WorldWideScience

Sample records for acid-g-ethylene glycol prepared

  1. Preparation and Separation of Telechelic Carborane-Containing Poly(ethylene glycol)s

    Matějíček, P.; Uchman, M.; Lepšík, Martin; Srnec, Martin; Zedník, J.; Kozlík, P.; Kalíková, K.

    2013-01-01

    Roč. 78, č. 6 (2013), s. 528-535. ISSN 2192-6506 R&D Projects: GA AV ČR IAAX00320901 Grant ostatní: GA ČR(CZ) GPP208/12/P236 Institutional support: RVO:61388963 Keywords : carboranes * click chemistry * poly(ethylene glycol) * quantum chemistry * reaction mechanisms Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.242, year: 2013

  2. Polyethylene glycol plus ascorbic acid for bowel preparation in chronic kidney disease.

    Lee, Jae Min; Keum, Bora; Yoo, In Kyung; Kim, Seung Han; Choi, Hyuk Soon; Kim, Eun Sun; Seo, Yeon Seok; Jeen, Yoon Tae; Chun, Hoon Jai; Lee, Hong Sik; Um, Soon Ho; Kim, Chang Duck; Kim, Myung Gyu; Jo, Sang Kyung

    2016-09-01

    The safety of polyethylene glycol plus ascorbic acid has not been fully investigated in patients with renal insufficiency. High-dose ascorbic acid could induce hyperoxaluria, thereby causing tubule-interstitial nephritis and renal failure. This study aims to evaluate the safety and efficacy of polyethylene glycol plus ascorbic acid in patients with chronic kidney disease.We retrospectively reviewed prospectively collected data on colonoscopy in patients with impaired renal function. Patients were divided into 2 groups: 2 L polyethylene glycol plus ascorbic acid (n = 61) and 4 L polyethylene glycol (n = 80). The safety of the 2 groups was compared by assessing the differences in laboratory findings before and after bowel cleansing.The laboratory findings were not significantly different before and after the administration of 2 L polyethylene glycol plus ascorbic acid or 4 L polyethylene glycol. In both groups, the estimated glomerular filtration rate was not influenced by the administration of the bowel-cleansing agent. Patients' reports on tolerance and acceptability were better in the 2 L polyethylene glycol plus ascorbic acid group than in the 4 L polyethylene glycol group.The 2 L polyethylene glycol plus ascorbic acid solution is a safe choice for bowel preparation before colonoscopy in patients with impaired renal function. PMID:27603372

  3. Preparation and Thermo-Physical Properties of Fe2O3-Propylene Glycol Nanofluids.

    Shylaja, A; Manikandan, S; Suganthi, K S; Rajan, K S

    2015-02-01

    Iron oxide (Fe2O3) nanoparticles were prepared from ferric chloride and ferrous sulphate by precipitation reaction. Fe2O3-propylene glycol nanofluid was prepared by dispersing Fe2O3 nanoparticles in propylene glycol through stirred bead milling, shear homogenization and probe ultrasonication. The nanofluid was characterized through measurement of viscosity, particle size distribution and thermal conductivity. The interactions between Fe2O3 nanoparticles and propylene glycol on the nanoparticle surfaces lead to reduction in viscosity, the magnitude of which increases with nanoparticle concentration (0-2 vol%) at room temperature. The thermal conductivity enhancement for 2 vol% nanofluid was about 21% at room temperature, with liquid layering being the major contributor for thermal conductivity enhancement. PMID:26353708

  4. Electrochemical preparation of ether ketones from (poly)propylene glycol monoethers

    This invention is a method for preparing an ether ketone comprising electrolyzing a solution containing a (poly)propylene glycol monoether, hydroxyl ions and optionally water in an electrolytic cell having an anode at least partially coated with nickel peroxide, silver peroxide, cobalt peroxide or copper peroxide

  5. Preparation of Ethylene Glycol Monoethyl Ether Acetate Using a Tubular Reactor

    蔡振云; 卢祖国; 李小波

    2003-01-01

    Ethylene glycol monoethyl ether acetate (EGEA), an excellent solvent, is prepared with ethylene oxide (EO) and ethyl acetate (EA) in a tubular reactor under suitable reaction condition. The single circulation yield can reach 81%. This technology is not only safe but also makes it possible to continuously produce EGEA in industry,with low content of high boiling point by-products.

  6. Preparation of Iminodiacetic Acid-Polyethylene Glycol for Immobilized Metal Ion Affinity Partitioning

    2000-01-01

    The synthesis route was investigated and optimized for the preparation of iminodiacetic acid polyethylene glycol (IDA-PEG) for immobilized metal ion affinity partitioning in aqueous two-phaze systems. IDA PEG was synthesized from PEG in two steps by the reaction of iminodiacetic acid with a monosubetituted derivative of epichlorohydrin-activated PEG. The Cu2+ content combined with IDA-PEG was determined by atomic absorp tion spectrometry as 0.5 mol.mol-1 (PEG). Furthermore, the affinity partitioning behavior of lactate dehydrogenase in polyethylene glycol/hydroxypropyl starch aqueous two-phaze systems was studied to clarify the affinity effect of the Cu(Ⅱ)-IDA-PEG.

  7. Preparation and evaluation of cosmetic patches containing lactic and glycolic acids

    Mahdavi H.; Kermani Z; Faghihi G; Asilian A; Hamishehkar H; Jamshidi A.

    2006-01-01

    Background: Alpha-hydroxy acids such as glycolic acid (GA) and lactic acid (LA), are used in cosmetic patches. The important fact in cosmetic patches is its suitable adhesion and peel properties. Aim: The objective of this study was to prepare LA- and GA-containing cosmetic patches and evaluate in-vitro/in-vivo correlation of adhesion properties. Methods: Pressure-sensitive adhesives with different concentrations of GA and LA were cast on a polyethylene terephthalate film. The patches we...

  8. Solvent free microwave assisted preparation of new telechelic polymers based on poly(ethylene glycol

    2009-07-01

    Full Text Available Poly(ethylene glycol bis (methylimidazolium chloride (PEGBMIM with average molecular weights of 600 and 1000 g/mol and poly(ethylene glycol bis (2-oxazoline (PEGBOX with average molecular weight of 600 g/mol have been prepared using microwave irradiation under solvent-free condition. The method described herein is a very good, safe, clean, economical and environmentally friendly alternative to the classical procedures. The resulted products have been characterized by common spectroscopic methods, such as FT-IR (Fourier transform infrared spectroscopy, 1H NMR (Nuclear magnetic resonance of proton and elemental analysis. Also, the effects of power levels and irradiation time on the yield of reactions and solubility of products have been studied.

  9. Smart poly(oligo(propylene glycol) methacrylate) hydrogel prepared by gamma radiation

    Suljovrujic, E., E-mail: edin@vinca.rs; Micic, M.

    2015-01-01

    that the hydrogels with propylene glycol pendant chains can be easily prepared by gamma radiation and have potential for different applications as smart and biocompatible polymers.

  10. A Comparative Study on Magnetostructural Properties of Barium Hexaferrite Powders Prepared by Polyethylene Glycol

    Zehra Durmus

    2014-01-01

    Full Text Available Nanocrystalline particles of barium hexaferrite were synthesized by a sol-gel combustion route using nitrate-citrate gels prepared from metal nitrates and citric acid solutions with Fe/Ba molar ratio 12. The present paper aims to study the effect of addition of polyethylene glycol (PEG solutions with different molecular weights (MW: 400, 2000, and 10.000 g/mol on magnetostructural properties of barium hexaferrite. The formation of the barium hexaferrite was inspected using X-ray diffraction (XRD analysis, Fourier transform infrared (FT-IR analysis, thermogravimetric (TGA analysis, scanning electron microscopy (SEM analysis and vibrating sample magnetometer (VSM analysis for magnetic measurements.

  11. Hydrogenolysis of Glycerol to Propylene Glycol on Nanosized Cu-Zn-Al Catalysts Prepared Using Microwave Process.

    Kim, Dong Won; Ha, Sang Ho; Moon, Myung Jun; Lim, Kwon Taek; Ryu, Young Bok; Lee, Sun Do; Lee, Man Sig; Hong, Seong-Soo

    2015-01-01

    Cu-Zn-Al catalysts were prepared using microwave-assisted process and co-precipitation methods. The prepared catalysts were characterized by XRD, BET, XPS and TPD of ammonia and their catalytic activity for the hydrogenolysis of glycerol to propylene glycol was also examined. The XRD patterns of Cu/Zn/Al mixed catalysts show CuO and ZnO crystalline phase regardless of preparation method. The highest glycerol hydrogenolysis conversion is obtained with the catalyst having a Cu/Zn/Al ratio of 2:2:1. Hydrogen pre-reduction of catalysts significantly enhanced both glycerol conversions and selectivity to propylene glycol. The glycerol conversion increased with an increase of reaction temperature. However, the selectivity to propylene glycol increased with an increase of temperature, and then declined to 30.5% at 523 K. PMID:26328420

  12. Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid

    Keum CG

    2011-10-01

    Full Text Available Chang-Gu Keum1*, Young-Wook Noh1*, Jong-Suep Baek1, Ji-Ho Lim1, Chan-Ju Hwang1, Young-Guk Na1, Sang-Chul Shin2, Cheong-Weon Cho11College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Gungdong, Yuseonggu, Daejeon, South Korea; 2College of Pharmacy, Chonnam National University, Yongbongdong, Buggu, Gwangju, South Korea *These authors contributed equally to this work Background: Nanoparticles fabricated from the biodegradable and biocompatible polymer, polylactic-co-glycolic acid (PLGA, are the most intensively investigated polymers for drug delivery systems. The objective of this study was to explore fully the development of a PLGA nanoparticle drug delivery system for alternative preparation of a commercial formulation. In our nanoparticle fabrication, our purpose was to compare various preparation parameters. Methods: Docetaxel-loaded PLGA nanoparticles were prepared by a single emulsion technique and solvent evaporation. The nanoparticles were characterized by various techniques, including scanning electron microscopy for surface morphology, dynamic light scattering for size and zeta potential, x-ray photoelectron spectroscopy for surface chemistry, and high-performance liquid chromatography for in vitro drug release kinetics. To obtain a smaller particle, 0.2% polyvinyl alcohol, 0.03% D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS, 2% Poloxamer 188, a five-minute sonication time, 130 W sonication power, evaporation with magnetic stirring, and centrifugation at 8000 rpm were selected. To increase encapsulation efficiency in the nanoparticles, certain factors were varied, ie, 2–5 minutes of sonication time, 70–130 W sonication power, and 5–25 mg drug loading. Results: A five-minute sonication time, 130 W sonication power, and a 10 mg drug loading amount were selected. Under these conditions, the nanoparticles reached over 90% encapsulation efficiency. Release kinetics showed that 20

  13. Aqueous preparation of polyethylene glycol/sulfonated graphene phase change composite with enhanced thermal performance

    Highlights: • We report an aqueous preparation technique of PEG/graphene phase change composite. • Hydrophilic sulfonated graphene (SG) nanosheets were synthesized. • Large increase in thermal conductivity is attained at low SG loading. • High latent heat is retained due to the low filler loading. • Affinity between SG and PEG contributes to the enhanced thermal performance. - Abstract: A polyethylene glycol (PEG)/sulfonated graphene (SG) phase change composite with enhanced thermal performance was prepared by solution processing in aqueous medium. It is remarkable that the addition of only 4 wt.% of SG to PEG could lead to a four times higher increase in thermal conductivity and a slight decrease in the phase change enthalpy, which is attributed to the formation of efficient thermal conductive network within the PEG matrix relevant to the excellent thermal property and unique 2-dimensional morphology of graphene as well as strong interface affinity between PEG matrix and SG nanosheets. The aqueous preparation technique is expected to pioneer a new way to prepare environment friendly organic phase change materials, and the production of PEG/SG composites is potentially scalable due to the facile fabricating process

  14. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins

    Seck, Tetsu M.; Melchels, Ferry P. W.; Feijen, Jan; Grijpma, Dirk W.

    2010-01-01

    Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photo-polymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibi

  15. Activated carbon fibers/poly(lactic-co-glycolic) acid composite scaffolds: Preparation and characterizations

    Shi, Yanni [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Han, Hao [College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Bayer Material Science China Co., Ltd, Shanghai 200120 (China); Quan, Haiyu; Zang, Yongju; Wang, Ning; Ren, Guizhi [College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Xing, Melcolm [Department of Mechanical Engineering, Faculty of Engineering and Department of Biochemistry and Genetics, Faculty of Medicine P.I., Manitoba Institute of Child Health, University of Manitoba, Winnipeg, Manitoba (Canada); Wu, Qilin, E-mail: wql@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620 (China); College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China)

    2014-10-01

    The present work is a first trial to introduce activated carbon fibers (ACF) with high adsorption capacity into poly(lactic-co-glycolic) acid (PLGA), resulting in a novel kind of scaffolds for tissue engineering applications. ACF, prepared via high-temperature processing of carbon fibers, are considered to possess bioactivity and biocompatibility. The ACF/PLGA composite scaffolds are prepared by solvent casting/particulate leaching method. Increments in both pore quantity and quality over the surface of ACF as well as a robust combination between ACF and PLGA matrix are observed via scanning electron microscopy (SEM). The high adsorption capacity of ACF is confirmed by methylene blue solution absorbency test. The surfaces of ACF are affiliated with many hydrophilic groups and characterized by Fourier transform infrared spectroscopy. Furthermore, the SEM images show that cells possess a favorable spreading morphology on the ACF/PLGA scaffolds. Besides, vivo experiments are also carried out to evaluate the histocompatibility of the composite scaffolds. The results show that ACF have the potential to become one of the most promising materials in biological fields. - Highlights: • ACF with strong adsorption capacity and porous structure for enhanced surface area • The incorporation of ACF promoting the porosity of composite scaffolds • The composite scaffolds having no side effect on cell adhesion and proliferation • The composite scaffolds presenting good biocompatibility in vivo.

  16. Activated carbon fibers/poly(lactic-co-glycolic) acid composite scaffolds: Preparation and characterizations

    The present work is a first trial to introduce activated carbon fibers (ACF) with high adsorption capacity into poly(lactic-co-glycolic) acid (PLGA), resulting in a novel kind of scaffolds for tissue engineering applications. ACF, prepared via high-temperature processing of carbon fibers, are considered to possess bioactivity and biocompatibility. The ACF/PLGA composite scaffolds are prepared by solvent casting/particulate leaching method. Increments in both pore quantity and quality over the surface of ACF as well as a robust combination between ACF and PLGA matrix are observed via scanning electron microscopy (SEM). The high adsorption capacity of ACF is confirmed by methylene blue solution absorbency test. The surfaces of ACF are affiliated with many hydrophilic groups and characterized by Fourier transform infrared spectroscopy. Furthermore, the SEM images show that cells possess a favorable spreading morphology on the ACF/PLGA scaffolds. Besides, vivo experiments are also carried out to evaluate the histocompatibility of the composite scaffolds. The results show that ACF have the potential to become one of the most promising materials in biological fields. - Highlights: • ACF with strong adsorption capacity and porous structure for enhanced surface area • The incorporation of ACF promoting the porosity of composite scaffolds • The composite scaffolds having no side effect on cell adhesion and proliferation • The composite scaffolds presenting good biocompatibility in vivo

  17. Preparation and performance of porous phase change polyethylene glycol/polyurethane membrane

    Based on the theory of clotty porous phase change materials, the porous membrane was prepared with the blend of polyurethane (PU) and two polyethylene glycol (PEG) systems. Studied by scanning electron microscope (SEM), Fourier transform infrared (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and thermo-gravimetric (TG) tests, the morphology structure, chemical composition, crystalline morphology, phase change behaviors and thermal stability of porous phase change membrane were investigated. The results showed that the PU/PEG membrane had obvious porous structural feature, suitable transition temperature and high transition enthalpy. It is a flexible membrane with good energy storage function. When it is between solid and liquid transfer state in microcosms, the membrane can still keep solid shape in macroscopic state at high temperature during phase transition processing. It means that porous membrane PCM can be regarded as functional polymer. This method solved the problem of low working materials content in phase change textile. It succeeded in introducing the porous technology into functional textile's formation, and developed a new way to improve the phase change enthalpy largely for adjustable textile.

  18. Preparation of poly(ethylene glycol/polylactide hybrid fibrous scaffolds for bone tissue engineering

    Ni P

    2011-11-01

    Full Text Available PeiYan Ni, ShaoZhi Fu, Min Fan, Gang Guo, Shuai Shi, JinRong Peng, Feng Luo, ZhiYong QianState Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, People's Republic of ChinaAbstract: Polylactide (PLA electrospun fibers have been reported as a scaffold for bone tissue engineering application, however, the great hydrophobicity limits its broad application. In this study, the hybrid amphiphilic poly(ethylene glycol (PEG/hydrophobic PLA fibrous scaffolds exhibited improved morphology with regular and continuous fibers compared to corresponding blank PLA fiber mats. The prepared PEG/PLA fibrous scaffolds favored mesenchymal stem cell (MSC attachment and proliferation by providing an interconnected porous extracellular environment. Meanwhile, MSCs can penetrate into the fibrous scaffold through the interstitial pores and integrate well with the surrounding fibers, which is very important for favorable application in tissue engineering. More importantly, the electrospun hybrid PEG/PLA fibrous scaffolds can enhance MSCs to differentiate into bone-associated cells by comprehensively evaluating the representative markers of the osteogenic procedure with messenger ribonucleic acid quantitation and protein analysis. MSCs on the PEG/PLA fibrous scaffolds presented better differentiation potential with higher messenger ribonucleic acid expression of the earliest osteogenic marker Cbfa-1 and mid-stage osteogenic marker Col I. The significantly higher alkaline phosphatase activity of the PEG/PLA fibrous scaffolds indicated that these can enhance the differentiation of MSCs into osteoblast-like cells. Furthermore, the higher messenger ribonucleic acid level of the late osteogenic differentiation markers OCN (osteocalcin and OPN (osteopontin, accompanied by the positive Alizarin red S staining, showed better maturation of osteogenic induction on the PEG/PLA fibrous scaffolds at the

  19. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation.

    Wu, Junzi; Williams, Gareth R; Branford-White, Christopher; Li, Heyu; Li, Yan; Zhu, Li-Min

    2016-09-20

    In this work, we sought to generate sustained-release injectable microspheres loaded with the GLP-1 analogue liraglutide. Using water-in-oil-in-water double emulsion methods, poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with liraglutide were prepared. The microspheres gave sustained drug release over 30days, with cumulative release of up to 90% reached in vitro. The microspheres were further studied in a rat model of diabetes, and their performance compared with a group given daily liraglutide injections. Reduced blood sugar levels were seen in the microsphere treatment groups, with the results being similar to those obtained with conventional injections between 10 and 25days after the commencement of treatment. After 5 and 30days of treatment, the microspheres seem a little slower to act than the injections. The pathology of the rats' spleen, heart, kidney and lungs was probed after the 30-day treatment period, and the results indicated that the microspheres were safe and had beneficial effects on the liver, reducing the occurrence of fatty deposits seen in untreated diabetic rats. Moreover, in terms of liver, renal and cardiac functions, and blood lipid and antioxidant levels, the microspheres were as effective as the injections. The expression of several proteases linked to the metabolism of aliphatic acids and homocysteine was promoted by the microsphere formulations. Inflammatory markers in the microsphere treatment groups were somewhat higher than the injection group, however. The liraglutide/PLGA microspheres prepared in this work are overall shown to be efficacious in a rat model of diabetes, and we thus believe they have strong potential for clinical use. PMID:27343696

  20. Prospective randomized comparison of oral sodium phosphate and polyethylene glycol lavage for colonoscopy preparation

    Kai-Lin Hwang; William Tzu-Liang Chen; Koung-Hong Hsiao; Hong-Chang Chen; Ting-Ming Huang; Chien-Ming Chiu; Ger-Haur Hsu

    2005-01-01

    AIM: To compare the effectiveness, patient acceptability, and physical tolerability of two oral lavage solutions prior to colonoscopy in a Taiwanese population. METHODS: Eighty consecutive patients were randomized to receive either standard 4 L of polyethylene glycol (PEG) or 90 mL of sodium phosphate (NaP) in a split regimen of two 45 mL doses separated by 12 h, prior to colonoscopic evaluation. The primary endpoint was the percent of subjects who had completed the preparation. Secondary endpoints included colonic cleansing evaluated with an overall assessment and segmental evaluation, the tolerance and acceptability assessed by a selfadministered structured questionnaire, and a safety profile such as any unexpected adverse events, electrolyte tests, physical exams, vital signs, and body weights. RESULTS: A significantly higher completion rate was found in the NaP group compared to the PEG group(84.2% vs 27.5%, P<0.001). The amount of fluid suctioned was significantly less in patients taking NaP vs PEG (50.13±54.8 cc vs 121.13±115.4 cc, P<0.001),even after controlling for completion of the oral solution(P = 0.031). The two groups showed a comparable overall assessment of bowel preparation with a rate of "good" or "excellent" in 78.9% of patients in the NaPgroup and 82.5% in PEG group (P = 0.778). Patients taking NaP tended to have significantly better colonic segmental cleansing relative to stool amount observedin the descending (94.7% vs 70%, P = 0.007) andtransverse (94.6% vs 74.4%, P = 0.025) colon. Slightly more patients graded the taste of NaP as "good" or "very good" compared to the PEG patients (32.5% vs 12.5%;P = 0.059). Patients' willingness to take the same preparation in the future was 68.4% in the NaP compared to 75% in the PEG group (P = 0.617). There was a significant increase in serum sodium and a significant decrease in phosphate and chloride levels in NaP group on the day following the colonoscopy without any clinical sequelae. Prolonged (

  1. Polyethylene Glycol Electrolyte Lavage Solution versus Colonic Hydrotherapy for Bowel Preparation before Colonoscopy: A Single Center, Randomized, and Controlled Study

    Yan Cao; Kai-Yuan Zhang; Jiao Li; Hao Lu; Wan-Ling Xie; Sheng-Tao Liao; Dong-Feng Chen; Deng-Feng Zeng; Chun-Hui Lan

    2014-01-01

    This single center, randomized, and controlled study aimed to compare the effectiveness and safety of polyethylene glycol electrolyte lavage (PEG-EL) solution and colonic hydrotherapy (CHT) for bowel preparation before colonoscopy. A total of 196 eligible outpatients scheduled for diagnostic colonoscopy were randomly assigned to the PEG-EL (n = 102) or CHT (n = 94) groups. Primary outcome measures included colonic cleanliness and adverse effects. Secondary outcome measures were patient satisf...

  2. Preparation and evaluation of cosmetic patches containing lactic and glycolic acids

    Mahdavi H

    2006-01-01

    Full Text Available Background: Alpha-hydroxy acids such as glycolic acid (GA and lactic acid (LA, are used in cosmetic patches. The important fact in cosmetic patches is its suitable adhesion and peel properties. Aim: The objective of this study was to prepare LA- and GA-containing cosmetic patches and evaluate in-vitro/in-vivo correlation of adhesion properties. Methods: Pressure-sensitive adhesives with different concentrations of GA and LA were cast on a polyethylene terephthalate film. The patches were evaluated for peel adhesive strength. On the basis of in vitro adhesion properties the patches were selected for wear performance tests and skin irritation potential. Results: The adhesion properties (adhesion to steel plate and skin and cohesive strength tests indicated the substantial influence of GA and LA concentrations. Based on in vitro adhesion studies the patches containing 3% (w/w GA were selected for in vivo studies. In vivo studies show that a formulation containing 3% GA displays good adhesion on the skin, but it leaves little residues on the skin. Skin Irritation studies on healthy human volunteers showed negligible erythema at the site of application after 48h. Conclusion: The noninvasive patch test model was found useful for detecting irritant skin reactions to the cosmetic patch containing GA. Our results demonstrated a strong correlation between the adhesion to steel plate and adhesion to skin. But a weak correlation between the degree of adhesive residue on the skin in in vitro and in vivo tests was observed for the formulation containing 3% (w/w GA.

  3. Preparation of polystyrene-poly(ethylene glycol) diblock copolymer by "living" free radical polymerization

    Chen, Xianyi; Gao, Bo; Kops, Jørgen;

    1998-01-01

    Amphiphilic diblock copolymer containing segments of polystyrene and monomethoxypoly(ethylene glycol) (PS-b-PEG) was synthesised by a novel method. Initially, the adduct (BZ-TEMPO) obtained by reacting benzoyl peroxide, styrene, and 2,2,6,6-tetramethyl-piperidinyl-1-oxy (TEMPO) was isolated...

  4. Preparation of diesel emulsion using auxiliary emulsifier mono ethylene glycol and utilization in a turbocharged diesel engine

    Highlights: • Mono-ethylene glycol was used as an auxiliary emulsifier. • Using mono ethylene glycol prolonged precipitation duration of emulsions. • With using E5 and E10 fuels engine torque averagely increased by 0.35% and 1.73% respectively. • It was found that specific fuel consumption of emulsions is lower than diesel. • Using E10 fuel reduced CO, NOx and soot emissions 44%, 47% and 5% respectively. - Abstract: Diesel engines are used widely as they have lower fuel consumption and higher thermal efficiency in transportation sector. However, the emitted high NOx, CO and soot emissions have led researchers to search different alternative fuels. At this point, diesel fuels emulsions help to reduce exhaust emissions. In this study, the effects of diesel fuel emulsions containing 5% (E5) and 10% (E10) water on engine performance an exhaust emissions has been investigated. Mono ethylene glycol was used as an auxiliary emulsifier in the preparation of the emulsion. Use of the mono ethylene glycol reduced the subsidence rate of the E5 and E10 about 34.5% and 47.1% respectively. The experiments were conducted at full load condition and at 2500, 3250 and 4000 rpm engine speeds. Engine torque and power increased according to diesel fuel between 2400 and 3600 engine speed range when emulsified fuels were used. But significant reductions were observed after that engine speed range. It was observed that the nitrogenoxide (NOx) emission reduced 5.42% and 11.01% with using E5 and E10 fuel respectively according to diesel fuel at 2500 rpm. Also the soot emissions reduced 12.39% and 22.97% with using E5 and E10

  5. PREPARATION AND PROPERTIES OF POLY (LACTIC ACID-CO-GLYCOL TEREPHTHALIC ACID) COPOLYESTER

    GAO Cuili; JI Quan; KONG Qingshan; XIA Yanzhi

    2006-01-01

    To obtain a kind of biodegradable polymer material with satisfactory properties, a new biodegradable copolyester poly(lactic acid-co-glycol terephthalate) (PETA), was synthesized from three monomers of lactic acid, glycol and terephthalic acid. The resulting copolyesters, PETA, were characterized by FT-IR, 1H-NMR, DSC, TGA and by the ways of weight loss rate to characterize their biodegradability. The findings in this work indicated that, the TmS and TdS of copolyesters PETA increased with increasing contents of the terephthalic acid units. From the biodegradation tests in natural soil, boiling water, acid buffer solution and alkali buffer solution, it was shown that the biodegradability of copolyesters PETA decreased with increasing contents of the terephthalic acid units.

  6. Comparison of Two Laxative Agents for Precolonoscopy Bowel Preparation: Sennoside Versus Standard Polyethylene Glycol Solution

    NAD?R, I??lay; KAÇAR, Sabite; ÇAKAL, Ba?ak; AKDO?AN, Meral; ÖZ?N, Yasemin Özderin

    2009-01-01

    This study was undertaken to compare the efficacy of standard 4-liters polyethylene glycol solution (PEG) and sennoside for bowel cleansing. Eighty patients having colonoscopy indication for any reason were voluntarily admitted in to the study. Patients were randomized to two groups to receive either PEG (30 patients) or sennoside (50 patients) for colon cleansing. Colonic cleansing of the patients was evaluated by Aranchick scoring scale according to educational levels. The perfect c...

  7. Designed biodegradable hydrogel structures prepared by stereolithography using poly(ethylene glycol)/poly(D,L-lactide)-based resins.

    Seck, Tetsu M; Melchels, Ferry P W; Feijen, Jan; Grijpma, Dirk W

    2010-11-20

    Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photo-polymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated well on these materials. PMID:20659509

  8. Zinc Phthalocyanine Labelled Polyethylene Glycol: Preparation, Characterization, Interaction with Bovine Serum Albumin and Near Infrared Fluorescence Imaging in Vivo

    Tianjun Liu

    2012-05-01

    Full Text Available Zinc phthalocyanine labelled polyethylene glycol was prepared to track and monitor the in vivo fate of polyethylene glycol. The chemical structures were characterized by nuclear magnetic resonance and infrared spectroscopy. Their light stability and fluorescence quantum yield were evaluated by UV-Visible and fluorescence spectroscopy methods. The interaction of zinc phthalocyanine labelled polyethylene glycol with bovine serum albumin was evaluated by fluorescence titration and isothermal titration calorimetry methods. Optical imaging in vivo, organ aggregation as well as distribution of fluorescence experiments for tracking polyethylene glycol were performed with zinc phthalocyanine labelled polyethylene glycol as fluorescent agent. Results show that zinc phthalocyanine labelled polyethylene glycol has good optical stability and high emission ability in the near infrared region. Imaging results demonstrate that zinc phthalocyanine labelled polyethylene glycol can track and monitor the in vivo process by near infrared fluorescence imaging, which implies its potential in biomaterials evaluation in vivo by a real-time noninvasive method.

  9. A new polyethylene glycol fiber prepared by coating porous zinc electrodeposited onto silver for solid-phase microextraction of styrene

    Sungkaew, Sakchaibordee; Thammakhet, Chongdee [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Thavarungkul, Panote [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Kanatharana, Proespichaya, E-mail: proespichaya.K@psu.ac.th [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand)

    2010-04-01

    A new polyethylene glycol fiber was developed for solid-phase microextraction (SPME) of styrene by electrodepositing porous Zn film on Ag wire substrate followed by coating with polyethylene glycol sol-gel (Ag/Zn/PEG sol-gel fiber). The scanning electron micrographs of fibers surface revealed a highly porous structure. The extraction property of the developed fiber-to-styrene residue from polystyrene packaged food was investigated by headspace solid-phase microextraction (HS-SPME) and analyzed with a gas chromatograph coupled with flame ionization detection (GC-FID). The new Ag/Zn/PEG sol-gel fiber is simple to prepare, low cost, robust, has high thermal stability and long lifetime, up to 359 extractions. Repeatability of one fiber (n = 6) was in the range of 4.7-7.5% and fiber-to-fiber reproducibility (n = 4) for five concentration values were in the range 3.4-10%. This Ag/Zn/PEG sol-gel fiber was compared to two commercial SPME fibers, 75 {mu}m carboxen/polydimethylsiloxane (CAR/PDMS) and 100 {mu}m polydimethylsiloxane (PDMS). Under their optimum conditions, Ag/Zn/PEG sol-gel fiber showed the highest sensitivity and the lowest detection limit at 0.28 {+-} 0.01 ng mL{sup -1}.

  10. A new polyethylene glycol fiber prepared by coating porous zinc electrodeposited onto silver for solid-phase microextraction of styrene

    A new polyethylene glycol fiber was developed for solid-phase microextraction (SPME) of styrene by electrodepositing porous Zn film on Ag wire substrate followed by coating with polyethylene glycol sol-gel (Ag/Zn/PEG sol-gel fiber). The scanning electron micrographs of fibers surface revealed a highly porous structure. The extraction property of the developed fiber-to-styrene residue from polystyrene packaged food was investigated by headspace solid-phase microextraction (HS-SPME) and analyzed with a gas chromatograph coupled with flame ionization detection (GC-FID). The new Ag/Zn/PEG sol-gel fiber is simple to prepare, low cost, robust, has high thermal stability and long lifetime, up to 359 extractions. Repeatability of one fiber (n = 6) was in the range of 4.7-7.5% and fiber-to-fiber reproducibility (n = 4) for five concentration values were in the range 3.4-10%. This Ag/Zn/PEG sol-gel fiber was compared to two commercial SPME fibers, 75 μm carboxen/polydimethylsiloxane (CAR/PDMS) and 100 μm polydimethylsiloxane (PDMS). Under their optimum conditions, Ag/Zn/PEG sol-gel fiber showed the highest sensitivity and the lowest detection limit at 0.28 ± 0.01 ng mL-1.

  11. Preparation and Characterization of Nimodipine-loaded Methoxy Poly (ethylene glycol)-poly (lactic acid) Diblock Copolymer Nanoparticles

    ZHA Liu-sheng; LI Lan; ZHAO Hui-peng

    2006-01-01

    Amphiphilic diblock copolymers, methoxy poly (ethylene glycol)-poly(lactic acid) (MePEG-PLA), were synthesized from monomers of DL-lactide and methoxy poly (ethylene glycol) by a ring opening bulk polymerization in the presence of stannous octoate. Their chemical structure and physical properties were investigated using FTIR, NMR, GPC, and fluorescence spectroscopy. To estimate the feasibility as colloidal drug carrier, nimodipine (ND) was loaded into MePEG-PLA block copolymer nanoparticles by phaseseparation/dialysis method. The mean diameter and drug loading efficiency of ND-loaded MePEG-PLA copolymer nanoparticles depended on PLA/MePEG block composition of the copolymer and drug/polymer feed ratio in preparation. NMR study confirmed that nimodipine was entrapped into the hydrophobic inner core of MePEG-PLA copolymer nanoparticles and hydrophilic PEG chains were located on the surface of the drug-loaded polymer nanoparticles. In vitro release experiments exhibited the sustained release behavior of nimodipine from MePEG-PLA copolymer nanoparticles, without any burst effect.

  12. Preparation and characterization of polyethylene glycol diacrylate microgels using electron beam radiation

    Hamzah, Mohd Yusof [Makmal Nanoteknologi, Bahagian Teknologi Sinaran (Malaysia); Isa, Naurah Mat; Napia, Liyana M. Ali [ALURTRON, Bahagian Kemudahan Iradiasi, Malaysian Nuclear Agency, 43000, Kajang, Selangor (Malaysia)

    2014-02-12

    The use of microemulsion in the development of nanosized gels based on polyethylene glycol diacrylate (PEGDA) is demonstrated. PEGDA was solubilized in n-heptane with use of sodium docusate (AOT) at 0.15M concentration to form reverse micelles. These micelles were than irradiated at 5, 10, 15, 20 and 25 kGy using electron beam (EB) to crosslink the entrapped polymer in the micelles. Ionizing radiation was imparted to the emulsions to generate crosslinking reaction in the micelles formed. The nanosized gels were evaluated in terms of particle diameter using dynamic light scattering (DLS) and the images of the nanosized gels were studied using transmission electron microscopy (TEM). Results show that the size and shape of the particles are influenced by concentration of PEGDA and radiation dose. This study showed that this method can be utilized to produce nanosized gels.

