WorldWideScience

Sample records for acid-elicited catharanthus roseus

  1. Metabolic changes of salicylic acid-elicited Catharanthus roseus cell suspension cultures monitored by NMR-based metabolomics

    Mustafa, Natali Rianika; Kim, Hye Kyong; Choi, Young Hae; Verpoorte, Robert

    2009-01-01

    The effect of salicylic acid (SA) on the metabolic profile of Catharanthus roseus suspension cells throughout a time course (0, 6, 12, 24, 48 and 72 h after treatment) was investigated using NMR spectroscopy and multivariate data analysis. When compared to control cell lines, SA-treated cells showed a high level of sugars (glucose and sucrose) up to 48 h after treatment, followed by a dynamic change in amino acids, phenylpropanoids, and tryptamine. Additionally, one compound—2,5-dihydroxybenz...

  2. Jasmonate-responsive transcriptional regulation in Catharanthus roseus

    Zhang, Hongtao

    2008-01-01

    Plants produce a variety of secondary metabolites. In Catharanthus roseus, several have pharmaceutical applications, including the monomeric alkaloids serpentine and ajmalicine, which are used as a tranquillizer and to reduce hypertension, respectively, and the dimeric alkaloids vincristine and vinb

  3. Novel Plant Regeneration and Transient Gene Expression in Catharanthus roseus

    Abdullah Makhzoum; Anica Bjelica; Genevieve Petit-Paly; Bernards, Mark A

    2015-01-01

    Catharanthus roseus genetic transformation represents a real challenge due, in part, to the lack of regeneration capability and this species’ recalcitrance to genetic transformation. In the present work, we demonstrate the regeneration of C. roseus plants from hypocotyls and cotyledons, using specific growth regulator conditions. Plants derived from hypocotyls and cotyledons were successfully acclimated and grown in the greenhouse. Furthermore, C. roseus meristem tissues were shown to have hi...

  4. Mutation breeding in Catharanthus roseus (L. G. Don: An Overview

    Ashutosh Kumar Verma

    2013-05-01

    Full Text Available Induced mutagenesis is best approach for creation of genetic variability but most of interest is paid towards crop plants with only a few exceptions. But even widely used medicinal plants could receive a little attention in this direction. Catharanthus roseus is an important plant medicinal plant yielding antihypertensive alkaloid ajmalcine and anticancerous alkaloid vincristine and vinblastine. Despite of considerable work had been done on biotechnological aspect of C. roseus alkaloid production but relatively little efforts has been made for its improvement by mutation breeding approach. The aim of this review is to summarize the all efforts of mutation breeding which were made for the improvement of Catharanthus roseus.

  5. Terpenoid Indole Alkaloids Biosynthesis and Metabolic Engineering in Catharanthus roseus

    2007-01-01

    Catharanthus roseus L. (Madagascar periwinkle) biosynthesizes a diverse array of secondary metabolites including anticancer dimeric alkaloids (vinblastine and vincristine) and antihypertensive alkaloids (ajmalicine and serpentine). The multi-step terpenoid indole alkaloids (TIAs) biosynthetic pathway in C. roseus is complex and is under strict molecular regulation. Many enzymes and genes involved in the TIAs biosynthesis have been studied in recent decades. Moreover,some regulatory proteins were found recently to control the production of TIAs in C. roseus. Based on mastering the rough scheme of the pathway and cloning the related genes, metabolic engineering of TIAs biosynthesis has been studied in C.roseus aiming at increasing the desired secondary metabolites in the past few years. The present article summarizes recent advances in isolation and characterization of TIAs biosynthesis genes and transcriptional regulators involved in the second metabolic control in C. roseus. Metabolic engineering applications in TIAs pathway via overexpression of these genes and regulators in C. roseus are also discussed.

  6. Monoterpenoid Indole Alkaloids from Catharanthus roseus Cultivated in Yunnan.

    Wang, Bei; Liu, Lu; Chen, Ying-ying; Li, Qiong; Li, Dan; Liu, Va-ping; Luo, Xiao-dong

    2015-12-01

    A new monoterpenoid indole alkaloid, 15,20-dehydro-3α-(2-oxopropyl) coronaridine (1), along with sixteen analogues (2-17) were isolated from the leaves of Catharanthus roseus cultivated in Yunnan. The new alkaloid was elucidated on the basis of extensive spectroscopic analysis, and the known alkaloids were identified by comparison with the reported spectroscopic data. Among them, alkaloid 16 was isolated from Catharanthus for the first time. PMID:26882670

  7. Jasmonate-responsive transcriptional regulation in Catharanthus roseus

    Hongtao ZHANG

    2008-01-01

    Plants produce a variety of secondary metabolites. In Catharanthus roseus, several have pharmaceutical applications, including the monomeric alkaloids serpentine and ajmalicine, which are used as a tranquillizer and to reduce hypertension, respectively, and the dimeric alkaloids vincristine and vinblastine, which are potent antitumour drugs. Jasmonic acid (JA) is a key defense hormone, which controls the expression of several alkaloid biosynthesis genes in Catharanthus. The JA-responsive expr...

  8. Mutation breeding in Catharanthus roseus (L.) G. Don: An Overview

    Ashutosh Kumar Verma; Singh, R R; Seema Singh

    2013-01-01

    Induced mutagenesis is best approach for creation of genetic variability but most of interest is paid towards crop plants with only a few exceptions. But even widely used medicinal plants could receive a little attention in this direction. Catharanthus roseus is an important plant medicinal plant yielding antihypertensive alkaloid ajmalcine and anticancerous alkaloid vincristine and vinblastine. Despite of considerable work had been done on biotechnological aspect of C. roseus alkaloid produ...

  9. Metabolomic characteristics of Catharanthus roseus plants in time and space

    Qifang, Pan

    2014-01-01

    The thesis aims at combining metabolomics with other methods to investigate the regulation of the TIA biosynthesis and how this is connected with other pathways and the plant’s physiology and development. It reviews the biosynthesis studies of Catharanthus roseus. An HPLC method is described for both precursors and alkaloids which was validated to analyze alkaloid contents in different organs, its relationship with leaf age and growth of C. roseus plants. A metabolomics investigation of C. ro...

  10. Metabolomic characteristics of Catharanthus roseus plants in time and space

    Qifang, Pan; Qifang, Pan

    2014-01-01

    The thesis aims at combining metabolomics with other methods to investigate the regulation of the TIA biosynthesis and how this is connected with other pathways and the plant’s physiology and development. It reviews the biosynthesis studies of Catharanthus roseus. An HPLC method is described for bot

  11. Discovery and reconstitution of the secoiridoid pathway of Catharanthus roseus

    Dong, L.

    2014-01-01

      Terpene indole alkaloids (TIAs) are important plant-produced secondary metabolites for humans, because of their anti-cancer properties. The production of TIAs still fully relies on extraction from medicinal plants like Catharanthus roseus, which only contains extreme low amounts of these

  12. Effect of Aqueous Flower Extract of Catharanthus roseus on Alloxan Induced Diabetes in Male Albino Rats

    Natarajan, A.; K. Syed Zameer Ahmed; Sundaresan, S.; A. Sivaraj; Devi, K; B Senthil Kumar

    2012-01-01

    Catharanthus roseus is widely used in Indian Ayurvedic medicine for the treatment of diabetes mellitus. The present study was carried out to investigate the antidiabetic and hyperlipidemic potential of Catharanthus roseus on alloxan induced diabetes in male albino rats. Oral administration of aqueous extract of Catharanthus roseus at a dose of 250 mg, 350 mg, and 450 mg/kg body weight for 30 days to diabetic rats resulted in significant reduction in blood glucose, reduction in lipid profile a...

  13. Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus.

    Zhu, Jianhua; Wang, Mingxuan; Wen, Wei; Yu, Rongmin

    2015-01-01

    Catharanthus roseus produces a wide range of terpenoid indole alkaloids (TIA). Many of them, such as vinblastine and vincristine, have significant bioactivity. They are valuable chemotherapy drugs used in combination with other drugs to treat lymphoma and leukemia. The TIA biosynthetic pathway has been investigated for many years, for scientific interest and for their potential in manufacturing applications, to fulfill the market demand. In this review, the progress and perspective of C. roseus TIA biosynthesis and its regulating enzymes are described. In addition, the culture condition, hormones, signaling molecules, precursor feeding on the accumulation of TIA, and gene expression are also evaluated and discussed. PMID:26009689

  14. Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus

    Jianhua Zhu

    2015-01-01

    Full Text Available Catharanthus roseus produces a wide range of terpenoid indole alkaloids (TIA. Many of them, such as vinblastine and vincristine, have significant bioactivity. They are valuable chemotherapy drugs used in combination with other drugs to treat lymphoma and leukemia. The TIA biosynthetic pathway has been investigated for many years, for scientific interest and for their potential in manufacturing applications, to fulfill the market demand. In this review, the progress and perspective of C. roseus TIA biosynthesis and its regulating enzymes are described. In addition, the culture condition, hormones, signaling molecules, precursor feeding on the accumulation of TIA, and gene expression are also evaluated and discussed.

  15. Antimicrobial Activity of Catharanthus roseus – A Detailed Study

    Prajakta J. Patil

    2010-06-01

    Full Text Available Catharanthus roseus (periwinkle is an important medicinal plant for novel pharmaceuticals since most of the bacterial pathogens are developing resistance against many of the currently available anti microbial drugs. Plants have proved to be significant natural resources for effective chemotherapeutic agents and offering a broad spectrum of activity with greater emphasis on preventive action. This study aims to investigate some of the anti microbial properties of this plant. The anticancer properties of Catharanthus roseus has been the major interest in all investigations. The antimicrobial activity has been checked against microorganisms like Pseudomonas aeruginosa NCIM 2036, Salmonella typhimurium NCIM 2501, Staphylococcus aureus NCIM 5021. The findings show that the extracts from the leaves of this plant can be used as prophylactic agent in many of the diseases, which sometime are of the magnitude of an epidemic.

  16. Antimicrobial Activity of Catharanthus roseus – A Detailed Study

    Prajakta J. Patil; Jai S. Ghosh

    2010-01-01

    Catharanthus roseus (periwinkle) is an important medicinal plant for novel pharmaceuticals since most of the bacterial pathogens are developing resistance against many of the currently available anti microbial drugs. Plants have proved to be significant natural resources for effective chemotherapeutic agents and offering a broad spectrum of activity with greater emphasis on preventive action. This study aims to investigate some of the anti microbial properties of this plant. The anticancer pr...

  17. Induced Dwarf Mutant in Catharanthus roseus with Enhanced Antibacterial Activity

    Verma, A.K.; Singh, R R

    2010-01-01

    Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L.) G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis.

  18. The seco-iridoid pathway from Catharanthus roseus

    Miettinen, K.; Dong, L.; Navrot, N.; Burlat, V.; Schneider, T; Pollier, J.; Woittiez, L.S.; Krol, van der, S.; Lugan, R.; Llc, T.; Verpoorte, R.; Oksman-Caldentey, K.M.; Martinoia, E.; Bouwmeester, H.J.

    2014-01-01

    The (seco) iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynth...

  19. Catharanthus roseus (L.) G. Don - plant regeneration and alkaloids content

    Mirosława Furmanowa; Hanna Olędzka; Joanna Józefowicz; Agnieszka Pietrosiuk

    2014-01-01

    We describe here a regeneration of plantlets of Catharanthus roseus (L.) G. Don from shoot tips and axillary buds. Shoot tips were excised from 7-day-old seedlings and were incubated in solid Nitsch and Nitsch (NN) medium supplemented with kinetin, benzyladenine (BA), indole-3-butyric acid (IBA) and β-indolylacetic acid (IAA) in various combinations. After two months in culture, regenerated rooted plantlets were cut and transferred to a new medium; the explants contained shoot tips or axillar...

  20. Discovery and reconstitution of the secoiridoid pathway of Catharanthus roseus

    Dong, L.

    2014-01-01

      Terpene indole alkaloids (TIAs) are important plant-produced secondary metabolites for humans, because of their anti-cancer properties. The production of TIAs still fully relies on extraction from medicinal plants like Catharanthus roseus, which only contains extreme low amounts of these compounds and new ways need to be found to efficiently produce these anticancer drugs at low cost. The common precursor for TIAs is strictosidine and in my PhD project I tried to produce strictosidine ...

  1. Hypoglycemic Activity of Aqueous Extracts from Catharanthus roseus

    Elisa Vega-Ávila; José Luis Cano-Velasco; Alarcón-Aguilar, Francisco J.; María del Carmen Fajardo Ortíz; Julio César Almanza-Pérez; Rubén Román-Ramos

    2012-01-01

    Introduction. Catharanthus roseus (L.) is used in some countries to treat diabetes. The aim of this study was to evaluate the hypoglycemic activity of extracts from the flower, leaf, stem, and root in normal and alloxan-induced diabetic mice. Methods. Roots, leaves, flowers, and stems were separated to obtain organic and aqueous extracts. The blood glucose lowering activity of these extracts was determinate in healthy and alloxan-induced (75 mg/Kg) diabetic mice, after intraperitoneal adminis...

  2. Induced dwarf mutant in Catharanthus roseus with enhanced antibacterial activity

    Verma A

    2010-01-01

    Full Text Available Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L. G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis.

  3. Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus

    Jianhua Zhu; Mingxuan Wang; Wei Wen; Rongmin Yu

    2015-01-01

    Catharanthus roseus produces a wide range of terpenoid indole alkaloids (TIA). Many of them, such as vinblastine and vincristine, have significant bioactivity. They are valuable chemotherapy drugs used in combination with other drugs to treat lymphoma and leukemia. The TIA biosynthetic pathway has been investigated for many years, for scientific interest and for their potential in manufacturing applications, to fulfill the market demand. In this review, the progress and perspective of C. rose...

  4. Induced Dwarf Mutant in Catharanthus roseus with Enhanced Antibacterial Activity

    Verma, A. K.; Singh, R. R.

    2010-01-01

    Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L.) G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis. PMID:21695004

  5. Elucidation of the secoiridoid pathway in Catharanthus roseus

    Miettinen, Karel

    2013-01-01

    The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anti-cancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynth...

  6. Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats

    Karuna Rasineni; Ramesh Bellamkonda; Sreenivasa Reddy Singareddy; Saralakumari Desireddy

    2010-01-01

    Catharanthus roseus Linn (Apocynaceae), is a traditional medicinal plant used to control diabetes, in various regions of the world. In this study we evaluated the possible antidiabetic and hypolipidemic effect of C. roseus (Catharanthus roseus) leaf powder in diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 55 mg/kg body wt) to male Wistar rats. The animals were divided into four groups: Control, control-treated, diabetic, and diabetic-treated group. Di...

  7. New Sesquiterpene Glycosides from Culture Hairy Roots of Catharanthus roseus

    CHUNG ILL-Min; All Mohd; CHUN Se-Chul; LEE Sun-Joo; SAN Ka-Yiu; CHRISTIE A. M. Peebles; AHMAD Ateeque

    2007-01-01

    Two new compounds cadin-2-en-1β-ol-1β-D-glucuronopyranoside (1), guaia-1,7-dien-3β,13-diol-13α-D-glucofuranoside (2) along with three known compounds have been isolated from the Culture hairy roots of Catharanthus roseus. Their structures have been elucidated with the help of 500 MHz NMR using 1D and 2D spectral methods: viz: 1H and 13C NMR, 1H-1H COSY, 1H-13C HETCOR and DEPT aided by ELMS, FAB-MS, HR-FABMS and IR spectroscopy.

  8. Effect of Aqueous Flower Extract of Catharanthus roseus on Alloxan Induced Diabetes in Male Albino Rats

    A. Natarajan

    2012-04-01

    Full Text Available Catharanthus roseus is widely used in Indian Ayurvedic medicine for the treatment of diabetes mellitus. The present study was carried out to investigate the antidiabetic and hyperlipidemic potential of Catharanthus roseus on alloxan induced diabetes in male albino rats. Oral administration of aqueous extract of Catharanthus roseus at a dose of 250 mg, 350 mg, and 450 mg/kg body weight for 30 days to diabetic rats resulted in significant reduction in blood glucose, reduction in lipid profile and also prevented a decrease in body weight. Histological observation demonstrated significant fatty changes and inflammatory cell infiltrates in pancreas of diabetic rats. But, supplementation with Catharanthus roseus to diabetic rats significantly reduced the fatty changes and inflammatory cell infiltrates.

  9. Evaluation of In-vitro Anthelminthic Activity of Catharanthus roseus Extract

    Swati Agarwal; Simi Jacob; Nikkita Chettri; Saloni Bisoyi; Ayesha Tazeen; A. B. Vedamurthy; V. Krishna; H. Joy Hoskeri

    2011-01-01

    Helminthes infections are chronic illnesses in human beings and in cattle. Pherithema posthuma a helminthes is commonly known as earth-worms. Although the use of alternate drugs has been as a remedial measure against the resistant strains of helminth parasites, and as a means of reducing the cost of controlling helminthic diseases. Catharanthus roseus is a medicinally valuable plant and possess various pharmacological properties. Catharanthus roseus has been traditionally used as an anthelmin...

  10. Antidiabetic and Antioxidant Properties of Alkaloids from Catharanthus roseus (L.) G. Don

    Won Fen Wong; Shiau-Chuen Cheah; Mohd Rais Mustafa; Mohammadjavad Paydar; Aditya Arya; Soon Huat Tiong; Chung Yeng Looi; Khalijah Awang; Hazrina Hazni

    2013-01-01

    Catharanthus roseus (L.) G. Don is a herbal plant traditionally used by local populations in India, South Africa, China and Malaysia to treat diabetes. The present study reports the in vitro antioxidant and antidiabetic activities of the major alkaloids isolated from Catharanthus roseus (L.) G. Don leaves extract. Four alkaloids—vindoline I, vindolidine II, vindolicine III and vindolinine IV—were isolated and identified from the dichloromethane extract (DE) of this plant’s leaves. DE and comp...

  11. Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus

    Wei ZHU; Yang, Bingxian; Komatsu, Setsuko; Lu, Xiaoping; Li, Ximin; Tian, Jingkui

    2015-01-01

    Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abund...

  12. Binary Stress Induces an Increase in Indole Alkaloid Biosynthesis in Catharanthus roseus

    Wei eZhu; Bingxian eYang; Setsuko eKomatsu; Xiaoping eLu; Ximin eLi; Jingkui eTian

    2015-01-01

    Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abund...

  13. Characterization of a new potyvirus causing mosaic and flower variegation in Catharanthus roseus in Brazil

    Sheila Conceição Maciel; Ricardo Ferreira da Silva; Marcelo Silva Reis; Adriana Salomão Jadão; Daniel Dias Rosa; José Segundo Giampan; Elliot Watanabe Kitajima; Jorge Alberto Marques Rezende; Luis Eduardo Camargo

    2011-01-01

    Catharanthus roseus is a perennial, evergreen herb in the family Apocynaceae, which is used as ornamental and for popular medicine to treat a wide assortment of human diseases. This paper describes a new potyvirus found causing mosaic symptom, foliar malformation and flower variegation in C. roseus. Of 28 test-plants inoculated mechanically with this potyvirus, only C. roseus and Nicotiana benthamiana developed systemic mosaic, whereas Chenopodium amaranticolor and C. quinoa exhibited chlorot...

  14. Comparative studies of elemental composition in leaves and flowers of Catharanthus roseus growing in Bangladesh

    Shahin Aziz; Koushik Saha; Nasim Sultana; Husna Parvin Nur; Md. Aminul Ahsan; Shamim Ahmed; Md Kamal Hossain

    2016-01-01

    Objective: To investigate the elemental composition of the leaves and flowers of Catharanthus roseus (C. roseus) due to the plant's wide application in the indigenous medicinal system and its chemical constituents' importance. Methods: The atomic absorption spectrophotometer was used for quantitative analysis of various elements. Results: Total 13 important elements were analyzed in leaves and flowers of C. roseus. Results indicated the presence of Na, K, Ca, Mg, Cr, Fe, Zn, Al, Cu, Ni,...

  15. In vitro evaluation of crude extracts of Catharanthus roseus for potential antibacterial activity

    Goyal Pankaj; Khanna Arjun; Chauhan Abhishek; Chauhan Garima; Kaushik Purshotam

    2008-01-01

    Context: Catharanthus roseus (periwinkle) is an important medicinal plant, mentioned in Ayurveda, an ancient Indian Sanskrit literature. The plant is selected to evaluate the possibility for novel pharmaceuticals since most of the bacterial pathogens are developing resistance against currently available antibiotics. Aims: To determine the antibacterial activity of crude extracts from different parts of Catharanthus roseus against several bacterial species of clinical significance. Materials ...

  16. The seco-iridoid pathway from Catharanthus roseus.

    Miettinen, Karel; Dong, Lemeng; Navrot, Nicolas; Schneider, Thomas; Burlat, Vincent; Pollier, Jacob; Woittiez, Lotte; van der Krol, Sander; Lugan, Raphaël; Ilc, Tina; Verpoorte, Robert; Oksman-Caldentey, Kirsi-Marja; Martinoia, Enrico; Bouwmeester, Harro; Goossens, Alain; Memelink, Johan; Werck-Reichhart, Danièle

    2014-01-01

    The (seco)iridoids and their derivatives, the monoterpenoid indole alkaloids (MIAs), form two large families of plant-derived bioactive compounds with a wide spectrum of high-value pharmacological and insect-repellent activities. Vinblastine and vincristine, MIAs used as anticancer drugs, are produced by Catharanthus roseus in extremely low levels, leading to high market prices and poor availability. Their biotechnological production is hampered by the fragmentary knowledge of their biosynthesis. Here we report the discovery of the last four missing steps of the (seco)iridoid biosynthesis pathway. Expression of the eight genes encoding this pathway, together with two genes boosting precursor formation and two downstream alkaloid biosynthesis genes, in an alternative plant host, allows the heterologous production of the complex MIA strictosidine. This confirms the functionality of all enzymes of the pathway and highlights their utility for synthetic biology programmes towards a sustainable biotechnological production of valuable (seco)iridoids and alkaloids with pharmaceutical and agricultural applications. PMID:24710322

  17. Effect of thermal power plant emissions on Catharanthus roseus L

    Khan, A.M.; Pandey, V.; Shukla, J.; Singh, N.; Yunus, M.; Singh, S.N.; Ahmad, K.J. (National Botanical Research Institute, Lucknow (India))

    1990-06-01

    Most of the industrialized nations depend largely on the combustion of fossil fuels for their energy requirements. During the past few years in India quite a few thermal power plants have been commissioned to cater to the increasing energy requirements. As most of the power plants are coal-fired, a complex mixture of several pollutants is released in the atmosphere on the combustion of coal. Leaves by virtue of their unique position on plants and their functions, experience the maximum brunt of exposure and undergo certain changes in form, structure and function with the changes in surrounding environs, and such modifications are likely to serve as markers of environmental pollution. The present paper deals with the long term exposure effects of thermal power plant emissions on Catharanthus roseus L. - a common perennial shrub, with glossy leaves and white, mauve or pink colored flowers and of great medicinal value is grown as an ornamental plant all over the country.

  18. Hypoglycemic Activity of Aqueous Extracts from Catharanthus roseus

    Elisa Vega-Ávila

    2012-01-01

    Full Text Available Introduction. Catharanthus roseus (L. is used in some countries to treat diabetes. The aim of this study was to evaluate the hypoglycemic activity of extracts from the flower, leaf, stem, and root in normal and alloxan-induced diabetic mice. Methods. Roots, leaves, flowers, and stems were separated to obtain organic and aqueous extracts. The blood glucose lowering activity of these extracts was determinate in healthy and alloxan-induced (75 mg/Kg diabetic mice, after intraperitoneal administration (250 mg/Kg body weight. Blood samples were obtained and blood glucose levels were analyzed employing a glucometer. The data were statistically compared by ANOVA. The most active extract was fractioned. Phytochemical screen and chromatographic studies were also done. Results. The aqueous extracts from C. roseus reduced the blood glucose of both healthy and diabetic mice. The aqueous stem extract (250 mg/Kg and its alkaloid-free fraction (300 mg/Kg significantly ( reduced blood glucose in diabetic mice by 52.90 and 51.21%. Their hypoglycemic activity was comparable to tolbutamide (58.1%, . Conclusions. The best hypoglycemic activity was presented for the aqueous extracts and by alkaloid-free stem aqueous fraction. This fraction is formed by three polyphenols compounds.

  19. Hypoglycemic Activity of Aqueous Extracts from Catharanthus roseus

    Vega-Ávila, Elisa; Cano-Velasco, José Luis; Alarcón-Aguilar, Francisco J.; Fajardo Ortíz, María del Carmen; Almanza-Pérez, Julio César; Román-Ramos, Rubén

    2012-01-01

    Introduction. Catharanthus roseus (L.) is used in some countries to treat diabetes. The aim of this study was to evaluate the hypoglycemic activity of extracts from the flower, leaf, stem, and root in normal and alloxan-induced diabetic mice. Methods. Roots, leaves, flowers, and stems were separated to obtain organic and aqueous extracts. The blood glucose lowering activity of these extracts was determinate in healthy and alloxan-induced (75 mg/Kg) diabetic mice, after intraperitoneal administration (250 mg/Kg body weight). Blood samples were obtained and blood glucose levels were analyzed employing a glucometer. The data were statistically compared by ANOVA. The most active extract was fractioned. Phytochemical screen and chromatographic studies were also done. Results. The aqueous extracts from C. roseus reduced the blood glucose of both healthy and diabetic mice. The aqueous stem extract (250 mg/Kg) and its alkaloid-free fraction (300 mg/Kg) significantly (P < 0.05) reduced blood glucose in diabetic mice by 52.90 and 51.21%. Their hypoglycemic activity was comparable to tolbutamide (58.1%, P < 0.05). Conclusions. The best hypoglycemic activity was presented for the aqueous extracts and by alkaloid-free stem aqueous fraction. This fraction is formed by three polyphenols compounds. PMID:23056144

  20. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus.

    Zhu, Xiaoxuan; Zeng, Xinyi; Sun, Chao; Chen, Shilin

    2014-09-01

    Catharanthus roseus is one of the most extensively investigated medicinal plants, which can produce more than 130 alkaloids, including the powerful antitumor drugs vinblastine and vincristine. Here we review the recent advances in the biosynthetic pathway of terpenoid indole alkaloids (TIAs) in C. roseus, and the identification and characterization of the corresponding enzymes involved in this pathway. Strictosidine is the central intermediate in the biosynthesis of different TIAs, which is formed by the condensation of secologanin and tryptamine. Secologanin is derived from terpenoid (isoprenoid) biosynthetic pathway, while tryptamine is derived from indole biosynthetic pathway. Then various specific end products are produced by different routes during downstream process. Although many genes and corresponding enzymes have been characterized in this pathway, our knowledge on the whole TIA biosynthetic pathway still remains largely unknown up to date. Full elucidation of TIA biosynthetic pathway is an important prerequisite to understand the regulation of the TIA biosynthesis in the medicinal plant and to produce valuable TIAs by synthetic biological technology. PMID:25159992

  1. Evaluation of In-vitro Anthelminthic Activity of Catharanthus roseus Extract

    Swati Agarwal

    2011-07-01

    Full Text Available Helminthes infections are chronic illnesses in human beings and in cattle. Pherithema posthuma a helminthes is commonly known as earth-worms. Although the use of alternate drugs has been as a remedial measure against the resistant strains of helminth parasites, and as a means of reducing the cost of controlling helminthic diseases. Catharanthus roseus is a medicinally valuable plant and possess various pharmacological properties. Catharanthus roseus has been traditionally used as an anthelminthic agent. To justify the ethnomedical claims, the anthelminthic property of Catharanthus roseus was evaluated using Pherithema posthuma as an experimental model. Piperazine citrate was used as the standard reference. Among the various concentrations tested, ethanol extract at 200 mg/ml showed efficient paralysis effect (6.67 min than other treated groups, whereas ethanol extract 250 mg/ml showed significant anthelminthic activity with death time of 46.33 min. Standard drug at 50 mg/ml showed paralysis at 31.33 min and death time was 40.67 min. This investigation revealed that ethanol extract of Catharanthus roseus showed significant anthelminthic activity against Pheretima posthuma. Ethanol extract also proved to be efficient than the standard drug. This investigation supported the ethnomedical claims of Catharanthus roseus as an anthelminthic plant.

  2. Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats

    Pinto Pereira Lexley; Nayak BS

    2006-01-01

    Abstract Background Catharanthus roseus L (C. roseus) has been used to treat a wide assortment of diseases including diabetes. The objective of our study was to evaluate the antimicrobial and wound healing activity of the flower extract of Catharanthus in rats. Methods Wound healing activity was determined in rats, after administration (100 mg kg-1 day-1) of the ethanol extract of C. roseus flower, using excision, incision and dead space wounds models. The animals were divided into two groups...

  3. The Enhancement of Catharanthine Content in Catharanthus roseus Callus Culture Treated with Naphtalene Acetic Acid

    DINGSE PANDIANGAN

    2006-09-01

    Full Text Available The research aim was to examine the enhancement of catharanthine content in Catharanthus roseus callus culture added with different concentration of Naphtalene Acetic Acid (NAA. NAA treatment produced callus that formed hairy roots. Fresh and dry weight of callus increased as the increasing of NAA concentration. The catharanthine content of C. roseus callus culture was increased by adding NAA as well. The highest catharanthine content was found in 2.5 ppm NAA added callus.

  4. Radiolytically degraded sodium alginate enhances plant growth, physiological activities and alkaloids production in Catharanthus roseus L.

    Naeem, M.; Tariq Aftab; Abid A. Ansari; Mohd Idrees; Akbar Ali; Khan, M. Masroor A.; Moin Uddin; Lalit Varshney

    2015-01-01

    Catharanthus roseus (L.) G. Don (Family Apocynaceae) is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. The anticancerous alkaloids, viz. vinblastine and vincristine, are mainly present in the leaves of C. roseus. High demand and low yield of these alkaloids in the plant has led to explore the alternative means for their production. Gamma irradiated sodium alginate (ISA) has proved as a plant growth promoting substance for various medicinal and agricultural crops...

  5. Indole Alkaloids from Catharanthus roseus: Bioproduction and Their Effect on Human Health

    Lorena Almagro; Francisco Fernández-Pérez; Maria Angeles Pedreño

    2015-01-01

    Catharanthus roseus is a medicinal plant belonging to the family Apocynaceae which produces terpenoid indole alkaloids (TIAs) of high medicinal importance. Indeed, a number of activities like antidiabetic, bactericide and antihypertensive are linked to C. roseus. Nevertheless, the high added value of this plant is based on its enormous pharmaceutical interest, producing more than 130 TIAs, some of which exhibit strong pharmacological activities. The most striking biological activity investig...

  6. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus

    Liscombe, David K.; O’Connor, Sarah E.

    2011-01-01

    The anticancer agents vinblastine and vincristine are bisindole alkaloids derived from coupling vindoline and catharanthine, monoterpenoid indole alkaloids produced exclusively by Madagascar periwinkle (Catharanthus roseus) plants. Industrial production of vinblastine and vincristine currently relies on isolation from C. roseus leaves, a process that affords these compounds in 0.0003–0.01% yields. Metabolic engineering efforts to improve alkaloid content or provide alternative sources of the ...

  7. Cytogenetic characterization and genome size of the medicinal plant Catharanthus roseus (L.) G. Don

    Guimarães, Guilherme; Cardoso, Luísa; Oliveira, Helena; Santos, Conceição; Duarte, Patrícia; Sottomayor, Mariana

    2012-01-01

    Background and aims Catharanthus roseus is a highly valuable medicinal plant producing several terpenoid indole alkaloids (TIAs) with pharmaceutical applications, including the anticancer agents vinblastine and vincristine. Due to the interest in its TIAs, C. roseus is one of the most extensively studied medicinal plants and has become a model species for the study of plant secondary metabolism. However, very little is known about the cytogenetics and genome size of this species, in spite of ...

  8. Catharanthus roseus mitogen-activated protein kinase 3 confers UV and heat tolerance to Saccharomyces cerevisiae

    Raina, Susheel Kumar; Wankhede, Dhammaprakash Pandhari; Sinha, Alok Krishna

    2012-01-01

    Catharanthus roseus is an important source of pharmaceutically important Monoterpenoid Indole Alkaloids (MIAs). Accumulation of many of the MIAs is induced in response to abiotic stresses such as wound, ultra violet (UV) irradiations, etc. Recently, we have demonstrated a possible role of CrMPK3, a C. roseus mitogen-activated protein kinase in stress-induced accumulation of a few MIAs. Here, we extend our findings using Saccharomyces cerevisiae to investigate the role of CrMPK3 in giving tole...

  9. The Enhancement of Catharanthine Content in Catharanthus roseus Callus Culture Treated with Naphtalene Acetic Acid

    DINGSE PANDIANGAN; NELSON NAINGGOLAN

    2006-01-01

    The research aim was to examine the enhancement of catharanthine content in Catharanthus roseus callus culture added with different concentration of Naphtalene Acetic Acid (NAA). NAA treatment produced callus that formed hairy roots. Fresh and dry weight of callus increased as the increasing of NAA concentration. The catharanthine content of C. roseus callus culture was increased by adding NAA as well. The highest catharanthine content was found in 2.5 ppm NAA added callus.

