loosely bonded to the topmost water layer with oxygen toward the interface, and thus enhances significantly the 'liquid-like' band in the spectrum. Iodine ions in solution also like to appear at the interface and alter the positive surface field by forming a narrow double-charge layer with hydronium ions. In NaOH solution, the observed weak change of the 'liquid-like' band and disappearance of the 'ice-like' band in the spectrum indicates that OH- ions must also have excess at the interface. How they are incorporated in the interfacial water structure is however not clear

  20. FT-RAMAN SPECTROSCOPY FOR MONITORING THE POLYMERIZATION OF ACRYLIC ACID IN AQUEOUS SOLUTION

    Jiang Yu; Hui-zhou Liu; Jia-yong Chen

    1999-01-01

    FT-Raman spectroscopy was used to monitor the polymerization of acrylic acid in aqueous solution. A simple method to avoid the noise in the background during the signal processing via Fourier transformation was used in this work. The effects of the amount of initiator used on the polymerization are studied. When the amount of the initiator in the polymerization was increased, both the rate and extent of polymerization of acrylic acid will be increased.

  1. Thermodynamics of uranium and nitric acid extraction from aqueous solution of TBP/diluent

    A thermodynamically consistent procedure for predicting distribution equilibria for uranyl nitrate and nitric acid between an aqueous solution and 30 vol % tributyl phosphate (TBP) in a hydrocarbon diluent is studied. Experimental work is developed in order to obtain equilibrium data for the system uranyl nitrate, nitric acid, water and 30 vol % TBP in n-dodecane, at 250C and 400C. The theoretical equilibrium data, obtained with the aid of a computer, are compared with the experimental results. (Author)

  2. Measuring and modeling aqueous electrolyte/amino-acid solutions with ePC-SAFT

    Highlights: • Amino-acid solubilities and osmotic coefficients in ternary solutions containing one amino acids and one salt measured. • Weak salt influence on amino-acid solubilities except for salts containing Mg[2+] or NO3[−] (salting-in behavior). • Osmotic coefficients dominated by the solute with the highest molality. • Amino-acid solubilities and osmotic coefficients predicted reasonably with ePC-SAFT with deviations of 3.7% and 9.3%. • Predictions based on pure-component parameters for ions and amino acids using no ion/amino-acid fitting parameters. -- Abstract: In this work thermodynamic properties of electrolyte/amino acid/water solutions were measured and modeled. Osmotic coefficients at 298.15 K were measured by means of vapor-pressure osmometry. Amino-acid solubility at 298.15 K was determined gravimetrically. Considered aqueous systems contained one of the four amino acids: glycine, L-/DL-alanine, L-/DL-valine, and L-proline up to the respective amino-acid solubility limit and one of 13 salts composed of the ions Li+, Na+, K+, NH4+, Cl−, Br−, I−, NO3−, and SO42− at salt molalities of 0.5, 1.0, and 3.0 mol · kg−1, respectively. The data show that the salt influence is more pronounced on osmotic coefficients than on amino-acid solubility. The electrolyte Perturbed-Chain Statistical Association Theory (ePC-SAFT) was applied to model thermodynamic properties in aqueous electrolyte/amino-acid solutions. In previous works, this model had been applied to binary salt/water and binary amino acid/water systems. Without fitting any additional parameters, osmotic coefficients and amino-acid solubility in the ternary electrolyte/amino acid/water systems could be predicted with overall deviations of 3.7% and 9.3%, respectively, compared to the experimental data

  3. Radiolytical oxidation of ascorbic acid in aqueous solutions

    Complete text of publication follows. Ascorbic acid, AsA (vitamin c), has been widely studied as an antioxidant or as an initiator of some technological processes, for example polymerization or nanoparticles formation. AsA can be easily oxidized to ascorbyl radical, in the first stage, and to dehydroascorbic acid, DHA, in the second stage. It has been found that several different ascorbyl radicals are formed during AsA oxidation but the main radical exists as the anion with the unpaired electron delocalized on a highly conjugated tricarbonyl system. Absorption spectrum of ascorbyl radical shows two bands with maxima at 300 and 360 nm, however only that at 360 nm is proportional to the dose and thus this wavelength was chosen for observations. We studied the oxidation of AsA by the following oxidizing radicals generated by the pulse radiolysis method ·OH, (SCN)2-·, Cl2-·, N3· and NO2·. The observed dependence of the yield and the formation rate of the AsA radical on the reduction potential of the oxidizing radical is discussed. The results obtained in water are compared with those obtained with AsA enclosed in the water pools of reverse micelles formed by AOT in n-heptane or by Igepal CO-520 in c-hexane. Somewhat surprising observation of different ascorbyl radical in pulse irradiated reverse micelles containing DHA is also commented.

  4. Acid-base chemistry of omeprazole in aqueous solutions

    Yang Rong; Schulman, Stephen G.; Zavala, Pedro J

    2003-03-28

    Omeprazole is a potent anti-acid drug. Its absorption and mode of action are closely related to its prototropic behavior. In the present study, omeprazole samples from different sources and in different forms were studied spectrophotometrically to obtain pK{sub a} values. In the neutral to alkaline pH region, two consistent pK{sub a} values of 7.1 and 14.7 were obtained from various samples. The assignment of these pK{sub a} values was realized by comparison with the prototropic properties of N(1)-methylated omeprazole substituted on the nitrogen at the 1-position of the benzimidazole ring, which was found to have a pK{sub a} of 7.5. The omeprazole pK{sub a} of 14.7 is assigned to the dissociation of the hydrogen from the 1-position of the benzimidazole ring and the pK{sub a} of 7.1 is assigned to the dissociation from the protonated pyridine nitrogen of omeprazole. The results presented are at variance with those of earlier work.

  5. Uptake of hypobromous acid (HOBr by aqueous sulfuric acid solutions: low-temperature solubility and reaction

    L. T. Iraci

    2005-03-01

    Full Text Available Hypobromous acid (HOBr is a key species linking inorganic bromine to the chlorine and odd hydrogen chemical families. We have measured the solubility of HOBr in 45–70 wt% sulfuric acid solutions representative of upper tropospheric and lower stratospheric aerosol composition. Over the temperature range 201–252 K, HOBr is quite soluble in sulfuric acid, with an effective Henry's law coefficient, H*=104-107 mol L-1 atm-1. H* is inversely dependent on temperature, with ΔH=-45.0±5.4 kJ mol-1 and ΔS=-101±24 J mol-1 K-1 for 55–70 wt% H2SO4 solutions. Our study includes temperatures which overlap both previous measurements of HOBr solubility. For uptake into 55–70 wt% H2SO4, the solubility is described by log H*=(2349±280/T–(5.27±1.24. At temperatures colder than ~213 K, the solubility of HOBr in 45 wt% H2SO4 is at least a factor of five larger than in 70 wt% H2SO4, with log H*=(3665±270/T–(10.63±1.23. The solubility of HOBr is comparable to that of HBr, indicating that upper tropospheric and lower stratospheric aerosols should contain equilibrium concentrations of HOBr which equal or exceed those of HBr. Upon uptake of HOBr into aqueous sulfuric acid in the presence of other brominated gases, particularly for 70 wt% H2SO4 solution, our measurements demonstrate chemical reaction of HOBr followed by evolution of gaseous products including Br2O and Br2.

  6. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid

  7. A method for determining thermophysical properties of organic material in aqueous solutions: Succinic acid

    Riipinen, I.; Svenningsson, B.; Bilde, M.; Gaman, A.; Lehtinen, K. E. J.; Kulmala, M.

    2006-12-01

    A method for determining evaporation rates and thermodynamic properties of aqueous solution droplets is introduced. The method combines evaporation rate measurements using modified TDMA technique with data evaluation using an accurate evaporation model. The first set of data has been collected and evaluated for succinic acid aqueous solution droplets. Evaporation rates of succinic acid solution droplets have been measured using a TDMA system at controlled relative humidity (65%) and temperature (298 K). A temperature-dependent expression for the saturation vapour pressure of pure liquid phase succinic acid at atmospheric temperatures has been derived by analysing the evaporation rate data with a numerical model. The obtained saturation vapour pressure of liquid phase succinic acid is ln( p) = 118.41 - 16204.8/ T - 12.452ln( T). The vapour pressure is in unit of Pascal and the temperature in Kelvin. A linear expression for the enthalpy of vaporization for liquid state succinic acid is also presented. According to the results presented in the following, a literature expression for the vapour pressure of liquid phase succinic acid defined for temperatures higher than 461 K [Yaws, C.L., 2003. Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel] can be extrapolated to atmospheric temperatures with very good accuracy. The results also suggest that at 298 K the mass accommodation coefficient of succinic acid is unity or very close to unity.

  8. Adsorption of and acidic dye from aqueous solution by surfactant modified bentonite

    The aim of this paper is to study the adsorption of an acidic dye S. Y. 4 GL (i.e: Supranol yellow 4GL) from aqueous solution on inorgano-organo clay. Bentonite is a kind of natural clay with good exchanging ability. By exchanging its inter lamellar cations with Cetyltrimethylammonium bromide (CTAB) and hydroxy aluminic or chromium poly cations, the properties of natural bentonite can be greatly improved. (Author)

  9. Gamma-irradiation of malic acid in aqueous solutions. [prebiotic significance

    Negron-Mendoza, A.; Graff, R. L.; Ponnamperuma, C.

    1980-01-01

    The gamma-irradiation of malic acid in aqueous solutions was studied under initially oxygenated and oxygen-free conditions in an attempt to determine the possible interconversion of malic acid into other carboxylic acids, specifically those associated with Krebs cycle. The effect of dose on product formation of the system was investigated. Gas-liquid chromatography combined with mass spectrometry was used as the principal means of identification of the nonvolatile products. Thin layer chromatography and direct probe mass spectroscopy were also employed. The findings show that a variety of carboxylic acids are formed, with malonic and succinic acids in greatest abundance. These products have all been identified as being formed in the gamma-irradiation of acetic acid, suggesting a common intermediary. Since these molecules fit into a metabolic cycle, it is strongly suggestive that prebiotic pathways provided the basis for biological systems.

  10. Highly-acidic aqueous solution as a medium for radiation chemical studies: redox chemistry of phenol

    Although the aqueous medium is a common choice for radiation induced generation of a variety of transients (radicals), typically a non-aqueous solvent (or even a frozen matrix) is employed to study a transient with a labile H+ (TrH.+), mainly to maintain low propensity of its deprotonation reaction TrH.+→Tr. + H+, that otherwise occur promptly in an aqueous type medium. However, in addition to the relative difficulty encountered in routine handling of such specific non-aqueous reaction media, low transient yield (GTrH.+) therein also restrict their use. Furthermore, any comparative study of the two species TrH.+ and Tr. remains unattainable. In this context we have probed the highly acidic aqueous solution as an alternative medium for radiation induced generation and subsequent chemical studies of acidic radical cation, TrH.+ vis-a-vis the de-protonated radical Tr.. This presentation highlights these results in three parts deals with (a) measurement of oxidizing and reducing radical yields for reactions in H2SO4 and HClO4 solutions, with highest acidity maintained at ∼14 M or Hammett acidity constant H0 - 7 in case of former and ∼10 M or H0 -5.2 in case of the latter; (b) measurement of the H-atom (the sole reducing radical) scavenging efficiency of dissolved O2 in such solution for maintaining exclusive oxidizing condition; and (c) employing these results, oxidation of phenol (C6H5OH) in such medium was probed and the reactions of its radical cation C6H5OH.+ against the phenoxyl radical C6H5O. were compared. Consequently, these studies also revealed an error in the previous measurement of the C6H5OH.+ pKa value (-2.0) which was corrected to -2.75. Details of these studies will be presented to show the efficacy of highly-acidic aqueous solutions as a regular medium for radiation chemical studies. (authors)

  11. Effect of temperature on the dilution enthalpies of {alpha},{omega}-amino acids in aqueous solutions

    Romero, C.M., E-mail: cmromeroi@unal.edu.co [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Cadena, J.C., E-mail: jccadena@unal.edu.co [Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia, Bogota (Colombia); Lamprecht, I., E-mail: ingolf.lamprecht@t-online.de [Institut fuer Biologie, Freie Universitaet Berlin, Berlin (Germany)

    2011-10-15

    Highlights: > The dilution of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid in water is an exothermic process at T = (293.15, 298.15, 303.15, and 308.15) K. > The limiting experimental slopes of the enthalpies of dilution with respect to the molality change {Delta}m, are negative suggesting that the solutes interact with water primarily through their alkyl groups. > The value of the pairwise coefficient is positive at the temperatures considered, and the magnitude increases linearly with the number of methylene groups. > The comparison between the pairwise interaction coefficients for {alpha},{omega}-amino acids and {alpha}-amino acids shows that the change in the enthalpic interaction coefficient is related to the relative position of the polar groups. - Abstract: Dilution enthalpies of aqueous solutions of 3-amino propanoic acid, 4-amino butanoic acid, 5-amino pentanoic acid, and 6-amino hexanoic acid were determined at T = (293.15, 298.15, 303.15, and 308.15) K using an LKB flow microcalorimeter. The homotactic interaction coefficients were obtained according to the McMillan-Mayer theory from the experimental data. For all the systems studied, the dilution of {alpha},{omega}-amino acids in water is an exothermic process; the pair coefficients have positive values which increases with chain length. The obtained values of the interaction coefficients are interpreted in terms of solute-solvent and solute-solute interactions and are used as indicative of hydrophobic behavior of the amino acid studied.

  12. Comparative analysis of the effect of pretreating aspen wood with aqueous and aqueous-organic solutions of sulfuric and nitric acid on its reactivity during enzymatic hydrolysis

    Dotsenko, Gleb; Osipov, D. O.; Zorov, I. N.;

    2016-01-01

    The effect of aspen wood pretreatment methods with the use of both aqueous solutions of sulfuric and nitric acids and aqueous-organic solutions (ethanol, butanol) of sulfuric acid (organosolv) on the limiting degree of conversion of this type of raw material into simple sugars during enzymatic...... hydrolysis are compared. The effects of temperature, acid concentration, composition of organic phase (for sulfuric acid), and pressure (for nitric acid) on the effectiveness of pretreatment were analyzed. It is shown that the use of organosolv with 0.5% sulfuric acid allows us to increase the reactivity of...

  13. Leaching of lead from zinc leach residue in acidic calcium chloride aqueous solution

    Wang, Le; Mu, Wen-ning; Shen, Hong-tao; Liu, Shao-ming; Zhai, Yu-chun

    2015-05-01

    A process with potentially reduced environmental impacts and occupational hazards of lead-bearing zinc plant residue was studied to achieve a higher recovery of lead via a cost-effective and environmentally friendly process. This paper describes an optimization study on the leaching of lead from zinc leach residue using acidic calcium chloride aqueous solution. Six main process conditions, i.e., the solution pH value, stirring rate, concentration of CaCl2 aqueous solution, liquid-to-solid (L/S) ratio, leaching temperature, and leaching time, were investigated. The microstructure and components of the residue and tailing were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). On the basis of experimental results, the optimum reaction conditions were determined to be a solution pH value of 1, a stirring rate of 500 r·min-1, a CaCl2 aqueous solution concentration of 400 g·L-1, a liquid-to-solid mass ratio of 7:1, a leaching temperature of 80°C, and a leaching time of 45 min. The leaching rate of lead under these conditions reached 93.79%, with an iron dissolution rate of 19.28%. Silica did not take part in the chemical reaction during the leaching process and was accumulated in the residue.

  14. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH4CN, CH3CN, and C2H4CN, that had received multikilogray doses of 60Co γ radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond

  15. Application of Polyaniline Nano Composite for the Adsorption of Acid Dye from Aqueous Solutions

    Baseri, J.Raffiea; P. N. Palanisamy; P. Sivakumar

    2012-01-01

    In this research, Polyaniline coated sawdust (Polyaniline nano composite) was synthesized via direct chemical polymerization and used as an adsorbent for the removal of acid dye (Acid Violet 49) from aqueous solutions. The effect of some important parameters such as pH, initial concentration of dye, contact time and temperature on the removal efficiency was investigated in batch adsorption system. The adsorption capacity of PAC was high (96.84 %) at a pH of 3-4. The experimental data fitted w...

  16. Removal of copper ions from aqueous solutions by a new sorbent: Polyethyleneiminemethylene phosphonic acid

    Ferrah, Nacer; ABDERRAHIM, Omar; DIDI, Mohamed Amine; VILLEMIN, Didier

    2011-01-01

    The sorption of copper(II) from sulphate medium on an extractant polymer containing phosphonic acid has been studied in batch mode. Since the extraction kinetics were fast, with a mixture of 0.01 g of extractant and 5 mL of copper(II) 31.75 mg/L solution, extraction equilibrium was reached within 20 min of mixing. The sorption process follows a pseudo-second-order kinetics. The influence of some parameters such as initial copper(II) ion concentration, initial pH of aqueous solution, ion stren...

  17. RECOVERY OF CARBOXYLIC ACIDS FROM AQUEOUS SOLUTIONS BY LIQUID-LIQUID EXTRACTION WITH A TRIISOOCTYLAMINE DILUENT SYSTEM

    G. Malmary

    2001-12-01

    Full Text Available Tertiary alkylamines in solution with organic diluents are attractive extractants for the recovery of carboxylic acids from dilute aqueous phases. The aim of this study was to investigate the mechanism for extraction of organic acids from water by a long-chain aliphatic tertiary amine. In order to attain this objective, we studied the liquid-liquid equilibria between the triisooctylamine + 1-octanol + n-heptane system as solvent and an aqueous solution of an individual carboxylic acid such as citric, lactic and malic acids. The experiments showed that the partition coefficient for a particular organic acid depends on the kind of solute, notably when the acid concentration in the aqueous phase is low. A mathematical model, where both chemical association and physical distribution are taken into consideration, is proposed. The model suggests that the various complexes obtained between amine and organic acids contribute to the distribution of the solute between the coexisting phases in equilibrium.

  18. Determination of hydroxyl radicals with salicylic acid in aqueous nitrate and nitrite solutions

    YANG Xi; ZHAN Man-jun; KONG Ling-ren; WANG Lian-sheng

    2004-01-01

    The qualitative and quantitative analyses of reactive oxygen species are essential to determine their steady-state concentration and related reaction mechanisms in environmental aquatic systems. In this study, salicylic acid was employed as an innovative molecular probe of hydroxyl radical(OH) generated in aqueous nitrate and nitrite solutions through photochemical reactions. Kinetic studies showed that the steady-state concentrations of OH in aqueous NO3-(10 mmol/L, pH = 5) and NO2- (10 mmol/L, pH = 5) solutions under ultraviolet irradiation were at a same magnitude, 10-15 mol/L. Apparent quantum yields of OH at 313 nm were measured as 0.011 and 0.07 for NO3- and NO2- respectively, all comparable to the results of previous studies.

  19. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    Jia, Wenbao; He, Yanquan; Ling, Yongsheng; Hei, Daqian; Shan, Qing; Zhang, Yan; Li, Jiatong

    2015-04-01

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L-1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the •OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while •H and eaq- played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation.

  20. Radiolysis of aqueous solutions of acetic acid in the presence of Na-montmorillonite

    Navarro-Gonzalez, R.; Negron-Mendoza, A.; Ramos, S.; Ponnamperuma, C.

    1990-01-01

    The gamma-irradiation of 0.8 mol dm-3 aqueous, oxygen-free acetic acid solutions was investigated in the presence or absence of Na-montmorillonite. H2, CH4, CO, CO2, and several polycarboxylic acids were formed in all systems. The primary characteristics observed in the latter system were: (1) Higher yield of the decomposition of acetic acid; (2) Lower yield of the formation of polycarboxylic acids; (3) No effect on the formation of methane; (4) Higher yield of the formation of carbon dioxide; and (5) The reduction of Fe3+ in the octahedral sites of Na-montmorillonite. A possible reaction scheme was proposed to account for the observed changes. The results are important in understanding heterogeneous processes in radiation catalysis and might be significant to prebiotic chemistry.

  1. Hydrogen bonding of single acetic acid with water molecules in dilute aqueous solutions

    2009-01-01

    In separation processes,hydrogen bonding has a very significant effect on the efficiency of isolation of acetic acid (HOAc) from HOAc/H2O mixtures. This intermolecular interaction on aggregates composed of a single HOAc molecule and varying numbers of H2O molecules has been examined by using ab initio molecular dynamics simulations (AIMD) and quantum chemical calculations (QCC). Thermodynamic data in aqueous solution were obtained through the self-consistent reaction field calculations and the polarizable continuum model. The aggregation free energy of the aggregates in gas phase as well as in aqueous system shows that the 6-membered ring is the most favorable structure in both states. The relative stability of the ring structures inferred from the thermodynamic properties of the QCC is consistent with the ring distributions of the AIMD simulation. The study shows that in dilute aqueous solution of HOAc the more favorable molecular interaction is the hydrogen bonding between HOAc and H2O molecules,resulting in the separation of acetic acid from the HOAc/H2O mixtures with more difficulty than usual.

  2. Adsorption of uranium ions by crosslinked polyester resin functionalized with acrylic acid from aqueous solutions

    In this paper, the crosslinked polyester resin containing acrylic acid functional groups was used for the adsorption of uranium ions from aqueous solutions. For this purpose, the crosslinked polyester resin of unsaturated polyester in styrene monomer (Polipol 353, Poliya) and acrylic acid as weight percentage at 80 and 20%, respectively was synthesized by using methyl ethyl ketone peroxide (MEKp, Butanox M60, Azo Nobel)-cobalt octoate initiator system. The adsorption of uranium ions on the sample (0.05 g copolymer and 5 mL of U(VI) solution were mixed) of the crosslinked polyester resin functionalized with acrylic acid was carried out in a batch reactor. The effects of adsorption parameters of the contact time, temperature, pH of solution and initial uranium(VI) concentration for U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid were investigated. The adsorption data obtained from experimental results depending on the initial U(VI) concentration were analyzed by the Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption isotherms. The adsorption capacity and free energy change were determined by using D-R isotherm. The obtained experimental adsorption data depending on temperature were evaluated to calculate the thermodynamic parameters of enthalpy (ΔHo), entropy (ΔSo) and free energy change (ΔGo) for the U(VI) adsorption on the crosslinked polyester resin functionalized with acrylic acid from aqueous solutions. The obtained adsorption data depending on contact time were analyzed by using adsorption models such as the modified Freundlich, Elovich, pseudo-first order and pseudo-second-order kinetic models. (author)

  3. Removal of Basic Dyes from Aqueous Solution by Chloroacetic Acid Modified Ferula Communis Based Adsorbent: Thermodynamic and Kinetic Studies

    Salih, Shameran Jamal

    2014-01-01

    ABSTRACT: This research aimed to propose an alternative cheap and abundantly available adsorbent (Ferula communis) for the removal of basic dyes from aqueous solutions. Chloroacetic acid modified Ferula communis (MFC) shows a great potential for the removal of basic red 9 dyes (BR9) from aqueous solution with the effects of solution capacity under pH, temperature, contact time, adsorbent dosage, and initial dye concentration condition on BR9 removal were examined. The adsorption equilibrium d...

  4. Separation of glycols from dilute aqueous solutions via complexation with boronic acids

    Randel, L.A.; King, C.J.

    1991-07-01

    This work examines methods of separating low molecular weight glycols from dilute aqueous solution. Extraction into conventional solvents is generally not economical, since, in the literature reviewed, distribution ratios for the two- to four-carbon glycols are all less than one. Distribution ratios can be increased, however, by incorporating into the organic phase an extracting agent that will complex with the solute of interest. The extracting agent investigated in this work is 3-nitrophenylboronic acid (NPBA). NPBA, a boric acid derivative, reversibly complexes with many glycols. The literature on complexation of borate and related compounds with glycols, including mechanistic data, measurement techniques, and applications to separation processes, provides information valuable for designing experiments with NPBA and is reviewed herein. 88 refs., 15 figs., 24 tabs.

  5. Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures

    Densities, ρ, for glycine, L-alanine, L-valine, and L-leucine [(0.05 to 0.30) m] in aqueous lactose solutions ranging from pure water to 6 mass% lactose were determined at T = (293.15, 298.15, 303.15, and 308.15) K. The density was used to compute apparent molar volume, Vφ, partial molar volume at infinite dilution, Vφo, and experimental slope, SV were obtained and interpreted in terms of solute-solvent and solute-solute interactions. These data were used to calculate the (∂Vφ0/∂T)P values. The partial molar volume of transfer, ΔVφ0 from water to aqueous lactose solutions at infinite dilution has also been calculated. In addition to this, the linear correlation of Vφ0 with number of carbon atoms in the alkyl chain of amino acids was utilized to determine the respective contributions of NH3+COO-, and CH2 groups to Vφ0.

  6. Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures

    Pal, Amalendu, E-mail: palchem@sify.co [Department of Chemistry, Kurukshetra University, Kurukshetra 136 119 (India); Chauhan, Nalin [Department of Chemistry, Kurukshetra University, Kurukshetra 136 119 (India)

    2011-02-15

    Densities, {rho}, for glycine, L-alanine, L-valine, and L-leucine [(0.05 to 0.30) m] in aqueous lactose solutions ranging from pure water to 6 mass% lactose were determined at T = (293.15, 298.15, 303.15, and 308.15) K. The density was used to compute apparent molar volume, V{sub {phi}}, partial molar volume at infinite dilution, V{sub {phi}}{sup o}, and experimental slope, S{sub V} were obtained and interpreted in terms of solute-solvent and solute-solute interactions. These data were used to calculate the ({partial_derivative}V{sub {phi}}{sup 0}/{partial_derivative}T){sub P} values. The partial molar volume of transfer, {Delta}V{sub {phi}}{sup 0} from water to aqueous lactose solutions at infinite dilution has also been calculated. In addition to this, the linear correlation of V{sub {phi}}{sup 0} with number of carbon atoms in the alkyl chain of amino acids was utilized to determine the respective contributions of NH{sub 3}{sup +}COO{sup -}, and CH{sub 2} groups to V{sub {phi}}{sup 0}.