  13. Preparation of poly(polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties

    The pH-responsive copolymer hydrogels were prepared with the monomers of polyethylene glycol methacrylate and acrylic acid based on γ-ray irradiation technique. The gel content of these copolymer hydrogels varied depending on both the composition of monomers and the radiation dose. Maximum gel percent and degree of crosslinking were obtained at the composition of equal amount of comonomers. These copolymer hydrogels did not show any noticeable change in swelling at lower pH range. However they showed an abrupt increase in swelling at higher pH range due to the ionization of carboxyl groups. This pH-responsive swelling behavior was applied for the insulin carrier via oral delivery. Insulin-loaded copolymer hydrogels released most of their insulin in the simulated intestinal fluid which had a pH of 6.8 but not in the simulated gastric fluid which had a pH of 1.2

  14. Preparation and characterization of diethylene glycol bis(2-aminophenyl) ether-modified glassy carbon electrode

    Diethylene glycol bis(2-aminophenyl) ether (DGAE) diazonium salt was covalently electrografted on a glassy carbon (GC) surface and behavior of this novel surface was investigated. Synthesis of DGAE diazonium salt (DGAE-DAS) and in situ modification of GC electrode were performed in aqueous media containing NaNO2, keeping the temperature below +4 deg. C. For the characterization of the modified electrode surface by cyclic voltammetry, dopamine (DA) was used to prove the attachment of the DGAE-DAS on the GC surface. Raman spectroscopy and electrochemical impedance spectroscopy (EIS) were used to observe the molecular bound properties of the adsorbates at the DGAE-modified GC surface (GC-DGAE). The EIS results were analyzed using the Randles equivalent circuit. The charge transfer resistance on bare GC and the modified surface were calculated using the model equivalent circuit for the ferrocene redox system. Surface coverage was found as 0.4 showing the presence of high pinhole and defects in the modified electrode. The rate constant of electron transfer through the monolayer was calculated for ferrocene. Working potential range and the stability of the DGAE-modified GC electrode was also determined

  15. Preparation of 5-Fluorouracii Loaded Polylactide-co-glycolide-co-methoxy Poly(ethylene glycol) (PLGA-mPEG) Nanoparticles via High Speed Shearing

    LIN Hang; REN Hui; WANG Xi-shan; TANG Qing-chao; TANG Jun; WANG Ce

    2008-01-01

    5-Fluorouracil(5-FU) loaded nanoparticles(NPs) were prepared by a high speed shearing double emulsion method with polylactide-co-glycolide-co-methoxy poly(ethylene glycol)(PLGA-mPEG) as loading material.The prepared NPs possess a negative zeta potential and their loading efficiency is about 15%(mass fraction).The result of in vitro release shows that the release behavior of 5-FU from NPs is coincident with Zero-level release from the second day.

  16. Bowel Preparation for Colonoscopy with Sodium Phosphate Solution versus Polyethylene Glycol-Based Lavage: A Multicenter Trial

    S. Schanz

    2008-01-01

    Full Text Available Background: Adequate bowel preparation is essential for accurate colonoscopy. Both oral sodium phosphate (NaP and polyethylene glycol-based lavage (PEG-ELS are used predominantly as bowel cleansing modalities. NaP has gained popularity due to low drinking volume and lower costs. The purpose of this randomized multicenter observer blinded study was to compare three groups of cleansing (NaP, NaP + sennosides, PEG-ELS + sennosides in reference to tolerability, acceptance, and cleanliness. Patient and Methods: 355 outpatients between 18 and 75 years were randomized into three groups (A, B, C receiving NaP = A, NaP, and sennosides = B or PEG-ELS and sennosides = C. Gastroenterologists performing colonoscopies were blinded to the type of preparation. All patients documented tolerance and adverse events. Vital signs, premedication, completeness, discomfort, and complications were recorded. A quality score (0–4 of cleanliness was generated. Results: The three groups were similar with regard to age, sex, BMI, indication for colonoscopy, and comorbidity. Drinking volumes (L (A = 4.33 + 1.2, B = 4.56 + 1.18, C = 4.93 + 1.71 were in favor of NaP (P = .005. Discomfort from ingested fluid was recorded in A = 39.8% (versus C: P = .015, B = 46.6% (versus C: P = .147, and C = 54.6%. Differences in tolerability and acceptance between the three groups were statistically not significant. No differences in adverse events and the cleanliness effects occurred in the three groups (P = .113. The cleanliness quality scores 0–2 were calculated in A: 77.7%, B: 86.7%, and C: 85.2%. Conclusions: These data fail to demonstrate significant differences in tolerability, acceptance, and preparation quality between the three types of bowel preparation for colonoscopy. Cleansing with NaP was not superior to PEG-ELS.

  17. Preparation and Characterization of Copolymer Micelles Formed by Poly(ethylene glycol)-Polylactide Block Copolymers as Novel Drug Carriers

    姜维; 王运东; 甘泉; 张建铮; 赵秀文; 费维扬; 贝建中; 王身国

    2006-01-01

    Diblock copolymer poly(ethylene glycol) methyl ether-polylactide (MePEG-PLA) micelles were prepared by dialysis against water. Indomethacin (IMC) as a model drug was entrapped into the micelles by dialysis method. The critical micelle concentration (CMC) of the prepared micelles in distilled water investigated by fluorescence spectroscopy was 0.0051mg/mL which is lower than that of common low molecular weight surfactants. The diameters of MePEG-PLA micelles and IMC loaded MePEG-PLA micelles in a number-averaged scale measured by dynamic light scattering were 52.4 and 53.7 nm respectively. The observation with transmission electron microscope and scanning electron microscope showed that the appearance of MePEG-PLA micelles was in a spherical shape. The content of IMC incorporated in the core portion of the micelles was 18% (ω). The effects of the synthesis method of the copolymer on the polydispersity of the micelles and the yield of the micelles formation were discussed.

  18. Honeycomb-patterned films of polystyrene/poly(ethylene glycol):Preparation,surface aggregation and protein adsorption

    WAN LingShu; KE BeiBei; LI XiaoKai; MENG XiangLin; ZHANG LuYao; XU ZhiKang

    2009-01-01

    Highly ordered honeycomb-patterned polystyrene (PS)/poly(ethylene glycol) (PEG) films were prepared by a water-assisted method using an improved setup,which facilitated the formation of films with higher regularity,better reproducibility,and larger area of honeycomb structures.Surface aggregation of hydrophilic PEG and adsorption of bovine serum albumin (BSA) on the honeycomb-patterned films were investigated.Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) were used to observe the surface morphologies of the films before and after being rinsed with water.As confirmed by the FESEM images and the AFM phase images,PEG was enriched in the pores and could be gradually removed by water.The adsorption of fluorescence-labeled BSA on the films was studied in visual form using laser scanning confocal microscopy.Results clearly demonstrated that the protein-resistant PEG was selectively enriched in the pores.This water-assisted method may be a latent tool to prepare honeycomb-patterned biofunctional surfaces.

  19. Polyethylene Glycol Electrolyte Lavage Solution versus Colonic Hydrotherapy for Bowel Preparation before Colonoscopy: A Single Center, Randomized, and Controlled Study

    Yan Cao

    2014-01-01

    Full Text Available This single center, randomized, and controlled study aimed to compare the effectiveness and safety of polyethylene glycol electrolyte lavage (PEG-EL solution and colonic hydrotherapy (CHT for bowel preparation before colonoscopy. A total of 196 eligible outpatients scheduled for diagnostic colonoscopy were randomly assigned to the PEG-EL (n=102 or CHT (n=94 groups. Primary outcome measures included colonic cleanliness and adverse effects. Secondary outcome measures were patient satisfaction and preference, colonoscopic findings, ileocecal arrival rate, examiner satisfaction, and cecal intubation time. The results show that PEG-EL group was associated with significantly better colonic cleanliness than CHT group, fewer adverse effects, and increased examiner satisfaction. However, the CHT group had higher patient satisfaction and higher diverticulosis detection rates. Moreover, the results showed the same ileocecal arrival rate and patient preference between the two groups (P>0.05. These findings indicate that PEG-EL is the preferred option in patients who followed the preparation instructions completely.

  20. Preparation and Properties of Polysulfone-poly(ethylene glycol) graft copolymer membrane.

    Woo, Seung-Moon; Kim, Deuk-Ju; Nam, Sang-Yong

    2014-10-01

    In this study, Graft copolymers composed of PSf backbones and PEG side chains were synthesized to prepare gas separation membranes with enhancing permeability and selectivity on carbon dioxide separation. PSf-g-PEG copolymers were synthesized by two steps, chloromethylation and graft reactions. Grafted PEG segment of PSf was controlled by molecular weight of PEG. Thermal properties of prepared mebrane were studied by TGA and DSC. T(g) of the copolymers was decreased with increasing of molecular weight of PEG. Hydrophilicity of PSf-g-PEG copolymer membrane was measured using contact angle method, and PEG grafted polymers showed lower contact angles due to higher hydrophilicity. Gas permeation properties of CO2 and N2 gases through the membranes were measured using time-lag method. The permeability of CO2 was enhanced with PEG moiety contents and increasing of number of PEG segment. The selectivity of CO2/N2 was increased with introducing of PEG due to higher solubility with CO2 gas. PMID:25942870

  1. Methotrexate Nanoparticles Prepared with Codendrimer from Polyamidoamine (PAMAM) and Oligoethylene Glycols (OEG) Dendrons: Antitumor Efficacy in Vitro and in Vivo.

    Zhao, Yanna; Guo, Yifei; Li, Ran; Wang, Ting; Han, Meihua; Zhu, Chunyan; Wang, Xiangtao

    2016-01-01

    The novel methotrexate-loaded nanoparticles (MTX/PGD NPs) prepared with amphiphilic codendrimer PGD from polyamidoamine and oligothylene glycol dendrons were obtained via antisolvent precipitation method augmented by ultrasonication. Based on the excellent hydrophility of PGD, the drug-loaded nanoparticles could be investigated easily with the high drug-loading content (~85.2%, w/w). The MTX/PGD NPs possessed spherical morphology, nanoscaled particle size (approximately 182.4 nm), and narrow particle size distribution. Release of MTX from MTX/PGD NPs showed a sustained release manner and completed within 48 h. Hemolytic evaluation indicated MTX/PGD NPs presented good blood compatibility, and the cytotoxicity of nanoparticles against breast cancer cells in vitro, biodistribution in tumor tissue, and antitumor efficacy in vivo were enhanced significantly compared to MTX injection. According to the higher drug-loading content, enhanced antitumor efficacy, and appropriate particle size, MTX/PGD NPs as the drug delivery systems could have potential application for cancer chemotherapy in clinic. PMID:27388443

  2. Design, preparation and characterization of novel poly-lactic-co-glycolic acid-hyaluronic acid implants containing triptorelin acetate

    Nersi Jafary Omid

    2014-01-01

    Full Text Available Hormones and their derivatives are widely used to treat different types of diseases such as prostate cancer which is treated by agonists of gonadotropin-releasing hormone. Triptoreline salts are the first therapeutics of this group launched into the market in the form of microparticles (microspheres. Implants, as one of attractive injectable dosage forms, have many advantages over multi-particulate systems. Some of these advantages are dose adjustability, drug absorption improvement, constant release profile, etc. In this research, a new composite of poly-lactic-co-glycolic acid and hyaluronic acid was designed and prepared in the form of implants containing triptorelin acetate for administration as an injection under the skin (subcutaneously in arm or thigh area. The manufactured implants characterized by Fourier transform infrared spectroscopy, thermas gravimetric analysis, X-ray diffraction and scanning electron microscopy to assess different aspects of structure and morphology. The drug release profile was assessed by high performance liquid chromatography. These characterizations confirmed that the newly designed drug delivery has a good stability during manufacturing process. The release pattern of the implant was also studied and revealed that the release of the model drug follows a zero-order and erosion mechanism. The compatibility between the components of the newly designed implants and the release profile of the delivery system make it a promising device for drug delivery.

  3. Methotrexate Nanoparticles Prepared with Codendrimer from Polyamidoamine (PAMAM) and Oligoethylene Glycols (OEG) Dendrons: Antitumor Efficacy in Vitro and in Vivo

    Zhao, Yanna; Guo, Yifei; Li, Ran; Wang, Ting; Han, Meihua; Zhu, Chunyan; Wang, Xiangtao

    2016-07-01

    The novel methotrexate-loaded nanoparticles (MTX/PGD NPs) prepared with amphiphilic codendrimer PGD from polyamidoamine and oligothylene glycol dendrons were obtained via antisolvent precipitation method augmented by ultrasonication. Based on the excellent hydrophility of PGD, the drug-loaded nanoparticles could be investigated easily with the high drug-loading content (~85.2%, w/w). The MTX/PGD NPs possessed spherical morphology, nanoscaled particle size (approximately 182.4 nm), and narrow particle size distribution. Release of MTX from MTX/PGD NPs showed a sustained release manner and completed within 48 h. Hemolytic evaluation indicated MTX/PGD NPs presented good blood compatibility, and the cytotoxicity of nanoparticles against breast cancer cells in vitro, biodistribution in tumor tissue, and antitumor efficacy in vivo were enhanced significantly compared to MTX injection. According to the higher drug-loading content, enhanced antitumor efficacy, and appropriate particle size, MTX/PGD NPs as the drug delivery systems could have potential application for cancer chemotherapy in clinic.

  4. Preparation of Cylinder-Shaped Porous Sponges of Poly(L-lactic acid), Poly(DL-lactic-co-glycolic acid), and Poly(ε-caprolactone)

    2014-01-01

    Design of mechanical skeletons of biodegradable synthetic polymers such as poly(L-lactic acid) (PLLA), poly(DL-lactic-co-glycolic acid) (PLGA), and poly( ε -caprolactone) (PCL) is important in the construction of the hybrid scaffolds of biodegradable synthetic polymers and naturally derived polymers such as collagen. In this study, cylinder-shaped PLLA, PLGA, and PCL sponges were prepared by the porogen leaching method using a cylinder model. The effects of polymer type, polymer fraction, cyl...

  5. Biocompatibility and drug release behavior of scaffolds prepared by coaxial electrospinning of poly(butylene succinate) and polyethylene glycol

    Scaffolds constituted by electrospun microfibers of poly(ethylene glycol) (PEG) and poly(butylene succinate) (PBS) were studied. Specifically, coaxial microfibers having different core–shell distributions and compositions were considered as well as uniaxial micro/nanofibers prepared from mixtures of both polymers. Processing conditions were optimized for all geometries and compositions and resulting morphologies (i.e. diameter and surface texture) characterized by scanning electron microscopy. Chemical composition, molecular interactions and thermal properties were evaluated by FTIR, NMR, XPS and differential scanning calorimetry. The PEG component of electrospun fibers could be solubilized by immersion of scaffolds in aqueous medium, giving rise to high porosity and hydrophobic samples. Nevertheless, a small amount of PEG was retained in the PBS matrix, suggesting some degree of mixing. Solubilization was slightly dependent on fiber structure; specifically, the distribution of PEG in the core or shell of coaxial fibers led to higher or lower retention levels, respectively. Scaffolds could be effectively loaded with hydrophobic drugs having antibacterial and anticarcinogenic activities like triclosan and curcumin, respectively. Their release was highly dependent on their chemical structure and medium composition. Thus, low and high release rates were observed in phosphate buffer saline (SS) and SS/ethanol (30:70 v/v), respectively. Slight differences in the release of triclosan were found depending on fiber distribution and composition. Antibacterial activity and biocompatibility were evaluated for both loaded and unloaded scaffolds. - Highlights: • Coaxial microfibers with different hydrophobicities were studied. • The surface morphology of the coaxial fiber shows the distribution of polymers. • Coaxial fiber microstructure favors the polymer molecular orientation. • These hybrid materials have greater advantages for loading and drug release. • PEG

  6. Photoclick Hydrogels Prepared from Functionalized Cyclodextrin and Poly(ethylene glycol) for Drug Delivery and in Situ Cell Encapsulation.

    Shih, Han; Lin, Chien-Chi

    2015-07-13

    Polymers or hydrogels containing modified cyclodextrin (CD) are highly useful in drug delivery applications, as CD is a cytocompatible amphiphilic molecule that can complex with a variety of hydrophobic drugs. Here, we designed modular photoclick thiol-ene hydrogels from derivatives of βCD and poly(ethylene glycol) (PEG), including βCD-allylether (βCD-AE), βCD-thiol (βCD-SH), PEG-thiol (PEGSH), and PEG-norbornene (PEGNB). Two types of CD-PEG hybrid hydrogels were prepared using radical-mediated thiol-ene photoclick reactions. Specifically, thiol-allylether hydrogels were formed by reacting multiarm PEGSH and βCD-AE, and thiol-norbornene hydrogels were formed by cross-linking βCD-SH and multiarm PEGNB. We characterized the properties of these two types of thiol-ene hydrogels, including gelation kinetics, gel fractions, hydrolytic stability, and cytocompatibility. Compared with thiol-allylether hydrogels, thiol-norbornene photoclick reaction formed hydrogels with faster gelation kinetics at equivalent macromer contents. Using curcumin, an anti-inflammatory and anticancer hydrophobic molecule, we demonstrated that CD-cross-linked PEG-based hydrogels, when compared with pure PEG-based hydrogels, afforded higher drug loading efficiency and prolonged delivery in vitro. Cytocompatibility of these CD-cross-linked hydrogels were evaluated by in situ encapsulation of radical sensitive pancreatic MIN6 β-cells. All formulations and cross-linking conditions tested were cytocompatible for cell encapsulation. Furthermore, hydrogels cross-linked by βCD-SH showed enhanced cell proliferation and insulin secretion as compared to gels cross-linked by either dithiothreitol (DTT) or βCD-AE, suggesting the profound impact of both macromer compositions and gelation chemistry on cell fate in chemically cross-linked hydrogels. PMID:25996903

  7. Biocompatibility and drug release behavior of scaffolds prepared by coaxial electrospinning of poly(butylene succinate) and polyethylene glycol

    Llorens, E.; Ibañez, H. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Valle, L.J. del, E-mail: luis.javier.del.valle@upc.edu [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, J. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CrNE), Universitat Politècnica de Catalunya, Edifici C, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain)

    2015-04-01

    Scaffolds constituted by electrospun microfibers of poly(ethylene glycol) (PEG) and poly(butylene succinate) (PBS) were studied. Specifically, coaxial microfibers having different core–shell distributions and compositions were considered as well as uniaxial micro/nanofibers prepared from mixtures of both polymers. Processing conditions were optimized for all geometries and compositions and resulting morphologies (i.e. diameter and surface texture) characterized by scanning electron microscopy. Chemical composition, molecular interactions and thermal properties were evaluated by FTIR, NMR, XPS and differential scanning calorimetry. The PEG component of electrospun fibers could be solubilized by immersion of scaffolds in aqueous medium, giving rise to high porosity and hydrophobic samples. Nevertheless, a small amount of PEG was retained in the PBS matrix, suggesting some degree of mixing. Solubilization was slightly dependent on fiber structure; specifically, the distribution of PEG in the core or shell of coaxial fibers led to higher or lower retention levels, respectively. Scaffolds could be effectively loaded with hydrophobic drugs having antibacterial and anticarcinogenic activities like triclosan and curcumin, respectively. Their release was highly dependent on their chemical structure and medium composition. Thus, low and high release rates were observed in phosphate buffer saline (SS) and SS/ethanol (30:70 v/v), respectively. Slight differences in the release of triclosan were found depending on fiber distribution and composition. Antibacterial activity and biocompatibility were evaluated for both loaded and unloaded scaffolds. - Highlights: • Coaxial microfibers with different hydrophobicities were studied. • The surface morphology of the coaxial fiber shows the distribution of polymers. • Coaxial fiber microstructure favors the polymer molecular orientation. • These hybrid materials have greater advantages for loading and drug release. • PEG

  8. Estudo comparativo entre manitol e polietilenoglicol no preparo intestinal para colonoscopia Manitol versus polyethylene glycol in bowel preparation for colonoscopy

    Marcelo Alexandre Pinto de Britto

    2009-06-01

    Full Text Available OBJETIVOS: O estudo visa comparar o preparo intestinal para colonoscopia com manitol a 10%, com o uso de polietilenoglicol (PEG. Levou-se em conta o custo de cada preparo, tolerabilidade, eficácia, e alterações bioquímicas causadas pela administração. MÉTODOS: Desenvolveu-se um ensaio clínico randomizado, duplo-cego, unicêntrico. Pacientes que já haviam feito o exame foram excluídos. Fez-se a dosagem de hematócrito, sódio, potássio e cloretos antes e depois do preparo. Escalas de sintomatologia e eficácia foram utilizadas. O custo foi calculado pelo volume médio necessário para obter-se evacuação com líquido claro sem resíduos. RESULTADOS: Foi necessário um litro a mais de solução de PEG para o preparo. Apesar disso, a tolerabilidade desta solução foi melhor. Na avaliação do colonoscopista sobre a qualidade do preparo, o manitol obteve vantagem. Não houveram alterações bioquímicas significativas, e o custo foi comparável. CONCLUSÃO: O manitol, apesar de parecer provocar mais sintomatologia nos pacientes, é mais eficaz na limpeza do cólon. Apesar de não ter seu uso endossado pelos últimos consensos internacionais, mostra-se seguro e eficaz. O PEG torna-se de custo vantajoso quando comprado pelo paciente, porém o manitol é mais barato em ambiente hospitalar.OBJECTIVES: The present study aims to analyze bowel preparation for colonoscopy with mannitol compared to polyethylene glycol (PEG. Variables were the cost of preparation, patient acceptance, efficacy, and biochemical imbalances due to the use. METHODS: A randomized, double-blind, unicentric clinical trial was designed. Patients already submitted to colonoscopies were excluded. Haematocrit, sodium, potassium, and chloride were evaluated before and after the administration. Symptom and efficacy scores were determined, and the cost was calculated by the average volume of solution necessary to produce a clear-liquid passage. RESULTS: It took one liter more

  9. Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process

    F Bonet; K Tekaia-Elhsissen; K Vijaya Sarathy

    2000-06-01

    Noble metal powders (Au, Ag, Pt, Pd and Ru) have been synthesized by the polyol process in both the nanometer and submicron scales (sans Pd, Pt and Ru). They have been characterized by both microscopic (TEM and SEM) as well as spectroscopic techniques (FT-IR and XPS). Infrared spectroscopy was employed to study the colloid particles in the presence of ethylene glycol and PVP and the results show that the interaction between the organic phase and the metal particles vary according to the particle size. The role of the solvent, ethylene glycol, during the reduction process was also investigated and we observe formation of >C=O vibration band after the reduction process implying that the solvent reduces the metal ions thereby getting oxidized. XPS measurements carried out on the colloidal sols have shown the presence of the organic phase adsorbed onto the metal particles.

  10. Preparation and properties of polyrotaxane from -cyclodextrin and poly(ethylene glycol) with poly(vinyl alcohol)

    Mohammad Ali Semsarzadeh; Sahar Amiri

    2013-11-01

    –Cyclodextrin (-CD) was found to form inclusion complexes with poly(ethylene glycol) (PEG) having a crystalline state in high yields, which have been investigated extensively in the past. Formation of an inclusion complex depends strongly on structure, molecular weight and geometry of the polymer. Development of a dicomponent inclusion complex (DIC) of PEG and -CD in the presence of poly(vinyl alcohol) (PVA) and initiation of hexagonal crystals upon sonication have exhibited various microstructures. Formation of the new inclusion complex in PVA heavily depends on the concentration of PVA, temperature and sonication time. The complexes produced are characterized by FTIR, HNMR spectra and powder X-ray. 1HNMR of the complexes demonstrate that their stoichiometric ratio is 2:1 (two ethylene glycol units and one -CD). X-ray patterns of PEG–-CD complex indicate that the -CD forms channels whereas PEG/-CD/PVA creates cage-type structures.

  11. Preparation of tissue engineering porous scaffold with poly(lactic acid) and polyethylene glycol solution blend by solvent-casting/particulate-leaching

    Polyethylene glycol/poly(lactic acid) solution blend is employed as the raw materials to prepare porous scaffold of potential usage in tissue engineering. The solution blend can be naturally introduced in the classical solvent casting/particular leaching technique in porous matrix preparation. The PEG presence is to modify the degradation behavior of scaffolds to fit particular requirements in tissue engineering. The porous matrix of PEG/PLA with various weight ratios are made with pores size ∼250 μm. The SEM characterizations have been done to investigate the porous morphology of products, the results indicate that though with the clear semi-miscibility feature of PEG/PLA blends, the macro-structure is not significantly affected by the PEG content percentage. The degradation results show an enhanced weight loss rate with the presence of PEG as expected. (paper)

  12. Preparation of poly(trimethyl-2-methacroyloxyethylammonium chloride-co-ethylene glycol dimethacrylate) monolith and its application in solid phase microextraction of brominated flame retardants.

    Yang, Ting-ting; Zhou, Lin-feng; Qiao, Jun-qin; Lian, Hong-zhen; Ge, Xin; Chen, Hong-yuan

    2013-05-24

    A capillary poly(trimethyl-2-methacroyloxyethylammonium chloride-co-ethylene glycol dimethacrylate) monolith was in situ synthesized by thermally initiated free radical co-polymerization using trimethyl-2-methacroyloxyethylammonium chloride (MATE) and ethylene glycol dimethacrylate (EGDMA) as functional monomer and cross-linker, respectively. N,N-dimethylformamide and polyethylene glycol 6000 were used as solvent and porogen, respectively. The morphology and porous structure of the resulting monoliths were assessed by scanning electron microscope. In order to prepare practically useful poly(MATE-co-EGDMA) monoliths with low flow resistance and good mechanical strength, some parameters such as PEG-6000 to DMF ratio, total monomer to porogen ratio, and crosslinker to monomer ratio were optimized systematically. Moreover, the extraction mechanism was evaluated using two series of compounds, alkylbenzenes and weak acids, as model compounds on poly(MATE-co-EGDMA) monoliths as liquid chromatographic stationary phase. Finally, the monoliths were applied as the solid phase microextraction medium, and a simple off-line method for simultaneous determination of three brominated flame retardants, 2,4,6-tribromophenol (TBP), tetrabromobisphenol A (TBBPA) and 4,4'-dibrominated diphenyl ether (DBDPE), in environmental waters was developed by coupling the polymer monolith microextraction to HPLC with UV detection. The regression equations for these three brominated flame retardants showed good linearity from their limit of quantification to 5000ng/mL. The limits of detection were 0.20, 0.15 and 0.10ng/mL for TBP, TBBPA and DBDPE, respectively. The recovery of the proposed method was 78.7-106.1% with intra-day relative standard deviation of 1.3-4.4%. PMID:23602644

  13. Polyethylene glycol (PEG)-dendron phospholipids as innovative constructs for the preparation of super stealth liposomes for anticancer therapy.

    Pasut, Gianfranco; Paolino, Donatella; Celia, Christian; Mero, Anna; Joseph, Adrian Steve; Wolfram, Joy; Cosco, Donato; Schiavon, Oddone; Shen, Haifa; Fresta, Massimo

    2015-02-10

    Pegylation of nanoparticles has been widely implemented in the field of drug delivery to prevent macrophage clearance and increase drug accumulation at a target site. However, the shielding effect of polyethylene glycol (PEG) is usually incomplete and transient, due to loss of nanoparticle integrity upon systemic injection. Here, we have synthesized unique PEG-dendron-phospholipid constructs that form super stealth liposomes (SSLs). A β-glutamic acid dendron anchor was used to attach a PEG chain to several distearoyl phosphoethanolamine lipids, thereby differing from conventional stealth liposomes where a PEG chain is attached to a single phospholipid. This composition was shown to increase liposomal stability, prolong the circulation half-life, improve the biodistribution profile and enhance the anticancer potency of a drug payload (doxorubicin hydrochloride). PMID:25499917

  14. Preparation and Evaluation of Poly(Ethylene Glycol)-Poly(Lactide) Micelles as Nanocarriers for Oral Delivery of Cyclosporine A

    Zhang, Yanhui; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Fan, Yating; Huang, Yanqing; Liu, Yan

    2010-06-01

    A series of monomethoxy poly(ethylene glycol)-poly(lactide) (mPEG-PLA) diblock copolymers were designed according to polymer-drug compatibility and synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and oral delivery of Cyclosporine A (CyA). CyA was efficiently encapsulated into the micelles with nanoscaled diameter ranged from 60 to 96 nm with a narrow size distribution. The favorable stabilities of CyA-loaded polymeric micelles were observed in simulated gastric and intestinal fluids. The in vitro drug release investigation demonstrated that drug release was retarded by polymeric micelles. The enhanced intestinal absorption of CyA-loaded polymeric micelles, which was comparable to the commercial formulation of CyA (Sandimmun Neoral®), was found. These suggested that polymeric micelles might be an effective nanocarrier for solubilization of poorly soluble CyA and further improving oral absorption of the drug.

  15. Does Polyethylene Glycol (PEG) Plus Ascorbic Acid Induce More Mucosal Injuries than Split-Dose 4-L PEG during Bowel Preparation?

    Kim, Min Sung; Park, Jongha; Park, Jae hyun; Kim, Hyung Jun; Jang, Hyun Jeong; Joo, Hee Rin; Kim, Ji Yeon; Choi, Joon Hyuk; Heo, Nae Yun; Park, Seung Ha; Kim, Tae Oh; Yang, Sung Yeon

    2016-01-01

    Background/Aims The aims of this study were to compare the bowel-cleansing efficacy, patient affinity for the preparation solution, and mucosal injury between a split dose of poly-ethylene glycol (SD-PEG) and low-volume PEG plus ascorbic acid (LV-PEG+Asc) in outpatient scheduled colonoscopies. Methods Of the 319 patients, 160 were enrolled for SD-PEG, and 159 for LV-PEG+Asc. The bowel-cleansing efficacy was rated according to the Ottawa bowel preparation scale. Patient affinity for the preparation solution was assessed using a questionnaire. All mucosal injuries observed during colonoscopy were biopsied and histopathologically reviewed. Results There was no significant difference in bowel cleansing between the groups. The LV-PEG+Asc group reported better patient acceptance and preference. There were no significant differences in the incidence or characteristics of the mucosal injuries between the two groups. Conclusions Compared with SD-PEG, LV-PEG+Asc exhibited equivalent bowel-cleansing efficacy and resulted in improved patient acceptance and preference. There was no significant difference in mucosal injury between SD-PEG and LV-PEG+Asc. Thus, the LV-PEG+Asc preparation could be used more effectively and easily for routine colonoscopies without risking significant mucosal injury. PMID:26260754

  16. Preparation of poly(polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties[Radiation; pH-responsive; Hydrogels; Insulin; Oral delivery

    Park, S.-E.; Nho, Y.-C. E-mail: ycnho@kaeri.re.kr; Kim, H.-I

    2004-02-01

    The pH-responsive copolymer hydrogels were prepared with the monomers of polyethylene glycol methacrylate and acrylic acid based on {gamma}-ray irradiation technique. The gel content of these copolymer hydrogels varied depending on both the composition of monomers and the radiation dose. Maximum gel percent and degree of crosslinking were obtained at the composition of equal amount of comonomers. These copolymer hydrogels did not show any noticeable change in swelling at lower pH range. However they showed an abrupt increase in swelling at higher pH range due to the ionization of carboxyl groups. This pH-responsive swelling behavior was applied for the insulin carrier via oral delivery. Insulin-loaded copolymer hydrogels released most of their insulin in the simulated intestinal fluid which had a pH of 6.8 but not in the simulated gastric fluid which had a pH of 1.2.

  17. Catalytic steam reforming of tar derived from steam gasification of sunflower stalk over ethylene glycol assisting prepared Ni/MCM-41

    Highlights: • Ni/MCM-41 was prepared by EG-assisted co-impregnation method. • EG-assisted co-impregnation method resulted in Ni particles well dispersed on MCM-41. • Ni/MCM-41-EG catalyst had high catalytic activity for tar reforming. • The highest H2 gas yield was obtained when using 20 wt.% Ni/MCM-41-EG. • The catalysts were reused up to 5 cycles without any serious deactivation. - Abstract: Ethylene glycol (EG) assisted impregnation of nickel catalyst on MCM-41 (Ni/MCM-41-EG) was performed and applied for steam reforming of tar derived from biomass. The catalyst was characterized by SEM–EDX, BET, XRD, and TPR. It is found that smaller nickel particles were well dispersed on MCM-41 and better catalytic activity was shown for the Ni/MCM-41-EG when compared with the catalyst of Ni/MCM-41 prepared by using the conventional impregnation method. H2 yield increased approximately 8% when using 20 wt.% Ni/MCM-41-EG instead of 20 wt.% Ni/MCM-41 for the steam reforming of tar derived from sunflower stalk. The catalyst reusability was also tested up to five cycles, and no obvious activity reduction was observed. It indicates that EG assisted impregnation method is a good way to prepare metal loaded porous catalyst with high catalytic activity, high loading amount and long-term stability for the tar reforming

  18. Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic-inorganic hybridization combined with sucrose and polyethylene glycol imprinting

    A new porous sorbent for wastewater treatment of metal ions was synthesized by covalent grafting of molecularly imprinted organic-inorganic hybrid on silica gel. With sucrose and polyethylene glycol 4000 (PEG 4000) being synergic imprinting molecules, covalent surface coating on silica gel was achieved by using polysaccharide-incorporated sol-gel process starting from the functional biopolymer, chitosan and an inorganic epoxy-precursor, gamma-glycidoxypropyltrimethoxysiloxane (GPTMS) at room temperature. The prepared porous sorbent was characterized by using simultaneous thermogravimetry and differential scanning calorimeter (TG/DSC), scanning electron microscopy (SEM), nitrogen adsorption porosimetry measurement and X-ray diffraction (XRD). Copper ion, Cu2+, was chosen as the model metal ion to evaluate the effectiveness of the new biosorbent in wastewater treatment. The influence of epoxy-siloxane dose, buffer pH and co-existed ions on Cu2+ adsorption was assessed through batch experiments. The imprinted composite sorbent offered a fast kinetics for the adsorption of Cu2+. The uptake capacity of the sorbent imprinted by two pore-building components was higher than those imprinted with only a single component. The dynamic adsorption in column underwent a good elimination of Cu2+ in treating electric plating wastewater. The prepared composite sorbent exhibited high reusability. Easy preparation of the described porous composite sorbent, absence of organic solvents, cost-effectiveness and high stability make this approach attractive in biosorption

  19. Preparation of complementary glycosylated hyperbranched polymer/poly(ethylene glycol) brushes and their selective interactions with hepatocytes.