  10. Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light

    Ramani, Shilpa; Jayabaskaran, Chelliah

    2008-01-01

    Suspension cultures of Catharanthus roseus were used to evaluate ultraviolet-B (UV-B) treatment as an abiotic elicitor of secondary metabolites. A dispersed cell suspension culture from C. roseus leaves in late exponential phase and stationary phase were irradiated with UV-B for 5 min. The stationary phase cultures were more responsive to UV-B irradiation than late exponential phase cultures. Catharanthine and vindoline increased 3-fold and 12-fold, respectively, on treatment with a 5-min UV-...

  11. Radiation Processed Carrageenan Improves Plant Growth, Physiological Activities, and Alkaloids Production in Catharanthus roseus L.

    Naeem, M.; Mohd Idrees; Tariq Aftab; M. Masidur Alam; Khan, M. Masroor A.; Moin Uddin; Lalit Varshney

    2015-01-01

    Catharanthus roseus (L.) G. Don (Apocynaceae) is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. Commercially important antineoplastic alkaloids, namely, vinblastine and vincristine, are mainly present in the leaves of C. roseus. Gamma-rays irradiated carrageenan (ICR) has been proven as plant growth promoting substance for a number of medicinal and agricultural plants. Considering the importance of ICR as a promoter of plant growth and alkaloids production in C....

  12. Catharanthus roseus (L. G. Don - plant regeneration and alkaloids content

    Mirosława Furmanowa

    2014-02-01

    Full Text Available We describe here a regeneration of plantlets of Catharanthus roseus (L. G. Don from shoot tips and axillary buds. Shoot tips were excised from 7-day-old seedlings and were incubated in solid Nitsch and Nitsch (NN medium supplemented with kinetin, benzyladenine (BA, indole-3-butyric acid (IBA and β-indolylacetic acid (IAA in various combinations. After two months in culture, regenerated rooted plantlets were cut and transferred to a new medium; the explants contained shoot tips or axillary buds. Four passages were done. We obtained about 200 rooting plantlets from one seedling. Then the plantlets were transferred to the soil and they grew under a foil tent. After five months of vegetation they were collected, dried and weighed. Chemical investigations of leaves of these plants were done. The vindoline and catharanthine were dominant alkaloids in the juvenile stage of plants (before blooming. Total amount of alkaloids, equal 2.95%, was gravimetrically determined in leaves of plants, after 4th passage, regenerated in vitro on NN medium supplemented with kinetin and IBA.

  13. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Junaid ASLAM

    2014-06-01

    Full Text Available Catharanthus roseus (L. G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in vitro germinated seeds on which somatic embryos, differentiated in numbers, particularly on 2,4-D (1.0 mg/L Murashige and Skoog (MS was medium. To understand more about the regeneration method and in vitro formed embryos SEM was performed. The SEM study revealed normal somatic embryo origin and development from globular to heart-, torpedo- and then into cotyledonary-stage of embryos. At early stage, the embryos were clustered together in a callus mass and could not easily be detached from the parental tissue. The embryos were often long cylindrical structure with or without typical notch at the tip. Secondary embryos were also formed on primary embryo structure. The advanced cotyledonary embryos showed prominent roots and shoot axis, which germinated into plantlets. The morphology, structure and other details of somatic embryos at various stages were presented.

  14. Computational identification of microRNAs and their targets in Catharanthus roseus expressed sequence tags

    Pani, Alok; Mahapatra, Rajani Kanta

    2013-01-01

    No study has been performed on identifying microRNAs (miRNAs) and their targets in the medicinal plant, Catharanthus roseus. In the present study, using the comparative genomics approach, we have predicted two potential C. roseus miRNAs. Furthermore, twelve potential mRNA targets were identified in C. roseus genome based on the characteristics that miRNAs exhibit perfect or nearly perfect complementarity with their targeted mRNA sequences. Among them many of the targets were predicted to enco...

  15. Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats

    Pinto Pereira Lexley

    2006-12-01

    Full Text Available Abstract Background Catharanthus roseus L (C. roseus has been used to treat a wide assortment of diseases including diabetes. The objective of our study was to evaluate the antimicrobial and wound healing activity of the flower extract of Catharanthus in rats. Methods Wound healing activity was determined in rats, after administration (100 mg kg-1 day-1 of the ethanol extract of C. roseus flower, using excision, incision and dead space wounds models. The animals were divided into two groups of 6 each in all the models. In the excision model, group 1 animals were topically treated with carboxymethyl cellulose as placebo control and group 2 received topical application of the ethanol extract of C. roseus at a dose of 100 mg/kg body weight/day. In an incision and dead space model group 1 animals were given normal saline and group 2 received the extract orally at a dose of 100 mg kg-1 day-1. Healing was assessed by the rate of wound contraction, period of epithelization, tensile strength (skin breaking strength, granulation tissue weight, and hydoxyproline content. Antimicrobial activity of the flower extract against four microorganisms was also assessed Results The extract of C. roseus significantly increased the wound breaking strength in the incision wound model compared with controls (P Pseudomonas aeruginosa and Staphylococcus aureus demonstrated sensitivity to C. roseus Conclusion Increased wound contraction and tensile strength, augmented hydroxyproline content along with antimicrobial activity support the use of C. roseus in the topical management of wound healing.

  16. First report of Tomato chlorotic spot virus on Annual Vinca (Catharanthus roseus) in the United States

    Tomato chlorotic spot virus was identified in the ornamental crop Catharanthus roseus (commonly known as vinca) in south Florida, the first report of this virus naturally infecting this species. Genetic diversity of the virus was characterized. This report provides an overview of this emerging vir...

  17. 7-O-methylpelargonidin glycosides from the pale red flowers of Catharanthus roseus.

    Tatsuzawa, Fumi

    2013-08-01

    Two new anthocyanidin glycosides were isolated from the pale red flowers of Catharanthus roseus 'Equator Apricot with Red Eye', and identified as 7-O-methylpelargonidin 3-O-[6-O-(alpha-rhamnopyranosyl)-beta-galactopyranoside] and 7-O-methylpelargonidin 3-O-(beta-galactopyranoside) by chemical and spectroscopic methods. PMID:24079176

  18. Enhancing terpenoid indole alkaloid production by inducible expression of mammalian Bax in Catharanthus roseus cells

    XU MaoJun; DONG JuFang

    2007-01-01

    Bax, a mammalian pro-apoptotic member of the Bcl-2 family, triggers hypersensitive reactions when expressed in plants. To investigate the effects of Bax on the biosynthesis of clinically important natural products in plant cells, we generate transgenic Catharanthus roseus cells overexpressing a mouse Bax protein under the β-estradiol-inducible promoter. The expression of Bax in transgenic Catharanthus roseus cells is highly dependent on β-estradiol concentrations applied. Contents of catharanthine and total terpenoid indole alkaloid of the transgenic cells treated with 30 μmol/L β-estradiol are 5.0- and 5.5-fold of the control cells. Northern and Western blotting results show that expression of mammalian Bax induces transcriptional activation of Tdc and Str, two key genes in terpenoid indole alkaloid biosynthetic pathway of Catharanthus roseus cells, and stimulates the accumulation of defense-related protein PR1 in the cells, showing that the mouse Bax triggers the defense responses of Catharanthus roseus cells and activates the terpenoid indole alkaloid biosynthetic pathway. Thus, our data suggest that the mammalian Bax might be a potential regulatory factor for secondary metabolite biosynthesis in plant cells and imply a new secondary metabolic engineering strategy for enhancing the metabolic flux to natural products by activating the whole biosynthetic pathway rather than by engineering the single structural genes within the pathways.

  19. Enhancing terpenoid indole alkaloid production by inducible expression of mammalian Bax in Catharanthus roseus cells

    2007-01-01

    Bax,a mammalian pro-apoptotic member of the Bcl-2 family,triggers hypersensitive reactions when expressed in plants.To investigate the effects of Bax on the biosynthesis of clinically important natural products in plant cells,we generate transgenic Catharanthus roseus cells overexpressing a mouse Bax protein under the β-estradiol-inducible promoter.The expression of Bax in transgenic Catharanthus roseus cells is highly dependent on β-estradiol concentrations applied.Contents of catharanthine and total terpenoid indole alkaloid of the transgenic cells treated with 30 μmol/L β-estradiol are 5.0-and 5.5-fold of the control cells.Northern and Western blotting results show that expression of mammalian Bax induces transcriptional activation of Tdc and Str,two key genes in terpenoid indole alkaloid bio-synthetic pathway of Catharanthus roseus cells,and stimulates the accumulation of defense-related protein PR1 in the cells,showing that the mouse Bax triggers the defense responses of Catharanthus roseus cells and activates the terpenoid indole alkaloid biosynthetic pathway.Thus,our data suggest that the mammalian Bax might be a potential regulatory factor for secondary metabolite biosynthesis in plant cells and imply a new secondary metabolic engineering strategy for enhancing the metabolic flux to natural products by activating the whole biosynthetic pathway rather than by engineering the single structural genes within the pathways.

  20. Analysis of Several Popular Cultivars of Madagascar Periwinkle (Catharanthus roseus (L. G. Don. using Biochemical Markers

    Owk ANIEL KUMAR

    2013-12-01

    Full Text Available Band designs of esterase (EST, peroxidase (PO and polyphenol oxidase (PPO isozymes in several selected cultivars of Catharanthus roseus by using native polyacrylamide gel electrophoresis (PAGE were investigated in this study. It was confirmed that cultivar differences in isozyme polymorphism can be revealed by applied electrophoretic patterns. Three isozyme systems produced a total of 16 bands with polymorphism ranged from 66.6-100%. Considering the patterns of isozyme variations in the five cultivars of Catharanthus roseus, it is evident that the cultivar ‘First kiss coral’ displayed crimson red petal with large white eye’ displayed demarked profiles of EST, PO and PPO isozymes than other cultivars. This is the first report on isozyme polymorphism in members of the Cathanarathus roseus (L. G. Don.

  1. Characterization of a new potyvirus causing mosaic and flower variegation in Catharanthus roseus in Brazil

    Sheila Conceição Maciel

    2011-12-01

    Full Text Available Catharanthus roseus is a perennial, evergreen herb in the family Apocynaceae, which is used as ornamental and for popular medicine to treat a wide assortment of human diseases. This paper describes a new potyvirus found causing mosaic symptom, foliar malformation and flower variegation in C. roseus. Of 28 test-plants inoculated mechanically with this potyvirus, only C. roseus and Nicotiana benthamiana developed systemic mosaic, whereas Chenopodium amaranticolor and C. quinoa exhibited chlorotic local lesions. The virus was transmitted by Aphis gossypii and Myzus nicotianae. When the nucleotide sequence of the CP gene (768nt was compared with other members of the Potyviridae family, the highest identities varied from 67 to 76 %. For the 3' UTR (286nt, identities varied from 16.8 to 28.6 %. The name Catharanthus mosaic virus (CatMV is proposed for this new potyvirus.

  2. Interaction Effects of Arbuscular Mycorrhizal Fungi and Different Phosphate Levels on Growth Performance of Catharanthus roseus Linn.

    Mohd AYOOB; Irfan AZIZ; Paramjit Kaur JITE

    2011-01-01

    Catharanthus roseus L. (Apocynaceae), a valuable medicinal plant with potential therapeutic value was inoculated with AM fungi Glomus fasciculatum under three different phosphate conditions. Catharanthus roseus plants raised in presence of the AM fungi showed increased growth in terms of (shoot length, root length, leaf number, fresh weight and dry weight). Total chlorophyll content and phosphate content of the shoot was found to be significantly higher in AM inoculated plants as compared to ...

  3. Influence of native arbuscular mycorrhizal fungi on growth, nutrition and phytochemical constituents of Catharanthus roseus (L.) G. Don.

    Rajendran Srinivasan; Chinnavenkataraman Govindasamy

    2014-01-01

    Objective: To study the isolation, identification, mass production and the effect of native arbuscular mycorrhizal fungi (AM fungi) on growth parameters of the Catharanthus roseus (C. roseus). Methods: A total of nine different AM fungi species such as Acaulospora scrobiculata, Acaulospora marrowae, Glomus aggregatum (G. aggregatum), Glomus fasciculatum, Glomus geosporum, Gigaspora margarita, Gigaspora nigra, Scutellospora heterogama and Scutellospora pellucida were isolated...

  4. Assessment of genetic diversity in a highly valuable medicinal plant Catharanthus roseus using molecular markers

    Ranjan Kumar Shaw

    2009-01-01

    Full Text Available Genetic diversity was evaluated among 14 cultivars of Catharanthus roseus using RAPD and ISSR markers.The RAPD primers resulted in the amplification of 56 bands, among which 46 (82% bands were polymorphic Four ISSRprimers amplified 31 loci out of which 17 were polymorphic and 14 are monomorphic. The Jaccard's similarity derived fromthe combined marker system showed that the varieties First Kiss Coral and Cooler Orchid were the most closely relatedcultivars, with 98% similarity. In the dendrogram constructed on the basis of both RAPD and ISSR data two clear clusterswere obtained. The smaller cluster included C. roseus Cv Blue Pearl and C. roseus Cv. Patricia White and the larger clusterwas subdivided into two sub clusters with C. roseus Cv. First Kiss Polka Dot isolated from the rest of the cultivars. This maybe useful for breeding for improved quality.

  5. Cytogenetic characterization and genome size of the medicinal plant Catharanthus roseus (L.) G. Don

    Guimarães, Guilherme; Cardoso, Luísa; Oliveira, Helena; Santos, Conceição; Duarte, Patrícia; Sottomayor, Mariana

    2012-01-01

    Background and aims Catharanthus roseus is a highly valuable medicinal plant producing several terpenoid indole alkaloids (TIAs) with pharmaceutical applications, including the anticancer agents vinblastine and vincristine. Due to the interest in its TIAs, C. roseus is one of the most extensively studied medicinal plants and has become a model species for the study of plant secondary metabolism. However, very little is known about the cytogenetics and genome size of this species, in spite of their importance for breeding programmes, TIA genetics and emerging genomic research. Therefore, the present paper provides a karyotype description and fluorescence in situ hybridization (FISH) data for C. roseus, as well as a rigorous characterization of its genome size. Methodology The organization of C. roseus chromosomes was characterized using several DNA/chromatin staining techniques and FISH of rDNA. Genome size was investigated by flow cytometry using an optimized methodology. Principal results The C. roseus full chromosome complement of 2n = 16 includes two metacentric, four subtelocentric and two telocentric chromosome pairs, with the presence of a single nucleolus organizer region in chromosome 6. An easy and reliable flow cytometry protocol for nuclear genome analysis of C. roseus was optimized, and the C-value of this species was estimated to be 1C = 0.76 pg, corresponding to 738 Mbp. Conclusions The organization and size of the C. roseus genome were characterized, providing an important basis for future studies of this important medicinal species, including further cytogenetic mapping, genomics, TIA genetics and breeding programmes. PMID:22479673

  6. Advances of Ornamental Catharanthus roseus%观赏用长春花研究进展

    石林; 何丽贞

    2013-01-01

    文章对观赏用长春花的种质资源、育种、基础生理研究及生产栽培等作了阐述,并对长春花研究方向和应用前景作了分析.%Catharanthus roseus is simultaneously an ornamental and medicinal plant. The researches on germplasm resources, breeding, basic physiology research and cultivation of C. roseus are discussed, and its research direction and application prospect were analyzed.

  7. PHOTOCHEMICAL INVESTIGATION OF VINBLASTINE IN 43 CULTIVARS OF CATHARANTHUS ROSEUS L.

    S.E AJADI; Verpoorte, R.

    2000-01-01

    Background. Vinblastine is one of the alkaloids extracted from Catharanthus roseus L. which is used for the treatment of Hodgkin's disease, lymphoma, and leukemia in children. In spite of the progresses in the synthesis of many drugs, synthesis of vinblastine is not feasible and it has been extracted from plant so far. In this study we used a screening method to facilitate selection for the best cultivar with a higher yield. Methods. The leaves of the 43 cultivars of C. roseus L was free...

  8. Enhanced catharanthine and vindoline production in suspension cultures of Catharanthus roseus by ultraviolet-B light

    Ramani, Shilpa; Jayabaskaran, Chelliah

    2008-01-01

    Suspension cultures of Catharanthus roseus were used to evaluate ultraviolet-B (UV-B) treatment as an abiotic elicitor of secondary metabolites. A dispersed cell suspension culture from C. roseus leaves in late exponential phase and stationary phase were irradiated with UV-B for 5 min. The stationary phase cultures were more responsive to UV-B irradiation than late exponential phase cultures. Catharanthine and vindoline increased 3-fold and 12-fold, respectively, on treatment with a 5-min UV-B irradiation. PMID:18439256

  9. Catharanthus roseus flower extract has wound-healing activity in Sprague Dawley rats

    Nayak, BS; Pinto Pereira, Lexley M

    2006-01-01

    Background Catharanthus roseus L (C. roseus) has been used to treat a wide assortment of diseases including diabetes. The objective of our study was to evaluate the antimicrobial and wound healing activity of the flower extract of Catharanthus in rats. Methods Wound healing activity was determined in rats, after administration (100 mg kg-1 day-1) of the ethanol extract of C. roseus flower, using excision, incision and dead space wounds models. The animals were divided into two groups of 6 each in all the models. In the excision model, group 1 animals were topically treated with carboxymethyl cellulose as placebo control and group 2 received topical application of the ethanol extract of C. roseus at a dose of 100 mg/kg body weight/day. In an incision and dead space model group 1 animals were given normal saline and group 2 received the extract orally at a dose of 100 mg kg-1 day-1. Healing was assessed by the rate of wound contraction, period of epithelization, tensile strength (skin breaking strength), granulation tissue weight, and hydoxyproline content. Antimicrobial activity of the flower extract against four microorganisms was also assessed Results The extract of C. roseus significantly increased the wound breaking strength in the incision wound model compared with controls (P < 0.001). The extract-treated wounds were found to epithelialize faster, and the rate of wound contraction was significantly increased in comparison to control wounds (P < 0.001), Wet and dry granulation tissue weights, and hydroxyproline content in a dead space wound model increased significantly (p < 0.05). Pseudomonas aeruginosa and Staphylococcus aureus demonstrated sensitivity to C. roseus Conclusion Increased wound contraction and tensile strength, augmented hydroxyproline content along with antimicrobial activity support the use of C. roseus in the topical management of wound healing. PMID:17184528

  10. Effect of Glomus species on physiology and biochemistry of Catharanthus roseus

    Ratti, Neelima; H N Verma; Gautam, S. P.

    2010-01-01

    The present study on efficacy of different Glomus species, an arbuscular mycorrhizal (AM) fungus (G. aggregatum, G. fasciculatum, G. mosseae, G. intraradices) on various growth parameters such as biomass, macro and micronutrients, chlorophyll, protein, cytokinin and alkaloid content and phosphatase activity of pink flowered Catharanthus roseus plants showed that all Glomus species except G. intraradices enhanced the chlorophyll, protein, crude alkaloid, phosphorus, sulphur, manganese and copp...

  11. Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor) – A comparative study

    Mujib, A.; Ali, Muzamil; Isah, Tasiu; Dipti

    2014-01-01

    The purpose of this study was to evaluate and compare the use of liquid and solid Murashige and Skoog (MS) medium in different culture vessels for mass production of Catharanthus roseus, an important source of anticancerous compounds, vincristine and vinblastine. Three media conditions i.e. agar-solidified medium (S), liquid medium in agitated conical flask (L) and growtek bioreactor (B) were used. Rapid propagation was achieved through in vitro somatic embryogenesis pathway. The process of e...

  12. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus

    Yu, Fang; De Luca, Vincenzo

    2013-01-01

    The presence of biologically active monoterpenoid indole alkaloids (MIAs) on the leaf surfaces of medicinally important Catharanthus roseus has led to questions about the secretion processes involved and their prevalence within MIA-producing species of plants. This report shows that a transporter closely related to those involved in cuticle assembly in plants and belonging to the pleiotropic drug resistance family of ATP-binding cassette transporters is specialized for transport of the MIA ca...

  13. Development of a kinetic metabolic model: application to Catharanthus roseus hairy root

    Leduc, M.; Tikhomiroff, C.; Cloutier, M.; Perrier, M.; Jolicoeur, M.

    2006-01-01

    A kinetic metabolic model describing Catharanthus roseus hairy root growth and nutrition was developed. The metabolic network includes glycolysis, pentose-phosphate pathway, TCA cycle and the catabolic reactions leading to cell building blocks such as amino acids, organic acids, organic phosphates, lipids and structural hexoses. The central primary metabolic network was taken at pseudo-steady state and metabolic flux analysis technique allowed reducing from 31 metabolic fluxes to 20 independe...

  14. A reliable protocol for transformation of Catharanthus roseus through Agrobacterium tumefaciens

    Srivastava, Toolika; Das, Sandip; Sopory, Sudhir Kumar; Srivastava, P. S.

    2009-01-01

    Proliferation of axillary shoot buds and multiple shoot formation in Catharanthus roseus was obtained in 96 % explants on MS medium (3 % sucrose) containing NAA + BA. 2,4-D induced callusing in both, the nodal as well as in leaf segments. Leaf-derived callus was used for transformation with Agrobacterium tumefaciens LBA4404/pBI-S1. Bacterial cell concentration, duration of co-cultivation and acetosyringone concentration influenced transformation efficiency. Under optimal co-cultivation condit...

  15. Endophytic filamentous fungi from a Catharanthus roseus: Identification and its hydrolytic enzymes

    Farah Wahida Ayob; Khanom Simarani

    2016-01-01

    This paper reported on the various filamentous fungi strains that were isolated from a wild grown Catharanthus roseus. Based on the morphological characteristics and molecular technique through a Polymerase Chain Reaction and DNA sequencing method using internal transcribed spacer (ITS), these fungi had been identified as a Colletotrichum sp., Macrophomina phaseolina, Nigrospora sphaerica and Fusarium solani. The ultrastructures of spores and hyphae were observed under a Scanning Electron Mic...

  16. Assessment of genetic diversity in a highly valuable medicinal plant Catharanthus roseus using molecular markers

    Ranjan Kumar Shaw; Laxmikanta Acharya; Arup Kumar Mukherjee

    2009-01-01

    Genetic diversity was evaluated among 14 cultivars of Catharanthus roseus using RAPD and ISSR markers.The RAPD primers resulted in the amplification of 56 bands, among which 46 (82%) bands were polymorphic Four ISSRprimers amplified 31 loci out of which 17 were polymorphic and 14 are monomorphic. The Jaccard's similarity derived fromthe combined marker system showed that the varieties First Kiss Coral and Cooler Orchid were the most closely relatedcultivars, with 98% similarity. In the dendro...

  17. Isolation and Characterization of Antineoplastic Alkaloids from Catharanthus Roseus L. Don. Cultivated in Egypt

    Shams, Khaled A; Nazif, Naglaa M; Abdel Azim, Nahla S; Abdel Shafeek, Khaled A; El-Missiry, Mostafa M.; Ismail, Shams I; Seif El Nasr, Medhat M

    2009-01-01

    Vinblastine and vincristine (the antileukemic agents) were isolated, in a pure form, from Catharanthus roseus L. Don., cultivated in Egypt, by several chromatographic techniques. Five modified methods for the preparation of total alkaloids were carried out. All the isolated mixtures were evaluated by HPLC and HPTLC analyses. The antineoplastic alkaloids; vinblastine and vincristine, were isolated by the use of vacuum liquid chromatographic column on silica gel : aluminium oxide (1:1) mixed be...

  18. Induced dwarf mutant in Catharanthus roseus with enhanced antibacterial activity

    Verma A; Singh R

    2010-01-01

    Evaluation of an ethyl methane sulphonate-induced dwarf mutant of Catharanthus roseus (L.) G. Don revealed that the mutant exhibited marked variation in morphometric parameters. The in vitro antibacterial activity of the aqueous and alcoholic leaf extracts of the mutant and control plants was investigated against medically important bacteria. The mutant leaf extracts showed enhanced antibacterial activity against all the tested bacteria except Bacillus subtilis.

  19. [Identification and expression analysis of WRKY transcription factors in medicinal plant Catharanthus roseus].

    Yang, Zhirong; Wang, Xingchun; Xue, Jin'ai; Meng, Lingzhi; Li, Runzhi

    2013-06-01

    WRKY transcription factors, one of the largest families of transcriptional regulators in plants, involve in multiple life activities including plant growth and development as well as stress responses. However, little is known about the types and functions of WRKY transcription factors in Catharanthus roseus, an important medicinal plant. In this study, we identified 47 CrWRKY transcriptional factors from 26 009 proteins in Catharanthus roseus, and classified them into three distinct groups (G1, G2 and G3) according to the structure of WRKY domain and evolution of the protein family. The expression profiling showed that these CrWRKY genes expressed in a tissue/organ specific manner. The 47 CrWRKY genes were clustered into three types of expression patterns. The first type includes the CrWRKYs highly expressed in flowers and the protoplast treated with methy jasmonate (MeJA) or yeast extraction (YE). The second type contains the CrWRKYs highly expressed in stem and hairy root. The third type represents the CrWRKYs highly expressed in root, stem, leaf, seedling and the hairy root treated by MeJA. Real time quantitative PCR was employed to further identify the expression patterns of the 16 selected CrWRKY genes in various organs, the MeJA-treated protoplasts and hairy roots of Catharanthus roseus, and similar results were obtained. Notably, the expresion of more than 1/3 CrWRKY genes were regulated by MeJA or YE, indicating that these CrWRKYs are likely involed in the signalling webs which modulate the biosynthesis of terpenoid indole alkaloid and plant responses to various stresses. The present results provide a framework for functional identification of the CrWRKYs and understanding of the regulation network of terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PMID:24063238

  20. Somatic Embryos in Catharanthus roseus: A Scanning Electron Microscopic Study

    Aslam, Junaid; MUJIB, Abdul; Mahendra Prasad SHARMA

    2014-01-01

    Catharanthus roseus (L.) G. Don is an important medicinal plant as it contains several anti-cancerous compounds, like vinblastine and vincristine. Plant tissue culture technology (organogenesis and embryogenesis) has currently been used in fast mass propagating raw materials for secondary metabolite synthesis. In this present communication, scanning electron microscopic (SEM) study of somatic embryos was conducted and discussed. The embryogenic callus was first induced from hypocotyls of in ...

  1. Effect of Salinity Stress on Seed Germination Catharanthus roseus Don. Cvs. Rosea and Alba

    Zahra Rezaee; Mehrangiz Chehrazi; Norollah Moalemi

    2012-01-01

    This experiment was carried out aiming to determine the Catharanthus roseus Don resistance against salinity, due to the increasing salinity of soil, and the importance of this plant as an ornamental flower, as well as the little information available on its tolerance against salinity during the germination period. In order to an experiment was conducted in randomized completely design factorial. Sodium chloride was used for induce salinity stress. These factors include cultivar and salinity l...

  2. Influence of Some Heavy Metals on Growth, Alkaloid Content and Composition in Catharanthus roseus L.

    Srivastava, N. K.; A.K. Srivastava

    2010-01-01

    Shoot biomass production, alkaloid content and composition as influence by cadmium, manganese, nickel and lead at uniform dose of 5 mM were investigated in Catharanthus roseus plants grown in sand culture. Treatment with Mn, Ni, and Pb significantly enhanced total root alkaloid accumulation. Cd and Ni treatment resulted in two-fold where as Pb treatment resulted in three fold increase in serpentine content of roots. The non-significant affect on biomass suggests that plants can withstand meta...

  3. Soil Salinity Alters Growth, Chlorophyll Content, and Secondary Metabolite Accumulation in Catharanthus roseus

    Jaleel, Cheruth Abdul; SANKAR, Beemarao; SRIDHARAN, Ramalingam

    2008-01-01

    The effect of salinity on growth, photosynthetic pigment content, and alkaloid secondary metabolite accumulation were studied in an economically important medicinal plant, Catharanthus roseus (L.) G. Don., under pot culture conditions. Plants were treated with different concentrations of NaCl, (e.g. 50 and 100 mM) 30, 45, 60, and 75 days after sowing (DAS). The plants were uprooted randomly 90 DAS to analyse growth, and chlorophyll and alkaloid content. Salinity affected all the morphological...

  4. Biochemical and Ultrastructural Changes in Sida cordifolia L. and Catharanthus roseus L. to Auto Pollution

    Verma, Vijeta; Chandra, Neelam

    2014-01-01

    Auto pollution is the by-product of our mechanized mobility, which adversely affects both plant and human life. However, plants growing in the urban locations provide a great respite to us from the brunt of auto pollution by absorbing the pollutants at their foliar surface. Foliar surface configuration and biochemical changes in plant species, namely, Sida cordifolia L. and Catharanthus roseus L. grown at roadside (polluted site 1, Talkatora; polluted site 2, Charbagh) in Lucknow city and in ...

  5. UV-B induced transcript accumulation of DAHP synthase in suspension-cultured Catharanthus roseus cells

    Ramani, Shilpa; Patil, Nandadevi; Jayabaskaran, Chelliah

    2010-01-01

    The enzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase (EC 4.1.2.15) catalyzes the first committed step in the shikimate pathway of tryptophan synthesis, an important precursor for the production of terpenoid indole alkaloids (TIAs). A full-length cDNA encoding nuclear coded chloroplast-specific DAHP synthase transcript was isolated from a Catharanthus roseus cDNA library. This had high sequence similarity with other members of plant DAHP synthase family. This transcript accum...

  6. Characterization of 10-Hydroxygeraniol Dehydrogenase from Catharanthus roseus Reveals Cascaded Enzymatic Activity in Iridoid Biosynthesis

    Ramakrishnan Krithika; Prabhakar Lal Srivastava; Bajaj Rani; Kolet, Swati P.; Manojkumar Chopade; Mantri Soniya; Hirekodathakallu V. Thulasiram

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)+ dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-...

  7. Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling

    Schluttenhofer, Craig; Pattanaik, Sitakanta; Patra, Barunava; Ling YUAN

    2014-01-01

    Background To combat infection to biotic stress plants elicit the biosynthesis of numerous natural products, many of which are valuable pharmaceutical compounds. Jasmonate is a central regulator of defense response to pathogens and accumulation of specialized metabolites. Catharanthus roseus produces a large number of terpenoid indole alkaloids (TIAs) and is an excellent model for understanding the regulation of this class of valuable compounds. Recent work illustrates a possible role for the...

  8. In vitro evaluation of crude extracts of Catharanthus roseus for potential antibacterial activity

    Goyal Pankaj

    2008-01-01

    Full Text Available Context: Catharanthus roseus (periwinkle is an important medicinal plant, mentioned in Ayurveda, an ancient Indian Sanskrit literature. The plant is selected to evaluate the possibility for novel pharmaceuticals since most of the bacterial pathogens are developing resistance against currently available antibiotics. Aims: To determine the antibacterial activity of crude extracts from different parts of Catharanthus roseus against several bacterial species of clinical significance. Materials and Methods: Extraction of each plant part in appropriate solvent followed by evaluation of antibacterial activity by agar well diffusion assay against a total of six bacterial stains. Further, minimum inhibitory concentration(s was evaluated for active crude extracts. Results: Data indicated that the pattern of inhibition depends largely upon the extraction procedure, the plant part used for extraction, state of plant part (fresh or dry, solvent used for extraction and the microorganism tested. Dry powder extracts of all plant parts demonstrated more antibacterial activity than extracts prepared from fresh parts. Furthermore, extracts prepared from leaves were shown to have better efficacy than stem, root, and flower extracts. Organic extracts provided more potent antibacterial activity as compared to aqueous extracts. Among all the extracts, the ethanolic extract was found to be most active against almost all the bacterial species tested. Hot water and cold water extracts were completely inactive. Gram-positive bacteria were found more sensitive than Gram-negative bacteria. Conclusions: The study promises an interesting future for designing potentially active antibacterial agents from Catharanthus roseus.

  9. Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling.

    Verma, Mohit; Ghangal, Rajesh; Sharma, Raghvendra; Sinha, Alok K; Jain, Mukesh

    2014-01-01

    The medicinal plant, Catharanthus roseus, accumulates wide range of terpenoid indole alkaloids, which are well documented therapeutic agents. In this study, deep transcriptome sequencing of C. roseus was carried out to identify the pathways and enzymes (genes) involved in biosynthesis of these compounds. About 343 million reads were generated from different tissues (leaf, flower and root) of C. roseus using Illumina platform. Optimization of de novo assembly involving a two-step process resulted in a total of 59,220 unique transcripts with an average length of 1284 bp. Comprehensive functional annotation and gene ontology (GO) analysis revealed the representation of many genes involved in different biological processes and molecular functions. In total, 65% of C. roseus transcripts showed homology with sequences available in various public repositories, while remaining 35% unigenes may be considered as C. roseus specific. In silico analysis revealed presence of 11,620 genic simple sequence repeats (excluding mono-nucleotide repeats) and 1820 transcription factor encoding genes in C. roseus transcriptome. Expression analysis showed roots and leaves to be actively participating in bisindole alkaloid production with clear indication that enzymes involved in pathway of vindoline and vinblastine biosynthesis are restricted to aerial tissues. Such large-scale transcriptome study provides a rich source for understanding plant-specialized metabolism, and is expected to promote research towards production of plant-derived pharmaceuticals. PMID:25072156

  10. Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling.

