WorldWideScience

Sample records for acid-catalyzed polymerization reactions

  1. Solvent effects in acid-catalyzed biomass conversion reactions.

    Mellmer, Max A; Sener, Canan; Gallo, Jean Marcel R; Luterbacher, Jeremy S; Alonso, David Martin; Dumesic, James A

    2014-10-27

    Reaction kinetics were studied to quantify the effects of polar aprotic organic solvents on the acid-catalyzed conversion of xylose into furfural. A solvent of particular importance is γ-valerolactone (GVL), which leads to significant increases in reaction rates compared to water in addition to increased product selectivity. GVL has similar effects on the kinetics for the dehydration of 1,2-propanediol to propanal and for the hydrolysis of cellobiose to glucose. Based on results obtained for homogeneous Brønsted acid catalysts that span a range of pKa values, we suggest that an aprotic organic solvent affects the reaction kinetics by changing the stabilization of the acidic proton relative to the protonated transition state. This same behavior is displayed by strong solid Brønsted acid catalysts, such as H-mordenite and H-beta. PMID:25214063

  2. Acid-catalyzed reactions of hexanal on sulfuric acid particles: Identification of reaction products

    Garland, Rebecca M.; Elrod, Matthew J.; Kincaid, Kristi; Beaver, Melinda R.; Jimenez, Jose L.; Tolbert, Margaret A.

    While it is well established that organics compose a large fraction of the atmospheric aerosol mass, the mechanisms through which organics are incorporated into atmospheric aerosols are not well understood. Acid-catalyzed reactions of compounds with carbonyl groups have recently been suggested as important pathways for transfer of volatile organics into acidic aerosols. In the present study, we use the aerodyne aerosol mass spectrometer (AMS) to probe the uptake of gas-phase hexanal into ammonium sulfate and sulfuric acid aerosols. While both deliquesced and dry non-acidic ammonium sulfate aerosols showed no organic uptake, the acidic aerosols took up substantial amounts of organic material when exposed to hexanal vapor. Further, we used 1H-NMR, Fourier transform infrared (FTIR) spectroscopy and GC-MS to identify the products of the acid-catalyzed reaction of hexanal in acidic aerosols. Both aldol condensation and hemiacetal products were identified, with the dominant reaction products dependent upon the initial acid concentration of the aerosol. The aldol condensation product was formed only at initial concentrations of 75-96 wt% sulfuric acid in water. The hemiacetal was produced at all sulfuric acid concentrations studied, 30-96 wt% sulfuric acid in water. Aerosols up to 88.4 wt% organic/11.1 wt% H 2SO 4/0.5 wt% water were produced via these two dimerization reaction pathways. The UV-VIS spectrum of the isolated aldol condensation product, 2-butyl 2-octenal, extends into the visible region, suggesting these reactions may impact aerosol optical properties as well as aerosol composition. In contrast to previous suggestions, no polymerization of hexanal or its products was observed at any sulfuric acid concentration studied, from 30 to 96 wt% in water.

  3. Amino Acids Catalyzed Direct Aldol Reactions in Aqueous Micelles

    PENG Yi-Yuan; WANG Qi; DING Qiu-Ping; HE Jia-Qi; CHENG Jin-Pei

    2003-01-01

    @@ Since the discovery of its roles as a good small-organic-molecule catalyst in intramolecular aldol reactions, pro line has drawn considerable attention in synthetic chemistry due to its similarity to the type-Ⅰ aldolases. Recently,List and others have reported some new direct asymmetric intermolecular reactions catalyzed by proline, including aldol, Mannich, Michael, and other analogous reactions. Except for two recent examples, [1,2] proline catalyzed aldol reactions in aqueous micelles have not been reported, nor have other amino acids as organocatalysts in directly catalyzing aldol reaction been reported. Herein we wish to present our recent results regarding environmentally be nign direct aldol reactions catalyzed by amino acids including proline, histidine and arginine in aqueous media.

  4. Studies of Grafted and Sulfonated Spiro Poly(isatin-ethersulfone Membranes by Super Acid-Catalyzed Reaction

    Lei Jin

    2016-03-01

    Full Text Available Spiro poly(isatin-ethersulfone polymers were prepared from isatin and bis-2,6-dimethylphenoxyphenylsulfone by super acid catalyzed polyhydroxyalkylation reactions. We designed and synthesized bis-2,6-dimethylphenoxyphenylsulfone, which is structured at the meta position steric hindrance by two methyl groups, because this structure minimized crosslinking reaction during super acid catalyzed polymerization. In addition, sulfonic acid groups were structured in both side chains and main chains to form better polymer chain morphology and improve proton conductivity. The sulfonation reactions were performed in two steps which are: in 3-bromo-1-propanesulfonic acid potassium salt and in con. sulfuric acid. The membrane morphology was studied by tapping mode atomic force microscope (AFM. The phase difference between the hydrophobic polymer main chain and hydrophilic sulfonated units of the polymer was shown to be the reasonable result of the well phase separated structure. The correlations of proton conductivity, ion exchange capacity (IEC and single cell performance were clearly described with the membrane morphology.

