WorldWideScience

Sample records for acidianus filamentous virus

  1. Structure of the acidianus filamentous virus 3 and comparative genomics of related archaeal lipothrixviruses

    Vestergaard, Gisle Alberg; Aramayo, Ricardo; Basta, Tamara;

    2008-01-01

    Four novel filamentous viruses with double-stranded DNA genomes, namely, Acidianus filamentous virus 3 (AFV3), AFV6, AFV7, and AFV8, have been characterized from the hyperthermophilic archaeal genus Acidianus, and they are assigned to the Betalipothrixvirus genus of the family Lipothrixviridae. The...... structures of the approximately 2-mum-long virions are similar, and one of them, AFV3, was studied in detail. It consists of a cylindrical envelope containing globular subunits arranged in a helical formation that is unique for any known double-stranded DNA virus. The envelope is 3.1 nm thick and encases an...... high level of conservation in both gene content and gene order over large regions, with this similarity extending partly to the earlier described betalipothrixvirus Sulfolobus islandicus filamentous virus. A few predicted gene products of each virus, in addition to the structural proteins, could be...

  2. Chaperone Role for Proteins p618 and p892 in the Extracellular Tail Development of Acidianus Two-Tailed Virus

    Scheele, Urte; Erdmann, Susanne; Ungewickell, Ernst J;

    2011-01-01

    The crenarchaeal Acidianus two-tailed virus (ATV) undergoes a remarkable morphological development, extracellularly and independently of host cells, by growing long tails at each end of a spindle-shaped virus particle. Initial work suggested that an intermediate filament-like protein, p800, is...

  3. Genome of the Acidianus bottle-shaped virus and insights into the replication and packaging mechanisms

    Peng, Xu; Basta, Tamara; Häring, Monika;

    2007-01-01

    The Acidianus bottle-shaped virus, ABV, infects strains of the hyperthermophilic archaeal genus Acidianus and is morphologically distinct from all other known viruses. Its genome consists of linear double-stranded DNA, containing 23,814 bp with a G+C content of 35%, and it exhibits a 590-bp...... viruses. The results confirm the unique nature of the ABV virus, and support its assignment to the newly proposed viral family the Ampullaviridae. Exceptionally, one region at the end of the linear genome of ABV is similar in both gene content and organization to corresponding regions in the genomes of...... inverted terminal repeat. Of the 57 predicted ORFs, only three produced significant matches in public sequence databases with genes encoding a glycosyltransferase, a thymidylate kinase and a protein-primed DNA polymerase. Moreover, only one homologous gene is shared with other sequenced crenarchaeal...

  4. Genomic analysis of Acidianus hospitalis W1 a host for studying crenarchaeal virus and plasmid life cycles

    You, X. Y.; Liu, Chao; Wang, S. Y.;

    2011-01-01

    The Acidianus hospitalis W1 genome consists of a minimally sized chromosome of about 2.13 Mb and a conjugative plasmid pAH1 and it is a host for the model filamentous lipothrixvirus AFV1. The chromosome carries three putative replication origins in conserved genomic regions and two large regions...... of local chromosomal regions and to minimise the impact of environmental stress. Complex and partially defective CRISPR/Cas/Cmr immune systems are present and interspersed with five vapBC gene pairs. Remnants of integrated viral genomes and plasmids are located at five intron-less tRNA genes and several...

  5. Filamentous influenza viruses

    Dadonaite, Bernadeta; Vijyakrishnan, Swetha; Fodor, Ervin; Bhella, David; Hutchinson, Edward C.

    2016-01-01

    Clinical isolates of influenza virus produce pleomorphic virus particles, including extremely long filamentous virions. In contrast, strains of influenza that have adapted to laboratory growth typically produce only spherical virions. As a result, the filamentous phenotype has been overlooked in most influenza virus research. Recent advances in imaging and improved animal models have highlighted the distinct structure and functional relevance of filamentous virions. In this review we summaris...

  6. Crystal structure of ATVORF273, a new fold for a thermo- and acido-stable protein from the Acidianus two-tailed virus

    Felisberto-Rodrigues, Catarina; Blangy, Stéphanie; Goulet, Adeline; Vestergaard, Gisle Alberg; Cambillau, Christian; Garrett, Roger Antony; Ortiz-Lombardía, Miguel

    2012-01-01

    Acidianus two-tailed virus (ATV) infects crenarchaea of the genus Acidianus living in terrestrial thermal springs at extremely high temperatures and low pH. ATV is a member of the Bicaudaviridae virus family and undergoes extra-cellular development of two tails, a process that is unique in the...... tetramer, computed from small-angle X-ray scattering (SAXS) data. The crystal structure has properties typical of hyperthermostable proteins, including a relatively high number of salt bridges. However, the protein also exhibits flexible loops and surface pockets. Remarkably, ATV[Formula: see text...

  7. The Apis mellifera filamentous virus genome

    A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double strand DNA molecule of approximately 498’500 nucleotides with a GC content of 50.8%. It encompasses 251 non overlapping open reading frames (ORFs), e...

  8. The Apis mellifera Filamentous Virus Genome

    Laurent Gauthier

    2015-07-01

    Full Text Available A complete reference genome of the Apis mellifera Filamentous virus (AmFV was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs, equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74 and BRO (Baculovirus Repeated Open Reading Frame. The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.

  9. Flexible filamentous virus structure from fiber diffraction

    Stubbs, Gerald; Kendall, Amy; McDonald, Michele; Bian, Wen; Bowles, Timothy; Baumgarten, Sarah; McCullough, Ian; Shi, Jian; Stewart, Phoebe; Bullitt, Esther; Gore, David; Ghabrial, Said (IIT); (BU-M); (Vanderbilt); (Kentucky)

    2008-10-24

    Fiber diffraction data have been obtained from Narcissus mosaic virus, a potexvirus from the family Flexiviridae, and soybean mosaic virus (SMV), a potyvirus from the family Potyviridae. Analysis of the data in conjunction with cryo-electron microscopy data allowed us to determine the symmetry of the viruses and to make reconstructions of SMV at 19 {angstrom} resolution and of another potexvirus, papaya mosaic virus, at 18 {angstrom} resolution. These data include the first well-ordered data ever obtained for the potyviruses and the best-ordered data from the potexviruses, and offer the promise of eventual high resolution structure determinations.

  10. Stiff Filamentous Viruses Probe the Mobility of Counterions During Nanopore Translocations

    McMullen, Angus; Tang, Jay; Stein, Derek

    2015-03-01

    We study the electrophoresis of two different filamentous viruses and double-stranded DNA through solid-state nanopores. The two viruses we examine, fd and M13, are both 880 nm in length, 6.6 nm in diameter, very stiff, and monodisperse. They only differ in their linear charge density, which is 30 % lower for M13 than for fd. Filamentous viruses are therefore ideal for testing transport models and for comparisons with DNA dynamics. We find that the mean translocation speed of fd virus is related to the nanopore diameter, D, and the virus diameter, d, as ln(D / d) - 1 , in agreement with the conventional electrokinetic model of translocations. In order to obtain quantitative agreement between that electrokinetic model and the measured translocation dynamics, however, one must conclude that the mobility of counterions within a few Angstroms of the polymer surface is strongly reduced from the bulk value. Similar reductions in counterion mobility near fd, M13, and dsDNA explain their dynamics over a wide range of ionic strengths. This work was supported by NSF Grant CBET0846505, NSF Grant PHYS1058375 and Oxford Nanopore Technologies.

  11. Filament-producing mutants of influenza A/Puerto Rico/8/1934 (H1N1 virus have higher neuraminidase activities than the spherical wild-type.

    Jill Seladi-Schulman

    Full Text Available Influenza virus exhibits two morphologies - spherical and filamentous. Strains that have been grown extensively in laboratory substrates are comprised predominantly of spherical virions while clinical or low passage isolates produce a mixture of spheres and filamentous virions of varying lengths. The filamentous morphology can be lost upon continued passage in embryonated chicken eggs, a common laboratory substrate for influenza viruses. The fact that the filamentous morphology is maintained in nature but lost in favor of a spherical morphology in ovo suggests that filaments confer a selective advantage within the infected host that is not necessary for growth in laboratory substrates. Indeed, we have recently shown that filament-producing variant viruses are selected upon passage of the spherical laboratory strain A/Puerto Rico/8/1934 (H1N1 [PR8] in guinea pigs. Toward determining the nature of the selective advantage conferred by filaments, we sought to identify functional differences between spherical and filamentous particles. We compared the wild-type PR8 virus to two previously characterized recombinant PR8 viruses in which single point mutations within M1 confer a filamentous morphology. Our results indicate that these filamentous PR8 mutants have higher neuraminidase activities than the spherical PR8 virus. Conversely, no differences were observed in HAU:PFU or HAU:RNA ratios, binding avidity, sensitivity to immune serum in hemagglutination inhibition assays, or virion stability at elevated temperatures. Based on these results, we propose that the pleomorphic nature of influenza virus particles is important for the optimization of neuraminidase functions in vivo.

  12. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses.

    Agirrezabala, Xabier; Méndez-López, Eduardo; Lasso, Gorka; Sánchez-Pina, M Amelia; Aranda, Miguel; Valle, Mikel

    2015-01-01

    Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies - a flexuous, helical rod or a loose ribonucleoprotein. The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses. PMID:26673077

  13. Viruses Infecting a Freshwater Filamentous Cyanobacterium (Nostoc sp.) Encode a Functional CRISPR Array and a Proteobacterial DNA Polymerase B

    Chénard, Caroline; Wirth, Jennifer F.

    2016-01-01

    ABSTRACT   Here we present the first genomic characterization of viruses infecting Nostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infect Nostoc sp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids of Cyanothece sp. strain PCC 7424, Nostoc sp. strain PCC 7120, and Anabaena variabilis ATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome of Nostoc sp. strain PCC 7524. The Nostoc cyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages. PMID:27302758

  14. Dynamics of Apis mellifera Filamentous Virus (AmFV Infections in Honey Bees and Relationships with Other Parasites

    Ulrike Hartmann

    2015-05-01

    Full Text Available Apis mellifera filamentous virus (AmFV is a large double stranded DNA virus of honey bees, but its relationship with other parasites and prevalence are poorly known. We analyzed individual honey bees from three colonies at different times post emergence in order to monitor the dynamics of the AmFV gut colonization under natural conditions. Prevalence and loads of microsporidia and trypanosomes were also recorded, as well as five common honey bee RNA viruses. The results show that a high proportion of bees get infected with AmFV during the first week post-emergence (75% and that AmFV DNA levels remained constant. A similar pattern was observed for microsporidia while trypanosomes seem to require more time to colonize the gut. No significant associations between these three infections were found, but significant positive correlations were observed between AmFV and RNA viruses. In parallel, the prevalence of AmFV in France and Sweden was assessed from pooled honey bee workers. The data indicate that AmFV is almost ubiquitous, and does not seem to follow seasonal patterns, although higher viral loads were significantly detected in spring. A high prevalence of AmFV was also found in winter bees, without obvious impact on overwintering of the colonies.

  15. A36-dependent actin filament nucleation promotes release of vaccinia virus.

    Jacquelyn Horsington

    2013-03-01

    Full Text Available Cell-to-cell transmission of vaccinia virus can be mediated by enveloped virions that remain attached to the outer surface of the cell or those released into the medium. During egress, the outer membrane of the double-enveloped virus fuses with the plasma membrane leaving extracellular virus attached to the cell surface via viral envelope proteins. Here we report that F-actin nucleation by the viral protein A36 promotes the disengagement of virus attachment and release of enveloped virus. Cells infected with the A36(YdF virus, which has mutations at two critical tyrosine residues abrogating localised actin nucleation, displayed a 10-fold reduction in virus release. We examined A36(YdF infected cells by transmission electron microscopy and observed that during release, virus appeared trapped in small invaginations at the plasma membrane. To further characterise the mechanism by which actin nucleation drives the dissociation of enveloped virus from the cell surface, we examined recombinant viruses by super-resolution microscopy. Fluorescently-tagged A36 was visualised at sub-viral resolution to image cell-virus attachment in mutant and parental backgrounds. We confirmed that A36(YdF extracellular virus remained closely associated to the plasma membrane in small membrane pits. Virus-induced actin nucleation reduced the extent of association, thereby promoting the untethering of virus from the cell surface. Virus release can be enhanced via a point mutation in the luminal region of B5 (P189S, another virus envelope protein. We found that the B5(P189S mutation led to reduced contact between extracellular virus and the host membrane during release, even in the absence of virus-induced actin nucleation. Our results posit that during release virus is tightly tethered to the host cell through interactions mediated by viral envelope proteins. Untethering of virus into the surrounding extracellular space requires these interactions be relieved, either

  16. A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses

    Rui eZhang

    2014-07-01

    Full Text Available Here we report a biological and molecular characterization of a novel positive-sense RNA virus isolated from a field isolate (NW10 of a filamentous phytopathogenic fungus, the white root rot fungus that is designated as Rosellinia necatrix fusarivirus 1 (RnFV1. A recently developed technology using zinc ions allowed us to transfer RnFV1 to two mycelially incompatible Rosellinia necatrix strains. A biological comparison of the virus-free and -recipient isogenic fungal strains suggested that RnFV1 infects latently and thus has no potential as a virocontrol agent. The virus has an undivided positive-sense RNA genome of 6286 nucleotides excluding a poly (A tail. The genome possesses two non-overlapping open reading frames (ORFs: a large ORF1 that encodes polypeptides with RNA replication functions and a smaller ORF2 that encodes polypeptides of unknown function. A lack of coat protein genes was suggested by the failure of virus particles from infected mycelia. No evidence was obtained by Northern analysis or classical 5'-RACE for the presence of subgenomic RNA for the downstream ORF. Sequence similarities were found in amino-acid sequence between RnFV1 putative proteins and counterparts of a previously reported mycovirus, Fusarium graminearum virus 1 (FgV1. Interestingly, several related sequences were detected by BLAST searches of independent transcriptome assembly databases one of which probably represents an entire virus genome. Phylogenetic analysis based on the conserved RNA-dependent RNA polymerase showed that RnFV1, FgV1, and these similar sequences are grouped in a cluster distinct from distantly related hypoviruses. It is proposed that a new taxonomic family termed Fusariviridae be created to include RnFV1and FgV1.

  17. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking.

    Bharadwaj, Abhilasha; Ting, Yen-Peng

    2013-02-01

    Bioleaching of spent hydrotreating catalyst by thermophillic archae Acidianus brierleyi was investigated. The spent catalyst (containing Al, Fe, Ni and Mo as major elements) was characterized, and the effect of pretreatment (decoking) on two-step and spent medium leaching was examined at 1% w/v pulp density. Decoking resulted in removal of carbonaceous deposits and volatile impurities, and affected the solubility of metal compounds through oxidization of the metal sulfides. Nearly 100% extraction was achieved using spent medium leaching for Fe, Ni and Mo, and 67% for Al. Bioleaching reduced nickel concentration in the leachate below the regulated levels for safe waste disposal. Chemical (i.e. abiotic) leaching using equimolar concentration of sulfuric acid produced by the bacteria during two-step process achieved a lower leaching efficiency (by up to 30%). Results indicated that A. brierleyi successfully leached heavy metals from spent catalyst. PMID:23334026

  18. Apertureless scanning near-field optical microscopy of sparsely labeled tobacco mosaic viruses and the intermediate filament desmin

    Alexander Harder

    2013-09-01

    Full Text Available Both fluorescence imaging and atomic force microscopy (AFM are highly versatile and extensively used in applications ranging from nanotechnology to life sciences. In fluorescence microscopy luminescent dyes serve as position markers. Moreover, they can be used as active reporters of their local vicinity. The dipolar coupling of the tip with the incident light and the fluorophore give rise to a local field and fluorescence enhancement. AFM topographic imaging allows for resolutions down to the atomic scale. It can be operated in vacuum, under ambient conditions and in liquids. This makes it ideal for the investigation of a wide range of different samples. Furthermore an illuminated AFM cantilever tip apex exposes strongly confined non-propagating electromagnetic fields that can serve as a coupling agent for single dye molecules. Thus, combining both techniques by means of apertureless scanning near-field optical microscopy (aSNOM enables concurrent high resolution topography and fluorescence imaging. Commonly, among the various (apertureless SNOM approaches metallic or metallized probes are used. Here, we report on our custom-built aSNOM setup, which uses commercially available monolithic silicon AFM cantilevers. The field enhancement confined to the tip apex facilitates an optical resolution down to 20 nm. Furthermore, the use of standard mass-produced AFM cantilevers spares elaborate probe production or modification processes. We investigated tobacco mosaic viruses and the intermediate filament protein desmin. Both are mixed complexes of building blocks, which are fluorescently labeled to a low degree. The simultaneous recording of topography and fluorescence data allows for the exact localization of distinct building blocks within the superordinate structures.

  19. Substrate pathways and mechanisms of inhibition in the sulfur oxygenase reductase of Acidianus ambivalens

    Andreas eVeith

    2011-03-01

    Full Text Available Background: The sulfur oxygenase reductase (SOR is the initial enzyme of the sulfur oxidation pathway in the thermoacidophilic Archaeon Acidianus ambivalens. The SOR catalyzes an oxygen-dependent sulfur disproportionation to H2S, sulfite and thiosulfate. The spherical, hollow, cytoplasmic enzyme is composed of 24 identical subunits with an active site pocket each comprising a mononuclear non-heme iron site and a cysteine persulfide. Substrate access and product exit occur via apolar chimney-like protrusions at the four-fold symmetry axes, via narrow polar pores at the three-fold symmetry axes and via narrow apolar pores within in each subunit. In order to investigate the function of the pores we performed site-directed mutagenesis and inhibitor studies. Results: Truncation of the chimney-like protrusions resulted in an up to seven-fold increase in specific enzyme activity compared to the wild type. Replacement of the salt bridge-forming Arg99 residue by Ala at the three-fold symmetry axes doubled the activity and introduced a bias towards reduced reaction products. Replacement of Met296 and Met297, which form the active site pore, lowered the specific activities by 25-55 % with the exception of an M296V mutant. X-ray crystallography of SOR wild type crystals soaked with inhibitors showed that Hg2+ and iodoacetamide bind to cysteines within the active site, whereas Zn2+ binds to a histidine in a side channel of the enzyme. The Zn2+ inhibition was partially alleviated by mutation of the His residue. Conclusions: The expansion of the pores in the outer shell led to an increased enzyme activity while the integrity of the active site pore seems to be important. Hg2+ and iodoacetamide block cysteines in the active site pocket, while Zn2+ interferes over a distance, possibly by restriction of protein flexibility or substrate access or product exit.

  20. Key Role of Cysteine Residues in Catalysis and Subcellular Localization of Sulfur Oxygenase-Reductase of Acidianus tengchongensis

    Chen, Z. W.; Jiang, C. Y.; She, Qunxin;

    2005-01-01

    Analysis of known sulfur oxygenase-reductases (SORs) and the SOR-like sequences identified from public databases indicated that they all possess three cysteine residues within two conserved motifs (V-G-P-K-V-C31 and C101-X-X-C104; numbering according to the Acidianus tengchongensis numbering system......). The thio-modifying reagent N-ethylmaleimide and Zn2+ strongly inhibited the activities of the SORs of A. tengchongensis, suggesting that cysteine residues are important. Site-directed mutagenesis was used to construct four mutant SORs with cysteines replaced by serine or alanine. The purified mutant...... proteins were investigated in parallel with the wild-type SOR. Replacement of any cysteine reduced SOR activity by 98.4 to 100%, indicating that all the cysteine residues are crucial to SOR activities. Circular-dichroism and fluorescence spectrum analyses revealed that the wild-type and mutant SORs have...

  1. Crossing Filaments

    Filippov, Boris

    2011-01-01

    Solar filaments show the position of large scale polarity inversion lines and are used for the reconstruction of large-scale solar magnetic field structure on the basis of H{\\alpha} synoptic charts for the periods when magnetographic measurements were not available. Sometimes crossing filaments are seen in H{\\alpha} filtergrams. We analyze daily H{\\alpha} filtergrams from the archive of Big Bear Solar Observatory for the period of 1999-2003 to find crossing and interacting filaments. A number of examples are presented and filament patterns are compared with photospheric magnetic field distributions. We have found that all crossing filaments reveal quadrupolar magnetic configurations of the photospheric field and presume the presence of null points in the corona.

  2. Helical filaments

    Barbieri, Nicholas; Lim, Khan; Durand, Magali; Baudelet, Matthieu; Richardson, Martin [Townes Laser Institute, CREOL—The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Hosseinimakarem, Zahra; Johnson, Eric [Micro-Photonics Laboratory – Center for Optical Material Science, Clemson, Anderson, South Carolina 29634 (United States)

    2014-06-30

    The shaping of laser-induced filamenting plasma channels into helical structures by guiding the process with a non-diffracting beam is demonstrated. This was achieved using a Bessel beam superposition to control the phase of an ultrafast laser beam possessing intensities sufficient to induce Kerr effect driven non-linear self-focusing. Several experimental methods were used to characterize the resulting beams and confirm the observed structures are laser air filaments.

  3. Filamentous cyanobacteria

    Komárek, Jiří; Komárková, J.; Kling, H.

    San Diego: Academic Press pro Elsevier Science, 2003 - (Wehr, J.; Sheath, R.), s. 117-196 ISBN 0-12-741550-5 R&D Projects: GA AV ČR KSK6005114 Keywords : filamentous cyanobacteria * freshwater algae * North America Subject RIV: EF - Botanics

  4. Triggering filamentation using turbulence

    Eeltink, D; Marchiando, N; Hermelin, S; Gateau, J; Brunetti, M; Wolf, J P; Kasparian, J

    2016-01-01

    We study the triggering of single filaments due to turbulence in the beam path for a laser of power below the filamenting threshold. Turbulence can act as a switch between the beam not filamenting and producing single filaments. This 'positive' effect of turbulence on the filament probability, combined with our observation of off-axis filaments suggests the underlying mechanism is modulation instability caused by transverse perturbations. We hereby experimentally explore the interaction of modulation instability and turbulence, commonly associated with multiple-filaments, in the single-filament regime.

  5. Filamentous Fungi.

    Powers-Fletcher, Margaret V; Kendall, Brian A; Griffin, Allen T; Hanson, Kimberly E

    2016-06-01

    Filamentous mycoses are often associated with significant morbidity and mortality. Prompt diagnosis and aggressive treatment are essential for good clinical outcomes in immunocompromised patients. The host immune response plays an essential role in determining the course of exposure to potential fungal pathogens. Depending on the effectiveness of immune response and the burden of organism exposure, fungi can either be cleared or infection can occur and progress to a potentially fatal invasive disease. Nonspecific cellular immunity (i.e., neutrophils, natural killer [NK] cells, and macrophages) combined with T-cell responses are the main immunologic mechanisms of protection. The most common potential mold pathogens include certain hyaline hyphomycetes, endemic fungi, the Mucorales, and some dematiaceous fungi. Laboratory diagnostics aimed at detecting and differentiating these organisms are crucial to helping clinicians make informed decisions about treatment. The purpose of this chapter is to provide an overview of the medically important fungal pathogens, as well as to discuss the patient characteristics, antifungal-therapy considerations, and laboratory tests used in current clinical practice for the immunocompromised host. PMID:27337469

  6. Endocytosis in filamentous fungi

    Kalkman, Edward R I C

    2007-01-01

    Endocytosis is little understood in filamentous fungi. For some time it has been controversial as to whether endocytosis occurs in filamentous fungi. A comparative genomics analysis between Saccharomyces cerevisiae and 10 genomes of filamentous fungal species showed that filamentous fungi possess complex endocytic machineries. The use of the endocytic marker dye FM4-64, and various vesicle trafficking inhibitors revealed many similarities between endocytosis in the filamentous ...

  7. Filamentous Fungi Fermentation

    Nørregaard, Anders; Stocks, Stuart; Woodley, John;

    2014-01-01

    Filamentous fungi (including microorganisms such as Aspergillus niger and Rhizopus oryzae) represent an enormously important platform for industrial fermentation. Two particularly valuable features are the high yield coefficients and the ability to secrete products. However, the filamentous...

  8. Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures

    Häring, Monika; Vestergaard, Gisle Alberg; Brügger, Kim; Rachel, Reinhard; Garrett, Roger A; Prangishvili, David

    2005-01-01

    A novel filamentous virus, AFV2, from the hyperthermophilic archaeal genus Acidianus shows structural similarity to lipothrixviruses but differs from them in its unusual terminal and core structures. The double-stranded DNA genome contains 31,787 bp and carries eight open reading frames homologous...

  9. Differential expression of extracellular thiol groups of moderately thermophilic Sulfobacillus thermosulfidooxidans and extremely thermophilic Acidianus manzaensis grown on S(0) and Fe (2.).

    Liu, Hong-Chang; Xia, Jin-Lan; Nie, Zhen-Yuan; Zhen, Xiang-Jun; Zhang, Li-Juan

    2015-08-01

    Bio-oxidation of elemental sulfur (S(0)) is very important in bioleaching and sulfur cycle. S(0) was proposed to be first activated by reacting with reactive thiol groups (-SH) of outer membrane proteins, forming -S n H (n ≥ 2) complexes. The differential expression of -SH of moderately thermophilic Sulfobacillus thermosulfidooxidans and extremely thermophilic Acidianus manzaensis grown on Fe(2+) and S(0) was investigated by synchrotron radiation-based scanning transmission X-ray microscopy (STXM) imaging and micro-beam X-ray fluorescence (μ-XRF) mapping. The STXM imaging and μ-XRF mapping of extracellular -SH were based on the analysis of Ca(2+) bound on the cell. By comparing Ca(2+) of the cells with and without labeling by Ca(2+), the distribution and content of thiol groups were obtained. The results showed that, for both S. thermosulfidooxidans and A. manzaensis, the expression of extracellular -SH of S(0)-grown cells was higher than that of Fe(2+)-grown cells. Statistical analysis indicated that the expression of extracellular -SH for S. thermosulfidooxidans and A. manzaensis grown on S(0) was 2.37 times and 2.14 times, respectively, to that on Fe(2+). These results evidently demonstrate that the extracellular thiol groups are most probably involved in elemental sulfur activation and oxidation of the acidophilic sulfur-oxidizing microorganisms. PMID:25983134

  10. Solar Features - Prominences and Filaments - Filaments

    National Oceanic and Atmospheric Administration, Department of Commerce — Filaments are formed in magnetic loops that hold relatively cool, dense gas suspended above the surface of the Sun (David Hathaway/NASA)

  11. Covert connection of filaments

    Filippov, Boris

    2015-01-01

    We analyse the relationship between two near filaments, which do not show any connection in H-alpha images but reveal close magnetic connectivity during filament activations in Extreme Ultraviolet (EUV) observations. A twisted flux rope, which connects a half of one filament with another filament, becomes visible during several activations but seems to exist all the time of the filaments presence on the disc. Solar Dynamic Observatory} (SDO) and Solar Terrestrial Relations Observatory (STEREO) observed the region with the filaments from two points of view separated by the angle of about 120 deg. On 2012 July 27, SDO observed the filament activation on disc, while for the STEREO B position the filaments were visible at the limb. Nearly identical interaction episode was observed on 2012 August 04 by STEREO A on disc and by SDO at the limb. This good opportunity allows us to disentangle the 3-D shape of the connecting flux rope and in particular to determine with high reliability the helicity sign of the flux ro...

  12. Tungsten filament fire

    Ruiz, Michael J.; Perkins, James

    2016-05-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent light bulb is being replaced by compact fluorescent and LED lamps.

  13. Structural and genomic properties of the hyperthermophilic archaeal virus ATV with an extracellular stage of the reproductive cycle

    Prangishvili, David; Vestergaard, Gisle Alberg; Häring, Monika;

    2006-01-01

    a crenarchaeal virus, infection with ATV results either in viral replication and subsequent cell lysis or in conversion of the infected cell to a lysogen. The lysogenic cycle involves integration of the viral genome into the host chromosome, probably facilitated by the virus-encoded integrase and......A novel virus, ATV, of the hyperthermophilic archaeal genus Acidianus has the unique property of undergoing a major morphological development outside of, and independently of, the host cell. Virions are extruded from host cells as lemon-shaped tail-less particles, after which they develop long...... periodic structure. Tail development produces a one half reduction in the volume of the virion, concurrent with a slight expansion of the virion surface. The circular, double-stranded DNA genome contains 62,730 bp and is exceptional for a crenarchaeal virus in that it carries four putative transposable...

  14. Blistering of viscoelastic filaments

    Sattler, R; Wagner, C

    2007-01-01

    When a dilute polymer solution experiences capillary thinning, it forms an almost uniformly cylindrical thread, which we study experimentally. In the last stages of thinning, when polymers have become fully stretched, the filament becomes prone to instabilities, of which we describe two: A novel "breathing" instability, originating from the edge of the filament, and a sinusoidal instability in the interior, which ultimately gives rise to a "blistering" pattern of beads on the filament. We describe the linear instability with a spatial resolution of 80 nm in the disturbance amplitude. For sufficiently high polymer concentrations, the filament eventually separates out into a "solid" phase of entangled polymers, connected by fluid beads. A solid polymer fiber of about 100 nanometer thickness remains, which is essentially permanent.

  15. Femtosecond Laser Filamentation

    Chin, See Leang

    2010-01-01

    Femtosecond Laser Filamentation gives a comprehensive review of the physics of propagation of intense femtosecond laser pulses in optical media (principally air) and the applications and challenges of this new technique. This book presents the modern understanding of the physics of femtosecond laser pulse propagation, including unusual new effects such as the self-transformation of the pulse into a white light laser pulse, intensity clamping, the physics of multiple filamentation and competition, and how filaments’ ability to melt glass leads to wave guide writing. The potential applications of laser filamentation in atmospheric sensing and the generation of other electromagnetic pulses from the UV to the radio frequency are treated, together with possible future challenges in the excitation of super-excited states of molecules. Exciting new phenomena such as filament induced ultrafast birefringence and the excitation of molecular rotational wave packets and their multiple revivals in air (gases) will also ...

  16. Quadrantids filaments modeling

    Rosaev, Alex

    2012-01-01

    Numeric integration of orbits of particles along mean orbit of Quadrantid meteor stream is done at time span 20000 years. Orbits are subdivided on several classes by their evolution type. A very complex dynamical behavior is detected. About 20% of modeled particles escape stream: this fact point on that stream cannot be long-live and have a source within 5000 years. After that, Quadrantid filaments dynamics are studied. By comparison of different authors data, 7 independent filaments are sele...

  17. Multilamellar Structures and Filament Bundles Are Found on the Cell Surface during Bunyavirus Egress

    Sanz-Sánchez, Laura; Risco, Cristina

    2013-01-01

    Inside cells, viruses build specialized compartments for replication and morphogenesis. We observed that virus release associates with specific structures found on the surface of mammalian cells. Cultured adherent cells were infected with a bunyavirus and processed for oriented sectioning and transmission electron microscopy. Imaging of cell basal regions showed sophisticated multilamellar structures (MLS) and extracellular filament bundles with attached viruses. Correlative light and electro...

  18. Nonparametric Filament Estimation

    Genovese, Christopher R; verdinelli, Isabella; Wasserman, Larry

    2010-01-01

    We develop nonparametric methods for estimating filamentary structure from planar point process data and find the minimax lower bound for this problem. We show that, under weak conditions, the filaments have a simple geometric representation as the medial axis of the data distribution's support. Our methods convert an estimator of the support's boundary into an estimator of the filaments. We find the rates of convergence of our estimators and show that when using an optimal boundary estimator, they achieve the minimax rate. Our work can be regarded as providing a solution to the manifold learning problem as well as being a new approach to principal curve estimation.

  19. Aerogel-supported filament

    Wuest, Craig R.; Tillotson, Thomas M.; Johnson, III, Coleman V.

    1995-01-01

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces.

  20. Lens tilting effect on filamentation and filament-induced fluorescence

    Kamali, Y.; Sun, Q.; Daigle, J.-F.; Azarm, A.; Bernhardt, J.; Chin, S. L.

    2009-03-01

    In filament-induced fluorescence spectroscopy, we experimentally found that if the lens used for the creation and localization of filament is tilted, the signal to noise ratio of spectral measurement increases. Further study shows that with lens tilting, astigmatism occurs and the filament is split into shorter parts. In turn the shortening of filament reduces the generation of white light which is the major 'noise' source of the spectra.

  1. Branching of keratin intermediate filaments.

    Nafeey, Soufi; Martin, Ines; Felder, Tatiana; Walther, Paul; Felder, Edward

    2016-06-01

    Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation. PMID:27039023

  2. Positrusion Filament Recycling System Project

    National Aeronautics and Space Administration — TUI proposes a novel process to produce 3d printer feedstock filament out of scrap ABS on the ISS. Currently the plastic filament materials that most 3d printers...

  3. Solar Features - Prominences and Filaments

    National Oceanic and Atmospheric Administration, Department of Commerce — Prominences and filaments are two manifestations of the same phenomenon. Both prominences and filaments are features formed above the chromosphere by cool dense...

  4. Cryopreservation of Filamentous Fungi

    Homolka, Ladislav

    New York: Nova Science Publishers, Inc, 2013 - (Colvert, A.; Coty, H.), s. 1-66 ISBN 978-1-62618-474-9 R&D Projects: GA ČR GAP504/12/0709 Institutional support: RVO:61388971 Keywords : cryopreservation * filamentous fungi Subject RIV: EE - Microbiology, Virology

  5. Solid friction between soft filaments

    Ward, Andrew; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-01-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes' drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the prop...

  6. Filament heater current modulation for increased filament lifetime

    The surface conversion H-minus ion source employs two 60 mil tungsten filaments which are approximately 17 centimeters in length. These filaments are heated to approximately 2,800 degrees centigrade by 95--100 amperes of DC heater current. The arc is struck at a 120 hertz rate, for 800 microseconds and is generally run at 30 amperes peak current. Although sputtering is considered a contributing factor in the demise of the filament, evaporation is of greater concern. If the peak arc current can be maintained with less average heater current, the filament evaporation rate for this arc current will diminish. In the vacuum of an ion source, the authors expect the filaments to retain much of their heat throughout a 1 millisecond (12% duty) loss of heater current. A circuit to eliminate 100 ampere heater currents from filaments during the arc pulse was developed. The magnetic field due to the 100 ampere current tends to hold electrons to the filament, decreasing the arc current. By eliminating this magnetic field, the arc should be more efficient, allowing the filaments to run at a lower average heater current. This should extend the filament lifetime. The circuit development and preliminary filament results are discussed

  7. CVD-produced boron filaments

    Wawner, F. E.; Debolt, H. E.; Suplinskas, R. D.

    1980-01-01

    A technique for producing boron filaments with an average tensile strength of 6.89 GPa has been developed which involves longitudinal splitting of the filament and core (substrate) removal by etching. Splitting is accomplished by a pinch wheel device which continuously splits filaments in lengths of 3.0 m by applying a force to the side of the filament to create a crack which is then propagated along the axis by a gentle sliding action. To facilitate the splitting, a single 10 mil tungsten substrate is used instead of the usual 0.5 mil substrate. A solution of hot 30% hydrogen peroxide is used to remove the core without attacking the boron. An alternative technique is to alter the residual stress by heavily etching the filament. Average strengths in the 4.83-5.52 GPa range have been obtained by etching an 8 mil filament to 4 mil.

  8. Filament Identification through Mathematical Morphology

    Koch, Eric W

    2015-01-01

    We present a new algorithm for detecting filamentary structure FilFinder. The algorithm uses the techniques of mathematical morphology for filament identification, presenting a complementary approach to current algorithms which use matched filtering or critical manifolds. Unlike other methods, FilFinder identifies filaments over a wide dynamic range in brightness. We apply the new algorithm to far infrared imaging data of dust emission released by the Herschel Gould Belt Survey team. Our preliminary analysis characterizes both filaments and fainter striations. We find a typical filament width of 0.09 pc across the sample, but the brightness varies from cloud to cloud. Several regions show a bimodal filament brightness distribution, with the bright mode (filaments) being an order of magnitude brighter than the faint mode (striations). Using the Rolling Hough Transform, we characterize the orientations of the striations in the data, finding preferred directions that agree with magnetic field direction where dat...

  9. Soliton on thin vortex filament

    Showing that one of the equations found by Wadati, Konno and Ichikawa is equivalent to the equation of motion of a thin vortex filament, we investigate solitons on the vortex filament. N vortex soliton solution is given in terms of the inverse scattering method. We examine two soliton collision processes on the filament. Our analysis provides the theoretical foundation of two soliton collision processes observed numerically by Aref and Flinchem. (author)

  10. Solar Filament Extraction and Characterizing

    Yuan, Yuan; Shih, F. Y.; Jing, J.; Wang, H.

    2010-05-01

    This paper presents a new method to extract and characterize solar filaments from H-alpha full-disk images produced by Big Bear Solar Observatory. A cascading Hough Transform method is designed to identify solar disk center location and radius. Solar disks are segmented from the background, and unbalanced illumination on the surface of solar disks is removed using polynomial surface fitting. And then a localized adaptive thresholding is employed to extract solar filament candidates. After the removal of small solar filament candidates, the remaining larger candidates are used as the seeds of region growing. The procedure of region growing not only connects broken filaments but also generate complete shape for each filament. Mathematical morphology thinning is adopted to produce the skeleton of each filament, and graph theory is used to prune branches and barbs to get the main skeleton. The length and the location of the main skeleton is characterized. The proposed method can help scientists and researches study the evolution of solar filament, for instance, to detect solar filament eruption. The presented method has already been used by Space Weather Research Lab of New Jersey Institute of Technology (http://swrl.njit.edu) to generate the solar filament online catalog using H-alpha full-disk images of Global H-alpha Network (http://swrl.njit.edu/ghn_web/).

  11. Chaperonin filaments: The archael cytoskeleton

    Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.

    1997-08-01

    Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.

  12. Resonantly enhanced filamentation in gases

    Doussot, J; Billard, F; Béjot, P; Faucher, O

    2016-01-01

    In this Letter, a low-loss Kerr-driven optical filament in Krypton gas is experimentally reported in the ultraviolet. The experimental findings are supported by ab initio quantum calculations describing the atomic optical response. Higher-order Kerr effect induced by three-photon resonant transitions is identified as the underlying physical mechanism responsible for the intensity stabilization during the filamentation process, while ionization plays only a minor role. This result goes beyond the commonly-admitted paradigm of filamentation, in which ionization is a necessary condition of the filament intensity clamping. At resonance, it is also experimentally demonstrated that the filament length is greatly extended because of a strong decrease of the optical losses.

  13. The link between CMEs, filaments and filament channels

    S. F. Martin

    2008-10-01

    Full Text Available We present a broad concept for the build-up to eruptive solar events which needs to be tested in future observational and theoretical research. In this concept an eruptive solar event consists of a coronal mass ejection, a filament eruption, a cavity around the filament, and a flare. In our picture, the initial energy source must be external to this eruptive system but also feed into it. Among all eruptive events the common denominator is a filament channel with canceling magnetic fields along a primary polarity reversal boundary. We find that magnetic reconnection at or close to the photosphere is the only interpretation of canceling fields to date that is consistent with observations of filament channels. This reconnection serves to transfer magnetic flux from the photosphere into the chromosphere and corona along polarity reversal boundaries and concurrently initiates the building of a filament channel. Magnetic flux, in excess of that needed to sustain the filament channel, goes into building a filament magnetic field that is always aligned with the polarity reversal boundary and the channel magnetic field. The filament magnetic field remains separated from overarching coronal magnetic fields by the magnetic field of the cavity. The magnetic flux being transported upward from the photosphere/chromosphere carries streams of plasma into the corona along the filament magnetic field. However, the flowing and counterstreaming filament mass also slowly drains out of the field and thereby leaves behind new strands of cavity magnetic field with little or no associated mass. When the build-up of magnetic pressure in the filament and cavity magnetic fields exceeds that of the overlying coronal loops, the coronal loops, the filament and the cavity together begin an observable slow rise which can last a few hours to many days before rapid onset and ejection with a solar flare. We suggest that this process can be accelerated by any number of external

  14. Virus-membrane interactions: spectroscopic studies.

    Datema, K.P.

    1987-01-01

    In this thesis some new aspects of the infection process of nonenveloped viruses are reported. The interaction of a rod-shaped (TMV) and three spherical (CCMV, BMV, SBMV) plant viruses, of the filamentous bacteriophage M13, and of their coat proteins with membranes have been investigated. A comparison is made between the infection mechanisms of these non-enveloped viruses.1 EFFECT OF PLANT VIRUSES ON MEMBRANESAll plant viruses studied interact with membranes. This is demonstrated by turbidity...

  15. Activity Cycle of Solar Filaments

    K. J. Li; Q. X. Li; P. X. Gao; J. Mu; H. D. Chen; T. W. Su

    2007-06-01

    Long-term variation in the distribution of the solar filaments observed at the Observatorie de Paris, Section de Meudon from March 1919 to December 1989 is presented to compare with sunspot cycle and to study the periodicity in the filament activity, namely the periods of the coronal activity with the Morlet wavelet used. It is inferred that the activity cycle of solar filaments should have the same cycle length as sunspot cycle, but the cycle behavior of solar filaments is globally similar in profile with, but different in detail from, that of sunspot cycles. The amplitude of solar magnetic activity should not keep in phase with the complexity of solar magnetic activity. The possible periods in the filament activity are about 10.44 and 19.20 years. The wavelet local power spectrum of the period 10.44 years is statistically significant during the whole consideration time. The wavelet local power spectrum of the period 19.20 years is under the 95% confidence spectrum during the whole consideration time, but over the mean red-noise spectrum of = 0.72 before approximate Carrington rotation number 1500, and after that the filament activity does not statistically show the period. Wavelet reconstruction indicates that the early data of the filament archive (in and before cycle 16) are more noiseful than the later (in and after cycle 17).

  16. Laser Filament Induced Water Condensation

    Kasparian J.; Webe K.; Vogel A; Petit Y.; Lüder J.; Hao Z.Q.; Rohwetter P.; Petrarca M.; Stelmaszczyk K.; Henin S.; Wöste L.; Wolf J.-P.

    2013-01-01

    At relative humidities above 70%, femtosecond laser filaments generate aerosol particles and water droplets in the atmosphere. The water vapour condensation and droplet stabilization are assured by soluble species produced in the laser plasma.

  17. Microcyle Conidiation in Filamentous Fungi

    Jung, Boknam; Kim, Soyeon; Lee, Jungkwan

    2014-01-01

    The typical life cycle of filamentous fungi commonly involves asexual sporulation after vegetative growth in response to environmental factors. The production of asexual spores is critical in the life cycle of most filamentous fungi. Normally, conidia are produced from vegetative hyphae (termed mycelia). However, fungal species subjected to stress conditions exhibit an extremely simplified asexual life cycle, in which the conidia that germinate directly generate further conidia, without formi...

  18. Multilamellar structures and filament bundles are found on the cell surface during bunyavirus egress.

    Laura Sanz-Sánchez

    Full Text Available Inside cells, viruses build specialized compartments for replication and morphogenesis. We observed that virus release associates with specific structures found on the surface of mammalian cells. Cultured adherent cells were infected with a bunyavirus and processed for oriented sectioning and transmission electron microscopy. Imaging of cell basal regions showed sophisticated multilamellar structures (MLS and extracellular filament bundles with attached viruses. Correlative light and electron microscopy confirmed that both MLS and filaments proliferated during the maximum egress of new viruses. MLS dimensions and structure were reminiscent of those reported for the nanostructures on gecko fingertips, which are responsible for the extraordinary attachment capacity of these lizards. As infected cells with MLS were more resistant to detachment than control cells, we propose an adhesive function for these structures, which would compensate for the loss of adherence during release of new virus progeny.

  19. Frealix: model-based refinement of helical filament structures from electron micrographs.

    Rohou, Alexis; Grigorieff, Nikolaus

    2014-05-01

    The structures of many helical protein filaments can be derived from electron micrographs of their suspensions in thin films of vitrified aqueous solutions. The most successful and generally-applicable approach treats short segments of these filaments as independent "single particles", yielding near-atomic resolution for rigid and well-ordered filaments. The single-particle approach can also accommodate filament deformations, yielding sub-nanometer resolution for more flexible filaments. However, in the case of thin and flexible filaments, such as some amyloid-β (Aβ) fibrils, the single-particle approach may fail because helical segments can be curved or otherwise distorted and their alignment can be inaccurate due to low contrast in the micrographs. We developed new software called Frealix that allows the use of arbitrarily short filament segments during alignment to approximate even high curvatures. All segments in a filament are aligned simultaneously with constraints that ensure that they connect to each other in space to form a continuous helical structure. In this paper, we describe the algorithm and benchmark it against datasets of Aβ(1-40) fibrils and tobacco mosaic virus (TMV), both analyzed in earlier work. In the case of TMV, our algorithm achieves similar results to single-particle analysis. In the case of Aβ(1-40) fibrils, we match the previously-obtained resolution but we are also able to obtain reliable alignments and ∼8-Å reconstructions from curved filaments. Our algorithm also offers a detailed characterization of filament deformations in three dimensions and enables a critical evaluation of the worm-like chain model for biological filaments. PMID:24657230

  20. Alpha-herpesvirus infection induces the formation of nuclear actin filaments.

    Feierbach, Becket; Piccinotti, Silvia; Bisher, Margaret; Denk, Winfried; Enquist, Lynn W

    2006-08-01

    Herpesviruses are large double-stranded DNA viruses that replicate in the nuclei of infected cells. Spatial control of viral replication and assembly in the host nucleus is achieved by the establishment of nuclear compartments that serve to concentrate viral and host factors. How these compartments are established and maintained remains poorly understood. Pseudorabies virus (PRV) is an alpha-herpesvirus often used to study herpesvirus invasion and spread in the nervous system. Here, we report that PRV and herpes simplex virus type 1 infection of neurons results in formation of actin filaments in the nucleus. Filamentous actin is not found in the nucleus of uninfected cells. Nuclear actin filaments appear physically associated with the viral capsids, as shown by serial block-face scanning electron micropscopy and confocal microscopy. Using a green fluorescent protein-tagged viral capsid protein (VP26), we show that nuclear actin filaments form prior to capsid assembly and are required for the efficient formation of viral capsid assembly sites. We find that actin polymerization dynamics (e.g., treadmilling) are not necessary for the formation of these sites. Green fluorescent protein-VP26 foci co-localize with the actin motor myosin V, suggesting that viral capsids travel along nuclear actin filaments using myosin-based directed transport. Viral transcription, but not viral DNA replication, is required for actin filament formation. The finding that infection, by either PRV or herpes simplex virus type 1, results in formation of nuclear actin filaments in neurons, and that PRV infection of an epithelial cell line results in a similar phenotype is evidence that F-actin plays a conserved role in herpesvirus assembly. Our results suggest a mechanism by which assembly domains are organized within infected cells and provide insight into how the viral infectious cycle and host actin cytoskeleton are integrated to promote the infection process. PMID:16933992

  1. Comparative Biomechanics of Thick Filaments and Thin Filaments with Functional Consequences for Muscle Contraction

    Miller, Mark S; Tanner, Bertrand C. W.; Lori R. Nyland; Vigoreaux, Jim O.

    2010-01-01

    The scaffold of striated muscle is predominantly comprised of myosin and actin polymers known as thick filaments and thin filaments, respectively. The roles these filaments play in muscle contraction are well known, but the extent to which variations in filament mechanical properties influence muscle function is not fully understood. Here we review information on the material properties of thick filaments, thin filaments, and their primary constituents; we also discuss ways in which mechanica...

  2. Boolean gates on actin filaments

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  3. Droplets engulfing on a filament

    Wu, Xiang-Fa; Yu, Meng; Zhou, Zhengping; Bedarkar, Amol; Zhao, Youhao

    2014-03-01

    Two immiscible droplets wetting on a filament may assume engulfing, partial-engulfing, or non-engulfing morphology that depends on the wetting behavior and geometries of the resulting droplet-on-filament system. This paper studies the wetting behavior of two immiscible droplets contacting and sitting symmetrically on a straight filament. A set of ordinary differential equations (ODEs) is formulated for determining the wetting morphology of the droplet-on-filament system. In the limiting case of engulfing or non-engulfing, the morphology of the droplet-on-filament system is determined in explicit form. In the case of partial-engulfing, surface finite element method is further employed for determining the wetting morphology, surface energy, and internal pressures of droplets of the system. Numerical scaling study is performed to explore their dependencies upon the wetting properties and geometries of the system. The study can be applicable for analysis and design of textiles with tailorable wetting properties and development of novel multifunctional fibrous materials for environmental protection such as oil-spill sorption, etc.

  4. Temperature Controlled Filamentation in Argon Gas

    CAO Shi-Ying; KONG Wei-Peng; SONG Zhen-Ming; QIN Yu; LI Ru-Xin; WANG Qing-Yue; ZHANG Zhi-Gang

    2008-01-01

    Temperature controlled filamentation is experimentally demonstrated in a temperature gradient gas-filled tube.The proper position of the tube is heated by a furnace and two ends of the tube are cooled by air. The experimental results show that multiple filaments are shrunken into a single fila.ment or no filament only by increasing the temperature at the beginning of the filament. This technique offers another degree of freedom of controlling the filamentation and opens a new way for intense monocycle pulse generation through gradient temperature in a noble gas.