    Mohit Verma

    Full Text Available The medicinal plant, Catharanthus roseus, accumulates wide range of terpenoid indole alkaloids, which are well documented therapeutic agents. In this study, deep transcriptome sequencing of C. roseus was carried out to identify the pathways and enzymes (genes involved in biosynthesis of these compounds. About 343 million reads were generated from different tissues (leaf, flower and root of C. roseus using Illumina platform. Optimization of de novo assembly involving a two-step process resulted in a total of 59,220 unique transcripts with an average length of 1284 bp. Comprehensive functional annotation and gene ontology (GO analysis revealed the representation of many genes involved in different biological processes and molecular functions. In total, 65% of C. roseus transcripts showed homology with sequences available in various public repositories, while remaining 35% unigenes may be considered as C. roseus specific. In silico analysis revealed presence of 11,620 genic simple sequence repeats (excluding mono-nucleotide repeats and 1820 transcription factor encoding genes in C. roseus transcriptome. Expression analysis showed roots and leaves to be actively participating in bisindole alkaloid production with clear indication that enzymes involved in pathway of vindoline and vinblastine biosynthesis are restricted to aerial tissues. Such large-scale transcriptome study provides a rich source for understanding plant-specialized metabolism, and is expected to promote research towards production of plant-derived pharmaceuticals.

  11. Comparative studies of elemental composition in leaves and flowers of Catharanthus roseus growing in Bangladesh

    Shahin Aziz; Koushik Saha; Nasim Sultana; Husna Parvin Nur; Md Aminul Ahsan; Shamim Ahmed; Md Kamal Hossain

    2016-01-01

    Objective: To investigate the elemental composition of the leaves and flowers of Catharanthus roseus (C. roseus) due to the plant's wide application in the indigenous medicinal system and its chemical constituents' importance. Methods: The atomic absorption spectrophotometer was used for quantitative analysis of various elements. Results: Total 13 important elements were analyzed in leaves and flowers of C. roseus. Results indicated the presence of Na, K, Ca, Mg, Cr, Fe, Zn, Al, Cu, Ni, Pb, Cd and Mn in both leaves and flowers. The most important finding of the work was that, leaves of C. roseus showed high concentration of all elements except K and Zn while flowers of C. roseus showed higher concentration of K and Zn. Conclusions: The elemental composition in both leaves and flowers of C. roseus were found to be different. Therefore, different parts of this medicinal plant are enriched in some micro and macro nutrients like Fe, Ca, Na, K, Zn, which are very important for biological metabolic system as well as human health.

  12. Catharanthus roseus: a natural source for the synthesis of silver nanoparticles

    Mukunthan, KS; Elumalai, EK; Patel, Trupti N; Murty, V Ramachandra

    2011-01-01

    Objective To develop a simple rapid procedure for bioreduction of silver nanoparticles (AgNPs) using aqueous leaves extracts of Catharanthus roseus (C. roseus). Methods Characterization were determined by using UV-Vis spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. Results SEM showed the formation of silver nanoparticles with an average size of 67 nm to 48 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centered cubic geometry. Conclusions C. roseus demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0). This study provides evidence for developing large scale commercial production of value-added products for biomedical/nanotechnology-based industries. PMID:23569773

  13. Analysis of Karyotype of Catharanthus roseus(Apocynaceae)%长春花核型的研究

    贾彩红; 代正福; 徐碧玉; 金志强; 张蕾; 陈业渊; 王家保

    2008-01-01

    对长春花属的长春花(Catharanthus roseus(L.)G.Don)、白长春花(C. roseus(L.)G.Don'Albus')和黄长春花(C.roseus(L.)G.Don'Flavus')的染色体数目和核型进行了研究.结果表明,它们的核型公式均为2n=2x=16=2m+12sm+2T,均属于"3A"核型,染色体数目均为2n=16,但它们的端部和中部着丝点染色体在核型分析中的排列次序不同.

  14. Overexpression of ORCA3 and G10H in Catharanthus roseus Plants Regulated Alkaloid Biosynthesis and Metabolism Revealed by NMR-Metabolomics

    Qifang Pan; Quan Wang; Fang Yuan; Shihai Xing; Jingya Zhao; Young Hae Choi; Robert Verpoorte; Yuesheng Tian; Guofeng Wang; Kexuan Tang

    2012-01-01

    In order to improve the production of the anticancer dimeric indole alkaloids in Catharanthuse roseus, much research has been dedicated to culturing cell lines, hairy roots, and efforts to elucidate the regulation of the monoterpenoid indole alkaloid (MIA) biosynthesis. In this study, the ORCA3 (Octadecanoid-derivative Responsive Catharanthus AP2-domain) gene alone or integrated with the G10H (geraniol 10-hydroxylase) gene were first introduced into C. roseus plants. Transgenic C. roseus plan...

  15. Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats

    Karuna Rasineni

    2010-01-01

    Full Text Available Catharanthus roseus Linn (Apocynaceae, is a traditional medicinal plant used to control diabetes, in various regions of the world. In this study we evaluated the possible antidiabetic and hypolipidemic effect of C. roseus (Catharanthus roseus leaf powder in diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 55 mg/kg body wt to male Wistar rats. The animals were divided into four groups: Control, control-treated, diabetic, and diabetic-treated group. Diabetic-treated and control-treated rats were treated with C. roseus leaf powder suspension in 2 ml distilled water, orally (100 mg/kg body weight/day/60 days. In diabetic rats (D-group the plasma glucose was increased and the plasma insulin was decreased gradually. In the diabetic-treated group lowering of plasma glucose and an increase in plasma insulin were observed after 15 days and by the end of the experimental period the plasma glucose had almost reached the normal level, but insulin had not. The significant enhancement in plasma total cholesterol, triglycerides, LDL and VLDL-cholesterol, and the atherogenic index of diabetic rats were normalized in diabetic-treated rats. Decreased hepatic and muscle glycogen content and alterations in the activities of enzymes of glucose metabolism (glycogen phosphorylase, hexokinase, phosphofructokinase, pyruvate kinase, and glucose-6-phosphate dehydrogenase, as observed in the diabetic control rats, were prevented with C. roseus administration. Our results demonstrated that C. roseus with its antidiabetic and hypolipidemic properties could be a potential herbal medicine in treating diabetes.

  16. Antihyperglycemic activity of Catharanthus roseus leaf powder in streptozotocin-induced diabetic rats

    Rasineni, Karuna; Bellamkonda, Ramesh; Singareddy, Sreenivasa Reddy; Desireddy, Saralakumari

    2010-01-01

    Catharanthus roseus Linn (Apocynaceae), is a traditional medicinal plant used to control diabetes, in various regions of the world. In this study we evaluated the possible antidiabetic and hypolipidemic effect of C. roseus (Catharanthus roseus) leaf powder in diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ, 55 mg/kg body wt) to male Wistar rats. The animals were divided into four groups: Control, control-treated, diabetic, and diabetic-treated group. Diabetic-treated and control-treated rats were treated with C. roseus leaf powder suspension in 2 ml distilled water, orally (100 mg/kg body weight/day/60 days). In diabetic rats (D-group) the plasma glucose was increased and the plasma insulin was decreased gradually. In the diabetic-treated group lowering of plasma glucose and an increase in plasma insulin were observed after 15 days and by the end of the experimental period the plasma glucose had almost reached the normal level, but insulin had not. The significant enhancement in plasma total cholesterol, triglycerides, LDL and VLDL-cholesterol, and the atherogenic index of diabetic rats were normalized in diabetic-treated rats. Decreased hepatic and muscle glycogen content and alterations in the activities of enzymes of glucose metabolism (glycogen phosphorylase, hexokinase, phosphofructokinase, pyruvate kinase, and glucose-6-phosphate dehydrogenase), as observed in the diabetic control rats, were prevented with C. roseus administration. Our results demonstrated that C. roseus with its antidiabetic and hypolipidemic properties could be a potential herbal medicine in treating diabetes. PMID:21808566

  17. Binary stress induces an increase in indole alkaloid biosynthesis in Catharanthus roseus.

    Zhu, Wei; Yang, Bingxian; Komatsu, Setsuko; Lu, Xiaoping; Li, Ximin; Tian, Jingkui

    2015-01-01

    Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abundance of proteins related to tricarboxylic acid cycle and cell wall was largely increased; while, that of proteins related to tetrapyrrole synthesis and photosynthesis was decreased. Of note, 10-hydroxygeraniol oxidoreductase, which is involved in the biosynthesis of indole alkaloid was two-fold more abundant in treated group compared to the control. In addition, mRNA expression levels of genes involved in the indole alkaloid biosynthetic pathway indicated an up-regulation in their transcription in C. roseus under UV-B irradiation. These results suggest that binary stress might negatively affect the process of photosynthesis in C. roseus. In addition, the induction of alkaloid biosynthesis appears to be responsive to binary stress. PMID:26284098

  18. Radiation Processed Carrageenan Improves Plant Growth, Physiological Activities, and Alkaloids Production in Catharanthus roseus L.

    M. Naeem

    2015-01-01

    Full Text Available Catharanthus roseus (L. G. Don (Apocynaceae is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. Commercially important antineoplastic alkaloids, namely, vinblastine and vincristine, are mainly present in the leaves of C. roseus. Gamma-rays irradiated carrageenan (ICR has been proven as plant growth promoting substance for a number of medicinal and agricultural plants. Considering the importance of ICR as a promoter of plant growth and alkaloids production in C. roseus, a pot experiment was carried out to explore the effect of ICR on the plant growth, physiological activities, and production of anticancer alkaloids in C. roseus at 120 and 150 days after planting (DAP. Foliar application of ICR (at 0, 20, 40, 60, 80, and 100 mg L−1 significantly improved the performance of C. roseus. 80 mg L−1 of ICR enhanced the leaf yield by 29.2 and 35.4% and the herbage yield by 32.5 and 37.4% at 120 and 150 DAP, respectively, over the control. The spray of ICR at 80 mg L−1 increased the yield of vinblastine by 64.3 and 65.0% and of vincristine by 75.5 and 77.0% at 120 and 150 DAP, respectively, as compared to the control.

  19. Binary Stress Induces an Increase in Indole Alkaloid Biosynthesis in Catharanthus roseus

    Wei eZhu

    2015-07-01

    Full Text Available Catharanthus roseus is an important medicinal plant, which produces a variety of indole alkaloids of significant pharmaceutical relevance. In the present study, we aimed to investigate the potential stress-induced increase of indole alkaloid biosynthesis in C. roseus using proteomic technique. The contents of the detectable alkaloids ajmalicine, vindoline, catharanthine, and strictosidine in C. roseus were significantly increased under binary stress. Proteomic analysis revealed that the abundance of proteins related to tricarboxylic acid cycle and cell wall was largely increased; while, that of proteins related to tetrapyrrole synthesis and photosynthesis was decreased. Of note, 10-hydroxygeraniol oxidoreductase, which is involved in the biosynthesis of indole alkaloid was two-fold more abundant in treated group compared to that in control. In addition, mRNA expression levels of genes involved in the indole alkaloid biosynthetic pathway indicated an up-regulation in their transcription in C. roseus under UV-B irradiation. These results suggest that binary stress might negatively affect the process of photosynthesis in C. roseus. In addition, the induction of alkaloid biosynthesis appears to be responsive to binary stress.

  20. A virus-induced gene silencing approach to understanding alkaloid metabolism in Catharanthus roseus

    Liscombe, David K.; O’Connor, Sarah E.

    2011-01-01

    The anticancer agents vinblastine and vincristine are bisindole alkaloids derived from coupling vindoline and catharanthine, monoterpenoid indole alkaloids produced exclusively by Madagascar periwinkle (Catharanthus roseus) plants. Industrial production of vinblastine and vincristine currently relies on isolation from C. roseus leaves, a process that affords these compounds in 0.0003–0.01% yields. Metabolic engineering efforts to improve alkaloid content or provide alternative sources of the bisindole alkaloids ultimately rely on the isolation and characterization of the genes involved. Several vindoline biosynthetic genes have been isolated, and the cellular and subcellular organization of the corresponding enzymes has been well studied. However, due to the leaf-specific localization of vindoline biosynthesis, and the lack of production of this precursor in cell suspension and hairy root cultures of C. roseus, further elucidation of this pathway demands the development of reverse genetics approaches to assay gene function in planta. The bipartite pTRV vector system is a Tobacco Rattle Virus-based virus-induced gene silencing (VIGS) platform that has provided efficient and effective means to assay gene function in diverse plant systems. We have developed a VIGS method to investigate gene function in C. roseus plants using the pTRV vector system. The utility of this approach in understanding gene function in C. roseus leaves is demonstrated by silencing known vindoline biosynthetic genes previously characterized in vitro. PMID:21802100

  1. Production Pattern of Ajmalicine in Catharanthus roseus (L.) G. Don. Cell Aggregates Culture in the Airlift Bioreactor

    RIZKITA RACHMI ESYANTI; AIDA MUSPIAH

    2006-01-01

    A research has been conducted to optimize the rate of aeration and initial weight of cell aggregates in the production of ajmalicine in Catharanthus roseus cell culture in airlift bioreactor. Catharanthus roseus culture were grown in Zenk medium with the addition of 2.50 x 10-6 M naphthalene acetic acid (NAA) and 10-5 M benzyl amino purine (BAP). Cell aggregates were sub-cultured two times before transferring 20 and 30 g/fw of cell aggregates into bioreactor, respectively, and aerated with th...

  2. Interaction Effects of Arbuscular Mycorrhizal Fungi and Different Phosphate Levels on Growth Performance of Catharanthus roseus Linn.

    Mohd AYOOB

    2011-08-01

    Full Text Available Catharanthus roseus L. (Apocynaceae, a valuable medicinal plant with potential therapeutic value was inoculated with AM fungi Glomus fasciculatum under three different phosphate conditions. Catharanthus roseus plants raised in presence of the AM fungi showed increased growth in terms of (shoot length, root length, leaf number, fresh weight and dry weight. Total chlorophyll content and phosphate content of the shoot was found to be significantly higher in AM inoculated plants as compared to non AM Catharanthus plants. The activities of phosphatase enzymes were found to be increased in AM inoculated plants as compared to non AM plants. Root colonization percent was significantly higher in AM inoculated plants at zero and at all three phosphate levels after 60, 90 and 120 days of AM inoculation, but decreased at third phosphate level after 120 days of AM inoculation. The study suggests that Catharanthus roseus is dependent on the mycorrhizal fungi to a large extent for its growth and survival and also shows the potential of AM fungi Glomus fasciculatum in increasing growth and biomass of Catharanthus roseus L.

  3. Selection and validation of reference genes for transcript normalization in gene expression studies in Catharanthus roseus.

    Pollier, Jacob; Vanden Bossche, Robin; Rischer, Heiko; Goossens, Alain

    2014-10-01

    Quantitative Real-Time PCR (qPCR), a sensitive and commonly used technique for gene expression analysis, requires stably expressed reference genes for normalization of gene expression. Up to now, only one reference gene for qPCR analysis, corresponding to 40S Ribosomal protein S9 (RPS9), was available for the medicinal plant Catharanthus roseus, the only source of the commercial anticancer drugs vinblastine and vincristine. Here, we screened for additional reference genes for this plant species by mining C. roseus RNA-Seq data for orthologs of 22 genes known to be stably expressed in Arabidopsis thaliana and qualified as superior reference genes for this model plant species. Based on this, eight candidate C. roseus reference genes were identified and, together with RPS9, evaluated by performing qPCR on a series of different C. roseus explants and tissue cultures. NormFinder, geNorm and BestKeeper analyses of the resulting qPCR data revealed that the orthologs of At2g28390 (SAND family protein, SAND), At2g32170 (N2227-like family protein, N2227) and At4g26410 (Expressed protein, EXP) had the highest expression stability across the different C. roseus samples and are superior as reference genes as compared to the traditionally used RPS9. Analysis of publicly available C. roseus RNA-Seq data confirmed the expression stability of SAND and N2227, underscoring their value as reference genes for C. roseus qPCR analysis. PMID:25058454

  4. Hypoglycaemic Effects of Methanolic Leaf Extract of Catharanthus Roseus (LINN.) G. DON (Apocynaceae) in Normal and Diabetic Mice

    Ojewole, John A O; Adewunmi, Clement O

    2000-01-01

    In Southern Africa, as in many other parts of Africa, Catharanthus roseus (Linn.) G. Don is traditionally used in forklore medicine to treat diabetes and a number of other human ailments. Consequently, the hypoglycaemic effects of methanolic leaf extract of C. roseus have been investigated in streptozotocin (STZ)-induced diabetic (hyperglycaemic) mice as well as in normal (normoglycaemic), STZ-untreated mice. Tolbutamide has been used as reference hypoglycaemic agent. While tolbutamide produc...

  5. Molecular And Radiation Studies On Improving The Ajmalicine Production In Catharanthus roseus

    Elicitations are considered to be an important strategy towards improve in vitro production of secondary metabolites. In seedling cultures, biotic and abiotic elicitors have effectively stimulated the production of plant secondary metabolites. However, molecular basis of elicitor signaling cascades leading to increased production of secondary metabolites of plant cell is largely unknown. Exposure of Catharanthus roseus cultures to low dose of Gamma irradiation was found to increase the amount of catharanthine and transcription of genes encoding tryptophan decarboxylase (TDC) and strictosidine synthase (STR). In the present study, the signaling pathway mediating Gamma irradiation -induced catharanthine accumulation in C. roseus seedling cultures were investigated. Catharanthus roseus seedling cultures were exposed to different low dose of Gamma irradiation in order to induce alkaloid metabolism. The exposure to Gamma irradiation elicitors resulted in the transcriptional activation of tryptophan decarboxylase and in the accumulation of the monoterpenoid indole alkaloids ajmalicine and catharanthine but not of vindoline. The inability of the seedling cultures to produce vindoline was related to a lack of expression of the tryptophan decarboxylase (TDC) and strictosidine synthase (STR) genes.

  6. Structural identification of putative USPs in Catharanthus roseus.

    Bahieldin, Ahmed; Atef, Ahmed; Shokry, Ahmed M; Al-Karim, Saleh; Al Attas, Sanaa G; Gadallah, Nour O; Edris, Sherif; Al-Kordy, Magdy A; Omer, Abdulkader M Shaikh; Sabir, Jamal S M; Ramadan, Ahmed M; Al-Hajar, Abdulrahman S M; Makki, Rania M; Hassan, Sabah M; El-Domyati, Fotouh M

    2015-10-01

    Nucleotide sequences of the C. roseus SRA database were assembled and translated in order to detect putative universal stress proteins (USPs). Based on the known conserved USPA domain, 24 Pfam putative USPA proteins in C. roseus were detected and arranged in six architectures. The USPA-like domain was detected in all architectures, while the protein kinase-like (or PK-like), (tyr)PK-like and/or U-box domains are shown downstream it. Three other domains were also shown to coexist with the USPA domain in C. roseus putative USPA sequences. These domains are tetratricopeptide repeat (or TPR), apolipophorin III (or apoLp-III) and Hsp90 co-chaperone Cdc37. Subsequent analysis divided USPA-like domains based on the ability to bind ATP. The multiple sequence alignment indicated the occurrence of eight C. roseus residues of known features of the bacterial 1MJH secondary structure. The data of the phylogenetic tree indicated several distinct groups of USPA-like domains confirming the presence of high level of sequence conservation between the plant and bacterial USPA-like sequences. PMID:26318047

  7. Subcellular Localization of Enzymes Involved in Indole Alkaloid Biosynthesis in Catharanthus roseus1

    De Luca, Vincenzo; Cutler, Adrian J.

    1987-01-01

    The subcellular localization of enzymes involved in indole alkaloid biosynthesis in leaves of Catharanthus roseus has been investigated. Tryptophan decarboxylase and strictosidine synthase which together produce strictosidine, the first indole alkaloid of this pathway, are both cytoplasmic enzymes. S-Adenosyl-l-methionine: 16-methoxy-2,3-dihydro-3-hydroxytabersonine-N-methyltransferase which catalyses the third to last step in vindoline biosynthesis could be localized in the chloroplasts of Catharanthus leaves and is specifically associated with thylakoids. Acetyl-coenzyme-A-deacetylvindoline-O-acetyltransferase which catalyses the last step in vindoline biosynthesis could also be localized in the cytoplasm. The participation of the chloroplast in this pathway suggests that indole alkaloid intermediates enter and exit this compartment during the biosynthesis of vindoline. PMID:16665811

  8. Development of a kinetic metabolic model: application to Catharanthus roseus hairy root

    Leduc, M.; Tikhomiroff, C.; Cloutier, M.; Perrier, M.

    2006-01-01

    A kinetic metabolic model describing Catharanthus roseus hairy root growth and nutrition was developed. The metabolic network includes glycolysis, pentose-phosphate pathway, TCA cycle and the catabolic reactions leading to cell building blocks such as amino acids, organic acids, organic phosphates, lipids and structural hexoses. The central primary metabolic network was taken at pseudo-steady state and metabolic flux analysis technique allowed reducing from 31 metabolic fluxes to 20 independent pathways. Hairy root specific growth rate was described as a function of intracellular concentration in cell building blocks. Intracellular transport and accumulation kinetics for major nutrients were included. The model uses intracellular nutrients as well as energy shuttles to describe metabolic regulation. Model calibration was performed using experimental data obtained from batch and medium exchange liquid cultures of C. roseus hairy root using a minimal medium in Petri dish. The model is efficient in estimating the growth rate. PMID:16453114

  9. Influence of Some Heavy Metals on Growth, Alkaloid Content and Composition in Catharanthus roseus L.

    Srivastava, N. K.; Srivastava, A. K.

    2010-01-01

    Shoot biomass production, alkaloid content and composition as influence by cadmium, manganese, nickel and lead at uniform dose of 5 mM were investigated in Catharanthus roseus plants grown in sand culture. Treatment with Mn, Ni, and Pb significantly enhanced total root alkaloid accumulation. Cd and Ni treatment resulted in two-fold where as Pb treatment resulted in three fold increase in serpentine content of roots. The non-significant affect on biomass suggests that plants can withstand metal stress at the level tested with positive affect on root alkaloid content. PMID:21969751

  10. Metabolism of Aromatic Amino Acids during the Growth Cycle of Batch Suspension Cultures of Catharanthus roseus

    Nagaoka, Noriko; ASHIHARA, Hiroshi

    1988-01-01

    Profiles of the levels and metabolism of aromatic compounds in suspension-cultured cells of Catharanthus roseus during the growth cycle were determined. The level of total protein-amino acids, i.e., sum of the amounts of amino acids in hydrolyzates of proteins, and the level of total phenolic acids increased after transfer of the cells in the stationary phase to fresh Murashige-Skoog medium. The maximum levels of the proteinamino acids and those of the phenolic acids were observed on days 3-5...

  11. Sub-acute oral toxicity study of methanol leaves extract of Catharanthus roseus in rats

    LYW Kevin; AH Hussin; I Zhari; JH Chin

    2012-01-01

    Objective: To examine the sub-acute (14 d) oral toxic effects of methanol leaves extract ofCatharanthus roseus (C. roseus) (Family: Apocynaceae) on liver and kidney functions in Sprague Dawley (SD) rats. Methods: Twenty four female SD rats were used throughout the experiment. The first group was orally treated with distilled water and served as control, whereas the remaining three groups were orally treated with single dose daily of 0.1 g/kg, 0.5 g/kg, 1 g/kg of C. roseus extract, respectively for 14 d. Cage-side observations were done daily. Any animal died during the experiment was dissected for gross organ examination. Body weight changed, food consumption and water intake were recorded weekly. Blood was collected via cardiac puncture on day-15 and used for determination of serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatinine and urea. The relative organ weights were also measured. All results were expressed as mean ± S.E.M and analysed using Dunnett’s test. The level of significance was set at P<0.05 when compared to the control group. Results: Repeated oral administration of 0.5 g/kg and 1 g/kg of methanol leaves extract of C. roseus caused mortality and diarrhoea in rats after few days of treatment. There were no significant changes observed in serum biochemical markers, body weight changed, water and food intake and relative organ weight in rats treated with a single dose daily of 0.1 g/kg of C. roseus extract treatment for 14 d when compared to control group. Conclusionds: Fourteen days repeated oral administration of 0.1 g/kg of methanol leaves extract of C. roseus was safe in female SD rats without causing any significant damages to liver and kidney.

  12. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities

    Ponarulselvam, S; Panneerselvam, C; Murugan, K; Aarthi, N; Kalimuthu, K; Thangamani, S

    2012-01-01

    Objective To develop a novel approach for the green synthesis of silver nanoparticles using aqueous leaves extracts of Catharanthus roseus (C. roseus) Linn. G. Don which has been proven active against malaria parasite Plasmodium falciparum (P. falciparum). Methods Characterizations were determined by using ultraviolet-visible (UV-Vis) spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. Results SEM showed the formation of silver nanoparticles with an average size of 35–55 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centred cubic structure of the bulk silver with the broad peaks at 32.4, 46.4 and 28.0. Conclusions It can be concluded that the leaves of C. roseus can be good source for synthesis of silver nanoparticle which shows antiplasmodial activity against P. falciparum. The important outcome of the study will be the development of value added products from medicinal plants C. roseus for biomedical and nanotechnology based industries. PMID:23569974

  13. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities

    Ponarulselvam S; Panneerselvam C; Murugan K; Aarthi N; Kalimuthu K; Thangamani S

    2012-01-01

    Objective: To develop a novel approach for the green synthesis of silver nanoparticles using aqueous leaves extracts of Catharanthus roseus (C. roseus) Linn. G. Don which has been proven active against malaria parasite Plasmodium falciparum (P. falciparum). Methods:Characterizations were determined by using ultraviolet-visible (UV-Vis) spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. Results:SEM showed the formation of silver nanoparticles with an average size of 35-55 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centred cubic structure of the bulk silver with the broad peaks at 32.4, 46.4 and 28.0. Conclusions: It can be concluded that the leaves of C. roseus can be good source for synthesis of silver nanoparticle which shows antiplasmodial activity against P. falciparum. The important outcome of the study will be the development of value added products from medicinal plants C. roseus for biomedical and nanotechnology based industries.

  14. Computational identification of microRNAs and their targets in Catharanthus roseus expressed sequence tags.

    Pani, Alok; Mahapatra, Rajani Kanta

    2013-12-01

    No study has been performed on identifying microRNAs (miRNAs) and their targets in the medicinal plant, Catharanthus roseus. In the present study, using the comparative genomics approach, we have predicted two potential C. roseus miRNAs. Furthermore, twelve potential mRNA targets were identified in C. roseus genome based on the characteristics that miRNAs exhibit perfect or nearly perfect complementarity with their targeted mRNA sequences. Among them many of the targets were predicted to encode enzymes that regulate the biosynthesis of terpenoid indole alkaloids (TIA). In addition, most of the predicted targets were the gene coding for transcription factors which are mainly involved in cell growth and development, signaling and metabolism. This is the first in silico study to indicate that miRNA target gene encoding enzymes involved in vinblastine and vincristine biosynthesis, which may help to understand the miRNA-mediated regulation of TIA alkaloid biosynthesis in C. roseus. PMID:26484050

  15. PHOTOCHEMICAL INVESTIGATION OF VINBLASTINE IN 43 CULTIVARS OF CATHARANTHUS ROSEUS L.

    S.E AJADI

    2000-12-01

    Full Text Available Background. Vinblastine is one of the alkaloids extracted from Catharanthus roseus L. which is used for the treatment of Hodgkin's disease, lymphoma, and leukemia in children. In spite of the progresses in the synthesis of many drugs, synthesis of vinblastine is not feasible and it has been extracted from plant so far. In this study we used a screening method to facilitate selection for the best cultivar with a higher yield. Methods. The leaves of the 43 cultivars of C. roseus L was freeze dried and vinblastine was extracted with trifluroacetic acid 0.06% in water. The extraction was analysed by HPLC, using a gradient solvent system. Results and Discussion. The results of this study indicates that the amount of vinblastine is variable in different cultivars. The concentration of vinblastine in cultivar NO. 41 [C. roseus L (G. DON] is 5.1 times mare than the means of vinblastine in all cultivars. The cultivar No. 23 [C. roseus L (Pacifica Punch] has the minimum concentration of this alkaloid.

  16. UV-B induced transcript accumulation of DAHP synthase in suspension-cultured Catharanthus roseus cells

    2010-01-01

    The enzyme 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase (EC 4.1.2.15) catalyzes the first committed step in the shikimate pathway of tryptophan synthesis, an important precursor for the production of terpenoid indole alkaloids (TIAs). A full-length cDNA encoding nuclear coded chloroplast-specific DAHP synthase transcript was isolated from a Catharanthus roseus cDNA library. This had high sequence similarity with other members of plant DAHP synthase family. This transcript accumulated in suspension cultured C. roseus cells on ultraviolet (UV-B) irradiation. Pretreatment of C.roseus cells with variety of agents such as suramin, N-acetyl cysteine, and inhibitors of calcium fluxes and protein kinases and MAP kinase prevented this effect of UV-B irriadiation. These data further show that the essential components of the signaling pathway involved in accumulation DAHP synthase transcript in C. roseus cells include suramin-sensitive cell surface receptor, staurosporine-sensitive protein kinase and MAP kinase. PMID:20704760

  17. ‘Candidatus Phytoplasma hispanicum’, a novel taxon associated with Mexican periwinkle virescence disease of Catharanthus roseus

    Mexican periwinkle virescence (MPV) phytoplasma was originally discovered in diseased plants of Madagascar periwinkle (Catharanthus roseus) in Yucatán, Mexico. On the basis of results from RFLP analysis of PCR-amplified 16S rRNA gene sequences, strain MPV was previously classified as the first know...

  18. 长春花组织培养研究进展%Progress on tissue culture of Catharanthus roseus

    曾智发; 柳润辉

    2012-01-01

    长春花含有100多种吲哚类生物碱,具有抗肿瘤、降血压等多种生物活性,有较高的药用价值,但是含量偏低.长春花组织培养可从提高繁殖系数、调控次生代谢产物的累积等来提高长春花生物碱类成分含量.本文就外植体和培养基的选择、药用成分累积的影响因素、悬浮细胞培养应用、影响毛状根因素和基因工程技术应用等方面,综述了长春花组织培养的主要研究进展,为进一步开发利用长春花药物资源提供参考.%Catharanthus roseus ( L. ) G. Don contained more than 100 known indole alkaloids, some of which had anli-cancer, lowering blood pressure and other biological activity. Catharanthus roseus had a high medicinal value, but the content of alkaloids was very low. In order to improve the content of alkaloid, the technology of tissue culture had been applied in Catharanthus roseus, such as improving the propagation coefficient and controlling the accumulation of secondary metabolites. To provide reference in further development and utilization of Catharanthus roseus drug resources, the main research progress of tissue culture of Catharanthus roseus including the impact factors of medicinal components accumulation, suspension cell culture applications, the impact factors of hairy roots and application of genetic engineering technology were reviewed in this paper.

  19. Development of efficient catharanthus roseus regeneration and transformation system using agrobacterium tumefaciens and hypocotyls as explants

    2012-01-01

    Background As a valuable medicinal plant, Madagascar periwinkle (Catharanthus roseus) produces many terpenoid indole alkaloids (TIAs), such as vindoline, ajamlicine, serpentine, catharanthine, vinblastine and vincristine et al. Some of them are important components of drugs treating cancer and hypertension. However, the yields of these TIAs are low in wild-type plants, and the total chemical synthesis is impractical in large scale due to high-cost and their complicated structures. The recent development of metabolic engineering strategy offers a promising solution. In order to improve the production of TIAs in C. roseus, the establishment of an efficient genetic transformation method is required. Results To develop a genetic transformation method for C. roseus, Agrobacterium tumefaciens strain EHA105 was employed which harbors a binary vector pCAMBIA2301 containing a report β-glucuronidase (GUS) gene and a selectable marker neomycin phosphotransferase II gene (NTPII). The influential factors were investigated systematically and the optimal transformation condition was achieved using hypocotyls as explants, including the sonication treatment of 10 min with 80 W, A. tumefaciens infection of 30 min and co-cultivation of 2 d in 1/2 MS medium containing 100 μM acetosyringone. With a series of selection in callus, shoot and root inducing kanamycin-containing resistance media, we successfully obtained stable transgenic regeneration plants. The expression of GUS gene was confirmed by histochemistry, polymerase chain reaction, and genomic southern blot analysis. To prove the efficiency of the established genetic transformation system, the rate-limiting gene in TIAs biosynthetic pathway, DAT, which encodes deacetylvindoline-4-O-acetyltransferase, was transferred into C. roseus using this established system and 9 independent transgenic plants were obtained. The results of metabolite analysis using high performance liquid chromatography (HPLC) showed that

  20. Development of efficient catharanthus roseus regeneration and transformation system using agrobacterium tumefaciens and hypocotyls as explants

    Wang Quan

    2012-06-01

    Full Text Available Abstract Background As a valuable medicinal plant, Madagascar periwinkle (Catharanthus roseus produces many terpenoid indole alkaloids (TIAs, such as vindoline, ajamlicine, serpentine, catharanthine, vinblastine and vincristine et al. Some of them are important components of drugs treating cancer and hypertension. However, the yields of these TIAs are low in wild-type plants, and the total chemical synthesis is impractical in large scale due to high-cost and their complicated structures. The recent development of metabolic engineering strategy offers a promising solution. In order to improve the production of TIAs in C. roseus, the establishment of an efficient genetic transformation method is required. Results To develop a genetic transformation method for C. roseus, Agrobacterium tumefaciens strain EHA105 was employed which harbors a binary vector pCAMBIA2301 containing a report β-glucuronidase (GUS gene and a selectable marker neomycin phosphotransferase II gene (NTPII. The influential factors were investigated systematically and the optimal transformation condition was achieved using hypocotyls as explants, including the sonication treatment of 10 min with 80 W, A. tumefaciens infection of 30 min and co-cultivation of 2 d in 1/2 MS medium containing 100 μM acetosyringone. With a series of selection in callus, shoot and root inducing kanamycin-containing resistance media, we successfully obtained stable transgenic regeneration plants. The expression of GUS gene was confirmed by histochemistry, polymerase chain reaction, and genomic southern blot analysis. To prove the efficiency of the established genetic transformation system, the rate-limiting gene in TIAs biosynthetic pathway, DAT, which encodes deacetylvindoline-4-O-acetyltransferase, was transferred into C. roseus using this established system and 9 independent transgenic plants were obtained. The results of metabolite analysis using high performance liquid chromatography (HPLC

  1. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don.