  7. Temperature effect on adiolysis of deaerated acid aqueous solutions of ferrous sulfate

    In the course of γ-radiolysis (60Co, dose rate=3.75 Gr/c, doses=1.575-3.375 kGr) of deaerated acid aqueous solution 3.6x10-3 mol/l of ferrous sulfate in the 20-250 deg C range the hydrogen molecules radiochemical yield per 100 eV of absorbed energy G(H2) decreases from 3.82±0.12 to 2.72±0.26, whereas G(Fe3+) independently of temperature is equal 8.34±0.36

  8. Hydrogen peroxide yields in the radiolysis of aerated aqueous solutions of formic acid

    Radiation-chemical yields of hydrogen peroxide during radiolysis of formic acid deaerated aqueous solutions were measured under the action of gamma and accelerated electron radiation in the range of high doses up to (10-15 kGy) and average dose rate of 10 Gy/s. It was ascertained that growth of radiation dose involves at first increase in concentration of hydrogen peroxide formed, passing through a maximum, and then decrease to actually zero values at doses exceeding 1.5 kGy. The character of the dependence is explained by gradual consumption of oxygen with the dose increase

  9. Amination of oxy acids in aqueous solution by gamma-irradiation

    Alanin, β-alanine, glicine, and aspartic, α-amino-n-butyric, and γ-amino-n-butyric acids were obtained by γ-irradiation of aqueous ammonia solutions of lactic, β-oxypropionic, glycolic, malic, α-oxybutyric, and γ-oxybutyric acids, respectively. The yields of amino acids were examined for functions of radiation dose (0.75 - 3.55Mrad), concentrations of oxy acid (0.01 - 0.1M) and ammonia (0.1 - 15M), and substances added as radical (potassium iodide), and hydrated electron (nitrous oxide) scavengers. The maximum G-values were 0.6 for alanine in a solution of 0.1M lactic acid-4M ammonia and some nitrous oxide and 1.14 for β-alanine in a solution of 0.1M β-oxypropionic acid and 0.7M ammonia. The yield of alanine increased with increased concentrations of lactic acid and ammonia due to saturation of nitrous oxide but decreased when potassium iodide (0.03M) was added. The yield of β-alanine showed a maximum increase at ca. 0.7M ammonia and decreased when potassium iodide and nitrous oxide were added. Serine was obtained from G = 0.002 in a solution of β-oxypropionic acid and increased to G = 0.058 due to saturation of nitrous oxide. The manner of chemical amination due to radiation was studied from the above results. In general, oxy acids from which hydrogen has been abstracted by an H or OH radical react with ammonia to form amino acids. The effect of ammonia concentration on the yield of amino acids demonstrates that the NH2 radical abstracts the α-hydrogen of lactic acid but does not react with the β-hydrogen of β-oxypropionic acid. The effect of nitrous oxide indicates that hydrated electrons interfere with alanine formation, contribute to β-alanine formation, react with the carboxyl group of lactic acids to form lactamide, and abstract the β-hydroxyl group of β-oxypropionic acids to form β-alanine. (Bell, E.)

  10. Process optimization of reaction of acid leaching residue of asbestos tailing and sodium hydroxide aqueous solution

    2009-01-01

    Silica is the major component of the acid leaching residue of asbestos tailing. The waterglass solution can be prepared by the reaction of the residue with sodium hydroxide aqueous solution. Compared to the high temperature reaction method, this process is environmental friendly and low cost. In this paper, the reaction process of the residue and the sodium hydroxide aqueous solution is optimized. The optimum reaction process parameters are as follows: the usage of sodium hydroxide is 26.4 g/100 g acid leaching residue, the reaction temperature is 90℃, the reaction time is 1 h, and the ratio of the liquid/solid is 2.0. The significance sequence of the process parameters to the alkali leaching reaction effect is the usage of sodium hydroxide > the ratio of the liquid/solid > the reaction time > the reaction temperature. The significance sequence to the leaching ratio of SiO2 is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. The significance sequence to the modulus of the sodium silicate is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. Under the optimum conditions, the leaching ratio of the SiO2 is 77.5%, and the modulus of the sodium silicate is 3.15. The XRD analysis result indicates that the major components of the alkali leaching residue are serpentine, talc, quartz and some albite.

  11. ADSORPTION OF TANNIN ACID ONTO AN AMINATED MACROPOROUS RESIN FROM AQUEOUS SOLUTIONS

    2007-01-01

    A macroporous polymeric adsorbent NG-8 was synthesized with divinylbenzene using conventional suspension polymerization technique. Its aminated product NG-9 was prepared by introducing tertiary amino groups into NG-8 for removal of tannin acid from aqueous solutions. NG-9 could be used directly without a wetting process and had higher adsorption capacity than NG-8, which might be attributed to the enhanced adsorbent-adsorbate interaction due to the tertiary amino groups on the polymeric matrix. The Langmuir equation was successfully employed to describe the adsorption process. The adsorption enthalpy change further validated the uptake of tannin acid on NG-9 to be an enhanced physical adsorption because of the Lewis acid-base interaction. In addition, adsorption kinetic studies testified that the tertiary amino groups on the polymer matrix could decrease the adsorption rate maybe for the hindrance of the tertiary amino groups and water clusters built up.

  12. Degradation of hydroxycinnamic acid mixtures in aqueous sucrose solutions by the Fenton process.

    Nguyen, Danny M T; Zhang, Zhanying; Doherty, William O S

    2015-02-11

    The degradation efficiencies and behaviors of caffeic acid (CaA), p-coumaric acid (pCoA), and ferulic acid (FeA) in aqueous sucrose solutions containing the mixture of these hydroxycinnamic acids (HCAs) were studied by the Fenton oxidation process. Central composite design and multiresponse surface methodology were used to evaluate and optimize the interactive effects of process parameters. Four quadratic polynomial models were developed for the degradation of each individual acid in the mixture and the total HCAs degraded. Sucrose was the most influential parameter that significantly affected the total amount of HCA degraded. Under the conditions studied there was a analysis showed goodness of fit between the experimental results and the predicted values. The degradation behavior of CaA differed from those of pCoA and FeA, where further CaA degradation is observed at increasing sucrose and decreasing solution pH. The differences (established using UV/vis and ATR-FTIR spectroscopy) were because, unlike the other acids, CaA formed a complex with Fe(III) or with Fe(III) hydrogen-bonded to sucrose and coprecipitated with lepidocrocite, an iron oxyhydroxide. PMID:25585639

  13. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution.

    Renwu Zhou

    Full Text Available Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS. Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma.

  14. Interaction of Atmospheric-Pressure Air Microplasmas with Amino Acids as Fundamental Processes in Aqueous Solution

    Zhou, Renwu; Zhou, Rusen; Zhuang, Jinxing; Zong, Zichao; Zhang, Xianhui; Liu, Dongping; Bazaka, Kateryna; Ostrikov, Kostya

    2016-01-01

    Plasma medicine is a relatively new field that investigates potential applications of cold atmospheric-pressure plasmas in bioengineering, such as for bacterial inactivation and degradation of organic molecules in water. In order to enunciate mechanisms of bacterial inactivation at molecular or atomic levels, we investigated the interaction of atmospheric-pressure air microplasmas with amino acids in aqueous solution by using high-resolution mass spectrometry (HRMS). Results show that the oxidation effect of plasma-induced species on the side chains of the amino acids can be categorized into four types, namely hydroxylation, nitration, dehydrogenation and dimerization. In addition, relative activities of amino acids resulting from plasma treatment come in descending order as follows: sulfur-containing carbon-chain amino acids > aromatic amino acids > five-membered ring amino acids > basic carbon-chain amino acids. Since amino acids are building blocks of proteins vital to the growth and reproduction of bacteria, these results provide an insight into the mechanism of bacterial inactivation by plasma. PMID:27183129

  15. Solution properties and taste behavior of lactose monohydrate in aqueous ascorbic acid solutions at different temperatures: Volumetric and rheological approach.

    Sarkar, Abhijit; Sinha, Biswajit

    2016-11-15

    The densities and viscosities of lactose monohydrate in aqueous ascorbic acid solutions with several molal concentrations m=(0.00-0.08)molkg(-1) of ascorbic acid were determined at T=(298.15-318.15)K and pressure p=101kPa. Using experimental data apparent molar volume (ϕV), standard partial molar volume (ϕV(0)), the slope (SV(∗)), apparent specific volumes (ϕVsp), standard isobaric partial molar expansibility (ϕE(0)) and its temperature dependence [Formula: see text] the viscosity B-coefficient and solvation number (Sn) were determined. Viscosity B-coefficients were further employed to obtain the free energies of activation of viscous flow per mole of the solvents (Δμ1(0≠)) and of the solute (Δμ2(0≠)). Effects of molality, solute structure and temperature and taste behavior were analyzed in terms of solute-solute and solute-solvent interactions; results revealed that the solutions are characterized predominantly by solute-solvent interactions and lactose monohydrate behaves as a long-range structure maker. PMID:27283672

  16. The distribution of acid, water, methanol, ethanol and acetone between mixed aqueous-organic nitric acid solutions of trilaurylammoniumnitrate in cyclohexane

    The distribution of acid, water, methanol, ethanol and acetone between mixed aqueous-organic nitric acid solutions and solutions of trilaurylammoniumnitrate in cyclohexane has been investigated. The distribution of acid rises with increasing concentrations of nitric acid, methanol, ethanol and acetone in the mixed aqueous-organic phase. The effect of the organic additives in increasing the distribution of the acid is methanol< ethanol< acetone. The concentration of nitric acid in the organic phase can be calculated by a formula similar to that describing the extraction from pure aqueous solutions. The distribution curves of water, methanol and ethanol resemble each other, all of them showing a minimum, when the distribution ratio is plotted versus the nitric acid concentration in the mixed aqueous-organic phase. The acetone distribution decreases steadily with increasing nitric acid concentration. The shape of the curves is briefly discussed. (T.G.)

  17. Acid-base equilibrium in aqueous solutions of 1,3-dimethylbarbituric acid as studied by 13C NMR spectroscopy

    Gryff-Keller, A.; Kraska-Dziadecka, A.

    2011-12-01

    13C NMR spectra of 1,3-dimethylbarbituric acid in aqueous solutions of various acidities and for various solute concentrations have been recorded and interpreted. The spectra recorded at pH = 2 and below contain the signals of the neutral solute molecule exclusively, while the ones recorded at pH = 7 and above only the signals of the appropriate anion, which has been confirmed by theoretical GIAO-DFT calculations. The signals in the spectra recorded for solutions of pH acid-base equilibrium. The kinetic data determined this way have been used to clarify the mechanisms of these processes. The numerical analysis has shown that under the investigated conditions deprotonation of the neutral solute molecules undergoes not only via a simple transfer of the C-H proton to water molecules but also through a process with participation of the barbiturate anions. Moreover, the importance of tautomerism, or association, or both these phenomena for the kinetics of the acid-base transformations in the investigated system has been shown. Qualitatively similar changes of 13C NMR spectra with the solution pH variation have been observed for the parent barbituric acid.

  18. Radiation-induced degradation of cyclohexanebutyric acid in aqueous solutions by gamma ray irradiation

    The radiation-induced degradation of cyclohexanebutyric acid under gamma ray irradiation was investigated. Degradation experiments were performed with 100 mL sealed Pyrex glass vessels loaded with 80 mL of cyclohexanebutyric acid solutions at various initial concentrations of 10, 20, and 40 mg L−1. The absorbed doses were controlled at 0, 0.65, 1.95, 3.25, 6.5, 9.75, and 13 kGy. The results showed that gamma ray irradiation could effectively degrade cyclohexanebutyric acid in aqueous solutions. The removal rate of cyclohexanebutyric acid increased significantly with the increase of absorbed dose and the decrease of its initial concentration. At the same time, the removal of chemical oxygen demand (COD) was as effective as that of cyclohexanebutyric acid. The kinetic studies showed that the degradation of cyclohexanebutyric acid followed pseudo first-order reaction. Above all, the proposed mechanism obtained when NaNO2, NaNO3 and tert-butanol were added showed that the ∙OH radical played a major role in the gamma degradation process of cyclohexanebutyric acid, while ∙H and eaq− played a minor role in the gamma degradation process. The degradation products were identified by Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass spectrometry (GC/MS) during cyclohexanebutyric acid degradation. - Highlights: • Gamma irradiation was efficient for removing cyclohexanebutyric acid from water. • The degradation kinetics of cyclohexanebutyric acid followed pseudo first-order reaction. • OH radical played a major role for oxidative degradation. • Some possible intermediate products were identified

  19. Density and activity of perrhenic acid aqueous solutions at T = 298.15 K

    Highlights: • Water activity and osmolality measurements on highly concentrated perrhenic acid binary solutions have been carried out. • The study led to a new expression of the stoichiometric activity coefficient γ±vs. m. • The parameters of the two most frequently referenced Pitzer and specific interaction theory models have been determined. • The partial molar volume has been calculated. • The density law of the binary solution as a function of its concentration has been determined. - Abstract: Published isopiestic molalities for aqueous HReO4 solutions at T = 298.15 K are completed. Binary data (variation of the osmotic coefficient and activity coefficient of the electrolyte in solution in the water) at T = 298.15 K for perrhenic acid HReO4 are determined by direct water activity and osmolality measurements. The variation of the osmotic coefficient of this acid in water is represented mathematically according to a model recommended by the National Institute of Standards and Technology and according to the specific interaction theory. The data are also used to evaluate the parameters of the standard three-parameters of Pitzer’s ion-interaction model, along with the parameters of Archer’s four-parameter extended ion-interaction model, to higher molalities than previously advised. Experimental thermodynamic data are well represented by these models. Density variations at T = 298.15 K are also established and used to express the activity coefficient values on both the molar and molal concentration scales

  20. Nanoporous carbon synthesized from sol-gel template for adsorbing gibberellic acid in aqueous solution

    A novel method, based on dynamic carbonization and silica template formed by sol-gel, was developed to prepare nanoporous carbon materials with tailored pore structures. The effects of the sol-gel reaction and carbonization process on the final nanoporous carbon product were investigated by pore features such as specific surface area, the total pore volume, and pore size distribution, which were systemically characterized by iodine index, transmission electron microscopy, and nitrogen adsorption. The experimental results indicate that the pore structures of the prepared nanoporous carbon are tunable on the nano-scale by controlling the preparation process in the proposed method. The nanoporous carbon prepared under the optimal conditions has a high total pore volume of 1.26 cm3/g, a large specific surface area of 1744 m2/g, and a maximal adsorption capacity of 9.2 mg/g to gibberellic acid in aqueous solution, which is nearly 6 times that of commercial activated carbon. Highlights: → Silica formed by sol-gel as template for nanoporous carbon preparation. → Pore structures are tunable on the nano-scale. → High total pore volume and large specific surface developing. → Adsorption of gibberellic acid in aqueous solution carrying out.

  1. Aldehydes, ketones, and carboxylic acids formed radiolytically in aqueous solutions of cyanides and simple nitriles

    Negron-Mendoza, A.; Draganic, Z.D.; Navarro-Gonzalez, R.; Graganic, I.G.

    1983-08-01

    A systematic search for aldehydes, ketones, and carboxylic acids was carried out in aqueous solutions of HCN, NH/sub 4/CN, CH/sub 3/CN, and C/sub 2/H/sub 4/CN, that had received multikilogray doses of /sup 60/Co ..gamma.. radiation. About 30 radiolytic products were identified, among them a large variety of dicarboxylic and tricarboxylic acids. Some of them might be of significant interest in molecular evolution studies of prebiotic processes. They originate in the free-radical-initiated chemical reactions where the additional oligomerization processes are particularly important. Most of the radiolytic products appear in both cyanides and nitriles and point to the importance of reactions involving the carbon-nitrogen triple bond.

  2. Biosorption of Acid Yellow 17 from aqueous solution by non-living aerobic granular sludge

    Batch biosorption experiments were carried out for the removal of Acid Yellow 17 from aqueous solution using non-living aerobic granular sludge as an effective biosorbent. The effects of solution pH value, biosorbent dosage, initial Acid Yellow 17 concentration, NaCl concentration and temperature on the biosorption were investigated. The experimental results indicate that this process was highly dependent on pH value and the pH value of 2.0 was favorable. The Temkin isotherm was more applicable for describing the biosorption equilibrium at the whole concentration range than the Freundlich and Langmuir isotherm. The results of kinetics study show that the pseudo-second-order model fitted to the experimental data well. Both intraparticle diffusion and boundary layer diffusion might affect the biosorption rate. Thermodynamic studies demonstrate that the biosorption process was spontaneous and exothermic. The FTIR analysis before and after Acid Yellow 17 binding indicated that functional groups such as amine, hydroxyl, carboxyl and either on the non-living aerobic granular sludge would be the active binding sites for the biosorption of the studied dye. These results show that non-living aerobic granular sludge could be effectively used as a low-cost and alternative biosorbent for the removal of Acid Yellow 17 dye from wastewater.

  3. Pulse electrodeposition of Pt and Pt–Ru methanol-oxidation nanocatalysts onto carbon nanotubes in citric acid aqueous solutions

    In this study, platinum nanoparticle/carbon nanotube (Pt NP/CNT) and platinum–ruthenium nanoparticle (Pt–Ru NP/CNT) hybrid nanocatalysts were prepared by the pulse-electrodeposition method in different aqueous solutions containing citric acid (CA) or sulfuric acid (SA). The electrocatalytic properties of the Pt NP/CNT and Pt–Ru NP/CNT electrodes prepared using different aqueous solutions were investigated for methanol oxidation. The results show that the electrochemical mass activities of these hybrid nanocatalysts prepared in the CA aqueous solution were increased by factors of 1.46 and 2.77 for Pt NPs and Pt–Ru NPs, respectively, compared with those prepared in SA aqueous solutions using the same procedure. These increased mass activities are attributed to the CA playing dual roles as both a stabilizing agent and a particle size reducing agent in the aqueous solutions. The approach developed in this work enables further reductions in the particle sizes of noble-metal nanocatalysts. - Highlights: • Pulse-electrodeposition of Pt or Pt–Ru nanoparticles on carbon nanotubes • Carbon nanotubes used as a catalyst-supporting material • Citric acid used as reducing agent in the aqueous electrodeposition solutions • Electrochemical activity for methanol oxidation improved by a factor of 1.46 to 2.77

  4. Deprotonation of salicylic acid and 5-nitrosalicylic acid in aqueous solutions of ethanol

    Faraji Mohammad

    2011-01-01

    Full Text Available The protonation constant values of two hydroxybenzoic acids (salicylic and 5-nitrosalicylic acid were studied in some water-ethanol solutions using spectrophotometric and potentiometric methods at 25°C and in an ionic strength of 0.1 M sodium perchlorate. The results indicated that the pKa values increase with increasing proportion of ethanol in mixed solvent. The dependence of the protonation constants on the variation of the solvent were correlated by the dielectric constants of the media. Furthermore, for a better understanding of the solvent influence, the obtained results were explained in terms of the Kamlet-Taft parameters α (hydrogen-bond donor acidity, π

  5. Density, viscosity, and N2O solubility of aqueous amino acid salt and amine amino acid salt solutions

    Highlights: ► Density of amino acid salt and amine amino acid salt. ► Viscosity of amino acid salt and amine amino acid salt. ► Henry’s law constant/N2O solubility of amino acid salt and amine amino acid salt. ► Schumpe model. Correlations for density, viscosity, and N2O solubility. - Abstract: Physicochemical properties of aqueous amino acid salt (AAS), potassium salt of sarcosine (KSAR) and aqueous amine amino acid salt (AAAS), 3-(methylamino)propylamine/sarcosine (SARMAPA) have been studied. Densities of KSAR were measured for sarcosine mole fraction 0.02 to 0.25 for temperature range 298.15 K to 353.15 K, the viscosities were measured for 0.02 to 0.10 mole fraction sarcosine (293.15 K to 343.15 K) while the N2O solubilities were measured from 0.02 to 0.10 mole fraction sarcosine solutions (298.15 K to 363.15 K). Densities of SARMAPA were measured for sarcosine mole fraction 0.02 to 0.23 for temperature range (298.15 K to 353.15 K), viscosities were measured for 0.02 to 0.16 mole fraction sarcosine (293.15 K to 343.15 K) while the N2O solubilities were measured from 0.02 to 0.16 mole fraction sarcosine solutions (298.15 K to 343.15 K). Experimental results were correlated well with empirical correlations and N2O solubility results for KSAR were predicted adequately by a Schumpe model. The solubilities of N2O in AAS and AAAS are significantly lower than values for amines. The solubilities vary as: amine > AAAS > AAS.

  6. Dissolution of nickel ferrite in aqueous solutions containing oxalic acid and ferrous salts

    The dissolution of nickel ferrite in oxalic acid and in ferrous oxalate-oxalic acid aqueous solution was studied. Nickel ferrite was synthesized by thermal decomposition of a mixed tartrate; the particles were shown to be coated with a thin ferric oxide layer. Dissolution takes place in two stages, the first one corresponding to the dissolution of the ferric oxide outer layer and the second one being the dissolution of Ni1.06Fe1.96O4. The kinetics of dissolution during this first stage is typical of ferric oxides: in oxalic acid, both a ligand-assisted and a redox mechanism operates, whereas in the presence of ferrous ions, redox catalysis leads to a faster dissolution. The rate dependence on both oxalic acid and on ferrous ion is described by the Langmuir-Hinshelwood equation. In the second stage, Langmuir-Hinshelwood kinetics also describes the dissolution of iron and nickel from nickel ferrite. It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel

  7. Interaction preferences between nucleobase mimetics and amino acids in aqueous solutions.

    Hajnic, Matea; Osorio, Juan I; Zagrovic, Bojan

    2015-09-01

    Despite the paramount importance of protein-nucleic acid interactions in different cellular processes, our understanding of such interactions at the atomistic level remains incomplete. We have used molecular dynamics (MD) simulations and 15 μs of sampling time to study the behavior of amino acids and amino-acid sidechain analogs in aqueous solutions of different mimetics of naturally occurring nucleobases, including dimethylpyridine (DMP) and unsubstituted purine and pyrimidine rings. By using structural and energetic analysis, we have derived preference scales for the interaction of amino acids and their sidechain analogs with different nucleobase mimetics and have exhaustively compared them with each other. A close correspondence with a standard hydrophobicity measure in the case of the pyrimidine mimetic DMP and purines suggests that the hydrophobic effect is the main defining factor behind such interactions. We analyze our findings in the context of the origin of the genetic code and the recently proposed cognate mRNA-protein complementarity hypothesis. Most importantly, we show that unsubstituted purine and pyrimidine rings alone cannot differentiate between predominantly purine- and pyrimidine-coded amino acids, suggesting that for such specificity to exist, it must primarily reside in ring substituents. PMID:26219945

  8. [Changes in the collagen amino acid composition of calf skin after gamma-irradiation in an aqueous solution].

    Duzhenkova, N A; Savich, A V

    1983-01-01

    A study was made of the amino acid composition of calf skin collagen after gamma-irradiation (60Co) of 2.5 X 10(-6) M aerated aqueous protein solution within the dose range from 30 to 2000 Gy. The radiosensitivity of amino acid residues was compared. PMID:6657935

  9. Physicochemical Properties of Amino Acids in Aqueous Caffeine Solution at 25, 30, 35 and 40 ℃

    ALI A.; SABIR S.; SHAHJAHAN; HYDER S.

    2006-01-01

    Density, viscosity, and refractive index, for glycine, DL-alanine, L-serine and DL-valine have been determined in aqueous solution of 0.05 mol/kg caffeine as a function of amino acid (AA) concentration at 25, 30, 35, and 40 ℃.The density data have been used to compute apparent molar volume. The partial molar volume (limiting apparent molar volume) was obtained by applying the Masson's equation. The viscosity data have been analyzed by means of Jones-Dole equation. The values of Falkenhagen coefficient and Jones-Dole coefficient thus obtained are used to interpret the solute-solute and solute-solvent interactions, respectively. Hydration number was also computed. The transition-state theory was applied to obtain the activation parameters of viscous flow, I.e., free energy of activation per mole of solvent, and solute. The enthalpy and entropy of activation of viscous flow were computed for the system. Refractive index was used to calculate molar refractivity of the mixtures. The results have been interpreted in the lightof various interactions occurring between the components of the mixtures under applied experimental conditions.

  10. Process optimization of reaction of acid leaching residue of asbestos tailing and sodium hydroxide aqueous solution

    DU GaoXiang; ZHENG ShuiLin; DING Hao

    2009-01-01

    Silica is the major component of the acid leaching residue of asbestos tailing. The waterglass solution can be prepared by the reaction of the residue with sodium hydroxide aqueous solution. Compared to the high temperature reaction method, this process is environmental friendly and low cost. In this paper, the reaction process of the residue and the sodium hydroxide aqueous solution is optimized. The op-timum reaction process parameters are as follows: the usage of sodium hydroxide is 26.4 g/100 g acid leaching residue, the reaction temperature is 90℃, the reaction time is 1 h, and the ratio of the liq-uid/solid is 2.0. The significance sequence of the process parameters to the alkali leaching reaction effect is the usage of sodium hydroxide > the ratio of the liquid/solid > the reaction time > the reaction temperature. The significance sequence to the leaching ratio of SiO2 is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. The significance sequence to the modulus of the sodium silicate is the ratio of the liquid/solid > the usage of sodium hydroxide > the reaction time > the reaction temperature. Under the optimum conditions, the leaching ratio of the SiO2 is 77.5%, and the modulus of the sodium silicate is 3.15. The XRD analysis result indicates that the major components of the alkali leaching residue are serpentine, talc, quartz and some albite.

  11. Diffusion of levodopa in aqueous solutions of hydrochloric acid at 25 °C

    Graphical abstract: - Highlights: • Ternary mutual diffusion coefficients of aqueous L-dopa plus hydrochloric acid at 25 °C. • Diffusion of L-dopa driven by HCl gradients. • Coupled diffusion of L-dopa and HCl. - Abstract: Ternary mutual diffusion coefficients (D11, D22, D12 and D21) measured by the Taylor dispersion method are reported for aqueous solutions of {levodopa (L-dopa) + HCl} solutions at 25 °C and HCl concentrations up to 0.100 mol · dm−3. The coupled diffusion of L-dopa (1) and HCl (2) is significant, as indicated by large negative cross-diffusion coefficients. D21, for example, reaches values that are larger than D11, the main coefficient of L-dopa. Combined Fick and Nernst–Planck equations are used to analyze the proton coupled diffusion of L-dopa and HCl in terms of the binding of H+ ions to L-dopa and ion migration in the electric field generated by L-dopa and HCl concentration gradients

  12. Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution

    Yao Shuhua

    2012-12-01

    Full Text Available Abstract Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made this material a suitable adsorbent to remove methyl blue. The adsorption capacity of modified wheat bran was about 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that the overall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methyl blue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment.

  13. Biosorption of Methyl Blue Onto Tartaric Acid Modified Wheat Bran From Aqueous Solution

    Shuhua Yao

    2012-12-01

    Full Text Available Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made thismaterial a suitable adsorbent to remove 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that theoverall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of theLangmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methylblue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment.