  5. Simultaneous Detection of Mixed Infection of Onion yellow dwarf virus and an Allexivirus in RT-PCR for Ensuring Virus Free Onion Bulbs

    Kumar, Sandeep; Baranwal, V. K.; Joshi, Subodh; Arya, Meenakshi; Majumder, S

    2010-01-01

    Reduced seed production in onion is associated with Onion yellow dwarf virus (OYDV), a filamentous Potyvirus. Onion is also infected with other filamentous virus particles suspected to be Allexivirus. RT-PCR was used to detect mixed infection of both the viruses in leaves and bulbs. A duplex RT-PCR was developed, which simultaneously detected the presence of these two viruses in winter (Rabi) onion bulb. In summer (Kharif) onion bulbs only Allexivirus was detected. The absence of OYDV in summ...

  6. Viruses and prions of Saccharomyces cerevisiae

    Wickner, Reed B.; Fujimura, Tsutomu; Esteban, Rosa

    2013-01-01

    Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses, and prions. Studies of the mechanisms of virus and prion replication, virus structure, and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular compone...

  7. Role of Intermediate Filaments in Vesicular Traffic

    Azzurra Margiotta

    2016-04-01

    Full Text Available Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway.

  8. Shape Preserving Filament Enhancement Filtering

    Wilkinson, Michael H.F.; Westenberg, Michel A.

    2001-01-01

    Morphological connected set filters for extraction of filamentous details from medical images are developed. The advantages of these filters are that they are shape preserving and do not amplify noise. Two approaches are compared: (i) multi-scale filtering (ii) single-step shape filtering using conn

  9. Towards filament free semiconductor lasers

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.;

    2000-01-01

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  10. Capillary thinning of polymeric filaments

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then, th...

  11. Capillary thinning of polymeric filaments

    Kolte, Mette Irene; Szabo, Peter; Hassager, Ole

    The capillary thinning of a polymeric filament is analysed experimentally as well as by means of numerical simulation. The experimental procedure is as follows. Initially a liquid sample is kept between two cylindrical plates. Then the bottom plate is lowered under gravity to yield a given strain...

  12. Towards filament free semiconductor lasers

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.; Mullane, Mark; Houlihan, John; O'Neill, Eamonn; Moloney, Jerome V.; Indik, Robert A.

    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  13. Special Issue: Honey Bee Viruses

    Sebastian Gisder

    2015-10-01

    Full Text Available Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus, or a so far neglected virus species (Apis mellifera filamentous virus, and cutting edge technologies (mass spectrometry, RNAi approach applied in the field.

  14. Large-scale Motion of Solar Filaments

    Pavel Ambrož; Alfred Schroll

    2000-09-01

    Precise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.

  15. Current-vortex filaments in magnetized plasmas

    Bergmans, J.; Kuvshinov, B. N.; Lakhin, V. P.; Schep, T. J.; Westerhof, E.

    1999-01-01

    Current-vortex filament solutions to the two-fluid plasma equations that describe drift-Alfven waves are presented. Such filament systems are Hamiltonian. Integrable three and four filament systems are discussed in some detail. A wide variety of orbit topologies exists in the plasma case. Special at

  16. Interaction of light filaments in air

    Xi Ting-Ting; Lu Xin; Hao Zuo-Qiang; Me Yuan-yuan; Zhang Jie

    2009-01-01

    This paper analytically investigates the interaction of light filaments generated by a femtosecond laser beam in air. It obtains the Hamiltonian of a total laser field and interaction force between two filaments with different phase shifts and crcssing angles. The property of the interaction force, which leads the attraction or repulsion of filaments, is basically dependent on the phase shift between filaments. The crossing angle between two filaments can only determine the magnitude of the interaction force, but does not change the property of the force.

  17. Microwave processing of ceramic oxide filaments

    Vogt, G.J.; Katz, J.D. [Los Alamos National Laboratory, NM (United States)

    1995-05-01

    The objective of the microwave filament processing project is to develop microwave techniques at 2.45 GHZ to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company.

  18. Dynamics of 3D isolated thermal filaments

    Walkden, N R; Militello, F; Omotani, J T

    2016-01-01

    Simulations have been carried out to establish how electron thermal physics, introduced in the form of a dynamic electron temperature, affects isolated filament motion and dynamics in 3D. It is found that thermal effects impact filament motion in two major ways when the filament has a significant temperature perturbation compared to its density perturbation: They lead to a strong increase in filament propagation in the bi-normal direction and a significant decrease in net radial propagation. Both effects arise from the temperature dependence of the sheath current which leads to a non-uniform floating potential, with the latter effect supplemented by faster pressure loss. The reduction in radial velocity can only occur when the filament cross-section loses angular symmetry. The behaviour is observed across different filament sizes and suggests that filaments with much larger temperature perturbations than density perturbations are more strongly confined to the near SOL region.

  19. Filamentation as primitive growth mode?

    Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane

    2015-12-01

    Osmotic pressure influences cellular shape. In a growing cell, chemical reactions and dilution induce changes in osmolarity, which in turn influence the cellular shape. Using a protocell model relying upon random conservative chemical reaction networks with arbitrary stoichiometry, we find that when the membrane is so flexible that its shape adjusts itself quasi-instantaneously to balance the osmotic pressure, the protocell either grows filamentous or fails to grow. This behavior is consistent with a mathematical proof. This suggests that filamentation may be a primitive growth mode resulting from the simple physical property of balanced osmotic pressure. We also find that growth is favored if some chemical species are only present inside the protocell, but not in the outside growth medium. Such an insulation requires specific chemical schemes. Modern evolved cells such as E. coli meet these requirements through active transport mechanisms such as the phosphotransferase system.

  20. Picosecond laser filamentation in air

    Schmitt-Sody, Andreas; Bergé, L; Skupin, S; Polynkin, Pavel

    2016-01-01

    The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled with the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which is paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions are limited and the pulse fluence is also clamped. The resulting unique feature of the picosecond filamentation regime is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for numerous applications.

  1. Physical properties of interstellar filaments

    Fischera, Joerg; Martin, Peter G.

    2012-01-01

    We analyze the physical parameters of interstellar filaments that we describe by an idealized model of isothermal self-gravitating infinite cylinder in pressure equilibrium with the ambient medium. Their gravitational state is characterized by the ratio f_cyl of their mass line density to the maximum possible value for a cylinder in a vacuum. Equilibrium solutions exist only for f_cyl < 1. This ratio is used in providing analytical expressions for the central density, the radius, the profile ...

  2. Lighting the universe with filaments.

    Gao, Liang; Theuns, Tom

    2007-09-14

    The first stars in the universe form when chemically pristine gas heats as it falls into dark-matter potential wells, cools radiatively because of the formation of molecular hydrogen, and becomes self-gravitating. Using supercomputer simulations, we demonstrated that the stars' properties depend critically on the currently unknown nature of the dark matter. If the dark-matter particles have intrinsic velocities that wipe out small-scale structure, then the first stars form in filaments with lengths on the order of the free-streaming scale, which can be approximately 10(20) meters (approximately 3 kiloparsecs, corresponding to a baryonic mass of approximately 10(7) solar masses) for realistic "warm dark matter" candidates. Fragmentation of the filaments forms stars with a range of masses, which may explain the observed peculiar element abundance pattern of extremely metal-poor stars, whereas coalescence of fragments and stars during the filament's ultimate collapse may seed the supermassive black holes that lurk in the centers of most massive galaxies. PMID:17872439

  3. A penny-shaped crack in a filament reinforced matrix. 1: The filament model

    Erdogan, F.; Pacella, A. H.

    1973-01-01

    The electrostatic problem of a penny-shaped crack in an elastic matrix which reinforced by filaments or fibers perpendicular to the plane of the crack was studied. The elastic filament model was developed for application to evaluation studies of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. The requirements expected of the model are a sufficiently accurate representation of the filament and applicability to the interaction problems involving a cracked elastic continuum with multi-filament reinforcements. The technique for developing the model and numerical examples of it are shown.

  4. Femtosecond Laser Filamentation for Atmospheric Sensing

    Huai Liang Xu

    2010-12-01

    Full Text Available Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation.

  5. Mechanical properties of branched actin filaments

    Razbin, Mohammadhosein; Benetatos, Panayotis; Zippelius, Annette

    2015-01-01

    Cells moving on a two dimensional substrate generate motion by polymerizing actin filament networks inside a flat membrane protrusion. New filaments are generated by branching off existing ones, giving rise to branched network structures. We investigate the force-extension relation of branched filaments, grafted on an elastic structure at one end and pushing with the free ends against the leading edge cell membrane. Single filaments are modeled as worm-like chains, whose thermal bending fluctuations are restricted by the leading edge cell membrane, resulting in an effective force. Branching can increase the stiffness considerably; however the effect depends on branch point position and filament orientation, being most pronounced for intermediate tilt angles and intermediate branch point positions. We describe filament networks without cross-linkers to focus on the effect of branching. We use randomly positioned branch points, as generated in the process of treadmilling, and orientation distributions as measur...

  6. How bio-filaments twist membranes.

    Fierling, Julien; Johner, Albert; Kulić, Igor M; Mohrbach, Hervé; Müller, Martin Michael

    2016-06-29

    We study the deformations of a fluid membrane imposed by adhering stiff bio-filaments due to the torques they apply. In the limit of small deformations, we derive a general expression for the energy and the deformation field of the membrane. This expression is specialised to different important cases including closed and helical bio-filaments. In particular, we analyse interface-mediated interactions and membrane wrapping when the filaments apply a local torque distribution on a tubular membrane. PMID:27291854

  7. Recent observations of the formation of filaments

    Two examples of the formation of small filaments in H alpha are described and illustrated. In both cases, the formation is seen to be the spontaneous appearance of strands of absorbing mass that evolve from no previous structure. The initial development of the filaments appears to consist of the accumulation of these absorptive strands along approximately parallel paths in a channel between large-scale, opposite polarity magnetic fields on either side of the filaments. The strands exhibit continuous changes in shape and degree of absorption which can be due to successive condensations resulting in new strands, mass motions within the strands, and outflow of the mass from the strands. For at least several hours before the formation of both filaments, small-scale fragments of opposite polarity, line-of-sight magnetic flux adjacent to or immediately below the filaments, and at the ends of the filaments, were cancelling. This type of magnetic flux disappearance continued during the development of the filaments and is commonly observed in association with established filaments. Cancellation is interpreted as an important evolutionary change in the magnetic field that can lead to configurations suitable for the formation of filaments

  8. Probing the Physical Structures of Dense Filaments

    Li, Di

    2015-08-01

    Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.

  9. Methods for modeling cytoskeletal and DNA filaments

    This review summarizes the models that researchers use to represent the conformations and dynamics of cytoskeletal and DNA filaments. It focuses on models that address individual filaments in continuous space. Conformation models include the freely jointed, Gaussian, angle-biased chain (ABC), and wormlike chain (WLC) models, of which the first three bend at discrete joints and the last bends continuously. Predictions from the WLC model generally agree well with experiment. Dynamics models include the Rouse, Zimm, stiff rod, dynamic WLC, and reptation models, of which the first four apply to isolated filaments and the last to entangled filaments. Experiments show that the dynamic WLC and reptation models are most accurate. They also show that biological filaments typically experience strong hydrodynamic coupling and/or constrained motion. Computer simulation methods that address filament dynamics typically compute filament segment velocities from local forces using the Langevin equation and then integrate these velocities with explicit or implicit methods; the former are more versatile and the latter are more efficient. Much remains to be discovered in biological filament modeling. In particular, filament dynamics in living cells are not well understood, and current computational methods are too slow and not sufficiently versatile. Although primarily a review, this paper also presents new statistical calculations for the ABC and WLC models. Additionally, it corrects several discrepancies in the literature about bending and torsional persistence length definitions, and their relations to flexural and torsional rigidities. (topical review)

  10. Chaperonin filaments: The archaeal cytoskeleton?

    Trent, Jonathan D.; Kagawa, Hiromi K.; Yaoi, Takuro; Olle, Eric; Zaluzec, Nestor J.

    1997-01-01

    Chaperonins are high molecular mass double-ring structures composed of 60-kDa protein subunits. In the hyperthermophilic archaeon Sulfolobus shibatae the two chaperonin proteins represent ≈4% of its total protein and have a combined intracellular concentration of >30 mg/ml. At concentrations ≥ 0.5 mg/ml purified chaperonins form filaments in the presence of Mg2+ and nucleotides. Filament formation requires nucleotide binding (not hydrolysis), and occurs at physiological temperatures in biologically relevant buffers, including a buffer made from cell extracts. These observations suggest that chaperonin filaments may exist in vivo and the estimated 4600 chaperonins per cell suggest that such filaments could form an extensive cytostructure. We observed filamentous structures in unfixed, uranyl-acetate-stained S. shibatae cells, which resemble the chaperonin filaments in size and appearance. ImmunoGold (Janssen) labeling using chaperonin antibodies indicated that many chaperonins are associated with insoluble cellular structures and these structures appear to be filamentous in some areas, although they could not be uranyl-acetate-stained. The existence of chaperonin filaments in vivo suggests a mechanism whereby their protein-folding activities can be regulated. More generally, the filaments themselves may play a cytoskeletal role in Archaea. PMID:9144246

  11. Filamentation with nonlinear Bessel vortices.

    Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A

    2014-10-20

    We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics. PMID:25401574

  12. Microcyle conidiation in filamentous fungi.

    Jung, Boknam; Kim, Soyeon; Lee, Jungkwan

    2014-03-01

    The typical life cycle of filamentous fungi commonly involves asexual sporulation after vegetative growth in response to environmental factors. The production of asexual spores is critical in the life cycle of most filamentous fungi. Normally, conidia are produced from vegetative hyphae (termed mycelia). However, fungal species subjected to stress conditions exhibit an extremely simplified asexual life cycle, in which the conidia that germinate directly generate further conidia, without forming mycelia. This phenomenon has been termed as microcycle conidiation, and to date has been reported in more than 100 fungal species. In this review, first, we present the morphological properties of fungi during microcycle conidiation, and divide microcycle conidiation into four simple categories, even though fungal species exhibit a wide variety of morphological differences during microcycle conidiogenesis. Second, we describe the factors that influence microcycle conidiation in various fungal species, and present recent genetic studies that have identified the genes responsible for this process. Finally, we discuss the biological meaning and application of microcycle conidiation. PMID:24808726

  13. A Statistical Study of Solar Filament Eruptions

    Schanche, Nicole; Aggarwal, Ashna; Reeves, Kathy; Kempton, Dustin James; Angryk, Rafal

    2016-05-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013, McCauley et al. 2015) has shown a positive correlation (70-80%) between the occurrence of filament eruptions and coronal mass ejections (CME’s). In this study, we attempt to use properties of the filament in order to predict whether or not a given filament will erupt. This prediction would help to better predict the occurrence of an oncoming CME. To track the evolution of a filament over time, a spatio-temporal algorithm that groups separate filament instances from the Heliophysics Event Knowledgebase (HEK) into filament tracks was developed. Filament features from the HEK metadata, such as length, chirality, and tilt are then combined with other physical features, such as the overlying decay index for two sets of filaments tracks - those that erupt and those that remain bound. Using statistical methods such as the Kolmogrov-Smirnov test and a Random Forest Classifier, we determine the effectiveness of the combined features in prediction. We conclude that there is significant overlap between the properties of filaments that erupt and those that do not, leading to predictions only ~5-10% above chance. However, the changes in features, such as a change in the filament's length over time, were determined to have the highest predictive power. We discuss the possible physical connections with the change in these features."This project has been supported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences, under NSF award #1443061.”

  14. A First Approach to Filament Dynamics

    Silva, P. E. S.; de Abreu, F. Vistulo; Simoes, R.; Dias, R. G.

    2010-01-01

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive…

  15. Process for making silver metal filaments

    Bamberger, C.E.

    1998-04-01

    This invention relates to a process for making filaments of metal compounds and more particularly to a process for making silver metal filaments. The United States Government has rights to this invention pursuant to Contract No. DE-AC05-8421400 with Lockheed Martin Energy Systems, Inc. awarded by the US Department of Energy.

  16. Quantifying protein diffusion and capture on filaments

    Reithmann, Emanuel; Frey, Erwin

    2015-01-01

    The functional relevance of regulating proteins is often limited to specific binding sites such as the ends of microtubules or actin-filaments. A localization of proteins on these functional sites is of great importance. We present a quantitative theory for a diffusion and capture process, where proteins diffuse on a filament and stop diffusing when reaching the filament's end. It is found that end-association after one-dimensional diffusion is the main source for tip-localization of such proteins. As a consequence, diffusion and capture is highly efficient in enhancing the reaction velocity of enzymatic reactions, where proteins and filament ends are to each other as enzyme and substrate. We show that the reaction velocity can effectively be described within a Michaelis-Menten framework. Together one-dimensional diffusion and capture beats the (three-dimensional) Smoluchowski diffusion limit for the rate of protein association to filament ends.

  17. Solar Filaments as Tracers of Subsurface Processes

    D. M. Rust

    2000-09-01

    Solar filaments are discussed in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of coronal plasma into magnetic fields that are twisted or dimpled as a consequence of motions of the fields' sources in the photo-sphere. According to a new paradigm, filaments form in rising, twisted flux ropes and are a necessary intermediate stage in the transfer to interplanetary space of dynamo-generated magnetic flux. It is argued that the accumulation of magnetic helicity in filaments and their coronal surroundings leads to filament eruptions and coronal mass ejections. These ejections relieve the Sun of the flux generated by the dynamo and make way for the flux of the next cycle.

  18. Particles trajectories in magnetic filaments

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energéticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain)

    2015-07-15

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  19. Filamentous Growth in Eremothecium Fungi

    Oskarsson, Therese

    , this thesis deals with some of the aspects of hyphal growth, which is an important virulence factor for pathogenic fungi infecting both humans and plants. Hyphal establishment through continuous polar growth is a complex process, requiring the careful coordination of a large subset of proteins involved......-regulatory activity of AgGts1, the protein could have additional actin organizing properties. In the second and third part, this thesis addresses the use of A. gossypii and its relative E. cymbalariae as model organisms for filamentous growth. A series of assays analyzed the capability of Eremothecium genus fungi...... of molecular tools for E. cymbalariae to enable a faster and more efficient approach for genetic comparisons between Eremothecium genus fungi....

  20. Particles trajectories in magnetic filaments

    Bret, Antoine

    2015-01-01

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  1. Natural colorants from filamentous fungi.

    Torres, Fábio Aurélio Esteves; Zaccarim, Bruna Regina; de Lencastre Novaes, Letícia Celia; Jozala, Angela Faustino; Santos, Carolina Alves Dos; Teixeira, Maria Francisca Simas; Santos-Ebinuma, Valéria Carvalho

    2016-03-01

    In the last years, there is a trend towards the replacement of synthetic colorants by natural ones, mainly due to the increase of consumer demand for natural products. The natural colorants are used to enhance the appearance of pharmaceutical products, food, and different materials, making them preferable or attractive. This review intends to provide and describe a comprehensive overview of the history of colorants, from prehistory to modern time, of their market and their applications, as well as of the most important aspects of the fermentation process to obtain natural colorants. Focus is given to colorants produced by filamentous fungal species, aiming to demonstrate the importance of these microorganisms and biocompounds, highlighting the production performance to get high yields and the aspects of conclusion that should be taken into consideration in future studies about natural colorants. PMID:26780357

  2. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    Li, Ting; Zhang, Jun; Ji, Haisheng

    2015-06-01

    We conducted a comparative analysis of two filaments that showed a quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) were made to analyze the two filaments on 2013 August 17 - 20 (SOL2013-08-17) and September 29 (SOL2013-09-29). The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4×1021 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest a similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed three days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2×1020 Mx, about one order of magnitude lower than that of the first event. Two patches of parasitic polarity in the vicinity of the barb merged, then cancelled with nearby network fields. About 20 hours after the onset of the emergence, the filament erupted. Our findings imply that the location of emerging flux within the filament channel is probably crucial to filament evolution. If the flux emergence appears nearby the barbs, it is highly likely that the emerging flux and the filament magnetic fields will cancel, which may lead to the eruption of the filament. The comparison of the two events shows that the emergence of a small AR may still not be enough to disrupt the stability of a filament system, and the actual eruption only occurs after the flux cancellation sets in.

  3. Unwinding motion of a twisted active region filament

    Yan, X. L.; Xue, Z. K.; Kong, D. F. [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Liu, J. H. [Department of Physics, Shijiazhuang University, Shijiazhuang 050035 (China); Xu, C. L. [Yunnan Normal University, Kunming 650092 (China)

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  4. Automatic Detect and Trace of Solar Filaments

    Fang, Cheng; Chen, P. F.; Tang, Yu-hua; Hao, Qi; Guo, Yang

    We developed a series of methods to automatically detect and trace solar filaments in solar Hα images. The programs are able to not only recognize filaments and determine their properties, such as the position, the area and other relevant parameters, but also to trace the daily evolution of the filaments. For solar full disk Hα images, the method consists of three parts: first, preprocessing is applied to correct the original images; second, the Canny edge-detection method is used to detect the filaments; third, filament properties are recognized through the morphological operators. For each Hα filament and its barb features, we introduced the unweighted undirected graph concept and adopted Dijkstra shortest-path algorithm to recognize the filament spine; then, using polarity inversion line shift method for measuring the polarities in both sides of the filament to determine the filament axis chirality; finally, employing connected components labeling method to identify the barbs and calculating the angle between each barb and spine to indicate the barb chirality. Our algorithms are applied to the observations from varied observatories, including the Optical & Near Infrared Solar Eruption Tracer (ONSET) in Nanjing University, Mauna Loa Solar Observatory (MLSO) and Big Bear Solar Observatory (BBSO). The programs are demonstrated to be effective and efficient. We used our method to automatically process and analyze 3470 images obtained by MLSO from January 1998 to December 2009, and a butterfly diagram of filaments is obtained. It shows that the latitudinal migration of solar filaments has three trends in the Solar Cycle 23: The drift velocity was fast from 1998 to the solar maximum; after the solar maximum, it became relatively slow and after 2006, the migration became divergent, signifying the solar minimum. About 60% filaments with the latitudes larger than 50 degree migrate towards the Polar Regions with relatively high velocities, and the latitudinal migrating

  5. Optical Filaments and Gas Dynamics in Air

    Yeak, Jeremy

    Until now, the propagation dynamics of intense ultrashort laser pulses leading to optical filamentation in air has only been investigated in the frame of a dynamic balance between linear diffraction, Kerr self-focusing and plasma defocusing. This has led to the development of different theories surrounding the generation and persistence of optical filaments propagating over many Rayleigh lengths in air. These theories include wave-guiding model, moving focus model, dynamic spatial replenishment model and conical wave model. However, these models fail to capture the gas dynamics that arise from optical filaments interacting with air. In this work, we demonstrate that initial conditions are critical to the formation of optical filaments through the use of an aerodynamic window. Filament characteristics in air, such as spectral broadening, electrical conductivity and fluorescence, are measured and presented. Using these as diagnostic tools, we also show that the optical filamentation of ultrashort laser pulses can be enhanced at high repetition rates because of the thermal response of air, resulting from the interaction of each laser pulse with the modified atmospheric density distribution left behind by the preceding pulse. This is explained by the sudden deposition of energy by a filament in the air which generates a cylindrical shock wave, leaving behind a column of rarefied air. This low-density region persists for an extended period and can materially affect the propagation dynamics of an ensuing pulse that follows before the low-density region has relaxed sufficiently to ambient conditions. By further increasing the repetition rate, the onset of ionization is shifted downstream and the spectral continuum displays a stronger broadening on both sides of the original pulse spectrum. This gas dynamic interaction regime of filamentation can be utilized to enhance the length and spectral width of filaments for remote sensing and long range laser-induced high voltage

  6. Automatic filament warm-up controller

    Mccluskey, J.; Daeges, J.

    1979-01-01

    As part of the unattended operations objective of the Deep Space Network deep space stations, this filament controller serves as a step between manual operation of the station and complete computer control. Formerly, the operator was required to devote five to fifteen minutes of his time just to properly warm up the filaments on the klystrons of the high power transmitters. The filament controller reduces the operator's duty to a one-step command and is future-compatible with various forms of computer control.

  7. System Applies Polymer Powder To Filament Tow

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1993-01-01

    Polymer powder applied uniformly and in continuous manner. Powder-coating system applies dry polymer powder to continuous fiber tow. Unique filament-spreading technique, combined with precise control of tension on fibers in system, ensures uniform application of polymer powder to web of spread filaments. Fiber tows impregnated with dry polymer powders ("towpregs") produced for preform-weaving and composite-material-molding applications. System and process valuable to prepreg industry, for production of flexible filament-windable tows and high-temperature polymer prepregs.

  8. Heartland Virus

    ... Vector-Borne Diseases (DVBD) NCEZID Share Compartir Heartland virus On this Page What is Heartland virus? How ... Do I Need to Know? What is Heartland virus? Heartland virus belongs to a family of viruses ...

  9. Can We Determine the Filament Chirality by the Filament Footpoint Location or the Barb-bearing?

    Hao, Q; Fang, C; Chen, P F; Cao, W

    2015-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the unweighted undirected graph concept and adopt the Dijkstra shortest-path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with H-alpha filtergrams from the Big Bear Solar Observatory (BBSO) H-alpha archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have ...

  10. Filament overwrapped motor case technology

    Compton, Joel P.

    1993-11-01

    Atlantic Research Corporation (ARC) joined with the French Societe Europeenne de Propulsion (SEP) to develop and deliver to the U.S. Navy a small quantity of composite filament wound rocket motors to demonstrate a manufacturing technique that was being applied at the two companies. It was perceived that the manufacturing technique could produce motors that would be light in weight, inexpensive to produce, and that had a good chance of meeting insensitive munitions (IM) requirements that were being formulated by the Navy in the early 1980s. Under subcontract to ARC, SEP designed, tested, and delivered 2.75-inch rocket motors to the U.S. Navy for IM tests that were conducted in 1989 at China Lake, California. The program was one of the first to be founded by Nunn Amendment money. The Government-to-Government program was sponsored by the Naval Air Systems Command and was monitored by the Naval Surface Warfare Center, Indian Head (NSWC-IH), Maryland. The motor propellant that was employed was a new, extruded composite formulation that was under development at the Naval Surface Warfare Center. The following paper describes the highlights of the program and gives the results of structural and ballistic static tests and insensitive munitions tests that were conducted on demonstration motors.

  11. Pressure effects on the femtosecond laser filamentation

    Qi, Xiexing; Ma, Cunliang; Lin, Wenbin

    2016-01-01

    We investigate the pressure effects on the propagation of the laser pulse with wavelength of 800 nm by numerical simulations. We consider the effects on the on-axis intensity, the beam radius and the energy of the filament, as well as the on-axis density of plasma. Numerical results show that when the pressures increase, the length, radius and energy of the light filament become shorter, narrower and lower, respectively. Moreover, we find that the length and the radius of filament are approximately inversely proportional to the pressure and the square root of pressure, respectively, and the pulse with shorter duration is easier to be affected by the pressure. We also obtain the conclusion that the plasma is not necessary to generate the filament in gases in various pressures, as stated by Béjot et al. [1] for the case of standard atmosphere pressure.

  12. Intermediate filaments in small configuration spaces.

    Nöding, Bernd; Köster, Sarah

    2012-02-24

    Intermediate filaments play a key role in cell mechanics. Apart from their great importance from a biomedical point of view, they also act as a very suitable micrometer-sized model system for semiflexible polymers. We perform a statistical analysis of the thermal fluctuations of individual filaments confined in microchannels. The small channel width and the resulting deflections at the walls give rise to a reduction of the configuration space by about 2 orders of magnitude. This circumstance enables us to precisely measure the intrinsic persistence length of vimentin intermediate filaments and to show that they behave as ideal wormlike chains; we observe that small fluctuations in perpendicular planes decouple. Furthermore, the inclusion of results for confined actin filaments demonstrates that the Odijk confinement regime is valid over at least 1 order of magnitude in persistence length. PMID:22463576

  13. Can we determine the filament chirality by the filament footpoint location or the barb-bearing?

    Hao, Qi; Guo, Yang; Fang, Cheng; Chen, Peng-Fei; Cao, Wen-Da

    2016-01-01

    We attempt to propose a method for automatically detecting the solar filament chirality and barb bearing. We first introduce the concept of an unweighted undirected graph and adopt the Dijkstra shortest path algorithm to recognize the filament spine. Then, we use the polarity inversion line (PIL) shift method for measuring the polarities on both sides of the filament, and employ the connected components labeling method to identify the barbs and calculate the angle between each barb and the spine to determine the bearing of the barbs, i.e., left or right. We test the automatic detection method with Hα filtergrams from the Big Bear Solar Observatory (BBSO) Hα archive and magnetograms observed with the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Four filaments are automatically detected and illustrated to show the results. The barbs in different parts of a filament may have opposite bearings. The filaments in the southern hemisphere (northern hemisphere) mainly have left-bearing (right-bearing) barbs and positive (negative) magnetic helicity, respectively. The tested results demonstrate that our method is efficient and effective in detecting the bearing of filament barbs. It is demonstrated that the conventionally believed one-to-one correspondence between filament chirality and barb bearing is not valid. The correct detection of the filament axis chirality should be done by combining both imaging morphology and magnetic field observations.

  14. Hoop tensile properties of filament wound pipes

    Srebrenkoska, Vineta; Zhezhova, Silvana; Naseva, Simona

    2015-01-01

    In this study hoop tensile properties of continuous fiber reinforced composites pipes are investigated. The test pipes were manufactured of glass fiber and epoxy resin by filament winding method with three different winding angle configurations (10°, 45° and 90°). Three specimens from each model of filament wound pipes with help of split-disk tests were tested and the hoop tensile strengths and modulus of elasticity were determined. From received results it is concluded that, mechanical prope...

  15. A Robust Actin Filaments Image Analysis Framework.

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-08-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a 'cartoon' part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the 'cartoon' image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts grown in

  16. A Robust Actin Filaments Image Analysis Framework

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-01-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a ‘cartoon’ part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the ‘cartoon’ image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts

  17. Laser filament-induced aerosol formation

    Saathoff, H.; Henin, S.; Stelmaszczyk, K.; Petrarca, M.; Delagrange, R.; Hao, Z.; Lüder, J.; Möhler, O.; Y. Petit; Rohwetter, P.; Schnaiter, M.; Kasparian, J.; Leisner, T.; J.-P. Wolf; Wöste, L.

    2012-01-01

    Using the aerosol and cloud simulation chamber AIDA we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon-oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with partic...

  18. Laser filament-induced aerosol formation

    Saathoff, H.; Henin, S.; Stelmaszczyk, K.; Petrarca, M.; Delagrange, R.; Hao, Z.; Lüder, J.; Möhler, O.; Y. Petit; Rohwetter, P.; Schnaiter, M.; Kasparian, J.; Leisner, T.; J.-P. Wolf; Wöste, L.

    2013-01-01

    Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with parti...

  19. Laser filament-induced aerosol formation

    Saathoff, H.; Henin, S.; Stelmaszczyk, K.; Petrarca, M.; Delagrange, R.; Hao, Z.; Lüder, J.; Möhler, O.; Y. Petit; Rohwetter, P.; Schnaiter, M.; Kasparian, J.; Leisner, T.; Wolf, J.-P.; Wöste, L.

    2013-01-01

    Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to...

  20. Theory of swimming filaments in viscoelastic media

    Fu, Henry C.; Powers, Thomas R.; Wolgemuth, Charles W.

    2007-01-01

    Motivated by the swimming of sperm in the non-Newtonian fluids of the female mammalian reproductive tract, we examine the swimming of filaments in the nonlinear viscoelastic Upper Convected Maxwell model. We obtain the swimming velocity and hydrodynamic force exerted on an infinitely long cylinder with prescribed beating pattern. We use these results to examine the swimming of a simplified sliding-filament model for a sperm flagellum. Viscoelasticity tends to decrease swimming speed, and chan...

  1. Filaments in the Lupus molecular clouds

    Benedettini, M; Pezzuto, S; Elia, D; André, P; Könyves, V; Schneider, N; Tremblin, P; Arzoumanian, D; di Giorgio, A M; Di Francesco, J; Hill, T; Molinari, S; Motte, F; Nguyen-Luong, Q; Palmeirim, P; Rivera-Ingraham, A; Roy, A; Rygl, K L J; Spinoglio, L; Ward-Thompson, D; White, G J

    2015-01-01

    We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities, with a median value of $\\sim$1.5$\\times$10$^{21}$ cm$^{-2}$ and most have masses per unit length lower than the maximum critical value for radial gravitational collapse. Indeed, no evidence of filament contraction has been seen in the gas kinematics. We find that some filaments, that on average are thermally subcritical, contain dense cores that may eventually form stars. This is an indication that in the low column density regime, the critical condition for the formation of stars may be reached only locally and this condition is not a global property of the filament. Finally, in Lupus we find multiple observational evidences of the key role that the magnetic field plays in forming filaments, and determining their confinement and dynamical evolution.

  2. Filaments in the Lupus molecular clouds

    Benedettini, M.; Schisano, E.; Pezzuto, S.; Elia, D.; André, P.; Könyves, V.; Schneider, N.; Tremblin, P.; Arzoumanian, D.; di Giorgio, A. M.; Di Francesco, J.; Hill, T.; Molinari, S.; Motte, F.; Nguyen-Luong, Q.; Palmeirim, P.; Rivera-Ingraham, A.; Roy, A.; Rygl, K. L. J.; Spinoglio, L.; Ward-Thompson, D.; White, G. J.

    2015-10-01

    We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities, with a median value of ˜1.5 × 1021 cm-2 and most have masses per unit length lower than the maximum critical value for radial gravitational collapse. Indeed, no evidence of filament contraction has been seen in the gas kinematics. We find that some filaments, that on average are thermally subcritical, contain dense cores that may eventually form stars. This is an indication that in the low column density regime, the critical condition for the formation of stars may be reached only locally and this condition is not a global property of the filament. Finally, in Lupus we find multiple observational evidences of the key role that the magnetic field plays in forming filaments, and determining their confinement and dynamical evolution.

  3. Thermal and Chemical Evolution of Collapsing Filaments

    Gray, William J

    2013-01-01

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, $Z \\approx 0.1 Z_\\odot $ filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, $Z=10^{-3} Z_\\odot$ filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which lead...

  4. Filaments in Simulations of Molecular Cloud Formation

    Gomez, Gilberto C

    2013-01-01

    We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much larger than the average Jeans mass. Thus, the collapse is hierarchical in nature, proceeding along its shortest dimension first. This naturally produces filaments in cloud, and clumps within the filaments. The filaments are not in equilibrium at any time, but instead are long-lived flow features, through which the gas flows from the cloud to the clumps. The filaments are long-lived because they accrete from their environment while simultaneously accreting onto the clumps within them; they are essentially the locus where the flow changes from accreting in two dimensions to accreting in one dimension. Moreover, the clumps also exhibit a hierarchical nature: the gas in a filament flows onto a main, central clump, but other, smaller-scale clumps form along the infalli...

  5. Multiple filamentation Ti:Sapphire-laser pulses in water

    Apeksimov, D. V.; Bukin, O. A.; Golik, S. S.; Zemlyanov, A. A.; Kabanov, A. M.; Kuchinskaya, O. I.; Mayor, A. Yu.; Matvienko, G. G.; Petrov, A. V.; Sokolova, E. B.

    2015-11-01

    The results of experimental studies of the spatial characteristics of multiple filamentation terawatt femtosecond Ti:Salaser in water are presented. With an increase in initial power laser pulses increases the number of filaments, the length of the field is increased filamentation and reducing the length of the filaments have been shown. The distribution of the filaments in the longitudinal direction of the field of multiple filamentation has a maximum cross-sectional filament is shifted from the center to the periphery of the beam at the end region of filamentation. The minimum diameter of the beam on the track corresponds to the position of the maximum number of filaments. After the point of maximum impulse essentially loses energy in the initial direction of propagation. Upon reaching the pulse power 2 104 Pcr of multiple filamentation area is formed of a hollow cone, the apex directed to the radiation source.

  6. Potential fields of merging and splitting filaments in air

    Ma Yuan-Yuan; Lu Xin; Xi Ting-Ting; Hao Zuo-Qiang; Gong Qi-Huang; Zhang Jie

    2007-01-01

    Two interacting light filaments with different initial phases propagating in air are investigated numerically by using a ray tracing method. The evolution of the rays of a filament is governed by a potential field. During propagation, the two potential wells of the two filaments can merge into one or repel each other, depending on the initial phase difference between the two filaments. The study provides a simple description of the interacting filaments.

  7. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    Li, Ting; Ji, Haisheng

    2015-01-01

    We make a comparative analysis for two filaments that showed quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) are carried out to analyze the two filaments on 2013 August 17-20 and September 29. The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4*10^21 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed within 3 days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2*10^20 Mx, about one ...

  8. Theory of a filament initiated nitrogen laser

    Kartashov, Daniil; Ališauskas, Skirmantas; Pugžlys, Audrius; Shneider, Mikhail N.; Baltuška, Andrius

    2015-05-01

    We present the theoretical model for a single-pass, discharge-type standoff nitrogen laser initiated by a femtosecond filament in nitrogen gas. The model is based on the numerical solution of the kinetic equation for the electron energy distribution function self-consistently with balance equations for nitrogen species and laser equations. We identify the kinetic mechanisms responsible for a buildup of population inversion in the filament afterglow plasma and determine the dependence of population inversion density and the parameters of nitrogen lasing at a 337 nm wavelength corresponding to the transition between the C3Πu (v = 0) excited and the X1Σg (v = 0) ground electronic states in a nitrogen molecule on the polarization and wavelength of the driver laser pulse used to produce the filament. We show that population inversion is achieved on an ultrafast time scale of ≈10 ps and decays within the time: <100 ps. We derive the low-signal gain 2.2 cm-1 for lasing from a circularly polarized 0.8 μm near-IR filament and 0.16 cm-1 for a linearly polarized 4 μm mid-IR filament. The results of the numerical simulations demonstrate good quantitative agreement with the experimental measurements.

  9. Nonlinear elasticity of semiflexible filament networks.

    Meng, Fanlong; Terentjev, Eugene M

    2016-08-10

    We develop a continuum theory for equilibrium elasticity of a network of crosslinked semiflexible filaments, spanning the full range between flexible entropy-driven chains to stiff athermal rods. We choose the 3-chain constitutive model of network elasticity over several plausible candidates, and derive analytical expressions for the elastic energy at arbitrary strain, with the corresponding stress-strain relationship. The theory fits well to a wide range of experimental data on simple shear in different filament networks, quantitatively matching the differential shear modulus variation with stress, with only two adjustable parameters (which represent the filament stiffness and the pre-tension in the network, respectively). The general theory accurately describes the crossover between the positive and negative Poynting effect (normal stress on imposed shear) on increasing the stiffness of filaments forming the network. We discuss the network stability (the point of marginal rigidity) and the phenomenon of tensegrity, showing that filament pre-tension on crosslinking into the network determines the magnitude of linear modulus G0. PMID:27444846

  10. The hydrodynamic stability of gaseous cosmic filaments

    Birnboim, Yuval; Zinger, Elad

    2016-01-01

    Virial shocks at edges of cosmic-web structures are a clear prediction of standard structure formation theories. We derive a criterion for the stability of the post-shock gas and of the virial shock itself in spherical, filamentary and planar infall geometries. When gas cooling is important, we find that shocks become unstable, and gas flows uninterrupted towards the center of the respective halo, filament or sheet. For filaments, we impose this criterion on self-similar infall solutions. We find that instability is expected for filament masses between $10^{11}-10^{13}M_\\odot Mpc^{-1}.$ Using a simplified toy model, we then show that these filaments will likely feed halos with $10^{10}M_{\\odot}\\lesssim M_{halo}\\lesssim 10^{13}M_{\\odot}$ at redshift $z=3$, as well as $10^{12}M_{\\odot}\\lesssim M_{halo}\\lesssim 10^{15}M_{\\odot}$ at $z=0$. The instability will affect the survivability of the filaments as they penetrate gaseous halos in a non-trivial way. Additionally, smaller halos accreting onto non-stable filam...

  11. Galaxy alignment as a probe of large-scale filaments

    Rong, Yu; Liu, Yuan; Zhang, Shuang-Nan

    2016-01-01

    The orientations of the red galaxies in a filament are aligned with the orientation of the filament. We thus develop a location-alignment-method (LAM) of detecting filaments around clusters of galaxies, which uses both the alignments of red galaxies and their distributions in two-dimensional images. For the first time, the orientations of red galaxies are used as probes of filaments. We apply LAM to the environment of Coma cluster, and find four filaments (two filaments are located in sheets) in two selected regions, which are compared with the filaments detected with the method of Falco et al.. We find that LAM can effectively detect the filaments around a cluster, even with 3σ confidence level, and clearly reveal the number and overall orientations of the detected filaments. LAM is independent of the redshifts of galaxies, and thus can be applied at relatively high redshifts and to the samples of red galaxies without the information of redshifts.

  12. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko, E-mail: otani@riken.jp [Terahertz Sensing and Imaging Research Team, RIKEN Center for Advanced Photonics, RIKEN, Sendai, Miyagi 980-0845 (Japan); Midorikawa, Katsumi [Attosecond Science Research Team, RIKEN Center for Advanced Photonics, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changing the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.

  13. Free-Space Nonlinear Beam Combining Towards Filamentation

    Rostami, Shermineh; Kepler, Daniel; Baudelet, Matthieu; Litchinitser, Natalia M; Richardson, Martin

    2016-01-01

    Multi-filamentation opens new degrees of freedom for manipulating electromagnetic waves in air. However, without control, multiple filament interactions, including attraction, repulsion or fusion often result in formation of complex disordered filament distributions. Moreover, high power beams conventionally used in multi-filament formation experiments often cause significant surface damage. The growing number of applications for laser filaments requires fine control of their formation and propagation. We demonstrate, experimentally and theoretically, that the attraction and fusion of ultrashort beams with initial powers below the critical value enable the eventual formation of a filament downstream. Filament formation is delayed to a predetermined distance in space, avoiding optical damage to external beam optics while still enabling robust filaments with controllable properties as if formed from a single high power beam. This paradigm introduces new opportunities for filament engineering eliminating the nee...

  14. Unwinding motion of a twisted active-region filament

    Yan, X L; Liu, J H; Kong, D F; Xu, C L

    2014-01-01

    To better understand the structures of active-region filaments and the eruption process, we study an active-region filament eruption in active region NOAA 11082 in detail on June 22, 2010. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament is consisted of twisted magnetic field lines. The total twist of the filament is at least 5$\\pi$ obtained by using time slice method. According to the morphology change during the filament eruption, it is found that the active-region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magn...

  15. Structure, Dynamics, and Assembly of Filamentous Bacteriophages by Nuclear Magnetic Resonance Spectroscopy

    Opella, Stanley J.; Zeri, Ana Carolina; Park, Sang Ho

    2008-05-01

    Filamentous bacteriophages serve as model systems for the development and implementation of spectroscopic methods suitable for biological supramolecular assemblies. Not only are their coat proteins small and readily prepared in the laboratory, but they also have two primary roles as membrane proteins and as the principal structural element of the virus particles. As a bacterial system, they are readily labeled with stable isotopes, and this has opened possibilities for the many nuclear magnetic resonance (NMR) studies described in this review. In particular, solid-state NMR of aligned samples has been used to determine the three-dimensional structures of both the membrane-bound forms of coat proteins in phospholipid bilayers and structural forms in virus particles, which has led to an analysis of the assembly mechanism for virus particles as they are extruded through the cell membrane.

  16. High brightness semiconductor lasers with reduced filamentation

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.; Houlihan, John; Mullane, Mark; O'Neill, Eamonn

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture....... Large apertures result in high order transverse modes, filamentation and spatio-temporal instabilities, all of which degrade spatial coherence and therefore brightness. We shall describe a combined assault on three fronts: (1) minimise aperture size required for a given power by maximising the facet...... damage threshold, (2) for a given aperture, minimise self-focusing and filamentation by minimising the effective nonlinear coefficient (the alpha parameter), and (3) for a given aperture and nonlinear coefficient, develop optical cavities and propagation structures to suppress filamentation and high...

  17. Heterologous expression of cellobiohydrolases in filamentous fungi

    Zoglowek, Marta; Lübeck, Peter S.; Ahring, Birgitte K.;

    2015-01-01

    Cellobiohydrolases are among the most important enzymes functioning in the hydrolysis of crystalline cellulose, significantly contributing to the efficient biorefining of recalcitrant lignocellulosic biomass into biofuels and bio-based products. Filamentous fungi are recognized as both well...... into valuable products. However, due to low cellobiohydrolase activities, certain fungi might be deficient with regard to enzymes of value for cellulose conversion, and improving cellobiohydrolase expression in filamentous fungi has proven to be challenging. In this review, we examine the effects of altering...... promoters, signal peptides, culture conditions and host post-translational modifications. For heterologous cellobiohydrolase production in filamentous fungi to become an industrially feasible process, the construction of site-integrating plasmids, development of protease-deficient strains and glycosylation...

  18. High brightness semiconductor lasers with reduced filamentation

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.;

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture....... Large apertures result in high order transverse modes, filamentation and spatio-temporal instabilities, all of which degrade spatial coherence and therefore brightness. We shall describe a combined assault on three fronts: (1) minimise aperture size required for a given power by maximising the facet...... damage threshold, (2) for a given aperture, minimise self-focusing and filamentation by minimising the effective nonlinear coefficient (the alpha parameter), and (3) for a given aperture and nonlinear coefficient, develop optical cavities and propagation structures to suppress filamentation and high...

  19. Reduced filamentation in high power semiconductor lasers

    Skovgaard, Peter M. W.; McInerney, John; O'Brien, Peter

    1999-01-01

    High brightness semiconductor lasers have applications in fields ranging from material processing to medicine. The main difficulty associated with high brightness is that high optical power densities cause damage to the laser facet and thus require large apertures. This, in turn, results in spatio......-temporal instabilities such as filamentation which degrades spatial coherence and brightness. We first evaluate performance of existing designs with a “top-hat” shaped transverse current density profile. The unstable nature of highly excited semiconductor material results in a run-away process where small modulations in...... the optical field causes spatial hole-burning and thus filamentation. To reduce filamentation we propose a new, relatively simple design based on inhomogeneous pumping in which the injected current has a gradual transverse profile. We confirm the improved laser performance theoretically and...

  20. SOLAR MAGNETIZED 'TORNADOES': RELATION TO FILAMENTS

    Solar magnetized 'tornadoes', a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but are rooted in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar 'tornadoes' (two papers which focused on different aspects of solar tornadoes were published in the Astrophysical Journal Letters and Nature, respectively, during the revision of this Letter). A detailed case study of two events indicates that they are rotating vertical magnetic structures probably driven by underlying vortex flows in the photosphere. They usually exist as a group and are related to filaments/prominences, another important solar phenomenon whose formation and eruption are still mysteries. Solar tornadoes may play a distinct role in the supply of mass and twists to filaments. These findings could lead to a new explanation of filament formation and eruption.

  1. Oscillating Filaments: I - Oscillation and Geometrical Fragmentation

    Gritschneder, Matthias; Burkert, Andreas

    2016-01-01

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid based AMR-code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, e.g. with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process `geometrical fragmentation'. In our realization the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristical scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. ...

  2. Filament velocity scaling laws for warm ions

    The dynamics of filaments or blobs in the scrape-off layer of magnetic fusion devices are studied by magnitude estimates of a comprehensive drift-interchange-Alfvén fluid model. The standard blob models are reproduced in the cold ion case. Even though usually neglected, in the scrape-off layer, the ion temperature can exceed the electron temperature by an order of magnitude. The ion pressure affects the dynamics of filaments amongst others by adding up to the interchange drive and the polarisation current. It is shown how both effects modify the scaling laws for filament velocity in dependence of its size. Simplifications for experimentally relevant limit regimes are given. These are the sheath dissipation, collisional, and electromagnetic regime

  3. Geometrically frustrated filament assemblies: Unravelling the connection between bundle shape and inter-filament order

    Grason, Gregory

    2014-03-01

    From steel cables and textile fibers to filamentous protein bundles in cells and tissues, densely-packed assemblies of filaments are vital structural elements of the worlds around us and inside of us. Despite the ubiquity and utility of dense-filament assemblies in such diverse materials (across 7 orders of magnitude in size!) surprisingly little is known about the fundamental rules that govern their structure. This talk will discuss recent progress in our understanding of the non-linear relationship between the geometry of a rope-like assembly and the structure and energetics of inter-filament packing. In particular, we focus on mathematical models of the geometric frustration between twist - as in macroscopic cables or chiral biofilament bundles - and the preference for isometric, or ``constant spacing,'' packing of filaments in the cross section. Any measure of twist makes it geometrically impossible to evenly space filaments in bundles, begging the question what is the optimal packing of a twisted bundle? We show that geometry of interfilament contact can be mapped formally onto a problem of packing on a 2D non-Euclidean surfaces, whose intrinsically-curved geometry points to the necessity of a complex spectrum defects in the ground-state packing. We confirm the existence of defects and their sensitivity to bundle twist and radius through simulations of energy-minimizing assemblies of cohesive filaments.