    Tiong, Soon Huat; Looi, Chung Yeng; Hazni, Hazrina; Arya, Aditya; Paydar, Mohammadjavad; Wong, Won Fen; Cheah, Shiau-Chuen; Mustafa, Mohd Rais; Awang, Khalijah

    2013-01-01

    Catharanthus roseus (L.) G. Don is a herbal plant traditionally used by local populations in India, South Africa, China and Malaysia to treat diabetes. The present study reports the in vitro antioxidant and antidiabetic activities of the major alkaloids isolated from Catharanthus roseus (L.) G. Don leaves extract. Four alkaloids--vindoline I, vindolidine II, vindolicine III and vindolinine IV--were isolated and identified from the dichloromethane extract (DE) of this plant's leaves. DE and compounds I-III were not cytotoxic towards pancreatic β-TC6 cells at the highest dosage tested (25.0 µg/mL). All four alkaloids induced relatively high glucose uptake in pancreatic β-TC6 or myoblast C2C12 cells, with III showing the highest activity. In addition, compounds II-IV demonstrated good protein tyrosine phosphatase-1B (PTP-1B) inhibition activity, implying their therapeutic potential against type 2 diabetes. III showed the highest antioxidant potential in ORAC and DPPH assays and it also alleviated H₂O₂-induced oxidative damage in β-TC6 cells at 12.5 µg/mL and 25.0 µg/mL. PMID:23955322

  2. Immunological Detection and Quantitation of Tryptophan Decarboxylase in Developing Catharanthus roseus Seedlings 1

    Fernandez, Jesus Alvarez; Owen, Terence G.; Kurz, Wolfgang G. W.; De Luca, Vincenzo

    1989-01-01

    l-Tryptophan decarboxylase (TDC) (EC 4.2.1.27) enzyme activity was induced in cell suspension cultures of Catharanthus roseus after treatment with a Pythium aphanidermatum elicitor preparation. The enzyme was extracted from lyophilized cells containing high levels of TDC and the protein was purified to homogeneity. The pure protein was used to produce highly specific polyclonal antibodies, and an enzyme-linked immunosorbent assay (ELISA) was developed to quantitate the level of TDC antigen during seedling development and in leaves of the mature plant. Western immunoblotting of proteins after SDS-PAGE with anti-TDC antibodies detected several immunoreactive proteins (40, 44, 54.8, 55, and 67 kilodaltons) which appeared at different stages during seedling development and in leaves of the mature plant. The major 54.8 and 55 kilodalton antigenic proteins in immunoblots appeared transiently between days 1 to 5 and 5 to 8 of seedling development, respectively. The 54.8 kilodalton protein was devoid of TDC enzyme activity, whereas the appearance of the 55 kilodalton protein coincided with the appearance of this decarboxylase activity. The minor immunoreactive proteins (40, 44, and 67 kilodaltons) appeared after day 5 of seedling development and in older leaves of the mature plant, and their relationship, if any, to TDC is presently unknown. Results suggest that the synthesis and degradation of TDC protein is highly regulated in Catharanthus roseus and that this regulation follows a preset developmental program. Images Figure 3 Figure 5 PMID:16667047

  3. Antidiabetic and Antioxidant Properties of Alkaloids from Catharanthus roseus (L. G. Don

    Won Fen Wong

    2013-08-01

    Full Text Available Catharanthus roseus (L. G. Don is a herbal plant traditionally used by local populations in India, South Africa, China and Malaysia to treat diabetes. The present study reports the in vitro antioxidant and antidiabetic activities of the major alkaloids isolated from Catharanthus roseus (L. G. Don leaves extract. Four alkaloids—vindoline I, vindolidine II, vindolicine III and vindolinine IV—were isolated and identified from the dichloromethane extract (DE of this plant’s leaves. DE and compounds I–III were not cytotoxic towards pancreatic β-TC6 cells at the highest dosage tested (25.0 µg/mL. All four alkaloids induced relatively high glucose uptake in pancreatic β-TC6 or myoblast C2C12 cells, with III showing the highest activity. In addition, compounds II–IV demonstrated good protein tyrosine phosphatase-1B (PTP-1B inhibition activity, implying their therapeutic potential against type 2 diabetes. III showed the highest antioxidant potential in ORAC and DPPH assays and it also alleviated H2O2-induced oxidative damage in β-TC6 cells at 12.5 µg/mL and 25.0 µg/mL.

  4. Characterization of an endophytic whorl-forming Streptomyces from Catharanthus roseus stems producing polyene macrolide antibiotic.

    Rakotoniriana, Erick Francisco; Chataigné, Gabrielle; Raoelison, Guy; Rabemanantsoa, Christian; Munaut, Françoise; El Jaziri, Mondher; Urveg-Ratsimamanga, Suzanne; Marchand-Brynaert, Jacqueline; Corbisier, Anne-Marie; Declerck, Stéphane; Quetin-Leclercq, Joëlle

    2012-05-01

    An endophytic whorl-forming Streptomyces sp. designated as TS3RO having antifungal activity against a large number of fungal pathogens, including Sclerotinia sclerotiorum, Rhizoctonia solani, Colletotrichum gloeosporioides, Cryphonectria parasitica, Fusarium oxysporum, Pyrenophora tritici-repentis, Epidermophyton floccosum, and Trichophyton rubrum, was isolated from surface-sterilized Catharanthus roseus stems. Preliminary identification showed that Streptomyces cinnamoneus subsp. sparsus was its closest related species. However, strain TS3RO could readily be distinguished from this species using a combination of phenotypic properties, 16S rDNA sequence similarity, and phylogenetic analyses. Thus, the whorl-forming Streptomyces sp. strain TS3RO is likely a new subspecies within the Streptomyces cinnamoneus group. Direct bioautography on a thin-layer chromatography plate with Cladosporium cucumerinum was conducted throughout the purification steps for bioassay-guided isolation of the active antifungal compounds from the crude extract. Structural elucidation of the isolated bioactive compound was obtained via LC-MS spectrometry, UV-visible spectra, and nuclear magnetic resonance data. It revealed that fungichromin, a known methylpentaene macrolide antibiotic, was the main antifungal component of TS3RO strain, as shown by thin-layer chromatography bioautography. This is the first report of an endophytic whorl-forming Streptomyces isolated from the medically important plant Catharanthus roseus. PMID:22524528

  5. The Leaf Epidermome of Catharanthus roseus Reveals Its Biochemical Specialization[W][OA

    Murata, Jun; Roepke, Jonathon; Gordon, Heather; De Luca, Vincenzo

    2008-01-01

    Catharanthus roseus is the sole commercial source of the monoterpenoid indole alkaloids (MIAs), vindoline and catharanthine, components of the commercially important anticancer dimers, vinblastine and vincristine. Carborundum abrasion technique was used to extract leaf epidermis–enriched mRNA, thus sampling the epidermome, or complement, of proteins expressed in the leaf epidermis. Random sequencing of the derived cDNA library established 3655 unique ESTs, composed of 1142 clusters and 2513 singletons. Virtually all known MIA pathway genes were found in this remarkable set of ESTs, while only four known genes were found in the publicly available Catharanthus EST data set. Several novel MIA pathway candidate genes were identified, as demonstrated by the cloning and functional characterization of loganic acid O-methyltransferase involved in secologanin biosynthesis. The pathways for triterpene biosynthesis were also identified, and metabolite analysis showed that oleanane-type triterpenes were localized exclusively to the cuticular wax layer. The pathways for flavonoid and very-long-chain fatty acid biosynthesis were also located in this cell type. The results illuminate the biochemical specialization of Catharanthus leaf epidermis for the production of multiple classes of metabolites. The value and versatility of this EST data set for biochemical and biological analysis of leaf epidermal cells is also discussed. PMID:18326827

  6. Purification and cDNA Cloning of Isochorismate Synthase from Elicited Cell Cultures of Catharanthus roseus

    van Tegelen, Léon J.P.; Moreno, Paolo R.H.; Croes, Anton F.; Verpoorte, Robert; Wullems, George J.

    1999-01-01

    Isochorismate is an important metabolite formed at the end of the shikimate pathway, which is involved in the synthesis of both primary and secondary metabolites. It is synthesized from chorismate in a reaction catalyzed by the enzyme isochorismate synthase (ICS; EC 5.4.99.6). We have purified ICS to homogeneity from elicited Catharanthus roseus cell cultures. Two isoforms with an apparent molecular mass of 64 kD were purified and characterized. The Km values for chorismate were 558 and 319 μm for isoforms I and II, respectively. The isoforms were not inhibited by aromatic amino acids and required Mg2+ for enzyme activity. Polymerase chain reaction on a cDNA library from elicited C. roseus cells with a degenerated primer based on the sequence of an internal peptide from isoform II resulted in an amplification product that was used to screen the cDNA library. This led to the first isolation, to our knowledge, of a plant ICS cDNA. The cDNA encodes a protein of 64 kD with an N-terminal chloroplast-targeting signal. The deduced amino acid sequence shares homology with bacterial ICS and also with anthranilate synthases from plants. Southern analysis indicates the existence of only one ICS gene in C. roseus. PMID:9952467

  7. Virus-induced gene silencing in Catharanthus roseus by biolistic inoculation of tobacco rattle virus vectors.

    Carqueijeiro, I; Masini, E; Foureau, E; Sepúlveda, L J; Marais, E; Lanoue, A; Besseau, S; Papon, N; Clastre, M; Dugé de Bernonville, T; Glévarec, G; Atehortùa, L; Oudin, A; Courdavault, V

    2015-11-01

    Catharanthus roseus constitutes the unique source of several valuable monoterpenoid indole alkaloids, including the antineoplastics vinblastine and vincristine. These alkaloids result from a complex biosynthetic pathway encompassing between 30 and 50 enzymatic steps whose characterisation is still underway. The most recent identifications of genes from this pathway relied on a tobacco rattle virus-based virus-induced gene silencing (VIGS) approach, involving an Agrobacterium-mediated inoculation of plasmids encoding the two genomic components of the virus. As an alternative, we developed a biolistic-mediated approach of inoculation of virus-encoding plasmids that can be easily performed by a simple bombardment of young C. roseus plants. After optimisation of the transformation conditions, we showed that this approach efficiently silenced the phytoene desaturase gene, leading to strong and reproducible photobleaching of leaves. This biolistic transformation was also used to silence a previously characterised gene from the alkaloid biosynthetic pathway, encoding iridoid oxidase. Plant bombardment caused down-regulation of the targeted gene (70%), accompanied by a correlated decreased in MIA biosynthesis (45-90%), similar to results obtained via agro-transformation. Thus, the biolistic-based VIGS approach developed for C. roseus appears suitable for gene function elucidation and can readily be used instead of the Agrobacterium-based approach, e.g. when difficulties arise with agro-inoculations or when Agrobacterium-free procedures are required to avoid plant defence responses. PMID:26284695

  8. Catharanthus roseus mitogen-activated protein kinase 3 confers UV and heat tolerance to Saccharomyces cerevisiae

    Raina, Susheel Kumar; Wankhede, Dhammaprakash Pandhari; Sinha, Alok Krishna

    2013-01-01

    Catharanthus roseus is an important source of pharmaceutically important Monoterpenoid Indole Alkaloids (MIAs). Accumulation of many of the MIAs is induced in response to abiotic stresses such as wound, ultra violet (UV) irradiations, etc. Recently, we have demonstrated a possible role of CrMPK3, a C. roseus mitogen-activated protein kinase in stress-induced accumulation of a few MIAs. Here, we extend our findings using Saccharomyces cerevisiae to investigate the role of CrMPK3 in giving tolerance to abiotic stresses. Yeast cells transformed with CrMPK3 was found to show enhanced tolerance to UV and heat stress. Comparison of CrMPK3 and SLT2, a MAPK from yeast shows high-sequence identity particularly at conserved domains. Additionally, heat stress is also shown to activate a 43 kDa MAP kinase, possibly CrMPK3 in C. roseus leaves. These findings indicate the role of CrMPK3 in stress-induced MIA accumulation as well as in stress tolerance. PMID:23221751

  9. Effects of mercury (II) species on cell suspension cultures of catharanthus roseus

    Zhu, L. (Hangzhou Univ. (China)); Cullen, W.R. (Univ. of British Columbia, Vancouver, British Columbia (Canada))

    1994-11-01

    Mercury has received considerable attention because of its high toxicity. Widespread contamination with mercury poses severe environmental problems despite our extensive knowledge of its toxicity in living systems. It is generally accepted that the toxicity of mercury is related to its oxidation states and species, the organic forms being more toxic than the inorganic forms. In the aquatic environment, the toxicity of mercury depends on the aqueous speciation of the mercuric ion (Hg[sup 2+]). Because of the complex coordination chemistry of mercury in aqueous systems, the nature of the Hg[sup 2+] species present in aquatic environments is influenced greatly by water chemistry (e. g, pH, inorganic ion composition, and dissolved organics). Consequently, the influence of environmental factors on the aqueous speciation of mercury has been the focus of much attention. However, there is very little information available regarding the effects of the species and speciation on Hg (II) toxicity in plant-tissue cultures. Catharanthus roseus (C. roseus), commonly called the Madagascar Periwinkle, is a member of the alkaloid rich family Apocynaceae. The present investigation was concerned with the toxicity of mercury on the growth of C. roseus cell suspension cultures as influenced by mercury (II) species and speciation. The specific objectives of the study were to (a) study the effects of mercury species on the growth of C. roseus cultures from the point of view of environmental biology and toxicology; (b) evaluate the effects of selenate, selenite and selected ligands such as chloride, 1-cysteine in the media on the acute toxicity of mercuric oxide; (c) determine the impact of the initial pH of the culture media on the toxicities of mercuric compounds; (d) discuss the dependence of the toxicity on the chemical species and speciation of Hg (II). 11 refs., 7 figs., 2 tabs.

  10. Radiolytically degraded sodium alginate enhances plant growth, physiological activities and alkaloids production in Catharanthus roseus L.

    M. Naeem

    2015-10-01

    Full Text Available Catharanthus roseus (L. G. Don (Family Apocynaceae is a medicinal plant that produces indole alkaloids used in cancer chemotherapy. The anticancerous alkaloids, viz. vinblastine and vincristine, are mainly present in the leaves of C. roseus. High demand and low yield of these alkaloids in the plant has led to explore the alternative means for their production. Gamma irradiated sodium alginate (ISA has proved as a plant growth promoting substance for various medicinal and agricultural crops. A pot culture experiment was carried out to explore the effect of ISA on plant growth, physiological activities and production of anticancer alkaloids (vinblastine and vincristine in C. roseus at 120 and 150 days after planting (DAP. Foliar application of ISA (0, 20, 40, 60, 80 and 100 mg L−1 significantly improved the performance of C. roseus. 80 mg L−1 of ISA enhanced the leaf-yield by 25.3 and 30.2% and the herbage-yield by 29.4 and 34.4% at 120 and 150 DAP, respectively, as compared to the control. The spray treatment of ISA at 80 mg L−1 improved the yield of vinblastine by 66.7 and 71.4% and of vincristine by 67.6 and 75.6% at 120 and 150 DAP, respectively, in comparison to the control. As compared to control, the application of ISA at 80 mg L−1 resulted in the maximum swell in the content and yield of vindoline, increasing them by 18.9 and 20.8% and by 81.8 and 87.2% at 120 and 150 DAP, respectively.

  11. Phytoremediation of 137Cs from low level nuclear waste using Catharanthus roseus

    Remediation of radionuclides has been carried out using the phytoremediation technology. The green plants have been screened for the uptake potential of radionuclide and found that Catharanthus roseus has the high potential for radionuclides in particular 137Cs. Low level nuclear waste (LLNW) collected from effluent treatment plant, BARC has been characterized for physico-chemical and the presence of traces of radionuclides. LLNW was spiked with 3.7 x 104 kBqL-1 activity level of 137Cs. The plants of C. roseus were grown in (i) LLNW, (ii) 137Cs spiked LLNW and (iii) with the control. The radio activities were measured in the solution at the intervals of 0, 1, 2, 3, 6, 8 and 15 days in triplicate set of the experiment. The plants were harvested after the growth. The depletion of 137Cs in LLNW was found to be 19, 21, 24, 38, 60 and 76% at intervals of 1, 2, 3, 6, 8 and 15 days, respectively. The bio-accumulation of 137Cs has been measured in the roots and shoots of the harvested plants. The activity of 137Cs was found higher in shoots (998 kBq g-1 dw) as compared to the roots (735 kBq g-1 dw). The uptake of radionuclide-137Cs, bio-accumulation in the shoot via the active transport from the root, shows the high efficiency and potentiality of C. roseus for the remediation of radionuclide. The bio-accumulation of 137Cs in the shoot will remediate the radionuclide contamination from LLNW. C. roseus can also be made applicable for effective remediation of radionuclides present in the LLNW. (author)

  12. Antimicrobial potentials of Catharanthus roseus by disc diffusion assay.

    Bakht, Jehan; Syed, Fatema; Shafi, Mohammad

    2015-05-01

    The present research work investigates the in vitro antimicrobial activity of different solvent extracted samples from the aerial parts (stem, leaf, fruit and flower) of C. roseus against different microbial species using disc diffusion assay at two different concentrations of 1 and 2 mg disc-1. Hexane extracted samples inhibited the growth of all tested microbial strains except S. typhi. Similarly, ethyl acetate extracted samples was effective to control the activity of all the tested microbial strains. E. coli and S. typhi showed resistance to chloroform extracted samples and the remaining eight microbial strains were susceptible to the same extract. Butanol extracted samples did not inhibit the growth of K. pneumonia and S. typhi at low concentration, however, at higher concentration the same extract reduced the growth of different microbes. Methanol extracted samples effectively controlled the growth of all tested microbes at both concentrations except for S. typhi. Water extracted samples did not inhibit the growth at low concentration except E. coli, K. pneumonia and S. aureus and were ineffective against P. aeroginosa at both concentration. C. albicans, showed resistance against chloroform and water extracted samples at low concentration and susceptible to other solvent extracted samples at both concentration. All fractions were effective against plant pathogens i.e. E. carotovora and A. tumefaciens. PMID:26004715

  13. Synthesis and characterization of palladium nanoparticles using Catharanthus roseus leaf extract and its application in the photo-catalytic degradation

    Kalaiselvi, Aasaithambi; Roopan, Selvaraj Mohana; Madhumitha, Gunabalan; Ramalingam, C.; Elango, Ganesh

    2015-01-01

    The potential effect of Catharanthus roseus leaf extract for the formation of palladium nanoparticles and its application on dye degradation was discussed. The efficiency of C.roseus leaves are used as a bio-material for the first time as reducing agent. Synthesized palladium nanoparticles were supported by UV-vis spectrometry, XRD, FT-IR and TEM analysis. The secondary metabolites which are responsible for the formation of nanoparticles were identified by GC-MS. The results showed that effect of time was directly related to synthesized nanoparticles and functional groups has a critical role in reducing the metal ions and stabilizing the palladium nanoparticles in an eco-friendly process.

  14. The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits

    Lodagala Srinivas D; Boini Murthy K; Nammi Srinivas; Behara Ravindra Babu S

    2003-01-01

    Abstract Background The leaf juice or water decoction of Catharanthus roseus L. (Apocyanaceae) is used as a folk medicine for the treatment of diabetes all over the world. In the present investigation, the leaf juice of C. roseus has been evaluated for its hypoglycemic activity in normal and alloxan-induced diabetic rabbits. Methods The blood glucose lowering activity of the leaf juice was studied in normal and alloxan-induced (100 mg/kg, i.v.) diabetic rabbits, after oral administration at d...

  15. Strictosidine synthase from Catharanthus roseus: purification and characterization of multiple forms.

    de Waal, A; Meijer, A H; Verpoorte, R

    1995-01-01

    Multiple (six) forms of strictosidine synthase from Catharanthus roseus cell suspension cultures were purified and characterized. A purification protocol is presented composed of hydrophobic-interaction, gel-permeation and ion-exchange chromatography and chromatofocusing. Four of six isoforms were purified to apparent homogeneity, whereas two others were nearly homogeneous. All strictosidine synthase isoforms were found to be glycoproteins. The isoforms were also found in leaves and roots of the plant, in seedlings and in hairy root cultures. The ratio of the different isoforms differed slightly between these sources. The kinetic parameters of the isoforms showed no significant differences. The maximal velocity (300-400 nkat/mg of protein) is the highest reported so far. It was demonstrated that the apparent Michaelis constant for tryptamine (approx. 9 microM) is much lower than values reported previously. The presence of weak product inhibition (Kp approx. 35 times Km) was established, whereas substrate inhibition was not detected. PMID:7887913

  16. Endophytic filamentous fungi from a Catharanthus roseus: Identification and its hydrolytic enzymes

    Farah Wahida Ayob

    2016-05-01

    Full Text Available This paper reported on the various filamentous fungi strains that were isolated from a wild grown Catharanthus roseus. Based on the morphological characteristics and molecular technique through a Polymerase Chain Reaction and DNA sequencing method using internal transcribed spacer (ITS, these fungi had been identified as a Colletotrichum sp., Macrophomina phaseolina, Nigrospora sphaerica and Fusarium solani. The ultrastructures of spores and hyphae were observed under a Scanning Electron Microscope. The hydrolytic enzyme test showed that all strains were positive in secreting cellulase. Colletotrichum sp. and F. solani strains also gave a positive result for amylase while only F. solani was capable to secrete protease. These fungi were putatively classified as endophytic fungi since they produced extracellular enzymes that allow them to penetrate plant cell walls and colonize with symbiotic properties.

  17. Uptake and metabolism of sugars by suspension-cultured catharanthus roseus cells

    Ashihara, Hiroshi; Sagishima, Kyoko; Kubota, Kaoru (Ochanomizu Univ., Tokyo (Japan))

    1989-04-01

    The Uptake and metabolism of sugars by suspension-cultured Catharanthus roseus cells were investigated. Substantially all the sucrose in the culture medium was hydrolyzed to glucose and fructose before being taken up by the cells. The activity of invertase bound to cell walls, determined in situ, was high at the early stage of culture. Glucose was more easily taken up by the cells than was fructose. Tracer experiments using (U-{sup 14}C)glucose and (U-{sup 14}C)fructose indicated that glucose is a better precursor for respiration than fructose, while fructose is preferentially utilized for the synthesis of sucrose, especially in the early phase of cell growth. These results suggest that fructose is utilized for the synthesis of sucrose via the reaction catalyzed by sucrose synthase, prior to the phosphorylation by hexokinase or fructokinase.

  18. Morphogenetic and chemical stability of long-term maintained Agrobacterium-mediated transgenic Catharanthus roseus plants.

    Verma, Priyanka; Sharma, Abhishek; Khan, Shamshad Ahmad; Mathur, Ajay Kumar; Shanker, Karuna

    2015-01-01

    Transgenic Catharanthus roseus plants (transgenic Dhawal [DT] and transgenic Nirmal [NT]) obtained from the Agrobacterium tumefaciens and Agrobacterium rhizognenes-mediated transformations, respectively, have been maintained in vitro for 5 years. Plants were studied at regular intervals for various parameters such as plant height, leaf size, multiplication rate, alkaloid profile and presence of marker genes. DT plant gradually lost the GUS gene expression and it was not detected in the fifth year while NT plant demonstrated the presence of genes rolA, rolB and rolC even in the fifth year, indicating the more stable nature of Ri transgene. Vindoline content in the DT was two times more than in non-transformed control plants. Alkaloid and tryptophan profiles were almost constant during the 5 years. The cluster analysis revealed that the DT plant is more close to the control Nirmal plant followed by NT plant. PMID:25102992

  19. Developmental Regulation of Enzymes of Indole Alkaloid Biosynthesis in Catharanthus roseus1

    De Luca, Vincenzo; Fernandez, Jesus Alvarez; Campbell, Douglas; Kurz, Wolfgang G. W.

    1988-01-01

    Developing seedlings of Catharanthus roseus were analyzed for appearance of tryptophan decarboxylase (TDC), strictosidine synthase (SS), N-methyltransferase (NMT) and O-acetyltransferase (DAT) enzyme activities. SS enzyme activity appeared early after germination and was present throughout most of the developmental study. TDC activity was highly regulated and peaked over a 48 hour period achieving a maximum by day of 5 of seedling development. Both TDC and SS were present in all tissues of the seedling. NMT and DAT enzyme activities were induced after TDC and SS had peaked and these activities could only be found in hypocotyls and cotyledons. TDC, SS, and NMT did not require light for induction whereas DAT enzyme activity was increased approximately 10-fold after light treatment of dark grown seedlings. PMID:16665928

  20. Effects of tip-pruning treatment on source-sink regulation of Catharanthus roseus seedlings

    GAO Yang; ZHANG Xue-ke; GUO Xiao-rui; SUN Yan-fei; ZU Yuang-gang

    2006-01-01

    Fifty cultivated Catharanthus roseus seedlings were selected for tip-pruning treatment and the effects of tip-pruning on seedling growth and source-sink regulation were investigated for revealing physiological mechanisms of plants. The results showed that tip-pruning treatment resulted in obvious inhibition of apical dominance and enhancement of branching numbers. The contents of soluble sugars, acid sucrose invertase activity (AI) had a great change in differently positional leaves of the seedling. The sink strength in tip leaves of seedlings dramatically declined after tip-pruning treatment, while that in the leaves at the middle and bottom of seedlings had no obvious changes. The inhibition of apical dominance of tip leaves of seedlings was caused by the diminished sink strength due to tip-pruning treatment,

  1. Endophytic filamentous fungi from a Catharanthus roseus: Identification and its hydrolytic enzymes.

    Ayob, Farah Wahida; Simarani, Khanom

    2016-05-01

    This paper reported on the various filamentous fungi strains that were isolated from a wild grown Catharanthus roseus. Based on the morphological characteristics and molecular technique through a Polymerase Chain Reaction and DNA sequencing method using internal transcribed spacer (ITS), these fungi had been identified as a Colletotrichum sp., Macrophomina phaseolina, Nigrospora sphaerica and Fusarium solani. The ultrastructures of spores and hyphae were observed under a Scanning Electron Microscope. The hydrolytic enzyme test showed that all strains were positive in secreting cellulase. Colletotrichum sp. and F. solani strains also gave a positive result for amylase while only F. solani was capable to secrete protease. These fungi were putatively classified as endophytic fungi since they produced extracellular enzymes that allow them to penetrate plant cell walls and colonize with symbiotic properties. PMID:27275114

  2. Two new vinblastine-type N-oxide alkaloids from Catharanthus roseus.

    Zhang, Wei-Ku; Xu, Jie-Kun; Tian, Hai-Yan; Wang, Lei; Zhang, Xiao-Qi; Xiao, Xu-Zhi; Li, Ping; Ye, Wen-Cai

    2013-10-01

    Two new vinblastine-type N-oxide alkaloids, 17-desacetoxyvinblastine N'b-oxide (1) and 20'-deoxyvinblastine N'b-oxide (2), were isolated from the leaves of Catharanthus roseus. The structures of 1 and 2 were established by the analysis of their nuclear magnetic resonance and HR-ESI-MS spectroscopic data. All alkaloids were evaluated for their cytotoxic activities against the human hepatocellular carcinoma (HepG2) cell line, human colorectal carcinoma (Lovo) cell line and human breast carcinoma (MCF-7) cell line by the MTT method in vitro, respectively. The results showed that cytotoxic activities of alkaloids 1 and 2 exhibited moderate inhibitory activity on the proliferation of three cancer cells. PMID:23621523

  3. Uptake and metabolism of sugars by suspension-cultured catharanthus roseus cells

    The Uptake and metabolism of sugars by suspension-cultured Catharanthus roseus cells were investigated. Substantially all the sucrose in the culture medium was hydrolyzed to glucose and fructose before being taken up by the cells. The activity of invertase bound to cell walls, determined in situ, was high at the early stage of culture. Glucose was more easily taken up by the cells than was fructose. Tracer experiments using [U-14C]glucose and [U-14C]fructose indicated that glucose is a better precursor for respiration than fructose, while fructose is preferentially utilized for the synthesis of sucrose, especially in the early phase of cell growth. These results suggest that fructose is utilized for the synthesis of sucrose via the reaction catalyzed by sucrose synthase, prior to the phosphorylation by hexokinase or fructokinase

  4. Synthesis of silver nanoparticles using Catharanthus roseus root extract and its larvicidal effects.

    Rajagopal, Thangavel; Jemimah, Irudayaraj Anto Amal; Ponmanickam, Ponnirul; Ayyanar, Muniappan

    2015-11-01

    Phytosynthesis of silver nanoparticles has attracted considerable attention due to their biocompatibility, low toxicity, cost-effectiveness and being a novel method has an eco-friendly approach. Biological activity of root extracts as well as synthesized silver nanoparticles of Catharanthus roseus were evaluated against larvae of Aedes aegyptiand Culex quinquefasciatus. The structure and proportion of the synthesized nanoparticles was defined by exploitation ultraviolet spectrophotometry, X-ray diffraction, fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy and scanning electron microscopy methods. Reduction of silver ions occurred when silver nitrate solution was treated with aqueous root extract at 60°C. Synthesized silver nanoparticles (AgNPs) were confirmed by analyzing the excitation of surface plasmon resonance (SPR) using UV-vis spectrophotometer at 423 nm. FTIR showed aliphatic amines and alkanes corresponding peaks to be presence of responsible compounds to produced nanoparticles in the reaction mixture. Spherical shaped and crystalline nature of particles was recorded under XRD analysis. Presence of silver metal and 35-55nm sized particles were recorded using EDAX and SEM respectively. Larvicidal activitywas observed after24 hrs of exposure to root extracts and synthesized silver nanoparticles. The highest larval mortality was observed in synthesized silver nanopartiucles against Aedes aegypti (LC50= 2.01 ± 0.34; LC90= 5.29 ± 0.07 at 5.0 mg(-1) concentration) and Culex quinquefasciatus (LC50= 1.18 ± 0.15; LC90= 2.55 ± 0.76 at 3.5 to 5.0 mgl(-1) concentration) respectively. The present study provides evidence that synthesized silver nanoparticles of Catharanthus roseus offer potential source for larvicidal activity againstthe larvae of both dengue and filariasis vectors. PMID:26688962

  5. Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs

    B.Karthikeyan; Jaleel, C.A.; Gopi, R.; Deiveekasundaram, M.

    2007-01-01

    An experiment was conducted on Catharanthus roseus to study the effect of seed treatments with native diazotrophs on its seedling growth and antioxidant enzyme activities. The treatments had significant influence on various seedling parameters. There is no significant influence on dry matter production with the diazotrophs, Azospirillum and Azotobacter. However, the vital seedling parameters such as germination percentage and vigour index were improved. Azotobacter treatment influenced maximu...

  6. Isolasi dan Uji Ekstrak Metanol Bakteri Endofit Tapak Dara (Catharanthus roseus) dalam Menghambat Pertumbuhan Beberapa Mikroba Patogen

    Pandiangan, Febrin Setiani

    2014-01-01

    A study of isolation of endophytic bacteria from tapak dara (Catharanthus roseus) and examination of methanol extracts in inhibited the growth of several pathogenic microbes such as Aspergillus flavus, Streptococcus mutans, Salmonella typhii and Escherichia coli has been conducted. Examination of methanol extract of endophytic bacteria was done with concentrations of 40, 60, 80, and 100%. Methanol extract was prepared by maceration method and centrifugated at 5000 rpm. Examination of isolates...

  7. Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine

    Vartika Rai; Pramod Kumar Tandon; Sayyada Khatoon

    2014-01-01

    Catharanthus roseus (L.) G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr) on enzymatic and non-enzymatic antioxidant components and on secondary ...

  8. A comparative study of release profiles of Coccinia cordifolia and Catharanthus roseus with standard antidiabetic agent using rat intestine

    Most. Afia Ahktar

    2014-01-01

    Matured leaves of Coccinia cordifolia and Catharanthus roseus were collected, dried and extracted with 95% ethanol. Solvents were evaporated and suspensions at a concentration of 40 mg/ml were prepared from the residues using phosphate buffer. The aim of the study is to elucidate the release pattern of these extracts in acidic and basic environment. 1 ml suspension of each plant was poured into the intestine fragment prepared from sacrificed rats. The filled pieces of intestine were bound ver...