  14. Biosorption of methyl blue onto tartaric acid modified wheat bran from aqueous solution.

    Yao, Shuhua; Lai, Hong; Shi, Zhongliang

    2012-01-01

    Tartaric acid modified wheat bran was utilized as adsorbent to remove methyl blue, a basic dye from aqueous solution. Batch experiments were carried out to study the effect of various experimental parameters such as initial solution pH, contact time, initial dye concentration and adsorbent dosage, on dye adsorption. The results showed that the modification of wheat bran by tartaric acid significantly improved its adsorption capacity, and made this material a suitable adsorbent to remove methyl blue. The adsorption capacity of modified wheat bran was about 1.6 times higher than that of unmodified one. The amount of methyl blue adsorbed was found to vary with initial solution pH, adsorbent dosage, contact time and initial methyl blue concentration. Kinetics study showed that the overall adsorption rate of methyl blue was illustrated by pseudo-second-order kinetic model. The applicability of the Langmuir and Freundlich models for the data was tested. Both models adequately described the experimental data of the biosorption of methyl blue. The maximum adsorption capacity for methyl blue calculated from Langmuir model was 25.18 mg/g. The study has shown the effectiveness of modified wheat bran in the removal of methyl blue, and that it can be considered as an attractive alternative to the more expensive technologies used in wastewater treatment. PMID:23369295

  15. Solubility and metastable zone width of DL-tartaric acid in aqueous solution

    Zhang, Xiang-Yang; Wang, Xiaofang; Hao, Lin; Yang, Xiaowu; Dang, Leping; Wei, Hongyuan [School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin (China)

    2012-11-15

    Solubility and metastable zone width (MSZW) of DL-tartaric acid (DL-TA) in aqueous solution have been determined. Solubility of DL-TA was measured in the temperature range from 0 to 50 C at atmospheric pressure by means of the conventional polythermal method using Turbidity Monitoring Technique, which was verified by a gravimetric method. The dissolution enthalpy and entropy of DL-TA were then calculated from the solubility data using van't Hoff equation. Two approaches was used to estimate the nucleation kinetics from the measured metastable zone width data, the self-consistent approach and the approach based on 3D nucleation. In addition, the metastable zone width slightly decreases with increasing agitation rate and was independent of working volume. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Kinetic of the COLUMBO-TANTALITE dissolution in aqueous solutions of hydrofluoric acid

    The dissolution rate of a columbo-tantalite of the San Luis Province in aqueous solutions of hydrofluoric acid has been studied.Experiments at different temperatures were carried out in a pressure reactor.The experimental results show that the mineral dissolution increases with the reaction time.This effect is greater when the temperature increases from 348 up to 396 K, but it is little 493 K. The experimental data were treated with different models, which have been deduced for the kinetic study of solid-fluid non-catalytic heterogeneous reactions. As a result, the better model that fit the experimental data is a model based on the nucleation and growth theory.This model is physically according to the attack observed by means of scanning electron microscopy (SEM) and energy-dispersive X-ray spectrometry (EDXS) on the mineral residues.These residues show an irregular located-type attack

  17. Removal of Basic Violet 14 from aqueous solution using sulphuric acid activated materials.

    Suresh, S

    2016-01-01

    In this study the adsorption of Basic Violet, 14 from aqueous solution onto sulphuric acid activated materials prepared from Calophyllum inophyllum (CS) and Theobroma cacao (TS) shells were investigated. The experimental data were analysed by Langmuir, Freundlich and Temkin isotherm models. The results showed that CS has a superior adsorption capacity compared to the TS. The adsorption capacity was found to be 1416.43 mg/g for CS and 980.39 mg/g for TS. The kinetic data results at different concentrations were analysed using pseudo first-order and pseudo-second order model. Boyd plot indicates that the dye adsorption onto CS and TS is controlled by film diffusion. The adsorbents were characterised by scanning electron microscopy. The materials used in this study were economical waste products and hence can be an attractive alternative to costlier adsorbents for dye removal in industrial wastewater treatment processes. PMID:27330899

  18. Interpolymer reactions of nonionic polymers with polyacrylic acid in aqueous solutions

    E. Shaikhutdinov

    2012-03-01

    Full Text Available Results of fundamental investigations in the intermacromolecular reactions and interpolymer complexes to be performed by authors with co-workes within last 20 years have been intergrated and summarized in the present review. The raw of fundamental regularities in the effect of factors of different nature (pH, ionic strength, temperature, hydrophilic-hydrophobic balance of macrochain, etc. on the complexation of nonionic polymers with polycarboxylic acids in aqueous solutions has been revealed. Critical pH upon complexation (pHcrit. has been used for evaluation of the complexing ability of the polymers. It was shown tha tdepending on pHcrit. all systems can be divided into 2 groups, namely, weak complexing and strongly complexing. The existence of two critical pH upon complexation responsible for formation typical interpolymer complexes and hydrophilic associations has been demonstrated by the method of luminescence spectroscopy.

  19. Effects of ultrasonic processing on degradation of salvianolic acid B in aqueous solution.

    Guo, Y X; Zhang, L; Lu, L; Liu, E H; Shi, C Z

    2016-09-10

    To evaluate the stability of salvianolic acid B (Sal B) under ultrasound-assisted extraction in the pharmaceutical industry, degradation of Sal B under ultrasonic irradiation was investigated as the function of buffer concentration, pH, and temperature. With regard to Sal-B concentration, a first-order degradation process was determined, with 10% change in assay from its initial concentration as t90=4.81h, under maximum stability acidic conditions (pH 2.0) and at 25°C. The logkpH-pH profile described by specific acid-base catalysis and water molecules supported the experimental results. Liquid chromatography-mass spectrometry (LC-MS) analyses revealed 7 major degradation products whose structures were characterized by electrospray ionization/mass spectrometry. A primary degradation pathway involved cleavage of the ester bond and ring-opening of benzofuran in Sal B was proposed. The complete degradation pathway of Sal B was also proposed. Results showed that ultrasonic irradiation leads to degradation of Sal B in aqueous solution. PMID:27442887

  20. Adsorption of Bezanyl Red and Nylomine Green from aqueous solutions by natural and acid-activated bentonite

    BENGUELLA, B.; YACOUTA-NOUR, A.

    2009-01-01

    The adsorption of two acid dyes, namely, Red Bezanyl and Green Nylomine, onto natural bentonite and acid activated bentonite from aqueous solutions were studied in a batch system. The kinetic data show that at the equilibrium, the acid-activated bentonite fixes more Bezanyl Red and Nylomine Green than the natural bentonite. Adsorption equilibrium was reached within 2 h. The results also showed that the kinetics of adsorption is best descibed by a pseudo second-order expression than a first or...

  1. STRUCTURE AND REDOX TRANSFORMATIONS OF IRON(III COMPLEXES WITH SOME BIOLOGICALLY IMPORTANT INDOLE-3-ALKANOIC ACIDS IN AQUEOUS SOLUTIONS

    Krisztina Kovács

    2007-06-01

    Full Text Available Interactions of a series of indole-3-alkanoic acids (with n-alkanoic acid side-chains from C1 to C4 with iron(III in acidic aqueous solutions have been shown to comprise two parallel processes including complexation and redox transformations giving iron(II hexaaquo complexes. The structure and composition of the reaction products are discussed, as analysed using a combination of instrumental techniques including 57Fe Mössbauer, vibrational and HNMR spectroscopies.

  2. Theoretical insights into the properties of amino acid ionic liquids in aqueous solution.

    Zhu, Xueying; Ai, Hongqi

    2016-07-01

    This report presents a systematic investigation of the interactions of water molecule(s) with a series of amino acid cations (Gly(+), Ala(+), Val(+), and Leu(+)), halogen anions (Cl(-), Br(-), BF4 (-), and PF6 (-)), and clusters (GlyCl) n (n = 1-5). The results reveal that H-bonds between amino acid ionic liquids (AAILs) and water molecules are crucial to the properties of aqueous solution of AAILs. The properties of AAIL in water solution depend on the alkyl chain of the amino acid cation, the size of the halogen anion, and the number of water molecules, which provides a certain theoretical basis for the design and application of new AAILs. A series of calculations for some different models showed that quadruple-GlyCl hydrate represents a basic unit for the Gly-water binary system, and can be employed as the simplest model for studying an AAIL-water cluster. On the basis of this model, the effects of water on the hygroscopicity, speed of solubility, viscosity, density, solution enthalpy, and polarity of the AAIL were also predicted. Most importantly, unlike traditional ILs, the novel GlyCl-type AAIL favors interaction of its cationic part, rather than its anionic part, with surrounding water molecules, thus amino acid cationic ILs expand the types of IL available, increasing the choice of ILs for different purposes. We hope that the application of this AAIL in many fields will lead to optimization of this class of compound and be of benefit to the environment. Graphical Abstract Quadruple-GlyCl hydrate represents the basic unit for a GlyCl-water binary system, which can be employed as the simplest model for studying an amino acid ionic liquid (AAIL)-water cluster. The effects of available water on some properties of AAIL are predicted. GlyCl-type AAIL is a novel IL, which prefers its cationic part over its anionic part for interaction with surrounding water molecules. The properties of AAIL in water solution can be adjusted by varying the ion used and the

  3. Treatment of sugi (Cryptomeria japonica D.) sapwood with aqueous solution of acetic acid

    LUBao-wang; DUGuang-hua; MATSUITakanao; MATSUSHITAYoh-ichi

    2003-01-01

    Sugi sapwood samples were processed with aqueous solution of acetic acid in order to find the response of the weight of sugi sapwood and the treatment of aqueous solution of acetic acid. The result showed that loss of weight for the treated sugisapwood was about equal to yield of extracts from sugi sapwood, and increased with the increment of the concentration of aqueous solution of acetic acid. Fourier transform infrared spectroscopy spectra changes of the treated sugi wood and extracts from sugi sapwood were analyzed by FT-IR spectroscopic technique. Increasing tendency of absorption intensities of the stretching vibration at 3 400 cm-1 of hydroxyl group (OH) and C=C in lignin stretching vibration at 1510 cm-1 of benzene ring inlignin were observed from FT-IR of the treated sugi sapwood. From FT-IR spectra of extracts from sugi sapwood by aqueoussolution of acetic acid, the dissolution of lignin was observed during the treatment with 30% acetic acid solution aqueous.

  4. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Wei, Wei [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China); Yang, Lei; Zhong, Wenhui; Cui, Jing [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Wei, Zhenggui, E-mail: weizhenggui@gmail.com [Department of Environmental Science and Engineering, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing 210023 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Poorly crystalline HAP was firstly used for FA removal from aqueous solution. • The maximum adsorption capacity was determined to be 90.20 mg/g at 318 K. • Adsorption kinetics, isotherms and thermodynamic have been studied in detail. • Adsorption mechanism involved surface complexation, electrostatic interaction and hydrogen bonding. - Abstract: In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (X{sub c} = 0.23) and had better adsorption capacity for FA than those (X{sub c} = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long

  5. Poorly crystalline hydroxyapatite: A novel adsorbent for enhanced fulvic acid removal from aqueous solution

    Wei, Wei; Yang, Lei; Zhong, Wenhui; Cui, Jing; Wei, Zhenggui

    2015-03-01

    In this study, poorly crystalline hydroxyapatite (HAP) was developed as an efficient adsorbent for the removal of fulvic acid (FA) from aqueous solution. Surface functionality, crystallinity, and morphology of the synthetic adsorbent were studied by Fourier-transformation infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effects of various parameters such as crystallinity of adsorbent, contact time, adsorbent dosage, pH, initial adsorbate concentration, temperature, ionic strength and the presence of alkaline earth metal ions on FA adsorption were investigated. Results indicated that the nanosized HAP calcined at lower temperature was poorly crystalline (Xc = 0.23) and had better adsorption capacity for FA than those (Xc = 0.52, 0.86) calcined at higher temperature. FA removal was increased with increases of adsorbent dosage, temperature, ionic strength and the presence of alkali earth metal ions, but decreased as the pH increased. Kinetic studies showed that pseudo-second-order kinetic model better described the adsorption process. Equilibrium data were best described by Sips models, and the estimated maximum adsorption capacity of poorly crystalline HAP was 90.20 mg/g at 318 K, displaying higher efficiency for FA removal than previously reported adsorbents. FT-IR results revealed that FA adsorption over the adsorbent could be attributed to the surface complexation between the oxygen atom of functional groups of FA and calcium ions of HAP. Regeneration studies indicated that HAP could be recyclable for a long term. Findings of the present work highlight the potential for using poorly crystalline HAP nanoparticles as an effective and recyclable adsorbent for FA removal from aqueous solution.

  6. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    Poole, L.J.; King, C.J.

    1990-03-01

    Two novel regenerated solvent extraction processes are examined. The first process has the potential to reduce the energy costs inherent in the recovery of low-volatility carboxylic acids from dilute aqueous solutions. The second process has the potential for reducing the energy costs required for separate recovery of ammonia and acid gases (e.g. CO{sub 2} and H{sub 2}S) from industrial sour waters. The recovery of carboxylic acids from dilute aqueous solution can be achieved by extraction with tertiary amines. An approach for regeneration and product recovery from such extracts is to back-extract the carboxylic acid with a water-soluble, volatile tertiary amine, such as trimethylamine. The resulting trimethylammonium carboxylate solution can be concentrated and thermally decomposed, yielding the product acid and the volatile amine for recycle. Experimental work was performed with lactic acid, succinic acid, and fumaric acid. Equilibrium data show near-stoichiometric recovery of the carboxylic acids from an organic solution of Alamine 336 into aqueous solutions of trimethylamine. For fumaric and succinic acids, partial evaporation of the aqueous back extract decomposes the carboxylate and yields the acid product in crystalline form. The decomposition of aqueous solutions of trimethylammonium lactates was not carried out to completion, due to the high water solubility of lactic acid and the tendency of the acid to self-associate. The separate recovery of ammonia and acid gases from sour waters can be achieved by combining steam-stripping of the acid gases with simultaneous removal of ammonia by extraction with a liquid cation exchanger. The use of di-2,4,4-trimethylpentyl phosphinic acid as the liquid cation exchanger is explored in this work. Batch extraction experiments were carried out to measure the equilibrium distribution ratio of ammonia between an aqueous buffer solution and an organic solution of the phosphinic acid (0.2N) in Norpar 12. The concentration

  7. Enhanced ozonation of dichloroacetic acid in aqueous solution using nanometer ZnO powders

    Xu Zhai; Zhonglin Chen; Shuqing Zhao; He Wang; Lei Yang

    2010-01-01

    Nanometer zinc oxide (ZnO) powders were used as a catalyst to enhance the ozonation for the degradation of dichloroacetic acid (DCAA) in aqueous solution.The batch experiments were carried out to investigate the effects of key factors such as catalyst dosage,ozone dosage,solution pH and ten-butyl alcohol (t-BuOH) on the degradation efficiency of DCAA.Density functional theory (DFT) and ozonation processes were not effective for DCAA removal,and the addition of ZnO catalyst improved the degradation efficiency of DCAA during ozonation,which caused an increase of 22.8% for DCAA decomposition compared to the case of ozonation alone after 25 min.Under the same experimental conditions,the DCAA decomposition was enhanced by increasing catalyst dosage from 100 to 500 mg/L and ozone dosage from 0.83 to 3.2 mg/L,The catalytic ozonation process is more pronounced than the ozonation process alone at pH 3.93,6.88,and 10.With increasing the concentration of t-BuOH from 10 to 200 mg/L,the degradation of DCAA was significantly molecule ozone followed by the interaction of adsorbed ozone with active sites of the catalyst surface.It is also concluded that ZnO of ozone.

  8. Removal of acid blue 062 on aqueous solution using calcinated colemanite ore waste

    Colemanite ore waste (CW) has been employed as adsorbent for the removal of acid blue 062 anionic dye (AB 062) from aqueous solution. The adsorption of AB 062 onto CW was examined with respect to contact time, calcination temperature, particle size, pH, adsorbent dosage and temperature. The physical and chemical properties of the CW, such as particle sizes and calcinations temperature, play important roles in dye adsorption. The dye adsorption largely depends on the initial pH of the solution with maximum uptake occurring at pH 1.Three simplified kinetics models, namely, pseudo-first order, pseudo-second order, and intraparticle diffusion models were tested to investigate the adsorption mechanisms. The kinetic adsorption of AB 062 on CW follows a pseudo-second order equation. The adsorption data have been analyzed using Langmuir and Freundlich isotherms. The results indicate that the Langmuir model provides the best correlation of the experimental data. Isotherms have also been used to obtain the thermodynamic parameters such as free energy, enthalpy and entropy of the adsorption of dye onto CW

  9. Photocatalytic CO2 reduction to formic acid using a Ru(II)-Re(I) supramolecular complex in an aqueous solution.

    Nakada, Akinobu; Koike, Kazuhide; Nakashima, Takuya; Morimoto, Tatsuki; Ishitani, Osamu

    2015-02-16

    In an aqueous solution, photophysical, photochemical, and photocatalytic abilities of a Ru(II)-Re(I) binuclear complex (RuReCl), of which Ru(II) photosensitizer and Re(I) catalyst units were connected with a bridging ligand, have been investigated in details. RuReCl could photocatalyze CO2 reduction using ascorbate as an electron donor, even in an aqueous solution. The main product of the photocatalytic reaction was formic acid in the aqueous solution; this is very different in product distribution from that in a dimethylformamide (DMF) and triethanolamine (TEOA) mixed solution in which the main product was CO. A (13)CO2 labeling experiment clearly showed that formic acid was produced from CO2. The turnover number and selectivity of the formic acid production were 25 and 83%, respectively. The quantum yield of the formic acid formation was 0.2%, which was much lower, compared to that in the DMF-TEOA mixed solution. Detail studies of the photochemical electron-transfer process showed back-electron transfer from the one-electron-reduced species (OERS) of the photosensitizer unit to an oxidized ascorbate efficiently proceeded, and this should be one of the main reasons why the photocatalytic efficiency was lower in the aqueous solution. In the aqueous solution, ligand substitution of the Ru(II) photosensitizer unit proceeded during the photocatalytic reaction, which was a main deactivation process of the photocatalytic reaction. The product of the ligand substitution was a Ru(II) bisdiimine complex or complexes with ascorbate as a ligand or ligands. PMID:25654586

  10. Solute-enhanced production of gamma-valerolactone (GVL) from aqueous solutions of levulinic acid

    Dumesic, James A; Wettstein, Stephanie G; Alonso, David Martin; Gurbuz, Elif Ispir

    2015-02-24

    A method to produce levulinic acid (LA) and gamma-valerolactone (GVL) from biomass-derived cellulose or lignocellulose by selective extraction of LA using GVL and optionally converting the LA so isolated into GVL, with no purifications steps required to yield the GVL.

  11. Diglycolamic acid modified silica gel for the separation of hazardous trivalent metal ions from aqueous solution.

    Suneesh, A S; Syamala, K V; Venkatesan, K A; Antony, M P; Vasudeva Rao, P R

    2015-01-15

    The surface of the silica gel was modified with diglycolamic acid moieties and the product (Si-DGAH) was characterized by elemental analysis, TG-DTA, (1)H and (29)Si NMR and scanning electron microscopy (SEM). The adsorption behavior of hazardous americium (III) and europium (III) in Si-DGAH was studied from aqueous nitric acid medium to examine the feasibility using the modified silica for the separation of Am(III) and Eu(III) from aqueous wastes. In this context, the effect of various parameters such as the duration of equilibration, and concentrations of europium, nitric acid, sodium nitrate and diethylenetriaminepentaacetic acid (DTPA) in aqueous phase, on the distribution coefficient (K(d)) of Am(III) and Eu(III) was investigated. The distribution coefficient of ∼10(3) mL/g (>99.9% extraction) was obtained for both Am(III) and Eu(III) at pH 3, and the K(d) values decreased with increase in the concentration of nitric acid. Rapid kinetics of extraction in the initial stages of equilibration, followed by the establishment of equilibrium occurred within 30 min. The extraction data were fitted into Langmuir adsorption model and the apparent europium extraction capacity was determined. Europium loading capacity of the sorbent was determined at various feed pH by column method. The study indicated the possibility of using diglycolamic acid-modified silica for the separation of Eu(III) and Am(III) from aqueous wastes. PMID:25454425

  12. Influence if acidity and concentration of aqueous uranyl nitrate solutions on the efficiency of uranium absorption by hydrolytic wood lignin

    Efficiency of uranium(VI) absorption by hydrolytic wood lignin from uranyl nitrate aqueous solutions under static conditions at room temperature, depending on solution acidity and uranium concentration, was studied using the methods of elementary analysis and IR spectroscopy. It was ascertained that hydrolytic lignin manifests a high ability to strong uranium(VI) absorption from low-acid and alkaline solutions. Interaction of uranium(VI) and hydrolytic lignin occurs both according to ion exchange mechanism and at the expense of donor-acceptor bonds formation

  13. Polyvinyl alcohol fibers with functional phosphonic acid group. Synthesis and adsorption of uranyl (VI) ions in aqueous solutions

    PVA functionalized with vinylphosphonic acid was prepared as a new adsorbent for uranyl (VI) adsorption from aqueous solutions. The vinylphosphonic acid was cografted onto PVA fibers by preirradiation grafting technique. The adsorbent were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The adsorbent was observed to possess a fibrous structure and was bonded with phosphonic acid groups successfully. The adsorbent was used for the adsorption of low levels uranyl (VI) ions from aqueous solutions. The influence of analytical parameters including pH, adsorption time, amount of adsorbent, metal ion concentration, and temperature were investigated on the recovery of uranyl (VI) ion in aqueous solution. The maximum adsorption capacity (32.1 mg g-1) and fast equilibrium time (30 min) were achieved at pH of 4.5 at room temperature. Thermodynamic parameters (ΔH° = 2.695 kJ mol-1; ΔS° = 31.15 J mol-1 K-1; ΔG° = -6.748 kJ mol-1) show the adsorption of an exothermic process and spontaneous nature, respectively. The possible coordination mechanism was illustrated. Adsorption and desorption coexist in aqueous solutions and then the system becomes equilibrium. (author)

  14. Alginic acid and hyaluronic acid, effective stabilizers of carthamin red colour in aqueous solutions

    Koshi Saito

    2014-02-01

    Full Text Available Sodium salts and free forms of two heterosaccharides, alginic and hyaluronic acids were mixed with carthamin in a buffer at pH 5.5 and their preservation effects of carthamin red colour were screened after incubation for 24 h at 3-5oC in the dark. The effects observed were (alginic acid/hyaluronic acid, % on average: 69.3/60.3, for which the values are higher by 40.9 and 29.1%, respectively, compared with those of the control which was conducted with no addition of heterosaccharides. Alginic acid is a more promising stabilizer than haluronic acid, indicating that active groups such as hydroxyls, carboxyls and amino groups on the building units of the macromolecules are associated closely with the carthamin red colour preservation. The empirical outcomes are referred to the practical application of carthamin as a colourant of food products.

  15. Uranium(VI) sequestration by polyacrylic and fulvic acids in aqueous solution

    Stability data on the formation of dioxouranium(VI) species with polyacrylic (PAA) and fulvic acids (FA) are reported with the aim to define quantitatively the sequestering capacity of these high molecular weight synthetic and naturally occurring ligands toward uranium(VI), in aqueous solution. Investigations were carried out at t = 25 deg C in NaCl medium at different ionic strengths and in absence of supporting electrolyte for uranyl-fulvate (UO22+-FA) and uranyl-polyacrylate (UO22+-PAA, PAA MW 2 kDa) systems respectively. The experimental data are consistent with the following speciation models for the two systems investigated: (i) UO2(FA1), UO2(FA1)(FA2), UO2(FA1)(FA2)(H) for UO22+-fulvate (where FA1 and FA2 represent the carboxylic and phenolic fractions, respectively, both present in the structure of FA), and (ii) UO2(PAA), UO2(PAA)(OH), (UO2)2(PAA)(OH)2 for UO22+-polyacrylate. By using the stability data obtained for all the complex species formed, the uranium(VI) sequestration by PAA and FA was expressed by the pL50 parameter [i.e. the -log(total ligand concentration) necessary to bind 50% of uranyl ion] at different pH values. A comparison between pL50 values of FA and PAA and some low molecular weight carboxylic ligands toward uranyl ion is also given. (author)

  16. Formation of an 8-hydroxyguanine moiety in deoxyribonucleic acid on gamma-irradiation in aqueous solution

    Isolation and characterization of a novel radiation-induced product, i.e., the 8-hydroxyguanine residue, produced in deoxyribonucleic acid (DNA), 2'-deoxyguanosine, and 2'-deoxyguanosine 5'-monophosphate by gamma-irradiation in aqueous solution, are described. For this purpose, gamma-irradiated DNA was first hydrolyzed with a mixture of four enzymes, i.e., DNase I, spleen and snake venom exonucleases, and alkaline phosphatase. Analysis of the resulting mixture by capillary gas chromatography-mass spectrometry after trimethylsilylation revealed the presence of a product, which was identified as 8-hydroxy-2'-deoxyguanosine on the basis of the typical fragment ions of its trimethylsilyl (Me3Si) derivative. This product was then isolated by using reversed-phase high-performance liquid chromatography. The UV and proton nuclear magnetic resonance spectra taken from the isolated product confirmed the structure suggested by the mass spectrum of its Me3Si derivative. The yield of 8-hydroxyguanine was also measured. Its mechanism of formation is believed to involve OH radical addition to the C-8 position of guanine followed by oxidation of the radical adduct

  17. Kinetic study of CO2 with various amino acid salts in aqueous solution

    Holst, van J.; Versteeg, G.F.; Brilman, D.W.F.; Hogendoorn, J.A.

    2009-01-01

    A study towards the kinetics of CO2 with several aqueous salts of amino acids was performed at a temperature of 298 K. Absorption rate experiments were carried out in the pseudo-first-order regime, enabling the determination of the kinetic rate constant from the flux. In a preliminary screening at a

  18. Kinetic study of CO2 with various amino acid salts in aqueous solution

    van Hoist, J.; Versteeg, G. F.; Brilman, D. W. F.; Hogendoorn, J. A.; Holst, J. v

    2009-01-01

    A study towards the kinetics Of CO2 with several aqueous salts of amino acids was performed at a temperature of 298 K. Absorption rate experiments were carried out in the pseudo-first-order regime, enabling the determination of the kinetic rate constant from the flux. In a preliminary screening at a

  19. Radiation induced depolymerization of hyaluronic acid (HA) in aqueous solutions at pH 7. 4. [Gamma radiation

    Lal, M.

    1985-10-01

    Radiolytic depolymerization of hyaluronic acid (HA, a heteropolysaccharide) in aqueous solutions under a variety of conditions demonstrates that the damaging effect of radiolytic radical species is in the following order: OH > esub(aq)sup(-) > Osub(2). Cysteine, penicillamine and dithiothreitol were found to protect against primary radiolytic species. The results point out that the enzyme superoxide dismutase (SOD) and the above three thiols do not protect against the radiolytic species generated by the Mg-irradiation of aerated sodium formate solutions. The results also indicate that the reaction between COsub(2) anion and hyaluronic acid is faster than that between Osub(2) and hyaluronic acid and that COsub(2) anions are not scavenged by superoxide dismutase. The results further suggest that t-buthanol radicals interact with hyaluronic acid and reduce the viscosity of HA solutions. Preliminary pulse radiolysis experiments do demonstrate a reaction between COsub(2) radical and hyaluronic acid.