  4. On the nature of star-forming filaments: I. Filament morphologies

    Smith, Rowan J; Klessen, Ralf S

    2014-01-01

    We use a suite of high resolution molecular cloud simulations carried out with the moving mesh code Arepo to explore the nature of star-forming filaments. The simulated filaments are identified and categorised from column density maps in the same manner as for recent Herschel observations. When fit with a Plummer-like profile the filaments are in excellent agreement with observations, and have shallow power-law profiles of p~2.2 without the need for magnetic support. The derived filament widths depend on the data range that is fitted. When data within 1 pc of the filament centre is fitted with a Gaussian function, the average FWHM is ~0.3 pc, in agreement with predictions for accreting filaments. However, if the fit is constructed using only data within 0.35 pc of the centre, in order to better match the procedure used to derive filament widths from Herschel observations, the resulting FWHM is only ~0.2 pc. This value is larger than that measured in IC 5146 and Taurus, but is similar to that found in the Plan...

  5. The exo-metabolome in filamentous fungi

    Thrane, Ulf; Andersen, Birgitte; Frisvad, Jens Christian;

    2007-01-01

    Filamentous fungi are a diverse group of eukaryotic microorganisms that have a significant impact on human life as spoilers of food and feed by degradation and toxin production. They are also most useful as a source of bulk and fine chemicals and pharmaceuticals. This chapter focuses on the exo......-metabolome in filamentous fungi, which comprises more than 30,000 known secondary metabolites. Profiles of this diverse range of secondary metabolites have, for more than 25 years, been central in development of fungal systematics, taxonomy, and ecology, today integrated in a multidisciplinary and polyphasic approach...

  6. Terahertz radiation from a laser plasma filament.

    Wu, H-C; Meyer-Ter-Vehn, J; Ruhl, H; Sheng, Z-M

    2011-03-01

    By the use of two-dimensional particle-in-cell simulations, we clarify the terahertz (THz) radiation mechanism from a plasma filament formed by an intense femtosecond laser pulse. The nonuniform plasma density of the filament leads to a net radiating current for THz radiation. This current is mainly located within the pulse and the first cycle of the wakefield. As the laser pulse propagates, a single-cycle and radially polarized THz pulse is constructively built up forward. The single-cycle shape is mainly due to radiation damping effect. PMID:21517604

  7. Collision of almost parallel vortex filaments

    Banica, Valeria; Faou, Erwan; Miot, Evelyne

    2015-01-01

    We investigate the occurrence of collisions in the evolution of vortex filaments through a system introduced by Klein, Majda and Damodaran [KMD95] and Zakharov [Z88, Z99]. We first establish rigorously the existence of a pair of almost parallel vortex filaments, with opposite circulation, colliding at some point in finite time. The collision mechanism is based on the one of the self-similar solutions of the model, described in [BFM14]. In the second part of this paper we extend this construct...

  8. Nuclear flow in a filamentous fungus

    Hickey, Patrick C; Read, Nick; Glass, N Louise; Roper, Marcus

    2012-01-01

    The syncytial cells of a filamentous fungus consist of a mass of growing, tube-like hyphae. Each extending tip is fed by a continuous flow of nuclei from the colony interior, pushed by a gradient in turgor pressure. The myco-fluidic flows of nuclei are complex and multidirectional, like traffic in a city. We map out the flows in a strain of the model filamentous fungus {\\it N. crassa} that has been transformed so that nuclei express either hH1-dsRed (a red fluorescent nuclear protein) or hH1-GFP (a green-fluorescent protein) and report our results in a fluid dynamics video.

  9. Ebola Virus ─ A Global Threat

    Mejbah Uddin Ahmed; Sushmita Roy

    2015-01-01

    Ebola virus is a filamentous, enveloped, non-segmented, single-stranded, negative-sense RNA virus. It belongs to the Filoviridae and was first recognized near the Ebola River valley in Zaire in 1976. Since then most of the outbreaks have occurred to both human and nonhuman primates in sub-Saharan Africa. Ebola virus causes highly fatal hemorrhagic fever in human and nonhuman primates. In addition to hemorrhagic fever, it could be used as a bioterrorism agent. Although its natural reservoir is...

  10. Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography

    Tanmay A M Bharat; Noda, Takeshi; Riches, James D.; Kraehling, Verena; Kolesnikova, Larissa; Becker, Stephan; Kawaoka, Yoshihiro; Briggs, John A G

    2012-01-01

    Ebola virus is a highly pathogenic filovirus causing severe hemorrhagic fever with high mortality rates. It assembles heterogenous, filamentous, enveloped virus particles containing a negative-sense, single-stranded RNA genome packaged within a helical nucleocapsid (NC). We have used cryo-electron microscopy and tomography to visualize Ebola virus particles, as well as Ebola virus-like particles, in three dimensions in a near-native state. The NC within the virion forms a left-handed helix wi...

  11. Rupture and recoil of bent-core liquid crystal filaments.

    Salili, S M; Ostapenko, T; Kress, O; Bailey, C; Weissflog, W; Harth, K; Eremin, A; Stannarius, R; Jákli, A

    2016-05-25

    The recoil process of free-standing liquid crystal filaments is investigated experimentally and theoretically. We focus on two aspects, the contraction speed of the filament and a spontaneously formed undulation instability. At the moment of rupture, the filaments buckle similarly to the classical Euler buckling of elastic rods. The tip velocity decays with decreasing filament length. The wavelength of buckling affinely decreases with the retracting filament tip. The energy gain related to the decrease of the total length and surface area of the filaments is mainly dissipated by layer rearrangements during thickening of the fibre. A flow back into the meniscus is relevant only in the final stage of the recoil process. We introduce a model for the quantitative description of the filament retraction speed. The dynamics of this recoil behaviour may find relevance as a model for biology-related filaments. PMID:27140824

  12. Interaction of Two Filament Channels of Different Chiralities

    Joshi, Navin Chandra; Schmieder, Brigitte; Magara, Tetsuya; Moon, Young-Jae; Uddin, Wahab

    2016-01-01

    We present observations of interactions between the two filament channels of different chiralities and associated dynamics that occurred during 2014 April 18 -- 20. While two flux ropes of different helicity with parallel axial magnetic fields can only undergo a bounce interaction when they are brought together, the observations at the first glance show that the heated plasma is moving from one filament channel to the other. The SDO/AIA 171 A observations and the PFSS magnetic field extrapolation reveal the presence of fan-spine magnetic configuration over the filament channels with a null point located above them. Three different events of filament activations, partial eruptions, and associated filament channel interactions have been observed. The activation initiated in one filament channel seems to propagate along the neighbour filament channel. We believe that the activation and partial eruption of the filaments bring the field lines of flux ropes containing them closer to the null point and trigger the m...

  13. Experimental study of a three dimensional cylinder-filament system

    Brosse, Nicolas; Lundell, Fredrik; Bagheri, Shervin

    2015-01-01

    This experimental study reports on the behavior of a filament attached to the rear of a three- dimensional cylinder. The axis of the cylinder is placed normal to a uniform incoming flow and the filament is free to move in the cylinder wake. The mean position of the filament is studied as a function of the filament length L. It is found that for long (L/D > 6.5, where D is the cylinder diameter) and short (L/D < 2) filaments the mean position of the filament tends to align with the incoming flow, whereas for intermediate filament lengths (2 < L/D < 6.5) the filament lies down on the cylinder and tends to align with the cylinder axis. The underlying mechanism of the bifurcations are discussed and related to buckling and inverted-pendulum-like instabilities.

  14. Assembly characteristics of plant keratin intermediate filaments in vitro

    闵光伟; 杨澄; 佟向军; 翟中和

    1999-01-01

    After selective extraction and purification, plant keratin intermediate filaments were reassembled in vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filaments in vitro. In higher magnification images, it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24—25 nm periodic structural repeat alone the axis of beth the 10 nm filaments and protofilaments. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments.

  15. Multiple Filamentation of Laser Pulses in a Glass

    Apeksimov, D. V.; Bukin, O. A.; Golik, S. S.; Zemlyanov, A. A.; Iglakova, A. N.; Kabanov, A. M.; Kuchinskaya, O. I.; Matvienko, G. G.; Oshlakov, V. K.; Petrov, A. V.; Sokolova, E. B.

    2016-03-01

    Results are presented of experiments on investigation of the spatial characteristics of multi-filamentation region of giga- and terawatt pulses of a Ti:sapphire laser in a glass. Dependences are obtained of the coordinate of the beginning of filamentation region, number of filaments, their distribution along the laser beam axis, and length of filaments on the pulse power. It is shown that with increasing radiation power, the number of filaments in the multi-filamentation region decreases, whereas the filament diameter has a quasiconstant value for all powers realized in the experiments. It is shown that as a certain power of the laser pulse with Gauss energy density distribution is reached, the filamentation region acquires the shape of a hollow cone with apex directed toward the radiation source.

  16. Dynamics of filament formation in a Kerr medium

    We have studied the large-scale beam breakup and filamentation of femtosecond pulses in a Kerr medium. We have experimentally monitored the formation of stable light filaments, conical emission, and interactions between filaments. Three major stages lead to the formation of stable light filaments: First the beam breaks up into a pattern of connected lines (constellation), then filaments form on the constellations, and finally the filaments release a fraction of their energy through conical emission. We observed a phase transition to a faster filamentation rate at the onset of conical emission. We attribute this to the interaction of conical emissions with the constellation which creates additional filaments. Numerical simulations show good agreement with the experimental results

  17. Filamentous bacteria transport electrons over centimetre distances

    Pfeffer, Christian; Larsen, Steffen; Song, Jie;

    2012-01-01

    across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living...

  18. Multiple breathers on a vortex filament

    Salman, H.

    2014-10-01

    In this paper we investigate the correspondence between the Da Rios-Betchov equation, which appears in the three-dimensional motion of a vortex filament, and the nonlinear Schrödinger equation. Using this correspondence we map a set of solutions corresponding to breathers in the nonlinear Schrödinger equation to waves propagating along a vortex filament. The work presented generalizes the recently derived family of vortex configurations associated with these breather solutions to a wider class of configurations that are associated with combination homoclinic/heteroclinic orbits of the 1D self-focussing nonlinear Schrödinger equation. We show that by considering these solutions of the governing nonlinear Schrödinger equation, highly nontrivial vortex filament configurations can be obtained that are associated with a pair of breather excitations. These configurations can lead to loop-like excitations emerging from an otherwise weakly perturbed helical vortex. The results presented further demonstrate the rich class of solutions that are supported by the Da Rios-Betchov equation that is recovered within the local induction approximation for the motion of a vortex filament.

  19. On viscoelastic instability in polymeric filaments

    Rasmussen, Henrik Koblitz; Hassager, Ole

    The 3D Lagrangian Integral Method is used to simulate the effects of surface tension on the viscoelastic end-plate instability, occuring in the rapid extension of some polymeric filaments between parallel plates. It is shovn that the surface tension delays the onset of the instability. Furthermore...

  20. Filament stretching rheometer: inertia compensation revisited

    Szabo, Peter; McKinley, Gareth H.

    2003-01-01

    The necessary inertia compensation used in the force balance for the filament stretching rheometer is derived for an arbitrary frame of reference. This enables the force balance to be used to extract correctly the extensional viscosity from measurements of the tensile force at either end of the...

  1. Modelling the morphology of filamentous microorganisms

    Nielsen, Jens Bredal

    1996-01-01

    The rapid development in image analysis techniques has made it possible to study the growth kinetics of filamentous microorganisms in more detail than previously, However, owing to the many different processes that influence the morphology it is important to apply mathematical models to extract...

  2. Electric field generation by the electron beam filamentation instability: Filament size effects

    Dieckmann, M E

    2009-01-01

    The filamentation instability (FI) of counter-propagating beams of electrons is modelled with a particle-in-cell simulation in one spatial dimension and with a high statistical plasma representation. The simulation direction is orthogonal to the beam velocity vector. Both electron beams have initially equal densities, temperatures and moduli of their nonrelativistic mean velocities. The FI is electromagnetic in this case. A previous study of a small filament demonstrated, that the magnetic pressure gradient force (MPGF) results in a nonlinearly driven electrostatic field. The probably small contribution of the thermal pressure gradient to the force balance implied, that the electrostatic field performed undamped oscillations around a background electric field. Here we consider larger filaments, which reach a stronger electrostatic potential when they saturate. The electron heating is enhanced and electrostatic electron phase space holes form. The competition of several smaller filaments, which grow simultaneo...

  3. Structure and paramyosin content of tarantula thick filaments

    1983-01-01

    Muscle fibers of the tarantula femur exhibit structural and biochemical characteristics similar to those of other long-sarcomere invertebrate muscles, having long A-bands and long thick filaments. 9-12 thin filaments surround each thick filament. Tarantula muscle has a paramyosin:myosin heavy chain molecular ratio of 0.31 +/- 0.079 SD. We studied the myosin cross-bridge arrangement on the surface of tarantula thick filaments on isolated, negatively stained, and unidirectionally metal-shadowed...

  4. On the filament motion in magnetic field of active regions

    The study of filament motion in magnetic field of active regions is fulfiled. Filament movement can possibly be presented as a drift in the crossed fields, but there exist fast movements that cannot be described as a drift. For very fast motion, with acceleration greater than that of free fall, it is sometimes necessary to assume, that the motion is carried out due to the filament's own electric current. A model, describing filament motion data, given by Mouradian M. is presented

  5. A penny-shaped crack in a filament-reinforced matrix. I - The filament model. II - The crack problem

    Erdogan, F.; Pacella, A. H.

    1974-01-01

    The study deals with the elastostatic problem of a penny-shaped crack in an elastic matrix which is reinforced by filaments or fibers perpendicular to the plane of the crack. An elastic filament model is first developed, followed by consideration of the application of the model to the penny-shaped crack problem in which the filaments of finite length are asymmetrically distributed around the crack. Since the primary interest is in the application of the results to studies relating to the fracture of fiber or filament-reinforced composites and reinforced concrete, the main emphasis of the study is on the evaluation of the stress intensity factor along the periphery of the crack, the stresses in the filaments or fibers, and the interface shear between the matrix and the filaments or fibers. Using the filament model developed, the elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix is formulated.

  6. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    Soto, Leopoldo, E-mail: lsoto@cchen.cl; Pavez, Cristian; Moreno, José [Comisión Chilena de Energía Nuclear, CCHEN, Casilla 188-D, Santiago (Chile); Center for Research and Applications in Plasma Physics and Pulsed Power, P4, Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, República 220, Santiago (Chile); Castillo, Fermin [Universidad Nacional Autónoma de México, Cuernavaca, México (Mexico); Veloso, Felipe [Instituto de Física, Pontificia Universidad Católica de Chile, 7820436 Santiago (Chile); Auluck, S. K. H. [Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments from interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.

  7. Production, characterization, and modeling of mineral filled polypropylene filaments

    George, Brian Robert

    1999-11-01

    This research produced mineral filled polypropylene filaments using a variety of fillers, characterized these filaments, and attempted to model their mechanical properties with current composite models. Also, these filaments were compared with bone to determine if they are suitable for modeling the mechanical properties of bone. Fillers used consist of wollastonite, talc, calcium carbonate, titanium dioxide, and hydroxyapatite. Fillers and polypropylene chips were combined and extruded into rods with the use of a mixer. The rods were chipped up and then formed into filaments through melt extrusion utilizing a piston extruder. Filaments with volume fractions of filler of 0.05, 0.10, 0.15, and 0.20 were produced. Additionally, some methods of trying to improve the properties of these filaments were attempted, but did not result in any significant property improvements. The fillers and filaments were visually characterized with a scanning electron microscope. Cross-sections, filament outer surfaces, fracture surfaces, and longitudinal cut open surfaces were viewed in this manner. Those filaments with anisotropic filler had some oriented filler particles, while all filaments suffered from poor adhesion between the polypropylene and the filler as well as agglomerations of filler particles. Twenty specimens of each filament were tensile tested and the average tenacity, strain, and modulus were calculated. Filaments containing talc, talc and wollastonite, titanium dioxide, or hydroxyapatite suffered from a drastic transition from ductile to brittle with the addition of 0.05 volume fraction of filler. This is evidenced by the sharp decrease in strain at this volume fraction of filler when compared to the strain of the unfilled polypropylene filament. Additionally, these same filaments suffered a sharp decrease in tenacity at the same volume fraction. These instant decreases are attributed to the agglomerations of filler in the filament. Generally, the modulus of the

  8. High-Resolution Observations of Sympathetic Filament Eruptions by NVST

    Su, Yingna; Li, Shangwei; Zhou, Tuanhui; Ji, Haisheng

    2016-05-01

    We investigate the sympathetic eruptions of two solar filaments side by side as observed by the New Vacuum Solar Telescope (NVST) on 2015 October 15. These two filaments start from the complex active region NOAA 12434 (north) and end in a large quiescent region (south). The corresponding SDO/HMI magnetic field observations suggest that the two small filaments are located above two different polarity inversion lines in the northern part. The SDO/AIA observations of the eruption show that these two filaments appear to merge into one in the southern quiescent region. The north-eastern filament starts eruption firstly, which is followed by the north-western filament eruption about 20 minutes later. Clear untwisting motions (i.e., signature of flux ropes) are observed in both filaments during the eruption. After the lifts off of the north-western filament, mini filaments are observed to emerge from the surface and rise up multiple times. The high-resolution observations reveal the fact that the filament is composed of multiple sections and multiple layers. The filament in the lower layer can merge into the upper layer, which leads to the increase of non-potentiality of the upper layer. Magnetic field models using the flux rope insertion method are also constructed in order to understand the complex magnetic configuration as well as the initiation and dynamics of the eruptions.

  9. In situ ellipsometric study of surface immobilization of flagellar filaments

    Protein filaments composed of thousands of subunits are promising candidates as sensing elements in biosensors. In this work in situ spectroscopic ellipsometry is applied to monitor the surface immobilization of flagellar filaments. This study is the first step towards the development of layers of filamentous receptors for sensor applications. Surface activation is performed using silanization and a subsequent glutaraldehyde crosslinking. Structure of the flagellar filament layers immobilized on activated and non-activated Si wafer substrates is determined using a two-layer effective medium model that accounted for the vertical density distribution of flagellar filaments with lengths of 300-1500 nm bound to the surface. The formation of the first interface layer can be explained by the multipoint covalent attachment of the filaments, while the second layer is mainly composed of tail pinned filaments floating upwards with the free parts. As confirmed by atomic force microscopy, covalent immobilization resulted in an increased surface density compared to absorption.

  10. Magnetic reconnection between a solar filament and nearby coronal loops

    Li, Leping; Peter, Hardi; Priest, Eric; Chen, Huadong; Guo, Lijia; Chen, Feng; Mackay, Duncan

    2016-01-01

    Magnetic reconnection, the rearrangement of magnetic field topology, is a fundamental physical process in magnetized plasma systems all over the universe1,2. Its process is difficult to be directly observed. Coronal structures, such as coronal loops and filament spines, often sketch the magnetic field geometry and its changes in the solar corona3. Here we show a highly suggestive observation of magnetic reconnection between an erupting solar filament and its nearby coronal loops, resulting in changes in connection of the filament. X-type structures form when the erupting filament encounters the loops. The filament becomes straight, and bright current sheets form at the interfaces with the loops. Many plasmoids appear in these current sheets and propagate bi-directionally. The filament disconnects from the current sheets, which gradually disperse and disappear, reconnects to the loops, and becomes redirected to the loop footpoints. This evolution of the filament and the loops suggests successive magnetic recon...

  11. Galaxy spin alignment in filaments and sheets: observational evidence

    Tempel, Elmo

    2013-01-01

    Galaxies properties are known to be affected by their environment. One important question is how their angular momentum reflects the surrounding cosmic web. We use the SDSS to investigate the spin axes of spiral and elliptical galaxies relative to their surrounding filament/sheet orientations. To detect filaments a marked point process with interactions (the "Bisous model") is used. Sheets are found by detecting "flattened" filaments. The minor axes of ellipticals are found to be preferentially perpendicular to hosting filaments. A weak correlation is found with sheets. These findings are consistent with the notion that elliptical galaxies formed via mergers which predominantly occurred along the filaments. The spin axis of spiral galaxies is found to align with the host filament, with no correlation between spiral spin and sheet normal. When examined as a function of distance from the filament axis, a much stronger correlation is found in outer parts, suggesting that the alignment is driven by the laminar in...

  12. Topological Aspect of Knotted Vortex Filaments in Excitable Media

    REN Ji-Rong; ZHU Tao; DUAN Yi-Shi

    2008-01-01

    Scroll waves exist ubiquitously in three-dimensional excitable media.The rotation centre can be regarded as a topological object called the vortex filament.In three-dimensional space,the vortex filaments usually form closed loops,and can be even linked and knotted.We give a rigorous topological description of knotted vortex filaments.By using the Φ-mapping topological current theory,we rewrite the topological current form of the charge density of vortex filaments,and using this topological current we reveal that the Hopf invariant of vortex filaments is just the sum of the linking and self-linking numbers of the knotted vortex filaments.We think that the precise expression of the Hopf invariant may imply a new topological constraint on knotted vortex filaments.

  13. [Characteristic of one-paired pea virus].

    Kakareka, N N; Kozlovskaia, Z N; Volkov, Iu G

    2010-01-01

    The new virus isolated from Vicia unijuga A.Br. with filament particles with size 1000-1200 x 10-12 nm is revealed. A thermal inactivation point is 55 degrees C; dilution end point - 10(-5)-10(-6) longevity in vitro in broad bean sap--less than one day. It is transferred by aphids and by pea, bean and broad bean seeds. The plants of Fabaceae, Solanaceae and Chenopodiaceae fam. were affected by this virus isolate. The virus yield was 40-50 mg per 100 g of leaves. The ratio of absorption E260/E280 corresponded to 1.4-1.5. The molecular mass of a core protein of the virus was 34 kD. The virus has a high immunogenic properties--titer is 1:256000 (indirect method of ELISA). It is presumably identified as a member of Closteroviridae. PMID:20695230

  14. Structure and dynamics of penumbral filaments

    Cobo, B Ruiz

    2008-01-01

    High-resolution observations of sunspots have revealed the existence of dark cores inside the bright filaments of the penumbra. Here we present the stationary solution of the heat transfer equation in a stratified penumbra consisting of nearly horizontal magnetic flux tubes embedded in a stronger and more vertical field. The tubes and the external medium are in horizontal mechanical equilibrium. This model produces bright filaments with dark cores as a consequence of the higher density of the plasma inside the flux tube, which shifts the surface of optical depth unity toward higher (cooler) layers. Our results suggest that the surplus brightness of the penumbra is a natural consequence of the Evershed flow, and that magnetic flux tubes about 250 km in diameter can explain the morphology of sunspot penumbra.

  15. Filament velocity scaling in SOL plasmas

    In the edge region of magnetically confined plasmas one observes intermittent transport of plasma by filaments elongated along the magnetic field lines. These filaments carry excess plasma particles and heat and are referred to as blobs. Blobs are created behind the LCFS and move radially outwards through the SOL, contributing significantly to particle and heat loss as well as wall erosion. Recent experimental progress shows a broad range of blob velocities with regimes where the blobs accelerate and regimes where it presents a constant velocity in the range of the acoustic velocity. This work presents the blob velocity scaling for a electrostatic interchange model. Numerical simulations show the blob velocity scaling depending on sheath parallel currents. We identify regimes blob acceleration behaviour and a velocity scaling depending on the size of the structure.

  16. Influence of multiple ionization in laser filamentation

    Laser filaments in gases result from the nonlinear balance between optical Kerr self-focusing and plasma generation in the single ionization limit, i.e., the pulse intensity is supposed to remain moderate enough (∼1014 W cm−2) to apply photo-ionization theories valid for an averaged ion charge less than unity. However, no theory has attempted so far to consider how an ionization model allowing a priori multiple-charged states could impact the standard filamentation scenario. Here, we discuss a multiple photo-ionization scheme that relies on probabilities assuming successive single-electron ionizations. We numerically show that a multiple ionization scheme can increase the clamping intensity, the peak electron density and supercontinuum generation in gases with high binding energy, e.g., helium. (paper)

  17. Solar Magnetized "Tornadoes": Relation to Filaments

    Su, Yang; Veronig, Astrid; Temmer, Manuela; Gan, Weiqun

    2012-01-01

    Solar magnetized "tornadoes", a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but root in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar "tornadoes" {Two papers which focused on different aspect of solar tornadoes were published in the Astrophysical Journal Letters (Li et al. 2012) and Nature (Wedemeyer-B\\"ohm et al. 2012), respectively, during the revision of this Letter.}. A detailed case study of two events indicates that they are rotating vertical magnetic structures probably driven by underlying vortex flows in the photosphere. They usually exist as a group and relate to filaments/prominences, another important solar phenomenon whose formation and eruption are still mysteries. Solar tornadoes may play a distinct role in the supply of mass and twists to filaments. These findings could lead to a new explanati...

  18. Structure and kinematics of the Bootes filament

    Nasonova, Olga G; Karachentseva, Valentina E

    2014-01-01

    Bootes filament of galaxies is a dispersed chain of groups residing on sky between the Local Void and the Virgo cluster. We consider a sample of 361 galaxies inside the sky area of $RA = 13.0^h ... 18.5^h$ and $Dec = -5^\\circ ... +10^\\circ$ with radial velocities $V_{LG} 17^h$. According to the galaxy grouping criterion, this complex contains the members of 13 groups, 11 pairs and 140 field galaxies. The most prominent group is dominated by NGC5846. The Bootes filament contains the total stellar mass of $2.7\\times10^{12} M_\\odot$ and the total virial mass of $9.07\\times10^{13} M_\\odot$, having the average density of dark matter to be $\\Omega_m = 0.09$, i.e. a factor three lower than the global cosmic value.

  19. Merging and energy exchange between optical filaments

    Georgieva, D. A., E-mail: dgeorgieva@tu-sofia.bg [Faculty of Applied Mathematics and Computer Science, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1000 Sofia (Bulgaria); Kovachev, L. M. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradcko Chaussee Blvd., 1784 Sofia (Bulgaria)

    2015-10-28

    We investigate nonlinear interaction between collinear femtosecond laser pulses with power slightly above the critical for self-focusing P{sub cr} trough the processes of cross-phase modulation (CPM) and degenerate four-photon parametric mixing (FPPM). When there is no initial phase difference between the pulses we observe attraction between pulses due to CPM. The final result is merging between the pulses in a single filament with higher power. By method of moments it is found that the attraction depends on the distance between the pulses and has potential character. In the second case we study energy exchange between filaments. This process is described through FPPM scheme and requests initial phase difference between the waves.

  20. Laser filamentation mathematical methods and models

    Lorin, Emmanuel; Moloney, Jerome

    2016-01-01

    This book is focused on the nonlinear theoretical and mathematical problems associated with ultrafast intense laser pulse propagation in gases and in particular, in air. With the aim of understanding the physics of filamentation in gases, solids, the atmosphere, and even biological tissue, specialists in nonlinear optics and filamentation from both physics and mathematics attempt to rigorously derive and analyze relevant non-perturbative models. Modern laser technology allows the generation of ultrafast (few cycle) laser pulses, with intensities exceeding the internal electric field in atoms and molecules (E=5x109 V/cm or intensity I = 3.5 x 1016 Watts/cm2 ). The interaction of such pulses with atoms and molecules leads to new, highly nonlinear nonperturbative regimes, where new physical phenomena, such as High Harmonic Generation (HHG), occur, and from which the shortest (attosecond - the natural time scale of the electron) pulses have been created. One of the major experimental discoveries in this nonlinear...

  1. The Eastern Filament of W50

    Abolmasov, P; Burenkov, N A

    2010-01-01

    We present new spectral (FPI and long-slit) data on the Eastern optical filament of the well known radionebula W50 associated with SS433. We find that on sub-parsec scales different emission lines are emitted by different regions with evidently different physical conditions. Kinematical properties of the ionized gas show evidence for moderately high (V ~ 100 km/s) supersonic motions. [OIII]5007 emission is found to be multi-component and differs from lower-excitation [SII]6717 line both in spatial and kinematical properties. Indirect evidence for very low characteristic densities of the gas (n ~ 0.1cm^{-3}) is found. We propose radiative (possibly incomplete) shock waves in low-density, moderately high metallicity gas as the most probable candidate for the power source of the optical filament. Apparent nitrogen over-abundance is better understood if the location of W50 in the Galaxy is taken into account.

  2. ECHO virus

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that lead to ...

  3. Cold Milky Way HI Gas in Filaments

    Kalberla, P. M. W.; Kerp, J.; Haud, U.; Winkel, B.; Ben Bekhti, N.; Flöer, L.; Lenz, D.

    2016-04-01

    We investigate data from the Galactic Effelsberg-Bonn H i Survey, supplemented with data from the third release of the Galactic All Sky Survey (GASS III) observed at Parkes. We explore the all-sky distribution of the local Galactic H i gas with | {v}{{LSR}}| \\lt 25 km s‑1 on angular scales of 11‧–16‧. Unsharp masking is applied to extract small-scale features. We find cold filaments that are aligned with polarized dust emission and conclude that the cold neutral medium (CNM) is mostly organized in sheets that are, because of projection effects, observed as filaments. These filaments are associated with dust ridges, aligned with the magnetic field measured on the structures by Planck at 353 GHz. The CNM above latitudes | b| \\gt 20^\\circ is described by a log-normal distribution, with a median Doppler temperature TD = 223 K, derived from observed line widths that include turbulent contributions. The median neutral hydrogen (H i) column density is NH i ≃ 1019.1 cm‑2. These CNM structures are embedded within a warm neutral medium with NH i ≃ 1020 cm‑2. Assuming an average distance of 100 pc, we derive for the CNM sheets a thickness of ≲0.3 pc. Adopting a magnetic field strength of Btot = (6.0 ± 1.8) μG, proposed by Heiles & Troland, and assuming that the CNM filaments are confined by magnetic pressure, we estimate a thickness of 0.09 pc. Correspondingly, the median volume density is in the range 14 ≲ n ≲ 47 cm‑3. The authors thank the Deutsche Forschungsgemeinschaft (DFG) for support under grant numbers KE757/11-1, KE757/7-3, KE757/7-2, KE757/7-1, and BE4823/1-1.

  4. Stimulation of Actin Polymerization by Filament Severing

    Carlsson, A E

    2005-01-01

    The extent and dynamics of actin polymerization in solution are calculated as functions of the filament severing rate, using a simple model of in vitro polymerization. The model is solved by both analytic theory and stochastic-growth simulation. The results show that severing essentially always enhances actin polymerization by freeing up barbed ends, if barbed-end cappers are present. Severing has much weaker effects if only pointed-end cappers are present. In the early stages of polymerizati...

  5. Evolution of genetic systems in filamentous Ascomycetes.

    Nauta, M. J.

    1994-01-01

    A great variety of genetic systems exist in filamentous ascomycetes. The transmission of genetic material does not only occur by (sexual or asexual) reproduction, but it can also follow vegetative fusion of different strains. In this thesis the evolution of this variability is studied, using theoretical population genetic models.First the evolution of different reproductive systems is studied. It is found that homothallism (allowing selfing) most probably evolved from heterothallism. (with tw...

  6. Filament stretching rheometry of polymer melts

    Hassager, Ole; Nielsen, Jens Kromann; Rasmussen, Henrik Koblitz

    2005-01-01

    The Filament Stretching Rheometry (FSR) method developed by Sridhar, McKinley and coworkers for polymer solutions has been extended to be used also for polymer melts. The design of a melt-FSR will be described and differences to conventional melt elongational rheometers will be pointed out. Resul...... for LDPE up to 7 Hencky strain units show a maximum in the transient elongational viscosity followed by a steady stress. Also results for monodisperse PS fractions will be shown and discussed....

  7. A first approach to filament dynamics

    Silva, P E S; De Abreu, F Vistulo; Dias, R G [Department of Physics, University of Aveiro (Portugal); Simoes, R, E-mail: fva@ua.p [I3N-Institute for Nanostructures, Nanomodelling and Nanofabrication (Portugal)

    2010-11-15

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive equations governing the dynamics of an elastic lament suitable for a computer simulation implementation. The derivation starts from the relation between forces and potential energy in conservative systems in order to derive the equation of motion of any bead in the filament. Only two-dimensional movements are considered, but extensions to three dimensions can follow similar lines. Suggestions for computer implementations are provided in Matlab as well as an example of application related to the generation of musical sounds. This example allows a critical analysis of the numerical results obtained using a cross-disciplinary perspective. Since derivations start from basic physics equations, use simple calculus and computational implementations are straightforward, this paper proposes a different approach to introduce simple molecular dynamics simulations or animations of real systems in undergraduate elasticity or computer modelling courses.

  8. A first approach to filament dynamics

    Modelling elastic filament dynamics is a topic of high interest due to the wide range of applications. However, it has reached a high level of complexity in the literature, making it unaccessible to a beginner. In this paper we explain the main steps involved in the computational modelling of the dynamics of an elastic filament. We first derive equations governing the dynamics of an elastic lament suitable for a computer simulation implementation. The derivation starts from the relation between forces and potential energy in conservative systems in order to derive the equation of motion of any bead in the filament. Only two-dimensional movements are considered, but extensions to three dimensions can follow similar lines. Suggestions for computer implementations are provided in Matlab as well as an example of application related to the generation of musical sounds. This example allows a critical analysis of the numerical results obtained using a cross-disciplinary perspective. Since derivations start from basic physics equations, use simple calculus and computational implementations are straightforward, this paper proposes a different approach to introduce simple molecular dynamics simulations or animations of real systems in undergraduate elasticity or computer modelling courses.

  9. Modelling the chemistry of star forming filaments

    Seifried, D

    2015-01-01

    We present simulations of star forming filaments incorporating - to our knowledge - the largest chemical network used to date on-the-fly in a 3D-MHD simulation. The network contains 37 chemical species and about 300 selected reaction rates. For this we use the newly developed package KROME (Grassi et al. 2014). We combine the KROME package with an algorithm which allows us to calculate the column density and attenuation of the interstellar radiation field necessary to properly model heating and ionisation rates. Our results demonstrate the feasibility of using such a complex chemical network in 3D-MHD simulations on modern supercomputers. We perform simulations with different strengths of the interstellar radiation field and the cosmic ray ionisation rate. We find that towards the centre of the filaments there is gradual conversion of hydrogen from H^+ over H to H_2 as well as of C^+ over C to CO. Moreover, we find a decrease of the dust temperature towards the centre of the filaments in agreement with recent...

  10. The tidal filament of NGC 4660

    Kemp, S N; Marquez-Lugo, R A; Zepeda-Garcia, D; Franco-Hernandez, R; Nigoche-Netro, A; Ramos-Larios, G; Navarro, S G; Corral, L J

    2016-01-01

    NGC 4660, in the Virgo cluster, is a well-studied elliptical galaxy which has a strong disk component (D/T about 0.2-0.3). The central regions including the disk component have stellar populations with ages about 12-13 Gyr from SAURON studies. However we report the discovery of a long narrow tidal filament associated with the galaxy in deep co-added Schmidt plate images and deep CCD frames, implying that the galaxy has undergone a tidal interaction and merger within the last few Gyr. The relative narrowness of the filament implies a wet merger with at least one spiral galaxy involved, but the current state of the system has little evidence for this. However a 2-component photometric fit using GALFIT shows much bluer B-V colours for the disk component than for the elliptical component, which may represent a residual trace of enhanced star formation in the disk caused by the interaction 1-2 Gyr ago. There are brighter concentrations within the filament which resemble Tidal Dwarf Galaxies, although they are at l...

  11. Microwave processing of ceramic oxide filaments. Annual report, FY1997

    Vogt, G.J.

    1998-12-31

    The objective of the microwave filament processing project is to develop microwave techniques to manufacture continuous ceramic oxide filaments. Microwave processing uses the volumetric absorption of microwave power in oxide filament tows to drive off process solvents, to burn out organic binders, and to sinter the dried fibers to produce flexible, high-strength ceramic filaments. The technical goal is to advance filament processing technology by microwave heating more rapidly with less energy and at a lower cost than conventional processing, but with the same quality as conventional processing. The manufacturing goal is to collaborate with the 3M Company, a US manufacturer of ceramic oxide filaments, to evaluate the technology using a prototype filament system and to transfer the microwave technology to the 3M Company. Continuous ceramic filaments are a principal component in many advanced high temperature materials like continuous fiber ceramic composites (CFCC) and woven ceramic textiles. The use of continuous ceramic filaments in CFCC radiant burners, gas turbines, waste incineration, and hot gas filters in U.S. industry and power generation is estimated to save at least 2.16 quad/yr by year 2010 with energy cost savings of at least $8.1 billion. By year 2010, continuous ceramic filaments and CFCC`s have the potential to abate pollution emissions by 917,000 tons annually of nitrous oxide and 118 million tons annually of carbon dioxide (DOE Report OR-2002, February, 1994).

  12. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. PMID:26240174

  13. Heterocyst placement strategies to maximize growth of cyanobacterial filaments

    Brown, Aidan I

    2012-01-01

    Under conditions of limited fixed-nitrogen, some filamentous cyanobacteria develop a regular pattern of heterocyst cells that fix nitrogen for the remaining vegetative cells. We examine three different heterocyst placement strategies by quantitatively modelling filament growth while varying both external fixed-nitrogen and leakage from the filament. We find that there is an optimum heterocyst frequency which maximizes the growth rate of the filament; the optimum frequency decreases as the external fixed-nitrogen concentration increases but increases as the leakage increases. In the presence of leakage, filaments implementing a local heterocyst placement strategy grow significantly faster than filaments implementing random heterocyst placement strategies. With no extracellular fixed-nitrogen, consistent with recent experimental studies of Anabaena sp. PCC 7120, the modelled heterocyst spacing distribution using our local heterocyst placement strategy is qualitatively similar to experimentally observed patterns...

  14. Mechanism of Actin Filament Bundling by Fascin

    Jansen, Silvia; Collins, Agnieszka; Yang, Changsong; Rebowski, Grzegorz; Svitkina, Tatyana; Dominguez, Roberto (UPENN); (UPENN-MED)

    2013-03-07

    Fascin is the main actin filament bundling protein in filopodia. Because of the important role filopodia play in cell migration, fascin is emerging as a major target for cancer drug discovery. However, an understanding of the mechanism of bundle formation by fascin is critically lacking. Fascin consists of four {beta}-trefoil domains. Here, we show that fascin contains two major actin-binding sites, coinciding with regions of high sequence conservation in {beta}-trefoil domains 1 and 3. The site in {beta}-trefoil-1 is located near the binding site of the fascin inhibitor macroketone and comprises residue Ser-39, whose phosphorylation by protein kinase C down-regulates actin bundling and formation of filopodia. The site in {beta}-trefoil-3 is related by pseudo-2-fold symmetry to that in {beta}-trefoil-1. The two sites are {approx}5 nm apart, resulting in a distance between actin filaments in the bundle of {approx}8.1 nm. Residue mutations in both sites disrupt bundle formation in vitro as assessed by co-sedimentation with actin and electron microscopy and severely impair formation of filopodia in cells as determined by rescue experiments in fascin-depleted cells. Mutations of other areas of the fascin surface also affect actin bundling and formation of filopodia albeit to a lesser extent, suggesting that, in addition to the two major actin-binding sites, fascin makes secondary contacts with other filaments in the bundle. In a high resolution crystal structure of fascin, molecules of glycerol and polyethylene glycol are bound in pockets located within the two major actin-binding sites. These molecules could guide the rational design of new anticancer fascin inhibitors.

  15. Case study of a complex active-region filament eruption

    Yan, X. L.; Qu, Z. Q.; Kong, D. F.; Deng, L. H.; Xue, Z. K.

    2013-09-01

    Context. We investigated a solar active-region filament eruption associated with a C6.6 class flare and a coronal mass ejection (CME) in NOAA active region 08858 on 2000 February 9. Aims: We aim to better understand the relationship between filament eruptions and the associated flares and CMEs. Methods: Using BBSO, SOHO/EIT, and TRACE observational data, we analyzed the process of the active-region filament eruption in the chromosphere and the corona. Using the SOHO/MDI magnetograms, we investigated the change of the magnetic fields in the photosphere. Using the GOES soft X-ray flux and the SOHO/LASCO images, we identified the flare and CME, which were associated with this active-region filament eruption. Results: The brightenings in the chromosphere are a precursor of the filament expansion. The eruption itself can be divided into four phases: In the initial phase, the intertwined bright and dark strands of the filament expand. Then, the bright strands are divided into three parts with different expansion velocity. Next, the erupting filament-carrying flux rope expands rapidly and combines with the lower part of the expanding bright strands. Finally, the filament erupts accompanied by other dark strands overlying the filament.The overlying magnetic loops and the expansion of the filament strands can change the direction of the eruption. Conclusions: The time delay between the velocity peaks of the filament and that of the two parts of the bright strands clearly demonstrates that the breakup of the bright loops tying on the filament into individual strands is important for its eruption. The eruption is a collection of multiple processes that are physically coupled rather than a single process.

  16. Functions of the intermediate filament cytoskeleton in the eye lens

    Song, Shuhua; Landsbury, Andrew; Dahm, Ralf; Liu, Yizhi; Zhang, Qingjiong; Quinlan, Roy A.

    2009-01-01

    Intermediate filaments (IFs) are a key component of the cytoskeleton in virtually all vertebrate cells, including those of the lens of the eye. IFs help integrate individual cells into their respective tissues. This Review focuses on the lens-specific IF proteins beaded filament structural proteins 1 and 2 (BFSP1 and BFSP2) and their role in lens physiology and disease. Evidence generated in studies in both mice and humans suggests a critical role for these proteins and their filamentous poly...

  17. Structural changes accompanying phosphorylation of tarantula muscle myosin filaments

    1987-01-01

    Electron microscopy has been used to study the structural changes that occur in the myosin filaments of tarantula striated muscle when they are phosphorylated. Myosin filaments in muscle homogenates maintained in relaxing conditions (ATP, EGTA) are found to have nonphosphorylated regulatory light chains as shown by urea/glycerol gel electrophoresis and [32P]phosphate autoradiography. Negative staining reveals an ordered, helical arrangement of crossbridges in these filaments, in which the hea...

  18. Filament free electron gun and ISU generator

    Electron Beam Curing consists of the use of accelerated electrons for the creation of chemical reactions such as polymerisation cross linking or grafting. Electron guns use thermal emission to produce electrons before accelerating them towards the products to be cured. In the range of energy from 150 kV to 300 kV, A.I.D. has developed a new machine that is more adapted to industrial uses. A filament free system that is more reliable, tougher and easier to maintain than conventional systems, is described. The ISU (Induction Spire Unique) high voltage generator is also described briefly. (U.K.)

  19. The elastic modulus of isolated polytetrafluoroethylene filaments

    Patrick Drawe

    2014-09-01

    Full Text Available We report vibrational Raman spectra of small extended perfluoro-n-alkanes (CnF2n+2 with n = 6, 8–10, 12–14 isolated in supersonic jet expansions and use wavenumbers of longitudinal acoustic vibrations to extrapolate the elastic modulus of cold, isolated polytetrafluoroethylene filaments. The derived value E = 209(10 GPa defines an upper limit for the elastic modulus of the perfectly crystalline, noninteracting polymer at low temperatures and serves as a benchmark for quantum chemical predictions.

  20. Viruses, definitions and reality

    Libia Herrero-Uribe

    2011-09-01

    Full Text Available Viruses are known to be abundant, ubiquitous, and to play a very important role in the health and evolution of life organisms. However, most biologists have considered them as entities separate from the realm of life and acting merely as mechanical artifacts that can exchange genes between different organisms. This article reviews some definitions of life organisms to determine if viruses adjust to them, and additionally, considers new discoveries to challenge the present definition of viruses. Definitions of life organisms have been revised in order to validate how viruses fit into them. Viral factories are discussed since these mini-organelles are a good example of the complexity of viral infection, not as a mechanical usurpation of cell structures, but as a driving force leading to the reorganization and modification of cell structures by viral and cell enzymes. New discoveries such as the Mimivirus, its virophage and viruses that produce filamentous tails when outside of their host cell, have stimulated the scientific community to analyze the current definition of viruses. One way to be free for innovation is to learn from life, without rigid mental structures or tied to the past, in order to understand in an integrated view the new discoveries that will be unfolded in future research. Life processes must be looked from the complexity and trans-disciplinarity perspective that includes and accepts the temporality of the active processes of life organisms, their interdependency and interrelation among them and their environment. New insights must be found to redefine life organisms, especially viruses, which still are defined using the same concepts and knowledge of the fifties. Rev. Biol. Trop. 59 (3: 993-998. Epub 2011 September 01.Los virus son abundantes, ubicuos, y juegan un papel muy importante en la salud y en la evolución de los organismos vivos. Sin embargo, la mayoría de los biólogos los siguen considerado como entidades separadas

  1. The interaction energy of charged filaments in an electrolyte: Results for all filament spacings.

    Smith, D A

    2011-05-01

    Electrically charged long-chain macromolecules in an electrolyte can form an ordered lattice whose spacing is greater than their diameter. If entropic effects are neglected, these nematic structures can be predicted from a balance of Coulomb repulsion and van-der-Waals attraction forces. To enhance the utility of such theories, this paper extends existing results for the interaction between charged filaments, and gives approximate formulae for the screened Coulomb and van-der-Waals potentials over the whole range of their centre-to-centre spacing d. The repulsive Coulomb potential is proportional to exp(-λd)/λd for all spacings when the Debye screening length 1/λ is smaller than the sum of the filament radii. The attractive van-der-Waals potential is asymptotic to d⁻⁵ at large d. For smaller spacings, the potential is calculated by numerical integration and compared with published formulae: the series expansion of Brenner and McQuarrie converges too slowly, whereas the interpolation formula of Moisescu provides reasonable accuracy over the whole range of d. Combining these potentials shows that there is a finite range of charge densities for which a nematic crystal lattice is stable, but this conclusion ignores entropic effects associated with motile filaments. The role of electrostatic forces in aligning filaments and stabilizing a nematic liquid-crystal phase is discussed, in conjunction with other mechanisms such as motor proteins, crosslinkers or scaffolding structures. PMID:21295590

  2. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

    Harilal, Sivanandan S.; Yeak, J.; Phillips, Mark C.

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filamentation channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also partly explains the reason for the occurrence of atomic plume during fs LIBS in air compared to long-pulse ns LIBS.

  3. Detection of Stacked Filament Lensing Between SDSS Luminous Red Galaxies

    Clampitt, Joseph; Takada, Masahiro

    2014-01-01

    We search for the lensing signal of massive filaments between 220,000 pairs of Luminous Red Galaxies (LRGs) from the Sloan Digital Sky Survey. We use a nulling technique to remove the contribution of the LRG halos, resulting in a $10 \\sigma$ detection of the filament lensing signal. We compare the measurements with halo model predictions based on a calculation of 3-point halo-halo-mass correlations. Comparing the "thick" halo model filament to a "thin" string of halos, thick filaments larger than a Mpc in width are clearly preferred by the data.

  4. Defects on semiflexible filaments: Kinks and twist kinks

    Lee, Nam-Kyung; Johner, Albert

    2016-04-01

    Due to local interactions with ligands or to global constraints, semiflexible filaments can exhibit localized defects. We focus on filaments laying flat on a surface. The two lowest order singularities are addressed: discontinuities of the orientation, which are called kink, and discontinuities of the curvature. The latter are called twist kinks in flattened helical filaments where they can form spontaneously. We calculate the partition functions for a given defect fugacity and discuss some often measured quantities like the correlation of the orientation along the filament.

  5. Galaxy alignment as a probe of large-scale filaments

    Rong, Yu; Zhang, Shuang-Nan

    2015-01-01

    The orientations of the red galaxies in a filament are aligned with the orientation of the filament. We thus develop a location-alignment-method (LAM) of detecting filaments around clusters of galaxies, which uses both the alignments of red galaxies and their distributions in two-dimensional images. For the first time, the orientations of red galaxies are used as probes of filaments. We apply LAM to the environment of Coma cluster, and find four filaments (two filaments are located in sheets) in two selected regions, which are compared with the filaments detected with the method of \\cite{Falco14}. We find that LAM can effectively detect the filaments around a cluster, even with $3\\sigma$ confidence level, and clearly reveal the number and overall orientations of the detected filaments. LAM is independent of the redshifts of galaxies, and thus can be applied at relatively high redshifts and to the samples of red galaxies without the information of redshifts. We also find that the images of background galaxies ...

  6. Lanthanum hexaboride tapered filament in a plasma source

    A directly heated lanthanum hexaboride tapered filament has been tested in a plasma generator. A uniform temperature distribution at 1820 K has been achieved. The heating and cooling power calculated from measured quantities are balanced. A maximum arc current of 80 A was obtained, limited only by the power supply and plasma generator. The corresponding hydrogen ion current density was 0.6 A/cm2 when the arc voltage was 80 V and the filament heater current was about 5 A. The filament was capable of emitting 100 A of current at an operating temperature of 1900 K. The estimated lifetime for this filament is 900 h

  7. Recent advances in Citrus psorosis virus

    Achachi, Asmae; Ait Barka, Essaïd; Ibriz, Mohammed

    2014-01-01

    Psorosis is a globally devastating disease of citrus caused by an infectious filamentous ophiovirus, Citrus psorosis virus (CPsV), which causes annual losses of about 5 % and a progressive decline of trees by affecting the conductive tissues. The disease can be harboured asymptomatically in many citrus species. In the field, the most characteristic symptoms of the disease in adult trees are bark scaling in the trunk and main branches and also internal staining in the underlying wood. The viru...