  9. Direct regeneration of Periwinkle (Catharanthus roseus) via node explants culture and different combinations of plant growth regulators

    M. Talebi; F Etesam; B.E. Sayed-Tabatabaei; Gh. Khaksar

    2012-01-01

    Periwinkle (Catharanthus roseus L., Apocynaceae) contains more than 130 different terpenoid indole alkaloids (TIAs), of which two dimeric alkaloids, Vinblastine and Vincristine, have antineoplastic activity and are useful in treatment of various cancers. Specific production of some alkaloids in differentiated tissues such as leaf and stem led to use direct regeneration of explants in order to increase the production of these important alkaloids in the plant. In this research, 30 combinations ...

  10. Biological Synthesis of Zinc oxide Nanoparticles from Catharanthus roseus (l.) G. Don. Leaf extract and validation for antibacterial activity

    G. Bhumi; N. SAVITHRAMMA

    2014-01-01

    Biologically synthesized nanoparticles have been widely using in the field of medicine. Research in nanotechnology highlights the possibility of green chemistry pathways to produce technologically important nanomaterials. Present study focuses on the Biological synthesis of Zinc oxide nanoparticles (ZnO-NPs) by Zinc acetate and sodium hydroxide utilizing the biocomponents of leaves of Catharanthus roseus. The samples were characterized by x-ray diffraction (XRD), Scanning Electron Microscopy ...

  11. Exploiting EST databases for the mining and characterization of short sequence repeat (SSR) markers in Catharanthus roseus L.

    Joshi, Raj Kumar; Kar, Basudeba; Nayak, Sanghamitra

    2011-01-01

    Periwinkle (Catharanthus roseus L.) (Family: Apocyanaceae) is a ornamental plants with great medicinal properties. Although it is represented by seven species, little work has been carried out on its genetic characterization due to non-availability of reliable molecular markers. Simple sequence repeats (SSRs) have been widely applied as molecular markers in genetic studies. With the rapid increase in the deposition of nucleotide sequences in the public databases and advent of bioinformatics t...

  12. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis

    Pandey, Shiv S.; Sucheta Singh; C. S. Vivek Babu; Karuna Shanker; Srivastava, N. K.; Ashutosh K Shukla; Alok Kalra

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229–403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and st...

  13. Analysis of Several Popular Cultivars of Madagascar Periwinkle (Catharanthus roseus (L.) G. Don.) using Biochemical Markers

    Owk ANIEL KUMAR; Sape S. TATA; Kancharla PAVAN KUMAR

    2013-01-01

    Band designs of esterase (EST), peroxidase (PO) and polyphenol oxidase (PPO) isozymes in several selected cultivars of Catharanthus roseus by using native polyacrylamide gel electrophoresis (PAGE) were investigated in this study. It was confirmed that cultivar differences in isozyme polymorphism can be revealed by applied electrophoretic patterns. Three isozyme systems produced a total of 16 bands with polymorphism ranged from 66.6-100%. Considering the patterns of isozyme variations in the f...

  14. Ornamental Exterior versus Therapeutic Interior of Madagascar Periwinkle (Catharanthus roseus): The Two Faces of a Versatile Herb

    Naghmeh Nejat; Alireza Valdiani; David Cahill; Yee-How Tan; Mahmood Maziah; Rambod Abiri

    2015-01-01

    Catharanthus roseus (L.) known as Madagascar periwinkle (MP) is a legendary medicinal plant mostly because of possessing two invaluable antitumor terpenoid indole alkaloids (TIAs), vincristine and vinblastine. The plant has also high aesthetic value as an evergreen ornamental that yields prolific blooms of splendid colors. The plant possesses yet another unique characteristic as an amiable experimental host for the maintenance of the smallest bacteria found on earth, the phytoplasmas and spir...

  15. PERKEMBANGAN LATISIFER PADA KULTUR KALUS CATHARANTHUS ROSEUS (L) G. DON YANG DIINDUKSI DENGAN KOMBINASI ZAT PENGATUR TUMBUH KINETIN + NAA

    NI NYOMAN DARSINI

    2011-01-01

    The development of laticifer on callus culture of Catharanthus roseus (L) G Don in Zenk medium supplemented with combination of plant growth regulator kinetin + NAA was studied. The explants were taken from the second folium from shoot apex. Development of laticifer was observed using descriptive analysis method for callus anatomy and percentage of laticifer was observed during 4–14 weeks of callus development. The percentage of laticifer was determined by counting the average number of the l...

  16. Alkaloid Accumulation in Catharanthus roseus Increases with Addition of Seawater Salts to the Nutrient Solution

    WANG Jing-Yan; LIU Zhao-Pu

    2010-01-01

    A sand culture experiment was conducted to determine the effects of different seawater (5% and 10%) treatments on plant growth,inorganic ions,indole alkaloid concentrations and yields of Catharanthus roseus,in an effort to increase the alkaloid yield by artificial cultivation.The total fresh and dry weights and tissue K+ concentrations decreased,but Na+ concentrations increased in the plant roots,stems and leaves of C.roseus under seawater stress as compared to the control.The concentrations and yields of vindoline,catharanthine,vinblastine and vincristine increased under seawater stress.The concentrations and yields of these alkaloids were higher in 5% seawater-treated plants than those in the 10% seawater-treated plants.Considering the industrial production,5% seawater treatments could reduce the cost of producing alkaloid.In the control plants,the highest alkaloid concentrations reached a peak at 100 days after planting,suggesting that plant harvest must be optimized in terms of growth duration.

  17. Indole alkaloids from Catharanthus roseus: bioproduction and their effect on human health.

    Almagro, Lorena; Fernández-Pérez, Francisco; Pedreño, Maria Angeles

    2015-01-01

    Catharanthus roseus is a medicinal plant belonging to the family Apocynaceae which produces terpenoid indole alkaloids (TIAs) of high medicinal importance. Indeed, a number of activities like antidiabetic, bactericide and antihypertensive are linked to C. roseus. Nevertheless, the high added value of this plant is based on its enormous pharmaceutical interest, producing more than 130 TIAs, some of which exhibit strong pharmacological activities. The most striking biological activity investigated has been the antitumour effect of dimeric alkaloids such as anhydrovinblastine, vinblastine and vincristine which are already in pre-, clinical or in use. The great pharmacological importance of these indole alkaloids, contrasts with the small amounts of them found in this plant, making their extraction a very expensive process. To overcome this problem, researches have looked for alternative sources and strategies to produce them in higher amounts. In this sense, intensive research on the biosynthesis of TIAs and the regulation of their pathways has been developed with the aim to increase by biotechnological approaches, the production of these high added value compounds. This review is focused on the different strategies which improve TIA production, and in the analysis of the beneficial effects that these compounds exert on human health. PMID:25685907

  18. Study of the effect of nickel heavy metals on some physiological parameters of Catharanthus roseus.

    Arefifard, Matin; Mahdieh, Majid; Amirjani, Mohammadreza

    2014-01-01

    Plants, in their life cycle, are usually exposed to various kinds of non-biological stresses including heavy metals. One of these heavy metals is nickel which affects many physiological processes of plants. Studies have shown that the changes in planting conditions can affect the qualitative and quantitative features of Catharanthus roseus; therefore, creating stressful conditions (e.g. NiCl2) can be an effective way to investigate the changes. In this research, we investigated the effect of 0, 2.5, 5, 10, 25 and 50 mM concentrations of NiCl2 on the degree of catalase enzyme activity, amount of proline aggregation and photosynthetic parameters on seeds of pink variety of C. roseus. The results indicated that the degree of catalase enzyme activity and the amount of proline aggregation increased in plants which were exposed to NiCl2 treatments, especially in high concentrations, while the total protein decreased. The stress of Ni also affected photosynthetic parameters, and decreased the amount of pigments, as well as the efficiency of photosystem II. PMID:24870880

  19. A Stereoselective Hydroxylation Step of Alkaloid Biosynthesis by a Unique Cytochrome P450 in Catharanthus roseus*

    Giddings, Lesley-Ann; Liscombe, David K.; Hamilton, John P.; Childs, Kevin L.; DellaPenna, Dean; Buell, C. Robin; O'Connor, Sarah E.

    2011-01-01

    Plant cytochrome P450s are involved in the production of over a hundred thousand metabolites such as alkaloids, terpenoids, and phenylpropanoids. Although cytochrome P450 genes constitute one of the largest superfamilies in plants, many of the catalytic functions of the enzymes they encode remain unknown. Here, we report the identification and functional characterization of a cytochrome P450 gene in a new subfamily of CYP71, CYP71BJ1, involved in alkaloid biosynthesis. Co-expression analysis of putative cytochrome P450 genes in the Catharanthus roseus transcriptome identified candidate genes with expression profiles similar to known terpene indole alkaloid biosynthetic genes. Screening of these candidate genes by functional expression in Saccharomyces cerevisiae yielded a unique P450-dependent enzyme that stereoselectively hydroxylates the alkaloids tabersonine and lochnericine at the 19-position of the aspidosperma-type alkaloid scaffold. Tabersonine, which can be converted to either vindoline or 19-O-acetylhörhammericine, represents a branch point in alkaloid biosynthesis. The discovery of CYP71BJ1, which forms part of the pathway leading to 19-O-acetylhörhammericine, will help illuminate how this branch point is controlled in C. roseus. PMID:21454651

  20. Functional characterization of amyrin synthase involved in ursolic acid biosynthesis in Catharanthus roseus leaf epidermis.

    Yu, Fang; Thamm, Antje M K; Reed, Darwin; Villa-Ruano, Nemesio; Quesada, Alfonso Lara; Gloria, Edmundo Lozoya; Covello, Patrick; De Luca, Vincenzo

    2013-07-01

    Catharanthus roseus accumulates high levels of the pentacyclic triterpene, ursolic acid, as a component of its wax exudate on the leaf surface. Bioinformatic analyses of transcripts derived from the leaf epidermis provide evidence for the specialized role of this tissue in the biosynthesis of ursolic acid. Cloning and functional expression in yeast of a triterpene synthase derived from this tissue showed it to be predominantly an α-amyrin synthase (CrAS), since the α-amyrin to β-amyrin reaction products accumulated in a 5:1 ratio. Expression analysis of CrAS showed that triterpene biosynthesis occurs predominantly in the youngest leaf tissues and in the earliest stages of seedling development. Further studies using laser capture microdissection to harvest RNA from epidermis, mesophyll, idioblasts, laticifers and vasculature of leaves showed the leaf epidermis to be the preferred sites of CrAS expression and provide conclusive evidence for the involvement of this tissue in the biosynthesis of ursolic acid in C. roseus. PMID:22652241

  1. Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells

    Rischer, Heiko; Orešič, Matej; Seppänen-Laakso, Tuulikki; Katajamaa, Mikko; Lammertyn, Freya; Ardiles-Diaz, Wilson; Van Montagu, Marc C. E.; Inzé, Dirk; Oksman-Caldentey, Kirsi-Marja; Goossens, Alain

    2006-01-01

    Rational engineering of complicated metabolic networks involved in the production of biologically active plant compounds has been greatly impeded by our poor understanding of the regulatory and metabolic pathways underlying the biosynthesis of these compounds. Whereas comprehensive genome-wide functional genomics approaches can be successfully applied to analyze a select number of model plants, these holistic approaches are not yet available for the study of nonmodel plants that include most, if not all, medicinal plants. We report here a comprehensive profiling analysis of the Madagascar periwinkle (Catharanthus roseus), a source of the anticancer drugs vinblastine and vincristine. Genome-wide transcript profiling by cDNA-amplified fragment-length polymorphism combined with metabolic profiling of elicited C. roseus cell cultures yielded a collection of known and previously undescribed transcript tags and metabolites associated with terpenoid indole alkaloids. Previously undescribed gene-to-gene and gene-to-metabolite networks were drawn up by searching for correlations between the expression profiles of 417 gene tags and the accumulation profiles of 178 metabolite peaks. These networks revealed that the different branches of terpenoid indole alkaloid biosynthesis and various other metabolic pathways are subject to differing hormonal regulation. These networks also served to identify a select number of genes and metabolites likely to be involved in the biosynthesis of terpenoid indole alkaloids. This study provides the basis for a better understanding of periwinkle secondary metabolism and increases the practical potential of metabolic engineering of this important medicinal plant. PMID:16565214

  2. Characterization of 10-hydroxygeraniol dehydrogenase from Catharanthus roseus reveals cascaded enzymatic activity in iridoid biosynthesis.

    Krithika, Ramakrishnan; Srivastava, Prabhakar Lal; Rani, Bajaj; Kolet, Swati P; Chopade, Manojkumar; Soniya, Mantri; Thulasiram, Hirekodathakallu V

    2015-01-01

    Catharanthus roseus [L.] is a major source of the monoterpene indole alkaloids (MIAs), which are of significant interest due to their therapeutic value. These molecules are formed through an intermediate, cis-trans-nepetalactol, a cyclized product of 10-oxogeranial. One of the key enzymes involved in the biosynthesis of MIAs is an NAD(P)(+) dependent oxidoreductase system, 10-hydroxygeraniol dehydrogenase (Cr10HGO), which catalyses the formation of 10-oxogeranial from 10-hydroxygeraniol via 10-oxogeraniol or 10-hydroxygeranial. This work describes the cloning and functional characterization of Cr10HGO from C. roseus and its role in the iridoid biosynthesis. Substrate specificity studies indicated that, Cr10HGO has good activity on substrates such as 10-hydroxygeraniol, 10-oxogeraniol or 10-hydroxygeranial over monohydroxy linear terpene derivatives. Further it was observed that incubation of 10-hydroxygeraniol with Cr10HGO and iridoid synthase (CrIDS) in the presence of NADP(+) yielded a major metabolite, which was characterized as (1R, 4aS, 7S, 7aR)-nepetalactol by comparing its retention time, mass fragmentation pattern, and co-injection studies with that of the synthesized compound. These results indicate that there is concerted activity of Cr10HGO with iridoid synthase in the formation of (1R, 4aS, 7S, 7aR)-nepetalactol, an important intermediate in iridoid biosynthesis. PMID:25651761

  3. Indole Alkaloids from Catharanthus roseus: Bioproduction and Their Effect on Human Health

    Lorena Almagro

    2015-02-01

    Full Text Available Catharanthus roseus is a medicinal plant belonging to the family Apocynaceae which produces terpenoid indole alkaloids (TIAs of high medicinal importance. Indeed, a number of activities like antidiabetic, bactericide and antihypertensive are linked to C. roseus. Nevertheless, the high added value of this plant is based on its enormous pharmaceutical interest, producing more than 130 TIAs, some of which exhibit strong pharmacological activities. The most striking biological activity investigated has been the antitumour effect of dimeric alkaloids such as anhydrovinblastine, vinblastine and vincristine which are already in pre-, clinical or in use. The great pharmacological importance of these indole alkaloids, contrasts with the small amounts of them found in this plant, making their extraction a very expensive process. To overcome this problem, researches have looked for alternative sources and strategies to produce them in higher amounts. In this sense, intensive research on the biosynthesis of TIAs and the regulation of their pathways has been developed with the aim to increase by biotechnological approaches, the production of these high added value compounds. This review is focused on the different strategies which improve TIA production, and in the analysis of the beneficial effects that these compounds exert on human health.

  4. A vacuolar class III peroxidase and the metabolism of anticancer indole alkaloids in Catharanthus roseus

    Duarte, Patrícia; Figueiredo, Raquel; Ros Barceló, Alfonso

    2008-01-01

    Plants possess a unique metabolic diversity commonly designated as secondary metabolism, of which the anticancer alkaloids from Catharanthus roseus are among the most studied. Recently, in a classical function-to-protein-to-gene approach, we have characterized the main class III peroxidase (Prx) expressed in C. roseus leaves, CrPrx1, implicated in a key biosynthetic step of the anticancer alkaloids. We have shown the vacuolar sorting determination of CrPrx1 using GFP fusions and we have obtained further evidence supporting the role of this enzyme in alkaloid biosynthesis, indicating the potential of CrPrx1 as a molecular tool for the manipulation of alkaloid metabolism. Here, we discuss how plant cells may regulate Prx reactions. In fact, Prxs form a large multigenic family whose members accept a broad range of substrates and, in their two subcellular localizations, the cell wall and the vacuole, Prxs co-locate with a large variety of secondary metabolites which can be accepted as substrates. How then, are Prx reactions regulated? Localization data obtained in our lab suggest that arabinogalactan proteins (AGPs) and Prxs may be associated in membrane microdomains, evocative of lipid rafts. Whether plasma membrane and/or tonoplast microcompartmentation involve AGPs and Prxs and whether this enables metabolic channeling determining Prx substrate selection are challenging questions ahead. PMID:19704535

  5. Construction of genetic linkage map of the medicinal and ornamental plant Catharanthus roseus

    Sarika Gupta; Sashi Pandey-Rai; Suchi Srivastava; Subhas Chandra Naithani; Manoj Prasad; Sushil Kumar

    2007-12-01

    An integrated genetic linkage map of the medicinal and ornamental plant Catharanthus roseus, based on different types of molecular and morphological markers was constructed, using a F2 population of 144 plants. The map defines 14 linkage groups (LGs) and consists of 131 marker loci, including 125 molecular DNA markers (76 RAPD, 3 RAPD combinations; 7 ISSR; 2 EST-SSR from Medicago truncatula and 37 other PCR based DNA markers), selected from a total of 472 primers or primer pairs, and six morphological markers (stem pigmentation, leaf lamina pigmentation and shape, leaf petiole and pod size, and petal colour). The total map length is 1131.9 cM (centiMorgans), giving an average map length and distance between two markers equal to 80.9 cM and 8.6 cM, respectively. The morphological markers/genes were found linked with nearest molecular or morphological markers at distances varying from 0.7 to 11.4 cM. Linkage was observed between the morphological markers concerned with lamina shape and petiole size of leaf on LG1 and leaf, stem and petiole pigmentation and pod size on LG8. This is the first genetic linkage map of C. roseus.

  6. CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data.

    Van Moerkercke, Alex; Fabris, Michele; Pollier, Jacob; Baart, Gino J E; Rombauts, Stephane; Hasnain, Ghulam; Rischer, Heiko; Memelink, Johan; Oksman-Caldentey, Kirsi-Marja; Goossens, Alain

    2013-05-01

    The medicinal plant Madagascar periwinkle (Catharanthus roseus) synthesizes numerous terpenoid indole alkaloids (TIAs), such as the anticancer drugs vinblastine and vincristine. The TIA pathway operates in a complex metabolic network that steers plant growth and survival. Pathway databases and metabolic networks reconstructed from 'omics' sequence data can help to discover missing enzymes, study metabolic pathway evolution and, ultimately, engineer metabolic pathways. To date, such databases have mainly been built for model plant species with sequenced genomes. Although genome sequence data are not available for most medicinal plant species, next-generation sequencing is now extensively employed to create comprehensive medicinal plant transcriptome sequence resources. Here we report on the construction of CathaCyc, a detailed metabolic pathway database, from C. roseus RNA-Seq data sets. CathaCyc (version 1.0) contains 390 pathways with 1,347 assigned enzymes and spans primary and secondary metabolism. Curation of the pathways linked with the synthesis of TIAs and triterpenoids, their primary metabolic precursors, and their elicitors, the jasmonate hormones, demonstrated that RNA-Seq resources are suitable for the construction of pathway databases. CathaCyc is accessible online (http://www.cathacyc.org) and offers a range of tools for the visualization and analysis of metabolic networks and 'omics' data. Overlay with expression data from publicly available RNA-Seq resources demonstrated that two well-characterized C. roseus terpenoid pathways, those of TIAs and triterpenoids, are subject to distinct regulation by both developmental and environmental cues. We anticipate that databases such as CathaCyc will become key to the study and exploitation of the metabolism of medicinal plants. PMID:23493402

  7. Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs

    Karthikeyan, B.; Jaleel, C.A.; Gopi, R.; Deiveekasundaram, M.

    2007-01-01

    An experiment was conducted on Catharanthus roseus to study the effect of seed treatments with native diazotrophs on its seedling growth and antioxidant enzyme activities. The treatments had significant influence on various seedling parameters. There is no significant influence on dry matter production with the diazotrophs, Azospirillum and Azotobacter. However, the vital seedling parameters such as germination percentage and vigour index were improved. Azotobacter treatment influenced maximum of 50% germination, whereas Azospirillum and Azotobacter were on par with C. roseus with respect to their vigour index. There was significant difference in the population of total diazotrophs. Azospirillum and Azotobacter between rhizosphere and non-rhizosphere soils of C. roseus had the same trend and were observed at various locations of the study. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were increased to a significant extent due to the treatment with diazotrophs. PMID:17610323

  8. Alterations in seedling vigour and antioxidant enzyme activities in Catharanthus roseus under seed priming with native diazotrophs

    KARTHIKEYAN B.; JALEEL C.A.; GOPI R.; DEIVEEKASUNDARAM M.

    2007-01-01

    An experiment was conducted on Catharanthus roseus to study the effect of seed treatments with native diazotrophs on its seedling growth and antioxidant enzyme activities. The treatments had significant influence on various seedling parameters.There is no significant influence on dry matter production with the diazotrophs, Azospirillum and Azotobacter. However, the vital seedling parameters such as germination percentage and vigour index were improved. Azotobacter treatment influenced maximum of 50% germination, whereas Azospirillum and Azotobacter were on par with C. roseus with respect to their vigour index. There was significant difference in the population of total diazotrophs. Azospirillum and Azotobacter between rhizosphere and non-rhizosphere soils of C. roseus had the same trend and were observed at various locations of the study. The activities of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POX) and catalase (CAT) were increased to a significant extent due to the treatment with diazotrophs.

  9. Enhancement of vindoline and vinblastine production in suspension-cultured cells of Catharanthus roseus by artemisinic acid elicitation.

    Liu, Jinwei; Zhu, Jianhua; Tang, Le; Wen, Wei; Lv, Shuangshuang; Yu, Rongmin

    2014-01-01

    Elicitation is an important strategy to improve production of secondary metabolites in vitro. Artemisinic acid was studied as a novel elicitor to enhance the yield of terpenoid indole alkaloids in the present paper. Our results demonstrated that the concentrations of vindoline and vinblastine were increased by sixfold and twofold, respectively, compared to those of the control group after treatment with artemisinic acid. To elucidate the underlying mechanism, we investigated the gene expression of four enzymes involved in the biosynthetic pathway of vinblastine in the suspension-cultured cells of Catharanthu sroseus. RT-PCR experiment showed that artemisinic acid was able to up-regulate the transcriptions of tryptophan decarboxylase, geraniol 10-hydroxylase, tabersonine 16-hydroxylase and deacetoxyvindoline 4-hydroxylase. PMID:23864440

  10. The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits

    Lodagala Srinivas D

    2003-09-01

    Full Text Available Abstract Background The leaf juice or water decoction of Catharanthus roseus L. (Apocyanaceae is used as a folk medicine for the treatment of diabetes all over the world. In the present investigation, the leaf juice of C. roseus has been evaluated for its hypoglycemic activity in normal and alloxan-induced diabetic rabbits. Methods The blood glucose lowering activity of the leaf juice was studied in normal and alloxan-induced (100 mg/kg, i.v. diabetic rabbits, after oral administration at doses of 0.5, 0.75 and 1.0 ml/kg body weight. Blood samples were collected from the marginal ear vein before and also at 4, 6, 8, 10, 12, 16, 18, 20 & 24 h after drug administration and blood glucose was analyzed by Nelson-Somogyi's method using a visible spectrophotometer. The data was compared statistically by using Student's t-test. Results The leaf juice of C. roseus produced dose-dependent reduction in blood glucose of both normal and diabetic rabbits and comparable with that of the standard drug, glibenclamide. The results indicate a prolonged action in reduction of blood glucose by C. roseus and the mode of action of the active compound(s of C. roseus is probably mediated through enhance secretion of insulin from the β-cells of Langerhans or through extrapancreatic mechanism. Conclusions The present study clearly indicated a significant antidiabetic activity with the leaf juice of Catharanthus roseus and supports the traditional usage of the fresh leaves by Ayurvedic physicians for the control of diabetes.

  11. The juice of fresh leaves of Catharanthus roseus Linn. reduces blood glucose in normal and alloxan diabetic rabbits

    Nammi, Srinivas; Boini, Murthy K; Lodagala, Srinivas D; Behara, Ravindra Babu S

    2003-01-01

    Background The leaf juice or water decoction of Catharanthus roseus L. (Apocyanaceae) is used as a folk medicine for the treatment of diabetes all over the world. In the present investigation, the leaf juice of C. roseus has been evaluated for its hypoglycemic activity in normal and alloxan-induced diabetic rabbits. Methods The blood glucose lowering activity of the leaf juice was studied in normal and alloxan-induced (100 mg/kg, i.v.) diabetic rabbits, after oral administration at doses of 0.5, 0.75 and 1.0 ml/kg body weight. Blood samples were collected from the marginal ear vein before and also at 4, 6, 8, 10, 12, 16, 18, 20 & 24 h after drug administration and blood glucose was analyzed by Nelson-Somogyi's method using a visible spectrophotometer. The data was compared statistically by using Student's t-test. Results The leaf juice of C. roseus produced dose-dependent reduction in blood glucose of both normal and diabetic rabbits and comparable with that of the standard drug, glibenclamide. The results indicate a prolonged action in reduction of blood glucose by C. roseus and the mode of action of the active compound(s) of C. roseus is probably mediated through enhance secretion of insulin from the β-cells of Langerhans or through extrapancreatic mechanism. Conclusions The present study clearly indicated a significant antidiabetic activity with the leaf juice of Catharanthus roseus and supports the traditional usage of the fresh leaves by Ayurvedic physicians for the control of diabetes. PMID:12950994

  12. Cell-specific localization of alkaloids in Catharanthus roseus stem tissue measured with Imaging MS and Single-cell MS.

    Yamamoto, Kotaro; Takahashi, Katsutoshi; Mizuno, Hajime; Anegawa, Aya; Ishizaki, Kimitsune; Fukaki, Hidehiro; Ohnishi, Miwa; Yamazaki, Mami; Masujima, Tsutomu; Mimura, Tetsuro

    2016-04-01

    Catharanthus roseus (L.) G. Don is a medicinal plant well known for producing antitumor drugs such as vinblastine and vincristine, which are classified as terpenoid indole alkaloids (TIAs). The TIA metabolic pathway in C. roseus has been extensively studied. However, the localization of TIA intermediates at the cellular level has not been demonstrated directly. In the present study, the metabolic pathway of TIA in C. roseus was studied with two forefront metabolomic techniques, that is, Imaging mass spectrometry (MS) and live Single-cell MS, to elucidate cell-specific TIA localization in the stem tissue. Imaging MS indicated that most TIAs localize in the idioblast and laticifer cells, which emit blue fluorescence under UV excitation. Single-cell MS was applied to four different kinds of cells [idioblast (specialized parenchyma cell), laticifer, parenchyma, and epidermal cells] in the stem longitudinal section. Principal component analysis of Imaging MS and Single-cell MS spectra of these cells showed that similar alkaloids accumulate in both idioblast cell and laticifer cell. From MS/MS analysis of Single-cell MS spectra, catharanthine, ajmalicine, and strictosidine were found in both cell types in C. roseus stem tissue, where serpentine was also accumulated. Based on these data, we discuss the significance of TIA synthesis and accumulation in the idioblast and laticifer cells of C. roseus stem tissue. PMID:27001858

  13. Metabolic Discrimination of Catharanthus roseus Leaves Infected by Phytoplasma Using 1H-NMR Spectroscopy and Multivariate Data Analysis1

    Choi, Young Hae; Tapias, Elisabet Casas; Kim, Hye Kyong; Lefeber, Alfons W.M.; Erkelens, Cornelis; Verhoeven, Jacobus Th.J.; Brzin, Jernej; Zel, Jana; Verpoorte, Robert

    2004-01-01

    A comprehensive metabolomic profiling of Catharanthus roseus L. G. Don infected by 10 types of phytoplasmas was carried out using one-dimensional and two-dimensional NMR spectroscopy followed by principal component analysis (PCA), an unsupervised clustering method requiring no knowledge of the data set and used to reduce the dimensionality of multivariate data while preserving most of the variance within it. With a combination of these techniques, we were able to identify those metabolites that were present in different levels in phytoplasma-infected C. roseus leaves than in healthy ones. The infection by phytoplasma in C. roseus leaves causes an increase of metabolites related to the biosynthetic pathways of phenylpropanoids or terpenoid indole alkaloids: chlorogenic acid, loganic acid, secologanin, and vindoline. Furthermore, higher abundance of Glc, Glu, polyphenols, succinic acid, and Suc were detected in the phytoplasma-infected leaves. The PCA of the 1H-NMR signals of healthy and phytoplasma-infected C. roseus leaves shows that these metabolites are major discriminating factors to characterize the phytoplasma-infected C. roseus leaves from healthy ones. Based on the NMR and PCA analysis, it might be suggested that the biosynthetic pathway of terpenoid indole alkaloids, together with that of phenylpropanoids, is stimulated by the infection of phytoplasma. PMID:15286294

  14. Adaptation of lettuce mosaic virus to Catharanthus roseus involves mutations in the central domain of the VPg.

    Svanella-Dumas, Laurence; Verdin, Eric; Faure, Chantal; German-Retana, Sylvie; Gognalons, Patrick; Danet, Jean Luc; Marais, Armelle; Candresse, Thierry

    2014-05-01

    An isolate of Lettuce mosaic virus (LMV, a Potyvirus) infecting Madagascar periwinckle (Catharanthus roseus) was identified and characterized by Illumina deep sequencing. LMV-Cr has no close affinities to previously sequenced LMV isolates and represents a novel, divergent LMV clade. Inoculation experiments with other representative LMV isolates showed that they are unable to infect C. roseus, which was not known to be a host for LMV. However, three C. roseus variants of one of these isolates, LMV-AF199, could be selected and partially or completely sequenced. These variants are characterized by the accumulation of mutations affecting the C-terminal part of the cylindrical inclusion (CI) helicase and the central part of the VPg. In particular, a serine to proline mutation at amino acid 143 of the VPg was observed in all three independently selected variants and is also present in the LMV-Cr isolate, making it a prime candidate as a host-range determinant. Other mutations at VPg positions 65 and 144 could also contribute to the ability to infect C. roseus. Inoculation experiments involving a recombinant LMV expressing a permissive lettuce eukaryotic translation initiation factor 4E (eIF4E) suggest that eIF4E does not contribute to the interaction of most LMV isolates with C. roseus. PMID:24400938

  15. Characterization of Alkaloid Uptake by Catharanthus roseus (L.) G. Don Protoplasts 1

    McCaskill, David G.; Martin, DeAndra L.; Scott, A. Ian

    1988-01-01

    The accumulation of alkaloids by protoplasts of Catharanthus roseus (L.) G. Don var. Little Bright Eye was studied to determine the specificity of uptake and the role of ion trapping in the storage of alkaloids. Accumulation of the indole alkaloids vindoline, ajmalicine, tabersonine, and vinblastine was found to be biphasic, with an initial burst of uptake followed by a slow, prolonged phase of accumulation. The concentration and pH dependence of the initial burst of uptake for vindoline suggested that uptake occurred by simple diffusion. Uptake of nicotine was monophasic, with a half life of 5.2 minutes. The accumulation ratio (Ci/Ce) for nicotine at steady state and for the initial burst of uptake for vindoline and ajmalicine suggested that accumulation was driven by the pH gradient between the vacuole and the external assay medium. The second, sustained phase of uptake of vindoline was sensitive to inhibition by either 20 millimolar NaN3 or 0.5 millimolar Cu2+. In azide-treated protoplasts, the uptake for vindoline conformed to the kinetics of simple diffusion, with a half life of 4 minutes. The second phase of uptake for ajmalicine, although sensitive to inhibition by Cu2+, was insensitive to inhibition by NaN3. The biphasic uptake of the indole alkaloids was not due to any significant metabolism. It is concluded that accumulation and storage of the indole alkaloids is due only partly to ion trapping of the alkaloids by the low pH of the vacuole lumen. In the case of vindoline, there appears to be a specific energy-requiring uptake that is not seen with nicotine (which is not endogenous to Catharanthus). Accumulation of ajmalicine appears to involve both ion trapping and an azide-insensitive component, which may be due to complexation with organic counterions and phenolics. PMID:16666154

  16. Influence of native arbuscular mycorrhizal fungi on growth, nutrition and phytochemical constituents of Catharanthus roseus (L.) G. Don

    Rajendran Srinivasan; Chinnavenkataraman Govindasamy

    2014-01-01

    Objective: To study the isolation, identification, mass production and the effect of native arbuscular mycorrhizal fungi (AM fungi) on growth parameters of the Catharanthus roseus (C. roseus).Methods:Acaulospora marrowae, Glomus aggregatum (G. aggregatum), Glomus fasciculatum, Glomusgeosporum, Gigaspora margarita, Gigaspora nigra, Scutellospora heterogama and Scutellospora pellucida were isolated and identified from the root zone soil of C. roseus.Results:A total of nine different AM fungi species such as Acaulospora scrobiculata, The phytochemical analyses showed high concentration of chlorophyll a (0.152±0.0140 µg/g), chlorophyll b (0.081±0.006 µg/g), total chlorophyll (0.233±0.020 µg/g), soluble sugar (0.051±0.004 µg/g), reducing sugar (0.060±0,007 µg/g), phenols (0.293±0.032 µg/g), ortho-dihydroxy phenols (0.275±0.022 µg/g), lipids (0.300±0.025 µg/g), proteins (0.063±0.003 µg/g) and amino acids (1.042±0.056 µg/g) in G. aggregatum inoculated C. roseus. G. aggregatum was found to perform better on growth when compared to others and phytochemical constituents of C. roseus.Conclusions:fasciculatum can be used as a potential growth promoters for the C. roseus for better yielding in the agricultural sectors. It is concluded from the present findings that the G. aggregatum and Glomus fasciculatum can be used as a potential growth promoters for the C. roseus for better yielding in the agricultural sectors.