  20. Radiation induced depolymerization of hyaluronic acid (HA) in aqueous solutions at pH 7.4

    Radiolytic depolymerization of hyaluronic acid (HA, a heteropolysaccharide) in aqueous solutions under a variety of conditions demonstrates that the damaging effect of radiolytic radical species is in the following order: OH>esub(aq)sup(-)>Osub(2). Cysteine, penicillamine and dithiothreitol were found to protect against primary radiolytic species. The results point out that the enzyme superoxide dismutase (SOD) and the above three thiols do not protect against the radiolytic species generated by the Mg-irradiation of aerated sodium formate solutions. The results also indicate that the reaction between COsub(2) anion and hyaluronic acid is faster than that between Osub(2) and hyaluronic acid and that COsub(2) anions are not scavenged by superoxide dismutase. The results further suggest that t-buthanol radicals interact with hyaluronic acid and reduce the viscosity of HA solutions. Preliminary pulse radiolysis experiments do demonstrate a reaction between COsub(2) radical and hyaluronic acid. (author)

  1. Extraction of uranium from aqueous solution by phosphonic acid-imbedded polyurethane foam

    Phenylphosphonic acid was imbedded into the matrix of the polyurethane foam during the fabrication process of the polymer. The extraction of uranium by phosphonic acid-imbedded polyurethane foam and blank polyurethane (i.e., foam without phosphonic acid functional groups) was investigated. Phosphonic acid-imbedded foam showed superior extractability of uranium from solutions with pH = 7.0 ± 1.5 over a wide range of temperatures. (author)

  2. Densities of L-Glutamic Acid HCl Drug in Aqueous NaCl and KCl Solutions at Different Temperatures

    Ryshetti, Suresh; Raghuram, Noothi; Rani, Emmadi Jayanthi; Tangeda, Savitha Jyostna

    2016-04-01

    Densities (ρ ) of (0.01 to 0.07) {mol}{\\cdot } {kg}^{-1} L-Glutamic acid HCl (L-HCl) drug in water, and in aqueous NaCl and KCl (0.5 and 1.0) {mol}{\\cdot } {kg}^{-1} solutions have been reported as a function of temperature at T = (298.15, 303.15, 308.15, and 313.15) K and atmospheric pressure. The accurate density (ρ ) values are used to estimate the various parameters such as the apparent molar volume (V_{2,{\\upphi }}), the partial molar volume (V2^{∞}), the isobaric thermal expansion coefficient (α 2), the partial molar expansion (E2^{∞}), and Hepler's constant (partial 2V2^{∞}/partial T2)P. The Cosphere overlap model is used to understand the solute-solvent interactions in a ternary mixture (L-HCl drug + NaCl or KCl + water). Hepler's constant (partial 2V2^{∞}/partial T2)_P is utilized to interpret the structure-making or -breaking ability of L-HCl drug in aqueous NaCl and KCl solutions, and the results are inferred that L-HCl drug acts as a structure maker, i.e., kosmotrope in aqueous NaCl solutions and performs as a structure breaker, i.e., chaotrope in aqueous KCl solutions.

  3. Extraction of nitric acid, uranyl nitrate, and bismuth nitrate from aqueous nitric acid solutions with CMPO

    DOE sponsored development of the transuranium extraction (TRUEX) process for removing actinides from radioactive wastes. The solvent is a mixture of CMPO and TBP. Since the extraction characteristics of CMPO are not as well understood as those of TBP, the extraction of nitric acid, uranyl nitrate, and bismuth nitrate with CMPO (dissolved in n-dodecane) were studied. Results indicate that CMPO extracts nitric acid with a 1:1 stoichiometry; equilibrium constant is 2. 660±0.092 at 25 C, and extraction enthalpy is -5. 46±0.46 kcal/mol. Slope analysis indicates that uranyl nitrate extracts with a mixed equilibria of 1:1 and 2:1 stoichiometries in nearly equal proportion. Equil. constant of the 2: 1 extraction was 1.213 x 106±3.56 x 104 at 25 C; reaction enthalpy was -9.610±0.594 kcal/mol. Nitration complexation constant is 8.412±0.579, with an enthalpy of -10.72±1.87 kcal/mol. Bismuth nitrate also extracts with a mixed equilibria of (perhaps) 1:1 and 2:1 stoichiometries. A 2:1 extraction equilibrium and a nitrate complexation adequately model the data. Kinetics and enthalpies were also measured

  4. Aqueous polyethylene oxide solutions

    A number of aspects concerning the reorientation of polymer, water and ion hydration complexes have been studied in aqueous solution of polyethylene oxide (PEO). The polymer dynamics are investigated by 1H-PEO and 13C-PEO nuclear relaxation experiments. 162 refs.; 30 figs.; 19 tabs

  5. Bioreversible Derivatives of Phenol. 2. Reactivity of Carbonate Esters with Fatty Acid-like Structures Towards Hydrolysis in Aqueous Solutions

    Claus Larsen

    2007-10-01

    Full Text Available A series of model phenol carbonate ester prodrugs encompassing derivatives with fatty acid-like structures were synthesized and their stability as a function of pH (range 0.4 – 12.5 at 37°C in aqueous buffer solutions investigated. The hydrolysis rates in aqueous solutions differed widely, depending on the selected pro-moieties (alkyl and aryl substituents. The observed reactivity differences could be rationalized by the inductive and steric properties of the substituent groups when taking into account that the mechanism of hydrolysis may change when the type of pro-moiety is altered, e.g. n-alkyl vs. t-butyl. Hydrolysis of the phenolic carbonate ester 2-(phenoxycarbonyloxy-acetic acid was increased due to intramolecular catalysis, as compared to the derivatives synthesized from ω-hydroxy carboxylic acids with longer alkyl chains. The carbonate esters appear to be less reactive towards specific acid and base catalyzed hydrolysis than phenyl acetate. The results underline that it is unrealistic to expect that phenolic carbonate ester prodrugs can be utilized in ready to use aqueous formulations. The stability of the carbonate ester derivatives with fatty acid-like structures, expected to interact with the plasma protein human serum albumin, proved sufficient for further in vitro and in vivo evaluation of the potential of utilizing HSA binding in combination with the prodrug approach for optimization of drug pharmacokinetics.

  6. THERMODYNAMIC STUDY ON ADSORPTION OF AROMATIC SULFONIC ACIDS ONTO MACROPOROUS WEAK BASE ANION EXCHANGER FROM AQUEOUS SOLUTIONS

    Chao Long; Quan-xing Zhang; Ai-min Li; Jin-long Chen

    2004-01-01

    The adsorption equilibrium isotherms of three aromatic sulfonic acid compounds, 2-naphthalenesulfonic acid, ptoluenesulfonic acid and p-chlorobenzenesulfonic acid, from aqueous solutions by macroporous weak base anion exchanger within the temperature range of 293 K-313 K were obtained. Several isotherm equations were correlated with the equilibrium data, and the experimental data was found to fit the three-parameter Redlich-Peterson equation best within the entire range of concentrations. The study showed that the hydrophobicity of solute has distinct influence on adsorption capacity of the anion exchanger for the aromatic sulfonic acid. Moreover, estimations of the isosteric enthalpy, free energy,and entropy change of adsorption were also reported. The positive isosteric enthalpy and entropy change for adsorption indicate an endothermic and entropy driven process in the present study.

  7. Degradation of acid red 14 by silver ion-catalyzed peroxydisulfate oxidation in an aqueous solution

    RASOULIFARD, Mohammad Hossein; MOHAMMADI, Seied Mohammad Mahdi DOUST

    2012-01-01

    Silver ion (Ag1+)-catalyzed peroxydisulfate was studied for the degradation of acid red 14 (AR-14) in an aqueous medium. The effect of different parameters, such as temperature, peroxydisulfate concentration, and dye and Ag1+ concentrations, were investigated. Application of Ag1+-catalyzed peroxydisulfate, as an advanced oxidation process, introduces an effectual method for wastewater treatment. An accelerated reaction using S2O82- to destroy dyes can be achieved via chemical activat...

  8. Analysis of. gamma. -radiolysis products of aqueous solutions of esters of aliphatic amino acids by the PMR method

    Panin, V.I.; Sidorov, P.S.; Usatyi, A.F.

    1987-09-01

    The ..gamma..-radiolysis of aqueous solutions of methyl esters of aliphatic amino acids and peptides was investigated by the method of nuclear (proton) magnetic resonance (PMR). The resonance lines appearing in the PMR spectra of the irradiated systems were identified, and a conclusion was drawn about the molecular structure of the radiolysis products. The kinetics of the accumulation of radiolysis products was studied, and the values of their radiation yields were estimated.

  9. REMOVAL OF TRICHLOROACETIC ACID FROM THE AQUEOUS SOLUTIONS USING NATURAL AND ACTIVATED LIGNITE COALS

    Hüseyin GÜLENSOY

    1998-02-01

    Full Text Available In these studies, a typical lignite coal found near Istanbul (Yeniköy and its activated products were used to adsorb TCA from aqueous solutions. Particle sizes of coal samples and the concentrations of TCA solutions were chosen as parameters against the fixed amount of adsorbent. The maximum efficiency has been obtained for the coal having (-120 + 150 mesh size fraction activated by heating. As a result, it was shown that these kinds of lignite coals could be used as a good adsorbent. In addition, it was also proved that both the removal and recovery of TCA from some waste waters would easily be possible.

  10. Spectroscopic studies of solutes in aqueous solution.

    Chai, Bing-hua; Zheng, Jian-ming; Zhao, Qing; Pollack, Gerald H

    2008-03-20

    Absorption and fluorescence characteristics of aqueous solutions of salts, sugars, and amino acids were studied using UV-vis spectroscopy and spectrofluorometry. Motivation stemmed from unanticipated absorption spectral and fluorescence features of the "exclusion zone" seen adjacent to various hydrophilic surfaces. Those features implied a structure distinct from that of bulk water (Adv. Colloid Interface Sci. 2006, 127, 19). Absorption peaks at approximately 270 nm similar to those observed in the exclusion zone were seen in solutions of the following substances: salts, Nafion 117 solution/film, l-lysine, d-alanine, d-glucose and sucrose. To determine the fate of the absorbed energy, we studied the fluorescence properties of these solutions. The salts showed fluorescence emission around 480-490 nm under different excitation wavelengths. The fluorescence intensity of LiCl was higher than NaCl, which was in turn higher than KCl-the same ordering as the absorption intensities. Fluorescence of Nafion 117 solution/film, l-lysine, d-alanine, d-glucose and sucrose were observed as well, with multiple excitation wavelengths. Hence, at least some of the absorbed energy is released as fluorescence. The results show features closely similar to those observed in the exclusion zone, implying that the aqueous region around the solutes resembles the aqueous zone adjacent to hydrophilic surfaces. Both may be more extensively ordered than previously thought. PMID:18298105

  11. The pH-responsive behaviour of poly(acrylic acid) in aqueous solution is dependent on molar mass.

    Swift, T; Swanson, L.; Geoghegan, M; Rimmer, S.

    2016-01-01

    Fluorescence spectroscopy on a series of aqueous solutions of poly(acrylic acid) containing a luminescent label showed that polymers with molar mass, Mn < 16.5 kDa did not exhibit a pH responsive conformational change, which is typical of higher molar mass poly(acrylic acid). Below this molar mass, polymers remained in an extended conformation, regardless of pH. Above this molar mass, a pH-dependent conformational change was observed. Diffusion-ordered nuclear magnetic resonance spectroscopy ...

  12. CYCLIC VOLTAMMETRY STUDIES OF COPPER (II) AND TELLURIUM (IV) IONS IN ACIDIC AQUEOUS SOLUTIONS FOR THIN FILM DEPOSITION

    SARAVANAN NAGALINGAM; GEOK BEE TEH

    2014-01-01

    Cyclic voltammetry studies of copper (II) and tellurium (IV) ions in acidic aqueous solutions were carried out to determine the optimum condition for copper telluride thin film deposition. The voltammetry studies include reversible scans at different solution pH. Based on the voltammogram, suitable deposition conditions was determined to be in the range of -0.35 V to -0.45 V versus Ag/AgCl at pH values between 2.0 to 2.2 under non diffusion-limited conditions.

  13. Determination of free acid in highly concentrated organic and aqueous solutions of plutonium (IV) and uranium (VI) nitrate

    Free acidity is an important parameter in the nuclear reprocessing control. The accuracy on the determination of free acidity is not really required in the nuclear reprocessing control itself but is necessary for certain types of analysis such as spectrophotometry (Pu (VI), Am (III),...), density determinations. A new titripotentiometric method for free acidity determination in concentrated U(VI) and Pu(IV) solutions is presented. This method is based on the complexing properties of dipicolinic acid (pyridine 2.6 dicarboxylic acid) and medium effect with H2O/DMSO mixture. This method can be used either in organic or aqueous phases with ratio /H+I/ metal ≥ 5.10-2 and a relative standard deviation of 1%

  14. Kinetics of bromide catalysed oxidation of dextrose by cerium (IV) in aqueous sulphuric acid solution

    Kinetics of bromide catalysed oxidation of dextrose by CeIV in aqueous sulphuric acid medium show first order dependence each in dextrose and cerium(IV). The reaction rate decreases on increasing the concentration of hydrogen ion. The increase in [HSO4-] or [SO42-] decreases the rate. The bromide ion shows positive catalytic effect on the reaction rate. The value of activation energy has been calculated and a suitable mechanism confirming to the kinetic data is proposed. (author). 3 refs., 3 tabs

  15. Electron beam process for decoloration of reactive and acid dyes in aqueous solution in presence of H2O2

    In this study, degradation and decoloration of reactive and acid commercial dyes (C.I. Reactive Black 5 and C.I. Acid Red 151) in water under the irradiation with electron beams were investigated. Both dyes in aqueous solutions with the concentration of 100 ppm were irradiated at different doses of 1, 3, 6 and 9 k Gy. The changes of the absorption spectra, degree of decoloration, p H, and chemical oxygen demand were analyzed. In addition to the influence of the absorbed dose the hydrogen peroxide additions on RB 5 dye are discussed. The experimental results show that the reactive and acid dyes in aqueous solutions can be effectively degradiated by irradiation with the electron beam. The absorption bands for RB 5 and AR151 decreased rapidly at 1 k Gy irradiation dose and disappeared almost completely at 9 k Gy. Also the degree of decoloration of RB 5 solution at 1 k Gy dose and with the concentrations of H2O2 up to 5mmo1/L was higher than 99.78%. Due to the production of organic and inorganic acidic anions the p H decreased during the irradiation.

  16. Comparison of CO2 and oxygen DC submerged thermal plasmas for decomposition of carboxylic acid in aqueous solution

    Safa, S.; Hekmat-Ardakan, A.; Soucy, G.

    2014-11-01

    The feasibility of the carboxylic acid decomposition with two different direct current (DC) thermal plasma torches was investigated. An oxygen DC submerged thermal plasma torch and a newly designed submerged DC plasma torch operating with a mixture of carbon dioxide and methane (CO2/CH4) were used. Sebacic acid was selected as a representative of pollutants in the most wastewater produced by chemical process industries. The effect of different operational conditions including treatment time, the reactor pressure as well as the role of oxidizing agents such as (H2O2) were investigated on the decomposition rate of sebacic acid. Concentration of sebacic acid was quantified by Ion Chromatography/Mass Spectrometry (IC/MS). The oxygen plasma showed higher decomposition rate in basic medium. Adding H2O2 into aqueous solution enhanced the sebacic acid decomposition rate with the CO2/CH4 plasma up to the same decomposition rate of the oxygen plasma. Increasing the pressure also increased the decomposition rate for both plasmas with an increase twice higher for the CO2/CH4 plasma than that of the oxygen plasma. This work therefore presents the conditions in which these plasmas can provide the same decomposition rate for contaminants in aqueous solution.

  17. Comparison of CO2 and oxygen DC submerged thermal plasmas for decomposition of carboxylic acid in aqueous solution

    The feasibility of the carboxylic acid decomposition with two different direct current (DC) thermal plasma torches was investigated. An oxygen DC submerged thermal plasma torch and a newly designed submerged DC plasma torch operating with a mixture of carbon dioxide and methane (CO2/CH4) were used. Sebacic acid was selected as a representative of pollutants in the most wastewater produced by chemical process industries. The effect of different operational conditions including treatment time, the reactor pressure as well as the role of oxidizing agents such as (H2O2) were investigated on the decomposition rate of sebacic acid. Concentration of sebacic acid was quantified by Ion Chromatography/Mass Spectrometry (IC/MS). The oxygen plasma showed higher decomposition rate in basic medium. Adding H2O2 into aqueous solution enhanced the sebacic acid decomposition rate with the CO2/CH4 plasma up to the same decomposition rate of the oxygen plasma. Increasing the pressure also increased the decomposition rate for both plasmas with an increase twice higher for the CO2/CH4 plasma than that of the oxygen plasma. This work therefore presents the conditions in which these plasmas can provide the same decomposition rate for contaminants in aqueous solution

  18. Removal and recovery of furfural, 5-hydroxymethylfurfural, and acetic acid from aqueous solutions using a soluble polyelectrolyte.

    Carter, Brian; Gilcrease, Patrick C; Menkhaus, Todd J

    2011-09-01

    In the cellulosic ethanol process, furfural, 5-hydroxymethylfurfural (HMF), and acetic acid are formed during the high temperature acidic pretreatment step needed to convert biomass into fermentable sugars. These compounds can inhibit cellulase enzymes and fermentation organisms at relatively low concentrations (≥ 1 g/L). Effective removal of these inhibitory compounds would allow the use of more severe pretreatment conditions to improve sugar yields and lead to more efficient fermentations; if recovered and purified, they could also be sold as valuable by-products. This study investigated the separation of aldhehydes (furfural and HMF) and organic acid (acetic acid) inhibitory compounds from simple aqueous solutions by using polyethyleneimene (PEI), a soluble cationic polyelectrolyte. PEI added to simple solutions of each inhibitor at a ratio of 1 mol of functional group to 1 mol inhibitor removed up to 89.1, 58.6, and 81.5 wt% of acetic acid, HMF, and furfural, respectively. Furfural and HMF were recovered after removal by washing the polyelectrolyte/inhibitor complex with dilute sulfuric acid solution. Recoveries up to 81.0 and 97.0 wt% were achieved for furfural and HMF, respectively. The interaction between PEI and acetic acid was easily disrupted by the addition of chloride ions, sulfate ions, or hydroxide ions. The use of soluble polymers for the removal and recovery of inhibitory compounds from biomass slurries is a promising approach to enhance the efficiency and economics of an envisioned biorefinery. PMID:21455937

  19. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    Gomez-Gonzalez, Sergio Efrain [Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico); Carbajal-Arizaga, Gregorio Guadalupe [Departamento de Química, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico); Manriquez-Gonzalez, Ricardo [Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, carretera Guadalajara-Nogales, Las Agujas, C.P. 45020 Zapopan, Jalisco (Mexico); De la Cruz-Hernandez, Wencel [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, C.P. 22830 Ensenada, Baja California (Mexico); Gomez-Salazar, Sergio, E-mail: sergio.gomez@cucei.udg.mx [Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico)

    2014-11-15

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.

  20. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH3COO)2Cr+ ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. 13C, 29Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level

  1. Density and sound speed study of hydration of 1-butyl-3-methylimidazolium based amino acid ionic liquids in aqueous solutions

    Highlights: • Apparent and partial molar volumes of aqueous AAILs at T = (293.15 to 313.15) K. • Isothermal and adiabatic compressibilities of AAILs in aqueous solution at T = 298.15 K. • Method for direct estimation of hydration numbers due to electrostriction is given. • Internal pressure and hydration numbers for AAILs at T = 298.15 K. • Results obtained demonstrate kosmotropic behavior of AAILs. - Abstract: Amino acid ionic liquids (AAILs) have huge potential in the field of protein chemistry, enzymatic reactions, templates for synthetic study etc. which is due to their distinctive properties like unique acid-base characteristics, tunable hydrophobicity, hydrogen bonding ability and strong hydration effects. To explore the field of bio-ionic liquids for its real life applications and sustainable technology development, it is essential to have better understanding of these newly researched liquid salts in life’s most chosen medium, i.e. in aqueous medium, through study of their physicochemical properties in aqueous solutions. In this context, we are reporting herewith measurements and analysis of volumetric properties in the temperature range of (293.15 to 313.25) K and acoustic properties at 298.15 K in the concentration range of (0.05 to 0.5) mol · kg−1 for aqueous solutions of 1-butyl-3-methylimidazolium [Bmim] based amino acid ionic liquids, prepared from glycine, L-alanine, L-valine, L-leucine and L-isoleucine. The experimental density and sound speed data were used to obtain apparent, partial and limiting molar volumes as well as isentropic and isothermal compressibility properties. These data have been further used to understand electrostriction as well as concentration dependence of internal pressure. The hydration numbers for AAILs in aqueous medium were estimated from compressibility data using Passynski method and the estimated ionic hydration numbers are compared with those obtained using activity data. The results are explained in

  2. Spectrofluorimetric study of the interaction of ciprofloxacin with amino acids in aqueous solution following solvatochromic studies

    Alizadeh, Kamal; Mobarrez, Mahsa; Ganjali, Mohammad Reza; Norouzi, Parviz; Chaichi, Mohammad Javad

    Complexation of a fluoroquinolone derivative (ciprofloxacin), L, and some amino acids has been studied using spectrofluorimetric method. Results indicated that ciprofloxacin have a greater tendency to form a 1:1 complex with aspartic acid and arginine than the other tested molecules. The fluorescence of ciprofloxacin exhibits quenching process while it has been titrated with these amino acids. Formation constant values (Kf) for complex formed between ciprofloxacin and amino acids were also calculated. Thermodynamic parameters such as ΔG°, ΔH° and ΔS° were studied too. Possible reasons for the observed stability sequence were discussed based on the structures proposed for the resulting complexes. Besides the solution studies, solvatochromic properties of the ciprofloxacin are discussed by studying its spectra in a selection of different solvents.

  3. Photocatalytic decomposition of humic acids in anoxic aqueous solutions producing hydrogen, oxygen and light hydrocarbons.

    Klauson, Deniss; Budarnaja, Olga; Beltran, Ignacio Castellanos; Krichevskaya, Marina; Preis, Sergei

    2014-01-01

    Photocatalytic water splitting for hydrogen and oxygen production requires sacrificial electron donors, for example, organic compounds. Titanium dioxide catalysts doped with platinum, cobalt, tungsten, copper and iron were experimentally tested for the production of hydrogen, oxygen and low molecular weight hydrocarbons from aqueous solutions of humic substances (HS). Platinum-doped catalyst showed the best results in hydrogen generation, also producing methane, ethene and ethane, whereas the best oxygen production was exhibited by P25, followed by copper--and cobalt-containing photocatalysts. Iron-containing photocatalyst produced carbon monoxide as a major product. HS undergoing anoxic photocatalytic degradation produce hydrogen with minor hydrocarbons, and/or oxygen. It appears that better hydrogen yield is achieved when direct HS splitting takes place, as opposed to HS acting as electron donors for water splitting. PMID:25145176

  4. The reducibility of sulphuric acid and sulphate in aqueous solution (translated from German)

    In connection with the Swedish project for the final storage of spent fuel elements it was necessary to assess whether dissolved sulphate can corrode the copper canister without the intervention of sulphate-reducing bacteria. A simple reaction between copper and sulphate is thermodynamically impossible. On the other hand, copper can react to give copper sulphide if an additional electron donor such as iron is available. Because little specific information is available about this subject the problem was extended to the much more general question of the reducibility of sulphur in dilute aqueous solution. It is a part of the general knowledge of chemistry, and there is also unanimity about it in the geochemical literature, that purely chemical reduction of sulphate does not take place in dilute solution at temperatures below 100 degrees C. This fact is, however, poorly documented and it was therefore necessary to substantiate it by drawing on numerous individual findings from different areas of pure and applied chemistry. The investigation confirms that sulphur in dilute solution is completely inert towards chemical reducing agents and also to cathodic reduction. Thus corrosion of copper by sulphate under final-storage conditions and in the absence of sulphate reducing bacteria can be ruled out with a probability verging on certainty. (85 refs.)

  5. The effect of high-energy radiation on aqueous solution of Acid Red 1 textile dye

    The effect of high-energy radiation on Acid Red 1 (AR1) azo-dye solution was investigated by UV-Vis spectroscopy and chemical oxygen demand (COD) measurements. Doses in the order of 10 kGy cause complete decolouration of the 10-3-10-4 mol dm-3 solutions; however, for complete mineralization doses higher by 1-2 order of magnitude are needed. Hydrated electrons and H · atom are more effective in fading reaction, while the ·OH radicals have higher efficiency in mineralization. The HO2·/O2·- radical-radical anion pair is rather inefficient in fading reaction

  6. EFFECT OF TEMPERATURE AND CONCENTRATION ON THE VISCOSITY OF AQUEOUS SOLUTIONS OF 3-AMINOPROPANOIC ACID, 4-AMINOBUTANOIC ACID, 5-AMINOPENTANOIC ACID, 6-AMINOHEXANOIC ACID

    Carmen María Romero

    2011-12-01

    Full Text Available In this work we present the effect of temperatureon the viscosities of aqueous solutionsof 3-aminopropanoic acid, 4-aminobutanoicacid, 5-aminopentanoic acidand 6-aminohexanoic acid as a functionof concentration. The experimental measurementswere done from 293.15 K to308.15 K. At each temperature the experimentaldata were fi tted to the Tsangaris-Martin equation and the B viscosity coefficient was determined. The dependenceof the B coeffi cients on the number ofcarbon atoms of the amino acids is linear,so the contribution of polar and apolargroups was established. The results areinterpreted in terms of amino acid hydration.

  7. Surface characterisation of ethylene-propylene-diene rubber upon exposure to aqueous acidic solution

    Mitra, S.; Ghanbari-Siahkali, Afshin; Kingshott, P.;

    2006-01-01

    but significantly different with respect to molar mass and the presence of long chain branching. Both rubbers contained 5-ethylidene-2-norbomene (ENB) as diene. Solution cast films of pure EPDM samples were exposed in two different acidic solutions, viz. chromosulphuric (Cr (VI)/H2SO4) and sulphuric acid (H2SO4....... Furthermore, 20% Cr (VI)/H2SO4 also attacked the allylic carbon-hydrogen (C-H) bonds of ENB resulting in more oxygenated species on the surface compared to 20% H2SO4 under identical conditions. Cr (VI) in the 20% Cr (VI)/H2SO4 was found to play an important role in alteration of surface chemistry. Studies...

  8. Novel Ag/Kaolin Nanocomposite as Adsorbent for Removal of Acid Cyanine 5R from Aqueous Solution

    Saeedeh Hashemian; Mohammad Reza Shahedi

    2013-01-01

    Ag/kaolin nanocomposite was prepared by reduction of Ag+ ion with ethanol at alkaline condition on kaolin surface. Nanocomposite was characterized by FTIR, XRD, TEM, and BET methods. Results showed the Ag/kaolin composite has particle size 50 nm. The surface area was increased from kaolin to Ag/kaolin from 1.0215 to 7.409 m2 g−1, respectively. Ag/kaolin nanocomposite was used for adsorption of acid cyanine 5R (AC5R) from aqueous solution. The effect of parameters such as contact time, pH, an...

  9. Sequestration of U(VI) from aqueous solutions using precipitate ion imprinted polymers endowed with oleic acid functionalized magnetite

    The use of a polymeric sorbent material embedded with oleic acid coated magnetic particles as selective sorbents for the removal of U(VI) ions from industrial waste effluents was studied. In the presence of other competing ions [Th(IV) and Ni(II)], U(VI) was preferentially adsorbed. Inclusion of nano-magnetic particles in the polymer matrix aided the separation of the sorbents from aqueous solutions by application of external magnetic field. High recoveries indicated that the sorbent is suitable for application in contaminated water. (author)

  10. Identification of major degradation products of 5-aminosalicylic acid formed in aqueous solutions and in pharmaceuticals

    Jensen, J.; Cornett, Claus; Olsen, C. E.;

    1992-01-01

    The formation of four major degradation products of 5-aminosalicylic acid (5-ASA) in buffered solutions at pH 7.0 was demonstrated by gradient HPLC analysis. The isolation and structural elucidation of the resulting degradation products showed that the degradation of 5-ASA led to the formation of......-containing pharmaceuticals, which had not been stored as prescribed, but in diffuse daylight for up to 2 years....