  8. Interaction between Bluetongue virus outer capsid protein VP2 and vimentin is necessary for virus egress

    Roy Polly

    2007-01-01

    Full Text Available Abstract Background The VP2 outer capsid protein Bluetongue Virus (BTV is responsible for receptor binding, haemagglutination and eliciting host-specific immunity. However, the assembly of this outer capsid protein on the transcriptionally active viral core would block transcription of the virus. Thus assembly of the outer capsid on the core particle must be a tightly controlled process during virus maturation. Earlier studies have detected mature virus particles associated with intermediate filaments in virus infected cells but the viral determinant for this association and the effect of disrupting intermediate filaments on virus assembly and release are unknown. Results In this study it is demonstrated that BTV VP2 associates with vimentin in both virus infected cells and in the absence of other viral proteins. Further, the determinants of vimentin localisation are mapped to the N-terminus of the protein and deletions of aminio acids between residues 65 and 114 are shown to disrupt VP2-vimentin association. Site directed mutation also reveals that amino acid residues Gly 70 and Val 72 are important in the VP2-vimentin association. Mutation of these amino acids resulted in a soluble VP2 capable of forming trimeric structures similar to unmodified protein that no longer associated with vimentin. Furthermore, pharmacological disruption of intermediate filaments, either directly or indirectly through the disruption of the microtubule network, inhibited virus release from BTV infected cells. Conclusion The principal findings of the research are that the association of mature BTV particles with intermediate filaments are driven by the interaction of VP2 with vimentin and that this interaction contributes to virus egress. Furthermore, i the N-terminal 118 amino acids of VP2 are sufficient to confer vimentin interaction. ii Deletion of amino acids 65–114 or mutation of amino acids 70–72 to DVD abrogates vimentin association. iii Finally

  9. Ultrastructural study of long-term canine distemper virus infection in tissue culture cells.

    Narang, H K

    1982-01-01

    The morphogenesis of canine distemper virus was studied in Vero cell cultures for 43 days post-inoculation. Active replication of the virus was observed by electron microscopy and assay from 12 h after inoculation on, and peak production was observed on days 5, 14, and 22. From day 28 on, constant but smaller amounts of infectious virus were detected. Two ultrastructural types of intracytoplasmic nucleoprotein filaments were observed; although they first appeared at different times, their sub...

  10. The Organisation of Ebola Virus Reveals a Capacity for Extensive, Modular Polyploidy

    Daniel R Beniac; Melito, Pasquale L.; deVarennes, Shauna L.; Hiebert, Shannon L.; Rabb, Melissa J.; Lamboo, Lindsey L.; Jones, Steven M.; Timothy F Booth

    2012-01-01

    Background Filoviruses, including Ebola virus, are unusual in being filamentous animal viruses. Structural data on the arrangement, stoichiometry and organisation of the component molecules of filoviruses has until now been lacking, partially due to the need to work under level 4 biological containment. The present study provides unique insights into the structure of this deadly pathogen. Methodology and Principal Findings We have investigated the structure of Ebola virus using a combination ...

  11. Impact of Matric Potential and Pore Size Distribution on Growth Dynamics of Filamentous and Non-Filamentous Soil Bacteria

    Alexandra B Wolf; Michiel Vos; Wietse de Boer; Kowalchuk, George A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and c...

  12. Laser filament-induced aerosol formation

    Saathoff, H.; Henin, S.; Stelmaszczyk, K.; Petrarca, M.; Delagrange, R.; Hao, Z.; Lüder, J.; Möhler, O.; Petit, Y.; Rohwetter, P.; Schnaiter, M.; Kasparian, J.; Leisner, T.; Wolf, J.-P.; Wöste, L.

    2013-05-01

    Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon-oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm-3 plasma s-1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  13. The Golgi apparatus: insights from filamentous fungi.

    Pantazopoulou, Areti

    2016-01-01

    Cargo passage through the Golgi, albeit an undoubtedly essential cellular function, is a mechanistically unresolved and much debated process. Although the main molecular players are conserved, diversification of the Golgi among different eukaryotic lineages is providing us with tools to resolve standing controversies. During the past decade the Golgi apparatus of model filamentous fungi, mainly Aspergillus nidulans, has been intensively studied. Here an overview of the most important findings in the field is provided. Golgi architecture and dynamics, as well as the novel cell biology tools that were developed in filamentous fungi in these studies, are addressed. An emphasis is placed on the central role the Golgi has as a crossroads in the endocytic and secretory-traffic pathways in hyphae. Finally the major advances that the A. nidulans Golgi biology has yielded so far regarding our understanding of key Golgi regulators, such as the Rab GTPases RabC(Rab6) and RabE(Rab11), the oligomeric transport protein particle, TRAPPII, and the Golgi guanine nucleotide exchange factors of Arf1, GeaA(GBF1/Gea1) and HypB(BIG/Sec7), are highlighted. PMID:26932185

  14. Laser filament-induced aerosol formation

    H. Saathoff

    2012-11-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon-oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by acids generated by the photo-ionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  15. Laser filament-induced aerosol formation

    H. Saathoff

    2013-05-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  16. Formation of a solar Hα filament from orphan penumbrae

    Buehler, D.; Lagg, A.; van Noort, M.; Solanki, S. K.

    2016-05-01

    Aims: The formation and evolution of an Hα filament in active region (AR) 10953 is described. Methods: Observations from the Solar Optical Telescope (SOT) aboard the Hinode satellite starting from UT 18:09 on 27th April 2007 until UT 06:08 on 1st May 2007 were analysed. 20 scans of the 6302 Å Fe I line pair recorded by SOT/SP were inverted using the spatially coupled version of the SPINOR code. The inversions were analysed together with co-spatial SOT/BFI G-band and Ca II H and SOT/NFI Hα observations. Results: Following the disappearance of an initial Hα filament aligned along the polarity inversion line (PIL) of the AR, a new Hα filament formed in its place some 20 h later, which remained stable for, at least, another 1.5 days. The creation of the new Hα filament was driven by the ascent of horizontal magnetic fields from the photosphere into the chromosphere at three separate locations along the PIL. The magnetic fields at two of these locations were situated directly underneath the initial Hα filament and formed orphan penumbrae already aligned along the Hα filament channel. The 700 G orphan penumbrae were stable and trapped in the photosphere until the disappearance of the overlying initial Hα filament, after which they started to ascend into the chromosphere at 10 ± 5 m/s. Each ascent was associated with a simultaneous magnetic flux reduction of up to 50% in the photosphere. The ascended orphan penumbrae formed dark seed structures in Hα in parallel with the PIL, which elongated and merged to form an Hα filament. The filament channel featured horizontal magnetic fields of on average 260 G at log (τ) = -2 suspended above the nearly field-free lower photosphere. The fields took on an overall inverse configuration at log (τ) = -2 suggesting a flux rope topology for the new Hα filament. The destruction of the initial Hα filament was likely caused by the flux emergence at the third location along the PIL. Conclusions: We present a new

  17. Motion of a Vortex Filament in the Half Space

    Aiki, Masashi

    2010-01-01

    A model equation for the motion of a vortex filament immersed in three dimensional, incompressible and inviscid fluid is investigated as a humble attempt to model the motion of a tornado. We solve an initial-boundary value problem in the half space where we impose a boundary condition in which the vortex filament is allowed to move on the boundary.

  18. Detection of stacked filament lensing between SDSS luminous red galaxies

    Clampitt, Joseph; Miyatake, Hironao; Jain, Bhuvnesh; Takada, Masahiro

    2016-04-01

    We search for the lensing signal of massive filaments between 135 000 pairs of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey. We develop a new estimator that cleanly removes the much larger shear signal of the neighbouring LRG haloes, relying only on the assumption of spherical symmetry. We consider two models: a `thick'-filament model constructed from ray-tracing simulations for Λ cold dark matter model, and a `thin'-filament model which models the filament by a string of haloes along the line connecting the two LRGs. We show that the filament lensing signal is in nice agreement with the thick simulation filament, while strongly disfavouring the thin model. The magnitude of the lensing shear due to the filament is below 10-4. Employing the likelihood ratio test, we find a 4.5σ significance for the detection of the filament lensing signal, corresponding to a null hypothesis fluctuation probability of 3 × 10-6. We also carried out several null tests to verify that the residual shear signal from neighbouring LRGs and other shear systematics are minimized.

  19. Fully filamentized HTS coated conductor via striation and selective electroplating

    Highlights: ► Fully-filamentized coated conductor with 13-fold reduction in ac losses. ► Selective electroplating for filamentization of thick copper stabilizer. ► A twofold decrease in ac loss by filamentization of copper stabilizer. ► Absence of appreciable coupling loss contribution from electroplating. -- Abstract: A simple, cost-effective method involving top-down mechanical scribing, oxidation and bottom-up electroplating has been successfully developed to fabricate fully filamentized HTS coated conductors. The copper stabilizer layer is selectively electroplated on the superconducting filaments while the striations remain copper-free due to the formation of a resistive oxide layer in between filaments by oxidation of the striated grooves at elevated temperature in oxygen atmosphere. Magnetization AC loss measurements, performed in a frequency range of 45–500 Hz at 77 K, confirmed the expected N-fold reduction in AC loss of the filamentized tapes with no significant degradation in critical current beyond that due to the material removal from the striations (N – number of filaments). A considerable reduction in coupling AC loss was observed after high temperature annealing/oxidation of the striated tapes. Furthermore, a significant reduction in eddy current loss was achieved with selective copper electroplating, as evidenced by analyzing the field and frequency dependence of magnetization AC loss, as well as by comparing the AC loss performance of striated samples to that of non-striated samples after electroplating of copper stabilizer

  20. Biophysics of filament length regulation by molecular motors

    Kuan, Hui-Shun; Betterton, M. D.

    2013-06-01

    Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kinesin-8 motors affect the length of dynamic microtubules in cells is less clear. We study the more biologically realistic problem of microtubule dynamic instability modulated by a motor-dependent increase in the filament catastrophe frequency. This leads to a significant decrease in the mean filament length and a narrowing of the filament length distribution. The results improve our understanding of the biophysics of length regulation in cells.

  1. An Observational Detection of the Bridge Effect of Void Filaments

    Shim, Junsup; Lee, Jounghun; Hoyle, Fiona

    2015-12-01

    The bridge effect of void filaments is a phrase coined by Park & Lee to explain the correlations found in a numerical experiment between the luminosity of the void galaxies and the degree of straightness of their host filaments. Their numerical finding implies that a straight void filament provides a narrow channel for the efficient transportation of gas and matter particles from the surroundings into void galaxies. Analyzing the Sloan void catalog constructed by Pan et al., we identify the filamentary structures in void regions and determine the specific size of each void filament as a measure of its straightness. To avoid possible spurious signals caused by Malmquist bias, we consider only those void filaments whose redshifts are in the range 0≤slant z≤slant 0.02 and find a clear tendency that the void galaxies located in the straighter filaments are on average more luminous, which is in qualitative agreement with the numerical prediction. It is also shown that the strength of correlation increases with the number of member galaxies in the void filaments, which can be understood physically on the grounds that the more stretched filaments can connect the dense surroundings even to galaxies located deep in the central parts of the voids. This observational evidence may provide a key clue to the puzzling issue of why the void galaxies have higher specific star formation rates and bluer colors than their wall counterparts.

  2. Regulation of filamentation in the human fungal pathogen Candida tropicalis.

    Zhang, Qiuyu; Tao, Li; Guan, Guobo; Yue, Huizhen; Liang, Weihong; Cao, Chengjun; Dai, Yu; Huang, Guanghua

    2016-02-01

    The yeast-filament transition is essential for the virulence of a variety of fungi that are pathogenic to humans. N-acetylglucosamine (GlcNAc) is a potent inducer of filamentation in Candida albicans and thermally dimorphic fungi such as Histoplasma capsulatum and Blastomyces dermatitidis. However, GlcNAc suppresses rather than promotes filamentation in Candida tropicalis, a fungal species that is closely related to C. albicans. Despite the intensive study in C. albicans, the regulatory mechanism of filamentation is poorly understood. In this study, we demonstrate that the cAMP signaling pathway plays a central role in the regulation of filamentation in C. tropicalis. By screening an overexpression library of 156 transcription factors, we have identified approximately 40 regulators of filamentous growth. Although most of the regulators (e.g., Tec1, Gat2, Nrg1, Sfl1, Sfl2 and Ash1) demonstrate a conserved role in the regulation of filamentation, similar to their homologues in C. albicans or Saccharomyces cerevisiae, a number of transcription factors (e.g., Wor1, Bcr1, Stp4, Efh1, Csr1 and Zcf17) play a specific role in C. tropicalis. Our findings indicate that multiple interconnected signaling pathways are involved in the regulation of filamentation in C. tropicalis. These mechanisms have conserved and divergent features among different Candida species. PMID:26466925

  3. Design and Optimization of Filament Wound Composite Pressure Vessels

    Zu, L.

    2012-01-01

    One of the most important issues for the design of filament-wound pressure vessels reflects on the determination of the most efficient meridian profiles and related fiber architectures, leading to optimal structural performance. To better understand the design and optimization of filament-wound pres

  4. A catalytic oligomeric motor that walks along a filament track

    Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments

  5. A catalytic oligomeric motor that walks along a filament track

    Huang, Mu-Jie, E-mail: mjhuang@chem.utoronto.ca; Kapral, Raymond, E-mail: rkapral@chem.utoronto.ca [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)

    2015-06-28

    Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments.

  6. Supramolecular Filaments Containing a Fixed 41% Paclitaxel Loading

    Lin, Ran; Cheetham, Andrew G.; Zhang, Pengcheng; Lin, Yi-An; Cui, Honggang

    2013-01-01

    We report here the self-assembly of a rationally designed paclitaxel drug amphiphile into well-defined supramolecular filaments that possess a fixed 41% paclitaxel loading. These filaments can exert effective cytotoxicity against a number of cell lines comparable to that of free paclitaxel.

  7. A catalytic oligomeric motor that walks along a filament track

    Huang, Mu-Jie; Kapral, Raymond

    2015-06-01

    Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments.

  8. Failure and nonfailure of fluid filaments in extension

    Hassager, Ole; Kolte, Mette Irene; Renardy, Michael

    fluid filaments do not exhibit ductile failure without surface tension; (2) some viscoelastic fluids form stable filaments while other fluids exhibit ductile failure as a result of an elastic instability; (3) for large Deborah numbers, the Considere condition may be used to predict the Hencky strain of...

  9. A Filament-Associated Halo Coronal Mass Ejection

    2001-01-01

    There are only a few observations published so far that show the initiation of a coronal mass ejection (CME) and illustrate the magnetic changes in the surface origin of a CME. Any attempt to connect a CME with its local solar activities is meaningful. In this paper we present a clear instance of a halo CME initiation. A careful analysis of magnetograms shows that the only obvious magnetic changes in the surface region of the CME is a magnetic flux cancellation underneath a quiescent filament. The early disturbance was seen as the slow upward motion in segments of the quiescent filament. Four hours later, the filament was accelerated to about 50 km s-1 and erupted. While a small part of the material in the filament was ejected into the upper corona, most of the mass was transported to a nearby region. About forty minutes later, the transported mass was also ejected partially to the upper corona. The eruption of the filament triggered a two-ribbon flare, with post-flare loops connecting the flare ribbons. A halo CME, which is inferred to be associated with the eruptive filament, was observed from LASCO/C2 and C3. The halo CME contained two CME events, each event corresponded to a partial mass ejection of the filament. We suggest that the magnetic reconnection at the lower atmosphere is responsible for the filament eruption and the halo CME.

  10. THE APPARATUS FOR ALIGNMENT OF THE PHOTOMETRIC LAMP FILAMENT

    V. A. Dlugunovich

    2015-01-01

    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  11. Propagation of radio frequency waves through density filaments

    Ram, Abhay K.; Hizanidis, Kyriakos

    2015-12-01

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. In this paper we develop an analytical formalism for the scattering of radio frequency waves by filaments which are cylindrical with their major axis aligned along the toroidal magnetic field lines. Since the magnitude of the ratio of the density inside the filaments to the background density is generally of order 1, the geometric optics approximation cannot be used to describe the scattering. A full-wave model is formulated which assumes that the plasma is cold and that the plasma in the cylindrical filament has uniform density. The background plasma, in which the filament is present, is also assumed to be cold and uniform. The theoretical framework applies to the scattering of any plasma wave.

  12. Conformations, hydrodynamic interactions, and instabilities of sedimenting semiflexible filaments

    Saggiorato, G; Winkler, R G; Gompper, G

    2015-01-01

    The conformations and dynamics of semiflexible filaments subject to a homogeneous external (gravitational) field, e.g., in a centrifuge, are studied numerically and analytically. The competition between hydrodynamic drag and bending elasticity generates new shapes and dynamical features. We show that the shape of a semiflexible filament undergoes instabilities as the external field increases. We identify two transitions that correspond to the excitation of higher bending modes. In particular, for strong fields the filament stabilizes in a non-planar shape, resulting in a sideways drift or in helical trajectories. For two interacting filaments, we find the same transitions, with the important consequence that the new non-planar shapes have an effective hydrodynamic repulsion, in contrast to the planar shapes which attract themselves even when their osculating planes are rotated with respect to each other. For the case of planar filaments, we show analytically and numerically that the relative velocity is not n...

  13. Beam wandering of femtosecond laser filament in air.

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-01

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc. PMID:26480079

  14. Propagation of radio frequency waves through density filaments

    Ram, Abhay K., E-mail: abhay@psfc.mit.edu [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139. USA (United States); Hizanidis, Kyriakos [National Technical University of Athens, Association EURATOM (Greece)

    2015-12-10

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. In this paper we develop an analytical formalism for the scattering of radio frequency waves by filaments which are cylindrical with their major axis aligned along the toroidal magnetic field lines. Since the magnitude of the ratio of the density inside the filaments to the background density is generally of order 1, the geometric optics approximation cannot be used to describe the scattering. A full-wave model is formulated which assumes that the plasma is cold and that the plasma in the cylindrical filament has uniform density. The background plasma, in which the filament is present, is also assumed to be cold and uniform. The theoretical framework applies to the scattering of any plasma wave.

  15. Propagation of radio frequency waves through density filaments

    In tokamak fusion plasmas, coherent fluctuations in the form of blobs or filaments are routinely observed in the scrape-off layer. In this paper we develop an analytical formalism for the scattering of radio frequency waves by filaments which are cylindrical with their major axis aligned along the toroidal magnetic field lines. Since the magnitude of the ratio of the density inside the filaments to the background density is generally of order 1, the geometric optics approximation cannot be used to describe the scattering. A full-wave model is formulated which assumes that the plasma is cold and that the plasma in the cylindrical filament has uniform density. The background plasma, in which the filament is present, is also assumed to be cold and uniform. The theoretical framework applies to the scattering of any plasma wave

  16. Biophysics of filament length regulation by molecular motors

    Kuan, Hui-Shun

    2013-01-01

    Regulating physical size is an essential problem that biological organisms must solve from the subcellular to the organismal scales, but it is not well understood what physical principles and mechanisms organisms use to sense and regulate their size. Any biophysical size-regulation scheme operates in a noisy environment and must be robust to other cellular dynamics and fluctuations. This work develops theory of filament length regulation inspired by recent experiments on kinesin-8 motor proteins, which move with directional bias on microtubule filaments and alter microtubule dynamics. Purified kinesin-8 motors can depolymerize chemically-stabilized microtubules. In the length-dependent depolymerization model, the rate of depolymerization tends to increase with filament length, because long filaments accumulate more motors at their tips and therefore shorten more quickly. When balanced with a constant filament growth rate, this mechanism can lead to a fixed polymer length. However, the mechanism by which kines...

  17. Chikungunya Virus

    ... Gaines, PhD, MPH, MA, CHES Differentiating Chikungunya From Dengue: A Clinical Challenge For Travelers CDC Travelers' Health Chikungunya Virus Home Prevention Transmission Symptoms & Treatment Geographic Distribution Chikungunya virus in ...

  18. Zika Virus

    Zika is a virus that is spread mostly by mosquitoes. A pregnant mother can pass it to ... through blood transfusions. There have been outbreaks of Zika virus in the United States, Africa, Southeast Asia, ...

  19. Chikungunya virus

    Chikungunya virus infection; Chikungunya ... Where Chikungunya is found Before 2013, the virus was found in Africa, Asia, Europe, and the Indian and Pacific oceans. In late 2013, outbreaks occurred for the first time in the ...

  20. Radial interchange motions of plasma filaments

    Garcia, O.E.; Bian, N.H.; Fundamenski, W.

    2006-01-01

    Radial convection of isolated filamentary structures due to interchange motions in magnetized plasmas is investigated. Following a basic discussion of vorticity generation, ballooning, and the role of sheaths, a two-field interchange model is studied by means of numerical simulations on a...... biperiodic domain perpendicular to the magnetic field. It is demonstrated that a blob-like plasma structure develops dipolar vorticity and electrostatic potential fields, resulting in rapid radial acceleration and formation of a steep front and a trailing wake. While the dynamical evolution strongly depends...... on the amount of collisional diffusion and viscosity, the structure travels a radial distance many times its initial size in all parameter regimes in the absence of sheath dissipation. In the ideal limit, there is an inertial scaling for the maximum radial velocity of isolated filaments. This...

  1. Current filaments in turbulent magnetized plasmas

    Martines, E; Vianello, N; Spolaore, M; Zuin, M; Agostini, M; Antoni, V; Cavazzana, R; Scarin, P; Serianni, G; Spada, E [Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova (Italy); Sundkvist, D [Space Sciences Laboratory, University of California at Berkeley, Berkeley, CA (United States); Ionita, C; Mehlmann, F; Schrittwieser, R [Association EURATOM/OeAW, Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck (Austria); Maraschek, M; Mueller, H W; Rohde, V [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Garching (Germany); Naulin, V; Rasmussen, J J, E-mail: emilio.martines@igi.cnr.i [Association EURATOM/RISOe-Technical University of Denmark, Roskilde (Denmark)

    2009-12-15

    Direct measurements of current density perturbations associated with non-linear phenomena in magnetized plasmas can be carried out using in situ magnetic measurements. In this paper we report such measurements for three different kinds of phenomena. Current density fluctuations in the edge density gradient region of a fusion plasma confined in reversed field pinch configuration and in a density gradient region in the Earth magnetosphere are measured and compared, showing that in both environments they can be attributed to drift-Alfven vortices. Current structures associated with reconnection events measured in a reversed field pinch plasma and in the magnetosheath are detected and compared. Evidence of current filaments occurring during ELMs in an H-mode tokamak plasma is displayed.

  2. Current filaments in turbulent magnetized plasmas

    Martines, E.; Vianello, N.; Sundkvist, D.;

    2009-01-01

    gradient region of a fusion plasma confined in reversed field pinch configuration and in a density gradient region in the Earth magnetosphere are measured and compared, showing that in both environments they can be attributed to drift-Alfvén vortices. Current structures associated with reconnection events......Direct measurements of current density perturbations associated with non-linear phenomena in magnetized plasmas can be carried out using in situ magnetic measurements. In this paper we report such measurements for three different kinds of phenomena. Current density fluctuations in the edge density...... measured in a reversed field pinch plasma and in the magnetosheath are detected and compared. Evidence of current filaments occurring during ELMs in an H-mode tokamak plasma is displayed....

  3. Filament wound data base development, revision 1

    Sharp, R. Scott; Braddock, William F.

    1985-01-01

    The objective was to update the present Space Shuttle Solid Rocket Booster (SRB) baseline reentry aerodynamic data base and to develop a new reentry data base for the filament wound case SRB along with individual protuberance increments. Lockheed's procedures for performing these tasks are discussed. Free fall of the SRBs after separation from the Space Shuttle Launch Vehicle is completely uncontrolled. However, the SRBs must decelerate to a velocity and attitude that is suitable for parachute deployment. To determine the SRB reentry trajectory parameters, including the rate of deceleration and attitude history during free-fall, engineers at Marshall Space Flight Center are using a six-degree-of-freedom computer program to predict dynamic behavior. Static stability aerodynamic coefficients are part of the information required for input into this computer program. Lockheed analyzed the existing reentry aerodynamic data tape (Data Tape 5) for the current steel case SRB. This analysis resulted in the development of Data Tape 7.

  4. HIERARCHICAL FRAGMENTATION OF THE ORION MOLECULAR FILAMENTS

    We present a high angular resolution map of the 850 μm continuum emission of the Orion Molecular Cloud-3 (OMC 3) obtained with the Submillimeter Array (SMA); the map is a mosaic of 85 pointings covering an approximate area of 6.'5 × 2.'0 (0.88 × 0.27 pc). We detect 12 spatially resolved continuum sources, each with an H2 mass between 0.3-5.7 M ☉ and a projected source size between 1400-8200 AU. All the detected sources are on the filamentary main ridge (nH2≥106 cm–3), and analysis based on the Jeans theorem suggests that they are most likely gravitationally unstable. Comparison of multi-wavelength data sets indicates that of the continuum sources, 6/12 (50%) are associated with molecular outflows, 8/12 (67%) are associated with infrared sources, and 3/12 (25%) are associated with ionized jets. The evolutionary status of these sources ranges from prestellar cores to protostar phase, confirming that OMC-3 is an active region with ongoing embedded star formation. We detect quasi-periodical separations between the OMC-3 sources of ≈17''/0.035 pc. This spatial distribution is part of a large hierarchical structure that also includes fragmentation scales of giant molecular cloud (≈35 pc), large-scale clumps (≈1.3 pc), and small-scale clumps (≈0.3 pc), suggesting that hierarchical fragmentation operates within the Orion A molecular cloud. The fragmentation spacings are roughly consistent with the thermal fragmentation length in large-scale clumps, while for small-scale cores it is smaller than the local fragmentation length. These smaller spacings observed with the SMA can be explained by either a helical magnetic field, cloud rotation, or/and global filament collapse. Finally, possible evidence for sequential fragmentation is suggested in the northern part of the OMC-3 filament.

  5. RADIATION SPECTRAL SYNTHESIS OF RELATIVISTIC FILAMENTATION

    Radiation from many astrophysical sources, e.g., gamma-ray bursts and active galactic nuclei, is believed to arise from relativistically shocked collisionless plasmas. Such sources often exhibit highly transient spectra evolving rapidly compared with source lifetimes. Radiation emitted from these sources is typically associated with nonlinear plasma physics, complex field topologies, and non-thermal particle distributions. In such circumstances, a standard synchrotron paradigm may fail to produce accurate conclusions regarding the underlying physics. Simulating spectral emission and spectral evolution numerically in various relativistic shock scenarios is then the only viable method to determine the detailed physical origin of the emitted spectra. In this Letter, we present synthetic radiation spectra representing the early stage development of the filamentation (streaming) instability of an initially unmagnetized plasma, which is relevant for both collisionless shock formation and reconnection dynamics in relativistic astrophysical outflows as well as for laboratory astrophysics experiments. Results were obtained using a highly efficient in situ diagnostics method, based on detailed particle-in-cell modeling of collisionless plasmas. The synthetic spectra obtained here are compared with those predicted by a semi-analytical model for jitter radiation from the filamentation instability, the latter including self-consistent generated field topologies and particle distributions obtained from the simulations reported upon here. Spectra exhibit dependence on the presence-or the absence-of an inert plasma constituent, when comparing baryonic plasmas (i.e., containing protons) with pair plasmas. The results also illustrate that considerable care should be taken when using lower-dimensional models to obtain information about the astrophysical phenomena generating observed spectra.

  6. ECHO virus

    Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that lead to gastrointestinal infection and skin rashes. ... Echovirus is one of several families of viruses that affect the ... are common. In the United States, they are most common in ...

  7. Zika Virus

    ... Zika Virus | See Q&A —June 21, 2016 Zika Virus Protein Could Be Vaccine Target —May 19, 2016 Research Conducted and Supported by the National Institutes of Health (NIH) in Addressing Zika Virus Disease. Testimony before the House Democratic Steering ...

  8. Automated detection, characterization, and tracking of filaments from SDO data

    Buchlin, Eric; Vial, Jean-Claude; Mercier, Claude

    2016-07-01

    Thanks to the cadence and continuity of AIA and HMI observations, SDO offers unique data for detecting, characterizing, and tracking solar filaments, until their eruptions, which are often associated with coronal mass ejections. Because of the requirement of short latency when aiming at space weather applications, and because of the important data volume, only an automated detection can be worked out. We present the code "FILaments, Eruptions, and Activations detected from Space" (FILEAS) that we have developed for the automated detection and tracking of filaments. Detections are based on the analysis of AIA 30.4 nm He II images and on the magnetic polarity inversion lines derived from HMI. Following the tracking of filaments as they rotate with the Sun, filament characteristics are computed and a database of filaments parameters is built. We present the algorithms and performances of the code, and we compare its results with the filaments detected in Hα and already present in the Heliophysics Events Knowledgebase. We finally discuss the possibility of using such a code to detect eruptions in real time.

  9. Microwave structure of quiescent solar filaments at high resolution

    High resolution very low altitude maps of a quiescent filament at three frequencies are presented. The spatial resolution (approx. 15'' at 1.45 GHz, approx. 6'' at 4.9 GHz, and approx. 2'' at 15 GHz) is several times better than previously attained. At each frequency, the filament appears as a depression in the quiet Sun background. The depression is measurably wider and longer in extent than the corresponding H alpha filament at 1.45 GHz and 4.9 GHz, indicating that the depression is due in large part to a deficit in coronal density associated with the filament channel. In contrast, the shape of the radio depression at 15 CHz closely matches that of the H alpha filament. In addition, the 15 GHz map shows enhanced emission along both sides of the radio depression. A similar enhancement is seen in an observation of a second filament 4 days later, which suggests that the enhancement is a general feature of filaments. Possible causes of the enhanced emission are explored

  10. An observational detection of the bridge effect of void filaments

    Shim, Junsup; Hoyle, Fiona

    2015-01-01

    The bridge effect of void filaments is a phrase coined by Park & Lee (2009b) to explain the correlations found in a numerical experiment between the luminosity of the void galaxies and the degree of the straightness of their host filaments. Their numerical finding implies that a straight void filament provides a narrow channel for the efficient transportation of gas and matter particles from the surroundings into the void galaxies. To observationally confirm the presence of the bridge effect of void filaments, we identify the filamentary structures from the Sloan void catalog and determine the specific size of each void filament as a measure of its straightness. Using both classical and Bayesian statistics, we indeed detect a strong tendency that the void galaxies located in the more straight filaments are on average more luminous, which is in agreement with the numerical prediction. It is also shown that the strength of correlation increases with the spatial extent of the void filaments, which can be phy...

  11. Investigating the Global Collapse of Filaments Using Smoothed Particle Hydrodynamics

    Clarke, Seamus D

    2015-01-01

    We use Smoothed Particle Hydrodynamic simulations of cold, uniform density, self-gravitating filaments, to investigate their longitudinal collapse timescales; these timescales are important because they determine the time available for a filament to fragment into cores. A filament is initially characterised by its line-mass, $\\mu$, its radius, $R$ (or equivalently its density $\\rho\\!=\\!\\mu/\\pi R^2$), and its aspect ratio, $A\\;\\,(\\equiv Z/R$, where $Z$ is its half-length). The gas is only allowed to contract longitudinally, i.e. parallel to the symmetry axis of the filament (the $z$-axis). Pon et al. (2012) have considered the global dynamics of such filaments analytically. They conclude that short filaments ($A\\! \\!5$) undergo end-dominated collapse, i.e. two dense clumps form at the ends of the filament and converge on the centre sweeping up mass as they go, on a time-scale $t_{_{\\rm END}} \\sim 0.98\\,A^{1/2}\\,(G\\rho)^{-1/2}$. Our simulations do not corroborate these predictions. First, for all $A\\! > \\!2$, ...

  12. Footpoint detection and mass-motion in chromospheric filaments

    V, Aparna; Hardersen, P. S.; Martin, S. F.

    2013-07-01

    A quiescent region on the Sun containing three filaments is used to study the properties of mass motion. This study determines if the footpoints or end-points of the filaments are the locations from where mass gets injected into the filaments. Several hypotheses have been put forth in the past to determine how a filament acquires mass. Trapping of coronal mass in the filament channel due to condensation (Martin, 1996) and injection of mass into the filaments during magnetic reconnection (Priest, et al., 1995) are some of the speculations. This study looks for indications for injection of mass via chromospheric footpoints. The data consists of blue (Hα-0.5 Å) and red (Hα+0.5 Å) wing high resolution Hα images of the W29N37 region of the Sun taken on Oct 30, 2010, from 1200 - 1600 UT. The Dutch Open Telescope was used to obtain the data. The images are aligned and animated to see Doppler motion in the fibrils. Smaller fibrils merge to form longer ones; barbs appear and disappear in one of the long filaments and is seen moving along the length of the filament. A region with no typical filament-like absorption feature is observed to be continuously receiving mass. Fibrils appear to be converging from opposite sides along what appears to be a neutral line; mass motion is seen in these fibrils as well. An eruption occurs in a region of fibrils lumped together at the end of the first hour (1300 UT) followed by plage brightening at 1430 UT near one of the filament regions. Helioviewer (Panasenco, et al., 2011) is used for aligning the images; GIMP is used for precision alignment and animation. Each frame in the sequence is studied carefully to note changes in the filament regions. The footpoints of the filaments are determined by the changes observed in the position of the filament ‘legs’ in each frame. Variations in the magnetic polarity corresponding to changes observed in the chromosphere are analyzed using HMI magnetograms. Bright and dark points on the

  13. Simulation of Filament Heater for Uniform Emission from Dispenser Cathode

    Singh, Narendra Kr.; Bhattacharya, Ranojoy; Khatun, Hasina; Singh, Udaybir; Sinha, A. K.

    2012-06-01

    This paper presents the design study of toroid shape filament heater for dispenser cathode.The filament heater will be used in cathode assembly of 200 kW 42 GHz gyrotron. A 3 D model of cathode assembly is designed using electromagnetic and thermal simulation software, ANSYS. The simulations are performed for optimizing the input filament heater power with respect to cathode surface temperature. The parametric study shows that the input power and cathode surface temperature depends strongly on the potting material, diameter of filament, number of turns, position and height of the filament heater with respect to cathode pellet. The design analyses are also carried out for two different filament heater materials i.e. tungsten and molybdenum. Further, the thermal, structural and transient analyses are also carried out to study the mechanical strength of the filament heater. It is concluded that the input heater power should be greater than 200 W to achieve cathode surface temperature greater than 1,000°C.

  14. MUSE discovers perpendicular arcs in Cen A inner filament

    Hamer, Stephen; Combes, Francoise; Salomé, Quentin

    2014-01-01

    Evidence of AGN interaction with the intergalactic medium is observed in some galaxies and many cool core clusters. Radio-jets are suspected to dig large cavities into the surrounding gas. In most cases, very large optical filaments (several kpc) are also seen all around the central galaxy. The origin of these filaments is still not understood. Star forming regions are sometimes observed inside the filaments and are interpreted as evidence of positive feedback (AGN-triggered star formation). Cen A is a very nearby galaxy with huge optical filaments aligned with AGN radio-jet direction. Here, we search for line ratio variations along the filaments, kinematic evidence of shock-broadend line widths and large scale dynamical structures. We observe a 1'x1' region around the inner filament of Cen A with MUSE on the VLT during the Science Verification period. The brightest lines are the Halpha, [NII], [OIII] and [SII]. MUSE shows that the filaments are made of clumpy structures inside a more diffuse medium aligned w...

  15. Mesoscopic model for filament orientation in growing actin networks: the role of obstacle geometry

    Propulsion by growing actin networks is a universal mechanism used in many different biological systems, ranging from the sheet-like lamellipodium of crawling animal cells to the actin comet tails induced by certain bacteria and viruses in order to move within their host cells. Although the core molecular machinery for actin network growth is well preserved in all of these cases, the geometry of the propelled obstacle varies considerably. During recent years, filament orientation distribution has emerged as an important observable characterizing the structure and dynamical state of the growing network. Here we derive several continuum equations for the orientation distribution of filaments growing behind stiff obstacles of various shapes and validate the predicted steady state orientation patterns by stochastic computer simulations based on discrete filaments. We use an ordinary differential equation approach to demonstrate that for flat obstacles of finite size, two fundamentally different orientation patterns peaked at either ±35° or +70°/0°/ − 70° exhibit mutually exclusive stability, in agreement with earlier results for flat obstacles of very large lateral extension. We calculate and validate phase diagrams as a function of model parameters and show how this approach can be extended to obstacles with piecewise straight contours. For curved obstacles, we arrive at a partial differential equation in the continuum limit, which again is in good agreement with the computer simulations. In all cases, we can identify the same two fundamentally different orientation patterns, but only within an appropriate reference frame, which is adjusted to the local orientation of the obstacle contour. Our results suggest that two fundamentally different network architectures compete with each other in growing actin networks, irrespective of obstacle geometry, and clarify how simulated and electron tomography data have to be analyzed for non-flat obstacle geometries. (paper)

  16. Gradient catastrophe and flutter in vortex filament dynamics

    Konopelchenko, B G

    2011-01-01

    Gradient catastrophe and flutter instability in the motion of vortex filament within the localized induction approximation are analyzed. It is shown that the origin if this phenomenon is in the gradient catastrophe for the dispersionless Da Rios system which describes motion of filament with slow varying curvature and torsion. Geometrically this catastrophe manifests as a rapid oscillation of a filament curve in a point that resembles the flutter of airfoils. Analytically it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painlev\\'e-I equation.

  17. Gradient catastrophe and flutter in vortex filament dynamics

    Gradient catastrophe and flutter instability in the motion of a vortex filament within the localized induction approximation are analyzed. It is shown that the origin of this phenomenon is in the gradient catastrophe for the dispersionless Da Rios system which describes the motion of a filament with slow varying curvature and torsion. Geometrically, this catastrophe manifests as a rapid oscillation of a filament curve in a point that resembles the flutter of airfoils. Analytically, it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painleve-I equation. (fast track communication)

  18. Gradient catastrophe and flutter in vortex filament dynamics

    Konopelchenko, B G [Dipartimento di Fisica, Universita del Salento and INFN, Sezione di Lecce, 73100 Lecce (Italy); Ortenzi, G, E-mail: giovanni.ortenzi@unimib.it [Dipartimento di Matematica Pura ed Applicazioni, Universita di Milano Bicocca, 20125 Milano (Italy)

    2011-10-28

    Gradient catastrophe and flutter instability in the motion of a vortex filament within the localized induction approximation are analyzed. It is shown that the origin of this phenomenon is in the gradient catastrophe for the dispersionless Da Rios system which describes the motion of a filament with slow varying curvature and torsion. Geometrically, this catastrophe manifests as a rapid oscillation of a filament curve in a point that resembles the flutter of airfoils. Analytically, it is the elliptic umbilic singularity in the terminology of the catastrophe theory. It is demonstrated that its double scaling regularization is governed by the Painleve-I equation. (fast track communication)

  19. Failure and nonfailure of fluid filaments in extension

    Hassager, Ole; Kolte, Mette Irene; Renardy, Michael

    The phenomenon of ductile failure of Newtonian and viscoelastic fluid filaments without surface tension is studied by a 2D finite element method and by ID non-linear analysis. The viscoelastic fluids are described by single integral constitutive equations. The main conclusions are: (1) Newtonian...... fluid filaments do not exhibit ductile failure without surface tension; (2) some viscoelastic fluids form stable filaments while other fluids exhibit ductile failure as a result of an elastic instability; (3) for large Deborah numbers, the Considere condition may be used to predict the Hencky strain of...... the elastic instability....

  20. Septin Filament Formation is Essential in Budding Yeast

    McMurray, Michael A.; Bertin, Aurelie; Garcia, Galo; Lam, Lisa; Nogales, Eva; Thorner, Jeremy

    2011-01-01

    Septins are GTP-binding proteins that form ordered, rod-like multimeric complexes and polymerize into filaments, but how such supramolecular structure is related to septin function was unclear. In Saccharomyces cerevisiae, four septins form an apolar hetero-octamer (Cdc11–Cdc12–Cdc3–Cdc10–Cdc10–Cdc3–Cdc12–Cdc11) that associates end-to-end to form filaments. We show that septin filament assembly displays previously unanticipated plasticity. Cells lacking Cdc10 or Cdc11 are able to divide becau...

  1. Organic Acid Production by Filamentous Fungi

    Magnuson, Jon K.; Lasure, Linda L.

    2004-05-03

    Many of the commercial production processes for organic acids are excellent examples of fungal biotechnology. However, unlike penicillin, the organic acids have had a less visible impact on human well-being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been overshadowed by the successful deployment of the β-lactam processes. Yet, in terms of productivity, fungal organic acid processes may be the best examples of all. For example, commercial processes using Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80% efficiency and at final concentrations in hundreds of grams per liter. Surprisingly, this phenomenal productivity has been the object of relatively few research programs. Perhaps a greater understanding of this extraordinary capacity of filamentous fungi to produce organic acids in high concentrations will allow greater exploitation of these organisms via application of new knowledge in this era of genomics-based biotechnology. In this chapter, we will explore the biochemistry and modern genetic aspects of the current and potential commercial processes for making organic acids. The organisms involved, with a few exceptions, are filamentous fungi, and this review is limited to that group. Although yeasts including Saccharomyces cerevisiae, species of Rhodotorula, Pichia, and Hansenula are important organisms in fungal biotechnology, they have not been significant for commercial organic acid production, with one exception. The yeast, Yarrowia lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002). Furthermore, in the near future engineered yeasts may provide new commercial processes to make lactic acid (Porro, Bianchi, Ranzi, Frontali, Vai, Winkler, & Alberghina, 2002). This chapter is divided into two parts. The first contains a review of the commercial aspects of current and potential large

  2. A Comparison Study of a Solar Active-Region Eruptive Filament and a Neighboring Non-Eruptive Filament

    Jiang, Chaowei; Feng, Xueshang; Hu, Qiang

    2015-01-01

    Solar active region (AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using a CESE-MHD-NLFFF code (Jiang & Feng 2013) reveals that two magnetic flux ropes (MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface (BPSS) co-spatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match H{\\alpha} observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament (with a length of about 200 Mm), the eruptive MFR/filament is much ...

  3. Equilibrium theory for braided elastic filaments

    van der Heijden, Gert

    Motivated by supercoiling of DNA and other filamentous structures, we formulate a theory for equilibria of 2-braids, i.e., structures formed by two elastic rods winding around each other in continuous contact and subject to a local interstrand interaction. Unlike in previous work no assumption is made on the shape of the contact curve. Rather, this shape is found as part of the solution. The theory is developed in terms of a moving frame of directors attached to one of the strands with one of the directors pointing to the position of the other strand. The constant-distance constraint is automatically satisfied by the introduction of what we call braid strains. The price we pay is that the potential energy involves arclength derivatives of these strains, thus giving rise to a second-order variational problem. The Euler-Lagrange equations for this problem give balance equations for the overall braid force and moment referred to the moving frame as well as differential equations that can be interpreted as effective constitutive relations encoding the effect that the second strand has on the first as the braid deforms under the action of end loads. Simple analytical cases are discussed first and used as starting solutions in parameter continuation studies to compute classes of both open and closed (linked or knotted) braid solutions.

  4. Cold Milky Way Hi gas in filaments

    Kalberla, P M W; Haud, U; Winkel, B; Bekhti, N Ben; Floeer, L; Lenz, D

    2016-01-01

    We investigate data from the Galactic Effelsberg--Bonn HI Survey (EBHIS), supplemented with data from the third release of the Galactic All Sky Survey (GASS III) observed at Parkes. We explore the all sky distribution of the local Galactic HI gas with $|v_{\\rm LSR}| 20^\\circ$ is described by a log-normal distribution, with a median Doppler temperature $T_{\\rm D} = 223$ K, derived from observed line widths that include turbulent contributions. The median neutral hydrogen (HI) column density is $N_{\\rm HI} \\simeq 10^{19.1}\\,{\\rm cm^{-2}}$. These CNM structures are embedded within a warm neutral medium (WNM) with $N_{\\rm HI} \\simeq 10^{20} {\\rm cm^{-2}}$. Assuming an average distance of 100 pc, we derive for the CNM sheets a thickness of $< 0.3$ pc. Adopting a magnetic field strength of $B_{\\rm tot} = (6.0 \\pm 1.8)\\mu$G, proposed by Heiles & Troland 2005, and assuming that the CNM filaments are confined by magnetic pressure, we estimate a thickness of 0.09 pc. Correspondingly the median volume density is ...

  5. Molecular phylogeny of metazoan intermediate filament proteins.

    Erber, A; Riemer, D; Bovenschulte, M; Weber, K

    1998-12-01

    We have cloned cytoplasmic intermediate filament (IF) proteins from a large number of invertebrate phyla using cDNA probes, the monoclonal antibody IFA, peptide sequence information, and various RT-PCR procedures. Novel IF protein sequences reported here include the urochordata and nine protostomic phyla, i.e., Annelida, Brachiopoda, Chaetognatha, Echiura, Nematomorpha, Nemertea, Platyhelminthes, Phoronida, and Sipuncula. Taken together with the wealth of data on IF proteins of vertebrates and the results on IF proteins of Cephalochordata, Mollusca, Annelida, and Nematoda, two IF prototypes emerge. The L-type, which includes 35 sequences from 11 protostomic phyla, shares with the nuclear lamins the long version of the coil 1b subdomain and, in most cases, a homology segment of some 120 residues in the carboxyterminal tail domain. The S-type, which includes all four subfamilies (types I to IV) of vertebrate IF proteins, lacks 42 residues in the coil 1b subdomain and the carboxyterminal lamin homology segment. Since IF proteins from all three phyla of the chordates have the 42-residue deletion, this deletion arose in a progenitor prior to the divergence of the chordates into the urochordate, cephalochordate, and vertebrate lineages, possibly already at the origin of the deuterostomic branch. Four phyla recently placed into the protostomia on grounds of their 18S rDNA sequences (Brachiopoda, Nemertea, Phoronida, and Platyhelminthes) show IF proteins of the L-type and fit by sequence identity criteria into the lophotrochozoic branch of the protostomia. PMID:9847417

  6. Broken Detailed Balance of Filament Dynamics in Active Networks

    Gladrow, J.; Fakhri, N.; MacKintosh, F. C.; Schmidt, C. F.; Broedersz, C. P.

    2016-06-01

    Myosin motor proteins drive vigorous steady-state fluctuations in the actin cytoskeleton of cells. Endogenous embedded semiflexible filaments such as microtubules, or added filaments such as single-walled carbon nanotubes are used as novel tools to noninvasively track equilibrium and nonequilibrium fluctuations in such biopolymer networks. Here, we analytically calculate shape fluctuations of semiflexible probe filaments in a viscoelastic environment, driven out of equilibrium by motor activity. Transverse bending fluctuations of the probe filaments can be decomposed into dynamic normal modes. We find that these modes no longer evolve independently under nonequilibrium driving. This effective mode coupling results in nonzero circulatory currents in a conformational phase space, reflecting a violation of detailed balance. We present predictions for the characteristic frequencies associated with these currents and investigate how the temporal signatures of motor activity determine mode correlations, which we find to be consistent with recent experiments on microtubules embedded in cytoskeletal networks.

  7. Calibration and temperature profile of a tungsten filament lamp

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament lamp (lamp used in automotive lighting) and then tested on a standard tungsten ribbon lamp. The calibration procedure developed was checked by determining the calibration point of the tungsten ribbon lamp with an accuracy of 2%. In addition, for low current intensity, it was observed that the temperature of the filament was not uniform; an explanation is proposed by considering a simple heat transfer model.

  8. Calibration and temperature profile of a tungsten filament lamp

    De Izarra, Charles [Groupe de Recherche sur l' Energetique des Milieux Ionises, UMR6606 Universite d' Orleans, CNRS, Faculte des Sciences, Site de Bourges, rue Gaston Berger, BP 4043, 18028 Bourges Cedex (France); Gitton, Jean-Michel, E-mail: Charles.De_Izarra@univ-orleans.f [College Littre, 10 rue Littre, Bourges (France)

    2010-07-15

    The goal of this work proposed for undergraduate students and teachers is the calibration of a tungsten filament lamp from electric measurements that are both simple and precise, allowing to determine the temperature of tungsten filament as a function of the current intensity. This calibration procedure was first applied to a conventional filament lamp (lamp used in automotive lighting) and then tested on a standard tungsten ribbon lamp. The calibration procedure developed was checked by determining the calibration point of the tungsten ribbon lamp with an accuracy of 2%. In addition, for low current intensity, it was observed that the temperature of the filament was not uniform; an explanation is proposed by considering a simple heat transfer model.

  9. Laser control of filament-induced shock wave in water

    Potemkin, F. V.; Mareev, E. I.; Podshivalov, A. A.; Gordienko, V. M.

    2014-09-01

    We discovered that tight focusing of Cr:forsterite femtosecond laser radiation in water provides the unique opportunity of long filament generation. The filament becomes a source of numerous spherical shock waves whose radius tends to saturate with the increase of energy. These overlapping waves create a contrast cylindrical shock wave. The laser-induced shock wave parameters such as shape, amplitude and speed can be effectively controlled by varying energy and focusing geometry of the femtosecond pulse. Aberrations added to the optical scheme lead to multiple dotted plasma sources for shock wave formation, spaced along the optical axis. Increasing the laser energy launches filaments at each dot that enhance the length of the entire filament and as a result, the shock impact on the material.