    Liang, Su; Yu, Shan; Gao, Changyou

    2016-09-01

    Selective cell adhesion and migration, which mimics the natural biological events in vivo, is very important for the right repair of damaged tissues. In this study, glycosylated hyperbranched polymers (LA-HPMA) were synthesized, and were grafted on glass slide through dopamine deposition with different densities adjusted by co-grafting of poly(ethylene glycol) (PEG). The LA-HPMA and PEG molecular brushes were characterized by X-ray photoelectron spectroscopy (XPS), quartz crystal microbalance with dissipation (QCM-d) and ellipsometry. The adhesion of human hepatoma (HepG2) cells was promoted on the surface of a higher LA-HPMA density, and the migration rate was accelerated from 6.4μm/h on PEG surface to 12.7μm/h on 75% LA-HPMA surface. By contrast, the density and spreading area of mouse embryonic fibroblast (NIH3T3) cells were not significantly influenced by the LA-HPMA density, and the migration rate did not change significantly on all types of surfaces either. Therefore, the specific interactions of carbohydrate-protein can be used to modulate cell behaviors in vitro, for example the selective adhesion and migration of HepG2 cells. PMID:27209383

  20. Platinum nanoparticles on carbon-nanotube support prepared by room-temperature reduction with H2 in ethylene glycol/water mixed solvent as catalysts for polymer electrolyte membrane fuel cells

    Zheng, Yuying; Dou, Zhengjie; Fang, Yanxiong; Li, Muwu; Wu, Xin; Zeng, Jianhuang; Hou, Zhaohui; Liao, Shijun

    2016-02-01

    Polyol approach is commonly used in synthesizing Pt nanoparticles in polymer electrolyte membrane fuel cells. However, the application of this process consumes a great deal of time and energy, as the reduction of precursors requires elevated temperatures and several hours. Moreover, the ethylene glycol and its oxidizing products bound to Pt are difficult to remove. In this work, we utilize the advantages of ethylene glycol and prepare Pt nanoparticles through a room-temperature hydrogen gas reduction in an ethylene glycol/water mixed solvent, which is followed by subsequent harvesting by carbon nanotubes as electrocatalysts. This method is simple, facile, and time-efficient, as the entire room-temperature reduction process is completed in a few minutes. As the solvent changes from water to an ethylene glycol/water mix, the size of Pt nanoparticles varies from 10 to 3 nm and their shape transitions from polyhedral to spherical. Pt nanoparticles prepared in a 1:1 volume ratio mixture of ethylene glycol/water are uniformly dispersed with an average size of ∼3 nm. The optimized carbon nanotube-supported Pt electrocatalyst exhibits excellent methanol oxidation and oxygen reduction activities. This work demonstrates the potential use of mixed solvents as an approach in materials synthesis.

  1. Preparation of (Bi,Pb)2Sr2Ca2Cu3Ox precursor powders by a modified polyethylene glycol based sol-gel process

    Grivel, Jean-Claude; Andersen, N.H.

    2002-01-01

    A modified sol-gel process based on polyethylene glycol has been developed for preparing (Bi,Pb)(2)Sr2Ca2Cu3Ox precursor powders in view of Ag-sheeted tape manufacture. A careful control of the pH and concentration temperature yields an amorphous gel, which can be converted to a fine and extremely...

  2. 用管式反应技术制备乙二醇乙醚乙酸酯%Preparation of Ethylene Glycol Monoethyl Ether Acetate Using a Tubular Reactor

    蔡振云; 卢祖国; 李小波

    2003-01-01

    Ethylene glycol monoethyl ether acetate (EGEA), an excellent solvent, is prepared with ethylene oxide(EO) and ethyl acetate (EA) in a tubular reactor under suitable reaction condition. The single circulation yield canreach 81%. This technology is not only safe but also makes it possible to continuously produce EGEA in industry,with low content of high boiling point by-products.

  3. Preparation, characterization, and in vivo study of rhein-loaded poly(lactic-co-glycolic acid nanoparticles for oral delivery

    Yuan Z

    2015-04-01

    Full Text Available Zheng Yuan, Xinhua GuDepartment of Gastrointestinal Surgery, Suzhou Municipal Hospital, Suzhou, People’s Republic of ChinaAbstract: A novel rhein formulation based on poly(lactic-co-glycolic acid (PLGA nanoparticles (NPs suitable for oral administration was developed in this study. The designed nanosystems were obtained by a modified spontaneous emulsification solvent diffusion method. The morphology of rhein-loaded PLGA NPs showed a spherical shape with a smooth surface, without any particle aggregation. Mean size of the NPs was 140.5±4.3 nm, and the zeta potential was -16.9±3.1 mV. The average drug loading was 3.9%±0.7%, and encapsulation efficiency was 84.5%±6.2%. Meanwhile, NPs are characterized by the slower release (only about 70% of rhein is released within 5 hours, and the model that fitted best for rhein released from the NPs was Higuchi kinetic model with correlation coefficient r=0.9993, revealing that rhein could be controlled released from the NPs. In vivo, NPs altered the distribution of rhein, and the half-life after oral administration was prolonged remarkably more than those of suspensions (22.6 hours vs 4.3 hours. The pharmacokinetic results indicated that the NPs had sustained-release efficacy. The area under the curve0–∞ of the NPs formulation was 3.07-fold higher than that of suspensions, suggesting that the encapsulated rhein had almost been absorbed in rats over the period of 12 hours. Although rhein-loaded PLGA NP formulations are hopefully used as a chemotherapeutic or adjuvant agent for human gastric cancer (SGC-7901, their in vivo antitumor effect and mechanisms at the molecular level still need further study.Keywords: rhein, PLGA, nanoparticles, release, pharmacokinetics, SGC-7901

  4. Ethylene glycol assisted preparation of Ti(4+)-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins.

    Ma, Xiangdong; Ding, Chun; Yao, Xin; Jia, Li

    2016-07-27

    The reversible protein phosphorylation is very important in regulating almost all aspects of cell life, while the enrichment of phosphorylated proteins still remains a technical challenge. In this work, polydopamine (PDA) modified magnetic particles with rough surface (rPDA@Fe3O4) were synthesized by introduction of ethylene glycol in aqueous solution. The PDA coating possessing a wealth of catechol hydroxyl groups could serve as an active medium to immobilize titanium ions through the metal-catechol chelation, which makes the fabrication of titanium ions modified rPDA@Fe3O4 particles (Ti(4+)-rPDA@Fe3O4) simple and very convenient. The spherical Ti(4+)-rPDA@Fe3O4 particles have a surface area of 37.7 m(2) g(-1) and superparamagnetism with a saturation magnetization value of 38.4 emu g(-1). The amount of Ti element in the particle was measured to be 3.93%. And the particles demonstrated good water dispersibility. The particles were used as adsorbents for capture of phosphorylated proteins and they demonstrated affinity and specificity for phosphorylated proteins due to the specific binding sites (Ti(4+)). Factors affecting the adsorption of phosphorylated proteins on Ti(4+)-rPDA@Fe3O4 particles were investigated. The adsorption capacity of Ti(4+)-rPDA@Fe3O4 particles for κ-casein was 1105.6 mg g(-1). Furthermore, the particles were successfully applied to isolate phosphorylated proteins in milk samples, which demonstrated that Ti(4+)-rPDA@Fe3O4 particles had potential application in selective separation of phosphorylated proteins. PMID:27251945

  5. Preparation of a novel sorptive stir bar based on vinylpyrrolidone-ethylene glycol dimethacrylate monolithic polymer for the simultaneous extraction of diazepam and nordazepam from human plasma.

    Torabizadeh, Mahsa; Talebpour, Zahra; Adib, Nuoshin; Aboul-Enein, Hassan Y

    2016-04-01

    A new monolithic coating based on vinylpyrrolidone-ethylene glycol dimethacrylate polymer was introduced for stir bar sorptive extraction. The polymerization step was performed using different contents of monomer, cross-linker and porogenic solvent, and the best formulation was selected. The quality of the prepared vinylpyrrolidone-ethylene glycol dimethacrylate stir bars was satisfactory, demonstrating good repeatability within batch (relative standard deviation ultrasound-assisted liquid desorption, followed by high-performance liquid chromatography with ultraviolet detection for the simultaneous determination of diazepam and nordazepam in human plasma samples. To optimize the extraction step, a three-level, four-factor, three-block Box-Behnken design was applied. Under the optimum conditions, the analytical performance of the proposed method displayed excellent linear dynamic ranges for diazepam (36-1200 ng/mL) and nordazepam (25-1200 ng/mL), with correlation coefficients of 0.9986 and 0.9968 and detection limits of 12 and 10 ng/mL, respectively. The intra- and interday recovery ranged from 93 to 106%, and the relative standard deviations were less than 6%. Finally, the proposed method was successfully applied to the analysis of diazepam and nordazepam at their therapeutic levels in human plasma. The novelty of this study is the improved polarity of the stir bar coating and its application for the simultaneous extraction of diazepam and its active metabolite, nordazepam in human plasma sample. The method was more rapid than previously reported stir bar sorptive extraction techniques based on monolithic coatings, and exhibited lower detection limits in comparison with similar methods for the determination of diazepam and nordazepam in biological fluids. PMID:26840622

  6. Novel 4-Arm Poly(Ethylene Glycol-Block-Poly(Anhydride-Esters Amphiphilic Copolymer Micelles Loading Curcumin: Preparation, Characterization, and In Vitro Evaluation

    Li Lv

    2013-01-01

    Full Text Available A novel 4-arm poly(ethylene glycol-block-poly(anhydride-esters amphiphilic copolymer (4-arm PEG-b-PAE was synthesized by esterization of 4-arm poly(ethylene glycol and poly(anhydride-esters which was obtained by melt polycondensation of α-, ω-acetic anhydride terminated poly(L-lactic acid. The obtained 4-arm PEG-b-PAE was characterized by 1H-NMR and gel permeation chromatography. The critical micelle concentration of 4-arm PEG-b-PAE was 2.38 μg/mL. The curcumin-loaded 4-arm PEG-b-PAE micelles were prepared by a solid dispersion method and the drug loading content and encapsulation efficiency of the micelles were 7.0% and 85.2%, respectively. The curcumin-loaded micelles were spherical with a hydrodynamic diameter of 151.9 nm. Curcumin was encapsulated within 4-arm PEG-b-PAE micelles amorphously and released from the micelles, faster in pH 5.0 than pH 7.4, presenting one biphasic drug release pattern with rapid release at the initial stage and slow release later. The hemolysis rate of the curcumin-loaded 4-arm PEG-b-PAE micelles was 3.18%, which was below 5%. The IC50 value of the curcumin-loaded micelles against Hela cells was 10.21 μg/mL, lower than the one of free curcumin (25.90 μg/mL. The cellular uptake of the curcumin-loaded micelles in Hela cell increased in a time-dependent manner. The curcumin-loaded micelles could induce G2/M phase cell cycle arrest and apoptosis of Hela cells.

  7. In-situ preparation, characterization and anticorrosion property of polypropylene glycol/silver nanoparticles composite for mild steel corrosion in acid solution.

    Solomon, Moses M; Umoren, Saviour A

    2016-01-15

    A novel polypropylene glycol/silver nanoparticles (PPG/AgNPs) composite was prepared in-situ using natural honey as the reducing and capping agent. Characterization of the composite was done by UV-Vis spectroscopy, FTIR, TEM, XRD, and EDS. The TEM results reveal that the nanoparticles are spherical in shape. XRD and EDS results confirm the presence of elemental silver in the polymer matrix. The influence of the prepared composite on the corrosion inhibition of mild steel in 0.5M H2SO4 solution was studied by weight loss, electrochemical, SEM, EDS, and water contact angle measurements. Results show that PPG/AgNPs is effective inhibitor for mild steel in 0.5M H2SO4 solution and adsorbs onto the metal surface via chemisorption mechanism. Maximum inhibition efficiency of 94% is afforded by the highest studied concentration of PPG/AgNPs at 333K from weight loss measurements. Potentiodynamic polarization results reveal that the composite acts as a mixed-type corrosion inhibitor. Adsorption of PPG/AgNPs composite onto the mild steel surface follows Temkin adsorption isotherm. The SEM, EDS, and water contact angle images confirm the formation of PPG/AgNPs protective film on the mild steel surface. PMID:26433475

  8. Preparation and Bioactivity Properties of a Novel Composite Membrane of Fructose Mediated β-Tricalcium Pyrophosphate/(Polyethylene Glycol/Chitosan for Guided Tissue Regeneration

    Jian-Wen Wang

    2015-01-01

    Full Text Available A novel composite membrane of β-tricalcium pyrophosphate (β-TCP and fructose- (F- mediated chitosan/poly(ethylene glycol (CS/PEG was prepared by thermally induced phase separation technique. The prepared composite membranes were characterized using scanning electron microscopy (SEM and X-ray diffraction (XRD. The mechanical property, swelling, degradation, and cytotoxicity of the composite membranes were evaluated in vitro with respect to its potential for use as biodegradable guided tissue regeneration (GTR membrane. In vitro degradation tests showed the composite membrane with a controllable degradation rate when changing the β-TCP content. The incorporation of β-TCP granules also caused a significant enhancement of tensile strength. When β-TCP content is controlled to 50 wt%, homogeneous composite membranes with well mechanical property and enzymatic degradation rate can be obtained. Cytotoxicity assay demonstrates that the composite membranes were nontoxic and had very good cell compatibility. Most importantly, the release of calcium ions and glucosamine from the composite membranes was proved to increase the cell proliferation of NIH3T3. The results of this study have indicated that this novel F-β-TCP/CS/PEG composite can be a suitable material for GTR applications.

  9. Non-covalent nano-adducts of co-poly(ester amide) and poly(ethylene glycol): preparation, characterization and model drug-release studies.

    Legashvili, Irakli; Nepharidze, Nino; Katsarava, Ramaz; Sannigrahi, Biswajit; Khan, Ishrat M

    2007-01-01

    Biodegradable, biocompatible poly(ester amide)s (co-PEAs), composed of amino acids, fatty diols and carboxylic acids, have been synthesized. To improve the performance of co-PEAs in Federal Drug Administration-approved solvents such as water and ethanol, these polymers were complexed with poly(ethylene glycol) (PEG) of 10 kDa molecular mass have been prepared by solution blending. The non-covalent adducts were purified by precipitation into hexanes. Co-PEAs are soluble in organic solvents but are insoluble in water and ethanol; however, the co-PEA/PEG (0.8:1, w/w) adducts are soluble in ethanol and slightly soluble in water. 2D-NOESY NMR spectroscopy suggests that the non-covalent adducts are held together by multiple non-covalent interactions between the -CH2- groups of the two polymers (co-PEA and PEG). Differential scanning calorimetry studies indicate that the two polymers are interacting in the non-covalent adducts; the thermal properties of the adducts are different from those of the pure polymers. The solid-state adduct structures have been determined by atomic force microscopy (AFM). By one sample preparation method, nanoscale pancake-like structures were observed with an average diameter of 260 nm and an average height of 16 nm. Films of co-PEAs and (co-PEA)/PEG adducts containing Rhodamine B Base (RhBB), a model hydrophobic drug, were prepared. From the adduct/RhBB film containing 3% RhBB, 20% of the total RhBB was released within the first 2 h. Film and adduct composition may be varied to obtain different release profiles. The studies reported here demonstrate that non-covalent conjugation is a relatively easy and effective approach in developing new materials for application as biomaterials. PMID:17623550

  10. Polyethylene Glycol 3350

    Polyethylene glycol 3350 is used to treat occasional constipation. Polyethylene glycol 3350 is in a class of medications ... Polyethylene glycol 3350 comes as a powder to be mixed with a liquid and taken by mouth. ...

  11. Preparation of Hemocompatible Poly(lactic-co-glycolic acid)-F127 Nanospheres and Their Application to Biosensor for Analysis of Whole Blood.

    Sun, Chong; Niu, Yanlian; Yang, Xujie; Liu, Min; Yang, Xiaodi; Huang, Xiaohua; Zhao, Wenbo

    2015-01-01

    In this paper, the novel poly(lactic-co-glycolic acid)-F127 nanospheres (PLGA-F127 NSs) were synthesized and used to establish an amperometric glucose biosensor that can be applied in whole blood directly. This property of glucose biosensor was based on the antibiofouling property of PLGA-F127 NSs. More details of preparing PLGA-F127 NSs and immobilizing glucose oxidase (GOx) on (PLGA-F127)/glass carbon electrode (GCE) were presented. Then, the electrochemical behaviors of the biosensor in whole blood were studied. The cyclic voltammetric results indicated that GOx immobilized on PLGA-F127 NSs exhibited direct electron transfer reaction, which led to stable amperometric biosensing for glucose with a detection limit of 5.57 x 10(-6) M (S/N = 3). The glucose biosensor did not respond to ascorbic acid (AA) and uric.acid (UA) at their concentration normally encountered in blood. The development of materials science will bring significant input to high-performance biosensors relevant to diagnostics and therapy of interest for human health. PMID:26328311

  12. Preparation of polyethylene glycol acrylate as phase change material%丙烯酸聚乙二醇酯相变大单体的制备

    张鸿; 王倩倩; 相恒学; 王晓磊

    2011-01-01

    The polyethylene glycol acrylate(PEGA) as phase change material was synthesized via esterification with polyethylene glycol(PEG) 4000 and acryloyl chloride as raw material. The structure and properties of the PEGA were studied by means of infrared spectroscope (IR), polarized light microscope (PLM), differential scanning calorimetry (DSC) and thermogravimetry(TG). The optimum synthesis process of the PEGA was determined by orthogonal experiment. The characteristic absorption peaks of ester bond and ethylenic bond appear in the IR spectra of the PEGA. The PLM images indicate that there is obvious extinction cross section in the PEGA crystal but the crystal radius significantly decreases compared to pure PEG4000. The phase transition temperature of the PEGA is 46.53 X, and the crystallization enthalpy is 163.21 J/g according to the DSC analysis. The TG results demonstrate that the PEGA degrades at 230 t, showing its good heat resistance. A novel crosslinking network solid-solid phase change material can be prepared through curing of the PEGA.%以聚乙二醇(PEG)4000及丙烯酰氯为原料,采用酯化法合成了丙烯酸聚乙二醇酯(PEGA)相变大单体.利用红外光谱(IR)、偏光显微镜( PLM)、差示扫描量热(DSC)、热重(TG)分析等研究了PEGA相变大单体的结构与性能,通过正交实验获得PEGA的最佳合成工艺.IR显示PEGA中出现酯键及C=C的特征峰;PLM显示PEGA晶体仍有明显的结晶消光截面,但相对纯PEG4000而言,其晶体半径明显减小;DSC分析表明PEGA在46.53℃出现结晶峰,结晶焓为163.21 J/g;TG分析表明PEGA在230℃开始降解,耐热性较好.PEGA交联固化后可制得新型交联网络型固-固相变材料.

  13. Preparation and characterization of polylactide/poly(ε-caprolactone-poly(ethylene glycol-poly(ε-caprolactone hybrid fibers for potential application in bone tissue engineering

    Wang YL

    2014-04-01

    Full Text Available YueLong Wang,1,2,* Gang Guo,1,* HaiFeng Chen,2 Xiang Gao,1 RangRang Fan,1 DongMei Zhang,1 LiangXue Zhou2 1State Key Laboratory of Biotherapy and Cancer Center, 2Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China *These authors contributed equally to this paper Abstract: The aim of this study was to develop a kind of osteogenic biodegradable composite graft consisting of human placenta-derived mesenchymal stem cell (hPMSC material for site-specific repair of bone defects and attenuation of clinical symptoms. The novel nano- to micro-structured biodegradable hybrid fibers were prepared by electrospinning. The characteristics of the hybrid membranes were investigated by a range of methods, including Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. Morphological study with scanning electron microscopy showed that the average fiber diameter and the number of nanoscale pores on each individual fiber surface decreased with increasing concentration of poly(ε-caprolactone-poly(ethylene glycol-poly(ε-caprolactone (PCEC. The prepared polylactide (PLA/PCEC fibrous membranes favored hPMSC attachment and proliferation by providing an interconnected, porous, three-dimensional mimicked extracellular environment. What is more, hPMSCs cultured on the electrospun hybrid PLA/PCEC fibrous scaffolds could be effectively differentiated into bone-associated cells by positive alizarin red staining. Given the good cellular response and excellent osteogenic potential in vitro, the electrospun PLA/PCEC fibrous scaffolds could be one of the most promising candidates for bone tissue engineering. Keywords: electrospinning, PLA, PCEC, hPMSCs, bone tissue engineering

  14. Preparation and characterization of chitosan-Polyethylene glycol-polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study.

    Prabha, G; Raj, V

    2016-05-01

    In the present research work, the anticancer drug "curcumin" is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe3 O4 ) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Curcumin drug-loaded Fe3 O4 -CS, Fe3 O4 -CS- PEG and Fe3 O4 -CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183 - 390 nm with a zeta potential value of 26 mV-41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behaviour of curcumin drug-loaded Fe3 O4 -CS, Fe3 O4 -CS-PEG, and Fe3 O4 -CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium (4.5 and 7.4) and temperature (37°C and 45°C), and it was proved that the drug release depends upon the pH medium and temperature in addition to the nature of matrix. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 808-816, 2016. PMID:26996397

  15. Preparation and characterization of paclitaxel-loaded poly lactic acid-co-glycolic acid coating tracheal stent

    Kong Yingying; Zhang Jie; Wang Ting; Qiu Xiaojian; Wang Yuling

    2014-01-01

    Background In-stent restenosis caused by airway granulation poses a challenge due to the high incidence of recurrence after treatment.Weekly applications of anti-proliferative drugs have potential value in delaying the recurrence of airway obstruction.However,it is not practical to subject patients to repeated bronchoscopy and topical drug applications.We fabricated novel pacilitaxel-eluting tracheal stents with sustained and slow pacilitaxel release,which could inhibit the formation of granulation tissue.And we assessed the quality and drug release behaviors of drug-eluting stents (DESs) in vitro.Methods Stents were dipped vertically into a coating solution prepared by dissolving 0.5 g (2% w/v) of poly lactic acid-coglycolic acid (PLGA) and 0.025 g (0.1% w/v) of pacilitaxel in 25 ml of dichloromethane.DES morphology was examined by scanning electron microscopy (SEM).Pacilitaxel release kinetics from these DESs was investigated in vitro by shaking in PBS buffer followed by high performance liquid chromatography (HPLC).Results Using an orthogonal experimental design,we fabricated numerous pacilitaxel/PLGA eluting tracheal stents to assess optimum coating proportions.The optimum coating proportion was 0.1% (w/v) pacilitaxel and 2% (w/v) PLGA,which resulted in total pacilitaxel loading of (16.380 6±0.002 1) mg/stent.By SEM the coating was very smooth and uniform.Pacilitaxel released from DES was at (0.376 3±0.003 8) mg/d,which is a therapeutic level.There was a prolonged,sustained release of pacilitaxel of >40 days.Conclusions Paclitaxel-loaded PLGA coating tracheal stents were successfully developed and evaluated.Quality assessments demonstrated favorable surface morphology as well as sustained and effective drug release behavior,which provides an experimental reference for clinical practitioners.

  16. Preparation, characterization, and in vitro drug release behavior of glutathione-sensitive long-circulation micelles based on polyethylene glycol prodrug.

    Shi, Liyan; Ding, Kaikai; Sun, Xin; Zhang, Ling; Zeng, Tian; Yin, Yihua; Zheng, Hua

    2016-04-01

    In this paper, a kind of glutathione-sensitive polymeric micelles was prepared through assembling in aqueous solution of an amphiphilic polymeric prodrug which was synthesized by linkage of 6-mercaptopurine (6-MP) and polyethylene glycol monomethyl ether using propiolic acid as a connecting arm. The glutathione (GSH)-sensitive strategy is based on a Michael addition-elimination reaction, that is the amphiphilic polymeric prodrug which contains α, β-unsaturated carbonyl group acts as a Michael acceptor to receive the attack of nucleophile - glutathione, and undergoes elimination reaction to release the original drug. Transmission electron microscope observation showed that the polymeric micelles (PMs) had a spherical-like morphology with a mean diameter of 28 ± 3.2 nm. The dynamic light scattering investigation data exhibited that the size and distribution changes of PMs are negligible after being placed for 15 days. In vitro drug release study indicated that only less than 13% of 6-MP was released from the micelles under GSH stimulation at micromolar level, while 34.5, 53.7, and 77.8% accumulative release rates were achieved under GSH stimulation at millimolar level (1, 2 and 10 mM), respectively. The cell inhibition rate of PM solution against HL-60 cells carried out by MTT method reached 85%. The cellular uptake and the intracellular drug release of PMs in HL-60 cells were observed through determining the intracellular 6-MP content by UV-vis spectrophotometer. In vitro macrophage uptake study showed a low phagocytosis rate, indicating the long-circulation ability of the PMs. PMID:26764973

  17. Cardiovascular effects of intravenous administration of propylene glycol and of oxytetracycline in propylene glycol in calves.

    Gross, D R; Kitzman, J V; Adams, H R

    1979-06-01

    Comparisons were made of the acute cardiovascular effects of oxytetracycline, oxytetracycline in propylene glycol, and propylene glycol alone given to conscious dairy calves. The calves were chronically instrumented with intravascular catheters and electromagnetic flowmeter transducers in and on the pulmonary and renal arteries. Injection (IV) of aqueous preparations of oxytetracycline produced no statistically significant (P greater than 0.05) cardiocirculatory changes in these calves. Oxytetracycline in propylene glycol and propylene glycol alone both produced transient (1 to 4 minute) periods of cardiovascular depression characterized by cardiac asystole, systemic hypotension, and decreased pulmonary and renal arterial blood flow. The two preparations, in equivalent doses and volumes, produced statistically similar hemodynamic changes in the calves. The data from this study support the conclusion that the monitored cardiovascular effects of the commercially available oxytetracycline in propylene glycol in the intact, awake calves were due to the solvent propylene glycol. This conclusion is consistent with reports of other injectable products containing the same solvent. PMID:475130

  18. Novel 4-Arm Poly(Ethylene Glycol)-Block-Poly(Anhydride-Esters) Amphiphilic Copolymer Micelles Loading Curcumin: Preparation, Characterization, and In Vitro Evaluation

    Li Lv; Yuanyuan Shen; Min Li; Xiaofen Xu; Mingna Li; Shengrong Guo; Shengtang Huang

    2013-01-01

    A novel 4-arm poly(ethylene glycol)-block-poly(anhydride-esters) amphiphilic copolymer (4-arm PEG-b-PAE) was synthesized by esterization of 4-arm poly(ethylene glycol) and poly(anhydride-esters) which was obtained by melt polycondensation of α -, ω -acetic anhydride terminated poly(L-lactic acid). The obtained 4-arm PEG-b-PAE was characterized by 1H-NMR and gel permeation chromatography. The critical micelle concentration of 4-arm PEG-b-PAE was 2.38  μ g/mL. The curcumin-loaded 4-arm PEG-b-PA...

  19. Polymeric Micelles for Delivery of Poorly Soluble Drugs: Preparation and Anticancer Activity In Vitro of Paclitaxel Incorporated into Mixed Micelles Based on Poly(ethylene Glycol)-Lipid Conjugate and Positively Charged Lipids

    Wang, Junping; MONGAYT, DIMITRY; Torchilin, Vladimir P.

    2005-01-01

    Paclitaxel-loaded mixed polymeric micelles consisting of poly(ethylene glycol)-distearoyl phosphoethanolamine conjugates (PEG-PE), solid triglycerides (ST), and cationic Lipofectin® lipids (LL) have been prepared. Micelles with the optimized composition (PEG-PE/ST/LL/paclitaxel = 12/12/2/1 by weight) had an average micelle size of about 100 nm, and zeta-potential of about 26 mV. Micelles were stable and did not release paclitaxel when stored at 4°C in the darkness (just 2.9% of paclitaxel hav...

  20. Preparation of an antitumor and antivirus agent: chemical modification of α-MMC and MAP30 from Momordica Charantia L. with covalent conjugation of polyethyelene glycol

    Meng Y

    2012-06-01

    Full Text Available Yao Meng,1,2 Shuangfeng Liu,1 Juan Li,3 Yanfa Meng,3 Xiaojun Zhao2,41School of Medical Laboratory Science, Chengdu Medical College, Chengdu, China; 2West China Hospital Laboratory of Nanomedicine and Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, Chengdu, China; 3Key Laboratory of Bio-resources and Eco-environment Ministry of Education/Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, China; 4Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USABackground: Alpha-momorcharin (α-MMC and momordica anti-HIV protein (MAP30 derived from Momordica charantia L. have been confirmed to possess antitumor and antivirus activities due to their RNA-N-glycosidase activity. However, strong immunogenicity and short plasma half-life limit their clinical application. To solve this problem, the two proteins were modified with (mPEG2-Lys-NHS (20 kDa.Methodology/principal findings: In this article, a novel purification strategy for the two main type I ribosome-inactivating proteins (RIPs, α-MMC and MAP30, was successfully developed for laboratory-scale preparation. Using this dramatic method, 200 mg of α-MMC and about 120 mg of MAP30 was obtained in only one purification process from 200 g of Momordica charantia seeds. The homogeneity and some other properties of the two proteins were assessed by gradient SDS-PAGE, electrospray ionization quadruple mass spectrometry, and N-terminal sequence analysis as well as Western blot. Two polyethylene glycol (PEGylated proteins were synthesized and purified. Homogeneous mono-, di-, or tri-PEGylated proteins were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The analysis of antitumor and antivirus activities indicated that the serial PEGylated RIPs preserved moderate activities on JAR choriocarcinoma cells and herpes simplex

  1. Effect of Water Content in Ethylene Glycol Solvent on the Size of ZnO Nanoparticles Prepared Using Microwave Solvothermal Synthesis

    Jacek Wojnarowicz

    2016-01-01

    Full Text Available Zinc oxide nanoparticles (ZnO NPs were obtained by the microwave solvothermal synthesis (MSS method. The precursor of the MSS reaction was a solution of hydrated zinc acetate in ethylene glycol with water addition. It was proved that by controlling the water concentration in the precursor it was possible to control the size of ZnO NPs in a programmed manner. The less the water content in the precursor, the smaller the size of ZnO NPs obtained. The obtained NPs with the average particle size ranging from 25 nm to 50 nm were characterised by homogeneous morphology and a narrow distribution of particle sizes. The following parameters of the obtained ZnO NPs were determined: pycnometric density, specific surface area, phase purity, chemical composition, lattice parameters, average particle size, and particle size distribution. The average size of ZnO NPs was determined using Scherrer’s formula, Nanopowder XRD Processor Demo web application, by converting the results of the specific surface area, and TEM tests using the dark field technique. ZnO morphology and structure were determined using scanning electron microscopy (SEM and transmission electron microscopy (TEM. The test performed by the X-ray powder diffraction (XRD confirmed that crystalline ZnO, pure in terms of phase, had been obtained.

  2. Polyethylene glycol-grafted polystyrene particles

    Meng, Fenghua; Engbers, Gerard H.M.; Feijen, Jan

    2004-01-01

    Densely pegylated particles that can serve as a model system for artificial cells were prepared by covalently grafting amino polyethylene glycol (PEG, molecular weight 3400 or 5000) onto carboxyl polystyrene particles (PS-COOH) using carbodiimide chemistry. PEG-modified particles (PS-PEG) were chara

  3. Improved streptococcal grouping antisera containing polyethylene glycol.

    George, J R; Ashworth, H; Facklam, R R; Harrell, W K; Palmer, D F

    1981-01-01

    Antisera to streptococcal groups A through G containing 4% polyethylene glycol 6000 were prepared and evaluated. Seventy strains of homologous and heterologous beta- and non-beta-hemolytic streptococci were included in the evaluation. Homologous reactions were determined against extracts prepared by four extraction methods: hot hydrochloric acid (Lancefield) extraction, autoclave extraction, hot formamide extraction, and nitrous acid extraction. Enhancement of the precipitin reaction in the p...

  4. Polyethylene glycolated PAMAM dendrimers-Efavirenz conjugates

    Pyreddy, Suneela; Kumar, Pandurangan Dinesh; KUMAR, PALANIRAJAN VIJAYARAJ

    2014-01-01

    Aim: The preparation of novel PEGylated PAMAM (poly-amidoamine) dendrimers for delivery of anti-HIV drug Efavirenz is reported. Method and Materials: About 5.0 G PAMAM dendrimers are prepared by ethylene diamine core via Michael addition by divergent method. PEGylation is done by polyethylene glycol 600 using epichlorhydrin as linker. PEGylated 5.0 G PAMAM dendrimers loaded with Efavirenz (EFV) are evaluated for FTIR, DSC, SEM, drug release, and stability studies. Results and Conclusion: From...

  5. Preparation and characterization of monomethoxy poly(ethylene glycol-poly(ε-caprolactone micelles for the solubilization and in vivo delivery of luteolin

    Qiu JF

    2013-08-01

    Full Text Available Jin-Feng Qiu,1 Xiang Gao,1,2 Bi-Lan Wang,1 Xia-Wei Wei,1 Ma-Ling Gou,1 Ke Men,1 Xing-Yu Liu,1 Gang Guo,1 Zhi-Yong Qian,1 Mei-Juan Huang1 1Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Medical School, Sichuan University, Chengdu, People’s Republic of China; 2Medical School and Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, Sichuan University, Chengdu, People’s Republic of China Abstract: Luteolin (Lu is one of the flavonoids with anticancer activity, but its poor water solubility limits its use clinically. In this work, we used monomethoxy poly(ethylene glycol-poly(ε-caprolactone (MPEG-PCL micelles to encapsulate Lu by a self-assembly method, creating a water-soluble Lu/MPEG-PCL micelle. These micelles had a mean particle size of 38.6 ± 0.6 nm (polydispersity index = 0.16 ± 0.02, encapsulation efficiency of 98.32% ± 1.12%, and drug loading of 3.93% ± 0.25%. Lu/MPEG-PCL micelles could slowly release Lu in vitro. Encapsulation of Lu in MPEG-PCL micelles improved the half-life (t½; 152.25 ± 49.92 versus [vs] 7.16 ± 1.23 minutes, P = 0.007, area under the curve (0–t (2914.05 ± 445.17 vs 502.65 ± 140.12 mg/L/minute, P = 0.001, area under the curve (0–∞ (2989.03 ± 433.22 vs 503.81 ± 141.41 mg/L/minute, P = 0.001, and peak concentration (92.70 ± 11.61 vs 38.98 ± 7.73 mg/L, P = 0.003 of Lu when the drug was intravenously administered at a dose of 30 mg/kg in rats. Also, Lu/MPEG-PCL micelles maintained the cytotoxicity of Lu on 4T1 breast cancer cells (IC50 = 6.4 ± 2.30 µg/mL and C-26 colon carcinoma cells (IC50 = 12.62 ± 2.17 µg/mL in vitro. These data suggested that encapsulation of Lu into MPEG-PCL micelles created an aqueous formulation of Lu with potential anticancer effect. Keywords: luteolin, micelle, MPEG-PCL, cancer therapy

  6. Preparation of methoxyl poly(ethylene glycol) (MPEG)-coated carbonyl iron particles (CIPs) and their application in potassium dihydrogen phosphate (KDP) magnetorheological finishing (MRF)

    Ji, Fang; Xu, Min; Wang, Baorui; Wang, Chao; Li, Xiaoyuan; Zhang, Yunfei; Zhou, Ming; Huang, Wen; Wei, Qilong; Tang, Guangping; He, Jianguo

    2015-10-01

    KDP is a common type of optics that is extremely difficult to polish by the conventional route. MRF is a local polishing technology based on material removal via shearing with minimal normal load and sub-surface damage. In contrast to traditional emendation on an abrasive, the MPEG soft coating is designed and prepared to modify the CIP surface to achieve a hardness matched with that of KDP because CIP inevitably takes part in the material removal during finishing. Morphology and infrared spectra are explored to prove the existence of homogeneous coating, and the improvement of MPEG for the polishing quality is validated by the analysis of roughness, turning grooves, and stress. The synthesized MPEG-coated CIP (MPEG-CIP) is chemically and physically compatible with KDP, which can be removed after cleaning. Our research exhibits the promising prospects of MPEG-CIP in KDP MRF.