  11. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions

    The hexavalent chromium, Cr(VI), biosorption by raw and acid-treated Oedogonium hatei were studied from aqueous solutions. Batch experiments were conducted to determine the biosorption properties of the biomass. The optimum conditions of biosorption were found to be: a biomass dose of 0.8 g/L, contact time of 110 min, pH and temperature 2.0 and 318 K respectively. Both Langmuir and Freundlich isotherm equations could fit the equilibrium data. Under the optimal conditions, the biosorption capacities of the raw and acid-treated algae were 31 and 35.2 mg Cr(VI) per g of dry adsorbent, respectively. Thermodynamic parameters showed that the adsorption of Cr(VI) onto algal biomass was feasible, spontaneous and endothermic under studied conditions. The pseudo-first-order kinetic model adequately describe the kinetic data in comparison to second-order model and the process involving rate-controlling step is much complex involving both boundary layer and intra-particle diffusion processes. The physical and chemical properties of the biosorbent were determined and the nature of biomass-metal ions interactions were evaluated by FTIR analysis, which showed the participation of -COOH, -OH and -NH2 groups in the biosorption process. Biosorbents could be regenerated using 0.1 M NaOH solution, with up to 75% recovery. Thus, the biomass used in this work proved to be effective materials for the treatment of chromium bearing aqueous solutions

  12. Silica gel modified with ethylenediamine and succinic acid-adsorption and calorimetry of cations in aqueous solution

    Highlights: ► Succinic acid-modified silica acted as an adsorbent for Cu (II), Ni (II), and Co (II) from aqueous solutions. ► Modified silica adsorbed metallic cations in the order Cu2+ > Co2+ > Ni2+. ► Succinic acid-modified silica could be employed as low-cost material for the removal of cations from aqueous solution. ► Thermodynamic data for these systems are favorable at the solid/liquid interface. - Abstract: Ethylenediamine molecules were covalently immobilized onto silica gel previously functionalized with 3-chlorosilylpropyltrimethoxysilane (Sil–Cl), producing a Sil–N surface. The Sil–N surface reacted with succinic acid, yielding a Sil–NSuc surface. This new synthesized silica gel surface was used to adsorb divalent cations from aqueous solutions at room temperature. The adsorption isotherms were fit to a modified Langmuir equation using the data obtained by suspending the solid in MCl2 (M = Cu, Ni, and Co) aqueous solutions, yielding the maximum number of moles adsorbed as 1.04 ± 0.01, 1.89 ± 0.02 and 1.85 ± 0.02 mmol g−1 for divalent copper, nickel and cobalt, respectively. The metal-basic center ratio for complexes on the surfaces varied with the nature of the metal. The spontaneity of these systems was reflected in the negative values of the Gibbs free energy calculated using calorimetric data. The net thermal effects obtained from the calorimetric titration measurements were adjusted to a modified Langmuir equation, and the calculation of the enthalpies of the interaction for the complexation with Sil–NSuc yielded the following exothermic values: 2.81 ± 0.08, 0.35 ± 0.04 ± and 0.69 ± 0.05 kJ mol−1 for Cu2+, Co2+ and Ni2+, respectively. Based on these values, the metals are preferentially adsorbed in the order Cu2+ > Co2+ > Ni2+. The other thermodynamic data for these systems are favorable at the solid/liquid interface, suggesting the efficacy of this modified silica for cation removal from solution

  13. Radiolysis of Aqueous Benzene Solutions

    Aerated and deaerated aqueous solutions of benzene have been irradiated with 60Co γ-rays. The products of radiolysis in deaerated, unbuffered or acid, solutions were phenol, biphenyl, hydrogen and in acid solutions also hydrogen peroxide with the following yields: G(phenol) = 0. 37 (0. 37), G(biphenyl) = 1.3 (1.7), G(H2) = 0.44 (0. 43) and G(H2O2) = 0 (0.60), the figures in brackets giving the results for acid solutions. The results are shown to agree with the conclusion that k(e-aq + H2O2) >> k(H + H2O2). Furthermore, the results indicate that a competition takes place between the reactions: 2 C6H6OH · -> dimer -> biphenyl. C6H7 · + C6H6OH · -> dimer -> biphenyl. The yields in aerated, unbuffered or acid, solutions were: G(phenol) = 2.1 (2.3), G(biphenyl) = 0 (0), and G(H2O2) = 2.2 (3.1), the figures in brackets being valid for acid solutions. The ratio k(H + C6H6)/k(H + O2) was 1.4x10-2. The results indicate that peroxides, or more probably hydroperoxides, take part in the reactions. After the addition of Fe2+ or Fe3+ to aerated acid solutions G(phenol) was increased to 6.6 and 3.4 respectively. Oxygen was consumed more rapidly in the presence of Fe. Reaction mechanisms are discussed

  14. Sodium phthalamates as corrosion inhibitors for carbon steel in aqueous hydrochloric acid solution

    Highlights: → N-Alkyl-sodium phthalamates as corrosion inhibitors for industry in acidic medium. → Compounds behaved as mixed type inhibitors and followed Langmuir adsorption isotherm. → Efficiencies were proportional to aliphatic chain length and inhibitor concentration. → Iron complexes and chelates with phthalamates contributed to carbon steel protection. - Abstract: Three compounds of N-alkyl-sodium phthalamates were synthesized and tested as corrosion inhibitors for carbon steel in 0.5 M aqueous hydrochloric acid. Tests showed that inhibitor efficiencies were related to aliphatic chain length and dependent on concentration. N-1-n-tetradecyl-sodium phthalamate displayed moderate efficiency against uniform corrosion, 42-86% at 25 deg. C and 25-60% at 40 oC. Tests indicated that compounds behave as mixed type inhibitors where molecular adsorption on steel followed Langmuir isotherm, whereas thermodynamic suggested that a physisorption process occurred. XPS analysis confirmed film formation on surface, where Fe+2 complexes and Fe+2 chelates with phthalamates prevented steel from further corrosion.

  15. Radiolysis of Aqueous Toluene Solutions

    Aqueous toluene solutions have been irradiated with Co γ-rays. In unbuffered solutions the various cresol isomers are formed in a total yield of 0.45, 0.87 and 0.94 molecules/100 eV absorbed energy in argon-, N2O- and air - saturated solutions, respectively. The yields are reduced in acid (pH 3) solutions (G 0.14, 0.14 and 0.52, respectively) but the reduction is compensated by the formation of 1,2-di-phenylethane in yields of 0.49 and 1.60 in argon- and N2O-saturated solutions, respectively. Benzyl radicals are formed through an acid catalysed water elimination reaction from the initially formed hydroxymethylcyclohexadienyl radical. Phenyltolylmethanes, dimethylbiphenyls and partly reduced dimers are also formed during the radiolysis. Hydrogen is formed in the same yield as the molecular yield, g(H2). Xylene isomers and benzene are formed in trace quantities. The most remarkable effects of the addition of Fe(III) ions to deaerated acid toluene solutions are the formation of benzyl alcohol and benzaldehyde and an increase in the yield of 1,2-diphenylethane

  16. Coefficients of interphase distribution and Gibbs energy of the transfer of nicotinic acid from water into aqueous solutions of ethanol and dimethylsulfoxide

    Grazhdan, K. V.; Gamov, G. A.; Dushina, S. V.; Sharnin, V. A.

    2012-11-01

    Coefficients of the interphase distribution of nicotinic acid are determined in aqueous solution systems of ethanol-hexane and DMSO-hexane at 25.0 ± 0.1°C. They are used to calculate the Gibbs energy of the transfer of nicotinic acid from water into aqueous solutions of ethanol and dimethylsulfoxide. The Gibbs energy values for the transfer of the molecular and zwitterionic forms of nicotinic acid are obtained by means of UV spectroscopy. The diametrically opposite effect of the composition of binary solvents on the transfer of the molecular and zwitterionic forms of nicotinic acid is noted.

  17. Self-consistent field theory investigation of the behavior of hyaluronic acid chains in aqueous salt solutions

    Nogovitsin, E. A.; Budkov, Yu. A.

    2012-04-01

    In this work we continue to develop a field-theoretic methodology, which combines the technique of Gaussian equivalent representation for the calculation of functional integrals with the continuous Gaussian thread model of flexible polymers for solving statistical-mechanical problems of polyelectrolyte solutions. We present new analytic expressions for the osmotic pressure, the potential of mean force, and the monomer-monomer pair distribution function, and employ them to investigate the structural and thermodynamic quantities of the polyelectrolyte system. We demonstrate the applicability of the method for systems of polyelectrolyte chains in which the monomers interact via a Yukawa-type pair potential. As a specific example, the present work focuses on aqueous solutions of hyaluronic acid with added salts NaCl and CaCl2. Hyaluronic acid is a high molecular weight linear polysaccharide, which has a multitude of roles in biological tissues. We conclude that the effect of sodium chloride and calcium chloride on the osmotic properties of hyaluronic acid solutions can be accounted for by their contributions to the ionic strength. Nevertheless, the effects of coiling and self-association can be stimulated in solution by added salt.

  18. Removal of Dyes from Aqueous Solutions Using Radiation Synthesized (2-Hydroxyethyl Methacrylate/Acrylic acid) Hydrogels

    Acrylic acid/2-hydroxyethyl methacrylate super absorbent hydrogels (AAc/ HEMA) were prepared by γ-radiation copolymerization of 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AAc). Characterization of AAc/HEMA hydrogel was done by FTIR, TGA, SEM and XRD. The swelling properties were studied as a function of time, ph and irradiation dose. The diffusion behavior of water into these hydrogels followed the Fickian character at all investigated irradiation doses. The adsorption of Direct Congo Red and Direct Blue dyes onto the AAc/ HEMA hydrogel was studied. Physico-chemical parameters like dye concentration, solution ph and temperature were varied to characterize the adsorption phenomenon. Experimental data were modeled by Freundlich isotherm. Thermodynamic parameters ( ΔHo, ΔGo and ΔSo ) were evaluated for the dyes adsorbent systems, which suggest that the adsorption process is a typical physical process and endothermic in nature

  19. Removal of Acid Alizarin Black Dye from Aqueous Solution by Adsorption using Zinc Oxide

    Haydar A. Mohammad Salim

    2016-01-01

    The adsorption of Acid Alizarin Black (AAB) dye (C.I. 21725) on zinc oxide was investigated in this study. The adsorption was carried out under different operating conditions. The operating conditions were adsorbent dosage (10, 30, 50, 70 and 100 mg), initial dye concentration (10, 20, 30, 40, 50, 60 and 70 mg/L), pH of solution (2, 4, 6, 7, 8, 10 and 12) and temperature (20, 30, 40, 50 and 60 oC). The removal percentage of dye on ZnO decreases from 67 % to 54 % with increase in initial dye c...

  20. Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution

    Zhang, Ze; Chen, Jie-Jie; Lyu, Xian-Jin; Yin, Hao; Sheng, Guo-Ping

    2014-12-01

    Decomposition of perfluorooctanoic acid (C7F15COOH, PFOA) has been gaining increasing interests because it is a ubiquitous environmental contaminant and resistant to the most conventional treatment processes. In this work, the rapid and complete mineralization of PFOA and simultaneous defluorination were achieved by γ-ray irradiation with a 60Co source. The degradation rate of PFOA by γ-ray irradiation would be high, and a pseudo-first-order kinetic rate constant of 0.67 h-1 could be achieved in the N2 satured condition at pH 13.0. The experimental results and quantum chemical calculation confirmed that two radicals, i.e., hydroxyl radical (.OH) and aqueous electrons (eaq-), were responsible for the degradation of PFOA, while only either eaq- or .OH might not be able to accomplish complete mineralization of PFOA. The synergistic effects of .OH and eaq- involved in the cleavage of C-C and C-F bonds, and therefore complete mineralization of PFOA were achieved. The intermediate products were identified and the degradation pathway was also proposed. The results of this study may offer a useful, high-efficient approach for complete mineralizing fluorochemicals and other persistent pollutants.

  1. Enhanced Stability of the Model Mini-protein in Amino Acid Ionic Liquids and Their Aqueous Solutions

    Chevrot, Guillaume; Chaban, Vitaly V

    2015-01-01

    Using molecular dynamics simulations, the structure of model mini-protein was thoroughly characterized in the imidazolium-based amino acid ionic liquids and their aqueous solutions. We report that the mini-protein is more stable when AAIL is added as a cosolvent. Complete substitution of water by organic cations and anions further results in hindered conformational flexibility of the mini-protein. This observation suggests that AAILs are able to defend proteins from thermally induced denaturation. We show by means of radial distributions that the mini-protein is efficiently solvated by both solvents due to agood mutual miscibility. However, amino acid based anions prevail in the first coordination sphere of the mini-protein.

  2. Determination of equilibrium constant of decomposition reaction of molybdovanadophosphoric heteropolyacid of the twelfth series in aqueous acid solutions

    Spectrophotometric method has been used to determine the equilibrium constant of decomposition reaction of the H5PMo10V2O40 heteropolyacid (HPA-2) to H4PMo11V1O40 (HPA-1), VO2+, H3PO4 with the medium acidity varying from pH=3 to zero. The equilibrium constant, as determined at the temperature of 25 deg and ionic strengt. of the solutions of 0.3, permits to calculate the composition of HPA-2 aqueous solutions in a wide concentration range: 3x10-1 to 1x10-3 mol/l. The conducted investigation shows that both the existence of HPAs of a definite type and their protonAation depend on medium pH and HP concentration

  3. Studies on size variation of U(IV) colloids formed in aqueous nitric acid solutions. Contributed Paper RD-06

    Tetravalent Uranium readily undergoes hydrolysis even in highly acidic aqueous solutions. In the present work, solutions with concentration and pH ranges of 0.4 - 19 mM (total U) and 1- 4 respectively were investigated by light scattering technique with special emphasis on polymerization leading to colloid formation. Size variation of colloids formed at different pH was monitored. The results clearly indicate that the concentration has significant effect on particle size as well as stability of colloids. With increasing concentration, the size of colloids formed is smaller due to more crystalline nature of the colloids. Stability of colloids formed at lower concentration is greater than that of colloids formed at higher concentration. The results of this work are a clear indication that U(IV) hydrolysis does not differ from that of Pu(IV). (author)

  4. Biosorption of clofibric acid and carbamazepine in aqueous solution by agricultural waste rice straw.

    Liu, Zhanguang; Zhou, Xuefei; Chen, Xiaohua; Dai, Chaomeng; Zhang, Juan; Zhang, Yalei

    2013-12-01

    Due to their widespread use, clofibric acid (CA) and carbamazepine (CBZ) have been frequently detected simultaneously at relatively high concentrations in aquatic environments. In this study, agricultural waste rice straw was employed as a potentially low-cost, effective and easy-to-operate biosorbent (RSB) to remove CA and CBZ. The adsorption of both pharmaceuticals followed pseudo second-order kinetics, and intraparticle diffusion was an important rate-limiting step. The adsorption isotherms of both drugs were fit well with Freundlich model. The adsorption of CA onto RSB was exothermic and was more likely to be dominated by physical processes, while the adsorption of CBZ was endothermic. Solution pH was determined to be the most important factor for CA adsorption, such that the adsorption capacity of CA onto RSB increased with the decline of solution pH. In the lower range of solution pH below 3.1, the CA removal efficiency was enhanced with the increase of biosorbent dosage. The CBZ removal efficiency was enhanced with the increase of RSB dosage without pH control. The maximum adsorption capacities were 126.3 mg/g for CA and 40.0 mg/g for CBZ. PMID:24649668

  5. Electrochemiluminescence of Tris(2,2'-bipyridyl)ruthenium(II) with Ascorbic Acid and Dehydroascorbic Acid in Aqueous and Non-aqueous Solutions.

    Takahashi, Fumiki; Hattori, Kaoru; Matsuoka, Masanori; Jin, Jiye

    2016-01-01

    The electrochemiluminescence (ECL) of tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)3(2+)) is studied in non-aqueous media using dehydroascorbic acid (DHA) as coreactant to validate the evidence for the mechanism of the ascorbic acid (H2A)/Ru(bpy)3(2+) ECL system in an aqueous media. DHA is electrochemically reduced around -1.2 V vs. Ag/Ag(+) in pure acetonitrile to generate the ascorbyl radical anion (A(•-)), which is confirmed by in-situ UV-visible absorption measurements using a thin-layer spectroelectrochemical cell. The ECL of the DHA/Ru(bpy)3(2+) system in non-aqueous media is not observed in the potential range from 0 to +1.4 V in anodic potential sweep mode; however, distinct ECL is detected using double potential step electrolysis from -1.2 to +1.4 V vs. Ag/Ag(+). The ECL may be generated by a homogeneous charge-transfer process between A(•-) produced during the first pulse potential step (-1.2 V) and Ru(bpy)3(3+) generated during the second pulse potential step (+1.4 V). The calculated standard enthalpy (-ΔH°) for the charge-transfer reaction between A(•-) and Ru(bpy)3(3+) is 2.29 eV, which is larger than the lowest excited singlet state energy of Ru(bpy)3(2+) (*Ru(bpy)3(2+); 2.03 eV, 610 nm). It is determined that the generated intermediate A(•-) is crucial in the Ru(bpy)3(2+) ECL reaction. PMID:27063718

  6. Oxygen uptake in the radiolysis of aqueous solutions of nucleic acids and their constituents

    G (O2 uptake) has been measured for 27 compounds in N2O/O2 (4:1)- saturated solutions using an oxygen sensitive electrode. G (O2 uptake) (measured at 200C and dose rate of 0.4 Gy s-1) for isopropanol (3.0), sodium formate (3.0), D-glucose (3.2), 2deoxy-D-ribose (3.0), t-butanol (4.2) and diethyl ether (4.5) were found to be in agreement with the expectation based on product yields and/or known mechanisms. High O2 uptake was observed with polyethyleneoxide (10.2), which increases with decreasing dose rate and/or increasing temperature (G(O2 uptake) = 40 at 0.04 Gy s-1 and 500C). These results are explained by assuming a chain reaction. The nucleotides 5'-thymidylic acid (4.4), 5'-deoxy-cytidylic acid (4.8), 5'-deoxyadenylic acid (1.9) and 5'-deoxyguanylic acid (1.6) show that the pyrimidine derivatives consume considerably more oxygen than the purine derivatives. Analogous results are obtained with the nucleobases and nucleosides. The pyrimidine-purine difference is even more pronounced in the corresponding polymer, poly U (21) and poly A (3.5). The large value of poly U shows that a significant contribution of a chain reaction is present. G(O2 uptake) for DNA is dose-rate, temperature and concentration-dependent. The O2 uptake for single-stranded DNA (6.8) and double-stranded DNA (4.6) is higher than for an equivalent mixture of nucleotides (3.2). These results indicate that in DNA also a short chain reaction takes place. (author)

  7. Structural and vibrational investigation on species derived from the cyclamic acid in aqueous solution by using HATR and Raman spectroscopies and SCRF calculations

    Brizuela, Alicia B.; Raschi, Ana B.; Castillo, María V.; Davies, Lilian; Romano, Elida; Brandán, Silvia A.

    2014-09-01

    In this study, aqueous solutions at different molar concentrations of sodium cyclamate in water were completely characterized by HATR (Horizontal Attenuated Total Reflectance) and Raman spectroscopies. The theoretical structures of cyclamate ion, the zwitterionic and neutral forms of the cyclamic acid and its dimer were optimized in gas and aqueous solution phases by using the hybrid B3LYP/6-31G* method. The solvent effects for the four species in aqueous solutions were simulated by using self-consistent reaction field (SCRF) calculations employing the integral equation formalism variant (IEFPCM) model. The complete assignments of the vibrational spectra of all the forms of cyclamic acid were performed taking into account the factor group analysis with the Scaled Quantum Mechanics Force Field (SQMFF) methodology. The existence of the zwitterionic and neutral forms of the cyclamic acid and its dimer in a solution of cyclamate in water is evidenced by characteristic bands in the HATR and Raman spectra. The dimerization of cyclamate in aqueous solution was previously reported by conductimetric method. The natural population analysis (NPA) and Merz-Kollman (MK) charges, molecular electrostatic potential (MEP), natural bond orbital (NBO) and atoms in molecules (AIM) calculations predict for all the species the principal donor and acceptor sites for the H bonds formation in aqueous solution. The SQM force fields for the cyclamate ion, the zwitterionic and neutral species of the cyclamic acid were obtained and their corresponding force constants in both phases were reported. Additionally, the solvation energies for those species were reported.

  8. Kinetic studies for sorption of some metal ions from aqueous acid solutions onto TDA impregnated resin

    Kinetic studies for sorption of uranium, thorium and cobalt ions from hydrochloric acid solutions using tri-dodecyl amine (TDA) loaded on Amberlite XAD4 (polystyrene resin supplied by Rohm and Haas) using the batch technique, have been evaluated and assessed. Analysis of the respective data in accordance with three kinetic models revealed that the particle diffusion mechanism is the rate determining step, and the sorption for each metal ion on the impregnated sorbent follows the first order reversible kinetics. Values of the first order rate constants, rate constants of intraparticle transport, and the particle diffusion coefficients for the studied ions were determined. Sorption isotherms, which have been evaluated from the distribution coefficients for these ions, were found in good fit with the Langmuir and Freundlich isotherms. (author)

  9. Rapid decolorization of Acid Orange Ⅱ aqueous solution by amorphous zero-valent iron

    Changqin Zhang; Zhengwang Zhu; Haifeng Zhang; Zhuangqi Hu

    2012-01-01

    Some problems including low treatment capacity,agglomeration and clogging phenomena,and short working life,limit the application of pre-treatment methods involving zero-valent iron (ZVI).In this article,ZVI was frozen in an amorphous state through a melt-spinning technique,and the decolorization effect of amorphous ZVI on Acid Orange Ⅱ solution was investigated under varied conditions of experimental variables such as reaction temperature,ribbon dosage,and initial pH.Batch experiments suggested that the decolorization rate was enhanced with the increase of reaction temperature and ribbon dosage,but decreased with increasing initial solution pH.Kinetic analyses indicated that the decolorization process followed a first order exponential kinetic model,and the surface-normalized decolorization rate could reach 2.09 L/(m2·min) at room temperature,which was about ten times larger than any previously reported under similar conditions.Recycling experiments also proved that the ribbons could be reused at least four times without obvious decay of decolorization rate and efficiency.This study suggests a tremendous application potential for amorphous ZVI in remediation of groundwater or wastewater contaminated with azo dyes.

  10. Removal of cationic dyes by poly(acrylamide-co-acrylic acid) hydrogels in aqueous solutions

    Poly(acrylamide-co-acrylic acid (poly(AAm-co-AAc)) hydrogels prepared by irradiating with γ-radiation were used in experiments on swelling, diffusion, and uptake of some cationic dyes such as Safranine-O (SO) and Magenta (M). Poly(AAm-co-AAc) hydrogels irradiated at 8.0 kGy have been used for swelling and diffusion studies in water and cationic dye solutions. The maximum swellings in water, and SO, and M solutions observed are 2700%, 3500%, and 4000%, respectively. Diffusions of water and cationic dyes within hydrogels have been found to be non-Fickian in character. Adsorption of the cationic dyes onto poly(AAm-co-AAc) hydrogels is studied by the batch adsorption technique. The adsorption type was found Langmuir type in the Giles classification system. The moles of adsorbed dye for SO and M per repeating unit in hydrogel (binding ratio, r) have been calculated as 3834x10-6 and 1323x10-6, respectively. These results show that poly(AAm-co-AAc) hydrogels can be used as adsorbent for water pollutants such as cationic dyes

  11. Equilibrium adsorption of rhodamine B on used black tea leaves from acidic aqueous solution

    Mohammad Abul Hossain

    2012-10-01

    Full Text Available The presence of carcinogenic dye like rhodamine B (Rh-B in textile wastewater affects the quality of water to consumers. The adsorption of Rh-B on used black tea leaves (UBTL was studied in batch process to investigate its removal efficiency. The effects of contact time, concentration, temperature, pH etc. on adsorption have been investigated. The UV-visible spectrophotometer was used for analysis of Rh-B at constant pH. The adsorption isotherms were constructed for different temperatures using acidic solution of pH 2.0. Freundlich, Langmuir and Dubinin–Raduskevich (D-R equations were used to analyze the equilibrium adsorption data. The experimental data follows Freundlich equation more precisely compare with the Langmuir one. The maximum amount adsorbed calculated from Langmuir equation is 72.5 mg/g at 30 oC which is increased with increasing temperature. Separation factor and thermodynamic parameters revealed that the process is favorable, spontaneous and endothermic nature. Possible mechanism of the process was elucidated from the effect of solution pH on amount adsorbed. The endothermic nature of the adsorption might be due to the fragmentation of Rh-B molecules during the adsorption process.

  12. Dodecylsulfate and dodecybenzenesulfonate intercalated hydrotalcites as adsorbent materials for the removal of BBR acid dye from aqueous solutions

    Mohamed Bouraada

    2016-07-01

    Full Text Available Two modified layered double hydroxides (HT have been synthesized by intercalating both sodium dodecylsulfate (SDS and sodium dodecylbenzenesulfonate (SDBS surfactants into Mg-Al layered double hydroxides using the calcination–rehydratation method. The prepared materials HT-SDS and HT-SDBS were characterized by X-ray diffraction, FTIR, thermal analysis and BET. The obtained materials were used for Brilliant Blue R (BBR dye removal from aqueous solution. Batch studies were carried out to address various experimental parameters such as kinetic, pH, sorption isotherm and temperature. Sorption experiments of acid dye BBR from aqueous solution by HT-SDS and HT-SDBS were investigated in the batch system. Kinetic studies indicate that the sorption of BBR follows the pseudo-second-order model. Sorption capacities of HT-SDS (357.1 mg/g for BBR dye were much higher than those of HT-SDBS (204.1 mg/g. The intercalated Mg-Al layered double hydroxides with SDS and SDBS could possibly be used to remove anionic dyes of relatively high concentrations, whereas HT-CO3 may only be used to remove anionic dyes of low concentrations.