  10. Linear filaments of the radio arc near the Galactic center

    High-resolution radio continuum VLA images of a segment of the Galactic center arc centered at G0.16-0.15 at wavelengths of both 6 and 20 cm are presented. In this segment, the highest multiplicity of filaments, the largest degree of linear polarization, and a maximum rotation measure of -5500 rad/sq m between wavelengths 6.166 and 6.363 cm are found. The large helical segments which surround the filamentary system are also shown and discussed. Based on a number of intriguing characteristics of the filamentary system, including the helical component and possible twisting of some of the filaments, a picture is considered in which the geometry of the magnetic structure is that of a cylindrically symmetric, force-free field anchored to the halo of the Galaxy. An analogy with solar flare filaments is used to discuss some aspects of the Galactic center filaments. 25 references

  11. Linear filaments of the radio arc near the Galactic center

    Yusef-Zadeh, F.; Morris, M.

    1987-11-01

    High-resolution radio continuum VLA images of a segment of the Galactic center arc centered at G0.16-0.15 at wavelengths of both 6 and 20 cm are presented. In this segment, the highest multiplicity of filaments, the largest degree of linear polarization, and a maximum rotation measure of -5500 rad/sq m between wavelengths 6.166 and 6.363 cm are found. The large helical segments which surround the filamentary system are also shown and discussed. Based on a number of intriguing characteristics of the filamentary system, including the helical component and possible twisting of some of the filaments, a picture is considered in which the geometry of the magnetic structure is that of a cylindrically symmetric, force-free field anchored to the halo of the Galaxy. An analogy with solar flare filaments is used to discuss some aspects of the Galactic center filaments. 25 references.

  12. FILAMENTATION INSTABILITY OF LASER BEAMS IN NONLOCAL NONLINEAR MEDIA

    文双春; 范滇元

    2001-01-01

    The filamentation instability of laser beams propagating in nonlocal nonlinear media is investigated. It is shown that the filamentation instability can occur in weakly nonlocal self-focusing media for any degree of nonlocality, and in defocusing media for the input light intensity exceeding a threshold related to the degree of nonlocality. A linear stability analysis is used to predict the initial growth rate of the instability. It is found that the nonlocality tends to suppress filamentation instability in self-focusing media and to stimulate filamentation instability in self-defocusing media. Numerical simulations confirm the results of the linear stability analysis and disclose a recurrence phenomenon in nonlocal self-focusing media analogous to the Fermi-Pasta-Ulam problem.

  13. Persistence of strain in motor-filament assemblies

    Gopinath, Arvind; Mahadevan, L

    2015-01-01

    Crosslinked semi-flexible and flexible filaments that are actively deformed by molecular motors occur in various natural settings, such as the ordered eukaryotic flagellum, and the disordered cytoskeleton. The deformation of these composite systems is driven by active motor forces and resisted by passive filament elasticity, and structural constraints due to permanent cross-links. Using a mean field theory for a one-dimensional ordered system, we show that the combination of motor activity and finite filament extensibility yields a characteristic persistence length scale over which active strain decays. This decay length is set by the ability of motors to respond to combination of the weak extensional elasticity, passive shear resistance and the viscoelastic properties of the motor assembly, and generalizes the notion of persistence in purely thermal filaments to active systems.

  14. Filament propagation length of femtosecond pulses with different transverse modes

    Kaya, N; Kaya, G; Strohaber, J; Kolomenskii, A A; Schuessler, H A

    2014-01-01

    We experimentally studied intense femtosecond pulse filamentation and propagation in water for Gaussian, Laguerre-Gaussian, and Bessel-Gaussian incident beams. These different transverse modes for incident laser pulses were created from an initial Gaussian beam by using a computer generated hologram technique. We found that the length of the filament induced by the Bessel-Gaussian incident beam was longer than that for the other transverse modes under the conditions of the same peak intensity, pulse duration, and the size of the central part of the beam. To better understand the Bessel-Gaussian beam propagation, we performed a more detailed study of the filament length as a function of the number of radial modal lobes. The length increased with the number of lobes, implying that the radial modal lobes serve as an energy reservoir for the filament formed by the central intensity peak.

  15. Thioploca spp: filamentous sulfur bacteria with nitrate vacuoles

    Jørgensen, BB; Gallardo, VA

    1999-01-01

    Thioploca spp. are multicellular, filamentous, colorless sulfur bacteria inhabiting freshwater and marine sediments. They have elemental sulfur inclusions similar to the phylogenetically closely related Beggiatoa, but in contrast to these they live in bundles surrounded by a common sheath. Vast...

  16. Dynamics of wave fronts and filaments in anisotropic cardiac tissue

    Dierckx, Hans J F M

    2015-01-01

    The heartbeat is mediated between cardiac cells by waves of electrical depolarisation. During cardiac arrhythmias, electrical activity was found to be organised in scroll waves which rotate around a dynamical filament curve. In this thesis, a curved-space approach is used to mathematically capture anisotropy of wave propagation. We derive for the first time the covariant laws of motion for traveling wave fronts and scroll wave filaments in anisotropic excitable media such as cardiac tissue. We show that locally varying anisotropy yields non-zero Riemann tensor components, which may alter the stability of scroll wave filaments. The instability of scroll wave filaments has been linked to transition from ventricular tachycardia to fibrillation.

  17. Measurement of Reversed Extension Flow using the Filament Stretch Rheometer

    Rasmussen, Henrik K.; Skov, Anne Ladegaard; Nielsen, Jens Kromann;

    2008-01-01

    The measurement of material functions with reversed extension flow is demonstrated using the Filament Stretching Rheometer (FSR). This includes startup of uniaxial elongational flow (potentially until steady state) followed by biaxial squeezing, and large amplitude oscillatory elongation (LAOE...

  18. Filament proteins in central, cranial, and peripheral mammalian nerves

    1981-01-01

    Several classes of 10-nm filaments have been reported in mammalian cells and they can be distinguished by the size of their protein subunit. We have studied the distribution of these filaments in nerves from calves and other mammals. From the display on polyacrylamide electrophoretic gels of proteins in extracts from fibroblast and central, cranial and peripheral nerves, we cut the appropriate stained bands and prepared iodinated peptide maps. The similarities between the respective maps prov...

  19. KAO and AAT observations of the Galactic Center filaments

    Erickson, Edwin F.; Colgan, Sean W. J.; Simpson, Janet P.; Rubin, Robert H.; Haas, Michael R.; Morris, M.; Cotera, A. S.; Allen, David A.; Burton, Michael G.

    1995-01-01

    We have used the Kuiper Airborne Observatory (KAO) and the Anglo-Australian Telescope (AAT) to investigate the nature of the filamentary radio emission from the Galactic center region. KAO observations of the FIR line and continuum emission from the radio peak G0.095+0.012 and the E2 thermal radio filament northeast of the Galactic center can be produced by numerous nearby stars with T(sub eff) approx. 35,000 K; these can account for both the FIR luminosity and the excitation of the gas. Much of the FIR continuum and most of the strong (Si II) (34.8 micron) line emission are probably produced in the ionized gas of the filament. The FIR (O III) 52 and 88 micron lines imply an electron density of a few hundred; when compared with the radio emission measure, this implies the filament is roughly tubular or somewhat flattened in the plane of the sky. The (O III) and (S III) lines show higher excitation associated with the filament, and suggest that exciting stars may be located within the filaments and/or southeast of the E2 filament. AAT observations in the near infrared (NIR) in fact reveal a nearby cluster of hot stars southeast of the E2 filament. Additional hot stars, not identifiable from their NIR spectra, are likely to be present. These stars and those in the cluster can plausibly produce the observed radio and FIR emission in the region. The morphology of the filament is not explained by existing information however.

  20. Production of antimicrobials and antioxidants from filamentous fungi

    Smith, Helen A.

    2014-01-01

    Filamentous fungi have proven throughout history to be a vast source of potential therapeutic activities. They are recognised as nutritious, highly palatable functional foods and are now widely accepted as an untapped source of potentially powerful natural products of pharmacological significance. In the present study, ten species of filamentous fungi were explored on the basis of their curative potential. Submerged liquid fermentation (SLF) was employed and proved to be a promising method...

  1. Technique for plasma filament stabilization in a tokamak

    The invention is related to the field of automatic control of thermonuclear device processes and can be used in control systems of plasma filament stabilization by large radius in tokamak type thermolnuclear devices. The economic effect of the suggested technique is caused by improvement of stabilization of optimum (from the viewpoint of the decrease of plasma energy losses) plasma filament position in the tokamak-reactor which results in the decrease of power of additional plasma heating systems

  2. Star formation efficiency in the outer filaments of Centaurus A

    Salomé, Q.; Salomé, P.; Combes, F.; Hamer, S.; Heywood, I.

    2015-12-01

    We present a multi-wavelength study of the northern filaments of Centaurus A (at a distance of ˜ 20 kpc from the galaxy center) based on FUV (GALEX), FIR (Herschel) and CO (SEST and ALMA) emission. We also searched for HCN and HCO^+ (ATCA) and observed optical emission lines (VLT/MUSE) in different places of the filament. An upper limit of the dense gas of L'_{HCN}inhibits star formation.

  3. A filament of dark matter between two clusters of galaxies

    Dietrich, Jörg P.; Werner, Norbert; Clowe, Douglas; Finoguenov, Alexis; Kitching, Tom; Miller, Lance,; Simionescu, Aurora

    2012-01-01

    It is a firm prediction of the concordance Cold Dark Matter (CDM) cosmological model that galaxy clusters live at the intersection of large-scale structure filaments. The thread-like structure of this "cosmic web" has been traced by galaxy redshift surveys for decades. More recently the Warm-Hot Intergalactic Medium (WHIM) residing in low redshift filaments has been observed in emission and absorption. However, a reliable direct detection of the underlying Dark Matter skeleton, which should c...

  4. Scrape Off Layer profiles interpreted with filament dynamics

    Militello, F

    2016-01-01

    A theoretical framework is developed to link the density profiles in the Scrape Off Layer (SOL) with the fluctuations (filaments) that generate them. The framework is based on the dynamics of independent filaments and their statistical behaviour and can be used to rigorously understand the mechanisms that lead to flattening and broadening of the SOL profiles as well as the radial increase of the relative fluctuation amplitude.

  5. Filament power regulator for thermal ionization mass spectrometry

    A device has been developed that will control the filament temperature in a thermal ionization mass spectrometer. The arrangement is superior to past methods to control this critical parameter. The operating principle lies in the feature of filament power control as contrasted with the formerly used voltage or current controls. Reproducibility and stability of ion beams showed great improvement. The mass spectrometer was developed to analyze for parts-per-billion concentrations of uranium in water samples

  6. Computer Virus

    2007-01-01

    Computer viruses are small software programs that are designed to spread from one computerto another and to interfere with computer operation.A virus might delete data on your computer,use your e-mail program to spread itself to othercomputers,or even erase everything on your hard disk.Viruses are most easily spread by attach-ments in e-mail messages or instant messaging messages.That is why it is essential that you never

  7. Large scale filaments associated with Milky Way spiral arms

    Wang, Ke; Ginsburg, Adam; Walmsley, C Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-01-01

    The ubiquity of filamentary structure at various scales through out the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e., as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL data complemented by spectral line cubes. We present a sample of the 9 most prominent Herschel filaments, including 6 identified from a pilot search field plus 3 from outside the field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3)$\\times10^4 \\, M_\\odot$, and beam-averaged ($28"$, or 0.4-0.7 pc) peak H$_2$ column densities of (1.7-9.3)$\\times 10^{22} \\, \\rm{cm^{-2}}$. The bulk of the filaments are relatively cold (17-21 K), whi...

  8. Properties of Cosmological Filaments extracted from Eulerian Simulations

    Gheller, Claudio; Favre, Jean; Brüggen, Marcus

    2015-01-01

    Using a new parallel algorithm implemented within the VisIt framework, we analysed large cosmological grid simulations to study the properties of baryons in filaments. The procedure allows us to build large catalogues with up to $\\sim 3 \\cdot 10^4$ filaments per simulated volume and to investigate the properties of cosmic filaments for very large volumes at high resolution (up to $300^3 ~\\rm Mpc^3$ simulated with $2048^3$ cells). We determined scaling relations for the mass, volume, length and temperature of filaments and compared them to those of galaxy clusters. The longest filaments have a total length of about $200 ~\\rm Mpc$ with a mass of several $10^{15} M_{\\odot}$. We also investigated the effects of different gas physics. Radiative cooling significantly modifies the thermal properties of the warm-hot-intergalactic medium of filaments, mainly by lowering their mean temperature via line cooling. On the other hand, powerful feedback from active galactic nuclei in surrounding halos can heat up the gas in ...

  9. Filament Fragmentation in High-Mass Star Formation

    Beuther, H; Johnston, K; Henning, Th; Hacar, A; Kainulainen, J T

    2015-01-01

    Aims: We resolve the length-scales for filament formation and fragmentation (res. <=0.1pc), in particular the Jeans length and cylinder fragmentation scale. Methods: We observed the prototypical high-mass star-forming filament IRDC18223 with the Plateau de Bure Interferometer (PdBI) in the 3.2mm continuum and N2H+(1-0) line emission in a ten field mosaic at a spatial resolution of ~4'' (~14000AU). Results: The dust continuum emission resolves the filament into a chain of at least 12 relatively regularly spaced cores. The mean separation between cores is ~0.40(+-0.18)pc. While this is approximately consistent with the fragmentation of an infinite, isothermal, gravitationally bound gas cylinder, a high mass-to-length ratio of M/l~1000M_sun/pc requires additional turbulent and/or magnetic support against radial collapse of the filament. The N2H+(1-0) data reveal a velocity gradient perpendicular to the main filament. Although rotation of the filament cannot be excluded, the data are also consistent with the m...

  10. Appearance of Dusty Filaments at Different Viewing Angles

    Chira, R -A; Henning, Th; Kainulainen, J

    2016-01-01

    Context: In the last years, there have been many studies on the omnipresence and structures of filaments in star-forming regions, as well as their role in the process of star formation. Those filaments are normally identified as elongated fibres across the plane of the sky. But how would we detect filaments that are inclined? Aims: We aim to learn more about whether, and how, total column density or dust temperature change with respect to the line of sight. Such variations would enable observers to use dust observations to identify and study filaments at any inclination and gain more insight on the distribution and orientations of filaments within the Galactic plane. Methods: As a first step, we perform numerical calculations on simple cylindrical models to evaluate the influence of filament geometry on the average flux density. After that, we apply our three-dimensional Monte Carlo dust radiative transfer code on two models of star-forming regions and derive maps of effective total column density and dust te...

  11. Numerical Simulations of a Shock-Filament Interaction

    Pittard, J M

    2015-01-01

    We present 3D hydrodynamic adiabatic simulations of a shock interacting with a dense, elongated cloud. We compare how the nature of the interaction changes with the filament's length and its orientation to the shock, and with the shock Mach number and the density contrast of the filament. We then examine the differences with respect to 3D spherical-cloud calculations. We find significant differences in the morphology of the interaction when M=10 and chi=100: in many cases 3 parallel rolls are formed, and spread further apart with time, and periodic vortex shedding can occur off the ends of oblique filaments. Sideways-on filaments are accelerated more quickly, and initially lose mass more quickly than spherical clouds due to their greater surface area to volume ratio. However, at late stages they lose mass more slowly, due to the reduced relative speed between the filament and the postshock flow. The acceleration and mixing timescales can vary by a factor of 2 as the filament orientation changes. Oblique filam...

  12. Heterocyst placement strategies to maximize the growth of cyanobacterial filaments

    Under conditions of limited fixed-nitrogen, some filamentous cyanobacteria develop a regular pattern of heterocyst cells that fix nitrogen for the remaining vegetative cells. We examine three different heterocyst placement strategies by quantitatively modelling filament growth while varying both external fixed-nitrogen and leakage from the filament. We find that there is an optimum heterocyst frequency which maximizes the growth rate of the filament; the optimum frequency decreases as the external fixed-nitrogen concentration increases but increases as the leakage increases. In the presence of leakage, filaments implementing a local heterocyst placement strategy grow significantly faster than filaments implementing random heterocyst placement strategies. With no extracellular fixed-nitrogen, consistent with recent experimental studies of Anabaena sp. PCC 7120, the modelled heterocyst spacing distribution using our local heterocyst placement strategy is qualitatively similar to experimentally observed patterns. As external fixed-nitrogen is increased, the spacing distribution for our local placement strategy retains the same shape, while the average spacing between heterocysts continuously increases. (paper)

  13. Sympathetic Solar Filament Eruptions on 2015 March 15

    Wang, Rui; Zimovets, Ivan; Hu, Huidong; Dai, Xinghua; Yang, Zhongwei

    2016-01-01

    The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for ...

  14. Mid-infrared laser filaments in the atmosphere

    Mitrofanov, A V; Sidorov-Biryukov, D A; Pugžlys, A; Stepanov, E A; Andriukaitis, G; Flöry, T; Ališauskas, S; Fedotov, A B; Baltuška, A; Zheltikov, A M

    2014-01-01

    Filamentation of ultrashort laser pulses in the atmosphere offers unique opportunities for long-range transmission of high-power laser radiation and standoff detection. With the critical power of self-focusing scaling as the laser wavelength squared, the quest for longer-wavelength drivers, which would radically increase the peak power and, hence, the laser energy in a single filament, has been ongoing over two decades, during which time the available laser sources limited filamentation experiments in the atmosphere to the near-infrared and visible ranges. Here, we demonstrate filamentation of ultrashort mid-infrared pulses in the atmosphere for the first time. We show that, with the spectrum of a femtosecond laser driver centered at 3.9 um, right at the edge of the atmospheric transmission window, radiation energies above 20 mJ and peak powers in excess of 200 GW can be transmitted through the atmosphere in a single filament. Our studies reveal unique properties of mid-infrared filaments, where the generatio...

  15. Model-based analysis of keratin intermediate filament assembly

    The cytoskeleton of epithelial cells consists of three types of filament systems: microtubules, actin filaments and intermediate filaments (IFs). Here, we took a closer look at type I and type II IF proteins, i.e. keratins. They are hallmark constituents of epithelial cells and are responsible for the generation of stiffness, the cellular response to mechanical stimuli and the integrity of entire cell layers. Thereby, keratin networks constitute an important instrument for cells to adapt to their environment. In particular, we applied models to characterize the assembly of keratin K8 and K18 into elongated filaments as a means for network formation. For this purpose, we measured the length of in vitro assembled keratin K8/K18 filaments by transmission electron microscopy at different time points. We evaluated the experimental data of the longitudinal annealing reaction using two models from polymer chemistry: the Schulz–Zimm model and the condensation polymerization model. In both scenarios one has to make assumptions about the reaction process. We compare how well the models fit the measured data and thus determine which assumptions fit best. Based on mathematical modelling of experimental filament assembly data we define basic mechanistic properties of the elongation reaction process. (paper)

  16. Ligand-dependent inhibition and reversal of tau filament formation.

    Chirita, Carmen; Necula, Mihaela; Kuret, Jeff

    2004-03-16

    Alzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule associated protein tau. Because animal model studies suggest that a toxic gain of function accompanies tau aggregation in neurons, selective pharmacological inhibitors of the process may have utility in slowing neurodegeneration. Here, the properties of a candidate small molecule inhibitor of tau fibrillization, 3-(2-hydroxyethyl)-2-[2-[[3-(2-hydroxyethyl)-5-methoxy-2-benzothiazolylidene]methyl]-1-butenyl]-5-methoxybenzothiazolium (N744), were characterized in vitro using transmission electron microscopy. N744 inhibited arachidonic acid-induced aggregation of full-length, four-repeat tau protein at substoichiometric concentrations relative to total tau and with an IC(50) of approximately 300 nM. Inhibition was accompanied by a dose-dependent decrease in the number concentration of filaments, suggesting that N744 interfered with tau filament nucleation. Stoichiometric concentrations of N744 also promoted tau disaggregation when added to mature synthetic filaments. Disaggregation followed first-order kinetics and was accompanied by a steady decrease in filament number, suggesting that N744 promoted endwise loss of tau molecules with limited filament breakage. N744 at substoichiometric concentrations did not inhibit Abeta and alpha-synuclein aggregation, indicating it was tau selective under these conditions. Because of its activity in vitro, N744 may offer a pharmacological approach to the role of tau fibrillization in neurodegeneration. PMID:15005623

  17. Formation of a solar Ha filament from orphan penumbrae

    Buehler, D; van Noort, M; Solanki, S K

    2016-01-01

    The formation of an Ha filament in active region (AR) 10953 is described. Observations from the Solar Optical Telescope (SOT) aboard the Hinode satellite starting on 27th April 2007 until 1st May 2007 were analysed. 20 scans of the 6302A Fe I line pair recorded by SOT/SP were inverted using the SPINOR code. The inversions were analysed together with SOT/BFI G-band and Ca II H and SOT/NFI Ha observations. Following the disappearance of an initial Ha filament aligned along the polarity inversion line (PIL) of the AR, a new Ha filament formed in its place some 20 hours later, which remained stable for at least 1.5 days. The creation of the new Ha filament was driven by the ascent of horizontal magnetic fields from the photosphere into the chromosphere at three separate locations along the PIL. The magnetic fields at two of these locations were situated directly underneath the initial Ha filament and formed orphan penumbrae already aligned along the Ha filament channel. The 700 G orphan penumbrae were stable and ...

  18. The interaction of a magnetohydrodynamical shock with a filament

    Goldsmith, K J A

    2016-01-01

    We present 3D magnetohydrodynamic numerical simulations of the adiabatic interaction of a shock with a dense, filamentary cloud. We investigate the effects of various filament lengths and orientations on the interaction using different orientations of the magnetic field, and vary the Mach number of the shock, the density contrast of the filament, and the plasma beta, in order to determine their effect on the evolution and lifetime of the filament. We find that in a parallel magnetic field filaments have longer lifetimes if they are orientated more 'broadside' to the shock front, and that an increase in the density contrast hastens the destruction of the cloud, in terms of the modified cloud-crushing time-scale, tcs. The combination of a mild shock and a perpendicular or oblique field provides the best condition for extending the life of the filament, with some filaments able to survive almost indefinitely since they are cocooned by the magnetic field. A high value for the density contrast does not initiate la...

  19. Theory of electron current filamentation instability and ion density filamentation in the early development of a DPF discharge

    Two-dimensional simulations of the initial stages of plasma formation in a dense plasma focus show the formation, in a few tens of nanoseconds, of a dense layer of plasma (ne∼1018 cm-3,Te∼3 eV) in a thin layer surrounding the insulator-covered central anode of the focus device, and carrying axially-directed current at rather high current density.Earlier work on the filamentation of dense cathode plasma in high-power diodes seems to indicate that the anode plasma current layer in a dense plasma focus (DPF) device could be subject to the same instability, creating a growth of axially-directed filaments in the current density. The growth rate for resistive-thermal-driven filamentation, e.g. at 30 torr and ∼3 eV electron temperature, exceeds the that due to non-thermal current (JxB) driving, and is determined by electron dynamics, so its evolution is quicker than the response-time of the ions.Nonetheless, with such a growing current-density perturbation as a seed and its increasing rippling of the azimuthal magnetic field as a driver, the ions will eventually take part in the azimuthal bunching, forming filaments in the ion density as well. The resistive-thermal-driven filamentation fields thus serve to ''hurry-up'' the development of ion density filamentation, as shown approximately in the work presented here. This theory predicts, for light ions, a relatively early (≤250 ns) development of visible filaments along the anode, perhaps even before the main rundown phase of the focus plasma motion, and these filaments may persist during the 'liftoff' phase of the current layer to form the rundown phase of the plasma front. This work is supported by Larwenceville Plasma Physics.

  20. Frealix: Model-based refinement of helical filament structures from electron micrographs

    Rohou, Alexis; Grigorieff, Nikolaus

    2014-01-01

    The structures of many helical protein filaments can be derived from electron micrographs of their suspensions in thin films of vitrified aqueous solutions. The most successful and generally-applicable approach treats short segments of these filaments as independent “single particles”, yielding near-atomic resolution for rigid and well-ordered filaments. The single-particle approach can also accommodate filament deformations, yielding sub-nanometer resolution for more flexible filaments. Howe...

  1. Properties and processing by extrusion of electrically conductive multilayer filaments comprising polymer composites

    R. S. Martins; Gonçalves, Renato Ferreira; Azevedo, Tiago; Nóbrega, J. M.; Carvalho, Helder; Lanceros-Méndez, S.; Rocha, J. G.

    2013-01-01

    This work describes the production and characterization of three-layer piezoelectric filaments using two different electrically conductive polymers. The filaments were produced in a filament extrusion line, equipped with a coextrusion die that enabled a coaxial arrangement for a three-layer filament. For the inner and outer layers two different electrically conductive compounds were used, and the middle layer was made of the electroactive polymer PVDF. The produced filament can be used as a p...

  2. Giant quiescent solar filament observed with high-resolution spectroscopy

    Kuckein, C.; Verma, M.; Denker, C.

    2016-04-01

    Aims: An extremely large filament was studied in various layers of the solar atmosphere. The inferred physical parameters and the morphological aspects are compared with smaller quiescent filaments. Methods: A giant quiet-Sun filament was observed with the high-resolution Echelle spectrograph at the Vacuum Tower Telescope at Observatorio del Teide, Tenerife, Spain, on 2011 November 15. A mosaic of spectra (ten maps of 100″ × 182″) was recorded simultaneously in the chromospheric absorption lines Hα and Na i D2. Physical parameters of the filament plasma were derived using cloud model (CM) inversions and line core fits. The spectra were complemented with full-disk filtergrams (He i λ10830 Å, Hα, and Ca ii K) of the Chromospheric Telescope (ChroTel) and full-disk magnetograms of the Helioseismic and Magnetic Imager (HMI). Results: The filament had extremely large linear dimensions (~817 arcsec), which corresponds to about 658 Mm along a great circle on the solar surface. A total amount of 175119 Hα contrast profiles were inverted using the CM approach. The inferred mean line-of-sight (LOS) velocity, Doppler width, and source function were similar to previous works of smaller quiescent filaments. However, the derived optical thickness was higher. LOS velocity trends inferred from the Hα line core fits were in accord but weaker than those obtained with CM inversions. Signatures of counter-streaming flows were detected in the filament. The largest brightening conglomerates in the line core of Na i D2 coincided well with small-scale magnetic fields as seen by HMI. Mixed magnetic polarities were detected close to the ends of barbs. The computation of photospheric horizontal flows based on HMI magnetograms revealed flow kernels with a size of 5-8 Mm and velocities of 0.30-0.45 km s-1 at the ends of the filament. Conclusions: The physical properties of extremely large filaments are similar to their smaller counterparts, except for the optical thickness, which in

  3. Supergranular-scale magnetic flux emergence beneath an unstable filament

    Palacios, J.; Cid, C.; Guerrero, A.; Saiz, E.; Cerrato, Y.

    2015-11-01

    Aims: Here we report evidence of a large solar filament eruption on 2013, September 29. This smooth eruption, which passed without any previous flare, formed after a two-ribbon flare and a coronal mass ejection towards Earth. The coronal mass ejection generated a moderate geomagnetic storm on 2013, October 2 with very serious localized effects. The whole event passed unnoticed to flare-warning systems. Methods: We have conducted multi-wavelength analyses of the Solar Dynamics Observatory through Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) data. The AIA data on 304, 193, 211, and 94 Å sample the transition region and the corona, respectively, while HMI provides photospheric magnetograms, continuum, and linear polarization data, in addition to the fully inverted data provided by HMI. Results: This flux emergence happened very close to a filament barb that was very active in mass motion, as seen in 304 Å images. The observed flux emergence exhibited hectogauss values. The flux emergence extent appeared just beneath the filament, and the filament rose during the following hours. The emergence acquired a size of 33'' in ~12 h, about ~0.16 km s-1. The rate of signed magnetic flux is around 2 × 1017 Mx min-1 for each polarity. We have also studied the eruption speed, size, and dynamics. The mean velocity of the rising filament during the ~40 min previous to the flare is 115 ± 5 km s-1, and the subsequent acceleration in this period is 0.049 ± 0.001 km s-2. Conclusions: We have observed a supergranular-sized emergence close to a large filament in the boundary of the active region NOAA11850. Filament dynamics and magnetogram results suggest that the magnetic flux emergence takes place in the photospheric level below the filament. Reconnection occurs underneath the filament between the dipped lines that support the filament and the supergranular emergence. The very smooth ascent is probably caused by this emergence and torus instability

  4. From soft to hard rod behavior in liquid crystalline suspensions of sterically stabilized colloidal filamentous particles.

    Grelet, Eric; Rana, Richa

    2016-05-18

    The liquid crystalline phase behavior of a colloidal system of sterically stabilized rods is reported. Our colloidal suspensions consist of highly monodisperse, semi-flexible filamentous viruses which have been coated with neutral hydrophilic polymers by irreversibly binding poly(ethylene glycol) (PEG) to the surface of the virus particles. Depending on the size of the grafted polymer, up to three different phase transitions are observed (isotropic-to-chiral nematic, chiral nematic-to-smectic, and smectic-to-columnar). Each phase transition is shown to be independent of ionic strength, confirming the steric stabilization of the viral colloids. A direct, i.e. without any free parameters, comparison with theory and computer simulations of the volume fraction associated with the phase transition can be performed, showing a quantitative agreement with hard rod behavior at a low polymer chain size, and some deviation stemming from soft repulsion by increasing the polymer thickness coating of the rod. Specifically, we demonstrate that the columnar mesophase is not stabilized by electrostatic repulsion, and we discuss the conditions of its existence. PMID:27108523

  5. The intermediate filament network protein, vimentin, is required for parvoviral infection

    Fay, Nikta; Panté, Nelly, E-mail: pante@zoology.ubc.ca

    2013-09-15

    Intermediate filaments (IFs) have recently been shown to serve novel roles during infection by many viruses. Here we have begun to study the role of IFs during the early steps of infection by the parvovirus minute virus of mice (MVM). We found that during early infection with MVM, after endosomal escape, the vimentin IF network was considerably altered, yielding collapsed immunofluorescence staining near the nuclear periphery. Furthermore, we found that vimentin plays an important role in the life cycle of MVM. The number of cells, which successfully replicated MVM, was reduced in infected cells in which the vimentin network was genetically or pharmacologically modified; viral endocytosis, however, remained unaltered. Perinuclear accumulation of MVM-containing vesicles was reduced in cells lacking vimentin. Our data suggests that vimentin is required for the MVM life cycle, presenting possibly a dual role: (1) following MVM escape from endosomes and (2) during endosomal trafficking of MVM. - Highlights: • MVM infection changes the distribution of the vimentin network to perinuclear regions. • Disrupting the vimentin network with acrylamide decreases MVM replication. • MVM replication is significantly reduced in vimentin-null cells. • Distribution of MVM-containing vesicles is affected in MVM infected vimentin-null cells.

  6. Rotor Vortex Filaments: Living on the Slipstream's Edge

    Young, Larry A.

    1997-01-01

    The purpose of this paper is to gain a better understanding of rotor wake evolution in hover and axial flow by deriving an analytical solution for the time dependent behavior of vortex filament circulation and core size. This solution is applicable only for vortex filaments in the rotor far-wake. A primarily inviscid vortex/shear layer interaction (where the slipstream boundary is modeled as a shear layer) has been identified in this analytical treatment. This vortex/shear layer interaction results in decreasing, vortex filament circulation and core size with time. The inviscid vortex/shear layer interaction is shown, in a first-order treatment, to be of greater magnitude than viscous diffusion effects. The rate of contraction, and ultimate collapse, of the vortex filament core is found to be directly proportional to the rotor inflow velocity. This new insight into vortex filament decay promises to help reconcile several disparate observations made in the literature and will, hopefully, promote new advances in theoretical modeling of rotor wakes.

  7. Large amplitude oscillatory motion along a solar filament

    Vrsnak, B; Thalmann, J K; Zic, T

    2007-01-01

    Large amplitude oscillations of solar filaments is a phenomenon known for more than half a century. Recently, a new mode of oscillations, characterized by periodical plasma motions along the filament axis, was discovered. We analyze such an event, recorded on 23 January 2002 in Big Bear Solar Observatory H$\\alpha$ filtergrams, in order to infer the triggering mechanism and the nature of the restoring force. Motion along the filament axis of a distinct buldge-like feature was traced, to quantify the kinematics of the oscillatory motion. The data were fitted by a damped sine function, to estimate the basic parameters of the oscillations. In order to identify the triggering mechanism, morphological changes in the vicinity of the filament were analyzed. The observed oscillations of the plasma along the filament was characterized by an initial displacement of 24 Mm, initial velocity amplitude of 51 km/s, period of 50 min, and damping time of 115 min. We interpret the trigger in terms of poloidal magnetic flux inje...

  8. Numerical Study of Pinching Liquid Filament Using VOF Method

    洪若瑜

    2003-01-01

    Study on pinching liquid filament in literature was reviewed. The breakup of liquid filaments under surface tension is governed by incompressible, two-dimensional (2-D), Navier-Stokes Equations. Surface tension was expressed via a CSF (continuous surface force) model that ensures robustness and accuracy. A new surface reconstruction scheme, alternative phase integration (API) scheme was proposed to solve the kinematic equation,and was compared with other three referential schemes. A general-purpose computer program has been developed for simulating transient, 2-D, incompressible fluid flows with free surface of complex topology. The transient behavior of breaking Newtonian liquid filaments under surface tension was simulated successfully using the developed program.The initial wave growth predicted using API-VOF (volume of fluid) scheme was in good agreement with Rayleigh''s linear theory and one-dimensional (l-D) long-wave theory. Both long wave theory and two-dimensional (2-D) API-VOF model on fine meshes show that as time goes on, these waves pinch off large droplets separated by smaller satellite ones that decrease in size with decreasing wavelength. Self-similar structure during the breakup was found using 1-D and 2-D models, and three breakups were predicted for a typical case. The criterion of filament breaking predicted by the 2-D model is that the wavelength is longer than the circumference of a filament. The predicted sizes of main and satellite droplets were compared with published experimental measurements.

  9. Observations of CO in the eastern filaments of NGC 1275

    Salomé, P; Combes, F; Pety, J; Downes, D; Edge, A C; Fabian, A C

    2008-01-01

    We recently found extended CO(2-1) emission from cold molecular gas embedded in the network of Halpha filaments surrounding the galaxy NGC 1275 (Salome et al. 2006). We now present CO(2-1) interferometer maps of the eastern filaments, at high spatial and spectral resolutions. The cold molecular gas is detected by the Plateau de Bure Interferometer along the eastern filaments over an extent of 15'', or with a projected length of 5kpc. In our 2.5'' beam, the main CO filament is mostly unresolved along its minor axis. The multiple peaks along the CO filaments and the low values of the observed CO brightness temperatures imply further unresolved structures that may be giant molecular clouds. These clouds have very narrow line-width emission lines (~30 km/s). The CO emission is optically thick. It very likely traces cold clouds bound under their own self-gravity that may be falling back in the gravitational potential well of the galaxy. Such a picture would agree with current models of ``positive feedback'' in whi...

  10. Characterizing interstellar filaments with Herschel in IC5146

    Arzoumanian, D; Didelon, P; Konyves, V; Schneider, N; Men'shchikov, A; Sousbie, T; Zavagno, A; Bontemps, S; Di Francesco, J; Griffin, M; Hennemann, M; Hill1, T; Kirk, J; Martin, P; Minier, V; Molinari, S; Motte, F; Peretto, N; Pezzuto, S; Spinoglio, L; Ward-Thompson, D; White, G; Wilson, C D

    2011-01-01

    We provide a first look at the results of the Herschel Gould Belt survey toward the IC5146 molecular cloud and present a preliminary analysis of the filamentary structure in this region. The column density map, derived from our 70-500 micron Herschel data, reveals a complex network of filaments, and confirms that these filaments are the main birth sites of prestellar cores. We analyze the column density profiles of 27 filaments and show that the underlying radial density profiles fall off as r^{-1.5} to r^{-2.5} at large radii. Our main result is that the filaments seem to be characterized by a narrow distribution of widths having a median value of 0.10 +- 0.03 pc, which is in stark contrast to a much broader distribution of central Jeans lengths. This characteristic width of ~0.1 pc corresponds to within a factor of ~2 to the sonic scale below which interstellar turbulence becomes subsonic in diffuse gas, supporting the argument that the filaments may form as a result of the dissipation of large-scale turbul...

  11. TRANSIENT BRIGHTENINGS ASSOCIATED WITH FLUX CANCELLATION ALONG A FILAMENT CHANNEL

    Wang, Y.-M. [Code 7682, Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Muglach, K., E-mail: yi.wang@nrl.navy.mil, E-mail: karin.muglach@nasa.gov [Code 674, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-02-15

    Filament channels coincide with large-scale polarity inversion lines of the photospheric magnetic field, where flux cancellation continually takes place. High-cadence Solar Dynamics Observatory (SDO) images recorded in He II 30.4 nm and Fe IX 17.1 nm during 2010 August 22 reveal numerous transient brightenings occurring along the edge of a filament channel within a decaying active region, where SDO line-of-sight magnetograms show strong opposite-polarity flux in close contact. The brightenings are elongated along the direction of the filament channel, with linear extents of several arcseconds, and typically last a few minutes; they sometimes have the form of multiple two-sided ejections with speeds on the order of 100 km s{sup -1}. Remarkably, some of the brightenings rapidly develop into larger scale events, forming sheetlike structures that are eventually torn apart by the diverging flows in the filament channel and ejected in opposite directions. We interpret the brightenings as resulting from reconnections among filament-channel field lines having one footpoint located in the region of canceling flux. In some cases, the flow patterns that develop in the channel may bring successive horizontal loops together and cause a cascade to larger scales.

  12. Cold filaments in galaxy clusters: effects of heat conduction

    Nipoti, C; Nipoti, Carlo; Binney, James

    2004-01-01

    We determine the critical size l_crit of a filament of cold (T~10^4 K) gas that is in radiative equilibrium with X-ray emitting gas at temperatures T_out~10^6 - 10^8 K. Filaments smaller than l_crit will be rapidly evaporated, while longer ones will induce the condensation of the ambient medium. At fixed pressure P, l_crit increases as T_out^(11/4), while at fixed T_out it scales as 1/P. It scales as f^(1/2), where f is the factor by which the magnetic field depresses the thermal conductivity below Spitzer's benchmark value. For plausible values of f, l_crit is similar to the lengths of observed filaments. In a cluster such as Perseus, the value of l_crit increases by over an order of magnitude between the centre and a radius of 100 kpc. If the spectrum of seed filament lengths l is strongly falling with l, as is natural, then these results explain why filaments are only seen within a few kiloparsecs of the centres of clusters, and are not seen in clusters that have no cooling flow. We calculate the different...

  13. Tilt Angles of Solar Filaments over the Period 1919-2014

    Tlatov, A G; Vasil'yeva, V V

    2016-01-01

    The spatial and temporal distributions of solar filaments were analyzed using data from the Meudon Observatory for the period 1919-2003 and the Kislovodsk Mountain Astronomical Station for the period 1979-2014. We scanned $H_\\alpha$ solar synoptic charts on which the filaments were isolated and digitized. The data on each filament comprise its location, length, area, and other geometrical characteristics. The temporal distributions of the number and total length of the filaments have been obtained. We also found latitudinal migration of filament locations with the solar cycle, and analyzed the longitudinal distribution and asymmetry of filaments in the northern and southern hemispheres, and other properties of their distribution. The tilt angles of filaments with respect the solar equator ($\\tau$) were analyzed. On average, the eastern tips of filaments are closer to the poles than the western ones ($\\tau \\sim 10^\\circ$). On the other hand, the filaments in the polar regions ($\\theta>50^\\circ$, where $\\theta$...

  14. Computer viruses

    Denning, Peter J.

    1988-01-01

    The worm, Trojan horse, bacterium, and virus are destructive programs that attack information stored in a computer's memory. Virus programs, which propagate by incorporating copies of themselves into other programs, are a growing menace in the late-1980s world of unprotected, networked workstations and personal computers. Limited immunity is offered by memory protection hardware, digitally authenticated object programs,and antibody programs that kill specific viruses. Additional immunity can be gained from the practice of digital hygiene, primarily the refusal to use software from untrusted sources. Full immunity requires attention in a social dimension, the accountability of programmers.

  15. Actin filaments growing against a barrier with fluctuating shape

    Sadhu, Raj Kumar; Chatterjee, Sakuntala

    2016-06-01

    We study force generation by a set of parallel actin filaments growing against a nonrigid obstacle, in the presence of an external load. The filaments polymerize by either moving the whole obstacle, with a large energy cost, or by causing local distortion in its shape which costs much less energy. The nonrigid obstacle also has local thermal fluctuations due to which its shape can change with time and we describe this using fluctuations in the height profile of a one-dimensional interface with Kardar-Parisi-Zhang dynamics. We find the shape fluctuations of the barrier strongly affect the force generation mechanism. The qualitative nature of the force-velocity curve is crucially determined by the relative time scale of filament and barrier dynamics. The height profile of the barrier also shows interesting variation with the external load. Our analytical calculations within mean-field theory show reasonable agreement with our simulation results.

  16. Actin filaments growing against a barrier with fluctuating shape

    Sadhu, Raj Kumar

    2016-01-01

    We study force generation by a set of parallel actin filaments growing against a non-rigid obstacle, in presence of an external load. The filaments polymerize by either moving the whole obstacle, with a large energy cost, or by causing local distortion in its shape which costs much less energy. The non-rigid obstacle also has local thermal fluctuations due to which its shape can change with time and we describe this using fluctuations in the height profile of a one dimensional interface with Kardar-Parisi-Zhang dynamics. We find the shape fluctuations of the barrier strongly affects the force generation mechanism. The qualitative nature of the force-velocity curve is crucially determined by the relative time-scale of filament and barrier dynamics. The height profile of the barrier also shows interesting variation with the external load. Our analytical calculation within mean-field theory shows reasonable agreement with our simulation results.

  17. Structural Basis of Actin Filament Nucleation by Tandem W Domains

    Xiaorui Chen

    2013-06-01

    Full Text Available Spontaneous nucleation of actin is very inefficient in cells. To overcome this barrier, cells have evolved a set of actin filament nucleators to promote rapid nucleation and polymerization in response to specific stimuli. However, the molecular mechanism of actin nucleation remains poorly understood. This is hindered largely by the fact that actin nucleus, once formed, rapidly polymerizes into filament, thus making it impossible to capture stable multisubunit actin nucleus. Here, we report an effective double-mutant strategy to stabilize actin nucleus by preventing further polymerization. Employing this strategy, we solved the crystal structure of AMPPNP-actin in complex with the first two tandem W domains of Cordon-bleu (Cobl, a potent actin filament nucleator. Further sequence comparison and functional studies suggest that the nucleation mechanism of Cobl is probably shared by the p53 cofactor JMY, but not Spire. Moreover, the double-mutant strategy opens the way for atomic mechanistic study of actin nucleation and polymerization.

  18. High-resolution spectroscopy of a giant solar filament

    Kuckein, C; Verma, M

    2013-01-01

    High-resolution spectra of a giant solar quiescent filament were taken with the Echelle spectrograph at the Vacuum Tower Telescope (VTT; Tenerife, Spain). A mosaic of various spectroheliograms (H\\alpha, H\\alpha\\ +/- 0.5\\AA\\ and Na D2) were chosen to examine the filament at different heights in the solar atmosphere. In addition, full-disk images (He I 10830\\AA\\ and Ca II K) of the Chromspheric Telescope and full-disk magnetograms of the Helioseismic and Magnetic Imager were used to complement the spectra. Preliminary results are shown of this filament, which had extremely large linear dimensions (~ 740'') and was observed in November 2011 while it traversed the northern solar hemisphere.

  19. Chromospheric magnetic fields of an active region filament

    Xu, Z.; Solanki, S.; Lagg, A.

    2012-06-01

    Vector magnetic fields of an active region filament are co-spatially and co-temporally mapped in photosphere and upper chromosphere, by using spectro-polarimetric observations made by Tenerife Infrared Polarimeter (TIP II) at the German Vacuum Tower Telescope (VTT). A Zeeman-based ME inversion is performed on the full Stokes vectors of both the photospheric Si I 1082.7 nm and the chromospheric He I 1083.0 nm lines. We found that the strong magnetic fields, with the field strength of 600 - 800 G in the He I line formation height, are not uncommon among AR filaments. But such strong magnetic field is not always found in AR filaments.

  20. High-resolution spectroscopy of a giant solar filament

    Kuckein, Christoph; Denker, Carsten; Verma, Meetu

    2014-01-01

    High-resolution spectra of a giant solar quiescent filament were taken with the Echelle spectrograph at the Vacuum Tower Telescope (VTT; Tenerife, Spain). A mosaic of various spectroheliograms (Hα, Hα+/-0.5 Å and Na D2) were chosen to examine the filament at different heights in the solar atmosphere. In addition, full-disk images (He i 10830 Å and Ca ii K) of the Chromspheric Telescope and full-disk magnetograms of the Helioseismic and Magnetic Imager were used to complement the spectra. Preliminary results are shown of this filament, which had extremely large linear dimensions (~740'') and was observed in November 2011 while it traversed the northern solar hemisphere.

  1. SOLAR MAGNETIZED 'TORNADOES': RELATION TO FILAMENTS

    Su Yang; Veronig, Astrid; Temmer, Manuela [IGAM-Kanzelhoehe Observatory, Institute of Physics, University of Graz, Universitaetsplatz 5, A-8010 Graz (Austria); Wang Tongjiang [Department of Physics, Catholic University of America, Washington, DC 20064 (United States); Gan Weiqun, E-mail: yang.su@uni-graz.at [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2012-09-10

    Solar magnetized 'tornadoes', a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but are rooted in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar 'tornadoes' (two papers which focused on different aspects of solar tornadoes were published in the Astrophysical Journal Letters and Nature, respectively, during the revision of this Letter). A detailed case study of two events indicates that they are rotating vertical magnetic structures probably driven by underlying vortex flows in the photosphere. They usually exist as a group and are related to filaments/prominences, another important solar phenomenon whose formation and eruption are still mysteries. Solar tornadoes may play a distinct role in the supply of mass and twists to filaments. These findings could lead to a new explanation of filament formation and eruption.

  2. Undulatory locomotion of finite filaments: lessons from C. elegans

    Berman, R; Sznitman, J; Leshansky, A

    2013-01-01

    Undulatory swimming is a widespread propulsion strategy adopted by many small-scale organisms including various single-cell eukaryotes and nematodes. In this work, we report a comprehensive study of undulatory locomotion of a finite filament using (i) approximate resistive force theory (RFT) assuming a local nature of hydrodynamic interaction between the filament and the surrounding viscous liquid, and (ii) particle-based numerical computations taking into account the intra-filament hydrodynamic interaction. Using the ubiquitous model of a propagating sinusoidal waveform, we identify the limit of applicability of the RFT and determine the optimal propulsion gait in terms of (i) swimming distance per period of undulation and (ii) hydrodynamic propulsion efficiency. The occurrence of the optimal swimming gait maximizing hydrodynamic efficiency at finite wavelength in particle-based computations diverges from the prediction of the RFT. To compare the model swimmer powered by sine wave undulations to biological u...

  3. Formation of cracks on photodegraded nylon 6 filaments

    Cracks were found on the surface of drawn nylon 6 filaments irradiated with ultraviolet (UV) light from a mercury lamp under various humidities at room temperature. The cracks were formed perpendicular to the fiber axis and were of varying sizes. No cracks were observed on undrawn filaments or drawn filaments exposed to UV light in a dry atmosphere. Considerable shrinkage was found in drawn samples by thermomechanical analysis indicating the presence of residual stress in the material. The cracking is explained in terms of the residual stress and plasticization by moisture. The presence of water appears to play an important role in the formation of cracks on nylon fibers which have been subjected either to UV light or to ν-ray irradiation

  4. Persistence of activity in noisy motor-filament assemblies

    Chelakkot, Raghunath; Mahadevan, L

    2015-01-01

    Long, elastic filaments cross-linked and deformed by active molecular motors occur in various natural settings. The overall macroscopic mechanical response of such a composite network depends on the coupling between the active and the passive properties of the underlying constituents and nonlocal interactions between different parts of the composite. In a simple one dimensional system, using a mean field model, it has been shown that the combination of motor activity and finite filament extensibility yields a persistence length scale over which strain decays. Here we study a similar system, in the complementary limit of strong noise and moderate extensibility, using Brownian multi-particle collision dynamics-based numerical simulations that includes the coupling between motor kinetics and local filament extensibility. While the numerical model shows deviations from the mean field predictions due to the presence of strong active noise caused by the variations in individual motor activity, several qualitative f...

  5. Supergranular-scale magnetic flux emergence beneath an unstable filament

    Palacios, J; Guerrero, A; Saiz, E; Cerrato, Y

    2015-01-01

    Here we report evidence of a large solar filament eruption on 2013, September 29. This smooth eruption, which passed without any previous flare, formed after a two-ribbon flare and a coronal mass ejection towards Earth. The coronal mass ejection generated a moderate geomagnetic storm on 2013, October 2 with very serious localized effects. The whole event passed unnoticed to flare-warning systems. We have conducted multi-wavelength analyses of the Solar Dynamics Observatory through Atmospheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) data. The AIA data on 304, 193, 211, and 94 \\AA sample the transition region and the corona, respectively, while HMI provides photospheric magnetograms, continuum, and linear polarization data, in addition to the fully inverted data provided by HMI. [...] We have observed a supergranular-sized emergence close to a large filament in the boundary of the active region NOAA11850. Filament dynamics and magnetogram results suggest that the magnetic flux emergenc...