  7. An X-band Co2+ EPR study of Zn1-xCoxO (x=0.005-0.1) nanoparticles prepared by chemical hydrolysis methods using diethylene glycol and denaturated alcohol at 5 K

    Misra, Sushil K.; Andronenko, S. I.; Srinivasa Rao, S.; Chess, Jordan; Punnoose, A.

    2015-11-01

    EPR investigations on two types of dilute magnetic semiconductor (DMS) ZnO nanoparticles doped with 0.5-10% Co2+ ions, prepared by two chemical hydrolysis methods, using: (i) diethylene glycol ((CH2CH2OH)2O) (NC-rod-like samples), and (ii) denatured ethanol (CH3CH2OH) solutions (QC-spherical samples), were carried out at X-band (9.5 GHz) at 5 K. The analysis of EPR data for NC samples revealed the presence of several types of EPR lines: (i) two types, intense and weak, of high-spin Co2+ ions in the samples with Co concentration >0.5%; (ii) surface oxygen vacancies, and (iii) a ferromagnetic resonance (FMR) line. QC samples exhibit an intense FMR line and an EPR line due to high-spin Co2+ ions. FMR line is more intense, than the corresponding line exhibited by NC samples. These EPR spectra varied for sample with different doping concentrations. The magnetic states of these samples as revealed by EPR spectra, as well as the origin of ferromagnetism DMS samples are discussed.

  8. Preparation and characterization of PbO2 electrodes doped with polyethylene glycol%聚乙二醇改性不锈钢基PbO2电极的制备及性能研究

    李佳莹; 范莹莹; 陈阵; 余强; 曾丽娟

    2013-01-01

    为了获得电催化性能优良的阳极材料,采用电沉积法制备了不锈钢基聚乙二醇(PEG)改性PbO2电极,通过SEM比较了电极改性前后的形貌变化,通过析氧曲线、Tafel曲线和循环伏安曲线的测量考察了电极材料的催化活性、耐蚀性能.结果表明:经PEG改性的PbO2电极表面平整致密,有较好的电化学性能,有利于难降解苯酚溶液的电催化氧化降解.%In order to obtain anode material with good electrocatalytic activities,PbO2 electrode modified by polyethylene glycol (PEG) was prepared on stainless steel substrate by electrodeposition.The modified variations on surface morphology of the electrodes were examined by Scanning Electron Microscopy (SEM).The properties of the electrodes,such as electrocatalytic activities,corrosion resistance were investigated by oxygen evolution curve,Tafel curve and cyclic voltammetry curves.The results show that modified PbO2 electrode is smooth and compact,and have good electrochemical properties.it will beneficial to degradation of phenol solution.

  9. Preparation and characterization of ibuprofen-loaded microspheres consisting of poly(3-hydroxybutyrate) and methoxy poly (ethylene glycol)-b-poly (D,L-lactide) blends or poly(3-hydroxybutyrate) and gelatin composites for controlled drug release

    Bidone, Juliana; Melo, Ana Paula P. [Laboratorio de Farmacotecnica, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Bazzo, Giovana C. [Grupo de Estudos em Materiais Polimericos (POLIMAT), Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Carmignan, Francoise [Laboratorio de Farmacotecnica, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Soldi, Marli S.; Pires, Alfredo T.N. [Grupo de Estudos em Materiais Polimericos (POLIMAT), Departamento de Quimica, Universidade Federal de Santa Catarina, Florianopolis (Brazil); Lemos-Senna, Elenara [Laboratorio de Farmacotecnica, Departamento de Ciencias Farmaceuticas, Universidade Federal de Santa Catarina, Florianopolis (Brazil)], E-mail: lemos@ccs.ufsc.br

    2009-03-01

    Poly-(3-hydroxybutyrate) (P(3HB)) is a biodegradable and biocompatible polymer that has been used to obtain polymer-based drug carriers. However, due to the high crystallinity degree of this polymer, drug release from P(3HB) microspheres frequently occurs at excessive rates. In this study, two strategies for prolonging ibuprofen release from P(3HB)-based microspheres were tested: blending with poly(D,L-lactide)-b-polyethylene glycol (mPEG-PLA); and obtaining composite particles with gelatin (GEL). SEM micrographs showed particles that were spherical and had a rough surface. A slight decrease of the crystallinity degree of P(3HB) was observed only in the DSC thermogram obtained from unloaded-microspheres prepared from 1:1 P(3HB):mPEG-PLA blend. For IBF-loaded microspheres, a reduction of around 10 deg. C in the melting temperature of P(3HB) was observed, indicating that the crystalline structure of the polymer was affected in the presence of the drug. DSC studies also yielded evidence of the presence of a molecular dispersion coexisting with a crystalline dispersion in the drug in the matrix. Similar results were obtained from X-ray diffractograms. In spite of 1:1 mPEG-PLA:P(3HB) blends having contributed to the reduction of the burst effect, a more controlled drug release was provided by the use of the 3:1 P(3HB):mPEGPLA blend. This result indicated that particle hydration played an important role in the drug release. On the other hand, the preparation of P(3HB):GEL composite microspheres did not allow control of the IBF release.

  10. The preparation and characterization of a novel biodiesel named curcas oil diethylene glycol ether ester%一种含醚新型生物柴油的制备与表征

    蒋大勇

    2012-01-01

    以精制麻风树油、甲醇和二乙二醇甲醚为反应物,以KOH为催化剂,制备出一种高含氧量的新型生物柴油——麻风树油二乙二醇甲醚酯.通过正交试验,确定了其最佳合成条件是醇油物质的量比为6∶1,催化剂用量为原料油质量的1.2%,反应温度为65℃,反应时间为30 min.通过FT-IR和1H-NMR分析并验证了产物的分子结构,测试了该生物柴油及其与0#柴油混合的燃料理化性质,包括油溶性、烟点、运动粘度、凝点、闭杯闪点;在相同测试条件下,比较其与伊柴油、麻风树油甲酯的碳烟排放情况.结果表明,麻风树油二乙二醇甲醚酯具有较高的含氧量,其理化性能和排放性能良好,既可以作为柴油添加剂,也可以代替柴油单独进行使用,具有一定的推广应用价值.%In this paper, a novel biodiesel named curcas oil diethylene glycol ether esters (GDGEE) with higher oxygen content was prepared by refined curcas oil, methanol and ethylene glycol monomethyl ether as the reaction and KOH as catalyst., The optimum synthesis conditions were determined by orthogonal test. The molar ratio of methanol to oil was 6:1, catalyst amount was 1.2% of feedstock quality, reaction temperature was 65 ℃, reaction time was 30 minutes. FT-IR and IH-NMR were used to analysis and validate the molecular structure of curcas oil diethylene glycol ether esters. The physical and chemical properties of GDGEE and its blends with 0# diesel oil were tested by the national standard method. The physical and chemical properties include oil soluble, smoke point, kinematic viscosity, freezing point and closed flash point. At last, smoke emission were test among GDGEE, curcas oil methyl and 0# diesel in the same diesel engine. The results confirm that GDGEE owns the higher oxygen content, good physochemical and emission properties, which can be used as diesel fuel additives or also be used instead of diesel fuel alone. A certain application

  11. Synthetic heat carrier oil compositions based on polyalkylene glycols

    The results of syntheses of heat carrier oils based on polyalkylene glycols (PAGs) using suitable additives have been reported. Polyalkylene glycols have been prepared by heating diethylene glycol, propylene oxide, glycols, adipic acid and 2-ethyhexanol in the presence of KOH and stannyl octoate as catalyst in the molar ratio to give proper physical properties and viscosity-temperature index. The prepared PAGs have been taken as basic components for heat carrier oil compositions. In order to improve the thermal stability and viscosity indices, as well as other specifications, anti-oxidant and anti-foaming additives were added to the base material to reach optimum compositions. Thermal stability, mass loss on vaporization at 250 oC, 350 oC and changing the specifications after heating at 300 oC for 10 h have also been investigated. The obtained heat carrier oils showed comparable improved properties in comparison with commercially available heat carriers

  12. Preparation of new ion-selective cross-linked poly(vinylimidazole-co-ethylene glycol dimethacrylate) using a double-imprinting process for the preconcentration of Pb²⁺ ions.

    Tarley, César Ricardo Teixeira; Corazza, Marcela Zanetti; Somera, Bruna Fabrin; Segatelli, Mariana Gava

    2015-07-15

    A new ion-selective cross-linked poly(vinylimidazole-co-ethylene glycol dimethacrylate) prepared via a double-imprinting process was developed for the recognition and preconcentration of Pb(2+) from water samples. The sorbent was characterized by FT-IR, SEM, TGA and textural data. The maximum dynamic sorption capacity of Pb(2+) was 42.04 mg Pb(2+) g(-1) of the double-imprinted polymer. The sorption kinetics data were described by a pseudo-second-order model. The double-imprinted polymer exhibited a higher sorption efficiency of Pb(2+) than the blank polymer (non-imprinted polymer). The preconcentration procedure involved the loading of a Pb(2+) solution at pH 7.25 through 40.0 mg of the double-imprinted polymer packed in a mini-column at 5.0 mL min(-1). The selective efficiency of proposed method for the Pb(2+) preconcentration was assured by competitive sorption using different proportions of Pb(2+)/cations and Pb(2+)/anions. An analytical curve was obtained in the range 0.0-300.0 μg L(-1) (r=0.999) and a limit of detection of 2.46 μg L(-1) was obtained. The preconcentration factor was found to be 21, the consumptive index 0.95 mL and the concentration efficiency 5.25 min(-1). The preconcentration method was successfully applied to the Pb(2+) ions determination in different kinds of water samples with high recovery values (91.3-108.9%). PMID:25823729

  13. Simulated Waste Testing Of Glycolate Impacts On The 2H-Evaporator System

    Martino, C. J.

    2013-08-13

    Glycolic acid is being studied as a total or partial replacement for formic acid in the Defense Waste Processing Facility (DWPF) feed preparation process. After implementation, the recycle stream from DWPF back to the high-level waste tank farm will contain soluble sodium glycolate. Most of the potential impacts of glycolate in the tank farm were addressed via a literature review, but several outstanding issues remained. This report documents the non-radioactive simulant tests impacts of glycolate on storage and evaporation of Savannah River Site high-level waste. The testing for which non-radioactive simulants could be used involved the following: the partitioning of glycolate into the evaporator condensate, the impacts of glycolate on metal solubility, and the impacts of glycolate on the formation and dissolution of sodium aluminosilicate scale within the evaporator. The following are among the conclusions from this work: Evaporator condensate did not contain appreciable amounts of glycolate anion. Of all tests, the highest glycolate concentration in the evaporator condensate was 0.38 mg/L. A significant portion of the tests had glycolate concentration in the condensate at less than the limit of quantification (0.1 mg/L). At ambient conditions, evaporator testing did not show significant effects of glycolate on the soluble components in the evaporator concentrates. Testing with sodalite solids and silicon containing solutions did not show significant effects of glycolate on sodium aluminosilicate formation or dissolution.

  14. 21 CFR 172.820 - Polyethylene glycol (mean molecular weight 200-9,500).

    2010-04-01

    ... milk or preparations intended for addition to milk, as follows: (1) As a coating, binder, plasticizing... dispersing vitamin and/or mineral preparations. (4) As a coating on sodium nitrite to inhibit hygroscopic... glycol in milk....

  15. Preparation, in vitro and in vivo evaluation of polymeric nanoparticles based on hyaluronic acid-poly(butyl cyanoacrylate and D-alpha-tocopheryl polyethylene glycol 1000 succinate for tumor-targeted delivery of morin hydrate

    Abbad S

    2015-01-01

    Full Text Available Sarra Abbad,1,2 Cheng Wang,1 Ayman Yahia Waddad,1 Huixia Lv,1 Jianping Zhou11Department of Pharmaceutics, China Pharmaceutical University, Nanjing, People’s Republic of China; 2Department of Pharmacy, Abou Bekr Belkaid University, Tlemcen, AlgeriaAbstract: Herein, we describe the preparation of a targeted cellular delivery system for morin hydrate (MH, based on a low-molecular-weight hyaluronic acid-poly(butyl cyanoacrylate (HA-PBCA block copolymer. In order to enhance the therapeutic effect of MH, D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS was mixed with HA-PBCA during the preparation process. The MH-loaded HA-PBCA “plain” nanoparticle (MH-PNs and HA-PBCA/TPGS “mixed” nanoparticles (MH-MNs were concomitantly characterized in terms of loading efficiency, particle size, zeta potential, critical aggregation concentration, and morphology. The obtained MH-PNs and MH-MNs exhibited a spherical morphology with a negative zeta potential and a particle size less than 200 nm, favorable for drug targeting. Remarkably, the addition of TPGS resulted in about 1.6-fold increase in drug-loading. The in vitro cell viability experiment revealed that MH-MNs enhanced the cytotoxicity of MH in A549 cells compared with MH solution and MH-PNs. Furthermore, blank MNs containing TPGS exhibited selective cytotoxic effects against cancer cells without diminishing the viability of normal cells. In addition, the cellular uptake study indicated that MNs resulted in 2.28-fold higher cellular uptake than that of PNs, in A549 cells. The CD44 receptor competitive inhibition and the internalization pathway studies suggested that the internalization mechanism of the nanoparticles was mediated mainly by the CD44 receptors through a clathrin-dependent endocytic pathway. More importantly, MH-MNs exhibited a higher in vivo antitumor potency and induced more tumor cell apoptosis than did MH-PNs, following intravenous administration to S180 tumor-bearing mice

  16. Polyaniline prepared in ethylene glycol or glycerol

    Konyushenko, Elena; Reynaud, S.; Pellerin, V.; Trchová, Miroslava; Stejskal, Jaroslav; Sapurina, I.

    2011-01-01

    Roč. 52, č. 9 (2011), s. 1900-1907. ISSN 0032-3861 R&D Projects: GA AV ČR IAA400500905; GA ČR GA203/08/0686 Institutional research plan: CEZ:AV0Z40500505 Keywords : conducting polymer * polyaniline * nanotubes Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.438, year: 2011

  17. Glycolic Acid Physical Properties, Impurities, And Radiation Effects Assessment

    The DWPF is pursuing alternative reductants/flowsheets to increase attainment to meet closure commitment dates. In fiscal year 2009, SRNL evaluated several options and recommended the further assessment of the nitric/formic/glycolic acid flowsheet. SRNL is currently performing testing with this flowsheet to support the DWPF down-select of alternate reductants. As part of the evaluation, SRNL was requested to determine the physical properties of formic and glycolic acid blends. Blends of formic acid in glycolic acid were prepared and their physical properties tested. Increasing amounts of glycolic acid led to increases in blend density, viscosity and surface tension as compared to the 90 wt% formic acid that is currently used at DWPF. These increases are small, however, and are not expected to present any difficulties in terms of processing. The effect of sulfur impurities in technical grade glycolic acid was studied for its impact on DWPF glass quality. While the glycolic acid specification allows for more sulfate than the current formic acid specification, the ultimate impact is expected to be on the order of 0.03 wt% sulfur in glass. Note that lower sulfur content glycolic acid could likely be procured at some increased cost if deemed necessary. A paper study on the effects of radiation on glycolic acid was performed. The analysis indicates that substitution of glycolic acid for formic acid would not increase the radiolytic production rate of H2 and cause an adverse effect in the SRAT or SME process. It has been cited that glycolic acid solutions that are depleted of O2 when subjected to large radiation doses produced considerable quantities of a non-diffusive polymeric material. Considering a constant air purge is maintained in the SRAT and the solution is continuously mixed, oxygen depletion seems unlikely, however, if this polymer is formed in the SRAT solution, the rheology of the solution may be affected and pumping of the solution may be hindered. A series

  18. Degradation and compatibility behaviors of poly(glycolic acid) grafted chitosan

    The films of poly(glycolic acid) grafted chitosan were prepared without using a catalyst to improve the degradable property of chitosan. The films were characterized by Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy (XPS). The degradation of the poly(glycolic acid) grafted chitosan films were investigated in the lysozyme solution. In vitro degradation tests revealed that the degradation rate of poly(glycolic acid) grafted chitosan films increased dramatically compared with chitosan. The degradation rate of poly(glycolic acid) grafted chitosan films gradually increased with the increasing of the molar ratio of glycolic acid to chitosan. Additionally, the poly(glycolic acid) grafted chitosan films have good biocompatibility, as demonstrated by in vitro cytotoxicity of the extraction fluids. The biocompatible and biodegradable poly(glycolic acid) grafted chitosan would be an effective material with controllable degradation rate to meet the diverse needs in biomedical fields. - Highlights: ► Chitosan-g-poly(glycolic acid) copolymer was prepared without using a catalyst. ► Degradation rate of copolymer increased dramatically compared with that of chitosan. ► Degradation rate was controlled by the molar ratio of glycolic acid to chitosan. ► In vitro cytotoxicity tests revealed that the copolymer has good biocompatibility. ► The copolymer has a great potential to meet diverse needs in biomedical fields

  19. Brisk Demand of Neopentyl Glycol

    2007-01-01

    @@ Neopentyl glycol (NPG) is an important chemical raw material. It is mainly used to produce saturated polyester resin for powder coatings,unsaturated polyester resin, polyester polyols, esters for synthetic lubricants, plasticizers and alkyd resins.

  20. SYNTHESIS OF NiO NANOPARTICLES IN ETHYLENE GLYCOL

    Desheng Ai; Xiaming Dai; Qingfeng Li; Changsheng Deng; Shinhoo Kang

    2004-01-01

    NiO nanoparticles with well-dispersed property were prepared via a wet chemical method in ethylene glycol (EG) without soluble polymer as a protective agent. The mechanism of chemical process was proposed based on color change during the experiment. The dispersion function of EG was discussed.

  1. Photorespiratory glycolate-glyoxylate metabolism.

    Dellero, Younès; Jossier, Mathieu; Schmitz, Jessica; Maurino, Veronica G; Hodges, Michael

    2016-05-01

    Photorespiration is one of the major carbon metabolism pathways in oxygen-producing photosynthetic organisms. This pathway recycles 2-phosphoglycolate (2-PG), a toxic metabolite, to 3-phosphoglycerate when ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) uses oxygen instead of carbon dioxide. The photorespiratory cycle is in competition with photosynthetic CO2 fixation and it is accompanied by carbon, nitrogen and energy losses. Thus, photorespiration has become a target to improve crop yields. Moreover, during the photorespiratory cycle intermediate metabolites that are toxic to Calvin-Benson cycle and RuBisCO activities, such as 2-PG, glycolate and glyoxylate, are produced. Thus, the presence of an efficient 2-PG/glycolate/glyoxylate 'detoxification' pathway is required to ensure normal development of photosynthetic organisms. Here we review our current knowledge concerning the enzymes that carry out the glycolate-glyoxylate metabolic steps of photorespiration from glycolate production in the chloroplasts to the synthesis of glycine in the peroxisomes. We describe the properties of the proteins involved in glycolate-glyoxylate metabolism in Archaeplastida and the phenotypes observed when knocking down/out these specific photorespiratory players. Advances in our understanding of the regulation of glycolate-glyoxylate metabolism are highlighted. PMID:26994478

  2. Stability of glycol nanofluids -- the consensus between theory and measurement

    Palabiyik, Ibrahim; Witharana, Sanjeeva; Musina, Zenfira; Ding, Yulong

    2012-01-01

    Formulation of stable nanofluids containing ZnO, Al2O3 and TiO2 nanoparticles in propylene glycol (PG), ethylene glycol (EG) and 50wt% mixtures of PG and EG in water (WPG, WEG) were investigated, with and without the presence of surfactants. Nanofluid samples of particle concentrations 1-9wt% were prepared by dispersive method. Surfactant presence was in the range of 0-1wt%/wt% of nanoparticles. Visual observation, particle size measurement and zeta potential analysis were performed to evalua...

  3. GLYCOLIC-FORMIC ACID FLOWSHEET FINAL REPORT FOR DOWNSELECTION DECISION

    Lambert, D.; Pickenheim, B.; Stone, M.; Newell, J.; Best, D.

    2011-03-10

    Flowsheet testing was performed to develop the nitric-glycolic-formic acid flowsheet (referred to as the glycolic-formic flowsheet throughout the rest of the report) as an alternative to the nitric/formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be removed in the Sludge Receipt and Adjustment Tank (SRAT) with minimal hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Forty-six runs were performed in total, including the baseline run and the melter feed preparation runs. Significant results are summarized. The baseline nitric/formic flowsheet run, using the SB6 simulant produced by Harrell was extremely difficult to process successfully under existing DWPF acceptance criteria with this simulant at the HM levels of noble metals. While nitrite was destroyed and mercury was removed to near the DWPF limit, the rheology of the SRAT and SME products were well above design basis and hydrogen generation far exceeded the DWPF SRAT limit. In addition, mixing during the SME cycle was very poor. In this sense, the nitric/glycolic/formic acid flowsheet represents a significant upgrade over the current flowsheet. Mercury was successfully removed with almost no hydrogen generation and the SRAT and SME products yield stresses were within process limits or previously processed ranges. The glycolic-formic flowsheet has a very wide processing window. Testing was completed from 100% to 200% of acid stoichiometry and using a glycolic-formic mixture from 40% to 100% glycolic acid. The testing met all processing requirements throughout these processing windows. This should allow processing at an acid stoichiometry of 100% and a glycolic-formic mixture of 80% glycolic acid with minimal hydrogen generation. It should also allow processing endpoints in the SRAT and SME at significantly higher

  4. Green polymer chemistry VIII: synthesis of halo-ester-functionalized poly(ethylene glycol)s via enzymatic catalysis.

    Castano, Marcela; Seo, Kwang Su; Kim, Eun Hye; Becker, Matthew L; Puskas, Judit E

    2013-09-01

    Halo-ester-functionalized poly(ethylene glycol)s (PEGs) are successfully prepared by the transesterification of alkyl halo-esters with PEGs using Candida antarctica lipase B (CALB) as a biocatalyst under the solventless conditions. Transesterifications of chlorine, bromine, and iodine esters with tetraethylene glycol monobenzyl ether (BzTEG) are quantitative in less than 2.5 h. The transesterification of halo-esters with PEGs are complete in 4 h. (1) H and (13) C NMR spectroscopy with MALDI-ToF and ESI mass spectrometry confirm the structure and purity of the products. This method provides a convenient and "green" process to effectively produce halo-ester PEGs. PMID:23877930

  5. Mixed Micelles made of Poly(ethylene glycol)-Phosphatidylethanolamine Conjugate and D-α-tocopheryl Polyethylene Glycol 1000 Succinate as Pharmaceutical Nanocarriers for Camptothecin

    Mu, L; Elbayoumi, T.A.; Torchilin, V.P.

    2005-01-01

    Micelles from the mixture of poly(ethylene glycol)-phosphatidyl ethanolamine conjugate (PEG-PE) and D-α-tocopheryl polyetheyene glycol 1000 succinate (TPGS) were prepared loaded with the poorly soluble anticancer drug camptothecin (CPT). The solubilization of CPT by the mixed micelles was more efficient than with earlier described micelles made of PEG-PE alone. CPT-loaded mixed micelles were stable upon storage and dilution and firmly retained the incorporated drug. The cytotoxicity of the CP...

  6. Evaluation of the Effect of Low Dose Polyethylene Glycol Electrolyte Powder Combined With Sodium Phosphate in the Preparation of the Intestine%低剂量聚乙二醇电解质散联合磷酸钠用于肠道准备的效果评价

    姜媛媛; 张琰; 李慧华; 李福青

    2015-01-01

    Objective Polyethylene Glycol Electrolytes Powder is safe and effective in endoscopy preparation, but it requires a substantial amount of oral liquid. The purpose of this study is to observe the efficacy of low-dose polyethylene glycol electrolyte powder combined with sodium phosphate fluid compared with standard dose of polyethylene glycol electrolyte powder in endoscopy preparation. We hope that the article can offer some useful help and reference with this kind of research to reduce the amount of oral drugs. Methods Patients were randomly divided into two groups from March 2012 to May 2014. Group A received low-dose polyethylene glycol combined with sodium phosphate before colonoscopy, while group B recieved standard dose of polyethylene glycol electrolyte powder. Compare the effect, adverse reaction safety and compliance of the two groups. Results The quality of the bowel preparation was based on the Boston scale, which shows no significant differences in the two groups. In group A, 203 of 214 patients (95%) can drink 80% of the drugs or more, while in group B 205 of 221 patients (93%) can do that. There was no significant difference between the patients' compliance of the two groups. Based on questionnaire survey about abdominal symptoms in the process of bowel preparation, the incidence of nausea, perianal stimulation, insomnia, abdominal distension was no significance difference between the two groups. The heart rate (HB) and blood pressure (BP) of every patient were monitored before and after the preparation laboratory examinations including hematocrit, serum phosphorous, serum calcium, blood urea nitrogen, and serum creatinine were performed. In group A, after preparation the serum phosphorous and serum sodium of patients was increased and serum calcium and serum potassium was decreased. However, they were within normal limits. There was no significant difference in terms of patients’ serum phosphorous, serum sodium, serum calcium and serum potassium

  7. Glycolate transporter of the pea chloroplast envelope

    The discovery of a glycolate transporter in the pea (Pisum sativum) chloroplast envelope is described. Several novel silicone oil centrifugation methods were developed to resolve the initial rate kinetics of [14C]glycolate transport by isolated, intact pea chloroplasts. Chloroplast glycolate transport was found to be carrier mediated. Transport rates saturated with increasing glycolate concentration. N-Ethylmaleimide (NEM) pretreatment of chloroplasts inhibited transport, an inhibition prevented by glycolate. Glycolate distributed across the envelope in a way which equalized stromal and medium glycolic acid concentrations, limiting possible transport mechanisms to facilitated glycolic acid diffusion, proton symport or hydroxyl antiport. The effects of stomal and medium pH's on the K/sub m/ and V/sub max/ fit the predictions of mobile carrier kinetic models of hydroxyl antiport or proton symport (H+ binds first). The carrier mediated transport was fast enough to be consistent with in vivo rates of photorespiration. The 2-hydroxymonocarboxylates, glycerate, lactate and glyoxylate are competitive inhibitors of chloroplast glycolate uptake. Glyoxylate, D-lactate and D-glycerate cause glycolate counterflow, indicating that they are also substrates of the glycolate carrier. This finding was confirmed for D-glycerate by studies on glycolate effects on [1-14C]D-glycerate transport

  8. Preparation and quality control of compound epirubicin hydrochloride-loaded polymeric nanoparticles of L-lactic-co-glycolic acid%复方盐酸表柔比星聚乳酸-羟基乙酸共聚物纳米粒的制备及含量测定

    纪建松; 傅红兴; 宋晶晶; 李慧; 朱雁林

    2011-01-01

    目的 制备复方盐酸表柔比星聚乳酸-羟基乙酸共聚物( PLGA)纳米粒,并对其含量进行测定.方法 采用乳化-溶剂挥发法制备复方盐酸表柔比星纳米粒,添加适量乳糖后采用冷冻干燥法制备得到复方盐酸表柔比星纳米粒冻干粉,通过反相高效液相法测定盐酸表柔比星和钆喷酸双葡甲胺的含量和释放度.结果 制备得到复方盐酸表柔比星PLGA纳米粒,初步建立了可同时测定两种药物成分的高效液相含量测定方法,复方制剂中盐酸表柔比星和钆喷酸双葡甲胺的含量分别为100.6%±1.6%、99.1%±1.9%,且两种成分均能在9d内释放完全.结论 本方法制备复方盐酸表柔比星PLGA纳米粒简便可行,所拟定的含量测定方法可行.%Objective To prepare compound epirubicin hydrochloride-loaded polymeric nanoparticles of L-lactic-co-glycolic acid and establish their quality control.Methods The emulsion-solvent evaporation method was employed to prepare and freeze-dry the compound epirubicin hydrochloride-loaded polymeric nanoparticles of L-lactic-co-glycolic acid after the addition of lactose.The contents and cumulative release of epirubicin hydrochloride and dimeglumine gadopentetate were detected simultaneously by RPHPLC (reverse phase-high performance liquid chromatography).Results The above nanoparticles were prepared and the quality standards for simultaneously determining the contents of epirubicin hydrochloride and dimeglumine gadopentetate established primarily.The contents of epirubicin hydrochloride and dimeglumine gadopentetate in compound preparation were 100.6% ± 1.6% and 99.1% ± 1.9%respectively.And two compositions could be completely released within 9 days.Conclusion The preparation method of nanoparticles is simple and their quality control feasible.

  9. Study of Synthesis of Copoly (lactic acid/glycolic acid) by Direct Melt Polycondensation

    LAN Ping; GAO Qin-wei; SHAO Hui-li; HU Xue-chao

    2005-01-01

    A two steps direct copolymerisation process was developed. The first step is to produce oligomer and then the oligomer of lactic acid/glycolic acid (90/10) is polymerized with binary catalyst tin chloride dihydrate/ptoluenesulfonic acid. In this way, the direct synthesis of copoly (lactic acid/glycolic acid) without any organic solvent was investigated. The properties and structures of products were characterized by nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), X-ray diffraction and so on. The results show that comparatively high molecular weight copolymer of lactic acid and glycolic acid can be prepared by direct processing under appropriate technological conditions.

  10. Drying poly(ethylene glycol)

    sprotocols

    2015-01-01

    Authors: Lucas Kinard, Kurtis Kasper & Antonios Mikos ### Abstract This protocol describes the drying of poly(ethylene glycol) (PEG) by a simple 6 step procedure. One can implement this protocol using common lab glass and lab equipment. Water is removed from PEG by azeotropic distillation in toluene. The two components are mixed and toluene and water are distilled off by heating the solution to 170°C. This procedure can be implemented in ~2 h. ### Introduction In many ...

  11. Upstream petroleum industry glycol dehydrator benzene emissions status report

    The population of dehydrators referred to are located in the Western Sedimentary Basin in northeast British Columbia, Alberta and Saskatchewan, and includes units installed at wellsites, compressor stations, gas plants, central crude oil treating facilities, and reservoir or salt cavern gas storage facilities. Benzene emissions from the still column vent on glycol dehydrators occur as a result of glycol's strong affinity for aromatic hydrocarbons, including benzene. A study was carried out to: 1) develop a list of oil and gas companies operating in Canada, 2) develop an equipment and benzene emissions inventory of glycol dehydrators, 3) develop a database in Microsoft Access format to gather and maintain inventory and emission data, 4) evaluate and validate at least 10% of the reported data, 5) develop a list of companies that manufacture dehydrators and incinerators to determine how many new dehydrators were sold for use in Canada in 1998, and 6) prepare a report summarizing findings and recommendations. The companies included in the survey were the oil and gas companies identified by the Nickels' Oil and Gas Index and others provided by CAPP, CGA, and SEPAC. The project was carried out to gather glycol dehydrator equipment and still column vent benzene emissions information. 8 refs

  12. Characterization of gliclazide-polyethylene glycol solid dispersion and its effect on dissolution

    Moreshwar Pandharinath Patil; Naresh Janardan Gaikwad

    2011-01-01

    The present study was initiated with the objective of studying the in vitro dissolution behavior of gliclazide from its solid dispersion with polyethylene glycol 6000. In this work, a solid dispersion of gliclazide with polyethylene glycol was prepared by the fusion method. In vitro dissolution study of gliclazide, its physical mixture and solid dispersion were carried out to demonstrate the effect of PEG 6000. Analytical techniques of FT-IR spectroscopy, differential scanning calorimetry and...

  13. The world of DNA in glycol solution.

    Lindahl, Tomas

    2016-05-23

    The properties of high-molecular-weight DNA are usually investigated in neutral aqueous solutions. Strong acids and strong alkaline solutions are obviously unsuitable, as are corrosive solvents, and DNA is insoluble in most organic solvents; precipitation of DNA from aqueous solution with ethanol or isopropanol is therefore frequently used as a purification step. An exception is the organic solvent glycol (ethylene glycol, 1,2-ethanediol, dihydroxyethane, HOCH2CH2OH) and the similar solvent glycerol. Double-stranded DNA remains soluble in salt-containing glycol, although it precipitates in polyethylene glycol. (DNA also remains soluble in formamide, but the double-helical structure of DNA is much less stable in this solvent than in glycol.) However, DNA in glycol has been little investigated during the last half-century. PMID:27211487

  14. Ethylene glycol, hazardous substance in the household.

    Patocka, Jirí; Hon, Zdenek

    2010-01-01

    Ethylene glycol is a colorless, odorless, sweet-tasting but poisonous type of alcohol found in many household products. The major use of ethylene glycol is as an antifreeze in, for example, automobiles, in air conditioning systems, in de-icing fluid for windshields, and else. People sometimes drink ethylene glycol mistakenly or on purpose as a substitute for alcohol. Ethylene glycol is toxic, and its drinking should be considered a medical emergency. The major danger from ethylene glycol is following ingestion. Due to its sweet taste, peoples and occasionally animals will sometimes consume large quantities of it if given access to antifreeze. While ethylene glycol itself has a relatively low degree of toxicity, its metabolites are responsible for extensive cellular damage to various tissues, especially the kidneys. This injury is caused by the metabolites, glycolic and oxalic acid and their respective salts, through crystal formation and possibly other mechanisms. Toxic metabolites of ethylene glycol can damage the brain, liver, kidneys, and lungs. The poisoning causes disturbances in the metabolism pathways, including metabolic acidosis. The disturbances may be severe enough to cause profound shock, organ failure, and death. Ethylene glycol is a common poisoning requiring antidotal treatment. PMID:20608228

  15. Review of glycol ether and glycol ether ester solvents used in the coating industry.

    Smith, R.L.