  17. Development of SSR and gene-targeted markers for construction of a framework linkage map of Catharanthus roseus

    Shokeen, Bhumika; Choudhary, Shalu; Sethy, Niroj Kumar; Bhatia, Sabhyata

    2011-01-01

    Background and Aims Catharanthus roseus is a plant of great medicinal importance, yet inadequate knowledge of its genome structure and the unavailability of genomic resources have been major impediments in the development of improved varieties. The aims of this study were to develop co-dominant sequence-tagged microsatellite sites (STMS) and gene-targeted markers (GTMs) and utilize them for the construction of a framework intraspecific linkage map of C. roseus. Methods For simple sequence repeat (SSR) isolation, a genomic library enriched for (GA)n repeats was constructed from C. roseus ‘Nirmal’ (CrN1). In addition, GTMs were also designed from 12 genes of the TIA (terpenoid indole alkaloid) pathway – the medicinally most significant pathway in C. roseus. An F2 mapping population was also generated by crossing two diverse accessions of C. roseus CrN1 (Nirmal)×CrN82 (Kew). Key Results A new set of 314 STMS markers and 64 GTMs were developed in this study. A segregating F2 mapping population consisting of 111 F2 individuals was generated. For generating the linkage map, a set of 423 co-dominant markers (378 newly developed and 45 published earlier) were screened for polymorphism between the parental genotypes, of which 134 were identified to be polymorphic. A total of 114 markers were mapped on eight linkage groups that spanned a 632·7 cM region of the genome with an average marker distance of 5·55 cM. Further, the mechanism of hypervariability at the gene-targeted loci was investigated at the sequence level. Conclusions For the first time, a large array of STMS markers and GTMs was generated in the model medicinal plant C. roseus. Moreover, the first microsatellite marker-based linkage map was described in this study. Together, these will serve as a foundation for future genomics studies related to quantitative trait loci analysis and molecular breeding in C. roseus. PMID:21788377

  18. Abnormalities in carbohydrate and lipid metabolisms in high-fructose dietfed insulin-resistant rats: amelioration by Catharanthus roseus treatments.

    Rasineni, Karuna; Bellamkonda, Ramesh; Singareddy, Sreenivasa Reddy; Desireddy, Saralakumari

    2013-09-01

    High intake of dietary fructose has been shown to exert a number of adverse metabolic effects in humans and experimental animals. The present study was proposed to elucidate the effect of Catharanthus roseus (C. roseus) leaf powder treatment on alterations in carbohydrate and lipid metabolisms in rats fed with high-fructose diet. Male Wistar rats of body weight around 180 g were divided into four groups, two of these groups (groups C and C+CR) were fed with standard pellet diet and the other two groups (groups F and F+CR) were fed with high-fructose (66 %) diet. C. roseus leaf powder suspension in water (100 mg/kg body weight/day) was administered orally to group C+CR and group F+CR. At the end of a 60-day experimental period, biochemical parameters related to carbohydrate and lipid metabolisms were assayed. C. roseus treatment completely prevented the fructose-induced increased body weight, hyperglycemia, and hypertriglyceridemia. Hyperinsulinemia and insulin resistance observed in group F was significantly decreased with C. roseus treatment in group F+CR. The alterations observed in the activities of enzymes of carbohydrate and lipid metabolisms and contents of hepatic tissue lipids in group F rats were significantly restored to near normal values by C. roseus treatment in group F+CR. In conclusion, our study demonstrates that C. roseus treatment is effective in preventing fructose-induced insulin resistance and hypertriglyceridemia while attenuating the fructose-induced alterations in carbohydrate and lipid metabolisms. This study suggests that the plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it. PMID:23334857

  19. Induction and Flow Cytometry Identification of Tetraploids from Seed-Derived Explants through Colchicine Treatments in Catharanthus roseus (L.) G. Don

    Shi-Hai Xing; Xin-Bo Guo; Quan Wang; Qi-Fang Pan; Yue-Sheng Tian; Pin Liu; Jing-Ya Zhao; Guo-Feng Wang; Xiao-Fen Sun; Ke-Xuan Tang

    2011-01-01

    The tetraploid plants of Catharanthus roseus (L.) G. Don was obtained by colchicine induction from seeds explants, and the ploidy of the plants was identified by flow cytometry. The optimal treatment is 0.2% colchicine solution treated for 24 hours, and the induction rate reaches up to 30%. Comparing with morphological characteristics and growth habits between tetraploids and the control, we found that tetraploids of C. roseus had larger stoma and more branches and leaves. HPLC analysis showe...

  20. Effect of Gloriosa superba and Catharanthus roseus Extracts on IFN-γ-Induced Keratin 17 Expression in HaCaT Human Keratinocytes

    Nattaporn Pattarachotanant; Varaporn Rakkhitawatthana; Tewin Tencomnao

    2014-01-01

    Gloriosa superba and Catharanthus roseus are useful in traditional medicine for treatment of various skin diseases and cancer. However, their molecular effect on psoriasis has not been investigated. In this study, the effect of ethanol extracts derived from G. superba leaves and C. roseus stems on the expression of psoriatic marker, keratin 17 (K17), was investigated in human keratinocytes using biochemical and molecular experimental approaches. Both extracts could reduce the expression of K1...

  1. Polyamines and the Cell Cycle of Catharanthus roseus Cells in Culture 1

    Maki, Hisae; Ando, Satoshi; Kodama, Hiroaki; Komamine, Atsushi

    1991-01-01

    Investigation was made on the effect of partial depletion of polyamines (PAs), induced by treatment with inhibitors of the biosynthesis of PAs, on the distribution of cells at each phase of the cell cycle in Catharanthus roseus (L.) G. Don. cells in suspension cultures, using flow cytometry. More cells treated with inhibitors of arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) were accumulated in the G1 phase than those in the control, while the treatment with an inhibitor of spermidine (SPD) synthase showed no effect on the distribution of cells. The endogenous levels of the PAs, putrescine (PUT), SPD, and spermine (SPM), were determined during the cell cycle in synchronous cultures of C. roseus. Two peaks of endogenous level of PAs, in particular, of PUT and SPD, were observed during the cell cycle. Levels of PAs increased markedly prior to synthesis of DNA in the S phase and prior to cytokinesis. Activities of ADC and ODC were also assayed during the cell cycle. Activities of ADC was much higher than that of ODC throughout the cell cycle, but both activities of ODC and ADC changed in concert with changes in levels of PAs. Therefore, it is suggested that these enzymes may regulate PA levels during the cell cycle. These results indicate that inhibitors of PUT biosynthesis caused the suppression of cell proliferation by prevention of the progression of the cell cycle, probably from the G1 to the S phase, and PUT may play more important roles in the progression of the cell cycle than other PAs. PMID:16668290

  2. Sombreamento de plantas de Catharanthus roseus (L.) G. Don 'Pacifica White' por malhas coloridas: desenvolvimento vegetativo Shading of 'Pacifica White' Catharanthus roseus (L.) G. Don plants with colored nets: vegetative development

    Anderson Adriano Martins Melo; Amauri Alves de Alvarenga

    2009-01-01

    As malhas coloridas têm sido utilizadas para manipular o desenvolvimento vegetativo, melhorando a utilização da radiação solar por plantas ornamentais. Objetivou-se, neste trabalho estudar o efeito da redução de 50% da radiação fotossinteticamente ativa sobre o crescimento vegetativo de plantas de Catharanthus roseus (L.) G. Don, por meio de malhas azul e vermelha e malha preta, em comparação com plantas crescidas na ausência de sombreamento (pleno sol). As plantas foram obtidas a partir de s...

  3. Multicellular compartmentation of catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate

    St-Pierre, B; Vazquez-Flota, FA; De Luca V

    1999-01-01

    In situ RNA hybridization and immunocytochemistry were used to establish the cellular distribution of monoterpenoid indole alkaloid biosynthesis in Madagascar periwinkle (Catharanthus roseus). Tryptophan decarboxylase (TDC) and strictosidine synthase (STR1), which are involved in the biosynthesis of the central intermediate strictosidine, and desacetoxyvindoline 4-hydroxylase (D4H) and deacetylvindoline 4-O-acetyltransferase (DAT), which are involved in the terminal steps of vindoline biosynthesis, were localized. tdc and str1 mRNAs were present in the epidermis of stems, leaves, and flower buds, whereas they appeared in most protoderm and cortical cells around the apical meristem of root tips. In marked contrast, d4h and dat mRNAs were associated with the laticifer and idioblast cells of leaves, stems, and flower buds. Immunocytochemical localization for TDC, D4H, and DAT proteins confirmed the differential localization of early and late stages of vindoline biosynthesis. Therefore, we concluded that the elaboration of the major leaf alkaloids involves the participation of at least two cell types and requires the intercellular translocation of a pathway intermediate. A basipetal gradient of expression in maturing leaves also was shown for all four genes by in situ RNA hybridization studies and by complementary studies with dissected leaves, suggesting that expression of the vindoline pathway occurs transiently during early leaf development. These results partially explain why attempts to produce vindoline by cell culture technology have failed. PMID:10330473

  4. Colonization of Madagascar periwinkle (Catharanthus roseus), by endophytes encoding gfp marker.

    Torres, Adalgisa Ribeiro; Araújo, Welington Luiz; Cursino, Luciana; de Barros Rossetto, Priscilla; Mondin, Mateus; Hungria, Mariangela; Azevedo, João Lúcio

    2013-07-01

    This study reports the introduction of gfp marker in two endophytic bacterial strains (Pantoea agglomerans C33.1, isolated from cocoa, and Enterobacter cloacae PR2/7, isolated from citrus) to monitor the colonization in Madagascar perinwinkle (Catharanthus roseus). Stability of the plasmid encoding gfp was confirmed in vitro for at least 72 h of bacterial growth and after the colonization of tissues, under non-selective conditions. The colonization was observed using fluorescence microscopy and enumeration of culturable endophytes in inoculated perinwinkle plants that grew for 10 and 20 days. Gfp-expressing strains were re-isolated from the inner tissues of surface-sterilized roots and stems of inoculated plants, and the survival of the P. agglomerans C33:1gfp in plants 20 days after inoculation, even in the absence of selective pressure, suggests that is good colonizer. These results indicated that both gfp-tagged strains, especially P. agglomerans C33.1, may be useful tools to deliver enzymes or other proteins in plant. PMID:23695435

  5. Effect of Salinity Stress on Seed Germination Catharanthus roseus Don. Cvs. Rosea and Alba

    Zahra Rezaee

    2012-03-01

    Full Text Available This experiment was carried out aiming to determine the Catharanthus roseus Don resistance against salinity, due to the increasing salinity of soil, and the importance of this plant as an ornamental flower, as well as the little information available on its tolerance against salinity during the germination period. In order to an experiment was conducted in randomized completely design factorial. Sodium chloride was used for induce salinity stress. These factors include cultivar and salinity levels with Electrical Conductivity (EC of 1, 2, 4, 6, 8, and 10 dS/m. The results of variance analysis showed that salinity effect at level 1% on the germination percentage, germination rate, radicle and plumule length, seedling wet and dry weight and ratio of plumule length to radicle length were significant and they were reduced. While the cultivar and interaction of cultivar and salinity treatments were non significant. According to the results, response of two cultivars to the salinity was the same and there was no difference between them.

  6. Kinetic Analysis of Phospholipase C from Catharanthus roseus Transformed Roots Using Different Assays1

    Hernández-Sotomayor, S.M. Teresa; De Los Santos-Briones, César; Muñoz-Sánchez, J. Armando; Loyola-Vargas, Victor M.

    1999-01-01

    The properties of phospholipase C (PLC) partially purified from Catharanthus roseus transformed roots were analyzed using substrate lipids dispersed in phospholipid vesicles, phospholipid-detergent mixed micelles, and phospholipid monolayers spread at an air-water interface. Using [33P]phosphatidylinositol 4,5-bisphosphate (PIP2) of high specific radioactivity, PLC activity was monitored directly by measuring the loss of radioactivity from monolayers as a result of the release of inositol phosphate and its subsequent dissolution on quenching in the subphase. PLC activity was markedly affected by the surface pressure of the monolayer, with reduced activity at extremes of initial pressure. The optimum surface pressure for PIP2 hydrolysis was 20 mN/m. Depletion of PLC from solution by incubation with sucrose-loaded PIP2 vesicles followed by ultracentrifugation demonstrated stable attachment of PLC to the vesicles. A mixed micellar system was established to assay PLC activity using deoxycholate. Kinetic analyses were performed to determine whether PLC activity was dependent on both bulk PIP2 and PIP2 surface concentrations in the micelles. The interfacial Michaelis constant was calculated to be 0.0518 mol fraction, and the equilibrium dissociation constant of PLC for the lipid was 45.5 μm. These findings will add to our understanding of the mechanisms of regulation of plant PLC. PMID:10444091

  7. Biochemical and Ultrastructural Changes in Sida cordifolia L. and Catharanthus roseus L. to Auto Pollution.

    Verma, Vijeta; Chandra, Neelam

    2014-01-01

    Auto pollution is the by-product of our mechanized mobility, which adversely affects both plant and human life. However, plants growing in the urban locations provide a great respite to us from the brunt of auto pollution by absorbing the pollutants at their foliar surface. Foliar surface configuration and biochemical changes in plant species, namely, Sida cordifolia L. and Catharanthus roseus L. grown at roadside (polluted site 1, Talkatora; polluted site 2, Charbagh) in Lucknow city and in the garden of the university campus, which has been taken as reference site, were investigated. It was observed that air pollution caused by auto exhaust showed marked alterations in photosynthetic pigments (chlorophyll, carotenoid, and phaeophytin), and relative water content was reduced while antioxidative enzymes like catalase and peroxidase were found to be enhanced. The changes in the foliar configuration reveal marked alteration in epidermal traits, with decreased number of stomata, stomatal indices, and epidermal cells per unit area, while length and breadth of stomata and epidermal cells were found to be increased in leaves samples wich can be used as biomarkers of auto pollution. PMID:27355010

  8. Influence of Precursor Availability on Alkaloid Accumulation by Transgenic Cell Line of Catharanthus roseus1

    Whitmer, Serap; Canel, Camilo; Hallard, Didier; Gonçalves, Cecilia; Verpoorte, Robert

    1998-01-01

    We have used a transgenic cell line of Catharanthus roseus (L.) G. Don to study the relative importance of the supply of biosynthetic precursors for the synthesis of terpenoid indole alkaloids. Line S10 carries a recombinant, constitutively overexpressed version of the endogenous strictosidine synthase (Str) gene. Various concentrations and combinations of the substrate tryptamine and of loganin, the immediate precursor of secologanin, were added to suspension cultures of S10. Our results indicate that high rates of tryptamine synthesis can take place under conditions of low tryptophan decarboxylase activity, and that high rates of strictosidine synthesis are possible in the presence of a small tryptamine pool. It appears that the utilization of tryptamine for alkaloid biosynthesis enhances metabolic flux through the indole pathway. However, a deficiency in the supply of either the iridoid or the indole precursor can limit flux through the step catalyzed by strictosidine synthase. Precursor utilization for the synthesis of strictosidine depends on the availability of the cosubstrate; the relative abundance of these precursors is a cell-line-specific trait that reflects the metabolic status of the cultures. PMID:9490777

  9. ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus.

    Yu, Fang; De Luca, Vincenzo

    2013-09-24

    The Madagascar periwinkle (Catharanthus roseus) is highly specialized for the biosynthesis of many different monoterpenoid indole alkaloids (MIAs), many of which have powerful biological activities. Such MIAs include the commercially important chemotherapy drugs vinblastine, vincristine, and other synthetic derivatives that are derived from the coupling of catharanthine and vindoline. However, previous studies have shown that biosynthesis of these MIAs involves extensive movement of metabolites between specialized internal leaf cells and the leaf epidermis that require the involvement of unknown secretory processes for mobilizing catharanthine to the leaf surface and vindoline to internal leaf cells. Spatial separation of vindoline and catharanthine provides a clear explanation for the low levels of dimers that accumulate in intact plants. The present work describes the molecular cloning and functional identification of a unique catharanthine transporter (CrTPT2) that is expressed predominantly in the epidermis of young leaves. CrTPT2 gene expression is activated by treatment with catharanthine, and its in planta silencing redistributes catharanthine to increase the levels of catharanthine-vindoline drug dimers in the leaves. Phylogenetic analysis shows that CrTPT2 is closely related to a key transporter involved in cuticle assembly in plants and that may be unique to MIA-producing plant species, where it mediates secretion of alkaloids to the plant surface. PMID:24019465

  10. Cytoplasmic Acidification Induced by Inorganic Phosphate Uptake in Suspension Cultured Catharanthus roseus Cells

    Sakano, Katsuhiro; Yazaki, Yoshiaki; Mimura, Tetsuro

    1992-01-01

    Cytoplasmic acidification during inorganic phosphate (Pi) absorption by Catharanthus roseus cells were studied by means of a fluorescent pH indicator, 2′,7′-bis-(2-carboxyethyl)-5 carboxyfluorescein (acetomethylester) (BCECF), and 31P-nuclear magnetic resonance spectroscopy. Cytoplasmic acidification measured by decrease in the fluorescence intensity started immediately after Pi application. Within a minute or so, a stable state was attained and no further acidification occurred, whereas Pi absorption was still proceeding. As soon as Pi in the medium was exhausted, cytoplasmic pH started to recover. Coincidentally, the medium pH started to recover toward the original acidic pH. The Pi-induced changes in the cytoplasmic pH were confirmed by 31P-nuclear magnetic resonance study. Maximum acidification of the cytoplasm induced by 1.7 millimolar Pi was 0.2 pH units. Vacuolar pH was also affected by Pi. In some experiments, but not all, pH decreased reversibly by 0.2 to 0.3 pH units during Pi absorption. Results suggest that the cytoplasmic pH is regulated by proton pumps in the plasma membrane and in the tonoplast. In addition, other mechanisms that could consume extra protons in the cytoplasm are suggested. ImagesFigure 1 PMID:16668939

  11. Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae).

    Tiong, Soon Huat; Looi, Chung Yeng; Arya, Aditya; Wong, Won Fen; Hazni, Hazrina; Mustafa, Mohd Rais; Awang, Khalijah

    2015-04-01

    Vindogentianine, a new indole alkaloid together with six known alkaloids, vindoline, vindolidine, vindolicine, vindolinine, perivine and serpentine were isolated from leaf extract (DA) of Catharanthus roseus (L.) G. Don. Their structures were elucidated by spectroscopic methods; NMR, MS, UV and IR. Vindogentianine is a dimer containing a vindoline moiety coupled to a gentianine moiety. After 24h incubation, vindogentianine exhibited no cytotoxic effect in C2C12 mouse myoblast and β-TC6 mouse pancreatic cells (IC50>50μg/mL). Real-time cell proliferation monitoring also indicated vindogentianine had little or no effect on C2C12 mouse myoblast cell growth at the highest dose tested (200μg/mL), without inducing cell death. Vindogentianine exhibited potential hypoglycemic activity in β-TC6 and C2C12 cells by inducing higher glucose uptake and significant in vitro PTP-1B inhibition. However, in vitro α-amylase and α-glucosidase inhibition assay showed low inhibition under treatment of vindogentianine. This suggests that hypoglycemic activity of vindogentianine may be due to the enhancement of glucose uptake and PTP-1B inhibition, implying its therapeutic potential against type 2 diabetes. PMID:25665941

  12. Novel drug target identification on UDP-Glucose 4-epimerase enzyme in Catharanthus roseus by insilico model

    Ramachandran M; Elumalai EK

    2012-01-01

    Objective: To investigate the definite crystal structure of UDP-glucose 4-epimerase enzymes (EC 5.1.3.2) from Catharanthus roseus (C. roseus) for further research activities. Methods: The structure was modeled using homologous templates. The model validated under PROCHECK and WHAT-IF. Results: The model constructed using Modeller9v7 was validated. Moreover, 89% of residues lie in the most favored region. The model was checked for its grand average of hydropathicity and three binding sites were predicted using Molsoft ICM Pro v3.5. Conclusions:The model was suggested to be the good model. The constructed model can be used for further pharmacological studies and it can act as potential target against novel inhibitors.

  13. Antioxidative Potentials as a Protective Mechanism in Catharanthus roseus (L.) G.Don. Plants under Salinity Stress

    Jaleel, Cheruth Abdul; Gopi, Ragupathi; MANIVANNAN, Paramasivam; Panneerselvam, Rajaram

    2007-01-01

    Antioxidant responses were analysed in Catharanthus roseus (L.) G.Don. under 0, 50 and 100 mM NaCl in order to investigate the plant´s protective mechanisms against long-term salt-induced oxidative stress. The NaCl treatments were repeated in 4 different stages of growth, i.e. 30, 45, 60 and 75 days after sowing (DAS). The plants were uprooted randomly 90 DAS and the non-enzymatic and enzymatic antioxidant potentials were analysed. High salinity caused a decrease in reduced glutathione (GSH) ...

  14. A novel cytochrome P450 gene from Catharanthus roseus cell line C20hi: cloning and characterization of expression

    Lihong He; Shujuan Zhao; Zhibi Hu

    2012-01-01

    An expressed sequence tag (EST) obtained from a subtractive-suppression hybridization cDNA library constructed using Catharanthus roseus cell line C20hi and its parental cell line C20D was used to clone a full-length cytochrome P450 cDNA of cyp71d1. The encoded polypeptide contained 507 amino acids with 39–56% identity to other CYP71D subfamily members at the amino acid level. Expression characteristics of cyp71d1 were determined using semi-quantitative RT-PCR. The cyp71d1 transcript was expr...

  15. Studies on induced mutation frequency in Catharanthus roseus (L.) G. Don by gamma rays and EMS individually and in combination

    Seeds of pink flowered (PF) and white flowered (WF) Catharanthus roseus were soaked in distilled water for 24 h and treated with gamma rays and 0.1% EMS separately and in combination. Six types of chlorophyll mutations, viz., xantha, albina, chlorina, viridis, maculata and tigrina were recovered to M2 generation of both forms. The frequency of chlorophyll mutations was found to be dependent on the dose, of gamma rays and duration of treatment with EMS. Higher frequency of chlorophyll mutations was noticed in PF, which is mutagenically more sensitive than WF. It was also noticed that the combination treatments of gamma rays and EMS enhanced the frequency of chlorophyll mutations

  16. Influence of native arbuscular mycorrhizal fungi on growth, nutrition and phytochemical constituents of Catharanthus roseus (L. G. Don.

    Rajendran Srinivasan

    2014-01-01

    Full Text Available Objective: To study the isolation, identification, mass production and the effect of native arbuscular mycorrhizal fungi (AM fungi on growth parameters of the Catharanthus roseus (C. roseus. Methods: A total of nine different AM fungi species such as Acaulospora scrobiculata, Acaulospora marrowae, Glomus aggregatum (G. aggregatum, Glomus fasciculatum, Glomus geosporum, Gigaspora margarita, Gigaspora nigra, Scutellospora heterogama and Scutellospora pellucida were isolated and identified from the root zone soil of C. roseus. Results: The phytochemical analyses showed high concentration of chlorophyll a (0.152±0.0140 µg/g, chlorophyll b (0.081±0.006 µg/g, total chlorophyll (0.233±0.020 µg/g, soluble sugar (0.051±0.004 µg/g, reducing sugar (0.060±0,007 µg/g, phenols (0.293±0.032 µg/g, ortho-dihydroxy phenols (0.275±0.022 µg/g, lipids (0.300±0.025 µg/g, proteins (0.063±0.003 µg/g and amino acids (1.042±0.056 µg/g in G. aggregatum inoculated C. roseus. G. aggregatum was found to perform better on growth when compared to others and phytochemical constituents of C. roseus. Conclusions: It is concluded from the present findings that the G. aggregatum and Glomus fasciculatum can be used as a potential growth promoters for the C. roseus for better yielding in the agricultural sectors.

  17. Evaluation of the nutritive and organoleptic values of food products developed by incorporated Catharanthus roseus (Sadabahar) fresh leaves explore their hypoglycemic potential.

    Bisla, Gita; Choudhary, Shailza; Chaudhary, Vijeta

    2014-01-01

    Diabetes becomes a real problem of public health in developing countries, where its prevalence is increasing steadily. Diabetes mellitus can be found in almost every population in the world. Since the Ayurvedic practice started in India, plants are being used in the cure of diseases. Although the Catharanthus roseus have been used for their alleged health benefits and avail their hypoglycemic effect, used as medicine by diabetics. Medicinal plants have rarely been incorporated in food preparations. To fill these lacunae, food products were prepared by using Catharanthus roseus (Sadabahar) fresh leaves with hypoglycemic properties. Commonly consumed recipes in India are prepared for diabetic patients and were developed at different levels at 3 g, 4 g, and 6 g per serving. Food product development and their acceptability appraisal through organoleptic evaluation were carried out by semitrained panel comprising 15 trained panelists from the department of Food Science and Nutrition, Banasthali University. Seven products were developed by incorporating Catharanthus roseus fresh leaves. Nine point hedonic scale was used as a medium to know about the product acceptability at various variances. All products are moderately acceptable at different concentrations except product fare "6 g" which was more acceptable than the standard. Among the three variations of incorporating the Catharanthus roseus (Sadabahar) Leaves, 3 g variation is more acceptable than other variations. PMID:24790561

  18. Evaluation of the Nutritive and Organoleptic Values of Food Products Developed by Incorporated Catharanthus roseus (Sadabahar Fresh Leaves Explore Their Hypoglycemic Potential

    Gita Bisla

    2014-01-01

    Full Text Available Diabetes becomes a real problem of public health in developing countries, where its prevalence is increasing steadily. Diabetes mellitus can be found in almost every population in the world. Since the Ayurvedic practice started in India, plants are being used in the cure of diseases. Although the Catharanthus roseus have been used for their alleged health benefits and avail their hypoglycemic effect, used as medicine by diabetics. Medicinal plants have rarely been incorporated in food preparations. To fill these lacunae, food products were prepared by using Catharanthus roseus (Sadabahar fresh leaves with hypoglycemic properties. Commonly consumed recipes in India are prepared for diabetic patients and were developed at different levels at 3 g, 4 g, and 6 g per serving. Food product development and their acceptability appraisal through organoleptic evaluation were carried out by semitrained panel comprising 15 trained panelists from the department of Food Science and Nutrition, Banasthali University. Seven products were developed by incorporating Catharanthus roseus fresh leaves. Nine point hedonic scale was used as a medium to know about the product acceptability at various variances. All products are moderately acceptable at different concentrations except product fare “6 g” which was more acceptable than the standard. Among the three variations of incorporating the Catharanthus roseus (Sadabahar Leaves, 3 g variation is more acceptable than other variations.

  19. Study on the Photosynthesis Character of Catharanthus roseus and Catharanthus roseus cv. Albus in Glasshouse%温室内两种长春花光合特性的研究

    王非; 李雷鸿; 雷声武

    2007-01-01

    以温室内生长的红长春花[Catharanthus roseus(L.G.Don]和白长春花[Catharanthus roseus(L.)G.Don cv.Albus]为研究对象,通过对长春花的净光合速率日变化、叶绿素含量、光响应曲线及几项重要的光合参数等的研究,分析比较红长春花和白长春花光合生理的特性.结果表明,红长春花光合能力及利用光能的能力均强于白长春花.具体表现在:红长春花的叶绿素含量高于白长春花;红长春花的净光合速率高于白长春花;长春花在对强光的利用上表现出喜光植物的生理特性;红长春花的利用强光的能力高于白长春花;两种长春花净光合速率Pn日变化曲线趋势相同,均为单峰型.

  20. Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor) – A comparative study

    Mujib, A.; Ali, Muzamil; Isah, Tasiu; Dipti

    2014-01-01

    The purpose of this study was to evaluate and compare the use of liquid and solid Murashige and Skoog (MS) medium in different culture vessels for mass production of Catharanthus roseus, an important source of anticancerous compounds, vincristine and vinblastine. Three media conditions i.e. agar-solidified medium (S), liquid medium in agitated conical flask (L) and growtek bioreactor (B) were used. Rapid propagation was achieved through in vitro somatic embryogenesis pathway. The process of embryogenesis has been categorized into induction, proliferation, maturation and germination stages. All in vitro embryogenesis stages were conducted by withdrawing spent liquid medium and by adding fresh MS medium. In optimized 4.52 μM 2,4-D added MS, the callus biomass growth was low in solid (1.65 g) compared to liquid medium in agitated conical flask (1.95 g) and in bioreactor (2.11 g). The number of normal somatic embryos was more in solid medium (99.75/50 mg of callus mass) compared to liquid medium used in conical flask (83.25/callus mass) and growtek bioreactor (84.88/callus mass). The in vitro raised embryos maturated in GA3 (2.60 μM) added medium; and in bioreactor the embryo growth was high, a maximum length of 9.82 mm was observed at the end of four weeks. These embryos germinated into seedlings in BAP (2.22 μM) added medium and the embryo germination ability was more (59.41%) in bioreactor compared to liquid medium in conical flask (55.5%). Shoot length (11.25 mm) was also high in bioreactor compared to agitated conical flask. The liquid medium used in agitated conical flask and bioreactor increased seedling production efficiency, at the same time it also reduced plant recovery time. The embryo generated plants grew normally in outdoor conditions. The exploitation of medium to large culture vessel or bioreactor may make the process more efficient in getting large number of Catharanthus plant as it is the only source of anti-cancerous alkaloids

  1. Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor) - A comparative study.

    Mujib, A; Ali, Muzamil; Isah, Tasiu; Dipti

    2014-11-01

    The purpose of this study was to evaluate and compare the use of liquid and solid Murashige and Skoog (MS) medium in different culture vessels for mass production of Catharanthus roseus, an important source of anticancerous compounds, vincristine and vinblastine. Three media conditions i.e. agar-solidified medium (S), liquid medium in agitated conical flask (L) and growtek bioreactor (B) were used. Rapid propagation was achieved through in vitro somatic embryogenesis pathway. The process of embryogenesis has been categorized into induction, proliferation, maturation and germination stages. All in vitro embryogenesis stages were conducted by withdrawing spent liquid medium and by adding fresh MS medium. In optimized 4.52 μM 2,4-D added MS, the callus biomass growth was low in solid (1.65 g) compared to liquid medium in agitated conical flask (1.95 g) and in bioreactor (2.11 g). The number of normal somatic embryos was more in solid medium (99.75/50 mg of callus mass) compared to liquid medium used in conical flask (83.25/callus mass) and growtek bioreactor (84.88/callus mass). The in vitro raised embryos maturated in GA3 (2.60 μM) added medium; and in bioreactor the embryo growth was high, a maximum length of 9.82 mm was observed at the end of four weeks. These embryos germinated into seedlings in BAP (2.22 μM) added medium and the embryo germination ability was more (59.41%) in bioreactor compared to liquid medium in conical flask (55.5%). Shoot length (11.25 mm) was also high in bioreactor compared to agitated conical flask. The liquid medium used in agitated conical flask and bioreactor increased seedling production efficiency, at the same time it also reduced plant recovery time. The embryo generated plants grew normally in outdoor conditions. The exploitation of medium to large culture vessel or bioreactor may make the process more efficient in getting large number of Catharanthus plant as it is the only source of anti-cancerous alkaloids

  2. A comparative study of release profiles of Coccinia cordifolia and Catharanthus roseus with standard antidiabetic agent using rat intestine

    Most. Afia Ahktar

    2014-09-01

    Full Text Available Matured leaves of Coccinia cordifolia and Catharanthus roseus were collected, dried and extracted with 95% ethanol. Solvents were evaporated and suspensions at a concentration of 40 mg/ml were prepared from the residues using phosphate buffer. The aim of the study is to elucidate the release pattern of these extracts in acidic and basic environment. 1 ml suspension of each plant was poured into the intestine fragment prepared from sacrificed rats. The filled pieces of intestine were bound vertically to the paddle of  modified dissolution apparatus and rotated at 50 rpm in phosphate buffer incubation medium at pH 3 and pH 7.4. Metformin hydrochloride was used as the standard. Percent releases of Coccinia cordifolia, Catharanthus roseus and metformin hydrochloride were determined by analyzing the UV absorbance data at different time interval and the result obtained at pH 3 was compared with that of pH 7.4. Experimental result with these extracts and drug showed burst release initially followed by gradual release at pH 3.0 and the value of R2 (correlation coefficient of percent release versus time indicates that the release pattern was better maintained at pH 3.0 for coccinia and catharanths while that was better maintained at pH 7.4 for metformin hydrochloride.