  6. Filament Discharge Phenomena in Fingerprint Acquisition by Dielectric Barrier Discharge

    WENG Ming; XU Weijun; LIU Qiang

    2007-01-01

    In this paper, the dielectric barrier discharge fingerprint acquisition technique is introduced. The filament discharge phenomena were observed in the process of fingerprint acquisition. The filament discharge reduced the quality of fingerprint images. Obviously, it was necessary to eliminate streamer discharges in order to get good fingerprint images. The streamer discharge was considered to be the cause of the filament discharge in the experiment. The relationship between the critical electric field and the discharge gap was calculated with the Raether's model of streamer discharge. The calculated results and our experiment proved that it would be difficult for the streamer discharge to occur when the discharge gap was narrow. With a narrow discharge gap, the discharge was homogeneous, and the fingerprint images were clear and large in area. The images obtained in the experiment are very suitable for fingerprint identification as they contain more information.

  7. How filaments are woven into the cosmic web

    Bond, J R; Pogosyan, D; Bond, J Richard; Kofman, Lev; Pogosyan, Dmitri

    1995-01-01

    Observations indicate galaxies are distributed in a filament-dominated web-like structure. Numerical experiments at high and low redshift of viable structure formation theories also show filament-dominance. We present a simple quantitative explanation of why this is so, showing that the final-state web is actually present in embryonic form in the overdensity pattern of the initial fluctuations, with nonlinear dynamics just sharpening the image. The web is largely defined by the position and primordial tidal fields of rare events in the medium, with the strongest filaments between nearby clusters whose tidal tensors are nearly aligned. Applications of the cosmic web theory to observations include probing cluster-cluster bridges by weak gravitational lensing, X-rays, and the Sunyaev-Zeldovich effect and probing high redshift galaxy-galaxy bridges by low column density Lyman alpha absorption lines.

  8. Space- and time-resolved observation of single filaments propagation in an underdense plasma and of beam coupling between neighbouring filaments

    Fuchs, J.; Nakatsutsumi, M.; Marquès, J.-R.; Antici, P.; Bourgeois, N.; Grech, M.; Lin, T.; Romagnani, L.; Tikhonchuk, V.; Weber, S.; Kodama, R.; Audebert, P.

    2007-12-01

    We have performed a systematic study of beam propagation (400 ps, I = 1010-1014 W cm-2) in underdense plasmas (ne = 1019-1020 cm-3) at a level of reduced complexity compared with the smoothed beams currently used in inertial confinement fusion studies, using one or two well-controlled filaments. These experiments have been performed on the LULI 100 TW laser facility. The use of well-controlled, diffraction-limited single filaments is possibly due to the use of adaptative optics. We have used either a single filament or two filaments having variable distance, delay, intensity ratio and polarization. The single filament configuration allows to study basic beam propagation and reveals occurrence of filamentation at low intensity levels. The use of two filaments demonstrates the occurrence of beam coupling and merging, and the importance of cross-talk effects supported by the plasma.

  9. The Origin of Ionized Filaments Within the Orion-Eridanus Superbubble

    Pon, Andy; Bally, John; Heiles, Carl

    2014-01-01

    The Orion-Eridanus superbubble, formed by the nearby Orion high mass star-forming region, contains multiple bright H$\\alpha$ filaments on the Eridanus side of the superbubble. We examine the implications of the H$\\alpha$ brightnesses and sizes of these filaments, the Eridanus filaments. We find that either the filaments must be highly elongated along the line of sight or they cannot be equilibrium structures illuminated solely by the Orion star-forming region. The Eridanus filaments may, instead, have formed when the Orion-Eridanus superbubble encountered and compressed a pre-existing, ionized gas cloud, such that the filaments are now out of equilibrium and slowly recombining.

  10. Galactic Cold Cores VII: Filament Formation and Evolution - Methods & Observational Constraints

    Rivera-Ingraham, A; Juvela, M; Montillaud, J; Men'shchikov, A; Malinen, J; Pelkonen, V -M; Marston, A; Martin, P G; Pagani, L; Paladini, R; Paradis, D; Ysard, N; Ward-Thompson, D; Bernard, J -P; Marshall, D J; Montier, L; Tóth, V

    2016-01-01

    The association of filaments with protostellar objects has made these structures a priority target in star formation studies. The datasets of the Herschel Galactic Cold Cores Key Programme allow for a statistical study of filaments with a wide range of intrinsic and environmental characteristics. Characterisation of this sample can be used to identify key physical parameters and quantify the role of environment in the formation of supercritical filaments. Filaments were extracted from fields at DMcrit/2 may become supercritical and form stars. This translates into a need for filaments to become at least moderately self-gravitating in order to undergo localised star formation or become star-forming filaments.

  11. Transportation of nanoscale cargoes by myosin propelled actin filaments.

    Malin Persson

    Full Text Available Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies. However, it is poorly understood how actomyosin function is affected by different number of nanoscale cargoes, by cargo size, and by the mode of cargo-attachment to the actin filament. This is studied here using biotin/fluorophores, streptavidin, streptavidin-coated quantum dots, and liposomes as model cargoes attached to monomers along the actin filaments ("side-attached" or to the trailing filament end via the plus end capping protein CapZ. Long-distance transportation (>100 µm could be seen for all cargoes independently of attachment mode but the fraction of motile filaments decreased with increasing number of side-attached cargoes, a reduction that occurred within a range of 10-50 streptavidin molecules, 1-10 quantum dots or with just 1 liposome. However, as observed by monitoring these motile filaments with the attached cargo, the velocity was little affected. This also applied for end-attached cargoes where the attachment was mediated by CapZ. The results with side-attached cargoes argue against certain models for chemomechanical energy transduction in actomyosin and give important insights of relevance for effective exploitation of actomyosin-based cargo-transportation in molecular diagnostics and other nanotechnological applications. The attachment of quantum dots via CapZ, without appreciable modulation of actomyosin function, is useful in fundamental studies as exemplified here by tracking with nanometer accuracy.

  12. The versatility of hot-filament activated chemical vapor deposition

    In the field of activated chemical vapor deposition (CVD) of polycrystalline diamond films, hot-filament activation (HF-CVD) is widely used for applications where large deposition areas are needed or three-dimensional substrates have to be coated. We have developed processes for the deposition of conductive, boron-doped diamond films as well as for tribological crystalline diamond coatings on deposition areas up to 50 cm x 100 cm. Such multi-filament processes are used to produce diamond electrodes for advanced electrochemical processes or large batches of diamond-coated tools and parts, respectively. These processes demonstrate the high degree of uniformity and reproducibility of hot-filament CVD. The usability of hot-filament CVD for diamond deposition on three-dimensional substrates is well known for CVD diamond shaft tools. We also develop interior diamond coatings for drawing dies, nozzles, and thread guides. Hot-filament CVD also enables the deposition of diamond film modifications with tailored properties. In order to adjust the surface topography to specific applications, we apply processes for smooth, fine-grained or textured diamond films for cutting tools and tribological applications. Rough diamond is employed for grinding applications. Multilayers of fine-grained and coarse-grained diamond have been developed, showing increased shock resistance due to reduced crack propagation. Hot-filament CVD is also used for in situ deposition of carbide coatings and diamond-carbide composites, and the deposition of non-diamond, silicon-based films. These coatings are suitable as diffusion barriers and are also applied for adhesion and stress engineering and for semiconductor applications, respectively

  13. INSIGHTS INTO FILAMENT ERUPTION ONSET FROM SOLAR DYNAMICS OBSERVATORY OBSERVATIONS

    We examine the buildup to and onset of an active region filament confined eruption of 2010 May 12, using EUV imaging data from the Solar Dynamics Observatory (SDO) Atmospheric Imaging Array and line-of-sight magnetic data from the SDO Helioseismic and Magnetic Imager. Over the hour preceding eruption the filament undergoes a slow rise averaging ∼3 km s-1, with a step-like trajectory. Accompanying a final rise step ∼20 minutes prior to eruption is a transient preflare brightening, occurring on loops rooted near the site where magnetic field had canceled over the previous 20 hr. Flow-type motions of the filament are relatively smooth with speeds ∼50 km s-1 prior to the preflare brightening and appear more helical, with speeds ∼50-100 km s-1, after that brightening. After a final plateau in the filament's rise, its rapid eruption begins, and concurrently an outer shell 'cocoon' of the filament material increases in emission in hot EUV lines, consistent with heating in a newly formed magnetic flux rope. The main flare brightenings start ∼5 minutes after eruption onset. The main flare arcade begins between the legs of an envelope-arcade loop that is nearly orthogonal to the filament, suggesting that the flare results from reconnection among the legs of that loop. This progress of events is broadly consistent with flux cancellation leading to formation of a helical flux rope that subsequently erupts due to onset of a magnetic instability and/or runaway tether cutting.

  14. Simulations of Filament Channel Formation in a Coronal Magnetic Field

    Knizhnik, Kalman; DeVore, C. Richard; Antiochos, Spiro K.

    2016-05-01

    A major unanswered problem in solar physics has been explaining the presence of sheared filament channels above photospheric polarity inversion lines (PILs) and the simultaneous lack of structure in the ‘loop’ portion of the coronal magnetic field. The shear inherent in filament channels represents not only a form of magnetic energy, but also magnetic helicity. As a result, models of filament channel formation need to explain not only why helicity is observed above PILs, but also why it is apparently not observed anywhere else in the corona. Previous results (Knizhnik, Antiochos & DeVore, 2015) have suggested that any helicity injected into the coronal field inverse-cascades in scale, a process known as magnetic helicity condensation (Antiochos, 2013). In this work, we present high resolution numerical simulations of photospheric helicity injection into a coronal magnetic field that contains both a PIL and a coronal hole (CH). We show conclusively that the inverse cascade of magnetic helicity terminates at the PIL, resulting in the formation of highly sheared filament channels and a smooth, untwisted corona. We demonstrate that even though magnetic helicity is injected throughout the flux system, it accumulates only at the PIL, where it manifests itself in the form of highly sheared filament channels, while any helicity obtained by the CH is ejected out of the system. We show that the formation of filament channels is both qualitatively and quantitatively in agreement with observations and discuss the implications of our simulations for observations.This work was supported by the NASA Earth and Space Science Fellowship, LWS TR&T and H-SR Programs.

  15. Zika Virus.

    Phillips, Jennan A; Neyland, Anavernyel

    2016-08-01

    Zika virus (ZIKV) infections are the latest global public health emergency. Occupational health nurses can protect society by educating workers, women of childbearing age, and others traveling in ZIKV-infected areas about prevention strategies. PMID:27411846

  16. Temporal self-restoration of compressed optical filaments

    Bergé, L; Steinmeyer, G

    2008-01-01

    We numerically investigate the propagation of a self-compressed optical filament through a gas-glass-gas interface. Few-cycle light pulses survive a sudden and short order-of-magnitude increase of nonlinearity and dispersion, even when all conservative estimates predict temporal spreading or spatial breakup. Spatio-temporal distortions are shown to self-heal upon further propagation when the pulse refocuses in the second gas. This self-healing mechanism has important implications for pulse compression techniques handled by filamentation and explains the robustness of such sources.

  17. Stellar Filaments in Self-Interacting Brans-Dicke Gravity

    Sharif, M

    2016-01-01

    This paper is devoted to study cylindrically symmetric stellar filaments in self-interacting Brans-Dicke gravity. For this purpose, we construct polytropic filamentary models through generalized Lane-Emden equation in Newtonian regime. The resulting models depend upon the values of cosmological constant (due to scalar field) along with polytropic index and represent a generalization of the corresponding models in general relativity. We also investigate fragmentation of filaments by exploring the radial oscillations through stability analysis. This stability criteria depends only upon the adiabatic index.

  18. Spin alignment of dark matter haloes in filaments and walls

    Aragón-Calvo, Miguel A.; van de Weygaert, Rien; Jones, Bernard J. T.; van der Hulst, J. M. Thijs

    2006-01-01

    The MMF technique is used to segment the cosmic web as seen in a cosmological N-body simulation into wall-like and filament-like structures. We find that the spins and shapes of dark matter haloes are significantly correlated with each other and with the orientation of their host structures. The shape orientation is such that the halo minor axes tend to lie perpendicular to the host structure, be it a wall or filament. The orientation of the halo spin vector is mass dependent. Low mass haloes...

  19. Interaction of NO with a hot polycrystalline tungsten filament

    This work was undertaken to relate the NO/W adsorption-desorption process with a hot tungsten filament. With this idea two sets of experiments have been carried out. In the first (adsorption-desorption), the energies of activation, interstate transformation, dissociation and desorption have been determined. In the second (NO reaction with hot filament), the authors have determined the order and activation energy of the reaction. With these data the dissociative reaction is explained as a series of elementary adsorption-desorption processes. (Auth.)

  20. Strength analysis of filament-wound composite tubes

    Vasović Ivana

    2010-01-01

    Full Text Available The subject of this work is focused on strength analysis of filament-wound composite tubes made of E glass/polyester under internal pressure. The primary attention of this investigation is to develop a reliable computation procedure for stress, displacement and initial failure analysis of layered composite tubes. For that purpose we have combined the finite element method (FEM with corresponding initial failure criterions. In addition, finite element analyses using commercial code, MSC/NASTRAN, were performed to predict the behavior of filament wound structures. Computation results are compared with experiments. Good agreement between computation and experimental results are obtained.

  1. Production of ozone and nitrogen oxides by laser filamentation

    Petit, Yannick; Henin, Stefano; Kasparian, Jérôme; Wolf, Jean-Pierre

    2010-01-01

    We have experimentally measured that laser filaments in air generate up to 1014, 3×1012, and 3×1013 molecules of O3, NO, and NO2, respectively. The corresponding local concentrations in the filament active volume are 1016, 3×1014, and 3×1015 cm−3, and allows efficient oxidative chemistry of nitrogen, resulting in concentrations of HNO3 in the parts per million range. The latter forming binary clusters with water, our results provide a plausible pathway for the efficient nucleation recently ob...

  2. Spin alignment of dark matter haloes in filaments and walls

    Aragón-Calvo, M. A.; van de Weygaert, R.; Jones, B.J.T.; Hulst, T. van

    2006-01-01

    Abstract: The MMF technique is used to segment the cosmic web as seen in a cosmological N-body simulation into wall-like and filament-like structures. We find that the spins and shapes of dark matter haloes are significantly correlated with each other and with the orientation of their host structures. The shape orientation is such that the halo minor axes tend to lie perpendicular to the host structure, be it a wall or filament. The orientation of the halo spin vector is mass dependent. Low m...

  3. Glucanase Induces Filamentation of the Fungal Pathogen Candida albicans

    Xu, H.; Nobile, CJ; Dongari-Bagtzoglou, A.

    2013-01-01

    Candida albicans is the most common human fungal pathogen. Many organisms, including C. albicans, secrete glucanases under different environmental conditions. Here, we report a novel role for beta-1, 3- glucanase in inducing Candida albicans to form filaments at 22°C and enhancing filamentation at 37°C in nutrient-rich medium. Quorum sensing, the efg1-signaling and cek1 MAP kinase pathways are involved in this process. Our data suggest that the natural antifungal agent beta-glucanase may supp...

  4. White-light filaments induced by diffraction effects.

    Cook, K; Kar, A; Lamb, R A

    2005-03-21

    The effect of beam spatial profile on self-focusing has been investigated. A circular aperture is used to create a Fresnel diffraction pattern. It is shown that self-focusing (a pre-requisite for filament formation) occurs in the presence of the aperture but that no formation is observed when the aperture is removed, even though the beam has higher power well above the threshold for critical power. An analytical solution to the Huygens-Fresnel diffraction integral shows that the axial intensity oscillates between maxima and minima as the distance from the aperture increases and that filament formation coincides with the presence of an axial maximum. PMID:19495086

  5. Ebola Virus ─ A Global Threat

    Mejbah Uddin Ahmed

    2015-01-01

    Full Text Available Ebola virus is a filamentous, enveloped, non-segmented, single-stranded, negative-sense RNA virus. It belongs to the Filoviridae and was first recognized near the Ebola River valley in Zaire in 1976. Since then most of the outbreaks have occurred to both human and nonhuman primates in sub-Saharan Africa. Ebola virus causes highly fatal hemorrhagic fever in human and nonhuman primates. In addition to hemorrhagic fever, it could be used as a bioterrorism agent. Although its natural reservoir is yet to be proven, current data suggest that fruit bats are the possibility. Infection has also been documented through the handling of infected chimpanzees, gorillas, monkeys, forest antelope and porcupines. Human infection is caused through close contact with the blood, secretion, organ or other body fluids of infected animal. Human-to-human transmission is also possible. Ebola virus infections are characterized by immune suppression and a systemic inflammatory response that causes impairment of the vascular, coagulation, and immune systems, leading to multiorgan failure and shock. The virus constitutes an important public health threat in Africa and also worldwide as no effective treatment or vaccine is available till now

  6. Stability of Rotating Self-Gravitating Filaments:Stability of Rotating Self-Gravitating Filaments: Effects of Magnetic Field

    Sadhukhan, Shubhadeep; Chakraborty, Sagar

    2016-01-01

    We have performed systemmatic local linear stability analysis on a radially stratified infinite self-gravitating cylinder of rotating plasma under the influence of magnetic field. In order to render the system analytically tractable, we have focussed solely on the axisymmetric modes of perturbations. Using cylindrical coordinate system, we have derived the critical linear mass density of a non-rotating filament required for gravitational collapse to ensue in the presence of azimuthal magnetic field. Moreover, for such filaments threaded by axial magnetic field, we show that the growth rates of the modes having non-zero radial wavenumber are reduced more strongly by the magnetic field than that of the modes having zero radial wavenumber. More importantly, our study contributes to the understanding of the stability property of rotating astrophysical filaments that are more often than not influenced by magnetic fields. In addition to complementing many relevant numerical studies reported the literature, our resu...

  7. Live Virus Smallpox Vaccine

    ... A - Z Index SMALLPOX FACT SHEET The Live Virus Smallpox Vaccine The vaccinia virus is the "live ... it cannot cause smallpox. What is a "live virus" vaccine? A "live virus" vaccine is a vaccine ...

  8. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.

    Wolf, Alexandra B; Vos, Michiel; de Boer, Wietse; Kowalchuk, George A

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities. PMID:24391805

  9. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria.

    Alexandra B Wolf

    Full Text Available The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus and a motile rod-shaped bacterium (Bacillus weihenstephanensis to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions. These data, combined with information on bacterial motility (expansion potential across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities.

  10. Observations and Implications of Large-Amplitude Longitudinal Oscillations in a Solar Filament

    Luna, M; Muglach, K; Karpen, J; Gilbert, H; Kucera, T A; Uritsky, V

    2014-01-01

    On 20 August 2010 an energetic disturbance triggered large-amplitude longitudinal oscillations in a nearby filament. The triggering mechanism appears to be episodic jets connecting the energetic event with the filament threads. In the present work we analyze this periodic motion in a large fraction of the filament to characterize the underlying physics of the oscillation as well as the filament properties. The results support our previous theoretical conclusions that the restoring force of large-amplitude longitudinal oscillations is solar gravity, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Based on our previous work, we used the fitted parameters to determine the magnitude and radius of curvature of the dipped magnetic field along the filament, as well as the mass accretion rate onto the filament threads. These derived properties are nearly uniform along the filament, indicating a remarkable degree of cohesiveness throughout the filament channel. Moreover, the...

  11. On the universality of interstellar filaments: theory meets simulations and observations

    Federrath, Christoph

    2016-01-01

    Filaments are ubiquitous in the universe. They are seen in cosmological structures, in the Milky Way centre and in dense interstellar gas. Recent observations have revealed that stars and star clusters form preferentially at the intersection of dense filaments. Understanding the formation and properties of filaments is therefore a crucial step in understanding star formation. Here we perform three-dimensional high-resolution magnetohydrodynamical simulations that follow the evolution of molecular clouds and the formation of filaments and stars within them. We apply a filament detection algorithm and compare simulations with different combinations of physical ingredients: gravity, turbulence, magnetic fields and jet/outflow feedback. We find that gravity-only simulations produce significantly narrower filament profiles than observed, while simulations that at least include turbulence produce realistic filament properties. For these turbulence simulations, we find a remarkably universal filament width of (0.10+...

  12. Direct measurement of the electron density of extended femtosecond laser pulse-induced filaments

    Chen, Y.-H.; S. Varma; Antonsen, T. M.; Milchberg, H. M.

    2010-01-01

    We present direct time- and space- resolved measurements of the electron density of femtosecond laser pulse-induced plasma filaments. The dominant nonlinearity responsible for extended atmospheric filaments is shown to be field-induced rotation of air molecules.

  13. Experimental study of a three-dimensional cylinder-filament system

    Brosse, Nicolas; Finmo, Carl; Lundell, Fredrik; Bagheri, Shervin

    2015-06-01

    This experimental study reports on the behavior of a filament attached to the rear of a three-dimensional cylinder. The axis of the cylinder is placed normal to a uniform incoming flow, and the filament is free to move in the cylinder wake. The mean position of the filament is studied as a function of the filament length L. It is found that for long ( L/ D 6.5, where D is the cylinder diameter) and short ( L/ D 2) filaments, the mean position of the filament tends to align with the incoming flow, whereas for intermediate filament lengths (2 L/ D 6.5), the filament lies down on the cylinder and tends to align with the cylinder axis. The underlying mechanism of the bifurcations is discussed and related to buckling and inverted-pendulum-like instabilities.

  14. Drag Reduction over Dolphin Skin via the Pondermotive Forcing of Vortex Filaments

    Lisi, A G

    1999-01-01

    The skin of Tursiops Truncatus is corrugated with small, quasi-periodic ridges running circumferentially about the torso. These ridges extend into the turbulent boundary layer and affect the evolution of coherent structures. The development and evolution of coherent structures over a surface is described by the formation and dynamics of vortex filaments. The dynamics of these filaments over a flat, non-ridged surface is determined analytically, as well as through numerical simulation, and found to agree with the observations of coherent structures in the turbulent boundary layer. The calculation of the linearized dynamics of the vortex filament, successful for the dynamics of a filament over a flat surface, is extended and applied to a vortex filament propagating over a periodically ridged surface. The surface ridges induce a rapid parametric forcing of the vortex filament, and alter the filament dynamics significantly. A consideration of the contribution of vortex filament induced flow to energy transport in...

  15. Centaurus A: constraints on the nature of the giant lobe filaments from XMM-Newton observations

    Wykes, Sarka; Croston, Judith H

    2015-01-01

    We report on deep XMM-Newton observations of the vertex filament in the southern giant lobe of the Fanaroff-Riley class I radio galaxy Centaurus A. We find no X-ray excess from the filament region and place a 3 sigma upper limit on the 1 keV flux density of the filament of 9.6 nJy. This directly constrains the electron density and magnetic field strength in the filament. For the first time in an individual filament, we show that the excess in synchrotron emissivity cannot be produced purely by excess electrons: the filament magnetic field strength must be higher than in the giant lobes as a whole, and close to or above the equipartition value for the filament. The filaments are not significantly overpressured with respect to the surrounding lobe with a pressure provided by relativistic electrons.

  16. Computer Viruses. Technology Update.

    Ponder, Tim, Comp.; Ropog, Marty, Comp.; Keating, Joseph, Comp.

    This document provides general information on computer viruses, how to help protect a computer network from them, measures to take if a computer becomes infected. Highlights include the origins of computer viruses; virus contraction; a description of some common virus types (File Virus, Boot Sector/Partition Table Viruses, Trojan Horses, and…

  17. A filament of dark matter between two clusters of galaxies

    Dietrich, Jörg P; Clowe, Douglas; Finoguenov, Alexis; Kitching, Tom; Miller, Lance; Simionescu, Aurora

    2012-01-01

    It is a firm prediction of the concordance Cold Dark Matter (CDM) cosmological model that galaxy clusters live at the intersection of large-scale structure filaments. The thread-like structure of this "cosmic web" has been traced by galaxy redshift surveys for decades. More recently the Warm-Hot Intergalactic Medium (WHIM) residing in low redshift filaments has been observed in emission and absorption. However, a reliable direct detection of the underlying Dark Matter skeleton, which should contain more than half of all matter, remained elusive, as earlier candidates for such detections were either falsified or suffered from low signal-to-noise ratios and unphysical misalignements of dark and luminous matter. Here we report the detection of a dark matter filament connecting the two main components of the Abell 222/223 supercluster system from its weak gravitational lensing signal, both in a non-parametric mass reconstruction and in parametric model fits. This filament is coincident with an overdensity of gala...

  18. Transportation of Nanoscale Cargoes by Myosin Propelled Actin Filaments

    Persson, Malin; Gullberg, Maria; Tolf, Conny; Lindberg, A. Michael; Mansson, Alf; Kocer, Armagan

    2013-01-01

    Myosin II propelled actin filaments move ten times faster than kinesin driven microtubules and are thus attractive candidates as cargo-transporting shuttles in motor driven lab-on-a-chip devices. In addition, actomyosin-based transportation of nanoparticles is useful in various fundamental studies.

  19. Filaments in the twist-grain-boundary smectic A phase

    Lejček, Lubor; Novotná, Vladimíra; Glogarová, Milada

    2015-01-01

    Roč. 92, č. 3 (2015), "032505-1"-"032505-10". ISSN 1539-3755 R&D Projects: GA ČR GA15-02843S Institutional support: RVO:68378271 Keywords : twist- grain -boundary smectic-A phase * filament * dislocation walls Subject RIV: BK - Fluid Dynamics Impact factor: 2.288, year: 2014

  20. Tesla coil discharges guided by femtosecond laser filaments in air

    Brelet, Yohann; Houard, Aurélien; Arantchouk, Leonid; Forestier, Benjamin; Liu, Yi; Prade, Bernard; Carbonnel, Jérôme; André, Yves-Bernard; Mysyrowicz, André

    2012-01-01

    International audience A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 kHz synchronisable with a nanosecond temporal jitter. Using this compact high voltage generator, we demonstrate reproducible meter long discharges in air at a repetition rate of 1 Hz. Triggering and guiding of the discharges are performed in air by femtosecond laser filaments.

  1. On filament structure and propagation within a commercial plasma globe

    The filamentary discharge seen within commercial plasma globes is commonly enjoyed yet not well understood. Here, we investigate the discharge properties of a plasma globe using a variable high voltage amplifier. We find that increasing voltage magnitude increases the number of filaments while leaving their individual structure basically unchanged, a result typical of dielectric barrier discharges. The frequency of the voltage also affects filament population but more significantly changes filament structure, with more diffuse filaments seen at lower frequencies. Voltage polarity is observed to be important, especially at lower frequencies, where for negative-gradient voltages the discharge is more diffuse, not filamentary. At late stages of the discharge circular structures appear and expand on the glass boundaries. We find no trend of discharge speed with respect to voltage variables, though this may be due to manufacturer sample-to-sample variation. Each voltage cycle the discharge expands outward at ∼10–15 km/s, a speed significantly higher than the estimated electron drift yet considerably lower than that observed for most streamers. We discuss the physics of these observations and their relation to similar discharges that can be found within nature and industry

  2. Tesla coil discharges guided by femtosecond laser filaments in air

    Brelet, Yohann; Houard, Aurélien; Arantchouk, Leonid; Forestier, Benjamin; Liu, Yi; Prade, Bernard; Carbonnel, Jérôme; André, Yves-Bernard; Mysyrowicz, André

    2012-04-01

    A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 kHz synchronisable with a nanosecond temporal jitter. Using this compact high voltage generator, we demonstrate reproducible meter long discharges in air at a repetition rate of 1 Hz. Triggering and guiding of the discharges are performed in air by femtosecond laser filaments.

  3. The role of filament activation in a solar eruption

    da Costa, Fatima Rubio; Fletcher, Lyndsay; Romano, Paolo; Labrosse, Nicolas

    2014-01-01

    Observations show that the mutual relationship between filament eruptions and solar flares cannot be described in terms of an unique scenario. In some cases, the eruption of a filament appears to trigger a flare, while in others the observations are more consistent with magnetic reconnection that produces both the flare observational signatures (e.g., ribbons, plasma jets, post-flare loops, etc.) and later the destabilization and eruption of a filament. We study an event which occurred in NOAA 8471, where a flare and the activation of (at least) two filaments were observed on 28 February 1999. By using imaging data acquired in the 1216, 1600, 171 and 195 \\AA\\ TRACE channels and by BBSO in the continnum and in H$\\alpha$, a morphological study of the event is carried out. Using TRACE 1216 and 1600 \\AA\\ data, an estimate of the "pure" Ly$\\alpha$ power is obtained. The extrapolation of the magnetic field lines is done using the SOHO/MDI magnetograms and assuming a potential field. The potential magnetic field ext...

  4. 3D Filament Network Segmentation with Multiple Active Contours

    Xu, Ting; Vavylonis, Dimitrios; Huang, Xiaolei

    2014-03-01

    Fluorescence microscopy is frequently used to study two and three dimensional network structures formed by cytoskeletal polymer fibers such as actin filaments and microtubules. While these cytoskeletal structures are often dilute enough to allow imaging of individual filaments or bundles of them, quantitative analysis of these images is challenging. To facilitate quantitative, reproducible and objective analysis of the image data, we developed a semi-automated method to extract actin networks and retrieve their topology in 3D. Our method uses multiple Stretching Open Active Contours (SOACs) that are automatically initialized at image intensity ridges and then evolve along the centerlines of filaments in the network. SOACs can merge, stop at junctions, and reconfigure with others to allow smooth crossing at junctions of filaments. The proposed approach is generally applicable to images of curvilinear networks with low SNR. We demonstrate its potential by extracting the centerlines of synthetic meshwork images, actin networks in 2D TIRF Microscopy images, and 3D actin cable meshworks of live fission yeast cells imaged by spinning disk confocal microscopy.

  5. Very Fast Temperature Measurement with a Thin Lamp Filament

    G. Calza, Gratton, L. M.; Lopez-Arias, T.; Oss, S.

    2012-01-01

    We construct a thermometer exploiting the electric resistance of the filament of a small lamp used in micro-illumination settings. The instrument may guarantee a response time better than 10 ms, i.e. much faster than commercial thermocouples or other quite expensive devices. This makes our thermometer a useful one in several processes which are…

  6. Structural Dynamics of Filament-Wound Booster Rockets

    Bugg, F. M.

    1987-01-01

    Report summarizes program of measurements and calculations of vibrations in filament-wound composite models of Space Shuttle solid-rocket boosters. Vibrational behavior predicted by finite-element computer model of structural dynamics correlates well with data from tests on full- and quarter-scale models. Computer model developed with NASTRAN general-purpose structural-analysis computer code.

  7. On filament structure and propagation within a commercial plasma globe

    Burin, M. J.; Simmons, G. G.; Ceja, H. G. [Department of Physics, CSU San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92078 (United States); Zweben, S. J.; Nagy, A.; Brunkhorst, C. [Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ 08540 (United States)

    2015-05-15

    The filamentary discharge seen within commercial plasma globes is commonly enjoyed yet not well understood. Here, we investigate the discharge properties of a plasma globe using a variable high voltage amplifier. We find that increasing voltage magnitude increases the number of filaments while leaving their individual structure basically unchanged, a result typical of dielectric barrier discharges. The frequency of the voltage also affects filament population but more significantly changes filament structure, with more diffuse filaments seen at lower frequencies. Voltage polarity is observed to be important, especially at lower frequencies, where for negative-gradient voltages the discharge is more diffuse, not filamentary. At late stages of the discharge circular structures appear and expand on the glass boundaries. We find no trend of discharge speed with respect to voltage variables, though this may be due to manufacturer sample-to-sample variation. Each voltage cycle the discharge expands outward at ∼10–15 km/s, a speed significantly higher than the estimated electron drift yet considerably lower than that observed for most streamers. We discuss the physics of these observations and their relation to similar discharges that can be found within nature and industry.

  8. The cell wall of the filamentous fungus Aspergillus niger

    Damveld, Robbert A.

    2005-01-01

    Fungi are a very successful species and are distributed worldwide. However, the presence of fungi is not always desired. Filamentous fungi can grow on living or dead organic material and even inside the host. Current methods to prevent fungal growth are insufficient, causing fatality after fungal in

  9. Effect of longitudinal modulation of Alfven wave filamentation

    The modulation of circularly polarized Alfven waves due to quasitransverse perturbations is addressed, and the nonlinear dynamics simulated numerically. In some instances, radial collapse (filamentation) of Alfven waves can be arrested by the magnetosonic waves stirred by the ponderomotive force. Such waves may, however, develop sharp fronts leading to strong hydrodynamic effects

  10. Formation and disruption of Alfvenic filaments in Hall magnetohydrodynamics

    In magnetohydrodynamics with Hall effect (Hall-MHD), weakly nonlinear quasimonochromatic dispersive Alfven waves propagating along an ambient magnetic field can develop to transverse instabilities leading to the formation of intense magnetic filaments. This phenomenon, described as a transverse collapse within the asymptotic approach provided by the nonlinear Schroedinger equation for the pump envelope, was also reproduced by spectral direct numerical simulations of the Hall-MHD system. We address here the dynamics at longer times, using a finite difference scheme with adaptive mesh refinement to reproduce a strong filamentation regime, supplemented by a shock capturing scheme in the final phase of the simulations. We observe a strong distortion of the early time cylindrical filaments, associated with flattening and twisting of the structures and the transition from nonlinear waves to a hydrodynamic regime, characterized by intense current sheets and a strong acceleration of the plasma. A configuration where the intensity of the magnetic filaments saturates while the velocity field is still growing is also identified in the spectral simulation of a regime with moderate scale separation

  11. X-ray Analysis of Filaments in Galaxy Clusters

    Walker, S A; Fabian, A C; Sanders, J S

    2015-01-01

    We perform a detailed X-ray study of the filaments surrounding the brightest cluster galaxies in a sample of nearby galaxy clusters using deep Chandra observations, namely the Perseus, Centaurus and Virgo clusters, and Abell 1795. We compare the X-ray properties and spectra of the filaments in all of these systems, and find that their Chandra X-ray spectra are all broadly consistent with an absorbed two temperature thermal model, with temperature components at 0.75 and 1.7 keV. We find that it is also possible to model the Chandra ACIS filament spectra with a charge exchange model provided a thermal component is also present, and the abundance of oxygen is suppressed relative to the abundance of Fe. In this model, charge exchange provides the dominant contribution to the spectrum in the 0.5-1.0 keV band. However, when we study the high spectral resolution RGS spectrum of the filamentary plume seen in X-rays in Centaurus, the opposite appears to be the case. The properties of the filaments in our sample of clu...

  12. Capillary electrophoresis of conidia from cultivated microscopic filamentous fungi

    Horká, Marie; Růžička, F.; Kubesová, Anna; Holá, V.; Šlais, Karel

    2009-01-01

    Roč. 81, č. 10 (2009), s. 3997-4004. ISSN 0003-2700 R&D Projects: GA AV ČR IAAX00310701 Institutional research plan: CEZ:AV0Z40310501 Keywords : capillary electromigration techniques * optimization of the separation * microscopic filamentous fungi Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 5.214, year: 2009

  13. Spin alignment of dark matter halos in filaments and walls

    Aragon-Calvo, Miguel A.; van de Weygaert, Rien; Jones, Bernard J. T.; van der Hulst, J. M.

    2007-01-01

    The MMF technique is used to segment the cosmic web as seen in a cosmological N-body simulation into wall-like and filament-like structures. We find that the spins and shapes of dark matter halos are significantly correlated with each other and with the orientation of their host structures. The shap

  14. Spin alignment of dark matter haloes in filaments and walls

    Aragón-Calvo, M. A.; Weygaert, R. van de; Jones, B. J. T.; Hulst, T. van der

    2006-01-01

    Abstract: The MMF technique is used to segment the cosmic web as seen in a cosmological N-body simulation into wall-like and filament-like structures. We find that the spins and shapes of dark matter haloes are significantly correlated with each other and with the orientation of their host structure

  15. Bright X-ray galaxies in SDSS filaments

    Tugay, A. V.

    2013-01-01

    Eighteen bright X-ray emitting galaxies were found in nearby filaments within SDSS region. Basic X-ray spectral parameters were estimated for these galaxies using power law model with photoelectric absorption. A close pair of X-ray galaxies was found.

  16. Filamentation of diamond nanoparticles treated in underwater corona discharge

    Jirásek, Vít; Lukeš, Petr; Kozak, Halyna; Artemenko, Anna; Člupek, Martin; Čermák, Jan; Rezek, Bohuslav; Kromka, Alexander

    2016-01-01

    Roč. 6, č. 3 (2016), 2352-2360. ISSN 2046-2069 R&D Projects: GA ČR GA15-01687S; GA MŠk(CZ) LD14011 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : nanodiamonds * pulsed streamer corona discharge * filamentation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.840, year: 2014

  17. Motility patterns of filamentous sulfur bacteria, Beggiatoa spp

    Dunker, Rita; Røy, Hans; Kamp, Anja;

    2011-01-01

    The large sulfur bacteria, Beggiatoa spp., live on the oxidation of sulfide with oxygen or nitrate, but avoid high concentrations of both sulfide and oxygen. As gliding filaments, they rely on reversals in the gliding direction to find their preferred environment, the oxygen–sulfide interface...

  18. Motility patterns of filamentous sulfur bacteria, Beggiatoa spp

    Dunker, Rita; Røy, Hans; Kamp, Anja;

    2011-01-01

    The large sulfur bacteria, Beggiatoa spp., live on the oxidation of sulfide with oxygen or nitrate, but avoid high concentrations of both sulfide and oxygen. As gliding filaments, they rely on reversals in the gliding direction to find their preferred environment, the oxygen–sulfide interface. We...

  19. Mechanical response of melt-spun amorphous filaments

    High-speed melt spinning of a cyclo-olefin polymer (COP) and a copolyamide (CoPA) have been performed. Differential scanning calorimetry curves of the resulting monofilaments show that they remain in an amorphous state even after hot drawing. Wide angle x-ray diffraction patterns of undrawn and drawn COP filaments show that although the material remains in an amorphous state, a degree of orientation is induced in the polymer after drawing. The amorphous filaments show an enhanced bending recovery with respect to different semi-crystalline monofilaments commercially available. However, single fiber axial compressive testing indicates that the amorphous filaments exhibit a compressive modulus value which is 50% lower than what is observed for a reference semi-crystalline PET filament. Analysis of the compressive strains applied by the bending recovery test indicates that while the maximum applied strains remain well within the region of elastic deformation of the amorphous materials, the threshold between elastic and plastic deformation is reached for the semi-crystalline materials. (paper)

  20. Fine filament NbTi and Nb3Sn conductors

    Fine filament conductors are needed for applications requiring low hysteresis losses and/or low magnetization in small fields in order to reduce field distortions. Examples are accelerator magnets (dipoles and quadrupoles) and magnets for TOKAMAK nuclear fusion devices. The main task is to achieve low magnetization especially at low fields while maintaining high critical current density jC at high fields. The relevant parameters are the width 2ΔM of the magnetization curve and the area of the M-H-curve during a field cycle, respectively. In this work, NbTi and Nb3Sn fine filament conductors were produced on a large scale and characterized with respect to transport critical current density and magnetization behavior. In NbTi jc values of about 3000 A/mm2 at 5 T and 4.2 K were achieved in 5 μm filament diameter single stack type conductors. Deterioration of the order of 15 to 20 % was observed when using double stack techniques and/or when going to 2.5 μm type conductors. Possible reasons were identified and work is in progress to improve jc further. At external fields smaller than 100 mT proximity effect induced excess magnetization was observed in Cu matrix conductors and its dependence on filament spacing, twist pitch, field sweep rate, and temperature was measured. The effect is significant, but plays a role only in applications where this low field regime is relevant

  1. Robust authentication through stochastic femtosecond laser filament induced scattering surfaces

    Zhang, Haisu; Tzortzakis, Stelios

    2016-05-01

    We demonstrate a reliable authentication method by femtosecond laser filament induced scattering surfaces. The stochastic nonlinear laser fabrication nature results in unique authentication robust properties. This work provides a simple and viable solution for practical applications in product authentication, while also opens the way for incorporating such elements in transparent media and coupling those in integrated optical circuits.

  2. Self-Organized Filaments in Dielectric Barrier Discharge in Air at Atmospheric Pressure

    DONG Li-Fang; LI Xue-Chen; YINZeng-Qian; QIAN Sheng-Fa; OUYANG Ji-Ting; WANG Long

    2001-01-01

    The self-organized filament pattern created by dielectric barrier discharges in air at atmospheric pressure is investigated experimentally. The density and dimension of filament are analysed quantitatively. The experimental results show that the distance between neighbouring filaments decreases with the increased applied voltage or with the decreased width of the gas gap. Also, the diameter of the filament decreases with the increased applied voltages or with the decreased width of the gas gap.

  3. Electron microscopic and optical diffraction analysis of the structure of scorpion muscle thick filaments

    1985-01-01

    We rapidly and gently isolated thick filaments from scorpion tail muscle by a modification of the technique previously described for isolating Limulus thick filaments. Images of negatively stained filaments appeared to be highly periodic, with a well-preserved myosin cross-bridge array. Optical diffraction patterns of the electron micrograph images were detailed and similar to optical diffraction patterns from Limulus and tarantula thick filaments. Analysis of the optical diffraction patterns...

  4. Bending of magnetic filaments under a magnetic field

    Shcherbakov, Valera P.; Winklhofer, Michael

    2004-12-01

    Magnetic beads and superparamagnetic (SP) colloid particles have successfully been employed for micromechanical manipulation of soft material, in situ probing of elastic properties, and design of smart materials (ferrogels). Here we derive analytical expressions for the equilibrium shape of magnetic fibers, considering two end-member cases, (a) SP or single-domain particles concentrated at the free end of cantilevered rods or tubes, and (b) filaments consisting of SP particles, with this case being mathematically equivalent to tubes containing SP particles. Our analysis yields also metastable equilibrium states (MES’s), which only exist above a critical filament length, but become more stable with increasing magnetic field. The MES’s for case (a) are, like the ground state, circular arcs, but more strongly bent. The multiform MES’s in case (b), which comprise hairpin, sinuous, or even closed shapes, have recently been observed in experiments, too. We also study the effect of gravity on the balance between bending and magnetic energy, which leads to curves with inflection point if the influence of gravity is stronger than that of the magnetic field. Because of their simple experimental realization, case (a) magnetic filaments are deemed highly suitable for micromechanical experiments on long chains of polymer molecules. Another potential application of cantilevered magnetic filaments with magnetic material attached to the free end is in scanning probe microscopes. Because the magnetic field due to the magnetic tip is comparatively weak, the magnetization structure of the sample to be investigated would not be affected by the probe. Thus, for the examination of magnetically soft materials, probes in the form of magnetic filaments may hold advantages over tips usually employed in magnetic force microscopy.

  5. On the relationship between ELM filaments and solar flares

    Both solar flares and edge localised modes (ELMs) involve magnetised plasma eruptions which sporadically eject field-aligned filamentary structures into the surrounding, low density envelope: the far scrape-off layer (SOL) in the case of the tokamak and interplanetary space in the case of the sun. The erupting filamentary structures display many similarities and have been occasionally compared in the popular and specialist literatures. In this contribution, the dynamical evolution of solar flares and ELM filaments is separately reviewed, after which the relationship between the two phenomena is examined. In particular, four families of dynamical theories of ELM filament evolution, classified according to the electric field ordering and the absence/presence of magnetic reconnection at the X-point, are compared with experimental measurements on tokamaks. This comparison reveals that theories, which encompass the drift ordering, offer better overall agreement with ELM filament observations than their MHD ordered counterparts. Although MHD ordered dynamics can describe the linear and early non-linear phases of ELM evolution, they must be supplemented by drift ordered dynamics to capture the saturation phase of the instability and the evolution of filamentary structures in the SOL. In other words, an integrated model of the ELM must include finite gyro-radius terms, in particular gradient-B and curvature guiding centre drifts arising from non-uniformities in the magnetic field and diamagnetic drifts arising from non-uniformities in the thermodynamic variables. This is consistent with the observed resemblance between ELM filaments and turbulent eddies, or blobs, observed in the SOL during ohmic and low confinement mode (L-mode) operation. In contrast, the dynamical evolution of solar flares is shown to be predominantly MHD ordered, although drift ordered effects play a role in some aspects of solar flare physics, eg. magnetic reconnection. It is concluded that ELM

  6. Modulational and filamentational instabilities of a monochromatic Langmuir pump wave in quantum plasmas

    Sayed, F.; Tyshetskiy, Yu. [School of Physics, University of Sydney, Sydney, New South Wales 2006 (Australia); Vladimirov, S. V. [Center for Risk Management and Safety Sciences, Yokohama National University, Yokohama 240-8501 (Japan); Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya st. 13 Bld. 2, Moscow 125412 (Russian Federation); Metamaterials Laboratory, National Research University of Information Technology, Mechanics, and Optics, St Petersburg 199034 (Russian Federation); Ishihara, O. [Center for Risk Management and Safety Sciences, Yokohama National University, Yokohama 240-8501 (Japan); Institute of Science and Technology Research, Chubu University, Kasugai, 487-8501 (Japan)

    2015-05-15

    The modulational and filamentational instabilities of a monochromatic Langmuir pump wave are investigated for the case of collisionless quantum plasmas, using renormalized quantum linear and nonlinear plasma polarization responses. We obtain the quantum-corrected dispersion equation for the modulational and filamentational instabilities growth rates. It is demonstrated that the quantum effect suppresses the growth rates of the modulational and filamentational instabilities.

  7. Laser optoacoustic diagnostics of femtosecond filaments in air using wideband piezoelectric transducers

    Uryupina, D. S.; Bychkov, A. S.; Pushkarev, D. V.; Mitina, E. V.; Savel’ev, A. B.; Kosareva, O. G.; Panov, N. A.; Karabutov, A. A.; Cherepetskaya, E. B.

    2016-09-01

    New opportunities in ultrasound diagnostics of femtosecond laser filaments with wideband piezoelectric transducers are considered. Transverse spatial resolution better than 100 microns is demonstrated in the single and regular multiple filamentation regime making path toward 3D filament tomography. The simple analytical model of the cylindrical acoustic source fitted well with the experimental data.

  8. In situ observations of crack formation in multi-filament Bi-2223 HTS tapes

    Sørensen, Bent F.; Horsewell, Andy; Skov-Hansen, P.

    2002-01-01

    High temperature superconducting tapes (BSCCO filaments embedded in Ag) were subjected to Uniaxial tension in an environmental scanning electron microscope, allowing in situ observation of cracking of the ceramic filaments. The first cracks were found to appear in the ceramic filaments at a strain...

  9. Fossil evidence for spin alignment of Sloan Digital Sky Survey galaxies in filaments

    Jones, Bernard J. T.; van de Weijgaert, Marinus; Aragon-Calvo, Miguel A.

    2010-01-01

    We search for and find fossil evidence that the spin axes of galaxies in cosmic web filaments relative to their host filaments are not randomly distributed. This indicates the fact that the action of large-scale tidal torques affected the alignments of galaxies located in cosmic filaments. To this e

  10. Interaction of a single laser filament with a single water droplet

    Time-resolved shock-wave studies allow the direct measurement of the energy dissipated during the interaction of a single laser filament in air with a water droplet. We show that the filament loses ∼40 μJ in energy for ∼50 μm diameter aerosols leaving sufficient residual energy for the formation of a fresh filament downstream. (paper)

  11. Ray-Tracing Simulation on Filamentation of Prefocused and Freely Propagated Laser Pulses in Air

    The filamentation mechanisms of prefocused and freely propagated femtosecond laser pulses are compared using the ray-tracing method. The dynamic spatial replenishment mechanism takes place in the filaments with high electron density, which is generally formed by prefocused laser pulses. The mechanism of long-range filamentation over 100 m distance is analyzed to be the spatiotemporal moving focus

  12. Growth and nitrate reduction of Beggiatoa filaments studied in enrichment cultures

    Kamp, Anja

    In this thesis, several aspects of the gliding, filamentous, colourless sulphur bacteria Beggiatoa were investigated. The first part of this thesis addressed the growth mode, breakage of filaments for multiplication, and movement directions of filaments of Beggiatoa. Marine Beggiatoa were enriche...

  13. Modulational and filamentational instabilities of a monochromatic Langmuir pump wave in quantum plasmas

    The modulational and filamentational instabilities of a monochromatic Langmuir pump wave are investigated for the case of collisionless quantum plasmas, using renormalized quantum linear and nonlinear plasma polarization responses. We obtain the quantum-corrected dispersion equation for the modulational and filamentational instabilities growth rates. It is demonstrated that the quantum effect suppresses the growth rates of the modulational and filamentational instabilities

  14. Ebola Virus

    Anusha Rangare Lakshman

    2015-09-01

    Full Text Available The disease Ebola takes its name from the Ebola River situated near a village in the Democratic Republic of Congo, where the disease first appeared in 1976. It is caused by a virus from the Filoviridae family (filovirus. The present outbreak of Ebola Virus Disease (EVD concerns four countries in West Africa, namely Guinea, Liberia, Sierra Leone and Nigeria till date. Further to widespread transmission of the disease, it has been declared as a Public Health Emergency of International Concern by the World Health Organisation on 8 August 2014. As of 4 August 2014, countries have reported 1,711 cases (1,070 confirmed, 436 probable, 205 suspect, including 932 deaths. This review paper enlightens about the awareness of Ebola virus and its preventive measures. [Archives Medical Review Journal 2015; 24(3.000: 296-305

  15. The influence of filament temperature and oxygen concentration on tungsten oxide nanostructures by hot filament metal oxide deposition

    Lou, J.; Ye, B. J.; Weng, H. M.; Du, H. J.; Wang, Z. B.; Wang, X. P.