    1984-01-01

    Ethylene oxide-based glycol ether and glycol ether ester solvents have been used in the coatings industry for the past fifty years. Because of their excellent performance properties (evaporation rate, blush resistance, flow-out and leveling properties, solubility for coating resins, solvent activity, mild odor, good coupling ability, good solvent release) a complete line of ethylene oxide-based solvents of various molecular weights has been developed. These glycol ether and glycol ether ester...

  16. Sorbitol hydrogenolysis to glycols by supported ruthenium catalysts

    Inmaculada Murillo Leo; Manuel Lopez Granados; Jose Luis Garcia Fierro; Rafael Mariscal

    2014-01-01

    Supported Ru catalysts were prepared by wet impregnation to evaluate the role of different oxide supports (Al2O3, SiO2, TiO2, ZrO2) in sorbitol hydrogenolysis to glycols. X-ray diffraction, transmis-sion electron microscopy, hydrogen chemisorption, X-ray photoelectron spectroscopy, and NH3 temperature-programmed desorption were used to characterize the catalysts, which were active in the hydrogenolysis of sorbitol. The support affected both the physicochemical properties and cata-lytic behavior of the supported Ru particles. The characterization results revealed that the Ru/Al2O3 catalyst has a high surface acidity, partially oxidized Ru species on the surface, and a higher surface Ru/Al atomic ratio, which gave it the highest selectivity and yield to glycols.

  17. LITERATURE REVIEW ON IMPACT OF GLYCOLATE ON THE 2H EVAPORATOR AND THE EFFLUENT TREATMENT FACILITY

    Adu-Wusu, K.

    2012-05-10

    Glycolic acid (GA) is being studied as an alternate reductant in the Defense Waste Processing Facility (DWPF) feed preparation process. It will either be a total or partial replacement for the formic acid that is currently used. A literature review has been conducted on the impact of glycolate on two post-DWPF downstream systems - the 2H Evaporator system and the Effluent Treatment Facility (ETF). The DWPF recycle stream serves as a portion of the feed to the 2H Evaporator. Glycolate enters the evaporator system from the glycolate in the recycle stream. The overhead (i.e., condensed phase) from the 2H Evaporator serves as a portion of the feed to the ETF. The literature search revealed that virtually no impact is anticipated for the 2H Evaporator. Glycolate may help reduce scale formation in the evaporator due to its high complexing ability. The drawback of the solubilizing ability is the potential impact on the criticality analysis of the 2H Evaporator system. It is recommended that at least a theoretical evaluation to confirm the finding that no self-propagating violent reactions with nitrate/nitrites will occur should be performed. Similarly, identification of sources of ignition relevant to glycolate and/or update of the composite flammability analysis to reflect the effects from the glycolate additions for the 2H Evaporator system are in order. An evaluation of the 2H Evaporator criticality analysis is also needed. A determination of the amount or fraction of the glycolate in the evaporator overhead is critical to more accurately assess its impact on the ETF. Hence, use of predictive models like OLI Environmental Simulation Package Software (OLI/ESP) and/or testing are recommended for the determination of the glycolate concentration in the overhead. The impact on the ETF depends on the concentration of glycolate in the ETF feed. The impact is classified as minor for feed glycolate concentrations {le} 33 mg/L or 0.44 mM. The ETF unit operations that will have

  18. Ethylene glycol aluminum as a novel catalyst for the synthesis of poly(ethylene terephthalate)

    Bin Xiao; Li Ping Wang; Ren Hao Mei; Gong Ying Wang

    2011-01-01

    Ethylene glycol aluminum was prepared efficiently and characterized by FT-IR and NMR. It exhibited higher catalytic activity and had profitable effect than titanium glycolate and ethylene glycol antimony for the synthesis of poly(ethylene terephthalate) (PET). It was only used as polycondensation catalyst because it was sensitive to water. For this catalyst, the degree of esterification of the theoretical amount of water was produced up to 95% at 260 ℃, while the intrinsic viscosity and content of terminal carboxyl groups of the corresponding PET polyester, polymerized at 280℃, 70 Pa for 39 min, was 0.87 dL/g and 23.0 μmol/g, respectively. Ethylene glycol aluminum was a promising catalyst for the synthesis of PET polyester.

  19. Influence of Ethylene Glycol on the Formation of Calcium Phosphate Nanocrystals

    Yi ZUO; Yubao LI; Jie WEI; Yonggang YAN

    2003-01-01

    A synthesis route of using calcium hydroxide Ca(OH)2 with ethylene glycol solvent and orthophosphoric acid (H3PO4)as reagents is described. Three ratios of ethylene glycol to distilled water 1:0, 1:1 and 0:1 are used as diluting media for Ca(OH)2. Crystals of different morphology and composition are formed under weak alkaline circumstance at pH 7.0~8.0. Acicular calcium phosphate nanocrystals are prepared in pure ethylene glycol while rod-like calcium phosphate nanocrystals form in pure distilled water. The nanograde size of the former is smaller than that of the latter. Calcium-deficient apatite (CDAP) is obtained with a Ca/P molar ratio of 1.66. Therefore, it was deduced that the usage of ethylene glycol solvent could influence the formation of calcium phosphate crystal lattice.

  20. Ultrasound responsive block copolymer micelle of poly(ethylene glycol)-poly(propylene glycol) obtained through click reaction.

    Li, Fayong; Xie, Chuan; Cheng, Zhengang; Xia, Hesheng

    2016-05-01

    The well-defined amphiphilic poly(ethylene glycol)-block-poly(propylene glycol) copolymer containing 1, 2, 3-triazole moiety and multiple ester bonds (PEG-click-PPG) was prepared by click reaction strategy. The PEG-click-PPG copolymer can self-assemble into spherical micelles in aqueous solution. It is found that high intensity focused ultrasound (HIFU) can open the copolymer PEG-click-PPG micelles and trigger the release of the payload in the micelle. The multiple ester bonds introduced in the junction point of the copolymer chain through click reactions were cleaved under HIFU, and leads to the disruption of the copolymer micelle and fast release of loaded cargo. The click reaction provides a convenient way to construct ultrasound responsive copolymer micelles with weak bonds. PMID:26703197

  1. PLGA纳米可降解尿道支架的制备及力学性能%Preparation and mechanical properties of co-polymer poly (lactic-co-glycolic acid) degradable tubular urethral scaffold

    王晓庆; 王春喜; 侯宇川; 陈岐辉; 张海峰; 姜凤鸣

    2012-01-01

    Objective To discuss the feasibility of the fabrication of co-polymer poly (lactic-co-glycolic acid) (PLGA) 80 : 20 tubular urethral scaffold by electrospinning and evaluate its mechanical properties. Methods PLGA (80 : 20) was dissolved in chloroform to form solutions with concentrations varying from 3% to 6%. The electrospinning technique was used to fabricate the tubular urethral scaffolds. The morphology was investigated by scanning electron microscope. Fiber diameters, aperture, porosity and mechanical properties were compared between various concentrations of PLGA. Results PLGA urethral stents with concentrations of 3% , A% and 5% were successfully fabricated, and the concentration of 6% failed for high concentration. The scaffold was 4 cm long and with an inner diameter of 3. 0 mm and an outside diameter of 4. 0 mm. The fiber diameter was thicken with the increasing of the concentrations, the difference was significant between various groups (P 0.05). Conclusion The properties of 5% PLGA (80 : 20) urethral scaffold which fabricated by electrospinriing technique can fully satisfied the demand for structure and mechanical properties of a degradable urethral scaffold.%目的:探讨电纺丝法制备聚乳酸-羟基乙酸共聚物(PLGA)(摩尔比80:20)可降解尿道支架的可行性,并评价支架管的力学性能.方法:PLGA (80:20)用三氯甲烷溶解并配成3%、4%、5%和6%的溶液,采用电纺丝技术制备纳米尿道支架,采用扫描电镜观察各种浓度PLGA制备的纳米尿道支架的微观结构,比较各种浓度PLGA支架的纤维直径、孔径、孔隙率及力学性能的差异.结果:浓度为3%、4%和5%的PLGA尿道支架制备成功,浓度为6%的PLGA因浓度过高制管失败.支架呈白色,长度4 cm,内径约3.0 mm,外径约4.0 mm.电镜扫描见3种浓度的PLGA支架纤维平均直径随浓度的增高而增粗,组间比较差异有统计学意义(P<0.05).3种浓度PLGA支架的平均孔径分别为(7±4

  2. Triethylene glycol bis(2-ethylhexanoate) - a new contact allergen identified in a spectacle frame

    Andersen, Klaus Ejner; Vestergaard, M. E.; Christensen, Lars Porskjær

    2014-01-01

    patient's spectacle frame. Materials and methods. An extract from the temple arms was analysed by gas chromatography mass spectrometry (GC-MS), and a major low molecular weight compound was detected. This compound was isolated by semi-preparative high-performance liquid chromatography and identified by GC-MS...... and nuclear magnetic resonance spectroscopy. The purified compound was diluted in ethanol, and a dilution series was prepared for patch testing. Results. Triethylene glycol bis(2-ethylhexanoate) was identified as the major compound in the extract. Patch testing of the patient proved that triethylene...... glycol bis(2-ethylhexanoate) was the causative allergen in the spectacle frame. Ten consecutive eczema patients tested as controls were negative. Conclusion. Triethylene glycol bis(2-ethylhexanoate) is a new, hitherto unreported contact allergen....

  3. Platelet responses to dynamic biomaterial surfaces with different poly(ethylene glycol) and polyrotaxane molecular architectures constructed on gold substrates.

    Kakinoki, Sachiro; Yui, Nobuhiko; Yamaoka, Tetsuji

    2013-11-01

    Four different dynamic biomaterial surfaces with different molecular architectures were prepared using two hydrophilic polymers: poly(ethylene glycol) and polyrotaxanes containing α-cyclodextrin. Either one or both terminals of the poly(ethylene glycol) or polyrotaxanes were immobilized onto a gold substrate via Au-S bonds, resulting in poly(ethylene glycol)-graft, polyrotaxanes-graft, poly(ethylene glycol)-loop, and polyrotaxanes-loop structures. Human platelet adhesion was suppressed more effectively on the graft surfaces than on the loop surfaces for both poly(ethylene glycol) and polyrotaxanes due to the high mobility of graft polymer chains with a free terminal. Moreover, the platelets adhered to the polyrotaxane surfaces much less than the poly(ethylene glycol) surfaces, possibly because of the mobile nature of the α-cyclodextrin molecules that were threaded on the poly(ethylene glycol) chain. Actin filament assembly in adherent platelets was also greatly prevented on the poly(ethylene glycol)/polyrotaxanes-graft surfaces in comparison with the corresponding loop surfaces. A clear correlation between the numbers and areas of adherent platelets on these surfaces suggests that platelet adhesion and activation were dominated by the platelet GPIIb/IIIa-adsorbed fibrinogen interaction. These results indicate that both of the different modes of dynamic features, sliding/rotation of α-cyclodextrin and polymer chain mobility, effectively suppressed platelet adhesion in spite of the similar hydrophilicity. This research affords a novel chemical strategy for designing hemocompatible biomaterial surfaces. PMID:23048065

  4. Effect of polyethylene glycol on characteristics of chitosan membranes

    Puthai, W.

    2005-07-01

    Full Text Available This work reports the influence of polyethylene glycol (PEG on characteristics of chitosan membranes. Parameters used for membrane characterization were hydraulic permeability (Lp, molecular weight cut off (MWCO, and membrane impedance (Z. The results obtained from LP and Z imply that larger a amount of PEG addition enhances membrane porosity and enlarges the pore size. The prepared membranes were ultrafiltration type, with MWCO slightly greater than 35 kDa. Membranes without PEG additioncould be nanofiltration type with Lp value of 0.4x10-11 m3 N-1 s-1, 10-20 times smaller than the other.

  5. Experimental investigation in thermal conductivity of CuO and ethylene glycol nanofluid in serpentine shaped microchannel

    Mr. A. Sivakumar; Dr.N. Alagumurthi; Dr.T.Senthilvelan

    2014-01-01

    This research work investigates the thermal conductivity and viscosity of copper oxide nanoparticles in ethylene glycol. The copper oxide was dispersed in ethylene glycol using a sonicator. The nanofluid suspension were prepared for different concentration upto 0.3%. The heat transfer principle states that maximum heat transfer is achieved in microchannels with minimum pressure drop across it. The increase in viscosity was about four times of that predicted by the Einstein law of viscosity. I...

  6. Ethylene glycol causes acyl chain disordering in liquid-crystalline, unsaturated phospholipid model membranes, as measured by 2H NMR

    NICOLAY K; Smaal, E B; de Kruijff, B.

    1986-01-01

    2H NMR has been used to probe the effects of ethylene glycol at the level of the acyl chains in liposomes prepared from dioleoylphosphatidic acid or dioleoylphosphatidylcholine, labeled with 2H at the 11-position of both oleic acid chains. Increasing concentrations of ethylene glycol lead to a proportional and substantial decrease in the quadrupolar splittings, measured from the 2H NMR spectra of both liposomal systems, indicative of acyl chain disordering.

  7. Ethylene glycol causes acyl chain disordering in liquid-crystalline, unsaturated phospholipid model membranes, as measured by 2H NMR

    2H NMR has been used to probe the effects of ethylene glycol at the level of the acyl chains in liposomes prepared from dioleoylphosphatidic acid or dioleoylphosphatidylcholine, labeled with 2H at the 11-position of both oleic acid chains. Increasing concentrations of ethylene glycol lead to a proportional and substantial decrease in the quadrupolar splittings, measured from the 2H NMR spectra of both liposomal system, indicative of acyl chain disordering. (Auth.)

  8. Maximizing adhesion of auxin solutions to stem cuttings using sodium cellulose glycolate

    Auxin solutions prepared with sodium cellulose glycolate (SCG; a thickening agent, also known as sodium carboxymethylcellulose) and applied to stem cuttings using a basal quick-dip extend the duration of exposure of cuttings to the auxin and have previously been shown to increase root number and/or ...

  9. Glycol methacrylate embedding for light microscopy : Basic principles and trouble-shooting

    Gerrits, PO; Horobin, RW

    1996-01-01

    Acrylic resin mixtures are now widely used as embedding media for the preparation of tissue sections. Most of these mixtures are based on 2-hydroxyethyl methacrylate (glycol methacrylate, GMA). Resin embedding preserves tissue components far better than paraffin, celloidin or frozen sections. The pr

  10. Preparation of Glycol-Fosfomycin Modified Zirconia Chromatography Stationary Phases and Its Application to the Separation of Proteins%乙二醇-磷霉素改性氧化锆色谱固定相的制备及其在蛋白质分离中的应用

    张淑琼; 邹凤平; 李烃

    2009-01-01

    A novel glycol-fosfomycin modified zirconia (G-F-ZrO_2) stationary phase was prepared and characterized by elemental analysis, FT-IR and N_2 adsorption. Its chromatographic performance was evaluated using four standard proteins including lysozyme (Lys), ribonuclease-A (Rnase-A), α-chymotrypsin (α-Chy) and Cytochrome C (Cyt-C) as probes, and the effects of salt concentration, pH, salt type in eluents and temperature on retention behavior of proteins were investigated. The results indicate that the stationary phase behaves mainly as a hydrophobic interaction chromatographic packing with salt concentration in the mobile phase above 1.0 moh·L~(-1). At the same time, the retention mechanism between protein and G-F-ZrO_2 stationary phase was also discussed.%合成了分离蛋白质的乙二醇-磷霉素钠改性氧化锆高效液相色谱固定相,通过漫反射红外光谱、元素分析等分析方法对该固定相进行了表征.以溶菌酶、核糖核酸酶A、细胞色素C和糜蛋白酶四种标准碱性蛋白质为探针,系统地考察了固定相的疏水相互作用色谱性能.结果表明,乙二醇-磷霉素改性氧化锆固定相对蛋白质有一定的保留,表现出较高的分离选择性.

  11. An X-band Co{sup 2+} EPR study of Zn{sub 1−x}Co{sub x}O (x=0.005–0.1) nanoparticles prepared by chemical hydrolysis methods using diethylene glycol and denaturated alcohol at 5 K

    Misra, Sushil K., E-mail: skmisra@alcor.concordia.ca [Physics Department, Concordia University, Montreal, QC, Canada H3G 1M8 (Canada); Andronenko, S.I. [Physics Institute, Kazan Federal University, Kazan 420008 (Russian Federation); Srinivasa Rao, S.; Chess, Jordan; Punnoose, A. [Department of Physics, Boise State University, Boise, ID 83725-1570 (United States)

    2015-11-15

    EPR investigations on two types of dilute magnetic semiconductor (DMS) ZnO nanoparticles doped with 0.5–10% Co{sup 2+} ions, prepared by two chemical hydrolysis methods, using: (i) diethylene glycol ((CH{sub 2}CH{sub 2}OH){sub 2}O) (NC-rod-like samples), and (ii) denatured ethanol (CH{sub 3}CH{sub 2}OH) solutions (QC-spherical samples), were carried out at X-band (9.5 GHz) at 5 K. The analysis of EPR data for NC samples revealed the presence of several types of EPR lines: (i) two types, intense and weak, of high-spin Co{sup 2+} ions in the samples with Co concentration >0.5%; (ii) surface oxygen vacancies, and (iii) a ferromagnetic resonance (FMR) line. QC samples exhibit an intense FMR line and an EPR line due to high-spin Co{sup 2+} ions. FMR line is more intense, than the corresponding line exhibited by NC samples. These EPR spectra varied for sample with different doping concentrations. The magnetic states of these samples as revealed by EPR spectra, as well as the origin of ferromagnetism DMS samples are discussed. - Highlights: • 5 K X band Co{sup 2+} EPR investigations on QC and NC ZnO dilute magnetic semiconductor nanoparticles. • NC and QC samples exhibited high-spin Co{sup 2+} EPR lines and ferromagnetic resonance line. • NC sample also exhibit line due surface oxygen vacancies. • FMR line is more intense in QC than that in NC samples. • Magnetic states and the origin of ferromagnetism are discussed.

  12. Engineering of poly(ethylene glycol) chain-tethered surfaces to obtain high-performance bionanoparticles

    Yukio Nagasaki

    2010-01-01

    A poly(ethylene glycol)-b-poly[2-(N,N-dimethylamino)ethyl methacrylate] block copolymer possessing a reactive acetal group at the end of the poly(ethylene glycol) (PEG) chain, that is, acetal-PEG-b-PAMA, was synthesized by a proprietary polymerization technique. Gold nanoparticles (GNPs) were prepared using the thus-synthesized acetal-PEG-b-PAMA block copolymer. The PEG-b-PAMA not only acted as a reducing agent of aurate ions but also attached to the nanoparticle surface. The GNPs obtained ha...

  13. Viscoelasticity of repaired sciatic nerve by poly(lactic-co-glycolic acid) tubes

    Chengdong Piao; Peng Li; Guangyao Liu; Kun Yang

    2013-01-01

    Medical-grade synthetic poly(lactic-co-glycolic acid) polymer can be used as a biomaterial for nerve repair because of its good biocompatibility, biodegradability and adjustable degradation rate. The stress relaxation and creep properties of peripheral nerve can be greatly improved by repair with poly(lactic-co-glycolic acid) tubes. Ten sciatic nerve specimens were harvested from fresh corpses within 24 hours of death, and were prepared into sciatic nerve injury models by creating a 10 mm defect in each specimen. Defects were repaired by anastomosis with nerve autografts and poly(lactic-co-glycolic acid) tubes. Stress relaxation and creep testing showed that at 7 200 seconds, the sciatic nerve anastomosed by poly(lactic-co-glycolic acid) tubes exhibited a greater decrease in stress and increase in strain than those anastomosed by nerve autografts. These findings suggest that poly(lactic-co-glycolic acid) exhibits good viscoelasticity to meet the biomechanical require-ments for a biomaterial used to repair sciatic nerve injury.

  14. Ultrasonic studies of liquid mixtures of either water or dimethylsulfoxide with ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propylene glycol and 1,4-butylene glycol at 298.15 K

    Tsierkezos, Nikos; Palaiologou, M. M.

    2009-01-01

    Roč. 47, č. 4 (2009), s. 447-459. ISSN 0031-9104 Institutional research plan: CEZ:AV0Z40550506 Keywords : binary mixtures * glycols * thermochemical properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.580, year: 2009

  15. Safety assessment of propylene glycol, tripropylene glycol, and PPGs as used in cosmetics.

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2012-01-01

    Propylene glycol is an aliphatic alcohol that functions as a skin conditioning agent, viscosity decreasing agent, solvent, and fragrance ingredient in cosmetics. Tripropylene glycol functions as a humectant, antioxidant, and emulsion stabilizer. Polypropylene glycols (PPGs), including PPG-3, PPG-7, PPG-9, PPG-12, PPG-13, PPG-15, PPG-16, PPG-17, PPG-20, PPG-26, PPG-30, PPG-33, PPG-34, PPG-51, PPG-52, and PPG-69, function primarily as skin conditioning agents, with some solvent use. The majority of the safety and toxicity information presented is for propylene glycol (PG). Propylene glycol is generally nontoxic and is noncarcinogenic. Clinical studies demonstrated an absence of dermal sensitization at use concentrations, although concerns about irritation remained. The CIR Expert Panel determined that the available information support the safety of tripropylene glycol as well as all the PPGs. The Expert Panel concluded that PG, tripropylene glycol, and PPGs ≥3 are safe as used in cosmetic formulations when formulated to be nonirritating. PMID:23064775

  16. Transport and metabolism of glycolic acid by Chlamydomonas reinhardtii

    In order to understand the excretion of glycolate from Chlamydomonas reinhardtii, the conditions affecting glycolate synthesis and metabolism were investigated. Although glycolate is synthesized only in the light, the metabolism occurs in the light and dark with greater metabolism in the light due to refixation of photorespiratory CO2. The amount of internal glycolate will affect the metabolism of externally added glycolate. When glycolate synthesis exceeds the metabolic capacity, glycolate is excreted from the cell. The transport of glycolate into the cells occurs very rapidly. Equilibrium is achieved at 40C within the time cells are pelleted by the silicone oil centrifugation technique through a layer of [14C] glycolate. Glycolate uptake does not show the same time, temperature and pH dependencies as diffusion of benzoate. Uptake can be inhibited by treatment of cells with N-ethylmaleimide and stimulated in the presence of valino-mycin/KCl. Acetate and lactate are taken up as quickly as glycolate. The hypothesis was made that glycolate is transported by a protein carrier that transports monocarboxylic acids. The equilibrium concentration of glycolate is dependent on the cell density, implying that there may be a large number of transporter sites and that uptake is limited by substrate availability

  17. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics.

    Nakamura, Koji; Murray, Robert J; Joseph, Jeffrey I; Peppas, Nicholas A; Morishita, Mariko; Lowman, Anthony M

    2004-03-24

    Hydrogels of poly(methacrylic acid-g-ethylene glycol) were prepared using different reaction water contents in order to vary the network mesh size, swelling behavior and insulin loading/release kinetics. Gels prepared with greater reaction solvent contents swelled to a greater degree and had a larger network mesh size. All of the hydrogels were able to incorporate insulin and protected it from release in acidic media. At higher pH (7.4), the release rates increased with reaction solvent content. Using a closed loop animal model, all of the insulin loaded formulations produced significant insulin absorption in the upper small intestine combined with hypoglycemic effects. In these studies, bioavailabilities ranged from 4.6% to 7.2% and were dependent on reaction solvent content. PMID:15023469

  18. Stability of glycol nanofluids -- the consensus between theory and measurement

    Palabiyik, Ibrahim; Musina, Zenfira; Ding, Yulong

    2012-01-01

    Formulation of stable nanofluids containing ZnO, Al2O3 and TiO2 nanoparticles in propylene glycol (PG), ethylene glycol (EG) and 50wt% mixtures of PG and EG in water (WPG, WEG) were investigated, with and without the presence of surfactants. Nanofluid samples of particle concentrations 1-9wt% were prepared by dispersive method. Surfactant presence was in the range of 0-1wt%/wt% of nanoparticles. Visual observation, particle size measurement and zeta potential analysis were performed to evaluate the dispersion stability. In overall the PG-based samples were found to be the most stable suspensions. The effect of base fluid on particle size and the effect of day light on nanofluid stability were also examined as a function of time. TiO2-PG samples showed a colour change when exposed to sunlight. Sunlight also caused the PG based TiO2 and Al2O3 nanofluid to increase their particle sizes by up to 45% in the course of 3 days. As for stability, the sedimentation velocity was observed to be a key parameter. Finally b...

  19. Synthesis and properties of copper nanoparticles stabilized by polyethylene glycol

    The composite nanoparticles containing metallic copper and copper (I) oxide were synthesized by reduction of copper sulfate with sodium borohydride in the presence of polyethylene glycol. The effect of reactant ratio and reaction time on the morphology and phase composition of the obtained nanoparticles was investigated by transmission electron microscopy and X-ray phase analysis. It was shown that the factor which most greatly influences the particle size is the content of polyethylene glycol (PEG) in the reaction mixture – with increasing PEG content average particle size determined by transmission electron microscopy, reduced from 22,0 to 14,0 nm. The reaction time and the ratio of copper sulfate and sodium borohydride have small effect on the average size and coherent scattering dimensions of nanoparticles formed. In accordance with the results of X-ray phase analysis in all cases the biphasic particles containing metallic copper and copper oxide (I) formed regardless of reaction condition. The relative content of Cu2O in samples varies from 11,5 to 44,1 wt. %. Among the samples obtained and researched the sample prepared at an equimolar ratio of copper sulfate and sodium borohydride has a special place. It is characterized by a high content of copper oxide (I), a bimodal distribution of particle size and the largest average particle size. (authors)

  20. Polyethylene glycol-electrolyte solution (PEG-ES)

    Polyethylene glycol-electrolyte solution (PEG-ES) is used to empty the colon (large intestine, bowel) before a ... Polyethylene glycol-electrolyte solution (PEG-ES) comes as a powder to mix with water and take by ...

  1. Stabilization of Polyethylene Glycol in Archaeological Wood

    Mortensen, Martin Nordvig

    Projektet har fokuseret på polythylen glycol (PEG) stabilitet og nedbrydning i træ fra konserverede skibsvrag som Vasa (Stockholm) og Skuldelev skibene. En række avancerede analyseteknikker er anvendt til at undersøge indtrængningsdybden for forskellige molekylstørrelser PEG i ikke-nedbrudt træ f...

  2. 21 CFR 582.1666 - Propylene glycol.

    2010-04-01

    ... is generally recognized as safe (except in cat food) when used in accordance with good manufacturing... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol. 582.1666 Section 582.1666 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED)...

  3. Anaerobic treatment of glycol contaminated wastewater for methane production

    Agbalakwe, Ekene

    2011-01-01

    Glycols are usually used in the offshore gas industry as hydrate inhibitor in gas pipelines laid deep under the sea. Glycols, in its use, are contaminated by dissolved salts from formation water together with scaling and corrosion products from the pipeline. This results to generation of wastewater containing glycols. Anaerobic treatment may represent an alternative to the aerobic treatment of glycol wastewater. Laboratory-scale studies were carried out to investigate the treatability of glyc...

  4. Effect observation of taking polyethylene glycol-electrolyte solution at different time on bowel preparation in elderly for colonscopy%老年患者不同时间服用复方聚乙二醇电解质散肠道准备的效果

    董云; 郭光艳; 林海

    2015-01-01

    Objective To compare the efficacy and side effects of split-dose Polyethylene glycol-electrolyte solution ( PEG ) with full-dose preparation in the elderly for colonoscopy, and to summary the experience of nursing care. Methods A total of 220 elderly undergoing colonoscopy were randomly divided into experimental group ( group A) and control group ( group B) , 110 cases in each group. Group A took half the dose of PEG (1. 5 L) at 5 PM on the day before colonoscopy and the remaining half (1. 5 L) were instructed to drink at 6 AM on the day of colonoscopy. Group B took all the PEG (3 L) at 6 AM on the day of colonoscopy. The quality of bowel cleansing was assessed according to the Boston bowel preparation scale ( BBPS) , and side effects ( nausea, vomiting, abdominal pain, fatigue and hunger ) and complication were also observed. In addition, the polyps and tumors of colon detection were compared within the two groups. Results The level of bowel preparation in group A was superior to group B [(6. 65 ± 1. 67) vs (6. 14 ± 1. 91, t =2. 097, P <0. 05)], however, the incidence of side effects such as nausea and vomiting, abdominal pain and bloating in group A were 14 cases, 34 cases and 22 cases less than those of group B (χ2 =4. 400,4. 111,4. 002,respectively;P<0. 05). The detection rate of colonic polyps and tumors in group A (37. 3%) were also higher than that of group B (24. 5%) (χ2 =4. 172, P<0. 05). Conclusions The use of a split-dose PEG for bowel preparation before colonoscopy significantly improved bowel preparation. Split-dose preparation is associated with a lower incidence of side effects, and higher detection rate of colonic polyps and tumors in the elderly.%目的:比较老年患者分次剂量与单次全剂量服用复方聚乙二醇电解质溶液进行肠道准备的效果及不良反应,总结肠道准备的护理经验。方法将220例行结肠镜检查的老年患者根据计算机生成的随机数字表分为试验组和对照组,每组110例

  5. Sources of Propylene Glycol and Glycol Ethers in Air at Home

    Hyunok Choi; Norbert Schmidbauer; John Spengler; Carl-Gustaf Bornehag

    2010-01-01

    Propylene glycol and glycol ether (PGE) in indoor air have recently been associated with asthma and allergies as well as sensitization in children. In this follow-up report, sources of the PGEs in indoor air were investigated in 390 homes of pre-school age children in Sweden. Professional building inspectors examined each home for water damages, mold odour, building’s structural characteristics, indoor temperature, absolute humidity and air exchange rate. They also collected air and dust samp...

  6. 40 CFR 721.3550 - Dipropylene glycol dimethyl ether.

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dipropylene glycol dimethyl ether. 721... Substances § 721.3550 Dipropylene glycol dimethyl ether. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as dipropylene glycol dimethyl ether (PMN...

  7. 40 CFR 799.4440 - Triethylene glycol monomethyl ether.

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Triethylene glycol monomethyl ether... REQUIREMENTS Specific Chemical Test Rules § 799.4440 Triethylene glycol monomethyl ether. (a) Identification of test substance. (1) Triethylene glycol monomethyl ether (TGME, CAS No. 112-35-6) shall be tested...

  8. Isothermal Crystallization Kinetics of Microencapsulated Polyethylene Glycol Particles

    2007-01-01

    The microencapsulated polyethylene glycol (PEG)with different molecular weight by a fluidized coating method has been prepared and the crystallization behaviors of PEG particles in three-dimensional confined volume were investigated by using differential scanning calorimetry(DSC) measurement.The results showed that the width of the crystallization peak of PEG increases and its height gradually diminishes in case that the PEG particles are microencapsulated. Compared with the non-microencapsulated PEG particles, the proportion of the first crystallization peak of microencapsulated PEG particle increases, and that of the second one decreases. The reason for the difference maybe is that the crystallization process of microencapsulated PEG particles is uniform and the crystallization ends when the spherulites touch the wall,thus the opportunity of producing the second crystallization peak was relatively reduced.

  9. The effect of polyethylene glycol on shellac stability

    Khairuddin; Pramono, Edi; Budi Utomo, Suryadi; Wulandari, Viki; A'an Zahrotul, W.; Clegg, Francis

    2016-02-01

    The effect of polyethylene glycol (PEG) having amolecular weight of 1000 and 2000 on shellac stability has been investigated in this research. The shellac was shellac wax free, and the solvent was ethanol 96%. Shellac films were prepared by solventevaporationmethod. The stability of shellac was investigated using insoluble solid test, Fourier Transform Infra Red (FTIR), Thermogravimetry Analyzer (TGA), and Water Vapour Transmission Rate (WVTR). The results showed that stability of shellac decreased after heating at 125oC for 10,30,90,and 180 minutes, and storing for 1 month at 27 oC and 85 relative humidity (RH). PEG improved the stability, and the most stable effect was achieved through PEG1000.

  10. Poly(ethylene glycol) grafted chitosan as new copolymer material for oral delivery of insulin

    Ho, Thanh Ha; Thanh Le, Thi Nu; Nguyen, Tuan Anh; Chien Dang, Mau

    2015-09-01

    A new scheme of grafting poly (ethylene glycol) onto chitosan was proposed in this study to give new material for delivery of insulin over oral pathway. First, methoxy poly(ethylene glycol) amine (mPEGa MW 2000) were grafted onto chitosan (CS) through multiples steps to synthesize the grafting copolymer PEG-g-CS. After each synthesis step, chitosan and its derivatives were characterized by FTIR, 1H NMR Then, insulin loaded PEG-g-CS nanoparticles were prepared by cross-linking of CS with sodium tripolyphosphate (TPP). Same insulin loaded nanoparticles using unmodified chitosan were also prepared in order to compare with the modified ones. Results showed better protecting capacity of the synthesized copolymer over original CS. CS nanoparticles (10 nm of size) were gel like and high sensible to temperature as well as acidic environment while PEG-g-CS nanoparticles (200 nm of size) were rigid and more thermo and pH stable.

  11. Degradation and miscibility of poly(DL-lactic acid)/poly(glycolic acid) composite films: Effect of poly(DL-lactic-co-glycolic acid)

    Zhigang Ma; Na Zhao; Chengdong Xiong

    2012-08-01

    The in vitro degradation behaviour of poly(glycolic acid) (PGA) and its composite films containing poly(DL-lactic acid) (PDLLA) and poly(DL-lactic-co-glycolic acid) (PDLGA) were investigated via mass loss, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). All the films were prepared by solution casting, using 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) as the solvent. Since the degradation rate of PDLLA is lower than that of PGA, those of the PDLLA/PGA composite films decreased. As a compatibilizer, PDLGA improved the compatibility and hydrolytic stability of PDLLA/PGA composite films. Changes in the composite films indicate that this kind of PGA-based composite biomaterial may be applicable to device design for clinical application in the future.

  12. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    2010-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene......

  13. GLYCOLIC-FORMIC ACID FLOWSHEET SLUDGE MATRIX STUDY

    Lambert, D.; Koopman, D.