  13. Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull

    This paper deals with the application of Soy Meal Hull (SMH), an agricultural by-product, for the removal of direct and acid dyes from aqueous solutions. Four textile dyes, C.I.Direct red 80 (DR80), C.I.Direct red 81 (DR81), C.I.Acid blue 92 (AB92) and C.I.Acid red 14 (AR14) were used as model compounds. Physical characteristics of SMH such as surface area, Fourier transform infra-red (FTIR) and scanning electron microscopy (SEM) were obtained. The surface area of SMH was found to be 0.7623 m2/g and the presence of functional groups such as hydroxyl, amine and carbonyl groups were detected. The effect of initial dye concentration, pH, contact time and SMH doses were elucidated at 20 ± 1 deg. C. Results show that the pH value of 2 is favorable for the adsorption of all four dyes. The data evaluated for compliance with the Langmuir, Freundlich and BET isotherm models. It was found that data for DR80 and DR81 fitted well with Langmuir isotherm, for AB92, BET isotherm is preferred, while for AR14, the Freundlich isotherm is the most applicable. The adsorption capacities of SMH for DR80, DR81, AB92 and AR14 were, 178.57, 120.48, 114.94 and 109.89 mg/g of adsorbent, respectively. Also, adsorption kinetics of dyes was studied and the rates of sorption were found to conform to pseudo-second order kinetics with good correlation (R 2 ≥ 0.9977). Maximum desorption of ≥99.8% was achieved for DR80, DR81 and AB92 and 86% for AR14 in aqueous solution at pH 10. Based on the data of present investigation, one could conclude that the SMH being a natural, eco-friendly and low-cost adsorbent with relatively large adsorption capacity might be a suitable local alternative for elimination of dyes from colored aqueous solutions

  14. Structural transformations of the synthetic salt 4`, 7-dihydroxyflavylium chloride in acid and basic aqueous solutions. Part 1-Ground state

    Pina, F.; Benedito, L.; Melo, M.J.; Parola, A.J. [Centro de Quimica Fina e Biotecnologia. Departamento de Quimica FCT/UNL, Portugal (Portugal); Lima, J.C.; Macanita, A.L. [Instituto de Tecnologia Quimica e Biologica, Portugal (Portugal)

    1997-09-01

    A complete study of the structural pH dependent transformations of the synthetic flavylium salt 4`-7-dihydroxyflavylium chloride (DHF), occurring in aqueous solutions, including the basic region, is described. The kinetics study of the transformations occurring in acidic media (quinoidal base (A) {l_reversible} flavylium cation (AH{sup +}) {l_reversible} hemiacetal (B) {l_reversible} cis-chalcone (C-cis) {l_reversible} trans-chalcone (C-trans)) allowed to conclude that the cis-transisomerization is faster than the tautomerization and the hydration processes, which is unique in the anthocyanins family. Results obtained with the parent compound 4`-7-dimethoxyflavylium chloride (DMF)with relevance to this study are also presented. In equilibrated basic solutions the existence of acid-base equilibria involving the trans-Chalcone (C-trans) and its conjugated bases, (C-trans, and C``2-trans), was detected. Freshly prepared solutions at pH>7 show also the presence of a transient species identified as the ionized quinoidal base (A``-), which is almost completely converted into C``2-trans with a Ph dependent rate constant, (Author) 17 refs.

  15. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment. PMID:26618263

  16. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon

    Powdered activated carbon (PAC) was applied to remove perfluorooctanoic acid (PFOA) from the aqueous PFOA solution in this study. Contact time, adsorbent dose and temperature were analyzed as the effect factors in the adsorption reaction. The contact time of maximum PFOA uptake was around 1 h while the sorption removal efficiency increased with the PAC concentrations. And the process of adsorption increased from 303 K to 313 K and then decreased from 313 K to 323 K. Among four applied models, the experimental isotherm data were discovered to follow Langmuir isotherm model more closely. Thermodynamically, adsorption was endothermic because enthalpy, entropy and Gibbs constants were 198.5 kJ/mol, 0.709 kJ/mol/K and negative, respectively, which also indicated that the adsorption process was spontaneous and feasible. From kinetic analysis, the adsorption was suggested to be pseudo-second-order model. The adsorption of PFOA on the PAC was mainly controlled by particle diffusion.

  17. Influence of external magnetic field on the etching of a steel ball in an aqueous solution of nitric acid

    The effect of change of shape of a steel ball was revealed as a result of its etching in an aqueous solution of nitric acid under influence of an external magnetic field. The elongation of a ferromagnetic ball was observed along the direction of an external magnetic field while etching took place uniformly in all the directions without magnetic field application. The steel ball etching in a magnetic field is characterized by formation of three cylindrically symmetric regions with different etching rates and surface structures, divided from each other by clear borders (namely, the pole, equator and transition regions are formed). The non-monotone dependences of etching rate, surface structure of a sample and sample shape after etching on an external magnetic field are observed.

  18. Morphological and phase evolution of TiO 2 nanocrystals prepared from peroxotitanate complex aqueous solution: Influence of acetic acid

    Chang, Jeong Ah; Vithal, Muga; Baek, In Chan; Seok, Sang Il

    2009-04-01

    Nanosized anatase and rutile TiO 2 having different shape, phase and size have been prepared from aqueous solutions of peroxo titanium complex starting from titanium(IV) isopropoxide (TTIP), acetic acid and hydrogen peroxide (H 2O 2) in water/isopropanol media by a facile sol-gel process. The TiO 2 nanocrystals are characterized by powder X-ray diffraction (XRD), Raman spectroscopy, FT-IR spectroscopy, TEM, high resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) techniques. The influence of pH and the sequence of addition of reaction contents on the phase and morphology of TiO 2 are studied. The reasons for the observation of only anatase and/or mixture of anatase and rutile are given.

  19. Fast and highly-efficient removal of methylene blue from aqueous solution by poly(styrenesulfonic acid-co-maleic acid)-sodium-modified magnetic colloidal nanocrystal clusters

    Song, Yu-Bei; Lv, Shao-Nan; Cheng, Chang-Jing, E-mail: changjing_cheng@163.com; Ni, Guo-Li; Xie, Xiao-Wa; Huang, Wei; Zhao, Zhi-Gang

    2015-01-01

    Graphical abstract: - Highlights: • Magnetic colloid nanoclusters (MCNCs) are used for adsorption of methylene blue (MB). • The MCNCs exhibit fast and highly-efficient removal capacity for MB. • The MB adsorption onto the MCNCs is due to the strong electrostatic interactions. - Abstract: Magnetic colloidal nanocrystal clusters (MCNCs) modified with different amounts of poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSMA) have been prepared through simple one-step solvothermal method for removal of methylene blue (MB) from aqueous solution. The prepared MCNCs are characterized by Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), nitrogen adsorption–desorption technique and dynamic light scattering (DLS). Moreover, effects of the solution pH, contact time, adsorbent dosage, ionic strength and initial dye concentration on MB adsorption onto the MCNCs are systematically investigated. The PSSMA-modified MCNCs show fast and highly-efficient MB removal capacity, which dramatically depends on the immobilization amounts of PSSMA, solution pH and adsorbent dosage. Their adsorption kinetics and isotherms exhibit that the kinetics and equilibrium adsorptions can be well-described by pseudo-second-order kinetic and Langmuir model, respectively. These magnetic nanocomposites, with high separation efficiency, low production cost and recyclable property, are promising as functional adsorbents for efficient removal of cationic organic pollutants from aqueous solution.

  20. Fast and highly-efficient removal of methylene blue from aqueous solution by poly(styrenesulfonic acid-co-maleic acid)-sodium-modified magnetic colloidal nanocrystal clusters

    Song, Yu-Bei; Lv, Shao-Nan; Cheng, Chang-Jing; Ni, Guo-Li; Xie, Xiao-Wa; Huang, Wei; Zhao, Zhi-Gang

    2015-01-01

    Magnetic colloidal nanocrystal clusters (MCNCs) modified with different amounts of poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSMA) have been prepared through simple one-step solvothermal method for removal of methylene blue (MB) from aqueous solution. The prepared MCNCs are characterized by Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), nitrogen adsorption-desorption technique and dynamic light scattering (DLS). Moreover, effects of the solution pH, contact time, adsorbent dosage, ionic strength and initial dye concentration on MB adsorption onto the MCNCs are systematically investigated. The PSSMA-modified MCNCs show fast and highly-efficient MB removal capacity, which dramatically depends on the immobilization amounts of PSSMA, solution pH and adsorbent dosage. Their adsorption kinetics and isotherms exhibit that the kinetics and equilibrium adsorptions can be well-described by pseudo-second-order kinetic and Langmuir model, respectively. These magnetic nanocomposites, with high separation efficiency, low production cost and recyclable property, are promising as functional adsorbents for efficient removal of cationic organic pollutants from aqueous solution.

  1. Fast and highly-efficient removal of methylene blue from aqueous solution by poly(styrenesulfonic acid-co-maleic acid)-sodium-modified magnetic colloidal nanocrystal clusters

    Graphical abstract: - Highlights: • Magnetic colloid nanoclusters (MCNCs) are used for adsorption of methylene blue (MB). • The MCNCs exhibit fast and highly-efficient removal capacity for MB. • The MB adsorption onto the MCNCs is due to the strong electrostatic interactions. - Abstract: Magnetic colloidal nanocrystal clusters (MCNCs) modified with different amounts of poly(4-styrenesulfonic acid-co-maleic acid) sodium (PSSMA) have been prepared through simple one-step solvothermal method for removal of methylene blue (MB) from aqueous solution. The prepared MCNCs are characterized by Fourier transform infrared (FT-IR) spectra, scanning electron microscope (SEM), transmission electron microscope (TEM), thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), nitrogen adsorption–desorption technique and dynamic light scattering (DLS). Moreover, effects of the solution pH, contact time, adsorbent dosage, ionic strength and initial dye concentration on MB adsorption onto the MCNCs are systematically investigated. The PSSMA-modified MCNCs show fast and highly-efficient MB removal capacity, which dramatically depends on the immobilization amounts of PSSMA, solution pH and adsorbent dosage. Their adsorption kinetics and isotherms exhibit that the kinetics and equilibrium adsorptions can be well-described by pseudo-second-order kinetic and Langmuir model, respectively. These magnetic nanocomposites, with high separation efficiency, low production cost and recyclable property, are promising as functional adsorbents for efficient removal of cationic organic pollutants from aqueous solution

  2. Application of the spin-trap HPLC-ESR method to radiation chemistry of amino acids in aqueous solutions. [Gamma radiation

    Makino, K.; Moriya, F.; Hatano, H. (Kyoto Univ. (Japan). Faculty of Science)

    1984-01-01

    Our recent studies of the application of the newly developed spin-trap HPLC-ESR method to ..gamma..-radiolysis of aqueous solutions containing amino acids are reviewed. 2-Methyl-2-nitrosopropane (MNP) was used as a spin trap to convert generated unstable free radicals into relatively stable aminoxyl radicals, which were separated individually by HPLC with cation-exchange columns. Compounds derived from MNP during the preparation of aqueous MNP solutions were found to be t-butylnitrosohydroxylamine, t-butyl alcohol and isobutene. The preparation procedure of the solution in which these undesirable products are minimized is proposed. ..gamma..-Radiolysis of aqueous MNP solutions resulted in the formation of five aminoxyl radicals. The chromatographic retention times of the radicals were found to be different from those of the spin adducts from the amino acids studied here. Amino acids investigated in the present work were glycine, L-alanine, L-valine, L-isoleucine, L-leucine and DL-methionine. Twenty-five spin adducts from the amino acids were detected and identified by the method. The reactions by which short-lived radicals are produced in ..gamma..-irradiated aqueous solutions of the amino acids have been found to be H-abstraction by hydroxyl radicals and deamination by hydrated electrons.

  3. Study of the dose response of the system ferrous ammonium sulfate–sucrose–xylenol orange in acid aqueous solution

    An aqueous solution of ammonium ferrous sulfate–sucrose–xylenol orange in sulfuric acid (FSX) is proposed as a dosimetric system for the processes of gamma irradiation in a range between 0.3 and 6 Gy. This system is based on the indirect oxidation of ferrous ion by an organic compound (sucrose) to ferric ion and on the formation of a color complex of Fe3+ in an acidic medium with xylenol orange (a dye). After gamma radiation, an observable change occurs in the color of the system. Irradiation was executed at three different temperatures (13 °C, 22 °C, and 40 °C). A spectrometric readout method at 585 nm was employed to evaluate the system's dose response. In all of the cases analyzed, the responses had a linear behavior, and a slight effect of irradiation temperature was observed. Post-irradiation response was also evaluated and showed the stability of the solutions 24 h after the irradiation. The results obtained suggest that FSX might be used as a dosimeter for low doses of gamma irradiation because it provides a stable signal, good reproducibility, and an accessible technique for analysis. - Highlights: • The system ferrous-sucrose-xylenol is reproducibility with less than 5% error. • The dosimeter has low cost and easy readout using UV-vis spectrometry, and the response is stable for several days. • The system proposed is suitable for low irradiation doses

  4. Electrocatalytic and photocatalytic hydrogen production from acidic and neutral-pH aqueous solutions using iron phosphide nanoparticles.

    Callejas, Juan F; McEnaney, Joshua M; Read, Carlos G; Crompton, J Chance; Biacchi, Adam J; Popczun, Eric J; Gordon, Thomas R; Lewis, Nathan S; Schaak, Raymond E

    2014-11-25

    Nanostructured transition-metal phosphides have recently emerged as Earth-abundant alternatives to platinum for catalyzing the hydrogen-evolution reaction (HER), which is central to several clean energy technologies because it produces molecular hydrogen through the electrochemical reduction of water. Iron-based catalysts are very attractive targets because iron is the most abundant and least expensive transition metal. We report herein that iron phosphide (FeP), synthesized as nanoparticles having a uniform, hollow morphology, exhibits among the highest HER activities reported to date in both acidic and neutral-pH aqueous solutions. As an electrocatalyst operating at a current density of -10 mA cm(-2), FeP nanoparticles deposited at a mass loading of ∼1 mg cm(-2) on Ti substrates exhibited overpotentials of -50 mV in 0.50 M H2SO4 and -102 mV in 1.0 M phosphate buffered saline. The FeP nanoparticles supported sustained hydrogen production with essentially quantitative faradaic yields for extended time periods under galvanostatic control. Under UV illumination in both acidic and neutral-pH solutions, FeP nanoparticles deposited on TiO2 produced H2 at rates and amounts that begin to approach those of Pt/TiO2. FeP therefore is a highly Earth-abundant material for efficiently facilitating the HER both electrocatalytically and photocatalytically. PMID:25250976

  5. Recovery of salicylic acid from aqueous solution by solvent extraction and supported liquid membrane using TOMAC as carrier

    Conventional sewage treatment plants do not fully degrade residues of pharmaceuticals, so that they are introduced into the aquatic environment. On this basis, the demand for the development of efficient systems for removing these compounds from water has assumed a great research interest. Membrane operations are increasingly employed in many industrial sectors as important alternative technologies to the classical processes of separation. Among membrane-based separation processes, the use of supported liquid membranes (SLMs) has received growing attention during recent years. In our work we had tried to recover a pharmaceutical product, salicylic acid (S.A), from an aqueous solution by solvent extraction and supported liquid membrane using an ionic liquid: the tri octylmethylammonium chloride (TOMAC) as carrier. Ionic liquids has been revealed as interesting clean alternatives to classical solvents and their use as a liquid phase results in the stabilization of the SLMs duo to their negligible vapour pressure, the possibility of minimising their solubility in the surrounding phases by adequate selection of the cation and anion, and the greater capillary force associated with their high viscosity. For this reason we had studied the influence of different parameters which could affect the efficiency of the transport: pH of the feed phase, the nature of the strippant, the concentration of the strippant, the nature of the support and the initial concentration of the salicylic acid in the feed phase. We had noticed that the pH of the feed solution had no effect of the percentage extraction and after 24 hours we can extract completely our solute. TOMAC seemed to be a good extractant but we found difficult to strip salicylic acid from the TOMAC phase and this could be related to the formation of water micro environments in the ionic liquid membrane.

  6. Measurement and COrrelation on Viscosity and Apparent Molar Volume of Ternary System for L—ascorbic Acid in Aqueous D—Glucose and Sucrose Solutions

    赵长伟; 马沛生

    2003-01-01

    Visosities and densities at ,several temperatures from 293.15 K to 313.15K are reported for L-ascorbic acid in aqueous glucose and sucrose solutions at different concentrations.The parameters of density,Viscosity coefficient B and partial molar volume are calculated by regression.The experimental results show that densities and viscositis decrease as temperature increases at the same solute and solvent (glucose and sucrose aueous solution)concentrations,and increase with concentration of glucose and sucrose at the same solute concentration and temperature,B increases with concentration of glucose and sucrose and temaperature,L-ascorbic acid is sturcture-breaker or structure-making for the glucose and sucrose aqueous solutions ,Furthermore,the solute-solvent interactions in ternary systems of water-glucose-electrolyte and water-sucrose-electrolyte are discussed.

  7. Gamma irradiation of isocitric and citric acid in aqueous solution: Relevance in prebiotic chemistry

    Negrón-Mendoza, A., E-mail: negron@nucleares.unam.mx; Ramos-Bernal, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, UNAM. Cd. Universitaria, A. P. 70-543, 04510 México, D. F. México (Mexico)

    2015-07-23

    The radiation chemistry of hydroxy acids like citric and isocitric acids is rather scarce, even though they are crucial compounds in biological systems and for food irradiation. The aim of this work is to study the radiolytic behavior of these acids focused on the interconversion induced by radiation of citric and isocitric acid into other members of the Krebs cycle. The results showed that among the products formed were succinic, malonic, malic and other acids related to metabolic pathways, and these results are correlated with its possible role in chemical evolution processes.

  8. Gamma irradiation of isocitric and citric acid in aqueous solution: Relevance in prebiotic chemistry

    The radiation chemistry of hydroxy acids like citric and isocitric acids is rather scarce, even though they are crucial compounds in biological systems and for food irradiation. The aim of this work is to study the radiolytic behavior of these acids focused on the interconversion induced by radiation of citric and isocitric acid into other members of the Krebs cycle. The results showed that among the products formed were succinic, malonic, malic and other acids related to metabolic pathways, and these results are correlated with its possible role in chemical evolution processes

  9. Study of solvent effects on complex formation of tungsten (VI) with ethylenediaminediacetic acid in aqueous solutions of propanol

    Spectrophotometric and potentiometric techniques were used to determine the formation constants of the species formed in the systems H+ + W(VI) + ethylenediaminediacetic acid and H+ + ethylenediaminediacetic acid in aqueous solutions of propanol at 25 deg C and constant ionic strength 0.1 mol dm-3 of sodium perchlorate. The composition of the complex was determined by the continuous variations method. It was shown that tungsten (VI) forms a mononuclear 1 : 1 complex with ethylenediaminediacetic acid of the type WO3L3- at -log[H+] = 5.8. The formation constants in various media were analyzed in terms of Kamlet and Taft's parameters. Solvents have been parameterized by scales of dipolarity/polarizability π*, hydrogen-bond donor strength α, and hydrogen-bond acceptor strength β. Linear dependence on these solvent parameters are used to correlate and predict a wide variety of solvent effects, as well as to provide an analysis of them. Linear relationships are observed when logKS is plotted versus π*. Finally, the results are discussed in terms of the effect of solvent on complexation

  10. Preparation and characterization of irradiated carboxymethyl sago starch-acid hydrogel and its application as metal scavenger in aqueous solution.

    Basri, Sri Norleha; Zainuddin, Norhazlin; Hashim, Kamaruddin; Yusof, Nor Azah

    2016-03-15

    Carboxymethyl sago starch-acid hydrogel was prepared via irradiation technique to remove divalent metal ions (Pb, Cu and Cd) from their aqueous solution. The hydrogel was characterized by using Fourier Transform Infrared (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The removal of these metal ions was analyzed by using inductively coupled plasma-optic emission spectra (ICP-OES) to study the amount of metal uptake by the hydrogel. Parameters of study include effect of pH, amount of sample, contact time, initial concentration of metal solution and reaction temperature. FTIR spectroscopy shows the CMSS hydrogel absorption peaks at 1741cm(-1), 1605cm(-1) and 1430cm(-1) which indicates the substitution of carboxymethyl group of modified sago starch. The degradation temperature of CMSS hydrogel is higher compared to CMSS due to the crosslinking by electron beam radiation and formed a porous hydrogel. From the data obtained, about 93.5%, 88.4% and 85.5% of Pb, Cu and Cd ions has been respectively removed from their solution under optimum condition. PMID:26794735

  11. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    Gonzalez Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James A.; Curtiss, Larry A.

    2012-02-14

    The conversion of furfuryl alcohol (FAL) to levulinic acid over Amberlyst TM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5- trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  12. Removal of boron from aqueous solution using magnetic carbon nanotube improved with tartaric acid

    Zohdi, Nima; Mahdavi, Fariba; Abdullah, Luqman Chuah; Choong, Thomas SY

    2014-01-01

    Boron removal capacity of multi-walled carbon nanotubes (MWCNTs) modified with tartaric acid was investigated in this study. Modification of MWCNTs with tartaric acid was confirmed by Boehm surface chemistry method and fourier transform infra-red (FT-IR) spectroscopy. Experiments were performed to determine the adsorption isotherm and adsorption thermodynamic parameters of boron adsorption on tartaric acid modified MWCNTs (TA-MWCNTs). The effect of variables including initial pH, dosage of ad...

  13. Equilibria in aqueous solution between Be(II) and nitrilotriacetic, methyl-C-nitrilotriacetic, nitrilodiaceticpropionic, nitriloaceticdipropionic and nitrilotripropionic acids

    The complex species formed in aqueous solution between Be(II) and nitrilotriacetic acid (NTA),methyl-C-nitrilotriacetic acid (MNTA), nitrilodiaceticpropionic acid (NDAP), nitriloaceticdipropionic acid (NADP) and nitrilotripropionic acid (NTP) were studied at 250C and ionic strength 0.5 M in NaClO4. The application of the calculus program LETAGROP to the experimental potentiometric data, taking into account hydrolysis of the ion Be(II), indicates that, upon varying the ligand-metal relationships, the following complex species are formed (H3C ligands): NTA(BeC:-, log K = 6.84); MNTA (:BeC: -, log K = 7.39: BeHC, log K = 1.79); NDAP (:BeC:-, log K 8.10: BeHC, log K = 1.96; [BeH2C]+, log K = 1.37; NADP ([BeC]-, log K = 9.25; BeHC, log K 2.37); and NTP ([BeC]-, log K = 9.23). The values of the stability constants (:BeC: -, log K) indicate the following order of coordinating capacity: NTA < MNTA < NDAP < NADP approx. NTP. This order is attributed to the increase in propionic groups. It has been confirmed that six-membered ring chelates are the most stable for Be(II), in a similar manner to other elements of the first short period, such as boron and carbon, while Cu(II), Ni(II), lanthanides and other heavier elements prefer five-membered ring chelates. (author)

  14. Equilibria in aqueous solution between Be(II) and nitrilotriacetic, methyl-C-nitrilotriacetic, nitrilodiaceticpropionic, nitriloaceticdipropionic and nitrilotripropionic acids

    Mederos, A.; Dominguez, S.; Medina, A.M.; Brito, F.; Chinea, E.; Bazdikian, K.

    1987-01-01

    The complex species formed in aqueous solution between Be(II) and nitrilotriacetic acid (NTA),methyl-C-nitrilotriacetic acid (MNTA), nitrilodiaceticpropionic acid (NDAP), nitriloaceticdipropionic acid (NADP) and nitrilotripropionic acid (NTP) were studied at 25/sup 0/C and ionic strength 0.5 M in NaClO/sub 4/. The application of the calculus program LETAGROP to the experimental potentiometric data, taking into account hydrolysis of the ion Be(II), indicates that, upon varying the ligand-metal relationships, the following complex species are formed (H/sub 3/C ligands): NTA(BeC:/sup -/, log K = 6.84); MNTA (:BeC: /sup -/, log K = 7.39: BeHC, log K = 1.79); NDAP (:BeC:/sup -/, log K 8.10: BeHC, log K = 1.96; (BeH/sub 2/C)/sup +/, log K = 1.37; NADP ((BeC)/sup -/, log K = 9.25; BeHC, log K 2.37); and NTP ((BeC)/sup -/, log K = 9.23). The values of the stability constants (:BeC: /sup -/, log K) indicate the following order of coordinating capacity: NTA < MNTA < NDAP < NADP approx. NTP. This order is attributed to the increase in propionic groups. It has been confirmed that six-membered ring chelates are the most stable for Be(II), in a similar manner to other elements of the first short period, such as boron and carbon, while Cu(II), Ni(II), lanthanides and other heavier elements prefer five-membered ring chelates.

  15. Reaction of the hydrated electron with amino acids, peptides, and proteins in aqueous solutions

    Faraggi, M. (Ohio State Univ., Columbus); Bettelheim, A.

    1977-08-01

    The reaction rate constants of e/sup -//sub aq/ with glycyl-histidine (Gly-His) and ..beta..-alanylhistidine (Carnosine, ..beta..-Ala-His) were determined and compared to those of ..beta..-alanylalanine (..beta..-Ala-Ala), alanyl-alanine ((Ala)/sub 2/), and histidine (His). The rate constants were found to be pH dependent. Below the pK value of the imidazole ring, the rate constants of the histidyl peptides are similar to that of His. This indicates that the main site of the e/sup -//sub aq/ reaction is the protonated ring. Above this pK value the pH dependent rate constants were less in the His amino acids than in the His peptides. This difference was attributed to the presence of the carbonyl grup in the peptides. This group, which is known to react quite rapidly with e/sup -//sub aq/, exhibits its presence when the imidazole ring loses its reactivity after deprotonation. The difference in reactivity toward e/sup -//sub aq/ between the ..cap alpha.. and ..beta.. His peptides is explained by the relative position of the protonated amino groups with respect to the carbonyl groups. A similar difference was also found in (Ala)/sub 2/ and ..beta..-Ala-Ala. The transient absorption spectra resulting from the reaction of e/sup -//sub aq/ with the His peptides were recorded and examined with respect to peptide concentration and pH dependence. Here again, at pH values below the pK of the imidazole, the transient absorption spectra are similar to that of histidine. In alkaline solutions, however, proper experimental conditions could be attained only for Gly-His. In His and ..beta..-Ala-His the interference of the OH radical reaction was observed. In Gly/sup -/His it was found that the band characterizing the imidazole transient (lambda/sub max/ = 360 nm) disappears with a simultaneous appearance of a band at lambda/sub max/ similarly ordered 410 nm.