    2008-08-01

    Tungsten oxide (WOx) nanostructures were prepared by a hot filament chemical vapour deposition system and the temperature of the hot tungsten filaments was changed by steps of degrees. The morphology and average growth rate were indicated by scanning electron microscopy which showed that the morphology was highly related to the filament temperature (Tf) and the distance between the filaments and the polished Si (1 0 0) substrates (df). The influence of Tf on the crystalline nature was studied by x-ray diffraction and Raman spectroscopy. The evolution of stoichiometry and types of defects was indicated by x-ray photoelectron spectroscopy and slow positron implantation spectroscopy. When Tf was up to 1750 °C, tungsten oxide nanostructure was synthesized. A turning point of Tf was found at which the nature of crystallinity and of stoichiometry was the best. As Tf increased to 2100 °C or df decreased, the film crystallinity decreased; correspondingly, the component ratio of stoichiometry WO3 decreased and lots of vacancy agglomerates were present. In order to develop the chemical phase from substoichiometry to stoichiometry, the oxygen gas concentration in the mixture gas during deposition should be raised to an appropriate level.

  16. Impact of Matric Potential and Pore Size Distribution on Growth Dynamics of Filamentous and Non-Filamentous Soil Bacteria

    Wolf, A.B.; Vos, de M.; Boer, de W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to w

  17. Impact of matric potential and pore size distribution on growth dynamics of filamentous and non-filamentous soil bacteria

    Wolf, A.B.; Vos, M.; De Boer, W.; Kowalchuk, G.A.

    2013-01-01

    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to w

  18. Isolation and partial characterization of a novel virus from different carp species suffering gill necrosis - ultrastructure and morphogenesis.

    Granzow, H; Fichtner, D; Schütze, H; Lenk, M; Dresenkamp, B; Nieper, H; Mettenleiter, T C

    2014-06-01

    Two isolates of a novel enveloped RNA virus were obtained from carp and koi carp with gill necrosis. Both isolates behaved identically and could be propagated in different cyprinid cell lines forming large syncytia. The virus was sensitive to lipid solvents and neither exhibited haemadsorption/haemagglutination nor reverse transcriptase activity. Mature virus particles displayed a spherical shape with diameter of 100-350 nm after negative staining and 100-300 nm in ultrathin sections, covered by short projections of 8-10 nm in length. Maturation of virus progeny was shown to occur by budding and envelopment of the filamentous helical nucleocapsids at the cell surface. A detailed comparison of ultrastructure and morphogenesis of the novel virus isolates with selected arena-, ortho- and paramyxoviruses as possible candidates for evaluation of taxonomic classification yielded no consistency in all phenotypic features. Thus, on the basis of ultrastructure the novel virus isolates could not be assigned unequivocally to any established virus family. PMID:23865968

  19. Origin of Enigmatic Galactic-center Filaments Revealed

    2004-06-01

    Twenty years ago, astronomers discovered a number of enigmatic radio-emitting filaments concentrated near the center of the Milky Way Galaxy. These features initially defied explanation, but a new study of radio images of the Galactic center may point to their possible source. By combining data from the National Science Foundation's Very Large Array (VLA) and Robert C. Byrd Green Bank Telescope (GBT) astronomer Farhad Yusef-Zadeh of Northwestern University has found evidence that at least some of the filaments spring from the concentrated star-formation regions that populate the Galactic center. Galatic Center Combined VLA and GBT image (green) of the Galactic center, with red inset of GBT data only (red). Bright region on right is location of supermassive black hole. Linear filaments are visible above this area. CREDIT: NRAO/AUI/NSF Yusef-Zadeh, et.al. (Click on Image for Larger Version) Yusef-Zadeh presented his findings at the Denver, Colorado, meeting of the American Astronomical Society. William Cotton of the National Radio Astronomy Observatory (NRAO) in Charlottesville, Virginia, and William Hewitt of Northwestern University also contributed to this research. "Astronomers have long puzzled over the cause of these striking features," said Yusef-Zadeh, "and the turbulent nature of the Galactic center has made detailed analysis difficult. With new multi-wavelength radio images of the Galactic center, however, we can finally see a link between areas of starburst activity and these long-linear filaments." The filaments, which range from 10 to 100 light-years in length and are perhaps little more than 1 to 3 light-years across, occur only in a very narrow area, within approximately two degrees of the Galactic center (which translates to approximately 900 light-years across). Early theories about the origin of these filaments suggested that they were somehow related to the Milky Way’s own magnetic field. This was due to the fact that the first filaments detected

  20. Filament to mandrel gap analysis: Resulting gap from filament winding over a cone-cylinder transition mandrel (reference NMTP NO. 93838)

    Geraghty, P.

    1993-10-27

    The composites industry employs a method of high speed continuous reinforcement lay-down called filament winding. This is a process where resin impregnated tows, bundles of filament, are wound over a rotating mandrel. The tows, hereafter referred to as filament, are laid down over the rotating mandrel at a prescribed wind angle. Consider a cylindrical filament winding mandrel with conical features such that the filament is tangent to both the cylinder and the cone simultaneously. A gap is formed between the points of tangency. The gap distance measured along a line normal to the filament and intersecting the mandrel`s axis of rotation. The maximum distance occurs between the filament and a point on the intersection of the cylinder and the cone. The problems this paper addresses are: given a cylindrical filament winding mandrel with conical features, what is the gap size for a given wind angle; conversely what is the wind angle for a given gap size; and what does the geometry need to be in the mandrel transition area between the cylinder cone such that the filament remains in contact with the mandrel at all times?

  1. Passatempo Virus, a Vaccinia Virus Strain, Brazil

    Leite, Juliana A.; Drumond, Betânia P.; Trindade, Giliane S; Zélia I P Lobato; da Fonseca, Flávio G.; dos Santos, João R.; Madureira, Marieta C.; Guedes, Maria I.M.C.; Ferreira, Jaqueline M. S.; Bonjardim, Cláudio A.; Ferreira, Paulo C. P.; Kroon, Erna G.

    2005-01-01

    Passatempo virus was isolated during a zoonotic outbreak. Biologic features and molecular characterization of hemagglutinin, thymidine kinase, and vaccinia growth factor genes suggested a vaccinia virus infection, which strengthens the idea of the reemergence and circulation of vaccinia virus in Brazil. Molecular polymorphisms indicated that Passatempo virus is a different isolate.

  2. A penny shaped crack in a filament-reinforced matrix. 2: The crack problem

    Pacella, A. H.; Erdogan, F.

    1973-01-01

    The elastostatic interaction problem between a penny-shaped crack and a slender inclusion or filament in an elastic matrix was formulated. For a single filament as well as multiple identical filaments located symmetrically around the crack the problem is shown to reduce to a singular integral equation. The solution of the problem is obtained for various geometries and filament-to-matrix stiffness ratios, and the results relating to the angular variation of the stress intensity factor and the maximum filament stress are presented.

  3. Presence of solar filament plasma detected in interplanetary coronal mass ejections by in situ spacecraft

    Srivastava Nandita

    2012-07-01

    Full Text Available Aims: To identify the solar filament plasma at 1 AU by using in situ spacecraft data. Methods: We used magnetic, plasma and compositional parameters to identify the presence of filamentary material within and outside magnetic clouds. Results: We report two cases of observed filament plasma embedded in interplanetary coronal mass ejections (ICMEs related to a flare-associated eruptive filament and a quiescent filament eruption at different phases of solar cycle by using magnetic, plasma, and compositional parameters. Conclusions: Analysis of in situ multi-spacecraft observations of ICME structures and substructures confirms the presence of solar filament material.

  4. Combined deformation of filament-wound cylinder and application to torsion vibration control

    李玉兰

    2002-01-01

    The combined deformation and mechanical propetries of filament-wound cylinder of filament reinforced composite materials are investigated.A method of using filament-winding composited to reduce the amplitude of torsion vibration in the case of special stimulated vibration is established.A design formula of anisotropic filament-wound cylinder to reduce the torsion vibration of axle components is obtained.The results indicate that by puting the filament-wound cylinder on an axis,the torsion vibration of the axis can be reduced effectively.

  5. Oropuche virus: A virus present but ignored

    Salim Mattar V.

    2015-09-01

    Full Text Available Bunyaviruses are RNA viruses that affect animals and plants; they have five genera and four of them affect humans: Orthobunyavirus, Nairovirus, Phlebovirus and Hantavirus. All of them are Arbovirus, except Hantavirus. The Orthobunyaviruses comprise Oropouche, Tahyna, La Crosse virus, California encephalitis virus and Heartland virus recently discovered (1. Except for Heartland virus which is transmitted by ticks of the genus Amblyoma, these Phleboviruses have as vectors mosquitoes, which bite small mammals which are able to be as reservoirs amplifiers.

  6. Generation of high harmonics and attosecond pulses with ultrashort laser pulse filaments and conical waves

    A Couairon; A Lotti; D Faccio; P Di Trapani; D S Steingrube; E Schulz; T Binhammer; U Morgner; M Kovacev; M B Gaarde

    2014-08-01

    Results illustrating the nonlinear dynamics of ultrashort laser pulse filamentation in gases are presented, with particular emphasis on the filament properties useful for developing attosecond light sources. Two aspects of ultrashort pulse filaments are specifically discussed: (i) numerical simulation results on pulse self-compression by filamentation in a gas cell filled with noble gas. Measurements of high harmonics generated by the pulse extracted from the filament allows for the detection of intensity spikes and subcycle pulses generated within the filament. (ii) Simulation results on the spontaneous formation of conical wavepackets during filamentation in gases, which in turn can be used as efficient driving pulses for the generation of high harmonics and isolated attosecond pulses.

  7. Shape selection of surface-bound helical filaments: biopolymers on curved membranes

    Quint, D A; Grason, G M

    2016-01-01

    Motivated to understand the behavior of biological filaments interacting with membranes of various types, we study a theoretical model for the shape and thermodynamics of intrinsically-helical filaments bound to curved membranes. We show filament-surface interactions lead to a host of non-uniform shape equilibria, in which filaments progressively unwind from their native twist with increasing surface interaction and surface curvature, ultimately adopting uniform-contact curved shapes. The latter effect is due to non-linear coupling between elastic twist and bending of filaments on anisotropically-curved surfaces, such as the cylindrical surfaces considered here. Via a combination of numerical solutions and asymptotic analysis of shape equilibria we show that filament conformations are critically sensitive to the surface curvature in both the strong- and weak-binding limits. These results suggest that local structure of membrane-bound chiral filaments is generically sensitive to the curvature-radius of the sur...

  8. Asymmetry effects of filament heater current on the ion source performance

    Many ion sources for accelerators are based on filament arc discharge. The source characteristics depend on filament heating mechanisms. Experiments using a single U shape tungsten filament in a plasma source have been carried out to study the discharge characteristics of AC and DC heated filament. During AC heating, modulation of the discharge current as well as the plasma density is observed due to the magnetic field created by the filament heater current. The modulation frequency is twice that of the AC frequency. In case of DC heating, modulation is not observed but two legs of the filament contribute different amount of discharge current which is determined by the internal resistance of the filament power supply. (author)

  9. Broken detailed balance in active fluctuations of semiflexible filaments

    Gladrow, Jannes; Fakhri, Nikta; Mackintosh, Fred C.; Schmidt, Christoph F.; Broedersz, Chase P.

    2015-03-01

    Non-equilibrium microscopic force generation in cells often results in stochastic steady-state fluctuations. In the cell cytoskeleton, for example, cytoplasmic myosins can drive vigorous conformational fluctuations of actin filaments and microtubules. We here present an analytical and numerical analysis of randomly driven shape fluctuations of semiflexible filaments in a viscoelastic environment. To detect and quantify non-equilibrium dynamics, we focus on the breaking of detailed balance in a conformational phase space subtended by eigenmodes of the beam equation. Molecular dynamics simulations reveal a non-zero circulatory flux in phase space induced by motor activity. Furthermore, we derived an analytical expression of nonequilibrium mode correlations that allows us to predict temporal effects of active molecular motors.

  10. Brownian Motion of Stiff Filaments in a Crowded Environment

    Fakhri, Nikta; MacKintosh, Frederick C.; Lounis, Brahim; Cognet, Laurent; Pasquali, Matteo

    2010-12-01

    The thermal motion of stiff filaments in a crowded environment is highly constrained and anisotropic; it underlies the behavior of such disparate systems as polymer materials, nanocomposites, and the cell cytoskeleton. Despite decades of theoretical study, the fundamental dynamics of such systems remains a mystery. Using near-infrared video microscopy, we studied the thermal diffusion of individual single-walled carbon nanotubes (SWNTs) confined in porous agarose networks. We found that even a small bending flexibility of SWNTs strongly enhances their motion: The rotational diffusion constant is proportional to the filament-bending compliance and is independent of the network pore size. The interplay between crowding and thermal bending implies that the notion of a filament’s stiffness depends on its confinement. Moreover, the mobility of SWNTs and other inclusions can be controlled by tailoring their stiffness.

  11. Regulated 15-V, 7500-A, neutral-beam filament supply

    Lawrence Livermore Laboratory (LLL) designed a cost-effective, regulated 15-V, 7500-A filament supply for use with the High-Voltage Test Stand , a major ERDA developmental neutral-beam test facility. The filament supply can float to 200 kV and can provide pulse widths up to 30 s. Powered by a 24-V, 0.5-TJ battery bank, it avoids the use of expensive isolation transformers and induction voltage regulators (IVR's). Battery output is regulated by a water-cooled resistor-contactor combination in which contactors are closed in sequential format to create a staircase current waveform. A fine-tuning network tunes in-between the ''steps'' for regulation to less than 0.5 percent. The regulator is digitally controlled except for the sense amplifiers, which are optically coupled to the digital controller. All ground telemetry uses optical links to minimize effects of rfi and emi noise in the data channels

  12. Topological Tools For The Analysis Of Active Region Filament Stability

    DeLuca, Edward E.; Savcheva, A.; van Ballegooijen, A.; Pariat, E.; Aulanier, G.; Su, Y.

    2012-05-01

    The combination of accurate NLFFF models and high resolution MHD simulations allows us to study the changes in stability of an active region filament before a CME. Our analysis strongly supports the following sequence of events leading up to the CME: first there is a build up of magnetic flux in the filament through flux cancellation beneath a developing flux rope; as the flux rope develops a hyperbolic flux tube (HFT) forms beneath the flux rope; reconnection across the HFT raises the flux rope while adding addition flux to it; the eruption is triggered when the flux rope becomes torus-unstable. The work applies topological analysis tools that have been developed over the past decade and points the way for future work on the critical problem of CME initiation in solar active regions. We will present the uses of this approach, current limitations and future prospects.

  13. Effects of Heat Treatment on Properties of Polyester Filaments

    王妮; 孙润军

    2003-01-01

    Many properties of polyester filaments such as heat shrinkage, tenacity, elongation at break and etc. are greatly influenced by drawing, so post-drawing is important in downstream processing. As more and more profile fibers and multi.variance fibers used in textile industry, the properties of above two kinds of differential polyester filaments after drawing in different heat conditions were studied. Finally following conclusions were obtained: Firstly, the tenacity and elongation at break decreases with the rise of Tp. Secondly, the tenacity rises but the elongation at break decreases with the increase of Tb.Then, when the Tb is low, both the shrinkage in boiling water and in hot air decreases with the rise of Tp, while, when the Tb is high, both the shrinkage rises with the rise of Tp. The last, both the shrinkage decreases with the rise of Tb.

  14. A Jet Model of the Galactic Center Nonthermal Radio Filaments

    Yusef-Zadeh, F

    2004-01-01

    Protostellar sources in star forming regions are responsible for driving jets with flow velocities ranging between 300 and 400 km s$^{-1}$. This class of jets consists of highly collimated outflows which include thermal knots with number densities estimated to be greater than that of their ambient medium. On the other hand, extragalactic FR I jets consist of light fluid with low Mach number burrowing through a denser medium as the magnetized jets radiate nonthermal emission. Both protostellar and extragalactic jets are believed to be launched by accretion disks. Here we consider a jet model in which the characteristics common to both protostellar and extragalactic jets are used to explain the origin of nonthermal filaments in the Galactic center region. We argue that these filaments are analogous to FR I extragalactic sources but are launched by embedded young stars or clusters of stars in star-forming regions.

  15. Cosmic-ray-induced filamentation instability in collisionless shocks

    Caprioli, D

    2012-01-01

    We used unprecedentedly large 2D and 3D hybrid (kinetic ions - fluid electrons) simulations of non-relativistic collisionless strong shocks in order to investigate the effects of self-consistently accelerated ions on the overall shock dynamics. The current driven by suprathermal particles streaming ahead of the shock excites modes transverse to the background magnetic field. The Lorentz force induced by these self-amplified fields tends to excavate tubular, underdense, magnetic-field-depleted cavities that are advected with the fluid and perturb the shock surface, triggering downstream turbulent motions. These motions further amplify the magnetic field, up to factors of 50-100 in knot-like structures. Once downstream, the cavities tend to be filled by hot plasma plumes that compress and stretch the magnetic fields in elongated filaments; this effect is particularly evident if the shock propagates parallel to the background field. Highly-magnetized knots and filaments may provide explanations for the rapid X-r...

  16. A Magnetic Ribbon Model for Star-Forming Filaments

    Auddy, Sayantan; Kudoh, Takahiro

    2016-01-01

    We develop a magnetic ribbon model for molecular cloud filaments. These result from turbulent compression in a molecular cloud in which the background magnetic field sets a preferred direction. We argue that this is a natural model for filaments and is based on the interplay between turbulence, strong magnetic fields, and gravitationally-driven ambipolar diffusion, rather than pure gravity and thermal pressure. An analytic model for the formation of magnetic ribbons that is based on numerical simulations is used to derive a lateral width of a magnetic ribbon. This differs from the thickness along the magnetic field direction, which is essentially the Jeans scale. We use our model to calculate a synthetic observed relation between apparent width in projection versus observed column density. The relationship is relatively flat, similar to observations, and unlike the simple expectation based on a Jeans length argument.

  17. Adiabatic Floquet model for the optical response in femtosecond filaments

    Hofmann, Michael

    2016-01-01

    The standard model of femtosecond filamentation is based on phenomenological assumptions which suggest that the ionization-induced carriers can be treated as free according to the Drude model, while the nonlinear response of the bound carriers follows the all-optical Kerr effect. Here, we demonstrate that the additional plasma generated at a multiphoton resonance dominates the saturation of the nonlinear refractive index. Since resonances are not captured by the standard model, we propose a modification of the latter in which ionization enhancements can be accounted for by an ionization rate obtained from non-Hermitian Floquet theory. In the adiabatic regime of long pulse envelopes, this augmented standard model is in excellent agreement with direct quantum mechanical simulations. Since our proposal maintains the structure of the standard model, it can be easily incorporated into existing codes of filament simulation.

  18. Linked and knotted chimera filaments in oscillatory systems

    Lau, Hon Wai; Davidsen, Jörn

    2016-07-01

    While the existence of stable knotted and linked vortex lines has been established in many experimental and theoretical systems, their existence in oscillatory systems and systems with nonlocal coupling has remained elusive. Here, we present strong numerical evidence that stable knots and links such as trefoils and Hopf links do exist in simple, complex, and chaotic oscillatory systems if the coupling between the oscillators is neither too short ranged nor too long ranged. In this case, effective repulsive forces between vortex lines in knotted and linked structures stabilize curvature-driven shrinkage observed for single vortex rings. In contrast to real fluids and excitable media, the vortex lines correspond to scroll wave chimeras [synchronized scroll waves with spatially extended (tubelike) unsynchronized filaments], a prime example of spontaneous synchrony breaking in systems of identical oscillators. In the case of complex oscillatory systems, this leads to a topological superstructure combining knotted filaments and synchronization defect sheets.

  19. Optical identification of dust within the Crab Nebula's filaments

    Optical continuum images of the Crab Nebula are presented which reveal numerous, small dark spots across the face of the Crab's amorphous synchrotron nebula. These spots range in size from being unresolved at 0.8-arcsec resolution to about 5 arcsec, exhibit Delta(m)4470 = 0.08-0.44, and are most visible in the shorter-wavelength continuum images. Comparisons with images taken using interference filters centered on various emission lines indicate that these dark features are coincident with forbidden O I, C I, and S II bright cores of selected filaments. This positional coincidence plus a wavelength dependence similar to that exhibited by conventional interstellar dust establishes the presence of dust within at least some of the Crab Nebula's filaments. 26 refs

  20. Periodic magnetic domains in single-crystalline cobalt filament arrays

    Chen, Fei; Wang, Fan; Jia, Fei; Li, Jingning; Liu, Kai; Huang, Sunxiang; Luan, Zhongzhi; Wu, Di; Chen, Yanbin; Zhu, Jianmin; Peng, Ru-Wen; Wang, Mu

    2016-02-01

    Magnetic structures with controlled domain wall pattern may be applied as potential building blocks for three-dimensional magnetic memory and logic devices. Using a unique electrochemical self-assembly method, we achieve regular single-crystalline cobalt filament arrays with specific geometric profile and crystallographic orientation, and the magnetic domain configuration can be conveniently tailored. We report the transition of periodic antiparallel magnetic domains to compressed vortex magnetic domains depending on the ratio of height to width of the wires. A "phase diagram" is obtained to describe the dependence of the type of magnetic domain and the geometrical profiles of the wires. Magnetoresistance of the filaments demonstrates that the contribution of a series of 180∘ domain walls is over 0.15 % of the zero-field resistance ρ (H =0 ) . These self-assembled magnetic nanofilaments, with controlled periodic domain patterns, offer an interesting platform to explore domain-wall-based memory and logic devices.

  1. Solitons and other waves on a quantum vortex filament

    Van Gorder, Robert A

    2014-01-01

    The quantum form of the local induction approximation (LIA, a model approximating the motion of a thin vortex filament in superfluid) including superfluid friction effects is put into correspondence with a type of cubic complex Ginsburg-Landau equation, in a manner analogous to the Hasimoto map taking the classical LIA into the cubic nonlinear Schr\\"odinger equation. From this formulation, we determine the form and behavior of Stokes waves, 1-solitons, and other traveling wave solutions under normal and binormal friction. The most important of these solutions is the soliton on a quantum vortex filament, which is a natural generalization of the 1-soliton solution constructed mathematically by Hasimoto which motivated subsequent real-world experiments. We also conjecture on the possibility of chaos in such systems, and on the existence more complicated solitons such as breathers.

  2. UV-induced filamentation in bacteria of the generum Erwinia

    It is experimentally shown that cells of 56 pectolytic Erwinia strains isolated at different tomus in different states from various natural sources are converted into filaments under UV-light effect in relatively low doses which allows one to refer them to natural Fil+ - organisms. Ability to filamentation in Erwinia bacterium correlates with secretion process to the environment of pectolytic enzymes. Bacteria of 9 E.herbicola strains investigated (without pectatlyase secretion) after irradiation do not form stretched cells. Based on the results obtained a conclusion is drawn that increased ENA49 E.chrysanthemic cell sensitivity to UV light results from its natural defect in the system, providing for cell division processes like the one revealed in E.CoLiB and Lon- - mutants of E.Coli K-12

  3. Membrane waves driven by forces from actin filaments

    Membrane waves propagating along the cell circumference in a top down view have been observed with several eukaryotic cells (Döbereiner et al 2006 Phys. Rev. Lett. 97 10; Machacek and Danuser 2006 Biophys. J. 90 1439–52). We present a mathematical model reproducing these traveling membrane undulations during lamellipodial motility of cells on flat substrates. The model describes the interplay of pushing forces exerted by actin polymerization on the membrane, pulling forces of attached actin filaments on the cell edge, contractile forces powered by molecular motors across the actin gel and resisting membrane tension. The actin filament network in the bulk of lamellipodia obeys gel flow equations. We investigated in particular the dependence of wave properties on gel parameters and found that inhibition of myosin motors abolishes waves in some cells but not in others in agreement with experimental observations. The model provides a unifying mechanism explaining the dynamics of actin-based motility in a variety of systems. (paper)

  4. The outer filament of Centaurus A as seen by MUSE

    Santoro, F; Morganti, R; Oosterloo, T A; Tremblay, G

    2015-01-01

    We investigate signatures of a jet-interstellar medium (ISM) interaction using optical integral-field observations of the so-called outer filament near Centaurus A, expanding on previous results obtained on a more limited area. Using the Multi Unit Spectroscopic Explorer (MUSE) on the VLT during science verification, we observed a significant fraction of the brighter emitting gas across the outer filament. The ionized gas shows complex morphology with compact blobs, arc-like structures and diffuse emission. Based on the kinematics, we identified three main components. The more collimated component is oriented along the direction of the radio jet. The other two components exhibit diffuse morphology together with arc-like structures also oriented along the radio jet direction. Furthermore, the ionization level of the gas is found to decrease from the more collimated component to the more diffuse components. The morphology and velocities of the more collimated component confirm our earlier results that the outer...

  5. Active region filaments might harbor weak magnetic fields

    Baso, C J Díaz; Ramos, A Asensio

    2016-01-01

    Recent spectropolarimetric observations of active region filaments have revealed polarization profiles with signatures typical of the strong field Zeeman regime. The conspicuous absence in those observations of scattering polarization and Hanle effect signatures was then pointed out by some authors. This was interpreted either as a signature of mixed "turbulent" field components or as a result of optical thickness. In this article, we present a natural scenario to explain these Zeeman-only spectro-polarimetric observations of active region filaments. We propose a two-component model, one on top of the other. Both components have horizontal fields, the azimuth difference between them being close to 90 degrees. The component that lies lower in the atmosphere is permeated by a strong field of the order of 600 G, while the upper component has much weaker fields, of the order of 10 G. The ensuing scattering polarization signatures of the individual components have opposite signs, so that its combination along the ...

  6. Prokaryotic DNA segregation by an actin-like filament

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Löwe, Jan;

    2002-01-01

    The mechanisms responsible for prokaryotic DNA segregation are largely unknown. The partitioning locus (par) encoded by the Escherichia coli plasmid R1 actively segregates its replicon to daughter cells. We show here that the ParM ATPase encoded by par forms dynamic actin-like filaments with...... point for ParM polymerization. Hence, we provide evidence for a simple prokaryotic analogue of the eukaryotic mitotic spindle apparatus....

  7. Protein secretion in the filamentous fungus Aspergillus niger

    Weenink, Xavier Oswin

    2008-01-01

    Filamentous fungi are multicellular eukaryotic organisms, which represent a separate taxonomic group organisms within the fungal kingdom, apart from the yeasts. These fungi always need a substrate to grow on, this can be living or dead material. Fungi possess the capacity to secrete high levels of enzymes. Because of this specific property, fungi are already used for centuries as miniature factories for the production of extracellular proteins. Aspergillus niger is an attractive organism beca...

  8. Strength analysis of filament-wound composite tubes

    Vasović Ivana

    2010-01-01

    The subject of this work is focused on strength analysis of filament-wound composite tubes made of E glass/polyester under internal pressure. The primary attention of this investigation is to develop a reliable computation procedure for stress, displacement and initial failure analysis of layered composite tubes. For that purpose we have combined the finite element method (FEM) with corresponding initial failure criterions. In addition, finite element analyses using commercial code, MSC/NASTR...

  9. Statistical Equilibrium of trapped slender vortex filaments - a continuum model

    Andersen, Timothy D.; Lim, Chjan C.

    2006-01-01

    Systems of nearly parallel, slender vortex filaments in which angular momentum is conserved are an important simplification of the Navier-Stokes equations where turbulence can be studied in statistical equilibrium. We study the canonical Gibbs distribution based on the Klein-Majda-Damodaran (KMD) model and find a divergence in the mean square vortex position from that of the point vortex model of Onsager at high temperature. We subsequently develop a free energy equation based on the non-inte...

  10. Ineffectiveness of intrastromal voriconazole for filamentous fungal keratitis

    Niki M

    2014-06-01

    Full Text Available Masanori Niki, Hiroshi Eguchi, Yuki Hayashi, Tatsuro Miyamoto, Fumika Hotta, Yoshinori MitamuraDepartment of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima-shi, JapanPurpose: The purpose of this study is to describe the ineffectiveness of intrastromal voriconazole injection for filamentous fungal keratitis by contrasting the effectiveness for yeast keratitis.Methods: We examined seven fungal keratitis patients prospectively. All yeast was identified by molecular phylogenetic analyses of the chromosomal regions coding for the D1/D2 domain of the large-subunit 26S ribosomal RNA gene. All filamentous fungi were identified by the sequencing of internal transcribed spacers of the ribosomal DNA gene regions. Approximately 0.1 mL of voriconazole diluted with saline to 1.0% was injected with a 30-gauge needle inserted obliquely into the three to five clear cornea sites around the abscess. All subjects were administered natamycin ointment and oral itraconazole. When needed, intravenous micafungin, voriconazole, and/or intracameral voriconazole were added. Clinical courses were observed by the slit lamp microscope. Histopathology was examined when the corneas were removed.Results: All cases that were caused by yeast healed quickly after injections. Two cases of keratitis caused by Fusarium, and one case caused by Aspergillus, did not heal completely. In the Fusarium cases, additional antifungal medications (3.0% topical voriconazole and intravenous injection of micafungin were needed. After optical penetrating keratoplasty in one of the cases, fungi were found in the deep stroma of the removed cornea. In the case of Aspergillus keratitis, pathological findings also showed fungi deep in the stroma of the removed cornea and the keratitis recurred after therapeutic penetrating keratoplasty.Conclusion: Intrastromal voriconazole injection is successful in treating yeast keratitis. However this is not the

  11. Ineffectiveness of intrastromal voriconazole for filamentous fungal keratitis

    Niki M; Eguchi H; Hayashi Y.; Miyamoto T; Hotta F; Mitamura Y

    2014-01-01

    Masanori Niki, Hiroshi Eguchi, Yuki Hayashi, Tatsuro Miyamoto, Fumika Hotta, Yoshinori MitamuraDepartment of Ophthalmology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima-shi, JapanPurpose: The purpose of this study is to describe the ineffectiveness of intrastromal voriconazole injection for filamentous fungal keratitis by contrasting the effectiveness for yeast keratitis.Methods: We examined seven fungal keratitis patients prospectively. All yeast wa...

  12. Four-photon parametric mixing and interaction between filaments

    Georgieva, D. A. [Faculty of Applied Mathematics and Computer Science, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1000 Sofia (Bulgaria); Kovachev, L. M. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradcko Chaussee Blvd.,1784 Sofia (Bulgaria)

    2014-11-12

    Recently energy exchange between two filaments crossing at small angle and with power slightly above the critical for self-focusing P{sub cr} was experimentally demonstrated. In this paper we present a model describing the process of this transfer through degenerate four-photon parametric mixing. Our model confirms the experimental results that the direction of energy exchange depends on the relative transverse velocity (incident angle), laser intensity and initial distance between the pulses (relative initial phase)

  13. Properties of ceramics based on cerium dioxide with crystalline filaments

    Problems of the increase of thermal resistance of ceramics on the basis of cerium dioxide with the interduction of filamentous crystals (FC) of CeO2 and MgO have been considered. It is established that FC of MgO and CeO2 are dissolved in the matrix, foAming fine oblong pores, promoting relaxation of thermal strains and preventing crack propagation, which increases the material thermal resistance

  14. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to d...

  15. Thin Filament Structure and the Steric Blocking Model.

    Lehman, William

    2016-04-01

    By interacting with the troponin-tropomyosin complex on myofibrillar thin filaments, Ca2+ and myosin govern the regulatory switching processes influencing contractile activity of mammalian cardiac and skeletal muscles. A possible explanation of the roles played by Ca2+ and myosin emerged in the early 1970s when a compelling "steric model" began to gain traction as a likely mechanism accounting for muscle regulation. In its most simple form, the model holds that, under the control of Ca2+ binding to troponin and myosin binding to actin, tropomyosin strands running along thin filaments either block myosin-binding sites on actin when muscles are relaxed or move away from them when muscles are activated. Evidence for the steric model was initially based on interpretation of subtle changes observed in X-ray fiber diffraction patterns of intact skeletal muscle preparations. Over the past 25 years, electron microscopy coupled with three-dimensional reconstruction directly resolved thin filament organization under many experimental conditions and at increasingly higher resolution. At low-Ca2+, tropomyosin was shown to occupy a "blocked-state" position on the filament, and switched-on in a two-step process, involving first a movement of tropomyosin away from the majority of the myosin-binding site as Ca2+ binds to troponin and then a further movement to fully expose the site when small numbers of myosin heads bind to actin. In this contribution, basic information on Ca2+-regulation of muscle contraction is provided. A description is then given relating the voyage of discovery taken to arrive at the present understanding of the steric regulatory model. PMID:27065174

  16. Filament winding cylinders. III - Selection of the process variables

    Lee, Soo-Yong; Springer, George S.

    1990-01-01

    By using the Lee-Springer filament winding model temperatures, degrees of cure, viscosities, stresses, strains, fiber tensions, fiber motions, and void diameters were calculated in graphite-epoxy composite cylinders during the winding and subsequent curing. The results demonstrate the type of information which can be generated by the model. It is shown, in reference to these results, how the model, and the corresponding WINDTHICK code, can be used to select the appropriate process variables.

  17. Moving Magnetic Features as Prolongation of Penumbral Filaments

    Sainz Dalda, A.; Martínez Pillet, V.

    2005-10-01

    A sequence of 633 high spatial resolution magnetograms and continuum images from SOHO MDI of NOAA AR 0330 is used to study moving magnetic feature (MMF) activity in the moat surrounding a mature leader sunspot. The time-averaged frame shows that the moat region is covered by a magnetic field that exhibits the same polarity distribution as that observed in the penumbra. The moat field displays the true polarity of the spot in the sector where the penumbra displays it. Similarly, on the side where the penumbra shows a polarity opposite the true one (due to projection effects after the so-called apparent neutral line), the moat field also displays a polarity opposite the true one. This is only compatible with a moat field that is horizontal almost everywhere, as in the outer penumbra. Indeed, this horizontal moat field is seen to be physically connected with the penumbra. This connection is made evident when analyzing the individual structures detected in the averaged images, which we call moat filaments. The filaments stretch out for 12" in the moat and can be traced back into the penumbra. The observed polarity distribution along them is only compatible with mean inclinations in the range of 80°-90°. Inside the spot, these filaments are linked to the more horizontal magnetic field component that is thought to carry a large part of the Evershed flow. Several bipolar MMFs are seen to originate inside the penumbra and cross the sunspot outer boundary to enter the moat region, following the paths outlined by the moat filaments. These results are discussed in the frame of our current theoretical understanding of the Evershed flow and MMF activity.

  18. Powder-Curtain Feeder For Coating Filament Tow

    Baucom, Robert M.; Snoha, John J.; Marchello, Joseph M.

    1994-01-01

    Continuous fiber web receives powder coat first on one side, then on other. Vibrating helical screw mechanism in powder feeder provides even flow of powder to form powder curtain that descends onto moving web. Small amount of powder that falls to side or through web recovered easily. Powder-curtain feeder part of apparatus similar to one described in "System Applies Polymer Powder to Filament Tow" (LAR-14231).

  19. Modelling of the preheating process of filament tows

    Filament winding of powder impregnated fibres has been applied to produce composite rings. Important steps in the process are the preheating of the tow within an infrared (IR) preheater. The paper provides results of modelling the heating process of the tow within the preheater. The calculations are focused on the evaluation of the temperature not only at the surface of the tow but also across the whole diameter, i.e. the skin-core effect is investigated. (orig.)

  20. Propagation characteristics of electromagnetic waves along a dense plasma filament

    Nowakowska, H.; Zakrzewski, Z. [Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Gdansk (Poland); Moisan, M. [Departement de Physique, Universite de Montreal, Montreal, PQ (Canada)

    2001-05-21

    The characteristics of electromagnetic waves propagating along dense plasma filaments, as encountered in atmospheric pressure discharges, are examined in the microwave frequency range; they turn out to be surface waves. Results of numerical calculations of the dependence of the phase and attenuation coefficients on the plasma parameters are presented. In the limit of large electron densities, this guided wave is akin to a Sommerfeld wave and the propagation can be described in an analytical form. (author)

  1. Preserved filamentous microbial biosignatures in the Brick Flat gossan, Iron Mountain, California

    Williams, Amy J.; Sumner, Dawn Y.; Alpers, Charles N.; Karunatillake, Suniti; Hofmann, Beda A

    2015-01-01

    A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses. Sinuous

  2. Preserved Filamentous Microbial Biosignatures in the Brick Flat Gossan, Iron Mountain, California.

    Williams, Amy J; Sumner, Dawn Y; Alpers, Charles N; Karunatillake, Suniti; Hofmann, Beda A

    2015-08-01

    A variety of actively precipitating mineral environments preserve morphological evidence of microbial biosignatures. One such environment with preserved microbial biosignatures is the oxidized portion of a massive sulfide deposit, or gossan, such as that at Iron Mountain, California. This gossan may serve as a mineralogical analogue to some ancient martian environments due to the presence of oxidized iron and sulfate species, and minerals that only form in acidic aqueous conditions, in both environments. Evaluating the potential biogenicity of cryptic textures in such martian gossans requires an understanding of how microbial textures form biosignatures on Earth. The iron-oxide-dominated composition and morphology of terrestrial, nonbranching filamentous microbial biosignatures may be distinctive of the underlying formation and preservation processes. The Iron Mountain gossan consists primarily of ferric oxide (hematite), hydrous ferric oxide (HFO, predominantly goethite), and jarosite group minerals, categorized into in situ gossan, and remobilized iron deposits. We interpret HFO filaments, found in both gossan types, as HFO-mineralized microbial filaments based in part on (1) the presence of preserved central filament lumina in smooth HFO mineral filaments that are likely molds of microbial filaments, (2) mineral filament formation in actively precipitating iron-oxide environments, (3) high degrees of mineral filament bending consistent with a flexible microbial filament template, and (4) the presence of bare microbial filaments on gossan rocks. Individual HFO filaments are below the resolution of the Mars Curiosity and Mars 2020 rover cameras, but sinuous filaments forming macroscopic matlike textures are resolvable. If present on Mars, available cameras may resolve these features identified as similar to terrestrial HFO filaments and allow subsequent evaluation for their biogenicity by synthesizing geochemical, mineralogical, and morphological analyses. Sinuous

  3. Characterization of gold nanoparticle binding to microtubule filaments

    Microtubule (MT) protein filaments were used as templates for fabricating Au nanowires as a bottom-up approach for fabricating building blocks for future integrated circuits. Photochemical reduction methods were employed to form Au nanoparticles which bind and uniformly cover the MT filaments. Synthesis of the MT-templated Au nanowires was characterized using UV/vis spectroscopy and transmission electron microscopy (TEM). In addition, binding between the MT filaments and Au nanoparticles was investigated using surface enhanced Raman spectroscopy (SERS) and X-ray photoelectron spectroscopy (XPS) to establish the nature of the binding sites. A variety of functional groups were identified by SERS to interact with the Au including imidazole, sulfur, aromatic rings, amine, and carboxylate. The imidazole ring in the histidine is the most prominent functional group for Au binding. The results from these studies provide better understanding of the binding between Au and the biotemplate and give insight concerning methods to improve Au coverage for MT-templated Au nanowires.

  4. Helicity and internal twist within the vortex filament model

    Hietala, N; Salman, H

    2016-01-01

    For ideal fluids, besides energy, kinetic helicity is the only other known quadratic invariant of the Euler equations besides energy and is understood to be inherently linked to the degree of knotting of vortex lines within the fluid. For vortices arising in superfluid $^4$He, the vorticity is concentrated along vortex filaments. In this setting, helicity would be expected to acquire its simplest form. However, the lack of a core structure for vortex filaments appears to result in a helicity that does not retain its key attribute as a quadratic invariant. By defining the spanwise vector to coincide with the Seifert framing, we are able to introduce twist and henceforth recover the key properties of helicity. Through a detailed analysis of the velocity field induced in the vicinity of the superfluid vortices we are able to express our choice of the spanwise vector in terms of the tangential component of velocity along the filament. Since adding an arbitrary tangential velocity does not alter the configuration ...

  5. Novel actin-like filament structure from Clostridium tetani.

    Popp, David; Narita, Akihiro; Lee, Lin Jie; Ghoshdastider, Umesh; Xue, Bo; Srinivasan, Ramanujam; Balasubramanian, Mohan K; Tanaka, Toshitsugu; Robinson, Robert C

    2012-06-15

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines. PMID:22514279

  6. Filaments in Galactic Winds Driven by Young Stellar Clusters

    Rodriguez-Gonzalez, Ary; Velazquez, Pablo; Raga, Alejandro; Melo, Veronica

    2008-01-01

    The starburst galaxy M82 shows a system of H$\\alpha$-emitting filaments which extend to each side of the galactic disk. We model these filaments as the result of the interaction between the winds from a distribution of Super Stellar Clusters (SSCs). We first derive the condition necessary for producing a radiative interaction between the cluster winds (a condition which is met by the SSC distribution of M82). We then compute 3D simulations for SSC wind distributions which satisfy the condition for a radiative interaction, and also for distributions which do not satisfy this condition. We find that the highly radiative models, that result from the interaction of high metallicity cluster winds, produce a structure of H$\\alpha$ emitting filaments, which qualitatively agrees with the observations of the M82, while the non-radiative SSC wind interaction models do not produce filamentary structures. Therefore, our criterion for radiative interactions (which depends on the mass loss rate and the terminal velocity of...

  7. On the Magnetic Field Strength of Active Region Filaments

    Kuckein, C; Pillet, V Martinez; Casini, R; Sainz, R Manso; Shimizu, T

    2009-01-01

    We study the vector magnetic field of a filament observed over a compact Active Region Neutral Line. Spectropolarimetric data acquired with TIP-II (VTT, Tenerife, Spain) of the 10830 \\AA spectral region provide full Stokes vectors which were analyzed using three different methods: magnetograph analysis, Milne-Eddington inversions and PCA-based atomic polarization inversions. The inferred magnetic field strengths in the filament are of the order of 600 - 700 G by all these three methods. Longitudinal fields are found in the range of 100 - 200 G whereas the transverse components become dominant, with fields as large as 500 - 600 G. We find strong transverse fields near the Neutral Line also at photospheric levels. Our analysis indicates that strong (higher than 500 G, but below kG) transverse magnetic fields are present in Active Region filaments. This corresponds to the highest field strengths reliably measured in these structures. The profiles of the Helium 10830 \\AA lines observed in this Active Region filam...

  8. Detecting multi-scale filaments in galaxy distribution

    Tempel, Elmo

    2014-05-01

    The main feature of the spatial large-scale galaxy distribution is its intricate network of galaxy filaments. This network is spanned by the galaxy locations that can be interpreted as a three-dimensional point distribution. The global properties of the point process can be measured by different statistical methods, which, however, do not describe directly the structure elements. The morphology of the large-scale structure, on the other hand, is an important property of the galaxy distribution. Here, we apply an object point process with interactions (the Bisous model) to trace and extract the filamentary network in the presently largest galaxy redshift survey, the Sloan Digital Sky Survey (SDSS data release 10). We search for multi-scale filaments in the galaxy distribution that have a radius of about 0.5, 1.0, 2.0, and 4.0 h -1 Mpc. We extract the spines of the filamentary network and divide the detected network into single filaments.

  9. On filament L1482 in the California molecular cloud

    Li, Da Lei; Zhou, Jian Jun; Lou, Yu Qing; Wu, Gang; Di Tang, Xin; He, Yu Xin

    2014-01-01

    Aims. The process of gravitational fragmentation in the L1482 molecular filament of the California Molecular Cloud is studied by combining several complementary observations and physical estimates. We investigate the kinematic and dynamical states of this molecular filament and physical properties of several dozens of dense molecular clumps embedded therein. Methods. We present and compare molecular line emission observations of the J=2--1 and J=3--2 transitions of 12CO in this molecular complex, using the KOSMA 3-meter telescope. These observations are complemented with archival data observations and analyses of the 13CO J=1--0 emission obtained at the Purple Mountain Observatory 13.7-meter radio telescope at Delingha Station in QingHai Province of west China, as well as infrared emission maps from the Herschel Space Telescope online archive, obtained with the SPIRE and PACS cameras. Comparison of these complementary datasets allow for a comprehensive multi-wavelength analysis of the L1482 molecular filament...

  10. Hydrodynamic interactions of sheets vs filaments: Synchronization, attraction, and alignment

    Olson, Sarah D.; Fauci, Lisa J.

    2015-12-01

    The synchronization of nearby sperm flagella as they swim in a viscous fluid was observed nearly a century ago. In the early 1950s, in an effort to shed light on this intriguing phenomenon, Taylor initiated the mathematical analysis of the fluid dynamics of microorganism motility. Since then, models have investigated sperm hydrodynamics where the flagellum is treated as a waving sheet (2D) or as a slender waving filament (3D). Here, we study the interactions of two finite length, flexible filaments confined to a plane in a 3D fluid and compare these to the interactions of the analogous pair of finite, flexible sheets in a 2D fluid. Within our computational framework using regularized Stokeslets, this comparison is easily achieved by choosing either the 2D or 3D regularized kernel to compute fluid velocities induced by the actuated structures. We find, as expected, that two flagella swimming with a symmetric beatform will synchronize (phase-lock) on a fast time scale and attract towards each other on a longer time scale in both 2D and 3D. For a symmetric beatform, synchronization occurs faster in 2D than 3D for sufficiently stiff swimmers. In 3D, a greater enhancement in efficiency and swimming velocity is observed for attracted swimmers relative to the 2D case. We also demonstrate the tendency of two asymmetrically beating filaments in a 3D fluid to align — in tandem — exhibiting an efficiency boost for the duration of their sustained alignment.

  11. Detection of an optical filament in the Monogem Ring

    Weinberger, R; Stecklum, B

    2005-01-01

    The Monogem Ring is a huge bright soft X-ray enhancement with a diameter of ~ 25$\\degr$. This 0.3 kpc distant structure is a peculiar Galactic supernova remnant in that it is obviously visible only in X-rays, due to its expansion into a region of extremely low ambient density: hence, practically no optical emission or a neutral HI shell was expected to be detectable. - Here we report on the discovery of a very faint arc-like nebula on a POSS II R film copy, at the south-eastern borders of the MR. Spectroscopy revealed this filament to have a very large [SII]$\\lambda$ 6716+6731/Halpha ratio of up to ~ 1.8, indicating shock excitation, and a low density of N_e <100 cm^{-3}. There is no hint of [OIII] emission in the spectra. On deep wide-field direct images in Halpha and in [SII] the nebula appears as a ~ 20 arcmin long, thin (~ 1 arcmin), structured filament, stretching N-S. We believe that this filament belongs to the MR and became visible due to the interaction of the expanding remnant with a mild density...

  12. Development of controller strategies for a robotized filament winding equipment

    Lobo, Edgar; Machado, José; Mendonça, João P.

    2013-10-01

    The composites reinforced with continuous fibers of polymeric material are increasingly used in applications where it is essential to reduce weight, mainly due to their high ratio of strength/weight and rigidity/weight. A conventional application are pressure vessels, used for storing liquids or gases subjected to low or high pressure, where the tape continuous fiber-reinforced polymeric matrix material is wound around a mandrel defining the final geometry. In this context the filament winding process is a very attractive process for the production of composite components. For optimal structural performance, and greater weight saving, an optimal path should be adopted, resulting only in axial tension in the longitudinal direction (slip). Such path is the geodesic winding and diverse equipment may be used to guarantee the process automation of the winding. This work herein presented is focused on the study and development of the controller program for a robotized filament winding equipment, taking into account customization of possible trajectories controlling filament winding. The automation of the custom path according to user needs increases exponentially the capabilities, where the use of a robotized solution increases process flexibility and repeatability.

  13. Evidence for an intermediate in tau filament formation.

    Chirita, Carmen N; Kuret, Jeff

    2004-02-17

    Alzheimer's disease is defined in part by the intraneuronal accumulation of filaments comprised of the microtubule-associated protein tau. In vitro, fibrillization of full-length, unphosphorylated recombinant tau can be induced under near-physiological conditions by treatment with various agents, including anionic surfactants. Here we examine the pathway through which anionic surfactants promote tau fibrillization using a combination of electron microscopy and fluorescence spectroscopy. Protein and surfactant first interacted in solution to form micelles, which then provided negatively charged surfaces that accumulated tau aggregates. Surface aggregation of tau protein was followed by the time-dependent appearance of a thioflavin S reactive intermediate that accumulated over a period of hours. The intermediate was unstable in the absence of anionic surfaces, suggesting it was not filamentous. Fibrillization proceeded after intermediate formation with classic nucleation-dependent kinetics, consisting of lag phase followed by the exponential increase in filament lengths, followed by an equilibrium phase reached in approximately 24 h. The pathway did not require protein insertion into the micelle hydrophobic core or conformational change arising from mixed micelle formation, because anionic microspheres constructed from impermeable polystyrene were capable of qualitatively reproducing all aspects of the fibrillization reaction. It is proposed that the progression from amorphous aggregation through intermediate formation and fibrillization may underlie the activity of other inducers such as hyperphosphorylation and may be operative in vivo. PMID:14769048

  14. Swimming speeds of filaments in viscous fluids with resistance

    Ho, Nguyenho; Olson, Sarah D.; Leiderman, Karin

    2016-04-01

    Many microorganisms swim in a highly heterogeneous environment with obstacles such as fibers or polymers. To better understand how this environment affects microorganism swimming, we study propulsion of a cylinder or filament in a fluid with a sparse, stationary network of obstructions modeled by the Brinkman equation. The mathematical analysis of swimming speeds is investigated by studying an infinite-length cylinder propagating lateral or spiral displacement waves. For fixed bending kinematics, we find that swimming speeds are enhanced due to the added resistance from the fibers. In addition, we examine the work and the torque exerted on the cylinder in relation to the resistance. The solutions for the torque, swimming speed, and work of an infinite-length cylinder in a Stokesian fluid are recovered as the resistance is reduced to zero. Finally, we compare the asymptotic solutions with numerical results for the Brinkman flow with regularized forces. The swimming speed of a finite-length filament decreases as its length decreases and planar bending induces an angular velocity that increases linearly with added resistance. The comparisons between the asymptotic analysis and computation give insight on the effect of the length of the filament, the permeability, and the thickness of the cylinder in terms of the overall performance of planar and helical swimmers.