    2011-06-30

    Testing was completed to demonstrate the viability of the newly developed glycolic acid/formic acid flowsheet on processing in the Defense Waste Processing Facility's (DWPF) Chemical Process Cell (CPC). The Savannah River National Laboratory (SRNL) initiated a sludge matrix study to evaluate the impact of changing insoluble solid composition on the processing characteristics of slurries in DWPF. Four sludge simulants were prepared to cover two compositional ranges in the waste. The first was high iron/low aluminum versus low iron/high aluminum (referred to as HiFe or LoFe in this report). The second was high calcium-manganese/low nickel, chromium, and magnesium versus low calcium-manganese/high nickel, chromium, and magnesium (referred to as HiMn or LoMn in this report). These two options can be combined to form four distinct sludge compositions. The sludge matrix study called for testing each of these four simulants near the minimum acid required for nitrite destruction (100% acid stoichiometry) and at a second acid level that produced significant hydrogen by noble metal catalyzed decomposition of formic acid (150% acid stoichiometry). Four simulants were prepared based on the four possible combinations of the Al/Fe and Mn-Ca/Mg-Ni-Cr options. Preliminary simulant preparation work has already been documented. The four simulants were used for high and low acid testing. Eight planned experiments (GF26 to GF33) were completed to demonstrate the viability of the glycolic-formic flowsheet. Composition and physical property measurements were made on the SRAT product. Composition measurements were made on the condensate from the Mercury Water Wash Tank (MWWT), Formic Acid Vent Condenser (FAVC), ammonia scrubber and on SRAT samples pulled throughout the SRAT cycle. Updated values for formate loss and nitrite-tonitrate conversion were found that can be used in the acid calculations for future sludge matrix process simulations with the glycolic acid/formic acid

  14. Metabolism of glycolate in mitochondria of Euglena gracilis

    Difference spectra taken at -1960C were given to confirm that glycolate oxidation by Euglena mitochondria is linked to the electron transport system with the production of ATP. In feeding experiments with 1-14C-glycolate on E. gracilis cells having glycolate dehydrogenase only in mitochondria, greater parts of the taken-up radioactivity were excreted as 14CO2 and greater parts of the remaining were distributed to the amino acid and protein fractions, mainly as glycine and serine. Presence of ammonium decreased 14CO2 evolution and augmented incorporation and distribution to protein of label. Exhaustion of nitrogen source stopped glycolate uptake. Deficiency of nitrogen source repressed glycolate hydrogenase most extensively among the enzymes involved in the glycolate pathway. The mechanism of regulation of the glycolate metabolism by nitrogen source is discussed. (auth.)

  15. 聚乙二醇电解质溶液分次与单次口服肠道准备方案的清洁效果和耐受性比较%Cleanliness and Tolerance of Fractionated Dose and Single Dose Polyethylene Glycol Electrolyte Solution Bowel Preparation Regimens for Colonoscopy:A Comparative Study

    蒋淼; 田培营; 李欢庆; 卜淑蕊; 樊晓明

    2014-01-01

    Colonoscopy has been accepted as the standard method for evaluation of colon and rectum,its success rate depends on the quality of bowel preparation. Aims:To evaluate the cleanliness and tolerance of fractionated dose versus single dose polyethylene glycol electrolyte solution( PEG-ES) bowel preparation regimens for colonoscopy. Methods:A total of 427 consecutive asymptomatic individuals undergoing colorectal cancer screening were enrolled and randomly assigned into 2 groups. Subjects in group A drank 1. 5 L PEG-ES on the eve and 4 hours before colonoscopy, respectively;subjects in group B received a single dose of 3 L PEG-ES 5 hours before colonoscopy. Score and degree of Boston bowel preparation scale(BBPS)and PEG-ES related adverse effects of the two groups were assessed and compared. Results:There were no significant differences in gender,age and cecal insertion rate between group A and group B(P ﹥ 0. 05). Score of BBPS was significantly higher in group A than in group B(P ﹤0. 01). Both regimens met the requirement of conventional colonoscopy,however,the cleanliness of colon was graded as excellent in more subjects of group A( P ﹤ 0. 01),and less subjects of group A complained PEG-ES related nausea(P ﹤0. 05). Logistic regression analysis revealed that the PEG-ES drinking pattern was associated with cleanliness of colon and occurrence of nausea( P ﹤ 0. 05). Conclusions:Fractionated dose PEG-ES regimen provides a better colonic cleansing quality and tolerance for bowel preparation of colonoscopy,which is superior to that of single dose regimen.%背景:结肠镜检查是公认的结直肠检查的金标准,而良好的肠道准备是检查成功的前提条件。目的:评价聚乙二醇电解质溶液( PEG-ES)分次与单次口服作为结肠镜检查肠道准备方案的清洁效果和耐受性。方法:连续纳入427例进行结直肠癌筛查的无症状个体,随机分为A组和B组。A组于检查前夜和检查前4 h分别口服1

  16. Biocompatibility Evaluation of a New Hydrogel Dressing Based on Polyvinylpyrrolidone/Polyethylene Glycol

    Esmaeil Biazar; Ziba Roveimiab; Gholamreza Shahhosseini; Mohammadreza Khataminezhad; Mandana Zafari; Ali Majdi

    2012-01-01

    The composition of the dressings is based on polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), and agar. The electron beam irradiation technique has been used to prepare hydrogel wound dressings. The in vitro biocompatibility of the hydrogel was investigated by check samples (hydrocolloid Comfeel), antibacterial test (Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Escherichia Coli k12), anti fungal test (Candida Albicans) and cytotoxicity test (Fibroblast L929...

  17. Quantum dot/glycol chitosan fluorescent nanoconjugates

    Mansur, Alexandra AP; Mansur, Herman S.

    2015-04-01

    In this study, novel carbohydrate-based nanoconjugates combining chemically modified chitosan with semiconductor quantum dots (QDs) were designed and synthesised via single-step aqueous route at room temperature. Glycol chitosan (G-CHI) was used as the capping ligand aiming to improve the water solubility of the nanoconjugates to produce stable and biocompatible colloidal systems. UV-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy were used to characterise the synthesis and the relative stability of biopolymer-capped semiconductor nanocrystals. The results clearly demonstrated that the glycol chitosan derivative was remarkably effective at nucleating and stabilising semiconductor CdS quantum dots in aqueous suspensions under acidic, neutral, and alkaline media with an average size of approximately 2.5 nm and a fluorescent activity in the visible range of the spectra.

  18. 复方聚乙二醇电解质散在小儿结肠造口关闭手术前肠道准备中的应用%Application of polyethylene glycol electrolyte powder compound for pediatric bowel preparation before colostomy closure

    邝云莎; 刘艳青; 刘秋菊

    2015-01-01

    Objective:To observe the effect of peros polyethylene glycol electrolyte powder compound for pediatric bowel preparation before colostomy clo-sure. Methods:60 cases before colostomy closure were randomly divided into control group and experimental group. The experimental group drunk the solu-tion 6 hours before the operation,while the control group got two times of intestinal lavage (12 hours and 1 hour before the operation) from the near - end of the colostomy mouth. Compared the cleanliness of the near - end of the colostomy mouth, obedience and untoward effect. Results:The experimental group got much better cleanliness (P < 0. 05) and further obedience (P < 0. 05) than control group. The experimental group came out 4 cases of oral difficulty, control group. With 11 cases of acute crying and action,among 11 cases,there were 3 cases of mucosal injury,1 case of operation delaying,1 case of emesis. Conclusion:The effect and obedience of drinking the solution before colostomy closure is satisfactory. However,minority got untoward effect such as oral diffi-culty,emesis. It is still need futher study.%目的::探讨复方聚乙二醇电解质散在小儿结肠造口关闭手术前肠道准备中的应用效果。方法:将60例结肠造口术后拟行造口关闭手术的患儿随机等分为试验组和对照组,试验组采用术晨(术前6 h)口服复方聚乙二醇电解质散溶液的方法进行肠道准备,对照组采用术前晚(术前12 h)、术晨(术前1~2 h)自结肠造口近端各回流洗肠1次的方法进行肠道准备,比较两组患儿造口近端肠道清洁度、依从性及不良反应发生情况。结果:试验组造口近端肠道清洁度明显优于对照组(P <0.05),依从性高于对照组(P <0.05)。试验组出现口服困难4例,其中2例出现恶心、呕吐;对照组出现剧烈哭闹、活动11例,其中因剧烈哭闹导致造口近端黏膜损伤出血3例,延期手术1例(大量

  19. Quantum dot/glycol chitosan fluorescent nanoconjugates

    Mansur, Alexandra AP; Mansur, Herman S.

    2015-01-01

    In this study, novel carbohydrate-based nanoconjugates combining chemically modified chitosan with semiconductor quantum dots (QDs) were designed and synthesised via single-step aqueous route at room temperature. Glycol chitosan (G-CHI) was used as the capping ligand aiming to improve the water solubility of the nanoconjugates to produce stable and biocompatible colloidal systems. UV-visible (UV–vis) spectroscopy, photoluminescence (PL) spectroscopy, and Fourier transform infrared (FTIR) spec...

  20. Poly(ethylene glycol) interactions with proteins

    Hašek, Jindřich

    2006-01-01

    Roč. 2, č. 23 (2006), s. 613-618. ISSN 0044-2968. [European Powder Diffraction Conference /9./. Prague, 02.09.2004-05.09.2004] R&D Projects: GA ČR(CZ) GA204/02/0843 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(ethylene glycol) * PEO * protein-polymer interaction Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.897, year: 2006

  1. Characterization of tetraethylene glycol passivated iron nanoparticles

    Nunes, Eloiza da Silva; Viali, Wesley Renato [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil); Silva, Sebastião William da; Coaquira, José Antonio Huamaní; Garg, Vijayendra Kumar; Oliveira, Aderbal Carlos de [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); Morais, Paulo César [Instituto de Física, Núcleo de Física Aplicada, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); Jafelicci Júnior, Miguel, E-mail: jafeli@iq.unesp.br [Laboratório de Materiais Magnéticos e Coloides, Departamento de Físico-química, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP 14801-970 (Brazil)

    2014-10-01

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe{sub 3}O{sub 4} with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe{sub 3}O{sub 4}) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g{sup −1} and 131 emu g{sup −1}, respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy.

  2. Characterization of tetraethylene glycol passivated iron nanoparticles

    Graphical abstract: - Highlights: • Metallic iron nanoparticles were passivated in tetraethylene glycol media. • Passivated nanoparticles presented pomegranate-like core@shell structure. • Passivation of metallic iron correlates with the tetraethylene glycol degradation. • Boron enriched metallic iron phase was more susceptible to oxidation. • The iron oxide shell was identified as Fe3O4 with a mass fraction of 43:53 related to αFe. - Abstract: The present study describes the synthesis and characterization of iron@iron oxide nanoparticles produced by passivation of metallic iron in tetraethylene glycol media. Structural and chemical characterizations were performed using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mössbauer spectroscopy. Pomegranate-like core@shell nanoparticulate material in the size range of 90–120 nm was obtained. According to quantitative phase analysis using Rietveld structure refinement the synthesized iron oxide was identified as magnetite (Fe3O4) whereas the iron to magnetite mass fractions was found to be 47:53. These findings are in good agreement with the data obtained from Mössbauer and thermal gravimetric analysis (TGA). The XPS data revealed the presence of a surface organic layer with higher hydrocarbon content, possibly due to the tetraethylene glycol thermal degradation correlated with iron oxidation. The room-temperature (300 K) saturation magnetization measured for the as-synthesized iron and for the iron–iron oxide were 145 emu g−1 and 131 emu g−1, respectively. The measured saturation magnetizations are in good agreement with data obtained from TEM, XRD and Mössbauer spectroscopy

  3. Hydration of polyethylene glycol-grafted liposomes.

    Tirosh, O; Barenholz, Y; Katzhendler, J; Priev, A

    1998-01-01

    This study aimed to characterize the effect of polyethylene glycol of 2000 molecular weight (PEG2000) attached to a dialkylphosphatidic acid (dihexadecylphosphatidyl (DHP)-PEG2000) on the hydration and thermodynamic stability of lipid assemblies. Differential scanning calorimetry, densitometry, and ultrasound velocity and absorption measurements were used for thermodynamic and hydrational characterization. Using a differential scanning calorimetry technique we showed that each molecule of PEG...

  4. Transport Selectivity of a Diethylene Glycol Dimethacrylate-Based Thymine-imprinted Polymeric Membrane over a Cellulose Support for Nucleic Acid Bases

    QU Xiang-Jin; CHEN Chang-Bao; ZHOU Jie; WU Chun-Hui

    2007-01-01

    The binding mechanism between 9-vinyladenine and pyrimidine base thymine in methanol was studied with UV-visible spectrophotometric method. Based on this study, using thymine as a template molecule, 9-vinyladenine as a novel functional monomer and diethylene glycol dimethacrylate as a new cross-linker, a specific diethylene glycol dimethacrylate-based molecularly imprinted polymeric membrane was prepared over a cellulose support.Then, the resultantly polymeric membrane morphologies were visualized with scanning electron microscopy and its permselectivity was examined using thymine, uracil, cytosine, adenine and guanine as substrates. This result showed that the imprinting polymeric membrane prepared with diethylene glycol dimethacrylate exhibited higher transport capacity for the template molecule thymine and its optimal analog uracil than other nucleic acid bases. The membrane also took on higher permselectivity than the imprinted membrane made with ethylene glycol dimethacrylate as a cross-linker. When a mixture including five nucleic acid bases thymine, uracil, cytosine, adenine and guanine passed through the diethylene glycol dimethacrylate-based thymine-imprinted polymeric membrane,recognition of the membrane for the template molecule thymine and its optimal analog uracil was demonstrated. It was predicted that the molecularly imprinted membrane prepared with diethylene glycol dimethacrylate as cross-linker might be applicable to thymine assay of absolute hydrolysates of DNA or uracil assay of absolute hydrolysates of RNA in biological samples because of its high selectivity for the template molecule thymine and its optimal analog uracil.

  5. Thermodynamics of solvation in propylene glycol and methyl cellosolve

    Highlights: • Experimental values of limiting activity coefficients in propylene glycol and methyl cellosolve are reported. • Gibbs free energy versus enthalpy of solvation plots show the presence of the solvophobic effects in studied solutions. • The solvophobic effect in propylene glycol is as strong as in methanol. • The solvophobic effect in methyl cellosolve is rather weak and can be compared to that in butanol. - Abstract: Limiting activity coefficients of low-polar substances: aliphatic and aromatic hydrocarbons, including alkanes, cycloalkanes, alkylbenzenes, and halobenzenes in two solvents, propylene glycol and methyl cellosolve, were measured at temperature T = 298.15 K using gas chromatographic headspace analysis technique. The Gibbs free energies of solvation were calculated from these data and analyzed together with the enthalpies of solvation for the same systems. It was shown that the Gibbs free energies of solvation in propylene glycol are significantly lower than in its homologue ethylene glycol, and in methyl cellosolve they are lower than in propylene glycol. This difference is mainly due to the solvophobic effect, which strength is decreasing in the same order: ethylene glycol > propylene glycol > methyl cellosolve. The contribution of the solvophobic effect into the Gibbs free energies of solvation can be determined using a Gibbs free energy versus enthalpy of solvation plot. This contribution is shown to grow up linearly with the molecular volume of a solute in propylene glycol and methyl cellosolve, as well as in ethylene glycol and in monohydric alcohols

  6. POLYMERIZATION OF ETHYLENE METHYL PHOSPHATE IN THE PRESENCE OF SODIUM POLY(ETHYLENE GLYCOL)ATE

    Jie Wen; Ren-xi Zhuo; Lu Wang

    1999-01-01

    Poly(ethylene methyl phosphate)-poly(ethylene glycol)-poly(ethylene methyl phosphate) triblock copolymers carrying hydroxyl group at both chain ends were synthesized with sodium poly(ethylene glycol)ate as initiator. The effects of the factors such as solvent, amount of the initiator and reaction time were investigated. The copolymers were characterized by IR, 1H-NMR, 1H{31p}-NMR, 13C-NMR, 31P{1H}-NMR, and DSC. High molecular weight of the copolymer and high yield of the polymerization were achieved within 3 min at 25℃. The polymerization process was studied by 31P{1H}-NMR and transesterification was found during longer polymerization time.

  7. Thermal transport properties of ethylene glycol/N-methylformamide binary mixture based CuO nanofluid

    Gopalakrishnan, M.; Kiruba, R.; Jeevaraj, A. Kingson Solomon

    2015-06-01

    In this present investigation, we have synthesized copper oxide nanoparticles by solvothermal method and analyzed their rheological behavior and thermal conductivity properties in binary base fluids (Ethylene Glycol+N-Methylformamide) and CuO binary nanofluid at different temperature. The crystalline nature and morphological properties of prepared CuO nanoparticles were characterized using XRD and SEM analysis respectively. The influence of CuO nanoparticles increases the thermal conductivity of binary base fluids. The results suggested that prepared binary nanofluids can be applicable in heat transfer.

  8. Protein diffusion in photopolymerized poly(ethylene glycol) hydrogel networks

    Engberg, Kristin; Frank, Curtis W, E-mail: curt.frank@stanford.edu [Department of Chemical Engineering, Stanford University, 381 North-South Mall, Stauffer III, Stanford, CA 94305 (United States)

    2011-10-15

    In this study, protein diffusion through swollen hydrogel networks prepared from end-linked poly(ethylene glycol)-diacrylate (PEG-DA) was investigated. Hydrogels were prepared via photopolymerization from PEG-DA macromonomer solutions of two molecular weights, 4600 Da and 8000 Da, with three initial solid contents: 20, 33 and 50 wt/wt% PEG. Diffusion coefficients for myoglobin traveling across the hydrogel membrane were determined for all PEG network compositions. The diffusion coefficient depended on PEG molecular weight and initial solid content, with the slowest diffusion occurring through lower molecular weight, high-solid-content networks (D{sub gel} = 0.16 {+-} 0.02 x 10{sup -8} cm{sup 2} s{sup -1}) and the fastest diffusion occurring through higher molecular weight, low-solid-content networks (D{sub gel} = 11.05 {+-} 0.43 x 10{sup -8} cm{sup 2} s{sup -1}). Myoglobin diffusion coefficients increased linearly with the increase of water content within the hydrogels. The permeability of three larger model proteins (horseradish peroxidase, bovine serum albumin and immunoglobulin G) through PEG(8000) hydrogel membranes was also examined, with the observation that globular molecules as large as 10.7 nm in hydrodynamic diameter can diffuse through the PEG network. Protein diffusion coefficients within the PEG hydrogels ranged from one to two orders of magnitude lower than the diffusion coefficients in free water. Network defects were determined to be a significant contributing factor to the observed protein diffusion.

  9. Absorption of some glycol ethers through human skin in vitro.

    Dugard, P H; M. Walker; Mawdsley, S J; Scott, R.C.

    1984-01-01

    To assist evaluation of the hazards of skin contact with selected undiluted glycol ethers, their absorption across isolated human abdominal epidermis was measured in vitro. Epidermal membranes were set up in glass diffusion cells and, following an initial determination of permeability to tritiated water, excess undiluted glycol ether was applied to the outer surface for 8 hr. The appearance of glycol ether in an aqueous "receptor" phase bathing the underside of the epidermis was quantified by...

  10. Polyethylene glycols (PEG) and related structures

    Wenande, Emily; Kroigaard, Mogens; Mosbech, Holger; Garvey, Lene H

    2015-01-01

    We describe hypersensitivity to polyethylene glycols (PEGs), with cross-reactivity to a structural analog, polysorbate 80, in a 69-year-old patient with perioperative anaphylaxis and subsequent, severe anaphylactic reactions to unrelated medical products. PEGs and PEG analogs are prevalent in the...... perioperative setting, contained in a wide range of products seldom suspected of causing hypersensitivity reactions and thus rarely documented in surgical/anesthetic records. We suggest routine testing for PEGs after perioperative anaphylaxis because exposure to these polymers often is significant....... Comprehensive brand name documentation on the anesthetic chart of all product exposures is central to identifying the responsible allergen....

  11. Stabilization of Polyethylene Glycol in Archaeological Wood

    Mortensen, Martin Nordvig; Hvilsted, Søren

    2009-01-01

    Projektet har fokuseret på polythylen glycol (PEG) stabilitet og nedbrydning i træ fra konserverede skibsvrag som Vasa (Stockholm) og Skuldelev skibene. En række avancerede analyseteknikker er anvendt til at undersøge indtrængningsdybden for forskellige molekylstørrelser PEG i ikke-nedbrudt træ fra skibsvragene. Kun i overfladen fandtes PEG med molekylvægte 4000, og det blev fastslået, at en såkaldt tailing (forårsaget af lave PEG molekylvægte (

  12. Thermal performance of ethylene glycol based nanofluids in an electronic heat sink.

    Selvakumar, P; Suresh, S

    2014-03-01

    Heat transfer in electronic devices such as micro processors and power converters is much essential to keep these devices cool for the better functioning of the systems. Air cooled heat sinks are not able to remove the high heat flux produced by the today's electronic components. Liquids work better than air in removing heat. Thermal conductivity which is the most essential property of any heat transfer fluid can be enhanced by adding nano scale solid particles which possess higher thermal conductivity than the liquids. In this work the convective heat transfer and pressure drop characteristics of the water/ethylene glycol mixture based nanofluids consisting of Al2O3, CuO nanoparticles with a volume concentration of 0.1% are studied experimentally in a rectangular channel heat sink. The nano particles are characterized using Scanning Electron Microscope and the nannofluids are prepared by using an ultrasonic vibrator and Sodium Lauryl Salt surfactant. The experimental results showed that nanofluids of 0.1% volume concentration give higher convective heat transfer coefficient values than the plain water/ethylene glycol mixture which is prepared in the volume ratio of 70:30. There is no much penalty in the pressure drop values due to the inclusion of nano particles in the water/ethylene glycol mixture. PMID:24745228

  13. Lauroyl/palmitoyl glycol chitosan gels enhance skin delivery of magnesium ascorbyl phosphate.

    Wang, Po-Chun; Huang, Yan-Ling; Hou, Sheng-Shu; Chou, Chen-Hsi; Tsai, Jui-Chen

    2013-01-01

    Palmitoyl glycol chitosan (GCP) hydrogel has been reported as erodible controlled-release systems for the delivery of both hydrophilic and hydrophobic molecules. In this study we prepared lauroyl/palmitoyl glycol chitosan (GCL/GCP) in gel form and evaluated their application for skin delivery of the hydrophilic compound, magnesium ascorbyl phosphate (MAP), which is widely used in cosmetic formulations. Release of MAP from the polymer gels was significantly decreased with increasing concentration of GCL/GCP in the formulations in comparison with glycol chitosan (GC). In both aqueous and 10% ethanol vehicles, MAP flux was increased 1.58- to 3.96-fold of 1% GC from 1% GCL/GCP. Increase in MAP flux was correlated to the increase in GCL/GCP concentration prepared in 10% ethanol vehicle. GCL/GCP, in either water or 10% ethanol vehicles, increased the skin penetration and skin deposition of MAP in comparison with GC, hydroxypropylmethylcellulose, and carbopol, while sustaining its release from the polymer gels. Both the enhancement in skin penetration/deposition and sustained release of MAP were depended on polymer concentration. Also, with increase in polymer concentration, epidermal to dermal drug deposition ratio tended to increase, which will be beneficial to its activity in the epidermis, such as inhibition of tyrosinase and protection from UV damage. These data suggested both GCL and GCP can be applied as delivery vehicles to improve percutaneous absorption of MAP. PMID:23931090

  14. Transport properties of nano manganese ferrite-propylene glycol dispersion (nanofluids): new observations and discussion

    Aishwarya, V.; Suganthi, K. S.; Rajan, K. S., E-mail: ksrajan@chem.sastra.edu [SASTRA University, Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), School of Chemical and Biotechnology (India)

    2013-07-15

    Experiments were conducted on the preparation of manganese ferrite nanoparticles and their surface modification for dispersion in propylene glycol. The appropriate concentrations of ferrous sulphate and manganese sulphate (precursors) for synthesis of uniform Mn{sub 0.43}Fe{sub 2.57}O{sub 4} nanoparticles (size range {approx}20-25 nm) were found to be 0.05 and 0.025 M, respectively. These nanoparticles were coated with citric acid and dispersed in propylene glycol for the preparation of nanofluids. The effects of temperature and nanoparticle concentration on nanofluid viscosity and thermal conductivity have been studied. Our study on the influence of nanoparticle concentration on viscosity reveals the existence of a viscosity minimum for 0.25 vol% of citric acid-modified Mn{sub 0.43}Fe{sub 2.57}O{sub 4}-propylene glycol nanofluid. A thermal conductivity enhancement of 68 % was observed for 2 vol% nanofluid. Correlating viscosity and thermal conductivity measurements, particle clustering seems to be the major factor responsible for thermal conductivity enhancement.

  15. Surface modification of polydimethylsiloxane with photo-grafted poly(ethylene glycol) for micropatterned protein adsorption and cell adhesion.

    Sugiura, Shinji; Edahiro, Jun-ichi; Sumaru, Kimio; Kanamori, Toshiyuki

    2008-06-01

    In this study, we applied photo-induced graft polymerization to micropatterned surface modification of polydimethylsiloxane (PDMS) with poly(ethylene glycol). Two types of monomers, polyethylene glycol monoacrylate (PEGMA) and polyethylene glycol diacrylate (PEGDA), were tested for surface modification of PDMS. Changes in the surface hydrophilicity and surface element composition were characterized by contact angle measurement and electron spectroscopy for chemical analysis. The PEGMA-grafted PDMS surfaces gradually lost their hydrophilicity within two weeks. In contrast, the PEGDA-grafted PDMS surface maintained stable hydrophilic characteristics for more than two months. Micropatterned protein adsorption and micropatterned cell adhesion were successfully demonstrated using PEGDA-micropatterned PDMS surfaces, which were prepared by photo-induced graft polymerization using photomasks. The PEGDA-grafted PDMS exhibited useful characteristics for microfluidic devices (e.g. hydrophilicity, low protein adsorption, and low cell attachment). The technique presented in this study will be useful for surface modification of various research tools and devices. PMID:18242961

  16. IONIC CONDUCTIVITY OF EPOXY NETWORK /POLYETHYLENE GLYCOL- LITHIUM PERCHLORATE COMPLEX IPN SYSTEM

    PENG Xinsheng; SONG Yongxian; QI Yuchen; WU Shuyun; LI Lixia; CHEN Donglin

    1990-01-01

    In an attempt to prepare a polymeric solid electrolyte with both high ionic conductivity at ambient temperature and adequate mechanical strength, an ionic conducting IPN composed of bisphenol A epoxy resin/polyethylene glycol containing LiClO4 was synthesized. The dependence of conductivity was investigated as a function of salt content, composition and temperature. It has been revealed that a maximum of conductivity appeared when EO/Li=25, where EO denotes the -(CH2CH2O )- unit in polyethylene glycol, and that the temperature dependence of conductivity followed VTF equation,suggesting that the motion of ionic carriers resulted from the segmental motion of the polymer. When glycerol epoxy resin was used instead of bisphenol A epoxy, the ambient temperature (25 ℃ ) conductivity could somewhat further be raised up to 3×10-5 S/cm.

  17. Experimental investigation in thermal conductivity of CuO and ethylene glycol nanofluid in serpentine shaped microchannel

    Mr. A. Sivakumar

    2014-07-01

    Full Text Available This research work investigates the thermal conductivity and viscosity of copper oxide nanoparticles in ethylene glycol. The copper oxide was dispersed in ethylene glycol using a sonicator. The nanofluid suspension were prepared for different concentration upto 0.3%. The heat transfer principle states that maximum heat transfer is achieved in microchannels with minimum pressure drop across it. The increase in viscosity was about four times of that predicted by the Einstein law of viscosity. In this research work the experimental and numerical investigation for the improved heat transfer characteristics of serpentine shaped microchannel heat sink using CuO/ ethylene glycol nanofluid is done. The fluid flow characteristics is also analyzed for the serpentine shaped micrchannel. The experimental results of the heat transfer using CuO/ ethylene glycol nanofluid is compared with the numerical values. The results in this work suggest that the best heat transfer enhancement can be obtained compared with base fluid by using a system with an CuO – ethylene glycol nanofluid-cooled micro channel with serpentine shaped fluid flow.

  18. Glycol-Substitute for High Power RF Water Loads

    Ebert, Michael

    2005-01-01

    In water loads for high power rf applications, power is dissipated directly into the coolant. Loads for frequencies below approx. 1GHz are ordinarily using an ethylene glycol-water mixture as coolant. The rf systems at DESY utilize about 100 glycol water loads with powers ranging up to 600kW. Due to the increased ecological awareness, the use of glycol is now considered to be problematic. In EU it is forbidden to discharge glycol into the waste water system. In case of cooling system leakages one has to make sure that no glycol is lost. Since it is nearly impossible to avoid any glycol loss in large rf systems, a glycol-substitute was searched for and found. The found sodium-molybdate based substitute is actually a additive for corrosion protection in water systems. Sodium-molybdate is ecologically harmless; for instance, it is also used as fertilizer in agriculture. A homoeopathic dose of 0.4% mixed into deionised water gives better rf absorption characteristics than a 30% glycol mixture. The rf coolant feat...

  19. Application of simplified PC-SAFT to glycol ethers

    Avlund, Ane Søgaard; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2012-01-01

    The simplified PC-SAFT (sPC-SAFT) equation of state is applied for binary glycol ether-containing mixtures, and it is investigated how the results are influenced by inclusion of intramolecular association in the association theory. Three different glycol ethers are examined: 2-methoxyethanol, 2...

  20. Congenital malformations and maternal occupational exposure to glycol ethers

    Cordier, S; Bergeret, A; Goujard, J; Ha, MC; Ayme, S; Calzolari, E; DeWalle, HEK; KnillJones, R; Candela, S; Dale, [No Value; Dananche, B; deVigan, C; Fevotte, J; Kiel, G; Mandereau, L

    1997-01-01

    Glycol ethers are found in a wide range of domestic and industrial products, many of which are used in women's work environments. Motivated by concern about their potential reproductive toxicity, we have evaluated the risk of congenital malformations related to glycol ether exposure during preg nanc

  1. Glycolic acid synthesis during dark glucose U14C metabolism, in French Bean and Maize leaves

    Serine, glycerate and glycolate are among the first radioactive compounds when French Bean and Maize leaves are fed with glucose U14C. Failing to detect radioactive glycine suggests that glycolate so synthesized is unavailable for the photorespiration glycolate pool

  2. Poly(ethylene glycol)/carbon quantum dot composite solid films exhibiting intense and tunable blue–red emission

    Highlights: • Poly(ethylene glycol)/carbon quantum dots (PEG/CQDs) composite solid films exhibiting strong and tunable blue–red emission were prepared. Successful preparation of tunable emitting CQDs solid films can extend the application of carbon quantum dots in photoelectric devices. • The mechanism of the tunable emission from the PEG/CQDs composite solid films was discussed. • On the basis of the characteristics of the PL from solid films in this work, the complex PL origins of CQDs were further defined. The PL mechanism provides insights into the fluorescence mechanism of CQDs and may promotes their applications. • Poly(ethylene glycol); carbon quantum dots; Strong and tunable blue-red emission; The fluorescent quantum yield of 12.6%. - Abstract: Although carbon quantum dots (CQDs) possess excellent luminescence properties, it is a challenge to apply water-soluble CQDs to tunable luminescent devices. Herein, quaternary CQDs are incorporated into poly(ethylene glycol) to produce poly(ethylene glycol)/CQD composite solid films which exhibit strong and tunable blue–red emission. The fluorescent quantum yield reaches 12.6% which is comparable to that of many liquid CQDs and the photoluminescence characteristics are determined to elucidate the fluorescence mechanism. The CQD solid films with tunable optical properties bode well for photoelectric devices especially displays

  3. Millimetre wave rotational spectrum of glycolic acid

    Kisiel, Zbigniew; Pszczółkowski, Lech; Białkowska-Jaworska, Ewa; Charnley, Steven B.

    2016-03-01

    The pure rotational spectrum of glycolic acid, CH2OHCOOH, was studied in the region 115-318 GHz. For the most stable SSC conformer, transitions in all vibrational states up to 400 cm-1 have been measured and their analysis is reported. The data sets for the ground state, v21 = 1 , and v21 = 2 have been considerably extended. Immediately higher in vibrational energy are two triads of interacting vibrational states and their rotational transitions have been assigned and successfully fitted with coupled Hamiltonians accounting for Fermi and Coriolis resonances. The derived energy level spacings establish that the vibrational frequency of the ν21 mode is close to 100 cm-1. The existence of the less stable AAT conformer in the near 50 °C sample used in our experiment was also confirmed and additional transitions have been measured.