  16. Removal of dicyclohexyl acetic acid from aqueous solution using ultrasound, ozone and their combination.

    Kumar, Pardeep; Headley, John; Peru, Kerry; Bailey, Jon; Dalai, Ajay

    2014-01-01

    Naphthenic acids are a complex mixture of organic components, some of which include saturated alkyl-substituted cycloaliphatic carboxylic acids and acyclic aliphatic acids. They are naturally found in hydrocarbon deposits like oil sand, petroleum, bitumen and crude oil. In this study, the oxidation of a relatively high molecular weight naphthenic acid (Dicyclohexyl acetic acid) was investigated using ozonation, ultrasonication and hydrogen peroxide alone and their combinations. Effects on oxidation of dicyclohexyl acetic acid (DAA) were measured for different concentrations of ozone ranging between 0.7 to 3.3 mg L(-1) and pH in the range 6 to 10. Ultrasonication and hydrogen peroxide alone were not effective to oxidize dicyclohexyl acetic acid, but combining ultrasonication with H2O2 had a significant effect on oxidation of dicyclohexyl acetic acid with maximum removal reaching to 84 ± 2.2% with 81 ± 2.1% reduction in chemical oxygen demand (COD). Synergistic effects were observed for combining ultrasonication with ozonation and resulted in 100% DAA removal with 98 ± 0.8% reduction in COD within 15 min at 3.3 mg L(-1) ozone concentration and 130 Watts ultrasonication power. The reaction conditions obtained for the maximum oxidation of DAA and COD removal were used for the degradation of naphthenic acids mixture extracted from oil sands process water (OSPW). The percentage oxidation of NAs mixture extracted from OSPW was 89.3 ± 1.1% in ozonation and combined ozonation and ultrasonication, but COD removal observed was 65 ± 1.2% and 78 ± 1.4% for ozonation and combined ozonation and ultrasonication treatments, respectively. PMID:25137539

  17. Silver colloidal effects on excited-state structure and intramolecular charge transfer of p-N, N-dimethylaminobenzoic acid in aqueous cyclodextrin solutions

    The silver colloidal effects on the excited-state structure and intramolecular charge transfer (ICT) of p-N,N-dimethylaminobenzoic acid (DMABA) in aqueous cyclodextrin (CD) solutions have been investigated by UV-VIS absorption, steady-state and time-resolved fluorescence, and transient Raman spectroscopy. As the concentration of silver colloids increases, the ratio of the ICT emission to the normal emission (Ia/Ib) of DMABA in the aqueous α-CD solutions are greatly decreased while the Ia/Ib values in the aqueous β-CD solutions are significantly enhanced. It is also noteworthy that the ICT emission maxima are red-shifted by 15-40 nm upon addition of silver colloids, implying that DMABA encapsulated in α-CD or β-CD cavity is exposed to more polar environment. The transient resonance Raman spectra of DMABA in silver colloidal solutions demonstrate that DMABA in the excited-state is desorbed from silver colloidal surfaces as demonstrated by the disappearance of vs(CO2-)(1380 cm-1) with appearance of v (C-OH)(1280 cm-1) band, respectively. Thus, in the aqueous β-CD solutions the carboxylic acid group of DMABA in the excited-state can be readily hydrogen bonded with the secondary hydroxyl group of β-CD while in aqueous and α-CD solutions the carboxylic acid group of DMABA has the hydrogen-bonding interaction with water. Consequently, in the aqueous β-CD solutions the enhancement of the Ia/Ib value arises from the intermolecular hydrogen-bonding interaction between DMABA and the secondary hydroxyl group of β-CD as well as the lower polarity of the rim of the β-CD cavity compared to bulk water. This is also supported by the increase of the association constant for DMABA/β-CD complex in the presence of silver colloids

  18. Extraction of Phthalic Acid from Aqueous Solution by Using Ionic Liquids: A Quantum Chemical Approach

    Pilli, S; Mohanty, Kaustubha; Banerjee, Tamal

    2014-01-01

    Phthalic acid is an industrial chemical and it comes under the domain of endocrine disrupting chemicals (EDCs). Green solvents such as ionic liquids (ILs) posses good extractable capabilities for EDCs. COSMO–RS methodology is a widely accepted method for the design or selection of ionic liquids. COSMO–RS is a quantum chemical based method based on COSMO polarization charge densities. In this work the model has been used to screen the potential ionic liquids for the removal of phthalic acid fr...

  19. Corrosion Inhibition of Aluminum in Acidic Solution by Aqueous Extract of Ajowan Plant as Green Inhibitor

    Aisha M. Al-Turkustani; Mona M. Al-Solmi

    2011-01-01

    The inhibition of aluminum corrosion in 0.5 M hydrochloric acid by Ajowan plant was studied using chemical (weight loss) and ectrochemical (impedance and polarization) methods. The Ajowan plant extract was found to be good inhibitor for aluminum corrosion in 0.5 M hydrochloric acid in the studied concentration range of inhibitor. Corrosion inhibition could be explained by considering an interaction between metal surface and the inhibitor molecules. Electrochemical measurements showed that Ajo...

  20. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  1. Temperature-Induced Aggregate Transitions in Mixtures of Cationic Ammonium Gemini Surfactant with Anionic Glutamic Acid Surfactant in Aqueous Solution.

    Ji, Xiuling; Tian, Maozhang; Wang, Yilin

    2016-02-01

    The aggregation behaviors of the mixtures of cationic gemini surfactant 1,4-bis(dodecyl-N,N-dimethylammonium bromide)-2,3-butanediol (C12C4(OH)2C12Br2) and anionic amino acid surfactant N-dodecanoylglutamic acid (C12Glu) in aqueous solution of pH = 10.0 have been studied. The mixture forms spherical micelles, vesicles, and wormlike micelles at 25 °C by changing mixing ratios and/or total surfactant concentration. Then these aggregates undergo a series of transitions upon increasing the temperature. Smaller spherical micelles transfer into larger vesicles, vesicles transfer into solid spherical aggregates and then into larger irregular aggregates, and entangled wormlike micelles transfer into branched wormlike micelles. Moreover, the larger irregular aggregates and branched micelles finally lead to precipitation and clouding phenomenon, respectively. All these transitions are thermally reversible, and the transition temperatures can be tuned by varying the mixing ratios and/or total concentration. These temperature-dependent aggregate transitions can be elucidated on the basis of the temperature-induced variations in the dehydration, electrostatic interaction, and hydrogen bonds of the headgroup area and in the hydrophobic interaction between the hydrocarbon chains. The results suggest that the surfactants carrying multiple binding sites will greatly improve the regulation ability and temperature sensitivity. PMID:26750978

  2. Preparation of novel magnetic chitosan nanoparticle and its application for removal of humic acid from aqueous solution

    Dong, Changlong, E-mail: jutimake@126.com [College of Environment, Hohai University, Nanjing 210098 (China); Chen, Wei; Liu, Cheng [Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098 (China); College of Environment, Hohai University, Nanjing 210098 (China)

    2014-02-15

    A novel magnetic chitosan nanoparticle (MCNP) with a BET surface area of 108.32 m{sup 2}/g was prepared using a time and energy saving method at mild condition. MCNP exhibits an excellent ability to adsorb humic acid (HA) from aqueous solution in a wide range of initial HA concentration. The rate of HA adsorption is rapid with more than 50% of HA can be adsorbed in initial 10 min, and the equilibrium state can be reached in 60 min. The adsorption kinetics data fits well to the pseudo-second-order model, and the adsorption process is transport-limited at low initial HA concentration and attachment-limited at high initial HA concentration. The Langmuir isotherm model fits the equilibrium data better than the Freundlich isotherm model, indicating that the adsorption of HA onto MCNP is a monolayer adsorption. Based on the Langmuir isotherm model, the maximum adsorption capacity of HA is 32.6 mg/g at 25 °C. Thermodynamic parameters presents that the adsorption of HA onto MCNP is spontaneous and endothermic in nature. The mechanism for the adsorption of HA onto MCNP involves electrostatic interaction and hydrogen bonding. Regeneration studies indicate that MCNP can be recyclable for a long term. All the experimental results suggest that MCNP is a promising adsorbent for treating water that is contaminated with humic acid.

  3. Degradation of Acid Orange 7 in aqueous solution by dioxygen activation in a pyrite/H₂O/O₂ system.

    Hao, Feifei; Guo, Weilin; Lin, Xin; Leng, Yanqiu; Wang, Anqi; Yue, Xinxin; Yan, Liangguo

    2014-05-01

    Increasing attention has been paid to pyrite due to its ability to generate hydroxyl radicals in air-saturated solutions. In this study, the mineral pyrite was studied as a catalyst to activate molecular oxygen to degrade Acid Orange 7 (AO7) in aqueous solution. A complete set of control experiments were conducted to optimize the reaction conditions, including the dosage of pyrite, the AO7 concentration, as well as the initial pH value. The role of reactive oxygen species (ROS) generated by pyrite in the process was elucidated by free radical quenching reactions. Furthermore, the concentrations of Fe(II) and total Fe formed were also measured. The mechanism for the production of ROS in the pyrite/H2O/O2 system was that H2O2 was formed by hydrogen ion and superoxide anion (O2(·-)) which was produced by the reaction of pyrite activating O2 and then reacted with Fe(II) dissolved from pyrite to produce (·)OH through Fenton reaction. The findings suggest that pyrite/H2O/O2 system is potentially practical in pollution treatment. Moreover, the results provide a new insight into the understanding of the mechanism for degradation of organic pollutants by pyrite. PMID:24510532

  4. Evaluation of Performance Catalytic Ozonation Process with Activated Carbon in the Removal of Humic Acids from Aqueous Solutions

    Gh. Asgari

    2011-01-01

    Full Text Available Introduction & Objective: In recent years, the use of alternative disinfectants and the control of natural organic matters are two approaches that are typically applied in water treatment utilities to reduce the formation of chlorinated disinfection by-products. Catalytic ozonation is a new technology used to promote the efficiency of ozonation. The goal of this study was to survey the feasibility application of activated carbon as a catalyst in ozonation process for removal of humic acids from aqueous solution. Materials & Methods: This experimental study has been done in laboratory of water and wastewater chemistry, Tarbiat Modarres University. The solid structure and chemical composition of activated carbon were analyzed by X-ray fluorescence (XRF. Ozonation and catalytic ozonation experiments were performed in a semi-batch reactor and the mass of ozone produced was measured by iodometric titration methods. Concentration changes of humic acid in samples with a concentration of 15 mg/l were determined by using spectrophotometer at an absorbance wavelength of 254 nm. To evaluate the performance of catalytic ozonation in humic acid removal, total organic carbon and trihalomethane formation potential were evaluated and the results were analyzed by Excel software. Results: Catalytic ozone results showed that using activated carbon as a catalyst increased humic acid decomposition up to 11 times and removal efficiency increased with increasing pH (4-12 and catalyst dosage (0.25-1.5 g/250cc. The experimental results showed that catalytic ozonation was most effective in less time (10 min with considerable efficiency (95% compared to the sole ozonation process (SOP. Conclusion: The results indicated that the catalytic ozonation process, compared to SOP, was less affected by radical scavenger, and total organic carbon, and trihalomethane formation potential removal achieved were 30% and 83%, respectively. (Sci J Hamadan Univ Med Sci 2011;17(4:25-33

  5. Environmental degradation of fiber reinforced plastic materials in neutral, acidic, and basic aqueous solutions

    Barkatt, A.; Bank, L.C.; Gentry, T.R.; Prian, L.; Shan, R.; Sang, J.C.; Pollard, R. [Catholic Univ. of America, Washington, DC (United States)

    1995-10-01

    Kinetic measurements on the dissolution of oxide components of fiber-reinforced plastics show that the dissolution in aqueous media is a complex phenomenon and that changes in the nature of the controlling mechanism during the time of exposure can lead to an increase in rate. As a result, thorough understanding of the mechanisms is imperative in developing models for prediction of the long-term degradation of these composites. Thermogravimetric analysis has been found to be a promising indicator of the structural changes associated with the degradation process. Results obtained on specimens of concrete reinforcement rods made out of a E-glass/vinylester FRP material show that weight loss between 150 and 300 C is sensitively dependent on the nature of the corroding medium, the duration of exposure, and, in particular, the temperature at which the material was previously exposed. This weight loss correlates with the extent of moisture absorption. The enhanced weight loss between 150 and 300 C observed in the cases of samples previously exposed to attack by an aqueous media apparently reflects the increase in number of monomeric species as a result of the exposure. Increase in the effective area out of which monomers may volatilize as a result of the formation or propagation of microcracks, pores, or fiber-matrix interfacial gaps in the course of exposure may also contribute to enhanced weight loss. The conclusion that the extent of weight loss is indicative of the extent of degradation is supported by chemical, infrared and NMR analysis of the evolved vapors and by determination of their molecular weight. Both the weight loss at elevated temperatures and the tensile strength show a strong dependence on temperature and a parabolic time dependence. Raman spectroscopy is a highly sensitive and convenient technique of following structural changes. The techniques explored here can provide important data for modeling of the environmental degradation process.

  6. Complexes of Al(3), Ga(3) and In(3) ions with sodium salt of morin-5'-sulfonic acid (NaMSA) in aqueous solutions

    The complexation equilibria of Al(3), Ga(3) and In(3) with NaMSA in acid aqueous solutions have been investigated. The composition and the equilibrium constants of the reaction as well as the concentration stability constants of the complexes have been determined. The probable mechanisms of the complexation reaction have been suggested. (author)

  7. Batch coparative study of sorptive study of sorptive properties of two varieties of almond peels for bezanyl red (acid dye) from synthetic aqueous solutions

    BENAISSA, H.; Boumediene, M

    2012-01-01

    The ability of two varieties (hard and soft) of almond peels, as inexpensive sorbents for the removal of bezanyl red (acid dye) from synthetic aqueous solutions has been studied. After their characterization by different techniques, (elemental analysis, biochemical analysis, IR spectroscopy, thermogravimetric analysis, scanning electron microscopy and mercury porosimetry), the dye sorption kinetics and equilibrium isotherm have been investigated in batch conditions. The in...

  8. Co(II) complexes of amino acids and peptides in aqueous solution studied by 170 NMR

    Structural, dynamic and kinetic 170 NMR investigations of the complexation of metal ions with amino acids and peptides were performed in Glicine, proling cyclo(Ala '1'70-Ala), cyclo-(Gly170-Pro) and cyclo(Pro170-Gly). The 170 carboxyl and carbonylsignals of paramagnetic complexes with amino acids were observed and allowed for the determinatio, in several cases, of the stoichiometry of the ocmplexes formed and the kinetic and thermodynamic parameters characterizing ligand exchange. It was found that the paramagnetic ions bind to the oxygen of the peptide carboxyl group. (H.W.). 25 refs.; 10 figs.; 3 tabs

  9. Removal of corper(II) Ions from aqueous solution by a lactic acid bacterium

    M. Yilmaz(Department of Physics, Gazi University, Ankara); T. Tay; M. Kivanc; H. Turk

    2010-01-01

    Enterococcus faecium, a lactic acid bacterium (LAB), was evaluated for its ability to remove copper(II) ions from water. The effects of the pH, contact time, initial concentration of copper(II) ions, and temperature on the biosorption rate and capacity were studied. The initial concentrations of copper(II) ions used to determine the maximum amount of biosorbed copper(II) ions onto lyophilised lactic acid bacterium varied from 25 mg L-1 to 500 mg L-1. Maximum biosorption capacities were attain...

  10. Dissolution of metal oxides in an acid-saturated ionic liquid solution and investigation of the back-extraction behaviour to the aqueous phase

    Wellens, Sil; Vander Hoogerstraete, Tom; Möller, Claudia; Thijs, Ben; Luyten, Jan; Binnemans, Koen

    2014-01-01

    The dissolution of metal oxides in an acid-saturated ionic liquid, followed by selective stripping of the dissolved metal ions to an aqueous phase is proposed as a new ionometallurgical approach for the processing of metals in ionic liquids. The hydrophobic ionic liquid trihexyl(tetradecyl)phosphonium chloride (Cyphos IL 101) saturated with a concentrated aqueous hydrochloric acid solution was used to dissolve CaO, NiO, MnO, CoO, CuO, ZnO and Fe2O3. It was found that nickel(II) and calcium...

  11. Selective Chemical Conversion of Sugars in Aqueous Solutions without Alkali to Lactic Acid Over a Zn-Sn-Beta Lewis Acid-Base Catalyst

    Dong, Wenjie; Shen, Zheng; Peng, Boyu; Gu, Minyan; Zhou, Xuefei; Xiang, Bo; Zhang, Yalei

    2016-05-01

    Lactic acid is an important platform molecule in the synthesis of a wide range of chemicals. However, in aqueous solutions without alkali, its efficient preparation via the direct catalysis of sugars is hindered by a side dehydration reaction to 5-hydroxymethylfurfural due to Brønsted acid, which originates from organic acids. Herein, we report that a previously unappreciated combination of common two metal mixed catalyst (Zn-Sn-Beta) prepared via solid-state ion exchange synergistically promoted this reaction. In water without a base, a conversion exceeding 99% for sucrose with a lactic acid yield of 54% was achieved within 2 hours at 190 °C under ambient air pressure. Studies of the acid and base properties of the Zn-Sn-Beta zeolite suggest that the introduction of Zn into the Sn-Beta zeolite sequentially enhanced both the Lewis acid and base sites, and the base sites inhibited a series of side reactions related to fructose dehydration to 5-hydroxymethylfurfural and its subsequent decomposition.

  12. Binding constants of Eu and Th with humic acids in aqueous solutions

    The binding constants for Eu and Th fulvate complexes were measured by the solvent extraction technique. For comparison, the binding constant for the Eu humate complex was also investigated. The measurements were carried out radiometrically using 152,154Eu and 234Th. The results indicate that, in case of fulvic acid, one parameter, β1, was required to fit the binding as a function of carboxylate concentration. With humic acid, Eu3+ formed 1 : 1 and 1 : 2 complexes, and two parameters, β1 and β2, were required. In both cases, the strength of binding increased with pKa and degree of ionization of the ligands and with the valence of the metal ions

  13. Removal of lead ions from acid aqueous solutions using zeolite bearing tuff

    Golomeova, Mirjana; Zendelska, Afrodita; Golomeov, Blagoj; Krstev, Boris; Jakupi, Shaban

    2016-01-01

    Water pollution come from a number of different sources, and pollutants are divided up into various classes, such as organic pollutants, inorganic fertilizers, metals and radioactive isotopes. Organic pollutants are susceptible to biological degradation, unlike heavy metals which are not degrade into harmless products. Heavy metals are a common pollutant found in various industrial effluents. They are often encountered in mining operations and acid mine drainage. Because heavy metals are high...

  14. Salinity, dissolved organic carbon and water hardness affect peracetic acid (PAA) degradation in aqueous solutions

    Liu, Dibo; Steinberg, Christian E.W.; Straus, David L.; Pedersen, Lars-Flemming; Meinelt, Thomas

    2014-01-01

    Peracetic acid (PAA) is used in aquaculture under different conditions for disinfection and therapeutic purposes. There is limited information about its environmental fate, particularly its persistence in aquatic systems with different physical–chemical conditions. This study investigated PAA...... hardness had only minor impact. For commercial aquaculture, actual PAA concentration in the raw product needs to be measured; the fate of PAA in individual facilities must be carefully monitored and feasible application strategies need to be investigated to achieve maximal disinfection and therapeutic...

  15. Molybdenum (VI) binded to humic and nitrohumic acid models in aqueous solutions salicylic, 3-nitrosalicylic, 5-nitrosalicylic and 3,5 dinitrosalicylic acids, Part 2

    In this work electrochemical and Ultraviolet-Visible studies were performed in solutions of salicylic acid models of humic and nitrohumic acids, a laboratory artifact, and molybdenum in order to determine the affinity of these models towards the metal ion. Molybdenum, which plays a very important role in the soil chemistry, and together with humic substances, impart fertility to soil and water and is a key element in the activity of nitrogenase. The obtained results showed that at least one complexed species is present at the pH range of 6.3 to 8.0, even for the less basic chosen models, the nitrosalicylic acids. Previous study showed that phthalic and nitrophthalic, also humic and nitrohumic acids model compounds, presented complexed species with molybdenum only till pH 6.5. The calculated formation constants showed that the substitution of the nitro group in the orto position was less favoured than in the para substitution, probably due to a steric hindrance in the former, which was clearly seen in the double substituted salicylic nitro derivative. The cyclic voltammetry as well as the Ultraviolet-Visible obtained spectra were able to show that the chemistry of molybdenum in aqueous solutions as the pH is increased is very complex, and the molybdate stops acting as an anion only after pH around 4, when it finally becomes a cation MoO22+ (M). (author)

  16. Shikimic acid ozonolysis kinetics of the transition from liquid aqueous solution to highly viscous glass.

    Steimer, Sarah S; Berkemeier, Thomas; Gilgen, Anina; Krieger, Ulrich K; Peter, Thomas; Shiraiwa, Manabu; Ammann, Markus

    2015-12-14

    Ageing of particulate organic matter affects the composition and properties of atmospheric aerosol particles. Driven by temperature and humidity, the organic fraction can vary its physical state between liquid and amorphous solid, or rarely even crystalline. These transitions can influence the reaction kinetics due to limitations of mass transport in such (semi-) solid states, which in turn may influence the chemical ageing of particles containing such compounds. We have used coated wall flow tube experiments to investigate the reaction kinetics of the ozonolysis of shikimic acid, which serves as a proxy for oxygenated, water-soluble organic matter and can form a glass at room temperature. Particular attention was paid to how the presence of water influences the reaction, since it acts a plasticiser and thereby induces changes in the physical state. We analysed the results by means of a traditional resistor model, which assumes steady-state conditions. The ozonolysis rate of shikimic acid is strongly increased in the presence of water, a fact we attribute to the increased transport of O3 and shikimic acid through the condensed phase at lower viscosities. The analysis using the resistor model suggests that the system undergoes both surface and bulk reaction. The second-order rate coefficient of the bulk reaction is 3.7 (+1.5/-3.2) × 10(3) L mol(-1) s(-1). At low humidity and long timescales, the resistor model fails to describe the measurements appropriately. The persistent O3 uptake at very low humidity suggests contribution of a self-reaction of O3 on the surface. PMID:26536455

  17. Complete mineralization of perfluorooctanoic acid (PFOA) by γ-irradiation in aqueous solution

    Ze Zhang; Jie-Jie Chen; Xian-Jin Lyu; Hao Yin; Guo-Ping Sheng

    2014-01-01

    Decomposition of perfluorooctanoic acid (C7F15COOH, PFOA) has been gaining increasing interests because it is a ubiquitous environmental contaminant and resistant to the most conventional treatment processes. In this work, the rapid and complete mineralization of PFOA and simultaneous defluorination were achieved by γ-ray irradiation with a 60Co source. The degradation rate of PFOA by γ-ray irradiation would be high, and a pseudo-first-order kinetic rate constant of 0.67 h−1 could be achieved...

  18. Fluorescence of lanthanide(3) complexes with aminopolyacetic acids in aqueous solutions

    The fluorescence of Eu(3), Gd(3), Tb(3) and Dy(3) ions complexed with aminopolyacetic acids was investigated. The influence of temperature and the dimensions of the ligand molecules and of their electric charge on the intensity of the emission bands is discussed as well as the ratio of the hypersensitive (forbidden) band to the allowed band intensity. On the basis of the fluorescence measurements a simple theoretical model is discussed and certain generalizations concerning the fluorescence of the lanthanides group are derived. (Author)

  19. Adsorption of Acid Orange 8 Dye from Aqueous Solution Onto Unmodified and Modified Zeolites

    Tharcila Colachite Rodrigues Bertolini

    2015-12-01

    Full Text Available The adsorption of the acid dye Acid Orange 8 (AO8 onto unmodified and modified zeolites from coal fly ash and bottom ash was evaluated. The coal fly ash and bottom ash used in the synthesis of the zeolites by alkaline hydrothermal treatment were collected in the Thermoelectric Complex Jorge Lacerda, located in the Santa Catarina State, Brazil, the largest coal burning thermoelectric complex of Latin America. The modified zeolites were modified using the surfactant hexadecyltrimethylammonium bromide. The zeolitic materials were characterized predominantly as hydroxysodalite and NaX. The kinetics studies indicated that the adsorption followed the pseudo-second order kinetics. Linear and non-linear regression methods were used to determine the best fit of equilibrium data. The Freundlich model was better adjusted to the experimental data for all systems studied. The parameters of adsorption isotherms were used to predict the design of the equipment for performing adsorption discontinuous single stage. DOI: http://dx.doi.org/10.17807/orbital.v7i4.764 

  20. Removal of corper(II Ions from aqueous solution by a lactic acid bacterium

    M. Yilmaz

    2010-06-01

    Full Text Available Enterococcus faecium, a lactic acid bacterium (LAB, was evaluated for its ability to remove copper(II ions from water. The effects of the pH, contact time, initial concentration of copper(II ions, and temperature on the biosorption rate and capacity were studied. The initial concentrations of copper(II ions used to determine the maximum amount of biosorbed copper(II ions onto lyophilised lactic acid bacterium varied from 25 mg L-1 to 500 mg L-1. Maximum biosorption capacities were attained at pH 5.0 and 6.0. Temperature variation between 20°C and 40°C did not affect the biosorption capacity of the bacterial biomass. The highest copper(II ion removal capacity was 106.4 mg per g dry biomass. The correlation regression coefficients show that the biosorption process can be well defined by the Freundlich equation. The change in biosorption capacity with time was found to fit a pseudo-second-order equation.

  1. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA. PMID:26469934

  2. Spectrophotometric determination of Rare Earth Elements in aqueous nitric acid solutions for process control.

    Rodionova, Oxana Ye; Tikhomirova, Tatyana I; Pomerantsev, Alexey L

    2015-04-15

    Noninvasive analytical control is of special interest for the complicated and hazardous production processes. On-line monitoring provides a unique opportunity to determine critical concentrations rapidly and without serious risks to operating personnel and the environment. Models for quantitative determination of concentrations of Rare Earth Elements in complex mixtures in nitric acid serve for these purposes. Here, the feasibility of simultaneous determination of cerium, praseodymium, and neodymium using the whole UV-vis spectroscopic range, together with chemometric data processing, is studied. The predictability of two chemometric techniques, partial least squares regression and correlation constrained multivariate curve resolution-alternating least squares are compared. Models' performances are analyzed in out-of-control cases. PMID:25818140

  3. Kinetics of oxidation and dissolution of uranium dioxide in aqueous acid solutions

    The oxidation and dissolution of UO2 has been studied using electrochemical methods with an UO2 rotating disc electrode in acidic (pH 3) and non-complexing (trifluoromethanesulfonate: 0.1 mol L−1 NaCF3SO3) media. The effect of the experimental parameters such as scan rate (v) and rotation rate (ω) on the electrochemical signal has been studied. The rotation rate of the electrode does not influence the resulting signal, which indicates that only a charge transfer is involved in the UO2 oxidation kinetic. However, scan rate variations show different reactions involved in the UO2 oxidation. Linear sweep voltammetry and cyclic voltammetry coupled to X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma mass spectrometry (ICP-MS) measurements suggest two successive electrochemical reactions with an exchange of one electron for each of them and the formation of one intermediate species of U(V).

  4. Thermodynamic studies on the interaction between some amino acids with some rare earth metal ions in aqueous solutions

    Mohamed, AbdAllah A.; Bakr, Moustafa F.; Abd El-Fattah, Khaled A

    2003-11-06

    The interactions between the amino acids (glycine and L-threonine) with some rare earth metal ions (Pr{sup 3+}, Nd{sup 3+}, Eu{sup 3+}, Gd{sup 3+}, Dy{sup 3+}, Ho{sup 3+} and Yb{sup 3+}) were studied at a wide range from ionic strengths (0.07-0.32 M KNO{sub 3}) and temperatures (25-45 deg. C) in aqueous solutions by using Bjerrum potentiometric method. The stoichiometric and thermodynamic stability constants were calculated as well as the standard thermodynamic parameters ({delta}G deg., {delta}H deg. and {delta}S deg. ) for all possible reactions that occur. The degree of formation (n-bar) for all studied systems was determined and discussed. The thermodynamic parameters differences ({delta}{delta}G deg., {delta}{delta}H deg. and {delta}{delta}S deg. ) were calculated and discussed to determine the factors which control these complexation processes from the thermodynamic point of view.