  15. Towards tradable permits for filamentous green algae pollution.

    de Lange, W J; Botha, A M; Oberholster, P J

    2016-09-01

    Water pollution permit systems are challenging to design and implement. Operational systems that has maintained functionality remains few and far between, particularly in developing countries. We present current progress towards developing such a system for nutrient enrichment based water pollution, mainly from commercial agriculture. We applied a production function approach to first estimate the monetary value of the impact of the pollution, which is then used as reference point for establishing a reserve price for pollution permits. The subsequent market making process is explained according to five steps including permit design, terms, conditions and transactional protocol, the monitoring system, piloting and implementation. The monetary value of the impact of pollution was estimated at R1887 per hectare per year, which not only provide a "management budget" for filamentous green algae mitigation strategies in the study area, but also enabled the calculation of a reserve price for filamentous green algae pollution permits, which was estimated between R2.25 and R111 per gram filamentous algae and R8.99 per gram at the preferred state. PMID:27155255

  16. Plant Virus Metagenomics: Advances in Virus Discovery.

    Roossinck, Marilyn J; Martin, Darren P; Roumagnac, Philippe

    2015-06-01

    In recent years plant viruses have been detected from many environments, including domestic and wild plants and interfaces between these systems-aquatic sources, feces of various animals, and insects. A variety of methods have been employed to study plant virus biodiversity, including enrichment for virus-like particles or virus-specific RNA or DNA, or the extraction of total nucleic acids, followed by next-generation deep sequencing and bioinformatic analyses. All of the methods have some shortcomings, but taken together these studies reveal our surprising lack of knowledge about plant viruses and point to the need for more comprehensive studies. In addition, many new viruses have been discovered, with most virus infections in wild plants appearing asymptomatic, suggesting that virus disease may be a byproduct of domestication. For plant pathologists these studies are providing useful tools to detect viruses, and perhaps to predict future problems that could threaten cultivated plants. PMID:26056847

  17. In vitro assembly of homopolymer and copolymer filaments from intermediate filament subunits of muscle and fibroblastic cells.

    Steinert, P M; Idler, W W; Cabral, F; Gottesman, M M; Goldman, R D

    1981-01-01

    This paper presents evidence that the intermediate filament (IF) subunits of muscle cells (skeletin or desmin) and fibroblastic cells (decamin or vimentin) separately form homopolymer IF in vitro and, when mixed, prefer to form copolymer IF in vitro. Because they coexist in cells, they may also form copolymers in vivo. The IFs of baby hamster kidney fibroblasts (BHK-21) consist of a major subunit, decamin, and two minor subunits which, on the basis of two-dimensional gel and peptide mapping c...

  18. Simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament induced by a single shock wave

    We present the first stereoscopic and Doppler observations of simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament launched by a single shock wave. Using Hα Doppler observations, we derive the three-dimensional oscillation velocities at different heights along the prominence axis. The results indicate that the prominence has a larger oscillation amplitude and damping time at higher altitude, but the periods at different heights are the same (i.e., 13.5 minutes). This suggests that the prominence oscillates like a linear vertical rigid body with one end anchored on the Sun. One of the filaments shows weak transverse oscillation after the passing of the shock, which is possibly due to the low altitude of the filament and the weakening (due to reflection) of the shock wave before the interaction. Large-amplitude longitudinal oscillation is observed in the other filament after the passing of the shock wave. The velocity amplitude and period are about 26.8 km s–1 and 80.3 minutes, respectively. We propose that the orientation of a filament or prominence relative to the normal vector of the incoming shock should be an important factor for launching transverse or longitudinal filament oscillations. In addition, the restoring forces of the transverse prominence are most likely due to the coupling of gravity and magnetic tension of the supporting magnetic field, while that for the longitudinal filament oscillation is probably the resultant force of gravity and magnetic pressure.

  19. Simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament induced by a single shock wave

    Shen, Yuandeng [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Liu, Ying D. [State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Chen, P. F. [Key Laboratory of Modern Astronomy and Astrophysics, School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Ichimoto, Kiyoshi, E-mail: ydshen@ynao.ac.cn [Kwasan and Hida Observatories, Kyoto University, Yamashina-ku, Kyoto 607-8471 (Japan)

    2014-11-10

    We present the first stereoscopic and Doppler observations of simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament launched by a single shock wave. Using Hα Doppler observations, we derive the three-dimensional oscillation velocities at different heights along the prominence axis. The results indicate that the prominence has a larger oscillation amplitude and damping time at higher altitude, but the periods at different heights are the same (i.e., 13.5 minutes). This suggests that the prominence oscillates like a linear vertical rigid body with one end anchored on the Sun. One of the filaments shows weak transverse oscillation after the passing of the shock, which is possibly due to the low altitude of the filament and the weakening (due to reflection) of the shock wave before the interaction. Large-amplitude longitudinal oscillation is observed in the other filament after the passing of the shock wave. The velocity amplitude and period are about 26.8 km s{sup –1} and 80.3 minutes, respectively. We propose that the orientation of a filament or prominence relative to the normal vector of the incoming shock should be an important factor for launching transverse or longitudinal filament oscillations. In addition, the restoring forces of the transverse prominence are most likely due to the coupling of gravity and magnetic tension of the supporting magnetic field, while that for the longitudinal filament oscillation is probably the resultant force of gravity and magnetic pressure.

  20. Zika Virus.

    Musso, Didier; Gubler, Duane J

    2016-07-01

    Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) in the genus Flavivirus and the family Flaviviridae. ZIKV was first isolated from a nonhuman primate in 1947 and from mosquitoes in 1948 in Africa, and ZIKV infections in humans were sporadic for half a century before emerging in the Pacific and the Americas. ZIKV is usually transmitted by the bite of infected mosquitoes. The clinical presentation of Zika fever is nonspecific and can be misdiagnosed as other infectious diseases, especially those due to arboviruses such as dengue and chikungunya. ZIKV infection was associated with only mild illness prior to the large French Polynesian outbreak in 2013 and 2014, when severe neurological complications were reported, and the emergence in Brazil of a dramatic increase in severe congenital malformations (microcephaly) suspected to be associated with ZIKV. Laboratory diagnosis of Zika fever relies on virus isolation or detection of ZIKV-specific RNA. Serological diagnosis is complicated by cross-reactivity among members of the Flavivirus genus. The adaptation of ZIKV to an urban cycle involving humans and domestic mosquito vectors in tropical areas where dengue is endemic suggests that the incidence of ZIKV infections may be underestimated. There is a high potential for ZIKV emergence in urban centers in the tropics that are infested with competent mosquito vectors such as Aedes aegypti and Aedes albopictus. PMID:27029595

  1. Pore-linked filaments in anura spermatocyte nuclei

    Maria Luiza Beçak

    2007-03-01

    Full Text Available Pore-linked filaments were visualized in spreads of anuran spermatocyte nuclei using transmission electron microscope. We used Odontophrynus diplo and tetraploid species having the tetraploid frogs reduced metabolic activities. The filaments with 20-40 nm width are connected to a ring component of the nuclear pore complex with 90-120 nm and extend up to 1µm (or more into the nucleus. The filaments are curved and connect single or neighboring pores. The intranuclear filaments are associated with chromatin fibers and related to RNP particles of 20-25 nm and spheroidal structures of 0.5µm, with variations. The aggregates of several neighboring pores with the filaments are more commonly observed in 4n nuclei. We concluded that the intranuclear filaments may correspond to the fibrillar network described in Xenopus oocyte nucleus being probably related to RNA transport. The molecular basis of this RNA remains elusive. Nevertheless, the morphological aspects of the spheroidal structures indicate they could correspond to nucleolar chromatin or to nucleolus-derived structures. We also speculate whether the complex aggregates of neighboring pores with intranuclear filaments may correspond to pore clustering previously described in these tetraploid animals using freeze-etching experiments.Filamentos ligados a poros foram visualizados em núcleos de espermatócitos de anuros através da técnica de espalhamento para microscopia eletrônica de transmissão. Os animais usados pertencem ao gênero Odontophrynus com espécies cripticas diplo e tetraplóides naturais, tendo os tetraplóides atividade metabólica reduzida. Os filamentos com 20-40 nm de largura são ligados a um anel componente do complexo poro nuclear de 90-120 nm e estendem-se até 1 µm (ou mais para dentro do núcleo. Os filamentos são curvos e ligam poros simples ou poros vizinhos. Os filamentos intranucleares são associados a fibras de cromatina e relacionados a partículas de RNP de 20

  2. Computer Viruses: An Overview.

    Marmion, Dan

    1990-01-01

    Discusses the early history and current proliferation of computer viruses that occur on Macintosh and DOS personal computers, mentions virus detection programs, and offers suggestions for how libraries can protect themselves and their users from damage by computer viruses. (LRW)

  3. Mass spectrometry based proteomic studies on viruses and hosts - A review

    Graphical abstract: a) In the background, scanning electron micrograph of RSV infected cells reveals viral filaments budding from the surface of virus infected cells. b) Inserted at the top, MS spectrum represents the characterization of the digested RSV virus particles. c) Inserted at the bottom, RSV infected cells were imaged using immunofluorescence microscopy: red represents virus filaments; green is HSP90; yellow staining represents co-localization of both antigens within the virus filaments. Highlights: → The current proteomic researches on viruses and hosts are described. → TAP, IP, SILAC, ICAT, and iTRAQ facilitate sample enrichment and quantification. → Clinically important viruses are discussed on their interactions with hosts. → Functional validation is essential to confirm the roles of the identified proteins. - Abstract: In terms of proteomic research in the 21st century, the realm of virology is still regarded as an enormous challenge mainly brought by three aspects, namely, studying on the complex proteome of the virus with unexpected variations, developing more accurate analytical techniques as well as understanding viral pathogenesis and virus-host interaction dynamics. Progresses in these areas will be helpful to vaccine design and antiviral drugs discovery. Mass spectrometry based proteomics have shown exceptional display of capabilities, not only precisely identifying viral and cellular proteins that are functionally, structurally, and dynamically changed upon virus infection, but also enabling us to detect important pathway proteins. In addition, many isolation and purification techniques and quantitative strategies in conjunction with MS can significantly improve the sensitivity of mass spectrometry for detecting low-abundant proteins, replenishing the stock of virus proteome and enlarging the protein-protein interaction maps. Nevertheless, only a small proportion of the infectious viruses in both of animal and plant have been studied

  4. Mass spectrometry based proteomic studies on viruses and hosts - A review

    Zheng Jie [Division of Chemical Biology and Biotechnology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Sugrue, Richard J. [Division of Molecular and Cell Biology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore); Tang Kai, E-mail: ktang@pmail.ntu.edu.sg [Division of Chemical Biology and Biotechnology, School of Biological Science, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551 (Singapore)

    2011-09-30

    Graphical abstract: a) In the background, scanning electron micrograph of RSV infected cells reveals viral filaments budding from the surface of virus infected cells. b) Inserted at the top, MS spectrum represents the characterization of the digested RSV virus particles. c) Inserted at the bottom, RSV infected cells were imaged using immunofluorescence microscopy: red represents virus filaments; green is HSP90; yellow staining represents co-localization of both antigens within the virus filaments. Highlights: {yields} The current proteomic researches on viruses and hosts are described. {yields} TAP, IP, SILAC, ICAT, and iTRAQ facilitate sample enrichment and quantification. {yields} Clinically important viruses are discussed on their interactions with hosts. {yields} Functional validation is essential to confirm the roles of the identified proteins. - Abstract: In terms of proteomic research in the 21st century, the realm of virology is still regarded as an enormous challenge mainly brought by three aspects, namely, studying on the complex proteome of the virus with unexpected variations, developing more accurate analytical techniques as well as understanding viral pathogenesis and virus-host interaction dynamics. Progresses in these areas will be helpful to vaccine design and antiviral drugs discovery. Mass spectrometry based proteomics have shown exceptional display of capabilities, not only precisely identifying viral and cellular proteins that are functionally, structurally, and dynamically changed upon virus infection, but also enabling us to detect important pathway proteins. In addition, many isolation and purification techniques and quantitative strategies in conjunction with MS can significantly improve the sensitivity of mass spectrometry for detecting low-abundant proteins, replenishing the stock of virus proteome and enlarging the protein-protein interaction maps. Nevertheless, only a small proportion of the infectious viruses in both of animal and

  5. Tetrahedral collapse: a rotational toy model of simultaneous dark-matter halo, filament and wall formation

    Neyrinck, Mark C.

    2016-07-01

    We discuss an idealized model of halo formation, in which a collapsing halo node is tetrahedral, with a filament extruding from each of its four faces, and with a wall connecting each pair of filaments. In the model, filaments generally spin when they form, and the halo spins if and only if there is some rotation in filaments. This is the simplest possible fully three-dimensional halo collapse in the `origami approximation', in which voids are irrotational, and the dark-matter sheet out of which dark-matter structures form is allowed to fold in position-velocity phase space, but not stretch (i.e. it cannot vary in density along a stream). Up to an overall scaling, the four filament directions, and only three other quantities, such as filament spins, suffice to determine all of the collapse's properties: the shape, mass, and spin of the halo; the densities per unit length and spins of all filaments; and masses per unit area of the walls. If the filaments are arranged regular-tetrahedrally, filament properties obey simple laws, reminiscent of angular-momentum conservation. The model may be most useful in understanding spin correlations between neighbouring galaxies joined by filaments; these correlations would give intrinsic alignments between galaxies, essential to understand for accurate cosmological weak-lensing measurements.

  6. A Molecular Perspective of Inter-filament Bonding in Fused Deposition Modeling 3-D Printing

    Duranty, Edward; Spradlin, Brandon; Dadmun, Mark

    2015-03-01

    Fused deposition 3D printing is an important tool for low-cost and rapid prototyping of objects with complex geometries. 3D printed materials are composed of many filaments deposited on a heated substrate, requiring the bonding of neighboring filaments during the deposition process. Filament deposition often creates voids between filaments, which requires necking between them to create a robust sample. Therefore the amount of interfacial contact and interdiffusion between filaments become important parameters that control the macroscopic physical properties of the printed prototype. Our research focuses on quantifying the interfacial adhesion between ABS filaments and its impact on structural properties. The time evolution of the temperature profile near the heated substrate demonstrates that the deposited filaments are repeatedly heated above the Tg of ABS allowing interpenetration of the polymer chains between adjacent filaments. Results of DMA experiments on samples of different geometries have been correlated to microphotography that monitors the degree of necking between filaments and the thermal history. Results indicate that interfacial contact area between filaments and increased thermal energy are crucial to their mechanical properties.

  7. Drag reduction over dolphin skin via the pondermotive forcing of vortex filaments

    Lisi, Antony Garrett

    1999-11-01

    The skin of Tursiops Truncatus is corrugated with small, quasi-periodic ridges running circumferentially about the torso. These ridges extend into the turbulent boundary layer and affect the evolution of coherent structures. The development and evolution of coherent structures over a surface is described by the formation and dynamics of vortex filaments. The dynamics of these filaments over a flat, non-ridged surface is determined analytically, as well as through numerical simulation, and found to agree with the observations of coherent structures in the turbulent boundary layer. The calculation of the linearized dynamics of the vortex filament, successful for the dynamics of a filament over a flat surface, is extended and applied to a vortex filament propagating over a periodically ridged surface. The surface ridges induce a rapid parametric forcing of the vortex filament, and alter the filament dynamics significantly. A consideration of the contribution of vortex filament induced flow to energy transport indicates that the behavior of the filament induced by the ridges can directly reduce surface drag by up to 8%. The size, shape, and distribution of cutaneous ridges for Tursiops Truncatus is found to be optimally configured to affect the filament dynamics and reduce surface drag for swimming velocities consistent with observation.

  8. STUDYING INTERCLUSTER GALAXY FILAMENTS THROUGH STACKING gmBCG GALAXY CLUSTER PAIRS

    We present a method to study the photometric properties of galaxies in filaments by stacking the galaxy populations between pairs of galaxy clusters. Using Sloan Digital Sky Survey data, this method can detect the intercluster filament galaxy overdensity with a significance of ∼5σ out to z = 0.40. Using this approach, we study the g – r color and luminosity distribution of filament galaxies as a function of redshift. Consistent with expectation, filament galaxies are bimodal in their color distribution and contain a larger blue galaxy population than clusters. Filament galaxies are also generally fainter than cluster galaxies. More interestingly, the observed filament population seems to show redshift evolution at 0.12 < z < 0.40: the blue galaxy fraction has a trend to increase at higher redshift; such evolution is parallel to the ''Butcher-Oemler effect'' of galaxy clusters. We test the dependence of the observed filament density on the richness of the cluster pair: richer clusters are connected by higher density filaments. We also test the spatial dependence of filament galaxy overdensity: this quantity decreases when moving away from the intercluster axis between a cluster pair. This method provides an economical way to probe the photometric properties of filament galaxies and should prove useful for upcoming projects like the Dark Energy Survey

  9. Chaperonin filaments : their formation and an evaluation of methods for studying them.

    Yaoi, T.; Kagawa, K. H.; Trent, J. D.; Center for Mechanistic Biology and Biotechnology

    1998-08-01

    Chaperonins are multisubunit protein complexes that can be isolated from cells as high-molecular-weight structures that appear as double rings in the electron microscope. We recently discovered that chaperonin double rings isolated from the hyperthermophilic archaeon Sulfolobus shibatae, when incubated at physiological temperatures in the presence of ATP and Mg{sup 2+}, stacked into filaments; we hypothesized that these filaments are related to filaments seen inside S. shibatae cells and that chaperonins exist as filaments in vivo. This paper elucidates the conditions under which we have observed S. shibatae chaperonins to form filaments and evaluates native polyacrylamide gel electrophoresis (PAGE), TEM, spectrophotometry, and centrifugation as methods for studying these filaments. We observed that in the presence of Mg{sup 2+} combined with ATP, ADP, ATP{gamma}S, or GTP, native PAGE indicated that chaperonin subunits assembled into double rings and that the conformation of these double rings was effected by nucleotide binding, but we saw no indication of chaperonin filament formation. Under these same conditions, however, TEM, spectroscopy, and centrifugation methods indicated that chaperonin subunits and double rings had assembled into filaments. We determined that this discrepancy in the representation of the chaperonin structure was due to the native PAGE method itself. When we exposed chaperonin filaments to the electrophoretic field used in native PAGE, the filaments dissociated into double rings. This suggests that TEM, spectrophotometry, and centrifugation are the preferred methods for studying the higher-order structures of chaperonins, which are likely to be of biological significance.

  10. On the universality of interstellar filaments: theory meets simulations and observations

    Federrath, Christoph

    2016-03-01

    Filaments are ubiquitous in the Universe. Recent observations have revealed that stars and star clusters form preferentially along dense filaments. Understanding the formation and properties of filaments is therefore a crucial step in understanding star formation. Here we perform 3D high-resolution magnetohydrodynamical simulations that follow the evolution of molecular clouds and the formation of filaments and stars. We apply a filament detection algorithm and compare simulations with different combinations of physical ingredients: gravity, turbulence, magnetic fields and jet/outflow feedback. We find that gravity-only simulations produce significantly narrower filament profiles than observed, while simulations that include turbulence produce realistic filament properties. For these turbulence simulations, we find a remarkably universal filament width of 0.10 ± 0.02 pc, which is independent of the star formation history of the clouds. We derive a theoretical model that provides a physical explanation for this characteristic filament width, based on the sonic scale (λsonic) of molecular cloud turbulence. Our derivation provides λsonic as a function of the cloud diameter L, the velocity dispersion σv, the gas sound speed cs, and the ratio of thermal to magnetic pressure, plasma β. For typical cloud conditions in the Milky Way spiral arms, we find λsonic = 0.04-0.16 pc, in excellent agreement with the filament width of 0.05-0.15 pc from observations. Consistent with the theoretical model assumptions, we find that the velocity dispersion inside the filaments is subsonic and supersonic outside. We further explain the observed p = 2 scaling of the filament density profile, ρ ∝ r-p with the collision of two planar shocks forming a filament at their intersection.

  11. Confined partial filament eruption and its reformation within a stable magnetic flux rope

    Joshi, Navin Chandra; Kayshap, Pradeep; Uddin, Wahab [Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak, Nainital 263 002, Uttarakhand (India); Srivastava, Abhishek K.; Dwivedi, B. N. [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India); Filippov, Boris [Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, Troitsk, Moscow (Russian Federation); Chandra, Ramesh [Department of Physics, D.S.B. Campus, Kumaun University, Nainital 263 002, Uttarakhand (India); Choudhary, Debi Prasad, E-mail: navin@aries.res.in, E-mail: njoshi98@gmail.com [California State University Northridge, 18111 Nordhoff Street, Northridge, CA 91330 (United States)

    2014-05-20

    We present observations of a confined partial eruption of a filament on 2012 August 4, which restores its initial shape within ≈2 hr after eruption. From the Global Oscillation Network Group Hα observations, we find that the filament plasma turns into dynamic motion at around 11:20 UT from the middle part of the filament toward the northwest direction with an average speed of ≈105 km s{sup –1}. A little brightening underneath the filament possibly shows the signature of low-altitude reconnection below the filament eruptive part. In Solar Dynamics Observatory/Atmospheric Imaging Assembly 171 Å images, we observe an activation of right-handed helically twisted magnetic flux rope that contains the filament material and confines it during its dynamical motion. The motion of cool filament plasma stops after traveling a distance of ≈215 Mm toward the northwest from the point of eruption. The plasma moves partly toward the right foot point of the flux rope, while most of the plasma returns after 12:20 UT toward the left foot point with an average speed of ≈60 km s{sup –1} to reform the filament within the same stable magnetic structure. On the basis of the filament internal fine structure and its position relative to the photospheric magnetic fields, we find filament chirality to be sinistral, while the activated enveloping flux rope shows a clear right-handed twist. Thus, this dynamic event is an apparent example of one-to-one correspondence between the filament chirality (sinistral) and the enveloping flux rope helicity (positive). From the coronal magnetic field decay index, n, calculation near the flux rope axis, it is evident that the whole filament axis lies within the domain of stability (i.e., n < 1), which provides the filament stability despite strong disturbances at its eastern foot point.

  12. Viruses Infecting Reptiles

    Marschang, Rachel E.

    2011-01-01

    A large number of viruses have been described in many different reptiles. These viruses include arboviruses that primarily infect mammals or birds as well as viruses that are specific for reptiles. Interest in arboviruses infecting reptiles has mainly focused on the role reptiles may play in the epidemiology of these viruses, especially over winter. Interest in reptile specific viruses has concentrated on both their importance for reptile medicine as well as virus taxonomy and evolution. The ...

  13. Oncogenic viruses and cancer

    Guangxiang; George; Luo; Jing-hsiung; James; Ou

    2015-01-01

    <正>This special issue of the journal is dedicated to the important topic of oncogenic viruses and cancer.It contains seven review articles covering all known oncogenic viruses except for human T-lymphotropic virus type1(HTLV-1).These review articles are contributed by experts on specific viruses and their associated human cancers.Viruses account for about 20%of total human cancer cases.Although many viruses can cause various tumors in animals,only seven of them

  14. Virus Movement Maintains Local Virus Population Diversity

    J. Snyder; B. Wiedenheft; M. Lavin; F. Roberto; J. Spuhler; A. Ortmann; T. Douglas; M. Young

    2007-11-01

    Viruses are the largest reservoir of genetic material on the planet, yet little is known about the population dynamics of any virus within its natural environment. Over a 2-year period, we monitored the diversity of two archaeal viruses found in hot springs within Yellowstone National Park (YNP). Both temporal phylogeny and neutral biodiversity models reveal that virus diversity in these local environments is not being maintained by mutation but rather by high rates of immigration from a globally distributed metacommunity. These results indicate that geographically isolated hot springs are readily able to exchange viruses. The importance of virus movement is supported by the detection of virus particles in air samples collected over YNP hot springs and by their detection in metacommunity sequencing projects conducted in the Sargasso Sea. Rapid rates of virus movement are not expected to be unique to these archaeal viruses but rather a common feature among virus metacommunities. The finding that virus immigration rather than mutation can dominate community structure has significant implications for understanding virus circulation and the role that viruses play in ecology and evolution by providing a reservoir of mobile genetic material.

  15. Onset of a Solar Filament Eruption Without a Slow-Rise Phase

    Knox, J. M.; Sterling, A.; Falconer, D. A.; Moore, R. L.

    2013-01-01

    We observe a filament eruption of 23 Jan 2012 using Atmospheric Imaging Array (AIA) data from the Solar Dynamics Observatory (SDO) satellite. Relatively cool emissions (193 Ang. channel) show a filament with a rise-toward-eruption trajectory that is relatively smooth, without a distinct, linearly-increasing "slow rise" followed by an abrupt "fast rise," as is often seen in other events. Detailed investigations of some of those two-phase events suggested that they were triggered by magnetic flux cancellation. Here however, observations of hotter emissions (335 Ang. channel) show an adjacent eruption, invisible in 193 Ang., occurred just prior to the filament's eruption start. We surmise that the hotter eruption destabilized the 193 Ang. filament, triggering its eruption onset. In this way, the filament's smooth eruption trajectory is indicative of a non-tether-cutting eruption-onset mechanism for the filament.

  16. The thermal, arched filaments of the radio arc near the Galactic center - magnetohydrodynamic-induced ionization?

    This paper presents a detailed observational study of the most prominent thermal component of the radio Arc located near the Galactic center, the 'arched filaments'. Images produced from data gathered at 6 and 20 cm reveal that the arched filaments have a wispy, flocculent character that is quite different from the uniform, continuous, and almost straight filaments of the nonthermal portion of the Arc. The two systems of filaments show clear signs of interaction at their intersection. There is no evidence from the radio maps that the arched filaments are linked to the Galactic nucleus. Various ideas for the ionization mechanism of the arched filaments are considered. It is suggested that the ionization is caused by a magnetohydrodynamic interaction between a molecular cloud with a large peculiar velocity and an ambient poloidal magnetic field of milligauss strength. 50 refs

  17. The thermal, arched filaments of the radio arc near the Galactic center - magnetohydrodynamic-induced ionization

    Morris, M.; Yusef-Zadeh, F. (California Univ., Los Angeles (USA); Northwestern Univ., Evanston, IL (USA))

    1989-08-01

    This paper presents a detailed observational study of the most prominent thermal component of the radio Arc located near the Galactic center, the 'arched filaments'. Images produced from data gathered at 6 and 20 cm reveal that the arched filaments have a wispy, flocculent character that is quite different from the uniform, continuous, and almost straight filaments of the nonthermal portion of the Arc. The two systems of filaments show clear signs of interaction at their intersection. There is no evidence from the radio maps that the arched filaments are linked to the Galactic nucleus. Various ideas for the ionization mechanism of the arched filaments are considered. It is suggested that the ionization is caused by a magnetohydrodynamic interaction between a molecular cloud with a large peculiar velocity and an ambient poloidal magnetic field of milligauss strength. 50 refs.

  18. Anomalous low field magnetization in fine filament NbTi conductors

    The first cable conductors for SSC were made with NbTi filaments whose diameters were in the 18 to 23 micron range. In an effort to reduce the magnetization effects in accelerator dipoles resulting from these large filaments, second generation conductors are now being manufactured with much smaller filaments. As part of this development a series of NbTi conductors were made with filament diameters ranging from 8.0 to 2.8 μm and having an average interfilament spacing of approximately 12% of filament diameter. Measurements at 4.3 K show that as the filament spacing decreases below a certain critical value the low field magnetization increases rapidly. This increase is seen to be strong function of interfilament distance, magnetic field and temperature. Details of these measurements and its implication for practical high current SSC wire design are discussed

  19. Powering of cool filaments in cluster cores by buoyant bubbles - I. Qualitative model

    Churazov, E.; Ruszkowski, M.; Schekochihin, A.

    2013-11-01

    Cool-core clusters (e.g. Perseus or M87) often possess a network of bright gaseous filaments, observed in radio, infrared, optical and X-ray bands. We propose that these filaments are powered by the reconnection of the magnetic field in the wakes of buoyant bubbles. Active galactic nucleus (AGN)-inflated bubbles of relativistic plasma rise buoyantly in the cluster atmosphere, stretching and amplifying the field in the wake to values of β = 8πPgas/B2 ˜ 1. The field lines in the wake have opposite directions and are forced together as the bubble motion stretches the filament. This setup bears strong similarity to the coronal loops on the Sun or to the Earth's magnetotail. The reconnection process naturally explains both the required level of local dissipation rate in filaments and the overall luminosity of filaments. The original source of power for the filaments is the potential energy of buoyant bubbles, inflated by the central AGN.

  20. Powering of cool filaments in cluster cores by buoyant bubbles. I. Qualitative model

    Churazov, E; Schekochihin, A

    2013-01-01

    Cool-core clusters (e.g., Perseus or M87) often possess a network of bright gaseous filaments, observed in radio, IR, optical and X-ray bands. We propose that these filaments are powered by the reconnection of the magnetic field in the wakes of buoyant bubbles. AGN-inflated bubbles of relativistic plasma rise buoyantly in the cluster atmosphere, stretching and amplifying the field in the wake to values of $\\beta =8\\pi P_{gas}/B^2\\sim 1$. The field lines in the wake have opposite directions and are forced together as the bubble motion stretches the filament. This setup bears strong similarity to the coronal loops on the Sun or the Earth magneto-tail. The reconnection process naturally explains both the required level of local dissipation rate in filaments and the overall luminosity of filaments. The original source of power for the filaments is the potential energy of buoyant bubbles, inflated by the central AGN.

  1. Study of filamentation dynamics of ultrashort laser radiation in air: beam diameter effect

    A single filamentation of femtosecond gigawatt laser radiation with a millimeter-size aperture upon collimated and sharply focused propagation in atmospheric air at 800 nm and 400 nm wavelengths is studied both theoretically and experimentally. The influence of beam initial radius on the parameters of the forming filament is analyzed. Three filament parameters, namely, start coordinate, filament length, and longitudinal continuity are considered. We report that unlike Marburger’s formula the single filamentation onset reveals marked nonquadratic dependence on the laser beam radius providing the same initial pulse power. Additionally, for sharply focused radiation the minor dependence of the filament length on the laser beam diameter at the constant initial pulse intensity was experimentally revealed. (paper)

  2. Energy saving achieved by limited filamentous bulking sludge under low dissolved oxygen.

    Guo, Jian-Hua; Peng, Yong-Zhen; Peng, Cheng-Yao; Wang, Shu-Ying; Chen, Ying; Huang, Hui-Jun; Sun, Zhi-Rong

    2010-02-01

    Limited filamentous bulking caused by low dissolved oxygen (DO) was proposed to establish a low energy consumption wastewater treatment system. This method for energy saving was derived from two full-scale field observations, which showed pollutants removal would be enhanced and energy consumption could be reduced by at least 10% using limited filamentous bulking. Furthermore, preliminary investigation including the abundance evaluation and the identification of filamentous bacteria demonstrated that the limited filamentous bulking could be repeated steadily in a lab-scale anoxic-oxic reactor fed with domestic wastewater. The sludge loss did not occur in the secondary clarifier, while COD and total nitrogen removal efficiencies were improved by controlling DO for optimal filamentous bacterial population. Suspended solids in effluent were negligible and turbidity was lower than 2 NTU, which were distinctly lower than those under no bulking. Theoretical and experimental results indicated the aeration consumption could be saved by the application of limited filamentous bulking. PMID:19837583

  3. Investigation of carburisation of tungsten-carbide formation by hot-filament CVD technique

    Tungsten filaments were carburised by pyrolitical decomposition of methane and hydrogen over hot filament surface. The carburised filaments were characterized by Raman spectroscopy, X-ray diffraction measurements and scanning electron microscopy. Featureless micro-Raman spectra confirm a formation of tungsten carbide layer after 10-minute carburisation. Strong WC-related peaks in X-ray diffraction spectra are observed for carburisation temperatures of 16000 C and higher. SEM analysis of filaments fracture indicates a creation of WC layer over W filaments, generation of deep micro cracks in WC region and a preferential creation of WC grains in thin surface layer over bulk of carburised filaments in dependence on carburisation time is observed. Presented results indicate that successful carburisation is practically self-stop process after 5 hours. (Authors)

  4. Direct visualization of flow-induced conformational transitions of single actin filaments in entangled solutions

    Kirchenbuechler, Inka; Kurniawan, Nicholas A; Koenderink, Gijsje H; Lettinga, M Paul

    2015-01-01

    While semi-flexible polymers and fibers are an important class of material due to their rich mechanical properties, it remains unclear how these properties relate to the microscopic conformation of the polymers. Actin filaments constitute an ideal model polymer system due to their micron-sized length and relatively high stiffness that allow imaging at the single filament level. Here we study the effect of entanglements on the conformational dynamics of actin filaments in shear flow. We directly measure the full three-dimensional conformation of single actin filaments, using confocal microscopy in combination with a counter-rotating cone-plate shear cell. We show that initially entangled filaments form disentangled orientationally ordered hairpins, confined in the flow-vorticity plane. In addition, shear flow causes stretching and shear alignment of the hairpin tails, while the filament length distribution remains unchanged. These observations explain the strain-softening and shear-thinning behavior of entangl...

  5. Probing the cosmic web: inter-cluster filament detection using gravitational lensing

    Mead, James M G; McCarthy, Ian G

    2009-01-01

    The problem of detecting dark matter filaments in the cosmic web is considered. Weak lensing is an ideal probe of dark matter, and therefore forms the basis of particularly promising detection methods. We consider and develop a number of weak lensing techniques that could be used to detect filaments in individual or stacked cluster fields, and apply them to synthetic lensing data sets in the fields of clusters from the Millennium Simulation. These techniques are multipole moments of the shear and convergence, mass reconstruction, and parameterized fits to filament mass profiles using a Markov Chain Monte Carlo approach. In particular, two new filament detection techniques are explored (multipole shear filters and Markov Chain Monte Carlo mass profile fits), and we outline the quality of data required to be able to identify and quantify filament profiles. We also consider the effects of large scale structure on filament detection. We conclude that using these techniques, there will be realistic prospects of de...

  6. Investigation of silicon contamination of Ta filaments used for thin film silicon deposition

    After extensive utilisation of tantalum (Ta) catalyst filaments for hot wire chemical vapor deposition (HWCVD) of thin silicon films a strong degradation takes place. A high concentration of silicon was found not only on the surface but also in the bulk of the tantalum filament. Visual microscopic investigations, Secondary Ion Mass Spectrometry (SIMS), X-ray Diffraction (XRD) and Energy Dispersive X-ray Analysis (EDX) indicate appearance of various silicides and formation of thick silicon layer (> 50 μm) on the filament surface. The high-power backscattered scanning electron microscopy (SEM BSE) and optical microscopic analysis of the filament cross section reveal a complicated, non-uniform structure of filaments after use. By XRD a recrystallisation of tantalum kernel was detected. The EDX analysis indicates that silicides on the filament surface have the highest concentration of Si

  7. Investigation of the Effect of Resistivity on Scrape Off Layer Filaments using Three Dimensional Simulations

    Easy, Luke; Omotani, John; Walkden, Nick; Dudson, Benjamin

    2015-01-01

    The propagation of filaments in the Scrape Off Layer (SOL) of tokamaks largely determine the plasma profiles in the region. In a conduction limited SOL, parallel temperature gradients are expected, such that the resistance to parallel currents is greater at the target than further upstream. Since the perpendicular motion of an isolated filament is largely determined by balance of currents that flow through it, this may be expected to affect filament transport. 3D simulations have thus been used to study the influence of enhanced parallel resistivity on the dynamics of filaments. Filaments with the smallest perpendicular length scales, which were inertially limited at low resistivity (meaning that polarization rather than parallel currents determine their radial velocities), were unaffected by resistivity. For larger filaments, faster velocities were produced at higher resistivities, due to two mechanisms. Firstly parallel currents were reduced and polarization currents were enhanced, meaning that the inertial...

  8. Thin-Filament Pyrometry Developed for Measuring Temperatures in Flames

    Sunderland, Peter B.

    2004-01-01

    Many valuable advances in combustion science have come from observations of microgravity flames. This research is contributing to the improved efficiency and reduced emissions of practical combustors and is benefiting terrestrial and spacecraft fire safety. Unfortunately, difficulties associated with microgravity have prevented many types of measurements in microgravity flames. In particular, temperature measurements in flames are extremely important but have been limited in microgravity. A novel method of measuring temperatures in microgravity flames is being developed in-house at the National Center for Microgravity Research and the NASA Glenn Research Center and is described here. Called thin-filament pyrometry, it involves using a camera to determine the local gas temperature from the intensity of inserted fibers glowing in a flame. It is demonstrated here to provide accurate measurements of gas temperatures in a flame simultaneously at many locations. The experiment is shown. The flame is a laminar gas jet diffusion flame fueled by methane (CH4) flowing from a 14-mm round burner at a pressure of 1 atm. A coflowing stream of air is used to prevent flame flicker. Nine glowing fibers are visible. These fibers are made of silicon carbide (SiC) and have a diameter of 15 m (for comparison, the average human hair is 75 m in diameter). Because the fibers are so thin, they do little to disturb the flame and their temperature remains close to that of the local gas. The flame and glowing filaments were imaged with a digital black-and-white video camera. This camera has an imaging area of 1000 by 1000 pixels and a wide dynamic range of 12 bits. The resolution of the camera and optics was 0.1 mm. Optical filters were placed in front of the camera to limit incoming light to 750, 850, 950, and 1050 nm. Temperatures were measured in the same flame in the absence of fibers using 50-m Btype thermocouples. These thermocouples provide very accurate temperatures, but they

  9. CLUSTER FORMATION TRIGGERED BY FILAMENT COLLISIONS IN SERPENS SOUTH

    Nakamura, Fumitaka; Kawabe, Ryohei; Shinnaga, Hiroko [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Sugitani, Koji [Graduate School of Natural Sciences, Nagoya City University, Mizuho-ku, Nagoya 467-8501 (Japan); Tanaka, Tomohiro; Kimura, Kimihiko; Tokuda, Kazuki; Kozu, Minato; Okada, Nozomi; Hasegawa, Yutaka; Ogawa, Hideo [Department of Physical Science, Osaka Prefecture University, Gakuen 1-1, Sakai, Osaka 599-8531 (Japan); Nishitani, Hiroyuki; Mizuno, Izumi [Nobeyama Radio Observatory, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Dobashi, Kazuhito; Shimoikura, Tomomi [Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan); Shimajiri, Yoshito [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service d' Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette (France); Yonekura, Yoshinori [Center for Astronomy, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Kameno, Seiji [Joint ALMA Observatory, Alonso de Crdova 3107 Vitacura, Santiago (Chile); Momose, Munetake [Institute of Astrophysics and Planetary Sciences, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Nakajima, Taku, E-mail: fumitaka.nakamura@nao.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); and others

    2014-08-20

    The Serpens South infrared dark cloud consists of several filamentary ridges, some of which fragment into dense clumps. On the basis of CCS (J{sub N} = 4{sub 3}-3{sub 2}), HC{sub 3}N (J = 5-4), N{sub 2}H{sup +} (J = 1-0), and SiO (J = 2-1, v = 0) observations, we investigated the kinematics and chemical evolution of these filamentary ridges. We find that CCS is extremely abundant along the main filament in the protocluster clump. We emphasize that Serpens South is the first cluster-forming region where extremely strong CCS emission is detected. The CCS-to-N{sub 2}H{sup +} abundance ratio is estimated to be about 0.5 toward the protocluster clump, whereas it is about 3 in the other parts of the main filament. We identify six dense ridges with different V {sub LSR}. These ridges appear to converge toward the protocluster clump, suggesting that the collisions of these ridges may have triggered cluster formation. The collisions presumably happened within a few × 10{sup 5} yr because CCS is abundant only for a short time. The short lifetime agrees with the fact that the number fraction of Class I objects, whose typical lifetime is 0.4 × 10{sup 5} yr, is extremely high, about 70% in the protocluster clump. In the northern part, two ridges appear to have partially collided, forming a V-shape clump. In addition, we detected strong bipolar SiO emission that is due to the molecular outflow blowing out of the protostellar clump, as well as extended weak SiO emission that may originate from the filament collisions.

  10. Ultra-broadband supercontinuum generation in fluoride glass by filamentation

    Liao, Meisong; Ohishi, Yasutake

    2014-10-01

    The mid-IR supercontinuum (SC) light source is in demand for many chemical, biological, medical, and astronomical applications. It is of great significance to develop a mid-IR SC light source whose spectrum is wide and flat. We obtained ultra-broadband mid-IR SC by using a piece of fluoride glass through filamentation. Though the SC generation by filamentation needs a powerful laser chain to be the pump source, it has some advantages in comparison with that based on fiber. First, the optical path length in the glass can be very short due to the adopted high pump power. The negative influence of accumulated loss can be reduced greatly, so the transparent range of glass is much larger than fiber. Secondly, it is convenient in light-coupling, and the coupling efficiency can be high. In comparison with it, the coupling of the small core (usually the core is small to ensure a high nonlinearity) mid-IR glass fiber is troublesome. Thirdly, the glass piece is cost-effective, and can be fabricated easily. We obtained a SC spectrum covering 0.2-8.0 μm by using a 32mm-thick fluoride glass sample. The 3 dB bandwidth covers 1.15-4.76 μm. The 20 dB bandwidth spans from 0.39 to 7.4 μm. The glass thickness, optical path, and pump conditions are optimized to enable the SC to be as wide as possible. This work shows that the SC generation through filamentation in bulk glass can be an effective way to obtain an ultra-broadband mid-IR light source, which will find various applications in mid-IR regions.

  11. Atomic resolution probe for allostery in the regulatory thin filament.

    Williams, Michael R; Lehman, Sarah J; Tardiff, Jil C; Schwartz, Steven D

    2016-03-22

    Calcium binding and dissociation within the cardiac thin filament (CTF) is a fundamental regulator of normal contraction and relaxation. Although the disruption of this complex, allosterically mediated process has long been implicated in human disease, the precise atomic-level mechanisms remain opaque, greatly hampering the development of novel targeted therapies. To address this question, we used a fully atomistic CTF model to test both Ca(2+)binding strength and the energy required to remove Ca(2+)from the N-lobe binding site in WT and mutant troponin complexes that have been linked to genetic cardiomyopathies. This computational approach is combined with measurements of in vitro Ca(2+)dissociation rates in fully reconstituted WT and cardiac troponin T R92L and R92W thin filaments. These human disease mutations represent known substitutions at the same residue, reside at a significant distance from the calcium binding site in cardiac troponin C, and do not affect either the binding pocket affinity or EF-hand structure of the binding domain. Both have been shown to have significantly different effects on cardiac function in vivo. We now show that these mutations independently alter the interaction between the Ca(2+)ion and cardiac troponin I subunit. This interaction is a previously unidentified mechanism, in which mutations in one protein of a complex indirectly affect a third via structural and dynamic changes in a second to yield a pathogenic change in thin filament function that results in mutation-specific disease states. We can now provide atom-level insight that is potentially highly actionable in drug design. PMID:26957598

  12. Enhanced Production of Recombinant Proteins in Escherichia coli by Filamentation Suppression

    Jeong, Ki Jun; Lee, Sang Yup

    2003-01-01

    During growth of high-cell-density cultures of Escherichia coli, overproduction of recombinant proteins often results in increased stress response, cell filamentation, and growth cessation. Filamentation of cells consequently lowers final achievable cell concentration and productivity of the target protein. Reported here is a methodology that should prove useful for the enhancement of cell growth and protein productivity by the suppression of cell filamentation. By the coexpression of the E. ...

  13. Sequential Myosin Phosphorylation Activates Tarantula Thick Filament via a Disorder-Order Transition

    Espinoza-Fonseca, L Michel; Alamo, Lorenzo; Pinto, Antonio; Thomas, David D.; Padrón, Raúl

    2015-01-01

    Phosphorylation of myosin regulatory light chain (RLC) N-terminal extension (NTE) activates myosin in thick filaments. RLC phosphorylation plays a primary regulatory role in smooth muscle and a secondary (modulatory) role in striated muscle, which is regulated by Ca2+ via TnC/TM on the thin filament. Tarantula striated muscle exhibits both regulatory systems: one switches on/off contraction through thin filament regulation, and another through PKC constitutively Ser35 phosphorylated swaying f...

  14. A “Mechanistic” Explanation of the Multiple Helical Forms Adopted by Bacterial Flagellar Filaments

    Calladine, C. R.; Luisi, B F; Pratap, J. V.

    2013-01-01

    The corkscrew-like flagellar filaments emerging from the surface of bacteria such as Salmonella typhimurium propel the cells toward nutrient and away from repellents. This kind of motility depends upon the ability of the flagellar filaments to adopt a range of distinct helical forms. A filament is typically constructed from ~ 30,000 identical flagellin molecules, which self-assemble into a tubular structure containing 11 near-longitudinal protofilaments. A “mechanical” model, in which the fla...

  15. Global existence and collisions for symmetric configurations of nearly parallel vortex filaments

    Banica, Valeria; Miot, Evelyne

    2011-01-01

    We consider the Schr\\"odinger system with Newton-type interactions that was derived by R. Klein, A. Majda and K. Damodaran [18] to modelize the dynamics of N nearly parallel vortex filaments in a 3-dimensional homogeneous incompressible uid. The known large time existence results are due to C. Kenig, G. Ponce and L. Vega [17] and concern the interaction of two filaments and particular configurations of three filaments. In this article we prove large time existence results for particular confi...

  16. Swirling around filaments: are large-scale structure vortices spinning up dark halos?

    Laigle, C.; Pichon, C.; Codis, S.; Dubois, Y.; Le Borgne, D.; Pogosyan, D.; Devriendt, J; Peirani, S.; Prunet, S.; S. Rouberol; Slyz, A.; Sousbie, T.

    2013-01-01

    The kinematic analysis of dark matter and hydrodynamical simulations suggests that the vorticity in large-scale structure is mostly confined to, and predominantly aligned with their filaments, with an excess of probability of 20 per cent to have the angle between vorticity and filaments direction lower than 60 degrees relative to random orientations. The cross sections of these filaments are typically partitioned into four quadrants with opposite vorticity sign, arising from multiple flows, o...

  17. Thin Filament-Reconstituted Skinned Muscle Fibers for the Study of Muscle Physiology

    Hideaki Fujita; Satoshi Kurihara; Norio Fukuda; Yoshikazu Tsukasaki; Sayaka Higuchi

    2011-01-01

    We review the use of thin filament-reconstituted muscle fibers in the study of muscle physiology. Thin filament extraction and reconstitution protocol is a powerful technique to study the role of each component of the thin filament. It is also useful for studying the properties of genetically modified molecules such as actin and tropomyosin. We also review the combination of this protocol with sinusoidal analysis, which will provide a solid technique for determining the effect of regulatory p...

  18. Optical beam dynamics in a gas repetitively heated by femtosecond filaments

    Jhajj, N; Wahlstrand, J K; Milchberg, H M

    2013-01-01

    We investigate beam pointing dynamics in filamentation in gases driven by high repetition rate femtosecond laser pulses. Upon suddenly exposing a gas to a kilohertz train of filamenting pulses, the filament is steered from its original direction to a new stable direction whose equilibrium is determined by a balance among buoyant, viscous, and diffusive processes in the gas. Results are shown for Xe and air, but are broadly applicable to all configurations employing high repetition rate femtosecond laser propagation in gases.

  19. Filament tension and phase-locked drift of meandering scroll waves

    Dierckx, Hans; Biktasheva, Irina V.; Verschelde, Henri; Panfilov, Alexander V.; Biktashev, Vadim N.

    2016-01-01

    Rotating scroll waves are self-organising patterns which are found in many oscillating or excitable systems. Here we show that quasi-periodic (meandering) scroll waves, which include the rotors that organise cardiac arrhythmias, exhibit filament tension when averaged over the meander cycle. With strong filament curvature or medium thickness gradients, however, scroll wave dynamics are governed by phase-locked drift instead of filament tension. Our results are validated in computational models...

  20. Filamentation patterns in Kerr media vs. beam shape robustness, nonlinear saturation and polarization states

    Bergé, L.; Gouédard, C.; Schjødt-Eriksen, Jens;

    2003-01-01

    -Gaussian (SG) shapes relaxes the self-focusing (SF) attractor and triggers the formation of independent filaments. Analytical criteria for the mutual coalescence of filaments in the context of collapsing and saturating nonlinearities are proposed. Second, the influence of the polarization state on the...... separation distance for coalescence becomes larger, which slows down the production of uncorrelated filaments. Implications of these results in atmospheric propagation are finally discussed. (C) 2002 Elsevier Science B.V. All fights reserved....