  4. Water potential of aqueous polyethylene glycol.

    Steuter, A A

    1981-01-01

    Water potential (Psiomega) values were determined for aqueous colloids of four molecular sizes of polyethylene glycol (PEG) using freezing-point depression and vapor-pressure deficit methods. A significant third-order interaction exists between the method used to determine Psiomega, PEG molecular size, and concentration. At low PEG concentrations, freezing-point depression measurements result in higher (less negative) values for Psiomega than do vapor-pressure deficit measurements. The reverse is true at high concentrations. PEG in water does not behave according to van't Hoff's law. Psiomega is related to molality for a given PEG but not linearly. Moreover, Psiomega varies with the molecular size of the PEG. It is suggested that the Psiomega of PEG in water may be controlled primarily by the matric forces of ethylene oxide subunits of the PEG polymer. The term matricum is proposed for PEG in soil-plant-water relation studies. PMID:16661635

  5. Ethylene glycol reduced graphene oxide/polypyrrole composite for supercapacitor

    Highlights: ► A novel EG-RGO/PPy composite for supercapacitor application is well constructed. ► The well-soluble GO was dispersed in aqueous polymerisable aniline monomer solution to form stable GO/PPy structure. ► The EG reduced RGO/PPy can retain the PPy conductive conjugative frameworks. ► The EG-RGO/PPy electrode exhibits superior electrochemical capability as supercapacitor electrode. -- Abstract: A promising supercapacitor material based on graphene/polypyrrole (PPy) has been successfully synthesized via in situ oxidation polymerization of pyrrole monomers in aqueous graphene oxide (GO) solutions, followed by chemical reduction using ethylene glycol (EG). Unlike the commonly employed hydrazine reduction, the moderate EG reductant does not destruct the PPy conjugative structures, thus facilitating utilization of the electroactive conductive polymer. The morphologies and the structures of the as-prepared materials are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectra, and Fourier transform infrared spectroscopy (FTIR). And the electrochemical performance of the fabricated electrodes was evaluated by cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). The EG-RGO/PPy electrode shows large specific capacitance, high rate performance, and good charge–discharge stability as well. The excellent electrochemical capability is mainly accounted for the sound composite construction that improves the effective utilization of electroactive PPy component, accelerates shuttling the charged carriers, and alleviates the swelling/shrinkage of polymer chains

  6. Validation of an analytical methodology for the determination of diethylene glycol and ethylene glycol as impurities in glycerin and propylene glycol

    A methodology for the quantification of diethylene glycol (DEG) and the ethylene glycol (EG) impurities by gas Chromatography with flame ionization detector in glycerol and propylene glycol samples was developed and validated. It was selected dimethyl sulphoxide as internal standard. It was used hydrogen as carrier and auxiliary gas. The temperature program was 100°C holding one minute, then ramp to rate of 7.5°C/ min up to 200 °C. A Restek 624 column was used, with a flow in column of 4.20 ml/ min. Temperatures of the injector and detector were set at 220°C and 250 °C, respectively. The linearity was determined at 25-75 ?μg/ml as interval of concentrations for both impurities with correlation coefficients larger than 0.999. Detection Limits were settled down in 0.0350 μ?g/ml to the diethylene glycol, and 0.0572 μg/ml to ethylene glycol, while the quantitation limits were 0.1160 μ?g/ml to DEG and 0.1897 μg/ml to the EG. The recoveries were 99.98 % and 100.00 %, respectively; with RSD % 1.18 % to DEG, and 0.60 % to the EG. The obtained results demonstrated that the methodology was linear, accurate, robustness, sensitive and selective to be used in the determination of both impurities in the quality control of the glycerol and propylene glycol as raw materials

  7. Hydrolytically and reductively degradable high-molecular-weight poly(ethylene glycol)s

    Braunová, Alena; Pechar, Michal; Laga, Richard; Ulbrich, Karel

    2007-01-01

    Roč. 208, č. 24 (2007), s. 2642-2653. ISSN 1022-1352 R&D Projects: GA AV ČR KAN200200651; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable * drug delivery systems * gene delivery vectors * poly(ethylene glycol) Subject RIV: CE - Biochemistry Impact factor: 2.046, year: 2007

  8. The localization of glycollate-pathway enzymes in Euglena.

    Collins, N; Merrett, M J

    1975-05-01

    Isolation of organelles from broken-cell suspensions of phototrophically grown Euglena gracilis Klebs was achieved by isopycnic centrifugation on sucrose gradients. 2. Equilibrium densities of 1.23g/cm3 for peroxisome-like particles, 1.22g/cm3 for mitochondria and 1.17g/cm3 for chloroplasts were recorded. 3. The enzymes glycollate dehydrogenase, glutamate-glyoxylate aminotransferase, serineglyoxylate aminotransferase, aspartate-alpha-oxoglutarate aminotransferase, hydroxy pyruvate reductase and malate dehydrogenase were present in peroxisome-like particles. 4. Unlike higher plants glycollate dehydrogenase and glutamate-glyoxylate aminotransferase were present in the mitochondria of Euglena. 5. Rates of glycollate and D-lactate oxidation were additive in the mitochondria, and, although glycollate dehydrogenase was inhibited by cyanide, D-lactate dehydrogenase activity was unaffected. 6. Glycollate oxidation was linked to O2 uptake in mitochondria but not in peroxisome-like particles. This glycollate-dependent O2 uptake was inhibited by antimycin A or cyanide. 7. The physiological significance of glycollate metabolism in Euglena mitochondria is discussed, with special reference to its role in photorespiration in algae. PMID:1156408

  9. Alternating polyesteramides based on 1,4-butylene terephthalamide: 4. Alternating polyetheresteramides based on glycols (4NTglycol)

    Serrano, P.J.M.; Gaymans, R.J.

    1998-01-01

    Polyetheresteramides (PEEAs) have been synthesised in the melt from 1,4-butylene terephthalamide and ethylene or propylene glycols. The ethylene glycols were ethylenediol, diethylene glycol, triethylene glycol and tetraethylene glycol. The propylene glycols were 1,3-propanediol and the mixtures of 1

  10. Engineering of poly(ethylene glycol) chain-tethered surfaces to obtain high-performance bionanoparticles

    A poly(ethylene glycol)-b-poly[2-(N,N-dimethylamino)ethyl methacrylate] block copolymer possessing a reactive acetal group at the end of the poly(ethylene glycol) (PEG) chain, that is, acetal-PEG-b-PAMA, was synthesized by a proprietary polymerization technique. Gold nanoparticles (GNPs) were prepared using the thus-synthesized acetal-PEG-b-PAMA block copolymer. The PEG-b-PAMA not only acted as a reducing agent of aurate ions but also attached to the nanoparticle surface. The GNPs obtained had controlled sizes and narrow size distributions. They also showed high dispersion stability owing to the presence of PEG tethering chains on the surface. The same strategy should also be applicable to the fabrication of semiconductor quantum dots and inorganic porous nanoparticles. The preparation of nanoparticles in situ, i.e. in the presence of acetal-PEG-b-PAMA, gave the most densely packed polymer layer on the nanoparticle surface; this was not observed when coating preformed nanoparticles. PEG/polyamine block copolymer was more functional on the metal surface than PEG/polyamine graft copolymer, as confirmed by angle-dependent x-ray photoelectron spectroscopy. We successfully solubilized the C60 fullerene into aqueous media using acetal-PEG-b-PAMA. A C60/acetal-PEG-b-PAMA complex with a size below 5 nm was obtained by dialysis. The preparation and characterization of these materials are described in this review. (topical review)

  11. Engineering of poly(ethylene glycol chain-tethered surfaces to obtain high-performance bionanoparticles

    Yukio Nagasaki

    2010-01-01

    Full Text Available A poly(ethylene glycol-b-poly[2-(N,N-dimethylaminoethyl methacrylate] block copolymer possessing a reactive acetal group at the end of the poly(ethylene glycol (PEG chain, that is, acetal-PEG-b-PAMA, was synthesized by a proprietary polymerization technique. Gold nanoparticles (GNPs were prepared using the thus-synthesized acetal-PEG-b-PAMA block copolymer. The PEG-b-PAMA not only acted as a reducing agent of aurate ions but also attached to the nanoparticle surface. The GNPs obtained had controlled sizes and narrow size distributions. They also showed high dispersion stability owing to the presence of PEG tethering chains on the surface. The same strategy should also be applicable to the fabrication of semiconductor quantum dots and inorganic porous nanoparticles. The preparation of nanoparticles in situ, i.e. in the presence of acetal-PEG-b-PAMA, gave the most densely packed polymer layer on the nanoparticle surface; this was not observed when coating preformed nanoparticles. PEG/polyamine block copolymer was more functional on the metal surface than PEG/polyamine graft copolymer, as confirmed by angle-dependent x-ray photoelectron spectroscopy. We successfully solubilized the C60 fullerene into aqueous media using acetal-PEG-b-PAMA. A C60/acetal-PEG-b-PAMA complex with a size below 5 nm was obtained by dialysis. The preparation and characterization of these materials are described in this review.

  12. Assessment of a method for measuring serum thyroxine by radioimmunoassay, with use of polyethylene glycol precipitation

    We assessed the efficacy of a new thyroxine radioimmunoassay kit (Abbott) in which polyethylene glycol is used to separate bound from free hormone. Mean serum thyroxine was 88 +- 15 (+-SD) μg/liter for 96 normal persons. Results for hypothyroid and hyperthyroid persons were clearly separated from those for normal individuals. Women taking oral contraceptive preparations showed variable increases in their serum thyroxine values. The coefficient of variation ranged from 1 to 3% within assay and from 5.4 to 11% among different assays. Excellent parallelism was demonstrated between thyroxine values estimated by this method and those obtained either by competitive protein binding or by a separate radioimmunoassay for the hormone

  13. Preparation and characterization of mesoporous tetragonal sulfated zirconia

    Chun Xia He; Bin Yue; Ji Fang Cheng; Wei Ming Hua; Ying Hong Yue; He Yong He

    2009-01-01

    Mesoporous tetragonal sulfated zirconia with high surface area and narrow pore-size distribution was prepared using Zr(O-nPr)4 as zirconium precursor, sulfuric acid as sulfur source and triblock copolymer poly(ethylene glycol)-poly(propylene glycol)poly(ethylene glycol) (P123) as the template. The samples were characterized by X-ray diffraction, N2 sorption, TEM, and NH3TPD. A phase transformation from monoclinic sulfated zirconia to tetragonal sulfated zirconia is observed. The product shows strong acidity.

  14. In Vitro and In Vivo Study of Poly(ethylene glycol) Conjugated Ibuprofen to Extend the Duration of Action

    Nayak, Anjali; Jain, Anurekha

    2011-01-01

    Ibuprofen–polyethylene glycol (PEG) conjugates (PEG-Ibu) were prepared and their potential as a prolonged release system was investigated. Two PEG-Ibu conjugates were synthesized from Ibuprofen and PEG with two different molecular weights by esterification in the presence of DCC and DMAP. The PEG-Ibu conjugates were characterized by FT-IR, 1H NMR, Mass spectroscopy and DSC analysis. The solubility study in aqueous system showed an increase in solubility of conjugates. The dissolution / hydrol...

  15. Paclitaxel-incorporated nanoparticles using block copolymers composed of poly(ethylene glycol)/poly(3-hydroxyoctanoate)

    Kim, Hyun Yul; Ryu, Je Ho; Chu, Chong Woo; Son, Gyung Mo; Jeong, Young-IL; Kwak, Tae-Won; Kim, Do Hyung; Chung, Chung-Wook; Rhee, Young Ha; Kang, Dae Hwan; Kim, Hyung Wook

    2014-01-01

    Block copolymers composed of poly(3-hydroxyoctanoate) (PHO) and methoxy poly(ethylene glycol) (PEG) were synthesized to prepare paclitaxel-incorporated nanoparticle for antitumor drug delivery. In a 1H-NMR study, chemical structures of PHO/PEG block copolymers were confirmed and their molecular weight (M.W.) was analyzed with gel permeation chromatography (GPC). Paclitaxel as a model anticancer drug was incorporated into the nanoparticles of PHO/PEG block copolymer. They have spherical shapes...

  16. Synthesis and characterization of CdSe/ZnS quantum dots conjugated with poly (ethylene glycol) diamine

    Bharti, Shivani; Tripathi, S. K., E-mail: surya@pu.ac.in [Department of Physics, Centre of Advanced Study in Physics Panjab University, Chandigarh-160014 (India); Kaur, Gurvir [Sant Longowal Institute of Engineering & Technology, Longowal, Sangrur (India); Gupta, Shikha [Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh (India)

    2015-08-28

    Bio-functionalization or surface modification is an important technique to obtain biocompatibility in semiconductor nanoparticles for biomedical applications. In this study semiconductor core/shell quantum dots of CdSe/ZnS have been prepared by chemical reduction method and then further PEGylated using Poly(ethylene glycol) diamine of M{sub w} 2000. They were characterized by UV-vis spectroscopy & Fourier transform infrared spectroscopy. The results reveals the successful PEGylation of CdSe/ZnS quantum dots.

  17. Synthesis and characterization of CdSe/ZnS quantum dots conjugated with poly (ethylene glycol) diamine

    Bio-functionalization or surface modification is an important technique to obtain biocompatibility in semiconductor nanoparticles for biomedical applications. In this study semiconductor core/shell quantum dots of CdSe/ZnS have been prepared by chemical reduction method and then further PEGylated using Poly(ethylene glycol) diamine of Mw 2000. They were characterized by UV-vis spectroscopy & Fourier transform infrared spectroscopy. The results reveals the successful PEGylation of CdSe/ZnS quantum dots

  18. Magnetic fluids stabilized by polypropylene glycol

    Lebedev, A.V., E-mail: lav@icmm.r [Institute of Continuous Media Mechanics, UB RAS, Academic Korolev Str. 1, Perm 614013 (Russian Federation); Lysenko, S.N. [Institute of Technical Chemistry, UB RAS, Academic Korolev Str. 3, Perm 614013 (Russian Federation)

    2011-05-15

    A series of samples of magnetic fluids stabilized with low-molecular weight polypropylene glycol (PPG) of different molecular masses were synthesized. The use of PPG allowed the maximum extension of the carrier fluid range to include ethyl- and butyl-acetate, ethanol, butanol, acetone, carbon tetrachloride, toluene, kerosene and PPG itself. Magnetic and rheological properties of the samples were investigated. Based on the results of investigation it has been concluded that magnetic nanoparticles are covered by a monolayer of surfactant molecules. At low temperatures the propanol-based sample preserves fluidity up to -115 {sup o}C. Measurement of critical temperatures of other base fluids showed that alcohols are the best carrier medium. Coagulation stability of the ethanol-based ferrocolloid with respect to water and kerosene was explored. It has been found that kerosene, whose fraction by weight exceeds 22.5%, does not mix with the colloid. This effect can be used to produce magneto-controllable extractors of ethyl alcohol. Under the action of water the colloid coagulates, which allows one to substitute the carrier fluid and to separate the colloid into fractions. - Research highlights: PPG stabilizes the magnetic particles in the polar and non-polar media. The minimum operating temperature reaches -115 {sup o}C. Alcohols are the best environment for PPG-stabilized particles. PPG magnetic fluids can be used as magnetic extractors of alcohol. PPG MF can be divided into fractions by partial coagulation with water.

  19. Selected polyethylene glycols as DOP substitutes. Addendum 1

    The recommendation is made that Polyethylene glycol (PEG) 400 be considered as a substitute for DOP in aerosol generators producing a polydisperse distribution for testing the integrity of filters and for testing respirator fit. Further, the recommendation is made that pentaethylene glycol (PTAEG) and possibly hexaethylene glycol be considered as a substitute for DOP in aerosol generators thermally producing monodisperse aerosol for quality acceptance tests according tu US federal specifications and standards. The toxicology data base available on the polyethylene glycol family of chemical compounds is discussed and the conclusion is drawn that the probability of approval and acceptance as a non-hazardous substance in the filter and filter media test role is high. Data and analysis supporting PTAEG performance equivalent to DOP in the filter and filter media test role are given or referenced. Cost and availability of the substitute materials is discussed. Conclusions based on the present data and information are given and recommendations for further work are made

  20. Measurement of diffusion coefficient of propylene glycol in skin tissue

    Genin, Vadim D.; Bashkatov, Alexey N.; Genina, Elina A.; Tuchin, Valery V.

    2015-03-01

    Optical clearing of the rat skin under the action of propylene glycol was studied ex vivo. It was found that collimated transmittance of skin samples increased, whereas weight and thickness of the samples decreased during propylene glycol penetration in skin tissue. A mechanism of the optical clearing under the action of propylene glycol is discussed. Diffusion coefficient of propylene glycol in skin tissue ex vivo has been estimated as (1.35±0.95)×10-7 cm2/s with the taking into account of kinetics of both weight and thickness of skin samples. The presented results can be useful for enhancement of many methods of laser therapy and optical diagnostics of skin diseases and localization of subcutaneous neoplasms.

  1. Molar heat capacities of some aqueous (2-amino-2-hydroxymethyl-1,3-propanediol + glycol) systems

    Highlights: ► The molar heat capacities for several aqueous (2-amino-2-hydroxymethyl-1,3-propanediol + glycol) systems were measured. ► The glycols considered were ethylene glycols and propylene glycols. ► The temperature studied was (30 to 70) °C. ► The measured data were reported as functions of temperature and composition. ► The measured data were represented satisfactorily by the applied correlations. - Abstract: A new set of molar heat capacity data for aqueous {2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) + glycol} at (30 to 80) °C and different concentrations (4% to 16% by weight TRIS or 56% to 44% by weight water, in a fixed amount of glycol – 40% by weight) were gathered via reliable measurement method and are presented in this report. The glycols considered were diethylene glycol (DEG), triethylene glycol (TEG), tetraethylene glycol (T4EG), propylene glycol (PG), dipropylene glycol (DPG), and tripropylene glycol (TPG). The 198 data points gathered fit the equation, Cp = Cp,a + B1m + B2m2 + B3m3, where Cp and Cp,a are the molar heat capacities of the (TRIS + glycol + water) and (water + glycol) systems, respectively, Bi the temperature-dependent parameters, and m the mole TRIS per kilogram (glycol + water). The overall average absolute deviation (AAD) of the experimental data from the corresponding values calculated from the correlation equation was 0.07%.

  2. Effect of monobutylether ethylene glycol on Mg/Al layered double hydroxide: a physicochemical and conductivity study

    Paulo, Maria Joao [Materiaux et Telecommunications, Institut National de la Rechercher Scientifique - Energie (Canada); Matos, Bruno Ribeiro de [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP (Brazil); Ntais, Spyridon [Materiaux et Telecommunications, Institut National de la Rechercher Scientifique - Energie (Canada); Coral Fonseca, Fabio [Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP (Brazil); Tavares, Ana C., E-mail: tavares@emt.inrs.ca [Materiaux et Telecommunications, Institut National de la Rechercher Scientifique - Energie (Canada)

    2013-02-15

    Mg-Al hydrotalcite-like compounds with OH{sup -} ions intercalated in the gallery and modified with monobutylether ethylene glycol (mbeeg) were prepared from Mg{sub 6}Al{sub 2}(CO{sub 3})(OH){sub 16}{center_dot}4H{sub 2}O by the reconstruction method. The effect of the ethylene glycol, a moderate surfactant, on the textural properties and on the vapor water sorption of the layered double hydroxides was investigated by transmission electron microscopy and nitrogen and water sorption techniques. The ion conductivity of the samples was measured at 98 % RH up to 180 Degree-Sign C. The compounds are formed by nanoplatelets with a lateral size inferior to 20 nm. The addition of the ethylene glycol was found to increase the specific surface area, total pore volume, and water sorption capacity of the Mg-Al layered double hydroxide. However, it also decreased the average pore diameter, and the ion conductivity of the ethylene glycol modified layered double hydroxide was lower than expected based on the samples' specific surface area and water content.

  3. Glycolic acid peel therapy – a current review

    Sharad, Jaishree

    2013-01-01

    Jaishree Sharad Skinfiniti Aesthetic Skin and Laser Clinic, Mumbai, India Abstract: Chemical peels have been time-tested and are here to stay. Alpha-hydroxy peels are highly popular in the dermatologist's arsenal of procedures. Glycolic acid peel is the most common alpha-hydroxy acid peel, also known as fruit peel. It is simple, inexpensive, and has no downtime. This review talks about various studies of glycolic acid peels for various indications, such as acne, acne scars, melasma, ...

  4. Glycolic acid peel therapy – a current review

    Sharad J

    2013-01-01

    Jaishree Sharad Skinfiniti Aesthetic Skin and Laser Clinic, Mumbai, India Abstract: Chemical peels have been time-tested and are here to stay. Alpha-hydroxy peels are highly popular in the dermatologist's arsenal of procedures. Glycolic acid peel is the most common alpha-hydroxy acid peel, also known as fruit peel. It is simple, inexpensive, and has no downtime. This review talks about various studies of glycolic acid peels for various indications, such as acne, acne scars, melasma, posti...

  5. Material compatibility evaluation for DWPF nitric-glycolic acid-literature review

    Mickalonis, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Skidmore, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2013-06-01

    Glycolic acid is being evaluated as an alternative for formic and nitric acid in the DWPF flowsheet. Demonstration testing and modeling for this new flowsheet has shown that glycolic acid and glycolate has a potential to remain in certain streams generated during the production of the nuclear waste glass. A literature review was conducted to assess the impact of glycolic acid on the corrosion of the materials of construction for the DWPF facility as well as facilities downstream which may have residual glycolic acid and glycolates present. The literature data was limited to solutions containing principally glycolic acid.

  6. An evaluation of microbial growth and corrosion of 316L SS in glycol/seawater mixtures

    Lee, Jason S.; Ray, Richard I.; Lowe, Kristine L.; Jones-Meehan, Joanne; Little, Brenda J.

    2003-01-01

    Glycol/seawater mixtures containing > 50% glycol inhibit corrosion of 316L stainless steel and do not support bacterial growth. The results indicate bacteria are able to use low concentrations of glycol (10%) as a growth medium, but bacterial growth decreased with increasing glycol concentration. Pitting potential, determined by anodic polarization, was used to evaluate susceptibility of 316L SS to corrosion in seawater-contaminated glycol. Mixture containing a minimum concentration of 50% propylene glycol-based coolant inhibited pitting corrosion. A slightly higher minimum concentration (55%) was needed for corrosion protection in ethylene glycol mixtures.

  7. Ethylene- and diethylene glycol metabolism, toxicity and treatment

    Each year numerous men and domestic animals suffer from ethylene glycol (EG) poisoning. The present approach to treating EG poisoning by administering ethanol is aimed at preventing the oxidation of EG to glycolate, the toxic mediator. When treatment is delayed or the amount of EG consumed is large, successful treatment is rarely obtained, since the concentration of glycolate becomes excessive. In an effort to develop a better approach to treating EG poisoning, studies were conducted to determine the feasibility of using pig liver glycolic acid oxidase (GAO) as a means of enzyme therapy in male rats receiving EG. Pig liver GAO was active in vitro in rat blood, oxidizing glycolate to glyoxylate. When injected intravenously into male rats, GAO had an approximate half-life of twenty five minutes and its elimination followed first order kinetics. Despite activity in vitro, native pig liver GAO did not display detectable activity in vivo. Diethylene glycol (DEG) when ingested also results in toxicity. The metabolism and toxicity of DEG was investigated in male Wistar rats using [14C]-DEG synthesized from [U-14C]-EG and ethylene oxide and purified by high performance liquid chromatography. (2-Hydroxyethoxy)acetic acid (HEAA) was identified as the major product of DEG oxidation. These results suggest that the treatment of DEG poisoning should follow the same regimen as treatment for EG poisoning

  8. Mitochondrial glycolate oxidation contributes to photorespiration in higher plants.

    Niessen, Markus; Thiruveedhi, Krishnaveni; Rosenkranz, Ruben; Kebeish, Rashad; Hirsch, Heinz-Josef; Kreuzaler, Fritz; Peterhänsel, Christoph

    2007-01-01

    The oxidation of glycolate to glyoxylate is an important reaction step in photorespiration. Land plants and charophycean green algae oxidize glycolate in the peroxisome using oxygen as a co-factor, whereas chlorophycean green algae use a mitochondrial glycolate dehydrogenase (GDH) with organic co-factors. Previous analyses revealed the existence of a GDH in the mitochondria of Arabidopsis thaliana (AtGDH). In this study, the contribution of AtGDH to photorespiration was characterized. Both RNA abundance and mitochondrial GDH activity were up-regulated under photorespiratory growth conditions. Labelling experiments indicated that glycolate oxidation in mitochondrial extracts is coupled to CO(2) release. This effect could be enhanced by adding co-factors for aminotransferases, but is inhibited by the addition of glycine. T-DNA insertion lines for AtGDH show a drastic reduction in mitochondrial GDH activity and CO(2) release from glycolate. Furthermore, photorespiration is reduced in these mutant lines compared with the wild type, as revealed by determination of the post-illumination CO(2) burst and the glycine/serine ratio under photorespiratory growth conditions. The data show that mitochondrial glycolate oxidation contributes to photorespiration in higher plants. This indicates the conservation of chlorophycean photorespiration in streptophytes despite the evolution of leaf-type peroxisomes. PMID:17595195

  9. A glycolate dehydrogenase in the mitochondria of Arabidopsis thaliana.

    Bari, Rafijul; Kebeish, Rashad; Kalamajka, Rainer; Rademacher, Thomas; Peterhänsel, Christoph

    2004-03-01

    The fixation of molecular O2 by the oxygenase activity of Rubisco leads to the formation of phosphoglycolate in the chloroplast that is further metabolized in the process of photorespiration. The initial step of this pathway is the oxidation of glycolate to glyoxylate. Whereas in higher plants this reaction takes place in peroxisomes and is dependent on oxygen as a co-factor, most algae oxidize glycolate in the mitochondria using organic co-factors. The identification and characterization of a novel glycolate dehydrogenase in Arabidopsis thaliana is reported here. The enzyme is dependent on organic co-factors and resembles algal glycolate dehydrogenases in its enzymatic properties. Mutants of E. coli incapable of glycolate oxidation can be complemented by overexpression of the Arabidopsis open reading frame. The corresponding RNA accumulates preferentially in illuminated leaves, but was also found in other tissues investigated. A fusion of the N-terminal part of the Arabidopsis glycolate dehydrogenase to red fluorescent protein accumulates in mitochondria when overexpressed in the homologous system. Based on these results it is proposed that the basic photorespiratory system of algae is conserved in higher plants. PMID:14966218

  10. Preparation of NiMgAI Layered Double Hydroxides and Hydrogen Production from Aqueous-Phase Reforming of Ethylene Glycol%镍镁铝水滑石制备及乙二醇水相重整制氢性能

    潘国祥; 曹枫; 倪哲明; 李小年; 陈海锋; 唐培松; 徐敏虹

    2011-01-01

    The NiMgAI layered double hydroxides (LDHs) with different n(Ni2+)/n(Mg2+)/n(Al3+) (mole ratios) were synthesized by a coprecipitatiun method. The phase composition and catalytic performance of Ni-Mg-AI LDHs were characterized by powder X-ray diffraction, H2-TPR (temperature programmed reduction) and probe reaction of aqueous-phase reforming of ethylene glycol. The results show that the synthesized materials with unitary hydrotaicite phase can be obtained when (n(Ni2+)+n(Mg2+))/n(Al3+) is 1.25-6.50. NiMgA1-LDHs derived catalyst (after reaction) was composed of Ni, MgAI-LDHs and AIO(OH) phases. The reduction process for active content Ni of NiMgAI-LDHs involved two stages. The H2 production rate from aqueous-phase reforming of ethylene glycol (EG) increased with increasing in the reaction temperature and the feeding rate of EG, and decreased with increasing in the reaction pressure. The selectivity of H2 production could be improved when Mg modified to Ni/A1 hydrotalcite, which was related to the basic of supporters. The H2 selectivity decreased and the alkanes selectivity increased with increasing the Ni contents. Considering the selectivity and the activity of Ni based catalysts, we found that the catalytic performance of NiMgAI-LDHs derived catalyst could be superior.%采用共沉淀法成功合成了不同n(Ni2+)/n(Mg2+)/n(Al3+)(摩尔比)的镍镁铝水滑石,用粉末X射线衍射和氢气程序升温还原、乙二醇水相重整制氢探针反应对镍镁铝水滑石的物相、组成、还原过程和催化性能进行表征.结果表明:所形成的纯相水滑石的[n(Ni2+)n(Mg2+)]/n(Al3+)为1.25~6.50.NiMgAl水滑石衍生催化剂(反应后)的物相由Ni、MgAl水滑石和AlO(OH)相组成.催化剂前躯体还原过程包括层板镍还原和复合氧化物中镍还原两步.随着反应温度和给料速率增加、反应压力降低,乙二醇水相重整制氢产率依次增加.随着Mg含量增加,其氢气选择性呈增加趋势;增加Ni含量,

  11. Kinetics and Mechanism of Oxidation of Triethylene Glycol and Tetraethylene Glycol by Ditelluratoargentate (III in Alkaline Medium

    Jinhuan Shan

    2013-01-01

    Full Text Available The kinetics of oxidation of triethylene glycol and tetraethylene glycol by ditelluratoargentate (III (DTA in alkaline liquids has been studied spectrophotometrically in the temperature range of 293.2 K–313.2 K. The reaction rate showed first-order dependence in DTA and fractional order with respect to triethylene glycol or tetraethylene glycol. It was found that the pseudo-first-order rate constant (kobs increased with an increase in concentration of OH− and a decrease in concentration of H4TeO6 2−. There was a negative salt effect and no free radicals were detected. A plausible mechanism involving a two-electron transfer was proposed, and the rate equations derived from the mechanism explained all the experimental results and observations. The activation parameters along with the rate constants of the rate-determining step were calculated.

  12. Sources of propylene glycol and glycol ethers in air at home.

    Choi, Hyunok; Schmidbauer, Norbert; Spengler, John; Bornehag, Carl-Gustaf

    2010-12-01

    Propylene glycol and glycol ether (PGE) in indoor air have recently been associated with asthma and allergies as well as sensitization in children. In this follow-up report, sources of the PGEs in indoor air were investigated in 390 homes of pre-school age children in Sweden. Professional building inspectors examined each home for water damages, mold odour, building's structural characteristics, indoor temperature, absolute humidity and air exchange rate. They also collected air and dust samples. The samples were analyzed for four groups of volatile organic compounds (VOCs) and semi-VOCs (SVOCs), including summed concentrations of 16 PGEs, 8 terpene hydrocarbons, 2 Texanols, and the phthalates n-butyl benzyl phthalate (BBzP), and di(2-ethylhexyl)phthalate (DEHP). Home cleaning with water and mop ≥ once/month, repainting ≥ one room prior to or following the child's birth, and "newest" surface material in the child's bedroom explained largest portion of total variability in PGE concentrations. High excess indoor humidity (g/m³) additionally contributed to a sustained PGE levels in indoor air far beyond several months following the paint application. No behavioral or building structural factors, except for water-based cleaning, predicted an elevated terpene level in air. No significant predictor of Texanols emerged from our analysis. Overall disparate sources and low correlations among the PGEs, terpenes, Texanols, and the phthalates further confirm the lack of confounding in the analysis reporting the associations of the PGE and the diagnoses of asthma, rhinitis, and eczema, respectively. PMID:21318004

  13. [Determination of ethylene glycol in biological fluids--propylene glycol interferences].

    Gomółka, Ewa; Cudzich-Czop, Sylwia; Sulka, Adrianna

    2013-01-01

    Many laboratories in Poland do not use gas chromatography (GC) method for determination of ethylene glycol (EG) and methanol in blood of poisoned patients, they use non specific spectrophotometry methods. One of the interfering substances is propylene glycol (PG)--compound present in many medical and cosmetic products: drops, air freshens, disinfectants, electronic cigarettes and others. In Laboratory of Analytical Toxicology and Drug Monitoring in Krakow determination of EG is made by GC method. The method enables to distinguish and make resolution of (EG) and (PG) in biological samples. In the years 2011-2012 in several serum samples from diagnosed patients PG was present in concentration from several to higher than 100 mg/dL. The aim of the study was to estimate PG interferences of serum EG determination by spectrophotometry method. Serum samples containing PG and EG were used in the study. The samples were analyzed by two methods: GC and spectrophotometry. Results of serum samples spiked with PG with no EG analysed by spectrophotometry method were improper ("false positive"). The results were correlated to PG concentration in samples. Calculated cross-reactivity of PG in the method was 42%. Positive results of EG measured by spectrophotometry method must be confirmed by reference GC method. Spectrophotometry method shouldn't be used for diagnostics and monitoring of patients poisoned by EG. PMID:24466683

  14. Hydroxynortriptyline of Empty Fruit Bunches Fibre using Polyethylene glycol (PEG)

    The aim of this study was to investigate the reaction of oil palm empty fruit bunches fibre (EFBF) via chemical modification and hydroxynortriptyline method using polyethylene glycol (PEG). The first stage was the modification of EFB fibre using NaOH and isopropanol. The next stage was the preparation of hydroxypropylated-empty fruit bunches fibre (HP-EFBF), using different molecular weight of PEG (6,000, 8,000 and 10,000). The characterisation involved in this study were conducted by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), determination of kinetic activation energy (Ea), X-ray diffraction (XRD), cellulose crystallinity index (CrI) and weight increment of the HP-EFB fibre. SEM results showed the surface of HP-EFBF swelled and craters formed along the surface of the fibre. IR spectrum also showed OH stretching band in EFB without treatment is 3402 cm-1, but after hydroxynortriptyline process, the OH stretching band in HP-EFBF (10000, 8000 and 6000) slightly shifted to 3392, 3384 and 3370 cm-1, respectively. TGA showed the thermal stability of HP-EFBF 6,000 was lower than HP-EFBF 8,000 and 10,000. After chemical modification, the activation energy, Ea increased from 32.4 to 51.9 kJ/ mol more than EFB without treatment, 12.5 kJ/ mol. XRD showed that diffraction peak (002) shifted to the smaller 2θ angle and the peaks (101, 10I) disappeared after hydroxynortriptyline process. Crystallinity index, of EFB without treatment decreased from 27 % to 25 % after chemical modification. The higher the molecular weight of the PEG, the greater the weight increment of the HP-EFBF. (author)

  15. Polypropylene Glycol-Silver Nanoparticle Composites: A Novel Anticorrosion Material for Aluminum in Acid Medium

    Solomon, Moses M.; Umoren, Saviour A.; Israel, Aniekemeabasi U.; Ebenso, Eno E.

    2015-11-01

    Admixture of polypropylene glycol and 1 mM AgNO3 together with natural honey as reducing and stabilizing agent was employed to prepare in situ polypropylene glycol/silver nanoparticle (PPG/AgNPs) composite. The prepared PPG/AgNPs composite was characterized by UV-Vis spectroscopy, FTIR, XRD, and EDS, while the morphology of the Ag nanoparticles in the composite was obtained by TEM. TEM results revealed that the Ag nanoparticles were spherical in shape. The anticorrosion property of PPG/AgNPs composite was examined by electrochemical, weight loss, SEM, EDS, and water contact angle measurements. Results obtained show that PPG/AgNPs are effective in retarding the dissolution of Al in an acid-induced corrosive environment. Inhibition efficiency increased with the increasing composite concentration but decreased with the increasing temperature. Potentiodynamic polarization results revealed that PPG/AgNPs functions as a mixed-type corrosion inhibitor. The adsorption of the composite onto Al surface was found to follow El-Awady et al. adsorption isotherm model. SEM, EDS, and water contact angle results confirmed the adsorption of PPG/AgNPs films onto Al surface.

  16. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers

    Díaz, A.; Valle, L.; Franco, L. del [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Sarasua, J.R. [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain); Estrany, F. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, J., E-mail: Jordi.Puiggali@upc.es [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain)

    2014-09-01

    Lactide and trimethylene carbonate copolymers were successfully grafted with polyethylene glycol via previous functionalization with maleic anhydride and using N,N′-diisopropylcarbodiimide as condensing agent. Maleinization led to moderate polymer degradation. Specifically, the weight average molecular weight decreased from 36,200 to 30,200 g/mol for the copolymer having 20 mol% of trimethylene carbonate units. Copolymers were characterized by differential scanning calorimetry, thermogravimetry and X-ray diffraction. Morphology of spherulites and lamellar crystals was evaluated with optical and atomic force microscopies, respectively. The studied copolymers were able to crystallize despite the randomness caused by the trimethylene carbonate units and the lateral groups. Contact angle measurements indicated that PEG grafted copolymers were more hydrophilic than parent copolymers. This feature justified that enzymatic degradation in lipase medium and proliferation of both epithelial-like and fibroblast-like cells were enhanced. Grafted copolymers were appropriate to prepare regular drug loaded microspheres by the oil-in-water emulsion method. Triclosan release from loaded microspheres was evaluated in two media. - Highlights: • Pegylated copolymers of lactide and trimethylene carbonate have been synthesized. • Grafting with polyethylene glycol was able via maleic anhydride functionalization. • Drug-loaded microspheres could be prepared from new pegylated copolymers. • Hydrophilicity of lactide/trimethylene carbonate copolymers increased by pegylation. • New pegylated copolymers supported cell adhesion and proliferation.