  5. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation

    Li, Xianghui; Guo, Weilin; Liu, Zhonghua; Wang, Ruiqin; Liu, Hua

    2016-04-01

    Fe-based metal-organic frameworks (MOFs) including MIL-101(Fe), MIL-100(Fe), MIL-53(Fe), and MIL-88B(Fe) prepared via a facile solvothermal process were introduced as both adsorbents and catalysts to generate powerful radicals from persulfate for acid orange 7 (AO7) removal in aqueous solution. Various catalysts were described and characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray photoelectron spectra. Because of the high specific surface area of the materials, we studied the adsorption isotherms of the four MILs by the fitting of Langmuir adsorption isotherm. Meanwhile, the catalytic activities in persulfate oxidation system were investigated. The results showed that the sequence of the materials ability in the combination of adsorption and degradation was MIL-101(Fe) > MIL-100(Fe) > MIL-53(Fe) > MIL-88B(Fe), which had a close connection with the activity of metal ion in active site of the catalysts and their different cages in size. Moreover, the reactive species in MILs/persulfate system were identified as sulfate radicals and hydroxyl radicals. The reaction mechanism for persulfate activation over MILs was also studied.

  6. Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon

    Peng, Xiaoming; Hu, Xijun; Fu, Dafang; Lam, Frank L. Y.

    2014-03-01

    A novel ordered mesoporous carbon CMK-3 and synthetic CMK-3 containing nitrogen functional groups by ammonia-treated were applied for acid black 1(AB1) dye adsorption. The ammonia-treated(chemical vapor deposition method) before and after CMK-3 were characterized by using a Micrometitics ASAP 2020 surface area analyzer (ASAP 2020), Fourier transform infrared spectrophotometer (FT-IR), X-ray Photoelectron Spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM) and equilibrium studies. This result indicates that the prepared CMK-3 and modified CMK-3 were almost uniform, as rope-like domains and their uniform mesopore with diameter centered at 3.2 nm and 3.7 nm. The FIIR analysis depicted that the presence of a variety of new basic functional groups on the modified CMK-3 surface. Several effect variables of pH, dye concentration and temperature were studied. The pseudo second-order model showed the fitter well to agree with the kinetic data. The experimental data were analyzed by the Langmuir and Freundlich models, with the latter found to closely the isotherm model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The results show that CMK-3 using ammonia gas modified by thermal treatment system is an effective method to improvement capacity as it shows the highest adsorption capacity of AB1, as compared to the unmodified CMK-3 and the bamboo-based carbon, respectively.

  7. On interaction of rubidium, cesium and iron(3) sulfates in aqueous solutions of sulfuric acid

    Solubility of the salts in the systems Me2SO4-Fe2(SO4)3-H2SO4-H2O (Me is Rb, Cs) has been studied at 25 deg C and concentration regions of existing ferric rubidium and ferric cesium alum have been determined. Solubility has been studied under isothermal conditions. The solid phases of the systems have been identified by the 'residue' method, by X-ray method and thermogravimetrically. It has been shown that the systems are characterized by the formation of the compounds 2Me2SO4xFe2(SO4)3x12H2O and of anomalous solid solutions. Physicochemical properties of the synthesized alum have been studied; their derivatograms and roentgenograms have been obtained. The alum are colourless greyish crystals crystallizing in cubic syngony and having the following values of the density and of the parameter of elementary cell at 25 deg C: for RbFe(SO4)2x12H2O - 1.942 g/cm3 and 12.328 A; for CsFe(SO4)2x12H2O - 2.044 g/cm3 and 12.434 A

  8. Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon

    Peng, Xiaoming, E-mail: pengxiaoming70@126.com [School of Civil Engineering, Southeast University, Nanjing 210096 (China); Hu, Xijun [Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,China (China); Fu, Dafang, E-mail: fdf@seu.edu.cn [School of Civil Engineering, Southeast University, Nanjing 210096 (China); Lam, Frank L.Y. [Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong,China (China)

    2014-03-01

    Highlights: • Ordered mesoporous carbon was prepared using template. • Ordered mesoporous carbon was introduced of N-containing group by Chemical vapor deposition method. • Modified CMK-3 have better adsorption capacity and efficiency than virgin CMK-3 to removal AB1 dye. - Abstract: A novel ordered mesoporous carbon CMK-3 and synthetic CMK-3 containing nitrogen functional groups by ammonia-treated were applied for acid black 1(AB1) dye adsorption. The ammonia-treated(chemical vapor deposition method) before and after CMK-3 were characterized by using a Micrometitics ASAP 2020 surface area analyzer (ASAP 2020), Fourier transform infrared spectrophotometer (FT–IR), X-ray Photoelectron Spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscope (SEM) and equilibrium studies. This result indicates that the prepared CMK-3 and modified CMK-3 were almost uniform, as rope-like domains and their uniform mesopore with diameter centered at 3.2 nm and 3.7 nm. The FIIR analysis depicted that the presence of a variety of new basic functional groups on the modified CMK-3 surface. Several effect variables of pH, dye concentration and temperature were studied. The pseudo second-order model showed the fitter well to agree with the kinetic data. The experimental data were analyzed by the Langmuir and Freundlich models, with the latter found to closely the isotherm model. The adsorption kinetics was found to follow the pseudo-second-order kinetic model. The results show that CMK-3 using ammonia gas modified by thermal treatment system is an effective method to improvement capacity as it shows the highest adsorption capacity of AB1, as compared to the unmodified CMK-3 and the bamboo-based carbon, respectively.

  9. Degradation of H-acid in aqueous solution by microwave assisted wet air oxidation using Ni-loaded GAC as catalyst

    ZHANG Yao-bin; QUAN Xie; ZHAO Hui-min; CHEN Shuo; YANG Feng-lin

    2005-01-01

    A novel process, microwave assisted catalytic wet air oxidation(MW-CWO), was applied for the degradation of H-acid( 1-amino8-naphthol-3, 6-disulfonic acid) in aqueous solution. Ni-loaded granular activated carbon (GAG), prepared by immersion-calcination method, was used as catalyst. The results showed that the MW-CWO process was very effective for the degradation of H-acid in aqueous solution under atmospheric pressure with 87.4% TOC (total organic carbon) reduction in 20 min. Ni on GAC existed in the form of NiO as specified by XRD. Loss of Ni was significant in the initial stage, and then remained almost constant after 20 min reaction. BET surface area results showed that the surface property of GAC after MW-CWO process was superior to that of blank GAC.

  10. Selective removal of Cr(VI) from aqueous solution by polypyrrole/2,5-diaminobenzene sulfonic acid composite.

    Kera, Nazia H; Bhaumik, Madhumita; Ballav, Niladri; Pillay, Kriveshini; Ray, Suprakas Sinha; Maity, Arjun

    2016-08-15

    A polypyrrole/2,5-diaminobenzenesulfonic acid (PPy/DABSA) composite, synthesised by the in situ oxidative polymerization of pyrrole in the presence of DABSA, was studied as an adsorbent for the removal of Cr(VI) from aqueous solution. The structure and morphology of the composite were investigated by ATR-FTIR, FE-SEM, EDX, TGA, XRD and XPS studies. The adsorption of Cr(VI) by PPy/DABSA composite was highly pH dependent and optimum removal was achieved at pH 2. Adsorption of Cr(VI) was confirmed by EDX and XPS studies. The isotherm data fitted the linear Langmuir model well, with a maximum adsorption capacity of 303mg/g at 25°C. Thermodynamic parameters (ΔG°, ΔH° and ΔS°) were calculated using isotherm data and confirmed that the adsorption process was spontaneous and endothermic. Adsorption kinetics was best described by the pseudo-second-order model. The activation energy of the adsorption process suggested that Cr(VI) was chemisorbed by PPy/DABSA composite. PPy/DABSA composite could be used for three consecutive adsorption-desorption cycles without loss of its original adsorption capacity. Highly selective removal of Cr(VI) was observed even when co-existing ions such as Cu(2+), Zn(2+), Ni(2+), Cl(-), SO4(2)(-) and NO3(-) were present in the solution. In summary, the potential of PPy/DABSA composite for remediating industrial wastewater contaminated by Cr(VI) has been demonstrated. PMID:27209399

  11. Cd(II) removal from aqueous solution by adsorption on α-ketoglutaric acid-modified magnetic chitosan

    The present study developed an α-ketoglutaric acid-modified magnetic chitosan (α-KA-Fe3O4/CS) for highly efficient adsorption of Cd(II) from aqueous solution. Several techniques, including transmission electron microscopy (TEM), Fourier transform infrared (FTIR) and vibrating sample magnetometer (VSM), were applied to characterize the adsorbent. Batch tests were conducted to investigate the Cd(II) adsorption performance of α-KA-Fe3O4/CS. The maximum adsorption efficiency of Cd(II) appeared at pH 6.0 with the value of 93%. The adsorption amount was large and even reached 201.2 mg/g with the initial Cd(II) concentration of 1000 mg/L. The adsorption equilibrium was reached within 30 min and commendably described by pseudo-second-order model, and Langmuir model fitted the adsorption isotherm better. Furthermore, thermodynamic parameters, free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) of Cd(II) adsorption were also calculated and showed that the overall adsorption process was endothermic and spontaneous in nature because of positive ΔH values and negative ΔG values, respectively. Moreover, the Cd(II)-loaded α-KA-Fe3O4/CS could be regenerated by 0.02 mol/L NaOH solution, and the cadmium removal capacity could still be kept around 89% in the sixth cycle. All the results indicated that α-KA-Fe3O4/CS was a promising adsorbent in environment pollution cleanup.

  12. Pulse radiolysis studies on 8-hydroxyquinoline 5-sulphonic acid in aqueous solutions

    Reactions of e-aq, H atoms, OH/O- radicals and specific one-electron reductants/oxidants such as CO2-, (CH3)2COH, CH3CHOH, CH2OH, N3., Br2- and SO4- radicals with 8-hydroxyquinoline 5-sulphonic acid (8-HQSA) were studied at different pHs using pulse radiolysis technique. e-aq was found to react with 8-HQSA with rate constants of 1.1x1010 and 4.3x109 dm3 mol-1 s-1 at pH 7 and 13, respectively. CO2-·radicals transfer an electron to 8-HQSA (k=1x107 dm3 mol-1 s-1) at pH 7, whereas (CH3)2COH radicals undergo addition reaction. (CH3)2CO- radicals could transfer an electron to 8-HQSA at pH 13 only. The reduction potential of the semi-reduced 8-HQSA at pH 13 is thus estimated to be congruent with -2.0 V versus NHE. At pH 2.5, H atoms were found to react with 8-HQSA giving a mixture of semi-reduced species and an H-adduct. The yield of the semi-reduced species was estimated to be ∼30% by measuring the yield of MV+ radical cation formed by electron transfer. At pH 2.5, CO2-, (CH3)2COH, CH3CHOH, and CH2OH radicals react with 8-HQSA by addition giving species which were reducing in nature. OH radicals react with 8-HQSA by addition to the benzene ring giving hydroxycyclohexadienyl type of radical. The OH-adducts were found to react with oxygen to give peroxyl-type radicals. N3 and Br2- radicals were able to oxidize 8-HQSA at pH 13. Only SO4- radicals could bring about one electron oxidation of 8-HQSA at pH 7 and 3.2. (author)

  13. Study of aqueous solutions of sodium linoleate

    Van der Linde, G.J. (Phosphate Development Corporation, Phalaborwa); Van Berge, P.C. (Rand Afrikaans Univ., Johannesburg (South Africa))

    1983-12-01

    During the development of a technique for measuring fatty acid absorption on finely divided minerals using a radiochemical method, absorption isotherms were obtained which displayed maxima. It was found that these results were due to the presence of stable micelles in the solutions. This has been established by measuring the surface tension, surface film pressure, and specific conductance of dilute aqueous solutions of sodium linoleate.

  14. SEPARATION OF SCANDIUM FROM AQUEOUS SOLUTIONS

    Peppard, D.F.; Nachtman, E.S.

    1958-02-25

    This patent relates to a process for the separation of scandium from yttrium, thorium, and trivalent rare earths and with their separation from each other. It has been found that scandium and yttrium can be separated from trivalent rare earths in acidic solution, for example, a solution 6 M in HCl, by contacting with tributyl phosphate, whereupon the scandum is preferentially extracted into the organic phase, leaving the yttrium and trivalent rare earths in the aqueous phase.

  15. Adsorption of sulphuric acid on smectite from acidic aqueous solutions Adsorção de ácido sulfúrico em esmectita de soluções aquosas ácidas

    E. L. Tavani; C. Volzone

    1999-01-01

    The adsorption of sulphuric acid on smectite from acidic aqueous solutions was studied. The amounts of cations dissolved in each equilibrium solution were determined by chemical analysis. Simultaneously, the original smectite and the smectite after each test were characterized by infrared, X-ray diffraction and swelling index. The results obtained permitted us to determine that the substitutions of the exchange cations and the chemical attack occurred at very different acid concentrations and...

  16. Extraction of scandium from various media with triisoamyl phosphate. Communication 1. extraction of Sc and impurity metals from aqueous nitric acid solutions

    The main features of extraction of Sc from aqueous nitric acid solutions with triisoamyl phosphate (TIAP) were studied. It was shown that Sc passes into the organic phase in the form of Sc(NO3)3·3TIAP. The extraction isotherms of Sc from its aqueous HNO3 solutions and from those containing salting-out agents (LiNO3, NH4NO3) with TIAP in dodecane were obtained. The distribution factor of Sc was studied in relation to the concentrations of TIAP, salting-out agent, and HNO3. The extraction of Sc and impurity metals (Zr, Th, REE) with TIAP was studied using a tracer technique at widely varied HNO3 concentration in the aqueous phase. The separation factors of Sc from impurity metals were determined

  17. 2010 Water & Aqueous Solutions

    Dor Ben-Amotz

    2010-08-13

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  18. Sorption of estrogens and pesticides from aqueous solution by a humic acid and raw and processed plant materials

    Loffredo, Elisabetta; Taskin, Eren

    2016-04-01

    The huge number of organic contaminants released in water as a consequence of anthropogenic activities have detrimental effects to environmental systems and human health. Industrial products and byproducts, pharmaceuticals, pesticides, detergents and so on impose increasing costs for wastewater decontamination. Adsorption techniques can be successfully used for the treatment of wastewaters to remove contaminants of various nature. Humic acids (HA) have well-known adsorptive capacities towards hydrophilic and, especially, hydrophobic compounds. In the recent years, alternative low-cost adsorbents, especially originated from agricultural wastes and food industries residues, such as wood chips, almond and coconut shells, peanut and rice husks, are under investigation. Biochar is also considered a promising and relatively low-cost adsorbent, even if there are still knowledge gaps about the influence of feedstock type, pyrolysis conditions, physical and chemical properties on its potential and safe use. In the present work, a HA from a green compost was used along with three other materials of plant origin to remove two estrogens, 4-tert-octylphenol and 17-β-estradiol, and two pesticides, carbaryl and fenuron, from an aqueous solution. The four molecules were spiked in water each at a concentration of 1 mg L-1. The materials were: a biochar obtained from 100% red spruce pellet pyrolysed at 550 °C, spent coffee grounds and spent tea leaves. Kinetics curves and adsorption isotherms studies were performed using a batch equilibrium method. Adsorption data obtained for each compound were fitted to a linear equation and non-linear Freundlich and Langmuir models. Kinetics data of the four compounds onto all adsorbents showed an initial very rapid adsorption which was completed in few hours when it reached equilibrium. The two estrogens were adsorbed onto all materials more quickly than the two less hydrophobic pesticides. Significant differences among adsorbents and the

  19. Formic acid enhanced effective degradation of methyl orange dye in aqueous solutions under UV-Vis irradiation.

    Wang, Jingjing; Bai, Renbi

    2016-09-15

    Developing efficient technologies to treat recalcitrant organic dye wastewater has long been of great research and practical interest. In this study, a small molecule, formic acid (FA), was applied as a process enhancer for the degradation of methyl orange (MO) dye as a model recalcitrant organic pollutant in aqueous solutions under the condition of UV-Vis light irradiation and air aeration at the ambient temperature of 25 °C. It was found that the decolouration of the dye solutions can be rapidly achieved, reducing the time, for example, from around 17.6 h without FA to mostly about less than 2 h with the presence of FA. The mineralization rate of MO dye reached as high as 81.8% in 1.5 h in the case of initial MO dye concentration at 25 mg L(-1), which is in contrast to nearly no mineralization of the MO dye for a similar system without the FA added. The study revealed that the generation of the H2O2 species in the system was enhanced and the produced OH radicals effectively contributed to the degradation of the MO dye. Process parameters such as the initial concentration of MO dye, FA dosage and solution pH were all found to have some effect on the degradation efficiency under the same condition of UV-Vis light irradiation and air aeration. The MO dye degradation performance was found to follow a first-order reaction rate to the MO dye concentration in most cases and there existed a positive correlation between the reaction rate constant and the initial FA concentration. Compared to the traditional H2O2/UV-Vis oxidation system, the use of FA as a process-enhancing agent can have the advantages of low cost, easy availability, and safe to use. The study hence demonstrates a promising approach to use a readily available small molecule of FA to enhance the degradation of recalcitrant organic pollutants, such as MO dye, especially for their pre-treatment. PMID:27258621

  20. Removal of Mefenamic acid from aqueous solutions by oxidative process: Optimization through experimental design and HPLC/UV analysis.

    Colombo, Renata; Ferreira, Tanare C R; Ferreira, Renato A; Lanza, Marcos R V

    2016-02-01

    Mefenamic acid (MEF) is a non-steroidal anti-inflammatory drug indicated for relief of mild to moderate pain, and for the treatment of primary dysmenorrhea. The presence of MEF in raw and sewage waters has been detected worldwide at concentrations exceeding the predicted no-effect concentration. In this study, using experimental designs, different oxidative processes (H2O2, H2O2/UV, fenton and Photo-fenton) were simultaneously evaluated for MEF degradation efficiency. The influence and interaction effects of the most important variables in the oxidative process (concentration and addition mode of hydrogen peroxide, concentration and type of catalyst, pH, reaction period and presence/absence of light) were investigated. The parameters were determined based on the maximum efficiency to save time and minimize the consumption of reagents. According to the results, the photo-Fenton process is the best procedure to remove the drug from water. A reaction mixture containing 1.005 mmol L(-1) of ferrioxalate and 17.5 mmol L(-1) of hydrogen peroxide, added at the initial reaction period, pH of 6.1 and 60 min of degradation indicated the most efficient degradation, promoting 95% of MEF removal. The development and validation of a rapid and efficient qualitative and quantitative HPLC/UV methodology for detecting this pollutant in aqueous solution is also reported. The method can be applied in water quality control that is generated and/or treated in municipal or industrial wastewater treatment plants. PMID:26686073

  1. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. PMID:26891355

  2. Dodecylsulfate and dodecybenzenesulfonate intercalated hydrotalcites as adsorbent materials for the removal of BBR acid dye from aqueous solutions

    Mohamed Bouraada; Mohand Said Ouali; Louis Charles de Ménorval

    2016-01-01

    Two modified layered double hydroxides (HT) have been synthesized by intercalating both sodium dodecylsulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS) surfactants into Mg-Al layered double hydroxides using the calcination–rehydratation method. The prepared materials HT-SDS and HT-SDBS were characterized by X-ray diffraction, FTIR, thermal analysis and BET. The obtained materials were used for Brilliant Blue R (BBR) dye removal from aqueous solution. Batch studies were carried out to ad...

  3. Radium removal from aqueous sulphate solutions

    A process for removing radium from an aqueous sulphate solution also containing magnesium is claimed. The pH of the solution is less than 10. A soluble barium salt is added to the solution to precipitate radium as barium radium sulphate. The pH of the solution is then raised to at least 11 to precipitate an insoluble magnesium compound which collects the barium radium sulphate precipitate. The precipitates are separated from the solution. If the sulphate solution contains dissolved magnesium and other impurities at a pH not greater than 7, then the first step in the process involves raising the pH of the solution to a value not greater than 10 to precipitate some of the magnesium and a substantial proportion of the other impurities and separating the precipitate from the solution. The radium removal is a step in the treatment of liquids resulting from the sulphuric acid leaching of uranium ores

  4. Radiation Crosslinking of a Mixture of Poly vinyle Alcohol Methacrylic acid and 2-Hydroxy ethyle Methacrylate to Removal of Pollutant Dyes from its Aqueous Solution

    Hydrogels based on poly vinyle alcohol methacrylic acid/ 2-hydroxy ethyle methacrylate [P(PVA-MAAc/HEMA)] were synthesized by gamma-radiation. The prepared hydrogels were characterized by infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). The results of the adsorption studies reveals the higher adsorption capacity of P(PVA-MAAc/ HEMA), hydrogel for the removal of methylene blue and xylenol orange dyes from aqueous solution.

  5. Kinetics and Equilibrium Studies on Adsorption of Acid Red 18 (Azo-Dye) Using Multiwall Carbon Nanotubes (MWCNTs) from Aqueous Solution

    Shirmardi, Mohammad; Mesdaghinia, Alireza; MAHVI, Amir Hossein; Nasseri, Simin; Nabizadeh, Ramin

    2012-01-01

    Azo dyes are one of the synthetic dyes that are used in many textile industries. Adsorption is one of the most effective techniques for removal of dye-contaminated wastewater. In this work, efficiency of multiwalled carbon nanotubes (MWCNTs) as an adsorbent for removal of Acid Red 18 (azo-dye) from aqueous solution was determined. The parameters affecting the adsorption process such as contact time, pH, adsorbent dosage, and initial dye concentration were studied. Experimental results have sh...

  6. Carbon dioxide solubility in aqueous potassium salt solutions of L-proline and DL-α-aminobutyric acid at high pressures

    Highlights: • CO2 solubility in aqueous potassium salt solutions of L-proline and DL-α-aminobutyric acid were studied. • The CO2 partial pressures studied was up to 1000 kPa. • The temperatures studied were (313.2, 333.2, 353.2) K. • The measured data were represented satisfactorily by using the applied correlations. • The CO2 absorption capacity of the studied systems was high and comparable with monoethanolamine. - Abstract: In the present work, the solubility of CO2 in aqueous solutions of potassium prolinate (KPr) and potassium α-aminobutyrate (KAABA) was measured at temperatures (313.2, 333.2, and 353.2) K and CO2 partial pressures up to 1000 kPa for amino acid salt concentrations: KPr, w = (7.5, 14.5, and 27.4 wt%) and KAABA, w = (6.9, 13.4, and 25.6 wt%). It was found that the CO2 absorption capacities of the studied amino acid salt systems were considerably high and comparable with that of industrially important alkanolamines including monoethanolamine. The CO2 loadings in aqueous potassium α-aminobutyrate at high pressures were also found to be generally higher than the loadings in aqueous potassium prolinate. A modified Kent–Eisenberg model was applied to correlate the CO2 solubility in the amino acid salt solution as function of CO2 partial pressure, temperature, and concentration. The model gave good representation of the (vapour + liquid) equilibrium data obtained for the amino acid salt systems studied, and provided accurate predictions of the solubility

  7. Kinetics and Mechanism of the Reaction between Chromium(III and 2,3-Dihydroxybenzoic Acid in Weak Acidic Aqueous Solutions

    Athinoula L. Petrou

    2010-01-01

    Full Text Available The reaction between chromium(III and 2,3-dihydroxybenzoic acid (2,3-DHBA takes place in at least three stages, involving various intermediates. The ligand (2,3-DHBA-to-chromium(III ratio in the final product of the reaction is 1 : 1. The first stage is suggested to be the reaction of [Cr(H2O5(OH]2+ with the ligand in weak acidic aqueous solutions that follows an Id mechanism. The second and third stages do not depend on the concentrations of chromium(III, and their activation parameters are ΔH≠=61.2±3.1 kJmol−1, ΔS≠=−91.1±11.0 JK−1mol−1, ΔH≠=124.5±8.7 kJmol−1, and ΔS≠=95.1±29.0 JK−1mol−1. These two stages are proposed to proceed via associative mechanisms. The positive value of ΔS≠ can be explained by the opening of a four-membered ring (positive entropy change and the breaking of a hydrogen bond (positive entropy change at the associative step of the replacement of the carboxyl group by the hydroxyl group at the chromium(III center (negative entropy change in associative mechanisms. The reactions are accompanied by proton release, as shown by the pH decrease.

  8. Oxidative photodegradation of herbicide fenuron in aqueous solution by natural iron oxide α-Fe2O3, influence of polycarboxylic acids.

    Kribéche, Mohamed El Amine; Mechakra, Hind; Sehili, Tahar; Brosillon, Stephan

    2016-01-01

    The photodegradation of the herbicide fenuron (1,1-dimethyl-3-phenylurea) by using a natural iron oxide (NIO), α-Fe2O3, in aqueous solution at acidic pH has been undertaken. The NIO was characterized by the Raman spectroscopy method. The degradation pathways and the formation of degradation products were studied. A high-pressure mercury lamp and sunlight were employed as light source. Fenuron photodegradation using NIO with oxalic acid followed the pseudo-first-order kinetics, the optimal experimental conditions were [oxalic acid]0 = 10(-3) M and [NIO] = 0.1 g L(-1) at pH 3. A UVA/NIO/oxalic acid system led to a low fenuron half-life (60 min). The results were even better when solar light is used (30 min). The variables studied were the doses of iron oxide, of carboxylic acids, the solution pH and the effect of sunlight irradiation. The effects of four carboxylic acids, oxalic, citric, tartaric and malic acids, on the fenuron photodegradation with NIO have been investigated, oxalic acid was the most effective carboxylic acid used at pH 3. A similar trend was observed for the removal of total organic carbon (TOC), 75% of TOC was removed. The analytical study showed many aromatic intermediates, short-chain carboxylic acids and inorganic ion. PMID:26102217

  9. Reaction of Chromium(III with 3,4-Dihydroxybenzoic Acid: Kinetics and Mechanism in Weak Acidic Aqueous Solutions

    Athinoula L. Petrou

    2009-02-01

    Full Text Available The interactions between chromium(III and 3,4-dihydroxybenzoic acid (3,4-DHBA were studied resulting in the formation of oxygen-bonded complexes upon substitution of water molecules in the chromium(III coordination sphere. The experimental results show that the reaction takes place in at least three stages, involving various intermediates. The first stage was found to be linearly dependent on ligand concentration k1(obs_=k0+k1(obs[3,4-DHBA], and the corresponding activation parameters were calculated as follows: ΔH1(obs≠=51.2±11.5 kJ mol−1, ΔS1(obs≠=−97.3±28.9 J mol−1 K−1 (composite activation parameters . The second and third stages, which are kinetically indistinguishable, do not depend on the concentrations of ligand and chromium(III, accounting for isomerization and chelation processes, respectively. The corresponding activation parameters are ΔH2(obs≠=44.5±5.0 kJ mol−1, ΔS2(obs≠=−175.8±70.3 J mol−1 K−1. The observed stages are proposed to proceed via interchange dissociative (Id, first stage and associative (second and third stages mechanisms. The reactions are accompanied by proton release, as is shown by the pH decrease.

  10. Formation of cage-like particles by poly(amino acid)-based block copolymers in aqueous solution.

    Cudd, A; Bhogal, M; O'Mullane, J; Goddard, P.

    1991-01-01

    When dissolved in N,N-dimethylformamide and then dialyzed against phosphate-buffered saline, A-B-A block copolymers composed of poly [N5-(2-hydroxyethyl)-L-glutamine]-block-poly(gamma-benzyl-L-glutamate)- block-poly [N5-(2-hydroxyethyl)-L-glutamine] form particles. The particles are cage-like structures with average diameters of 300 nm (average polydispersity, 0.3-0.5). They are stable in aqueous solution at 4 degrees C for up to 3 weeks, at which time flocculation becomes apparent. Negative ...