  3. Exploiting EST databases for the mining and characterization of short sequence repeat (SSR) markers in Catharanthus roseus L.

    Joshi, Raj Kumar; Kar, Basudeba; Nayak, Sanghamitra

    2011-01-01

    Periwinkle (Catharanthus roseus L.) (Family: Apocyanaceae) is a ornamental plants with great medicinal properties. Although it is represented by seven species, little work has been carried out on its genetic characterization due to non-availability of reliable molecular markers. Simple sequence repeats (SSRs) have been widely applied as molecular markers in genetic studies. With the rapid increase in the deposition of nucleotide sequences in the public databases and advent of bioinformatics tools, it has become a cost effective and fast approach to scan for microsatellite repeats and exploit the possibility of converting it into potential genetic markers. Expressed sequence tags (EST's) from Catharanthus roseus were used for the screening of Class I (hyper variable) simple sequence repeats (SSR's). A total of 502 microsatellite repeats were detected from 21730 EST sequences of turmeric after redundancy elimination. The average density of Class I SSRs account to 1 SSR per 10.21 kb of EST. Mononucleotides was the most abundant class of microsatellite motifs. It accounted for 44.02% of the total, followed by the trinucleotide (26.09%) and dinucleotide repeats (14.34%). Among all the repeat motifs, (A/T)n accounted for the highest Proportion (36.25%) followed by (AAG)n. These detected SSRs can be used to design primers that have functional importance and should also facilitate the analysis of genetic diversity, variability, linkage mapping and evolutionary relationships in plants especially medicinal plants. PMID:21383904

  4. Production Pattern of Ajmalicine in Catharanthus roseus (L. G. Don. Cell Aggregates Culture in the Airlift Bioreactor

    RIZKITA RACHMI ESYANTI

    2006-12-01

    Full Text Available A research has been conducted to optimize the rate of aeration and initial weight of cell aggregates in the production of ajmalicine in Catharanthus roseus cell culture in airlift bioreactor. Catharanthus roseus culture were grown in Zenk medium with the addition of 2.50 x 10-6 M naphthalene acetic acid (NAA and 10-5 M benzyl amino purine (BAP. Cell aggregates were sub-cultured two times before transferring 20 and 30 g/fw of cell aggregates into bioreactor, respectively, and aerated with the rate of 0.25 l min-1 and 0.34 l min-1, respectively. The pattern of ajmalicine production in bioreactor were observed in every three days within 24 days. Qualitative and quantitative analysis were conducted using HPLC connected to Cromatopac CL-7A Plus. The results showed that the cell aggregates and medium contain ajmalicine. The highest concentration was obtained in combination of 30 g/fw and 0.34 l min-1 aeration compare to 20 g/fw - 0.25 l min-1, 20 g/fw - 0.34 l min-1, as well as 30 g/fw – 0.25 l min-1. The highest ajmalicine content in cell aggregates was obtained on the 12 days (79.23 µg g-1 whilst in medium was obtained in the 18th days (981.15 µg l-1.

  5. UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures

    Ramani, Shilpa; Chelliah, Jayabaskaran

    2007-01-01

    Background Elicitations are considered to be an important strategy towards improved in vitro production of secondary metabolites. In cell cultures, biotic and abiotic elicitors have effectively stimulated the production of plant secondary metabolites. However, molecular basis of elicitor-signaling cascades leading to increased production of secondary metabolites of plant cell is largely unknown. Exposure of Catharanthus roseus cell suspension culture to low dose of UV-B irradiation was found to increase the amount of catharanthine and transcription of genes encoding tryptophan decarboxylase (Tdc) and strictosidine synthase (Str). In the present study, the signaling pathway mediating UV-B-induced catharanthine accumulation in C. roseus suspension cultures were investigated. Results Here, we investigate whether cell surface receptors, medium alkalinization, Ca2+ influx, H2O2, CDPK and MAPK play required roles in UV-B signaling leading to enhanced production of catharanthine in C. roseus cell suspension cultures. C. roseus cells were pretreated with various agonists and inhibitors of known signaling components and their effects on the accumulation of Tdc and Str transcripts as well as amount of catharanthine production were investigated by various molecular biology techniques. It has been found that the catharanthine accumulation and transcription of Tdc and Str were inhibited by 3–4 fold upon pretreatment of various inhibitors like suramin, N-acetyl cysteine, inhibitors of calcium fluxes, staurosporine etc. Conclusion Our results demonstrate that cell surface receptor(s), Ca2+ influx, medium alkalinization, CDPK, H2O2 and MAPK play significant roles in UV-B signaling leading to stimulation of Tdc and Str genes and the accumulation of catharanthine in C. roseus cell suspension cultures. Based on these findings, a model for signal transduction cascade has been proposed. PMID:17988378

  6. UV-B-induced signaling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures

    Chelliah Jayabaskaran

    2007-11-01

    Full Text Available Abstract Background Elicitations are considered to be an important strategy towards improved in vitro production of secondary metabolites. In cell cultures, biotic and abiotic elicitors have effectively stimulated the production of plant secondary metabolites. However, molecular basis of elicitor-signaling cascades leading to increased production of secondary metabolites of plant cell is largely unknown. Exposure of Catharanthus roseus cell suspension culture to low dose of UV-B irradiation was found to increase the amount of catharanthine and transcription of genes encoding tryptophan decarboxylase (Tdc and strictosidine synthase (Str. In the present study, the signaling pathway mediating UV-B-induced catharanthine accumulation in C. roseus suspension cultures were investigated. Results Here, we investigate whether cell surface receptors, medium alkalinization, Ca2+ influx, H2O2, CDPK and MAPK play required roles in UV-B signaling leading to enhanced production of catharanthine in C. roseus cell suspension cultures. C. roseus cells were pretreated with various agonists and inhibitors of known signaling components and their effects on the accumulation of Tdc and Str transcripts as well as amount of catharanthine production were investigated by various molecular biology techniques. It has been found that the catharanthine accumulation and transcription of Tdc and Str were inhibited by 3–4 fold upon pretreatment of various inhibitors like suramin, N-acetyl cysteine, inhibitors of calcium fluxes, staurosporine etc. Conclusion Our results demonstrate that cell surface receptor(s, Ca2+ influx, medium alkalinization, CDPK, H2O2 and MAPK play significant roles in UV-B signaling leading to stimulation of Tdc and Str genes and the accumulation of catharanthine in C. roseus cell suspension cultures. Based on these findings, a model for signal transduction cascade has been proposed.

  7. Involvement of nitric oxide signaling in mammalian Bax-induced terpenoid indole alkaloid production of Catharanthus roseus cells

    2007-01-01

    Bax, a mammalian pro-apoptotic member of the Bcl-2 family, has been demonstrated to be a potential regulatory factor for plant secondary metabolite biosynthesis recently. To investigate the molecular mechanism of Bax-induced secondary metabolite biosynthesis, we determined the contents of nitric oxide (NO) of the transgenic Catharanthus roseus cells overexpressing a mouse Bax protein and checked the effects of NO specific scavenger 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1- oxyl-3-oxide (cPITO) on Bax-induced terpenoid indole alkaloid (TIA) production of the cells. The data showed that overexpression of the mouse Bax in C. roseus cells triggered NO generation of the cells. Treatment of cPITO not only inhibited the Bax-triggered NO burst but also suppressed the Bax-induced TIA production. The results indicated that the mouse Bax might activate the NO signaling in C. roseus cells and induce TIA production through the NO-dependent signal pathway in the cells. Furthermore, the activities of nitric oxide synthase (NOS) were significantly increased in the transgenic Bax cells as compared to those in the control cells, showing that the mouse Bax may induce NOS of C. roseus cells. Treatment of the transgenic Bax cells with NOS inhibitor PBITU blocked both Bax-induced NO generation and TIA production, which suggested that the mouse Bax might trigger NO generation and TIA production through NOS. However, the NOS-like activities and NO generation in the transgenic Bax cells did not match kinetically and the Bax-induced NOS-like activity was much later and lower than NO production. Moreover, the Bax-induced NO generation and TIA production were only partially inhibited by PBITU. Thus, our results suggested that the Bax-induced NO production and secondary metabolite biosynthesis in C. roseus cells was not entirely dependent on NOS or NOS-like enzymes.

  8. Developmental and Light Regulation of Desacetoxyvindoline 4-Hydroxylase in Catharanthus roseus (L.) G. Don.1

    Vazquez-Flota, Felipe A.; De Luca, Vincenzo

    1998-01-01

    The expression of desacetoxyvindoline 4-hydroxylase (D4H), which catalyzes the second to the last reaction in vindoline biosynthesis in Catharanthus roseus, appears to be under complex, multilevel developmental and light regulation. Developmental studies with etiolated and light-treated seedlings suggested that although light had variable effects on the levels of d4h transcripts, those of D4H protein and enzyme activity could be increased, depending on seedling development, up to 9- and 8-fold, respectively, compared with etiolated seedlings. However, light treatment of etiolated seedlings could stop and reverse the decline of d4h transcripts at later stages of seedling development. Repeated exposure of seedlings to light was also required to maintain the full spectrum of enzyme activity observed during seedling development. Further studies showed that a photoreversible phytochrome appeared to be involved in the activation of D4H, since red-light treatment of etiolated seedlings increased the detectable levels of d4h transcripts, D4H protein, and D4H enzyme activity, whereas far-red-light treatment completely reversed this process. Additional studies also confirmed that different major isoforms of D4H protein exist in etiolated (isoelectric point, 4.7) and light-grown (isoelectric point, 4.6) seedlings, suggesting that a component of the light-mediated activation of D4H may involve an undetermined posttranslational modification. The biological reasons for this complex control of vindoline biosynthesis may be related to the need to produce structures that could sequester away from cellular activities the cytotoxic vinblastine and vincristine dimers that are derived partially from vindoline. PMID:9701591

  9. Interaction between abscisic acid and nitric oxide in PB90-induced catharanthine biosynthesis of catharanthus roseus cell suspension cultures.

    Chen, Qian; Chen, Zunwei; Lu, Li; Jin, Haihong; Sun, Lina; Yu, Qin; Xu, Hongke; Yang, Fengxia; Fu, Mengna; Li, Shengchao; Wang, Huizhong; Xu, Maojun

    2013-01-01

    Elicitations are considered to be an important strategy to improve production of secondary metabolites of plant cell cultures. However, mechanisms responsible for the elicitor-induced production of secondary metabolites of plant cells have not yet been fully elucidated. Here, we report that treatment of Catharanthus roseus cell suspension cultures with PB90, a protein elicitor from Phytophthora boehmeriae, induced rapid increases of abscisic acid (ABA) and nitric oxide (NO), subsequently followed by the enhancement of catharanthine production and up-regulation of Str and Tdc, two important genes in catharanthine biosynthesis. PB90-induced catharanthine production and the gene expression were suppressed by the ABA inhibitor and NO scavenger respectively, showing that ABA and NO are essential for the elicitor-induced catharanthine biosynthesis. The relationship between ABA and NO in mediating catharanthine biosynthesis was further investigated. Treatment of the cells with ABA triggered NO accumulation and induced catharanthine production and up-regulation of Str and Tdc. ABA-induced catharanthine production and gene expressions were suppressed by the NO scavenger. Conversely, exogenous application of NO did not stimulate ABA generation and treatment with ABA inhibitor did not suppress NO-induced catharanthine production and gene expressions. Together, the results showed that both NO and ABA were involved in PB90-induced catharanthine biosynthesis of C. roseus cells. Furthermore, our data demonstrated that ABA acted upstream of NO in the signaling cascade leading to PB90-induced catharanthine biosynthesis of C. roseus cells. PMID:23554409

  10. Vacuolar Transport of the Medicinal Alkaloids from Catharanthus roseus Is Mediated by a Proton-Driven Antiport1[W

    Carqueijeiro, Inês; Noronha, Henrique; Duarte, Patrícia; Gerós, Hernâni; Sottomayor, Mariana

    2013-01-01

    Catharanthus roseus is one of the most studied medicinal plants due to the interest in their dimeric terpenoid indole alkaloids (TIAs) vinblastine and vincristine, which are used in cancer chemotherapy. These TIAs are produced in very low levels in the leaves of the plant from the monomeric precursors vindoline and catharanthine and, although TIA biosynthesis is reasonably well understood, much less is known about TIA membrane transport mechanisms. However, such knowledge is extremely important to understand TIA metabolic fluxes and to develop strategies aimed at increasing TIA production. In this study, the vacuolar transport mechanism of the main TIAs accumulated in C. roseus leaves, vindoline, catharanthine, and α-3′,4′-anhydrovinblastine, was characterized using a tonoplast vesicle system. Vindoline uptake was ATP dependent, and this transport activity was strongly inhibited by NH4+ and carbonyl cyanide m-chlorophenyl hydrazine and was insensitive to the ATP-binding cassette (ABC) transporter inhibitor vanadate. Spectrofluorimetry assays with a pH-sensitive fluorescent probe showed that vindoline and other TIAs indeed were able to dissipate an H+ gradient preestablished across the tonoplast by either vacuolar H+-ATPase or vacuolar H+-pyrophosphatase. The initial rates of H+ gradient dissipation followed Michaelis-Menten kinetics, suggesting the involvement of mediated transport, and this activity was species and alkaloid specific. Altogether, our results strongly support that TIAs are actively taken up by C. roseus mesophyll vacuoles through a specific H+ antiport system and not by an ion-trap mechanism or ABC transporters. PMID:23686419

  11. Vacuolar transport of the medicinal alkaloids from Catharanthus roseus is mediated by a proton-driven antiport.

    Carqueijeiro, Inês; Noronha, Henrique; Duarte, Patrícia; Gerós, Hernâni; Sottomayor, Mariana

    2013-07-01

    Catharanthus roseus is one of the most studied medicinal plants due to the interest in their dimeric terpenoid indole alkaloids (TIAs) vinblastine and vincristine, which are used in cancer chemotherapy. These TIAs are produced in very low levels in the leaves of the plant from the monomeric precursors vindoline and catharanthine and, although TIA biosynthesis is reasonably well understood, much less is known about TIA membrane transport mechanisms. However, such knowledge is extremely important to understand TIA metabolic fluxes and to develop strategies aimed at increasing TIA production. In this study, the vacuolar transport mechanism of the main TIAs accumulated in C. roseus leaves, vindoline, catharanthine, and α-3',4'-anhydrovinblastine, was characterized using a tonoplast vesicle system. Vindoline uptake was ATP dependent, and this transport activity was strongly inhibited by NH4(+) and carbonyl cyanide m-chlorophenyl hydrazine and was insensitive to the ATP-binding cassette (ABC) transporter inhibitor vanadate. Spectrofluorimetry assays with a pH-sensitive fluorescent probe showed that vindoline and other TIAs indeed were able to dissipate an H(+) gradient preestablished across the tonoplast by either vacuolar H(+)-ATPase or vacuolar H(+)-pyrophosphatase. The initial rates of H(+) gradient dissipation followed Michaelis-Menten kinetics, suggesting the involvement of mediated transport, and this activity was species and alkaloid specific. Altogether, our results strongly support that TIAs are actively taken up by C. roseus mesophyll vacuoles through a specific H(+) antiport system and not by an ion-trap mechanism or ABC transporters. PMID:23686419

  12. A Cytochrome P-450 Monooxygenase Catalyzes the First Step in the Conversion of Tabersonine to Vindoline in Catharanthus roseus.

    St-Pierre, B.; De Luca, V.

    1995-01-01

    Hydroxylation at the C-16 position of the indole alkaloid tabersonine has been suggested as the first step toward vindoline biosynthesis in Catharanthus roseus. Tabersonine 16-hydroxylase (16-OH) activity was detected in total protein extracts from young leaves of C. roseus using a novel coupled assay system. Enzyme activity was dependent on NADPH and molecular oxygen and was inhibited by CO, clotrimazole, miconazole, and cytochrome c. 16-OH was localized to the endoplasmic reticulum by linear sucrose density gradient centrifugation. These data suggest that 16-OH is a cytochrome P-450-dependent monooxygenase. The activity of 16-OH reached a maximum in seedlings 9 d postimbibition and was induced by light. The leaf-specific distribution of 16-OH in the mature plant is consistent with the localization of other enzymes in the tabersonine to vindoline pathway. However, in contrast to enzymes that catalyze the last four steps of vindoline biosynthesis, enzymes responsible for the first two steps from tabersonine (16-OH and 16-O-methyltransfersase) were detected in C. roseus cell-suspension cultures. These data complement the complex model of vindoline biosynthesis that has evolved with respect to enzyme compartmentalization, metabolic transport, and control mechanisms. PMID:12228585

  13. Induction and Flow Cytometry Identification of Tetraploids from Seed-Derived Explants through Colchicine Treatments in Catharanthus roseus (L.) G. Don

    Xing, Shi-Hai; Guo, Xin-Bo; Wang, Quan; Pan, Qi-Fang; Tian, Yue-Sheng; Liu, Pin; Zhao, Jing-Ya; Wang, Guo-Feng; Sun, Xiao-Fen; Tang, Ke-Xuan

    2011-01-01

    The tetraploid plants of Catharanthus roseus (L.) G. Don was obtained by colchicine induction from seeds explants, and the ploidy of the plants was identified by flow cytometry. The optimal treatment is 0.2% colchicine solution treated for 24 hours, and the induction rate reaches up to 30%. Comparing with morphological characteristics and growth habits between tetraploids and the control, we found that tetraploids of C. roseus had larger stoma and more branches and leaves. HPLC analysis showed tetraploidization could increase the contents of terpenoid indole alkaloids in C. roseus. Thus, tetraploidization could be used to produce higher alkaloids lines for commercial use. QRT-PCR results showed that the expression of enzymes involved in terpenoid indole alkaloids biosynthesis pathway had increased in the tetraploid plants. To our knowledge, this was the first paper to explore the secondary metabolism in autotetraploid C. roseus induced by colchicine. PMID:21660143

  14. Induction and Flow Cytometry Identification of Tetraploids from Seed-Derived Explants through Colchicine Treatments in Catharanthus roseus (L. G. Don

    Shi-Hai Xing

    2011-01-01

    Full Text Available The tetraploid plants of Catharanthus roseus (L. G. Don was obtained by colchicine induction from seeds explants, and the ploidy of the plants was identified by flow cytometry. The optimal treatment is 0.2% colchicine solution treated for 24 hours, and the induction rate reaches up to 30%. Comparing with morphological characteristics and growth habits between tetraploids and the control, we found that tetraploids of C. roseus had larger stoma and more branches and leaves. HPLC analysis showed tetraploidization could increase the contents of terpenoid indole alkaloids in C. roseus. Thus, tetraploidization could be used to produce higher alkaloids lines for commercial use. QRT-PCR results showed that the expression of enzymes involved in terpenoid indole alkaloids biosynthesis pathway had increased in the tetraploid plants. To our knowledge, this was the first paper to explore the secondary metabolism in autotetraploid C. roseus induced by colchicine.

  15. Effect of Gloriosa superba and Catharanthus roseus Extracts on IFN-γ-Induced Keratin 17 Expression in HaCaT Human Keratinocytes

    Nattaporn Pattarachotanant

    2014-01-01

    Full Text Available Gloriosa superba and Catharanthus roseus are useful in traditional medicine for treatment of various skin diseases and cancer. However, their molecular effect on psoriasis has not been investigated. In this study, the effect of ethanol extracts derived from G. superba leaves and C. roseus stems on the expression of psoriatic marker, keratin 17 (K17, was investigated in human keratinocytes using biochemical and molecular experimental approaches. Both extracts could reduce the expression of K17 in a dose-dependent manner through JAK/STAT pathway as demonstrated by an observation of reduced phosphorylation of STAT3 (p-STAT3. The inhibitory activity of G. superba extract was more potent than that of C. roseus. The Pearson's correlation between K17 and cell viability was shown positive. Taken together, the extracts of G. superba and C. roseus may be developed as alternative therapies for psoriasis.

  16. Effect of Gloriosa superba and Catharanthus roseus Extracts on IFN-γ-Induced Keratin 17 Expression in HaCaT Human Keratinocytes.

    Pattarachotanant, Nattaporn; Rakkhitawatthana, Varaporn; Tencomnao, Tewin

    2014-01-01

    Gloriosa superba and Catharanthus roseus are useful in traditional medicine for treatment of various skin diseases and cancer. However, their molecular effect on psoriasis has not been investigated. In this study, the effect of ethanol extracts derived from G. superba leaves and C. roseus stems on the expression of psoriatic marker, keratin 17 (K17), was investigated in human keratinocytes using biochemical and molecular experimental approaches. Both extracts could reduce the expression of K17 in a dose-dependent manner through JAK/STAT pathway as demonstrated by an observation of reduced phosphorylation of STAT3 (p-STAT3). The inhibitory activity of G. superba extract was more potent than that of C. roseus. The Pearson's correlation between K17 and cell viability was shown positive. Taken together, the extracts of G. superba and C. roseus may be developed as alternative therapies for psoriasis. PMID:25435888

  17. Molecular Analysis and Heterologous Expression of an Inducible Cytochrome P-450 Protein from Periwinkle (Catharanthus roseus L.) 1

    Vetter, Hans-Peter; Mangold, Ursula; Schröder, Gudrun; Marner, Franz-Josef; Werck-Reichhart, Danielle; Schröder, Joachim

    1992-01-01

    We screened cDNA libraries from periwinkle (Catharanthus roseus) cell cultures induced for indole alkaloid synthesis and selected clones for induced cytochrome P-450 (P-450) proteins by differential hybridization, size of the hybridizing mRNA, and presence of amino acid motifs conserved in many P-450 families. Four cDNAs satisfying these criteria were analyzed in detail. They were grouped in two classes (pCros1, pCros2) that represented two closely related genes of a new P-450 family designated CYP72. Antiserum against a cDNA fusion protein overexpressed in Escherichia coli recognized in C. roseus a protein band of 56 kD. Quantification of western blots showed that it represented 1.5 ± 0.5 and 6 ± 1 μg/mg of protein in the membranes from noninduced and induced cells, respectively, and analysis of the total P-450 content suggested that the cDNA-encoded protein was one of the dominant P-450 proteins. The pathway to indole alkaloids contains two known P-450 enzymes, geraniol-10-hydroxylase (GE10H) and nerol-10-hydroxylase (NE10H). The induction kinetics of the cloned P-450 protein and of GE10H activity were similar, but those of NE10H were different. Western blots with membranes from other plants suggested that P-450 CYP72 is specific for C. roseus and other plants with GE10H activity. A tentative assignment of CYP72 as GE10H is discussed. The cDNA was recloned for expression in Saccharomyces cerevisiae, and the presence of the protein was demonstrated by western blots. Assays for GE10H failed to detect enzyme activity, and the same negative result was obtained for NE10H and other P-450 enzymes that are present in C. roseus. Images Figure 5 Figure 7 PMID:16653087

  18. A pair of tabersonine 16-hydroxylases initiates the synthesis of vindoline in an organ-dependent manner in Catharanthus roseus.

    Besseau, Sébastien; Kellner, Franziska; Lanoue, Arnaud; Thamm, Antje M K; Salim, Vonny; Schneider, Bernd; Geu-Flores, Fernando; Höfer, René; Guirimand, Grégory; Guihur, Anthony; Oudin, Audrey; Glevarec, Gaëlle; Foureau, Emilien; Papon, Nicolas; Clastre, Marc; Giglioli-Guivarc'h, Nathalie; St-Pierre, Benoit; Werck-Reichhart, Danièle; Burlat, Vincent; De Luca, Vincenzo; O'Connor, Sarah E; Courdavault, Vincent

    2013-12-01

    Hydroxylation of tabersonine at the C-16 position, catalyzed by tabersonine 16-hydroxylase (T16H), initiates the synthesis of vindoline that constitutes the main alkaloid accumulated in leaves of Catharanthus roseus. Over the last decade, this reaction has been associated with CYP71D12 cloned from undifferentiated C. roseus cells. In this study, we isolated a second cytochrome P450 (CYP71D351) displaying T16H activity. Biochemical characterization demonstrated that CYP71D12 and CYP71D351 both exhibit high affinity for tabersonine and narrow substrate specificity, making of T16H, to our knowledge, the first alkaloid biosynthetic enzyme displaying two isoforms encoded by distinct genes characterized to date in C. roseus. However, both genes dramatically diverge in transcript distribution in planta. While CYP71D12 (T16H1) expression is restricted to flowers and undifferentiated cells, the CYP71D351 (T16H2) expression profile is similar to the other vindoline biosynthetic genes reaching a maximum in young leaves. Moreover, transcript localization by carborundum abrasion and RNA in situ hybridization demonstrated that CYP71D351 messenger RNAs are specifically located to leaf epidermis, which also hosts the next step of vindoline biosynthesis. Comparison of high- and low-vindoline-accumulating C. roseus cultivars also highlights the direct correlation between CYP71D351 transcript and vindoline levels. In addition, CYP71D351 down-regulation mediated by virus-induced gene silencing reduces vindoline accumulation in leaves and redirects the biosynthetic flux toward the production of unmodified alkaloids at the C-16 position. All these data demonstrate that tabersonine 16-hydroxylation is orchestrated in an organ-dependent manner by two genes including CYP71D351, which encodes the specific T16H isoform acting in the foliar vindoline biosynthesis. PMID:24108213

  19. CrMPK3, a mitogen activated protein kinase from Catharanthus roseus and its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids

    Raina Susheel

    2012-08-01

    Full Text Available Abstract Background Mitogen activated protein kinase (MAPK cascade is an important signaling cascade that operates in stress signal transduction in plants. The biologically active monoterpenoid indole alkaloids (MIA produced in Catharanthus roseus are known to be induced under several abiotic stress conditions such as wounding, UV-B etc. However involvement of any signaling component in the accumulation of MIAs remains poorly investigated so far. Here we report isolation of a novel abiotic stress inducible Catharanthus roseus MAPK, CrMPK3 that may have role in accumulation of MIAs in response to abiotic stress. Results CrMPK3 expressed in bacterial system is an active kinase as it showed auto-phosphorylation and phosphorylation of Myelin Basic Protein. CrMPK3 though localized in cytoplasm, moves to nucleus upon wounding. Wounding, UV treatment and MeJA application on C. roseus leaves resulted in the transcript accumulation of CrMPK3 as well as activation of MAPK in C. roseus leaves. Immuno-precipitation followed by immunoblot analysis revealed that wounding, UV treatment and methyl jasmonate (MeJA activate CrMPK3. Transient over-expression of CrMPK3 in C. roseus leaf tissue showed enhanced expression of key MIA biosynthesis pathway genes and also accumulation of specific MIAs. Conclusion Results from our study suggest a possible involvement of CrMPK3 in abiotic stress signal transduction towards regulation of transcripts of key MIA biosynthetic pathway genes, regulators and accumulation of major MIAs.

  20. CrMPK3, a mitogen activated protein kinase from Catharanthus roseus and its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids

    2012-01-01

    Background Mitogen activated protein kinase (MAPK) cascade is an important signaling cascade that operates in stress signal transduction in plants. The biologically active monoterpenoid indole alkaloids (MIA) produced in Catharanthus roseus are known to be induced under several abiotic stress conditions such as wounding, UV-B etc. However involvement of any signaling component in the accumulation of MIAs remains poorly investigated so far. Here we report isolation of a novel abiotic stress inducible Catharanthus roseus MAPK, CrMPK3 that may have role in accumulation of MIAs in response to abiotic stress. Results CrMPK3 expressed in bacterial system is an active kinase as it showed auto-phosphorylation and phosphorylation of Myelin Basic Protein. CrMPK3 though localized in cytoplasm, moves to nucleus upon wounding. Wounding, UV treatment and MeJA application on C. roseus leaves resulted in the transcript accumulation of CrMPK3 as well as activation of MAPK in C. roseus leaves. Immuno-precipitation followed by immunoblot analysis revealed that wounding, UV treatment and methyl jasmonate (MeJA) activate CrMPK3. Transient over-expression of CrMPK3 in C. roseus leaf tissue showed enhanced expression of key MIA biosynthesis pathway genes and also accumulation of specific MIAs. Conclusion Results from our study suggest a possible involvement of CrMPK3 in abiotic stress signal transduction towards regulation of transcripts of key MIA biosynthetic pathway genes, regulators and accumulation of major MIAs. PMID:22871174

  1. Efekt inokulacije korijena korijenovim bakterijama za poticanje rasta (PGPR) na rast biljke, sadržaj alkaloida i nutrijenata kod biljke Catharanthus roseus (L.) G. Don.

    Karthikeyan, Balathandayutham; Joe, Manoharan Melvin; Jaleel, Cheruth Abdul; Deiveekasundaram, Muthukumar

    2010-01-01

    Testirani su učinci korijenovih bakterija za poticanje rasta, kao što su Azotobacter, Bacillus i Pseudomonas, zasebno ili u kombinaciji, na biljci Catharanthus roseus i to tijekom dviju godina (2005 i 2006). Kombinacije gorespomenutih PGPR sojeva značajno su povećale visinu biljaka, duljinu korijena, debljinu korijena i sadržaj alkaloida kod C. roseus u usporedbi s kontrolom. Uz to sadržaj svih nutrijenata (N, P, K, Ca i Mg) bio je značajno povišen u usporedbi s kontrolom. Maksimalni sadržaj ...

  2. 7-deoxyloganetic acid synthase catalyzes a key 3 step oxidation to form 7-deoxyloganetic acid in Catharanthus roseus iridoid biosynthesis.

    Salim, Vonny; Wiens, Brent; Masada-Atsumi, Sayaka; Yu, Fang; De Luca, Vincenzo

    2014-05-01

    Iridoids are key intermediates required for the biosynthesis of monoterpenoid indole alkaloids (MIAs), as well as quinoline alkaloids. Although most iridoid biosynthetic genes have been identified, one remaining three step oxidation required to form the carboxyl group of 7-deoxyloganetic acid has yet to be characterized. Here, it is reported that virus-induced gene silencing of 7-deoxyloganetic acid synthase (7DLS, CYP76A26) in Catharanthus roseus greatly decreased levels of secologanin and the major MIAs, catharanthine and vindoline in silenced leaves. Functional expression of this gene in Saccharomyces cerevisiae confirmed its function as an authentic 7DLS that catalyzes the 3 step oxidation of iridodial-nepetalactol to form 7-deoxyloganetic acid. The identification of CYP76A26 removes a key bottleneck for expression of iridoid and related MIA pathways in various biological backgrounds. PMID:24594312

  3. Progress of Research on Chemical and Active Constituents of Catharanthus Roseus%长春花化学成分研究进展

    杨莹莹; 张广晶; 徐雅娟; 徐暾海; 刘铜华; 张舒媛

    2014-01-01

    对长春花的化学成分研究进展进行文献整理,为其进一步开发利用提供有价值的参考。%This paper sorted the literatures on progress of researches on chemical contents of Catharanthus Roseus,so as to provide val-uable reference for its further development and utilization.

  4. Indirect regeneration from in vitro leaf tissue of periwinkle (Catharanthus roseus L.) in response to different treatments of plant growth regulators

    B.E. Sayed-Tabatabaei; F. Eatesam; M. Talebi

    2012-01-01

    Periwinkle (Catharanthus roseus L.) belongs to the Apocynaceae family and accumulates more than 130 terpenoid indole alkaloids (TIAs), of which two dimeric alkaloids Vinblastine and Vincristine have antineoplastic activity and are useful for treatment of various cancers. Therefore, the production of these drugs has been emphasized in plant tissue culture. In this research, 25 treatments of plant growth regulators to produce callus from leaf explants and seven treatments for regeneration of ca...

  5. CrMPK3, a mitogen activated protein kinase from Catharanthus roseus and its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids

    Raina Susheel; Wankhede Dhammaprakash; Jaggi Monika; Singh Pallavi; Jalmi Siddhi; Raghuram Badmi; Sheikh Arsheed; Sinha Alok

    2012-01-01

    Abstract Background Mitogen activated protein kinase (MAPK) cascade is an important signaling cascade that operates in stress signal transduction in plants. The biologically active monoterpenoid indole alkaloids (MIA) produced in Catharanthus roseus are known to be induced under several abiotic stress conditions such as wounding, UV-B etc. However involvement of any signaling component in the accumulation of MIAs remains poorly investigated so far. Here we report isolation of a novel abiotic ...

  6. Isolation of Catharanthus roseus (L.) G. Don Nuclei and Measurement of Rate of Tryptophan decarboxylase Gene Transcription Using Nuclear Run-On Transcription Assay

    Santosh Kumar; Sabhyata Bhatia

    2015-01-01

    Background An accurate assessment of transcription ‘rate’ is often desired to describe the promoter activity. In plants, isolation of transcriptionally active nuclei and their subsequent use in nuclear run-on assays has been challenging and therefore limit an accurate measurement of gene transcription ‘rate’. Catharanthus roseus has emerged as a model medicinal plant as it exhibits an unsurpassed spectrum of chemodiversity, producing over 130 alkaloids through the terpenoid indole alkaloid (T...