  17. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers

    Lactide and trimethylene carbonate copolymers were successfully grafted with polyethylene glycol via previous functionalization with maleic anhydride and using N,N′-diisopropylcarbodiimide as condensing agent. Maleinization led to moderate polymer degradation. Specifically, the weight average molecular weight decreased from 36,200 to 30,200 g/mol for the copolymer having 20 mol% of trimethylene carbonate units. Copolymers were characterized by differential scanning calorimetry, thermogravimetry and X-ray diffraction. Morphology of spherulites and lamellar crystals was evaluated with optical and atomic force microscopies, respectively. The studied copolymers were able to crystallize despite the randomness caused by the trimethylene carbonate units and the lateral groups. Contact angle measurements indicated that PEG grafted copolymers were more hydrophilic than parent copolymers. This feature justified that enzymatic degradation in lipase medium and proliferation of both epithelial-like and fibroblast-like cells were enhanced. Grafted copolymers were appropriate to prepare regular drug loaded microspheres by the oil-in-water emulsion method. Triclosan release from loaded microspheres was evaluated in two media. - Highlights: • Pegylated copolymers of lactide and trimethylene carbonate have been synthesized. • Grafting with polyethylene glycol was able via maleic anhydride functionalization. • Drug-loaded microspheres could be prepared from new pegylated copolymers. • Hydrophilicity of lactide/trimethylene carbonate copolymers increased by pegylation. • New pegylated copolymers supported cell adhesion and proliferation

  18. Determination of glycols in air: development of sampling and analytical methodology and application to theatrical smokes.

    Pendergrass, S M

    1999-01-01

    Glycol-based fluids are used in the production of theatrical smokes in theaters, concerts, and other stage productions. The fluids are heated and dispersed in aerosol form to create the effect of a smoke, mist, or fog. There have been reports of adverse health effects such as respiratory irritation, chest tightness, shortness of breath, asthma, and skin rashes. Previous attempts to collect and quantify the aerosolized glycols used in fogging agents have been plagued by inconsistent results, both in the efficiency of collection and in the chromatographic analysis of the glycol components. The development of improved sampling and analytical methodology for aerosolized glycols was required to assess workplace exposures more effectively. An Occupational Safety and Health Administration versatile sampler tube was selected for the collection of ethylene glycol, propylene glycol, 1,3-butylene glycol, diethylene glycol, triethylene glycol, and tetraethylene glycol aerosols. Analytical methodology for the separation, identification, and quantitation of the six glycols using gas chromatography/flame ionization detection is described. Limits of detection of the glycol analytes ranged from 7 to 16 micrograms/sample. Desorption efficiencies for all glycol compounds were determined over the range of study and averaged greater than 90%. Storage stability results were acceptable after 28 days for all analytes except ethylene glycol, which was stable at ambient temperature for 14 days. Based on the results of this study, the new glycol method was published in the NIOSH Manual of Analytical Methods. PMID:10462779

  19. Effect of ethylene glycol dimethacrylate on swelling and on metformin hydrochloride release behavior of chemically crosslinked pH–sensitive acrylic acid–polyvinyl alcohol hydrogel

    Akhtar, Muhammad Faheem; Ranjha, Nazar Muhammad; Hanif, Muhammad

    2015-01-01

    Background The present work objective was to prepare and to observe the effect of ethylene glycol dimethacrylate on swelling and on drug release behavior of pH-sensitive acrylic acid–polyvinyl alcohol hydrogel. Methods In the present work, pH sensitive acrylic acid–polyvinyl alcohol hydrogels have been prepared by free radical polymerization technique in the presence of benzoyl peroxide as an initiator. Different crosslinker contents were used to observe its effect on swelling and on drug rel...

  20. Design and synthesis of multifunctional poly(ethylene glycol)s using enzymatic catalysis for multivalent cancer drug delivery

    Seo, Kwang Su

    The objective of this research was to design and synthesize multifunctional poly(ethylene glycol)s (PEG)s using enzyme-catalyzed reactions for multivalent targeted drug delivery. Based on computer simulation for optimum folate binding, a four-arm PEG star topology with Mn = 1000 g/mol was proposed. First, a four-functional core based on tetraethylene glycol (TEG) was designed and synthesized using transesterification and Michael addition reactions in the presence of Candida antarctica lipase B (CALB) as a biocatalyst. The four-functional core (HO)2-TEG-(OH)2 core was successfully prepared by the CALB-catalyzed transesterification of vinyl acrylate (VA) with TEG and then Michael addition of diethanolamine to the resulting TEG diacrylate with/without the use of solvent. The functional PEG arms with fluorescein isothiocyanate (FITC) and folic acid (FA) were prepared using both traditional organic chemistry and enzyme-catalyzed reactions. FITC was reacted with the amine group of H2N-PEG-OH in the presence of triethylamine via nucleophilic addition onto the isothiocyanate group. Then, divinyl adipate (DVA) was transesterified with the FITC-PEG-OH product in the presence of CALB to produce the FITC-PEG vinyl ester that will be attached to the four-functional core via CALC-catalyzed transesterification. For the synthesis of FA-PEG vinyl ester arm, DVA was first reacted with PEG-monobenzyl ether (BzPEG-OH) in bulk in the presence of CALB. The BzPEG vinyl ester was then transesterified with 12-bromo-1-dodecanol in the presence of CALB. Finally, BzPEG-Br was attached to FA exclusively in the gamma position using a new method. The thesis also discusses fundamental studies that were carried out in order to get better understanding of enzyme catalyzed transesterification and Michael addition reactions. First, in an effort to investigate the effects of reagent and enzyme concentrations in transesterification, vinyl methacrylate (VMA) was reacted with 2-(hydroxyethyl) acrylate (2

  1. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESS CELL WITH SLUDGE AND SUPERNATE SIMULANTS

    Lambert, D.; Stone, M.; Newell, J.; Best, D.; Zamecnik, J.

    2012-08-28

    Savannah River Remediation (SRR) is evaluating changes to its current Defense Waste Processing Facility (DWPF) flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the Chemical Process Cell (CPC) since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT&QAP). The details regarding the simulant preparation and analysis have been documented previously.

  2. GLYCOLIC-NITRIC ACID FLOWSHEET DEMONSTRATION OF THE DWPF CHEMICAL PROCESSING CELL WITH MATRIX SIMULANTS AND SUPERNATE

    Lambert, D.; Stone, M.; Newell, J.; Best, D.

    2012-05-07

    Savannah River Remediation (SRR) is evaluating changes to its current DWPF flowsheet to improve processing cycle times. This will enable the facility to support higher canister production while maximizing waste loading. Higher throughput is needed in the CPC since the installation of the bubblers into the melter has increased melt rate. Due to the significant maintenance required for the DWPF gas chromatographs (GC) and the potential for production of flammable quantities of hydrogen, reducing or eliminating the amount of formic acid used in the CPC is being developed. Earlier work at Savannah River National Laboratory has shown that replacing formic acid with an 80:20 molar blend of glycolic and formic acids has the potential to remove mercury in the SRAT without any significant catalytic hydrogen generation. This report summarizes the research completed to determine the feasibility of processing without formic acid. In earlier development of the glycolic-formic acid flowsheet, one run (GF8) was completed without formic acid. It is of particular interest that mercury was successfully removed in GF8, no formic acid at 125% stoichiometry. Glycolic acid did not show the ability to reduce mercury to elemental mercury in initial screening studies, which is why previous testing focused on using the formic/glycolic blend. The objective of the testing detailed in this document is to determine the viability of the nitric-glycolic acid flowsheet in processing sludge over a wide compositional range as requested by DWPF. This work was performed under the guidance of Task Technical and Quality Assurance Plan (TT and QAP). The details regarding the simulant preparation and analysis have been documented previously.

  3. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    Phuong Tuyen Dao, Thi; Hoai Nguyen, To; To, Van Vinh; Ho, Thanh Ha; Nguyen, Tuan Anh; Chien Dang, Mau

    2014-09-01

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100-300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix.

  4. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material

    The aim of this study is to fabricate a nanoparticle formulation of curcumin using a relatively new vehicle as the matrix polymer: poly(lactic-co-glycolic acid) (PLGA)- polyethylene glycol (PEG) diblock copolymer, and to investigate the effects of the various processing parameters on the characteristics of nanoparticles (NPs). We successfully synthesized the matrix polymer of PLGA-PEG by conjugation of PLGA copolymer with a carboxylate end group to a heterobifunctional amine-PEG-methoxy using N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide as conjugation crosslinkers. The composition of the formed product (PLGA-PEG) was characterized with 500 MHz 1H nuclear magnetic resonance (NMR). The conjugation of PLGA-PEG was confirmed using Fourier transform infrared (FTIR) spectrum study. This diblock copolymer was then used to prepare the curcumin-loaded NPs through nanoprecipitation technique. With this method, we found that the size distribution depends on the type of solvent, the concentration of polymer and the concentration of surfactant. The particle size and size distribution were measured by dynamic light scattering (DLS). Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to confirm the size, structure and morphology of the successfully prepared NPs. All of our results showed that they are spherical and quite homologous with mean diameter around of 100–300 nm. Further, we evaluated encapsulation efficiency and some characteristics of NPs through high performance liquid chromatography (HPLC) analyses, zeta-potential measurements and x-ray diffraction studies. The HPLC analyses were performed to determine the amount of curcumin entrapped in NPs. The zeta-potential measurements confirmed the stability of NPs and the successful encapsulation of curcumin within NPs and the x-ray diffraction patterns showed the disordered-crystalline phase of curcumin inside the polymeric matrix. (paper)

  5. Ethylene glycol and propylene glycol ethers – Reproductive and developmental toxicity

    Beata Starek-Świechowicz

    2015-10-01

    Full Text Available Both ethylene and propylene glycol alkyl ethers (EGAEs and PGAEs, respectively are widely used, mainly as solvents, in industrial and household products. Some EGAEs demonstrate gonadotoxic, embriotoxic, fetotoxic and teratogenic effects in both humans and experimental animals. Due to the noxious impact of these ethers on reproduction and development of organisms EGAEs are replaced for considerably less toxic PGAEs. The data on the mechanisms of testicular, embriotoxic, fetotoxic and teratogenic effects of EGAEs are presented in this paper. Our particular attention was focused on the metabolism of some EGAEs and their organ-specific toxicities, apoptosis of spermatocytes associated with changes in the expression of various genes that code for oxidative stress factors, protein kinases and nuclear hormone receptors. Med Pr 2015;66(5:725–737

  6. [Secondary hyperoxaluria and nephrocalcinosis due to ethylene glycol poisoning].

    Monet, C; Richard, E; Missonnier, S; Rebouissoux, L; Llanas, B; Harambat, J

    2013-08-01

    We report the case of a 3-year-old boy admitted to the pediatric emergency department for ethylene glycol poisoning. During hospitalization, he presented dysuria associated with crystalluria. Blood tests showed metabolic acidosis with an elevated anion gap. A renal ultrasound performed a few weeks later revealed bilateral medullary hyperechogenicity. Urine microscopic analysis showed the presence of weddellite crystals. Secondary nephrocalcinosis due to ethylene glycol intoxication was diagnosed. Hyperhydration and crystallization inhibition by magnesium citrate were initiated. Despite this treatment, persistent weddellite crystals and nephrocalcinosis were seen more than 2years after the intoxication. Ethylene glycol is metabolized in the liver by successive oxidations leading to its final metabolite, oxalic acid. Therefore, metabolic acidosis with an elevated anion gap is usually found following ethylene glycol intoxication. Calcium oxalate crystal deposition may occur in several organs, including the kidneys. The precipitation of calcium oxalate in renal tubules can lead to nephrocalcinosis and acute kidney injury. The long-term renal prognosis is related to chronic tubulointerstitial injury caused by nephrocalcinosis. Treatment of ethylene glycol intoxication is based on specific inhibitors of alcohol dehydrogenase and hemodialysis in the most severe forms, and should be started promptly. PMID:23827374

  7. Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles

    Brullot, W., E-mail: ward.brullot@fys.kuleuven.be [Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Heverlee, Leuven (Belgium); Reddy, N.K. [Department of Chemical Engineering, Katholieke Universiteit Leuven, Willem de Croylaan 46, 3001 Heverlee, Leuven (Belgium); Wouters, J.; Valev, V.K.; Goderis, B. [Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Heverlee, Leuven (Belgium); Vermant, J. [Department of Chemical Engineering, Katholieke Universiteit Leuven, Willem de Croylaan 46, 3001 Heverlee, Leuven (Belgium); Verbiest, T. [Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200D, 3001 Heverlee, Leuven (Belgium)

    2012-06-15

    Versatile ferrofluids based on polyethylene glycol coated iron oxide nanoparticles were obtained by a facile protocol and thoroughly characterized. Superparamagnetic iron oxide nanoparticles synthesized using a modified forced hydrolysis method were functionalized with polyethylene glycol silane (PEG silane), precipitated and dried. These functionalized particles are dispersable in a range of solvents and concentrations depending on the desired properties. Examples of tunable properties are magnetic behavior, optical and magneto-optical response, thermal features and rheological behavior. As such, PEG silane functionalized particles represent a platform for the development of new materials that have broad applicability in e.g. biomedical, industrial or photonic environments. Magnetic, optical, magneto-optical, thermal and rheological properties of several ferrofluids based on PEG coated particles with different concentrations of particles dispersed in low molecular mass polyethylene glycol were investigated, establishing the applicability of such materials. - Highlights: Black-Right-Pointing-Pointer Ferrofluids based on polyethylene glycol coated iron oxide nanoparticles. Black-Right-Pointing-Pointer Magnetic, optical, magneto-optical, thermal and rheological characterization of ferrofluids. Black-Right-Pointing-Pointer Tunable properties of versatile polyethylene glycol stabilized ferrofluids.

  8. Sources of Propylene Glycol and Glycol Ethers in Air at Home

    Hyunok Choi

    2010-12-01

    Full Text Available Propylene glycol and glycol ether (PGE in indoor air have recently been associated with asthma and allergies as well as sensitization in children. In this follow-up report, sources of the PGEs in indoor air were investigated in 390 homes of pre-school age children in Sweden. Professional building inspectors examined each home for water damages, mold odour, building’s structural characteristics, indoor temperature, absolute humidity and air exchange rate. They also collected air and dust samples. The samples were analyzed for four groups of volatile organic compounds (VOCs and semi-VOCs (SVOCs, including summed concentrations of 16 PGEs, 8 terpene hydrocarbons, 2 Texanols, and the phthalates n-butyl benzyl phthalate (BBzP, and di(2-ethylhexylphthalate (DEHP. Home cleaning with water and mop ≥ once/month, repainting ≥ one room prior to or following the child’s birth, and “newest” surface material in the child’s bedroom explained largest portion of total variability in PGE concentrations. High excess indoor humidity (g/m3 additionally contributed to a sustained PGE levels in indoor air far beyond several months following the paint application. No behavioral or building structural factors, except for water-based cleaning, predicted an elevated terpene level in air. No significant predictor of Texanols emerged from our analysis. Overall disparate sources and low correlations among the PGEs, terpenes, Texanols, and the phthalates further confirm the lack of confounding in the analysis reporting the associations of the PGE and the diagnoses of asthma, rhinitis, and eczema, respectively.

  9. Pt Ru/C electrocatalysts prepared using electron beam irradiation

    Pt Ru/C electrocatalysts (carbon-supported Pt Ru nanoparticles) were prepared submitting water/ethylene glycol solutions containing Pt(IV) and Ru(III) ions and the carbon support to electron beam irradiation. The water/ethylene glycol ratio (v/v) was evaluated as synthesis parameters. The Pt Ru/C electrocatalysts were prepared with a nominal Pt:Ru atomic ratio of 50:50 and were characterized by energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD) and tested for methanol electro-oxidation using cyclic voltammetry and chronoamperometry. The obtained Pt Ru/C electrocatalysts showed the typical fcc structure of platinum-ruthenium alloys and the electrocatalytic activity depends on the water/ethylene glycol ratio used in the preparation

  10. Nitric-glycolic flowsheet testing for maximum hydrogen generation rate

    Martino, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site is developing for implementation a flowsheet with a new reductant to replace formic acid. Glycolic acid has been tested over the past several years and found to effectively replace the function of formic acid in the DWPF chemical process. The nitric-glycolic flowsheet reduces mercury, significantly lowers the chemical generation of hydrogen and ammonia, allows purge reduction in the Sludge Receipt and Adjustment Tank (SRAT), stabilizes the pH and chemistry in the SRAT and the Slurry Mix Evaporator (SME), allows for effective adjustment of the SRAT/SME rheology, and is favorable with respect to melter flammability. The objective of this work was to perform DWPF Chemical Process Cell (CPC) testing at conditions that would bound the catalytic hydrogen production for the nitric-glycolic flowsheet.

  11. Preparation and characterization of ethosomes for topical delivery of aceclofenac

    Barupal A; Gupta Vandana; Ramteke Suman

    2010-01-01

    The aim of present study was to prepare and characterized ethosomes of aceclofenac which may deliver the drug to targeted site more efficiently than marketed gel preparation and also overcome the problems related with oral administration of drug. The formulations were prepared with varying the quantity of ethanol 10-50% (v/v), lecithin 1-4% (w/v), propylene glycol 5-20% (v/v) and evaluated for their vesicle size, shape and surface morphology, entrapment efficiency and in ...

  12. Liver-targeting Resibufogenin-loaded poly(lactic-co-glycolic acid-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for liver cancer therapy

    Chu QC

    2016-01-01

    Full Text Available Qiuchen Chu,1,* Hong Xu,2,* Meng Gao,1 Xin Guan,1 Hongyan Liu,1 Sa Deng,1 Xiaokui Huo,1 Kexin Liu,1 Yan Tian,1 Xiaochi Ma1 1College of Pharmacy, 2College of Basic Medical Sciences, Dalian Medical University, Dalian, People’s Republic of China *These authors contributed equally to this work Abstract: Liver cancer remains a major problem around the world. Resibufogenin (RBG is a major bioactive compound that was isolated from Chansu (also called toad venom or toad poison, which is a popular traditional Chinese medicine that is obtained from the skin secretions of giant toads. RBG has strong antitumor effects, but its poor aqueous solubility and its cardiotoxicity have limited its clinical use. The aim of this study was to formulate RBG-loaded poly(lactic-co-glycolic acid (PLGA-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RPTN to enhance the treatment of liver cancer. RPTN, RBG-loaded PLGA nanoparticle (RPN, and RBG/coumarin-6-loaded PLGA-D-α-tocopheryl polyethylene glycol 1000 succinate nanoparticle (RCPTN were prepared. The cellular uptake of RCPTN by HepG2 and HCa-F cells was analyzed using confocal laser scanning microscopy. Apoptosis was induced in HepG2 cells by RPTN, RBG solution (RS, and 5-fluorouracil solution (used as the negative controls, as assayed using flow cytometry. LD50 (median lethal dose values were determined for RS and RPTN, and the liver-targeting properties were determined for RCPTN in intravenously injected mice. A pharmacokinetic study was conducted in rats, and the in vivo therapeutic effects of RPTN, RPN, and RS were examined in a mouse tumor model. The results showed that RCPTN simultaneously delivered both coumarin-6 and RBG into HepG2 and HCa-F cells. The ratio of apoptotic cells was increased in the RPTN group. The LD50 for RPTN was 2.02-fold higher than the value for RS. Compared to RS, RPTN and RPN both showed a significant difference in vivo not only in the pharmacodynamic study but also in

  13. Enzymatic remediated biodegradation of propylene glycol 1,2-dinitrate

    Meng, M.; Geelhaar, L.; Speedie, M.K. [Univ. of Maryland, Baltimore, MD (United States)

    1995-12-31

    Two bacterial species, Enterobacter agglomerans and Bacillus thuringiensis/cereus, which were selected from nitroglycerin (GTN) contaminated soil, have previously been shown to have denitrating ability on nitroglycerin. This abstract presents the investigation of the cell free extracts from both microorganisms for the degradation of another nitrate ester contaminant; propylene glycol 1,2-dinitrate (PGDN). This compound has been previously considered resistant to the biodegradation. In order to probe the pathway, the whole process was monitored by using [1-{sup 14}C]-PGDN as substrate and the intermediates were identified by HPLC and TLC chromatography. Long term biodegradation experiments have shown that the enzymes in the cytoplasm fraction of Bacillus thuringiensis/cereus and the membrane fraction of Enterobacter agglomerans convert PGDN successively into propylene glycol 1-mononitrate (1-PGMN) and propylene glycol 2-mononitrate (2-PGMN), and finally, propylene glycol. The capacity to achieve sequential and complete degradation of PGDN implies that it follows a similar mechanism to that observed in the GTN degradation. Cofactor requirements for PGDN breakdown have been studied, it was found that no dissociable, dialyzable cofactors are required.

  14. Radioimmunoprecipitation polyethylene glycol assay for circulating Entamoeba histolytica antigens

    Pillai, S.; Mohimen, A.; Mehra, S. (Calcutta Medical Research Inst., Calcutta (India). Kothari Centre of Gastroenterology)

    1982-12-17

    An assay capable of detecting circulating Entamoeba histolytica antigens in amoebiasis is described. This assay utilised a radiolabelled affinity purified rabbit anti-E. histolytica antibody that had been depleted of antibodies that cross-react with human serum proteins, and a polyethylene glycol precipitation step.

  15. A radioimmunoprecipitation polyethylene glycol assay for circulating Entamoeba histolytica antigens

    An assay capable of detecting circulating Entamoeba histolytica antigens in amoebiasis is described. This assay utilised a radiolabelled affinity purified rabbit anti-E. histolytica antibody that had been depleted of antibodies that cross-react with human serum proteins, and a polyethylene glycol precipitation step. (Auth.)

  16. A rapid analysis of plasma/serum ethylene and propylene glycol by headspace gas chromatography.

    Ehlers, Alexandra; Morris, Cory; Krasowski, Matthew D

    2013-12-01

    A rapid headspace-gas chromatography (HS-GC) method was developed for the analysis of ethylene glycol and propylene glycol in plasma and serum specimens using 1,3-propanediol as the internal standard. The method employed a single-step derivitization using phenylboronic acid, was linear to 200 mg/dL and had a lower limit of quantitation of 1 mg/dL suitable for clinical analyses. The analytical method described allows for laboratories with HS-GC instrumentation to analyze ethanol, methanol, isopropanol, ethylene glycol, and propylene glycol on a single instrument with rapid switch-over from alcohols to glycols analysis. In addition to the novel HS-GC method, a retrospective analysis of patient specimens containing ethylene glycol and propylene glycol was also described. A total of 36 patients ingested ethylene glycol, including 3 patients who presented with two separate admissions for ethylene glycol toxicity. Laboratory studies on presentation to hospital for these patients showed both osmolal and anion gap in 13 patients, osmolal but not anion gap in 13 patients, anion but not osmolal gap in 8 patients, and 1 patient with neither an osmolal nor anion gap. Acidosis on arterial blood gas was present in 13 cases. Only one fatality was seen; this was a patient with initial serum ethylene glycol concentration of 1282 mg/dL who died on third day of hospitalization. Propylene glycol was common in patients being managed for toxic ingestions, and was often attributed to iatrogenic administration of propylene glycol-containing medications such as activated charcoal and intravenous lorazepam. In six patients, propylene glycol contributed to an abnormally high osmolal gap. The common presence of propylene glycol in hospitalized patients emphasizes the importance of being able to identify both ethylene glycol and propylene glycol by chromatographic methods. PMID:23741644

  17. Processes and systems for the production of propylene glycol from glycerol

    Frye, John G; Oberg, Aaron A; Zacher, Alan H

    2015-01-20

    Processes and systems for converting glycerol to propylene glycol are disclosed. The glycerol feed is diluted with propylene glycol as the primary solvent, rather than water which is typically used. The diluted glycerol feed is sent to a reactor where the glycerol is converted to propylene glycol (as well as other byproducts) in the presence of a catalyst. The propylene glycol-containing product from the reactor is recycled as a solvent for the glycerol feed.

  18. Impact of scaling on the nitric-glycolic acid flowsheet

    Lambert, D. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-02-01

    Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic than glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.

  19. Impact of scaling on the nitric-glycolic acid flowsheet

    Savannah River Remediation (SRR) is considering using glycolic acid as a replacement for formic acid in Sludge Receipt and Adjustment Tank (SRAT) processing in the Defense Waste Processing Facility (DWPF). Catalytic decomposition of formic acid is responsible for the generation of hydrogen, a potentially flammable gas, during processing. To prevent the formation of a flammable mixture in the offgas, an air purge is used to dilute the hydrogen concentration below the 60% of the Composite Lower Flammability Limit (CLFL). The offgas is continuously monitored for hydrogen using Gas Chromatographs (GCs). Since formic acid is much more volatile and toxic than glycolic acid, a formic acid spill would lead to the release of much larger quantities to the environment. Switching from formic acid to glycolic acid is expected to eliminate the hydrogen flammability hazard leading to lower air purges, thus downgrading of Safety Significant GCs to Process Support GCs, and minimizing the consequence of a glycolic acid tank leak in DWPF. Overall this leads to a reduction in process operation costs and an increase in safety margin. Experiments were completed at three different scales to demonstrate that the nitric-glycolic acid flowsheet scales from the 4-L lab scale to the 22-L bench scale and 220-L engineering scale. Ten process demonstrations of the sludge-only flowsheet for SRAT and Slurry Mix Evaporator (SME) cycles were performed using Sludge Batch 8 (SB8)-Tank 40 simulant. No Actinide Removal Process (ARP) product or strip effluent was added during the runs. Six experiments were completed at the 4-L scale, two experiments were completed at the 22-L scale, and two experiments were completed at the 220-L scale. Experiments completed at the 4-L scale (100 and 110% acid stoichiometry) were repeated at the 22-L and 220-L scale for scale comparisons.

  20. Liquid-liquid equilibria for glycols plus hydrocarbons: Data and correlation

    Derawi, Samer; Kontogeorgis, Georgios; Stenby, Erling Halfdan;

    2002-01-01

    Liquid-liquid equilibrium data for seven binary glycol-hydrocarbon systems have been measured in the temperature range 32 degreesC to 80 degreesC and at the pressure 1 bar. The measured systems are monoethylene glycol (MEG) + heptane, methyleyclohexane (MCH) + hexane, propylene glycol (PG...

  1. 21 CFR 172.765 - Succistearin (stearoyl propylene glycol hydrogen succinate).

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Succistearin (stearoyl propylene glycol hydrogen succinate). 172.765 Section 172.765 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... propylene glycol hydrogen succinate). The food additive succistearin (stearoyl propylene glycol...

  2. Tetraethylene glycol thermooxidation and the influence of certain compounds relevant to conserved archaeological wood

    Mortensen, Martin Nordvig; Egsgaard, Helge; Hvilsted, Søren; Shashoua, Yvonne; Glastrup, Jens

    2012-01-01

    The degradation of tetraethylene glycol (TEG) was studied at 70 °C under dry air and nitrogen. Degradation products were detected using gas chromatography-mass spectrometry (GC–MS). They were mono-, di- and tri-ethylene glycol, mono- and di-formates of mono-, di-, tri- and tetra-ethylene glycol and...

  3. 21 CFR 500.50 - Propylene glycol in or on cat food.

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Propylene glycol in or on cat food. 500.50 Section... Propylene glycol in or on cat food. The Food and Drug Administration has determined that propylene glycol in or on cat food is not generally recognized as safe and is a food additive subject to section 409...

  4. Thermo-Responsive Hydrogels Based on Branched Poly(L-lactide)-poly(ethylene glycol) Copolymers

    Velthoen, Ingrid W.; Tijsma, Edze J.; Dijkstra, Pieter J.; Feijen, Jan

    2008-01-01

    Branched poly(L-lactide)-poly(ethylene glycol) (PLLA-PEG) block copolymers were synthesized from trifunctional PLLA and amine functionalized methoxy poly(ethylene glycol)s. The copolymers in water formed hydrogels that showed thermo-responsive behavior. The hydrogels underwent a gel to sol transitio

  5. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Nor Monica Ahmad

    2016-06-01

    Full Text Available A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB, polyethylene glycol (PEG, and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE. Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM, Electrochemical Impedance Spectroscopy (EIS, and Cyclic voltamogram (CV. The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  6. Transactivating-transduction protein-polyethylene glycol modified liposomes traverse the blood-spinal cord and blood-brain barriers

    Xianhu Zhou; Chunyuan Wang; Shiqing Feng; Jin Chang; Xiaohong Kong; Yang Liu; Shijie Gao

    2012-01-01

    Naive liposomes can cross the blood-brain barrier and blood-spinal cord barrier in small amounts. Liposomes modified by a transactivating-transduction protein can deliver antibiotics for the treatment of acute bacterial infection-induced brain inflammation. Liposomes conjugated with polyethylene glycol have the capability of long-term circulation. In this study we prepared transactivating-transduction protein-polyethylene glycol-modified liposomes labeled with fluorescein isothiocyanate. Thus, liposomes were characterized by transmembrane, long-term circulation and fluorescence tracing. Uptake, cytotoxicity, and the ability of traversing blood-spinal cord and blood-brain barriers were observed following coculture with human breast adenocarcinoma cells (MCF-7). Results demonstrated that the liposomes had good biocompatibility, and low cytotoxicity when cocultured with human breast adenocarcinoma cells. Liposomes could traverse cell membranes and entered the central nervous system and neurocytes through the blood-spinal cord and blood-brain barriers of rats via the systemic circulation. These results verified that fluorescein isothiocyanate-modified transactivating-transduction protein-polyethylene glycol liposomes have the ability to traverse the blood-spinal cord and blood-brain barriers.

  7. Biocompatible and bioadhesive hydrogels based on 2-hydroxyethyl methacrylate, monofunctional poly(alkylene glycols and itaconic acid

    Mićić Maja M.

    2007-01-01

    Full Text Available New types of hydrogels were prepared by the radical copolymerization of 2-hydroxyethyl methacrylate, itaconic acid and four different poly(alkylene glycol (methacrylate components (Bisomers in a water/ethanol mixture as solvent. The polymers swell in water at 25°C to yield homogeneous transparent hydrogels. All the hydrogels displayed pH sensitive behavior in buffers of the pH range from 2.20 to 7.40, under conditions similar to those of biological fluids. The presence of these two comonomers, which were added to HEMA, increased the swelling degree of the hydrogels and gave gels with better elasticity. The hydrogels were thermally stable in the vicinity of the physiological temperature (37°C. The copolymer containing pure poly(ethylene glycol acrylate units generally had the best properties. The tests performed on the hydrogels confirmed that they were neither hemolytic nor cytotoxic. The copolymer samples showed better cell viability and less hemolytic activity than the PHEMA sample, confirming the assumption that poly(alkylene glycols improve the biocompatibility of hydrogels. Due to their swelling and mechanical characteristics, as well as the very good biocompatibility and bioadhesive properties, poly(Bisomer/HEMA/IA hydrogels are promising for utilization in the field of biomedicals, especially for the controlled release of drugs.

  8. Hydrophilicity improvement in polyphenylsulfone nanofibrous filtration membranes through addition of polyethylene glycol

    Kiani, Shirin; Mousavi, Seyed Mahmoud; Shahtahmassebi, Nasser; Saljoughi, Ehsan

    2015-12-01

    Novel hydrophilic polyphenylsulfone (PPSU) nanofibrous membrane was prepared by electrospinning of the PPSU solution blended with polyethylene glycol 400 (PEG 400). The influence of the PEG concentration on the membrane characteristics was studied using scanning electron microscopy (SEM), water contact angle measurement, and tensile test. Filtration performance of the membranes was investigated by measurement of pure water flux (PWF) and determination of the rejection values of the pollution indices during treatment of canned beans production wastewater. According to the results, blending the PPSU solution with 10 wt.% PEG 400 resulted in formation of a nanofibrous membrane with high porosity and increased mechanical strength which exhibited a low water contact angle of 8.9° and high water flux of 7920 L/m2h. Flux recovery of the mentioned membrane which was assessed by filtration of a solution containing bovine serum albumin (BSA) was 83% indicating a noticeable antifouling property.

  9. Synthesis of single crystalline CdS nanowires with polyethylene glycol 400 as inducing template

    2006-01-01

    Solvothermal technique, an one-step soft solution-processing route was successfully employed to synthesize single crystalline CdS nanowires in ethylenediamine medium at lower temperature (170 □) for 1-8 d. In this route, polyethylene glycol 400 (PEG400)was used as surfactant, which played a crucial role in preferentially oriented growth of semiconductor nanowires. Characterizations of as-prepared CdS nanowires by X-ray powder diffraction(XRD), transmission electron microscopy(TEM) indicate that the naonowires,with typical diameters of 20nm and lengths up to several micrometers, have preferential [001] orientation. Also, investigations into the physical properties of the CdS nanowires were conducted with UV-Vis absorption spectroscopy and photoluminescence emission spectroscopy. The excitonic photo-optical phenomena of the nanowires shows the potential in the practical applications.

  10. Maltose neopentyl glycol-3 (MNG-3) analogues for membrane protein study

    Cho, Kyung Ho; Husri, Mohd; Amin, Anowarul; Gotfryd, Kamil; Lee, Ho Jin; Go, Juyeon; Kim, Jin Woong; Loland, Claus J; Guan, Lan; Byrne, Bernadette; Chae, Pil Seok

    2015-01-01

    Detergents are typically used to both extract membrane proteins (MPs) from the lipid bilayers and maintain them in solution. However, MPs encapsulated in detergent micelles are often prone to denaturation and aggregation. Thus, the development of novel agents with enhanced stabilization...... characteristics is necessary to advance MP research. Maltose neopentyl glycol-3 (MNG-3) has contributed to >10 crystal structures including G-protein coupled receptors. Here, we prepared MNG-3 analogues and characterised their properties using selected MPs. Most MNGs were superior to a conventional detergent, n......-dodecyl-β-d-maltopyranoside (DDM), in terms of membrane protein stabilization efficacy. Interestingly, optimal stabilization was achieved with different MNG-3 analogues depending on the target MP. The origin for such detergent specificity could be explained by a novel concept: compatibility between detergent hydrophobicity and MP...