  7. Evaluation of the Nutritive and Organoleptic Values of Food Products Developed by Incorporated Catharanthus roseus (Sadabahar) Fresh Leaves Explore Their Hypoglycemic Potential

    Gita Bisla; Shailza Choudhary; Vijeta Chaudhary

    2014-01-01

    Diabetes becomes a real problem of public health in developing countries, where its prevalence is increasing steadily. Diabetes mellitus can be found in almost every population in the world. Since the Ayurvedic practice started in India, plants are being used in the cure of diseases. Although the Catharanthus roseus have been used for their alleged health benefits and avail their hypoglycemic effect, used as medicine by diabetics. Medicinal plants have rarely been incorporated in food prepara...

  8. The Complete Plastid Genome Sequence of Madagascar Periwinkle Catharanthus roseus (L.) G. Don: Plastid Genome Evolution, Molecular Marker Identification, and Phylogenetic Implications in Asterids

    Chuan Ku; Wan-Chia Chung; Ling-Ling Chen; Chih-Horng Kuo

    2013-01-01

    The Madagascar periwinkle ( Catharanthus roseus in the family Apocynaceae) is an important medicinal plant and is the source of several widely marketed chemotherapeutic drugs. It is also commonly grown for its ornamental values and, due to ease of infection and distinctiveness of symptoms, is often used as the host for studies on phytoplasmas, an important group of uncultivated plant pathogens. To gain insights into the characteristics of apocynaceous plastid genomes (plastomes), we used a re...

  9. Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis.

    Pandey, Shiv S; Singh, Sucheta; Babu, C S Vivek; Shanker, Karuna; Srivastava, N K; Shukla, Ashutosh K; Kalra, Alok

    2016-01-01

    Not much is known about the mechanism of endophyte-mediated induction of secondary metabolite production in Catharanthus roseus. In the present study two fungal endophytes, Curvularia sp. CATDLF5 and Choanephora infundibulifera CATDLF6 were isolated from the leaves of the plant that were found to enhance vindoline content by 229-403%. The isolated endophytes did not affect the primary metabolism of the plant as the maximum quantum efficiency of PSII, net CO2 assimilation, plant biomass and starch content of endophyte-inoculated plants was similar to endophyte-free control plants. Expression of terpenoid indole alkaloid (TIA) pathway genes, geraniol 10-hydroxylase (G10H), tryptophan decarboxylase (TDC), strictosidine synthase (STR), 16-hydoxytabersonine-O-methyltransferase (16OMT), desacetoxyvindoline-4-hydroxylase (D4H), deacetylvindoline-4-O-acetyltransferase (DAT) were upregulated in endophyte-inoculated plants. Endophyte inoculation upregulated the expression of the gene for transcriptional activator octadecanoid-responsive Catharanthus AP2-domain protein (ORCA3) and downregulated the expression of Cys2/His2-type zinc finger protein family transcriptional repressors (ZCTs). The gene for the vacuolar class III peroxidase (PRX1), responsible for coupling vindoline and catharanthine, was upregulated in endophyte-inoculated plants. These endophytes may enhance vindoline production by modulating the expression of key structural and regulatory genes of vindoline biosynthesis without affecting the primary metabolism of the host plant. PMID:27220774

  10. 土壤条件对长春花生物碱含量的影响%Effects of Different Soil on Alkaloid Content of Catharanthus roseus

    何际婵; 董志超; 王建荣; 晏小霞

    2012-01-01

    Objective:To studied three kinds of Alkaloid contents of Catharanthus roseus ( L.) G. Don ( bright - eyes, rose periwinkle, Madagascar periwinkle) in different soil. Methods: Rp - Hplc method was used to determine the contents of vinblastine, catharanthus and vindohne from C. roseus. Results: Contents were the highest under sandy soil, with the values being 0. 0058,0. 0317 ,0. 0823mg/mL respectively. Conclusion: C. roseus growing in coastal saline soil can improve the contents of vinblastine, catharanthus and vindoline.%目的:研究不同土壤条件对长春花体内3种生物碱含量的影响.方法:采用反相高效液相色谱(RP-HPLC)法测定不同土壤下长春花中长春碱、长春质碱、文多灵含量.结果:沙质壤土中长春碱、长春质碱、文多灵含量最高,分别为0.0058、0.0317、0.0823mg/mL.结论:以沙质壤土种植长春花可提高其植株体内长春碱、长春质碱、文多灵的含量.

  11. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases.

    Torrens-Spence, Michael P; Lazear, Michael; von Guggenberg, Renee; Ding, Haizhen; Li, Jianyong

    2014-10-01

    Plant aromatic amino acid decarboxylases (AAADs) catalyze the decarboxylation of aromatic amino acids with either benzene or indole rings. Because the substrate selectivity of AAADs is intimately related to their physiological functions, primary sequence data and their differentiation could provide significant physiological insights. However, due to general high sequence identity, plant AAAD substrate specificities have been difficult to identify through primary sequence comparison. In this study, bioinformatic approaches were utilized to identify several active site residues within plant AAAD enzymes that may impact substrate specificity. Next a Papaver somniferum tyrosine decarboxylase (TyDC) was selected as a model to verify our putative substrate-dictating residues through mutation. Results indicated that mutagenesis of serine 372 to glycine enables the P. somniferum TyDC to use 5-hydroxytryptophan as a substrate, and reduces the enzyme activity toward 3,4-dihydroxy-L-phenylalanine (dopa). Additionally, the reverse mutation in a Catharanthus roseus tryptophan decarboxylase (TDC) enables the mutant enzyme to utilize tyrosine and dopa as substrates with a reduced affinity toward tryptophan. Molecular modeling and molecular docking of the P. somniferum TyDC and the C. roseus TDC enzymes provided a structural basis to explain alterations in substrate specificity. Identification of an active site residue that impacts substrate selectivity produces a primary sequence identifier that may help differentiate the indolic and phenolic substrate specificities of individual plant AAADs. PMID:25107664

  12. Silencing the Transcriptional Repressor, ZCT1, Illustrates the Tight Regulation of Terpenoid Indole Alkaloid Biosynthesis in Catharanthus roseus Hairy Roots.

    Rizvi, Noreen F; Weaver, Jessica D; Cram, Erin J; Lee-Parsons, Carolyn W T

    2016-01-01

    The Catharanthus roseus plant is the source of many valuable terpenoid indole alkaloids (TIAs), including the anticancer compounds vinblastine and vincristine. Transcription factors (TFs) are promising metabolic engineering targets due to their ability to regulate multiple biosynthetic pathway genes. To increase TIA biosynthesis, we elicited the TIA transcriptional activators (ORCAs and other unidentified TFs) with the plant hormone, methyl jasmonate (MJ), while simultaneously silencing the expression of the transcriptional repressor ZCT1. To silence ZCT1, we developed transgenic hairy root cultures of C. roseus that expressed an estrogen-inducible Zct1 hairpin for activating RNA interference. The presence of 17β-estradiol (5μM) effectively depleted Zct1 in hairy root cultures elicited with MJ dosages that either optimize or inhibit TIA production (250 or 1000μM). However, silencing Zct1 was not sufficient to increase TIA production or the expression of the TIA biosynthetic genes (G10h, Tdc, and Str), illustrating the tight regulation of TIA biosynthesis. The repression of the TIA biosynthetic genes at the inhibitory MJ dosage does not appear to be solely regulated by ZCT1. For instance, while Zct1 and Zct2 levels decreased through activating the Zct1 hairpin, Zct3 levels remained elevated. Since ZCT repressors have redundant yet distinct functions, silencing all three ZCTs may be necessary to relieve their repression of alkaloid biosynthesis. PMID:27467510

  13. Correspondence between flowers and leaves in terpenoid indole alkaloid metabolism of the phytoplasma-infected Catharanthus roseus plants.

    Srivastava, Suchi; Pandey, Richa; Kumar, Sushil; Nautiyal, Chandra Shekhar

    2014-11-01

    Several plants of Catharanthus roseus cv 'leafless inflorescence (lli)' showing phenotype of phytoplasma infection were observed for symptoms of early flowering, virescence, phyllody, and apical clustering of branches. Symptomatic plants were studied for the presence/absence and identity of phytoplasma in flowers. Transcription levels of several genes involved in plants' metabolism and development, accumulation of pharmaceutically important terpenoid indole alkaloids in flowers and leaves and variation in the root-associated microbial flora were examined. The expression profile of 12 genes studied was semi-quantitatively similar in control leaves and phytoplasma-infected leaves and flowers, in agreement with the symptoms of virescence and phyllody in phytoplasma-infected plants. The flowers of phytoplasma-infected plants possessed the TIA profile of leaves and accumulated catharanthine, vindoline, and vincristine and vinblastine in higher concentrations than leaves. The roots of the infected plants displayed lower microbial diversity than those of normal plants. In conclusion, phytoplasma affected the biology of C. roseus lli plants multifariously, it reduced the differences between the metabolite accumulates of the leaves and flowers and restrict the microbial diversity of rhizosphere. PMID:24658891

  14. Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: vincristine and vinblastine.

    Rai, Vartika; Tandon, Pramod Kumar; Khatoon, Sayyada

    2014-01-01

    Catharanthus roseus (L.) G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr) on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100  μM chromium (Cr) level in order to investigate the plant's protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress. PMID:24734252

  15. PERKEMBANGAN LATISIFER PADA KULTUR KALUS CATHARANTHUS ROSEUS (L G. DON YANG DIINDUKSI DENGAN KOMBINASI ZAT PENGATUR TUMBUH KINETIN + NAA

    NI NYOMAN DARSINI

    2011-12-01

    Full Text Available The development of laticifer on callus culture of Catharanthus roseus (L G Don in Zenk medium supplemented with combination of plant growth regulator kinetin + NAA was studied. The explants were taken from the second folium from shoot apex. Development of laticifer was observed using descriptive analysis method for callus anatomy and percentage of laticifer was observed during 4–14 weeks of callus development. The percentage of laticifer was determined by counting the average number of the laticifer and the average number of surrounding cells in every optical field of few under light microscope. The results showed that early development of laticifer which was induced with plant regulator growth kinetin + NAA was found in the 9 weeks old callus. The laticifer has specific characteristics i.e. thicker cell wall and longer cell than sorounding cell. Elongated laticifer was observed at 12 weeks old callus. The highest percentage of laticifer on callus C. roseus induced with combination of kinetin and NAA was found in 12 weeks old callus i.e. 0,12%. At 13 and 14 weeks old callus, the anatomy of laticifer was similar to that at 12 weeks old callus, but the percentage was lower.

  16. Identification and quantification of active alkaloids in Catharanthus roseus by liquid chromatography-ion trap mass spectrometry.

    Chen, Qinhua; Zhang, Wenpeng; Zhang, Yulin; Chen, Jing; Chen, Zilin

    2013-08-15

    Catharanthus roseus is an important dicotyledonous medicinal plant that produces anticancer compounds. The active alkaloids vinblastine, vindoline, ajmalicine, catharanthine, and vinleurosine were identified by direct-injection ion trap-mass spectrometry (IT-MS) for collecting MS(1-2) spectra. The determinations of five alkaloids were accomplished by liquid chromatography (LC) with UV and MS detections. The analytes provided good signals corresponding to the protonated molecular ions [M+H](+) and product ions. The precursor ions and product ions for quantification of vinblastine, vindoline, ajmalicine, catharanthine, and vinleurosine were m/z 825→807, 457→397, 353→144, 337→144 and 809→748 by LC-IT-MS, respectively. Two methods were used to evaluate a number of validation characteristics (repeatability, LOD, calibration range, and recovery). MS provided a high selectivity and sensitivity for determination of five alkaloids in positive mode. After optimisation of the methods, separation, identification and quantification of the five components in C. roseus were comprehensively accomplished by HPLC with UV and MS detection. PMID:23561180

  17. A novel cytochrome P450 gene from Catharanthus roseus cell line C20hi: cloning and characterization of expression

    Lihong He

    2012-06-01

    Full Text Available An expressed sequence tag (EST obtained from a subtractive-suppression hybridization cDNA library constructed using Catharanthus roseus cell line C20hi and its parental cell line C20D was used to clone a full-length cytochrome P450 cDNA of cyp71d1. The encoded polypeptide contained 507 amino acids with 39–56% identity to other CYP71D subfamily members at the amino acid level. Expression characteristics of cyp71d1 were determined using semi-quantitative RT-PCR. The cyp71d1 transcript was expressed in all three cell lines with the highest level in the cell line C20hi. In the mature C. roseus plant, the cyp71d1 cDNA was highly expressed in petals, roots and stems, but very weakly expressed in young leaves. Its transcription level increased with the development of flowers. 2,4-D could down-regulate the transcription of cyp71d1, as did KT, but only to a minor degree. Neither light nor yeast elicitor could induce the transcription of cyp71d1.

  18. Effect of Chromium on Antioxidant Potential of Catharanthus roseus Varieties and Production of Their Anticancer Alkaloids: Vincristine and Vinblastine

    Vartika Rai

    2014-01-01

    Full Text Available Catharanthus roseus (L. G. Don, a medicinal plant, has a very important place in the traditional as well as modern pharmaceutical industry. Two common varieties of this plant rosea and alba are named so because of pink and white coloured flowers, respectively. This plant comprises of about 130 terpenoid indole alkaloids and two of them, vincristine and vinblastine, are common anticancer drugs. The effect of chromium (Cr on enzymatic and non-enzymatic antioxidant components and on secondary metabolites vincristine and vinblastine was studied under pot culture conditions of both varieties of C. roseus. Antioxidant responses of these varieties were analyzed under 0, 10, 50, and 100 μM chromium (Cr level in order to investigate the plant’s protective mechanisms against Cr induced oxidative stress. The results indicated that Cr affects all the studied parameters and decreases growth performance. However, vincristine and vinblastine contents were increased under Cr stress. Results are quite encouraging, as this plant shows good antioxidant potential and increased the level of active constituents under Cr stress.

  19. Heteromeric and homomeric geranyl diphosphate synthases from Catharanthus roseus and their role in monoterpene indole alkaloid biosynthesis.

    Rai, Avanish; Smita, Shachi S; Singh, Anup Kumar; Shanker, Karuna; Nagegowda, Dinesh A

    2013-09-01

    Catharanthus roseus is the sole source of two most important monoterpene indole alkaloid (MIA) anti-cancer agents: vinblastine and vincristine. MIAs possess a terpene and an indole moiety derived from terpenoid and shikimate pathways, respectively. Geranyl diphosphate (GPP), the entry point to the formation of terpene moiety, is a product of the condensation of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) by GPP synthase (GPPS). Here, we report three genes encoding proteins with sequence similarity to large subunit (CrGPPS.LSU) and small subunit (CrGPPS.SSU) of heteromeric GPPSs, and a homomeric GPPSs. CrGPPS.LSU is a bifunctional enzyme producing both GPP and geranyl geranyl diphosphate (GGPP), CrGPPS.SSU is inactive, whereas CrGPPS is a homomeric enzyme forming GPP. Co-expression of both subunits in Escherichia coli resulted in heteromeric enzyme with enhanced activity producing only GPP. While CrGPPS.LSU and CrGPPS showed higher expression in older and younger leaves, respectively, CrGPPS.SSU showed an increasing trend and decreased gradually. Methyl jasmonate (MeJA) treatment of leaves significantly induced the expression of only CrGPPS.SSU. GFP localization indicated that CrGPPS.SSU is plastidial whereas CrGPPS is mitochondrial. Transient overexpression of AmGPPS.SSU in C. roseus leaves resulted in increased vindoline, immediate monomeric precursor of vinblastine and vincristine. Although C. roseus has both heteromeric and homomeric GPPS enzymes, our results implicate the involvement of only heteromeric GPPS with CrGPPS.SSU regulating the GPP flux for MIA biosynthesis. PMID:23543438

  20. Cytosine hypomethylation at CHG and CHH sites in the pleiotropic mutants of Mendelian inheritance in Catharanthus roseus.

    Kumari, Renu; Yadav, Gitanjali; Sharma, Vishakha; Sharma, Vinay; Kumar, Sushil

    2013-12-01

    The 5S and 18S rDNA sequences of Catharanthus roseus cv 'Nirmal' (wild type) and its leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill) single mutants and lli egd, lli ill and egd ill double mutants were characterized. The lli, egd and ill mutants of Mendelian inheritance bore the names after their most conspicuous morphological feature(s). They had been chemically induced and isolated for their salt tolerance. The double mutants were isolated as morphological segregants from crosses between single mutants. The morphological features of the two parents accompanied salt tolerance in the double mutants. All the six mutants were hypomethylated at repeat sequences, upregulated and downregulated for many genes and carried pleiotropic alterations for several traits. Here the 5S and 18S rDNAs of C. roseus were found to be relatively low in cytosine content. Cytosines were preponderantly in CG context (53%) and almost all of them were methylated (97%). The cytosines in CHH and CHG (where H = A, T or C) contexts were largely demethylated (92%) in mutants. The demethylation was attributable to reduced expression of RDR2 and DRM2 led RNA dependant DNA methylation and CMT3 led maintenance methylation pathways. Mutants had gained some cytosines by substitution of C at T sites. These perhaps arose on account of errors in DNA replication, mediated by widespread cytosine demethylation at CHG and CHH sites. It was concluded that the regulation of cytosine ethylation mechanisms was disturbed in the mutants. ILL, EGD and LLI genes were identified as the positive regulators of other genes mediating the RdDM and CMT3 pathways, for establishment and maintenance of cytosine methylation in C. roseus. PMID:24371171

  1. Cytosine hypomethylation at CHG and CHH sites in the pleiotropic mutants of Mendelian inheritance in Catharanthus roseus

    Renu Kumari; Gitanjali Yadav; Vishakha Sharma; Vinay Sharma; Sushil Kumar

    2013-12-01

    The 5S and 18S rDNA sequences of Catharanthus roseus cv ‘Nirmal’ (wild type) and its leafless inflorescence (lli), evergreen dwarf (egd) and irregular leaf lamina (ill) single mutants and lli egd, lli ill and egd ill double mutants were characterized. The lli, egd and ill mutants of Mendelian inheritance bore the names after their most conspicuous morphological feature(s). They had been chemically induced and isolated for their salt tolerance. The double mutants were isolated as morphological segregants from crosses between single mutants. The morphological features of the two parents accompanied salt tolerance in the double mutants. All the six mutants were hypomethylated at repeat sequences, upregulated and downregulated for many genes and carried pleiotropic alterations for several traits. Here the 5S and 18S rDNAs of C. roseus were found to be relatively low in cytosine content. Cytosines were preponderantly in CG context (53%) and almost all of them were methylated (97%). The cytosines in CHH and CHG (where H = A, T or C) contexts were largely demethylated (92%) in mutants. The demethylation was attributable to reduced expression of RDR2 and DRM2 led RNA dependant DNA methylation and CMT3 led maintenance methylation pathways. Mutants had gained some cytosines by substitution of C at T sites. These perhaps arose on account of errors in DNA replication, mediated by widespread cytosine demethylation at CHG and CHH sites. It was concluded that the regulation of cytosine methylation mechanisms was disturbed in the mutants. ILL, EGD and LLI genes were identified as the positive regulators of other genes mediating the RdDM and CMT3 pathways, for establishment and maintenance of cytosine methylation in C. roseus.

  2. Overexpression of ORCA3 and G10H in Catharanthus roseus Plants Regulated Alkaloid Biosynthesis and Metabolism Revealed by NMR-Metabolomics

    Pan, Qifang; Wang, Quan; Yuan, Fang; Xing, Shihai; Zhao, Jingya; Choi, Young Hae; Verpoorte, Robert; Tian, Yuesheng; Wang, Guofeng; Tang, Kexuan

    2012-01-01

    In order to improve the production of the anticancer dimeric indole alkaloids in Catharanthuse roseus, much research has been dedicated to culturing cell lines, hairy roots, and efforts to elucidate the regulation of the monoterpenoid indole alkaloid (MIA) biosynthesis. In this study, the ORCA3 (Octadecanoid-derivative Responsive Catharanthus AP2-domain) gene alone or integrated with the G10H (geraniol 10-hydroxylase) gene were first introduced into C. roseus plants. Transgenic C. roseus plants overexpressing ORCA3 alone (OR lines), or co-overexpressing G10H and ORCA3 (GO lines) were obtained by genetic modification. ORCA3 overexpression induced an increase of AS, TDC, STR and D4H transcripts but did not affect CRMYC2 and G10H transcription. G10H transcripts showed a significant increase under G10H and ORCA3 co-overexpression. ORCA3 and G10H overexpression significantly increased the accumulation of strictosidine, vindoline, catharanthine and ajmalicine but had limited effects on anhydrovinblastine and vinblastine levels. NMR-based metabolomics confirmed the higher accumulation of monomeric indole alkaloids in OR and GO lines. Multivariate data analysis of 1H NMR spectra showed change of amino acid, organic acid, sugar and phenylpropanoid levels in both OR and GO lines compared to the controls. The result indicated that enhancement of MIA biosynthesis by ORCA3 and G10H overexpression might affect other metabolic pathways in the plant metabolism of C. roseus. PMID:22916202

  3. Overexpression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics.

    Qifang Pan

    Full Text Available In order to improve the production of the anticancer dimeric indole alkaloids in Catharanthuse roseus, much research has been dedicated to culturing cell lines, hairy roots, and efforts to elucidate the regulation of the monoterpenoid indole alkaloid (MIA biosynthesis. In this study, the ORCA3 (Octadecanoid-derivative Responsive Catharanthus AP2-domain gene alone or integrated with the G10H (geraniol 10-hydroxylase gene were first introduced into C. roseus plants. Transgenic C. roseus plants overexpressing ORCA3 alone (OR lines, or co-overexpressing G10H and ORCA3 (GO lines were obtained by genetic modification. ORCA3 overexpression induced an increase of AS, TDC, STR and D4H transcripts but did not affect CRMYC2 and G10H transcription. G10H transcripts showed a significant increase under G10H and ORCA3 co-overexpression. ORCA3 and G10H overexpression significantly increased the accumulation of strictosidine, vindoline, catharanthine and ajmalicine but had limited effects on anhydrovinblastine and vinblastine levels. NMR-based metabolomics confirmed the higher accumulation of monomeric indole alkaloids in OR and GO lines. Multivariate data analysis of (1H NMR spectra showed change of amino acid, organic acid, sugar and phenylpropanoid levels in both OR and GO lines compared to the controls. The result indicated that enhancement of MIA biosynthesis by ORCA3 and G10H overexpression might affect other metabolic pathways in the plant metabolism of C. roseus.

  4. 长春花(Catharanthus roseus)中吲哚类生物碱含量的比较%Comparative Study on the Contents of Indole Alkaloids in Catharanthus roseus

    张琳; 祖元刚; 牛卉颖; 张颜滨; 孙志强

    2008-01-01

    建立了反相高效液相法测定长春花中吲哚类生物碱文多灵、长春质碱和阿玛碱含量的方法,色谱柱为HiQ sil C18色谱柱(250 mm×4.6 mm,5 μm);流动相为1%二乙胺水溶液(磷酸调pH=7.2)-甲醇-乙腈/2:1:1(V/V);流速为1 mL·min-1;检测波长为215 nm;柱温为40℃.并采用此方法对长春花根、茎、叶、花和种子以及不同产地的长春花中的这3种生物碱进行了检测,结果表明文多灵和长春质碱主要存在于在根、茎、叶、花中,阿玛碱主要存在于种子中;并且随着地理位置的北移,长春花中的文多灵和长春质碱的含量逐渐降低,温室中人为控制长春花中的栽培条件能提高二者的含量.%A RP-HPLC quantification method was established to determine the contents of three indole alkaloids-vindoline, catharanthine and ajmalicine in Catharanthus roseus. HiQ sil C18 column(250 mm×4.6 mm,5 μm) was used. The mobile phase was 1% diethylamine(pH=7.2)-methanol-acetonitrile/2:1:1(V/V). The detection wavelength was 215 nm. The flow rate was 1 mL·min-1. The column temperature was 40℃. Different parts of C. roseus were determined and the results showed that vindoline and catharanthine mainly existed in roots, stems, leaves and flowers, while ajmalicine mainly existed in seeds. C. roseus from different habitats were also determined by this method and the results showed that the contents of vindoline and catharanthine in south habitats samples were higher than those in north habitats. For the cultured C. roseus in greenhouse, both vindoline and catharanthine contents were enhanced greatly.

  5. Preliminary results of indole alkaloids production in different roots of Catharanthus roseus cultured in vitro

    Agnieszka Pietrosiuk; Mirosława Furmanowa

    2014-01-01

    Six groups of untransformed and hairy root cultures of Catharunthus roseus (L.) G. Don were established. Agrobacterium rhizogenes strains: ATCC 15834, LBA 9403, and TR 105 were used for infection of the 3-week old rooted plantlets of C. roseus. The highest contents of examined indole alkaloids were found in: roots of intact plants - yohimbine and serpentine; in hairy roots - catharanthine. Vinblastine and ajmalicine were detected in untransformed roots of plants regenerated in vitro, and tran...

  6. Large scale in-silico identification and characterization of simple sequence repeats (SSRs) from de novo assembled transcriptome of Catharanthus roseus (L.) G. Don.

    Kumar, Santosh; Shah, Niraj; Garg, Vanika; Bhatia, Sabhyata

    2014-06-01

    Transcriptomic data of C. roseus offering ample sequence resources for providing better insights into gene diversity: large resource of genic SSR markers to accelerate genomic studies and breeding in Catharanthus . Next-generation sequencing is an efficient system for generating high-throughput complete transcripts/genes and developing molecular markers. We present here the transcriptome sequencing of a 26-day-old Catharanthus roseus seedling tissue using Illumina GAIIX platform that resulted in a total of 3.37 Gb of nucleotide sequence data comprising 29,964,104 reads which were de novo assembled into 26,581 unigenes. Based on similarity searches 58 % of the unigenes were annotated of which 13,580 unique transcripts were assigned 5016 gene ontology terms. Further, 7,687 of the unigenes were found to have Cluster of Orthologous Group classifications, and 4,006 were assigned to 289 Kyoto Encyclopedia of Genes and Genome pathways. Also, 5,221 (19.64 %) of transcripts were distributed to 81 known transcription factor (TF) families. In-silico analysis of the transcriptome resulted in identification of 11,004 SSRs in 26.62 % transcripts from which 2,520 SSR markers were designed which exhibited a non-random pattern of distribution. The most abundant was the trinucleotide repeats (AAG/CTT) followed by the dinucleotide repeats (AG/CT). Location specific analysis of SSRs revealed that SSRs were preferentially associated with the 5'-UTRs with a predicted role in regulation of gene expression. A PCR validation of a set of 48 primers revealed 97.9 % successful amplification, and 76.6 % of them showed polymorphism across different Catharanthus species as well as accessions of C. roseus. In summary, this study will provide an insight into understanding the seedling development and resources for novel gene discovery and SSR development for utilization in marker-assisted selective breeding in C. roseus. PMID:24482265

  7. Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves.

    Kumar, Krishna; Kumar, Sarma Rajeev; Dwivedi, Varun; Rai, Avanish; Shukla, Ashutosh K; Shanker, Karuna; Nagegowda, Dinesh A

    2015-10-01

    The monoterpene indole alkaloids (MIAs) are generally derived from strictosidine, which is formed by condensation of the terpene moiety secologanin and the indole moiety tryptamine. There are conflicting reports on the limitation of either terpene or indole moiety in the production of MIAs in Catharanthus roseus cell cultures. Formation of geraniol by geraniol synthase (GES) is the first step in secologanin biosynthesis. In this study, feeding of C. roseus leaves with geraniol, but not tryptophan (precursor for tryptamine), increased the accumulation of the MIAs catharanthine and vindoline, indicating the limitation of geraniol in MIA biosynthesis. This was further validated by molecular and in planta characterization of C. roseus GES (CrGES). CrGES transcripts exhibited leaf and shoot specific expression and were induced by methyl jasmonate. Virus-induced gene silencing (VIGS) of CrGES significantly reduced the MIA content, which was restored to near-WT levels upon geraniol feeding. Moreover, over-expression of CrGES in C. roseus leaves increased MIA content. Further, CrGES exhibited correlation with MIA levels in leaves of different C. roseus cultivars and has significantly lower expression relative to other pathway genes. These results demonstrated that the transcriptional regulation of CrGES and thus, the in planta geraniol availability plays crucial role in MIA biosynthesis. PMID:26398791

  8. A simple and rapid HPLC-DAD method for simultaneously monitoring the accumulation of alkaloids and precursors in different parts and different developmental stages of Catharanthus roseus plants.

    Pan, Qifang; Saiman, Mohd Zuwairi; Mustafa, Natali Rianika; Verpoorte, Robert; Tang, Kexuan

    2016-03-01

    A rapid and simple reversed phase liquid chromatographic system has been developed for simultaneous analysis of terpenoid indole alkaloids (TIAs) and their precursors. This method allowed separation of 11 compounds consisting of eight TIAs (ajmalicine, serpentine, catharanthine, vindoline, vindolinine, vincristine, vinblastine, and anhydrovinblastine) and three related precursors i.e., tryptophan, tryptamine and loganin. The system has been applied for screening the TIAs and precursors in Catharanthus roseus plant extracts. In this study, different organs i.e., flowers, leaves, stems, and roots of C. roseus were investigated. The results indicate that TIAs and precursor accumulation varies qualitatively and quantitatively in different organs of C. roseus. The precursors showed much lower levels than TIAs in all organs. Leaves and flowers accumulate higher level of vindoline, catharanthine and anhydrovinblastine while roots have higher level of ajmalicine, vindolinine and serpentine. Moreover, the alkaloid profiles of leaves harvested at different ages and different growth stages were studied. The results show that the levels of monoindole alkaloids decreased while bisindole alkaloids increased with leaf aging and upon plant growth. The HPLC method has been successfully applied to detect TIAs and precursors in different types of C. roseus samples to facilitate further study of the TIA pathway and its regulation in C. roseus plants. PMID:26854826

  9. Larvicidal efficacy of Catharanthus roseus Linn. (Family:Apocynaceae) leaf extract and bacterial insecticideBacillus thuringiensis againstAnopheles stephensi Liston

    Chellasamy Panneerselvam; Kadarkarai Murugan; Kalimuthu Kovendan; Palanisamy Mahesh Kumar; Sekar Ponarulselvam; Duraisamy Amerasan; Jayapal Subramaniam; Jiang-Shiou Hwang

    2013-01-01

    Objective:To explore the larvicidal activity ofCatharanthus roseus(C. roseus) leaf extract and Bacillus thuringiensis(B. thuringiensis) against the malarial vectorAnopheles stephensi(An. stephensi), when being used alone or together.Methods:The larvicidal activity was assayed at various concentrations under the laboratory and field conditions.TheLC50 andLC90 values of theC. roseus leaf extract were determined by probit analysis.Results:The plant extract showed larvicidal effects after24 h of exposure;however, the highest larval mortality was found in the petroleum ether extract ofC. roseus against the first to fourth instars larvae withLC50=3.34,4.48, 5.90 and8.17 g/L, respectively;B. thuringiensis against the first to fourth instars larvae with LC50=1.72,1.93,2.17 and2.42 g/L, respectively; and the combined treatment withLC50=2.18,2.41, 2.76 and3.22 g/L, respectively.No mortality was observed in the control.Conclusions:The petroleum ether extract ofC. roseus extract andB. thuringiensis have potential to be used as ideal eco-friendly agents for the control ofAn. stephensi in vector control programs.The combined treatment with this plant crude extract and bacterial toxin has better larvicidal efficacy against An. stephensi.

  10. Effects of β-cyclodextrin and methyl jasmonate on the production of vindoline, catharanthine, and ajmalicine in Catharanthus roseus cambial meristematic cell cultures.

    Zhou, Pengfei; Yang, Jiazeng; Zhu, Jianhua; He, Shuijie; Zhang, Wenjin; Yu, Rongmin; Zi, Jiachen; Song, Liyan; Huang, Xuesong

    2015-09-01

    Long-term stable cell growth and production of vindoline, catharanthine, and ajmalicine of cambial meristematic cells (CMCs) from Catharanthus roseus were observed after 2 years of culture. C. roseus CMCs were treated with β-cyclodextrin (β-CD) and methyl jasmonate (MeJA) individually or in combination and were cultured both in conventional Erlenmeyer flasks (100, 250, and 500 mL) and in a 5-L stirred hybrid airlift bioreactor. CMCs of C. roseus cultured in the bioreactor showed higher yields of vindoline, catharanthine, and ajmalicine than those cultured in flasks. CMCs of C. roseus cultured in the bioreactor and treated with 10 mM β-CD and 150 μM MeJA gave the highest yields of vindoline (7.45 mg/L), catharanthine (1.76 mg/L), and ajmalicine (58.98 mg/L), concentrations that were 799, 654, and 426 % higher, respectively, than yields of CMCs cultured in 100-mL flasks without elicitors. Quantitative reverse transcription (RT)-PCR showed that β-CD and MeJA upregulated transcription levels of genes related to the biosynthesis of terpenoid indole alkaloids (TIAs). This is the first study to report that β-CD induced the generation of NO, which plays an important role in mediating the production of TIAs in C. roseus CMCs. These results suggest that β-CD and MeJA can enhance the production of TIAs in CMCs of C. roseus, and thus, CMCs of C. roseus have significant potential to be an industrial platform for production of bioactive alkaloids. PMID:25981997