  5. Development of Fluorous Lewis Acid-Catalyzed Reactions

    Joji Nishikido

    2006-08-01

    Full Text Available Organic synthetic methodology in the 21st century aims to conform to the principles of green sustainable chemistry (GSC and we may expect that in the future, the realization of GSC will be an important objective for chemical industries. An important aim of synthetic organic chemistry is to implement waste-free and environmentally-benign industrial processes using Lewis acids as versatile as aluminum choride. A key technological objective of our work in this area has been to achieve a “catalyst recycling system that utilizes the high activity and structural features of fluorous Lewis acid catalysts”. Thus, we have developed a series of novel fluorous Lewis acid catalysts, namely the ytterbium(III, scandium(III, tin(IV or hafnium(IV bis(perfluoroalkanesulfonylamides or tris(perfluoro- alkanesulfonylmethides. Our catalysts are recyclable and effective for acylations of alcohols and aromatics, Baeyer-Villiger reactions, direct esterifications and transesterifications in a fluorous biphasic system (FBS, in supercritical carbon dioxide and on fluorous silica gel supports.

  6. Kinetics of acid-catalyzed aldol condensation reactions of aliphatic aldehydes

    Casale, Mia T.; Richman, Aviva R.; Elrod, Matthew J.; Garland, Rebecca M.; Beaver, Melinda R.; Tolbert, Margaret A.

    Field observations of atmospheric aerosols have established that organic compounds compose a large fraction of the atmospheric aerosol mass. However, the physical/chemical pathway by which organic compounds are incorporated into atmospheric aerosols remains unclear. The potential role of acid-catalyzed reactions of organic compounds on acidic aerosols has been explored as a possible chemical pathway for the incorporation of organic material into aerosols. In the present study, ultraviolet-visible (UV-vis) spectroscopy was used to monitor the kinetics of formation of the products of the acid-catalyzed aldol condensation reaction of a range of aliphatic aldehydes (C 2-C 8). The experiments were carried out at various sulfuric acid concentrations and a range of temperatures in order to estimate the rate constants of such reactions on sulfuric acid aerosols under tropospheric conditions. The rate constants were generally found to decrease as the chain length of the aliphatic aldehyde increased (except for acetaldehyde, which had an unusually small rate constant), increase as a function of sulfuric acid concentration as predicted by excess acidity theory, and showed normal Arrhenius behavior as a function of temperature. While the kinetic data are generally consistent with previous laboratory reports of aldehyde reactivity in various sulfuric acid media, the aldol condensation reactions involving aliphatic aldehydes do not appear fast enough to be responsible for significant transfer of organic material into atmospheric aerosols.

  7. Sulfuric, hydrochloric, and nitric acid-catalyzed triacetone triperoxide (TATP) reaction mixtures: an aging study.

    Fitzgerald, Mark; Bilusich, Daniel

    2011-09-01

    The organic peroxide explosive triacetone triperoxide (TATP) is regularly encountered by law enforcement agents in various stages of its production. This study utilizes solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) to examine sulfuric acid-, hydrochloric acid-, and nitric acid-catalyzed TATP syntheses during the initial 24 h of these reactions at low temperatures (5-9°C). Additionally, aging of the reaction mixtures was examined at both low and ambient temperatures (19-21°C) for a further 9 days. For each experiment, TATP could be readily identified in the headspace above the reaction mixture 1 h subsequent to the combination of reagents; at 24 h, TATP and diacetone diperoxide (DADP) were prominent. TATP degraded more rapidly than DADP. Additionally, chlorinated acetones chloroacetone and 1,1,-dichloroacetone were identified in the headspace above the hydrochloric acid-catalyzed TATP reaction mixture. These were not present when the catalyst was sulfuric acid or nitric acid. PMID:21595692

  8. Acid-Catalyzed Transesterification Reaction of Beef Tallow For Biodiesel Production By Factor Variation

    R.C. Ehiri

    2014-07-01

    Full Text Available Biodiesel is a diesel grade fuel made by transesterification reaction of vegetable oils and animal fats with alcohol. Three variable factors that affect the yield of biodiesel namely, reaction time, reaction temperature and catalyst concentration were studied in this work. The biodiesel was produced via a batchprocess acid-catalyzed transesterification reaction of beef tallow with methanol. Optimal conditions for the reaction were established in a three factor two-level (23 central composite design with the biodiesel pretreatment yield as the response surface. The results show that the mean yield of biodiesel was 92.04% with a standard deviation of 5.16. An optimal biodiesel yield of 96.30% occurred at 0.5% HCl catalyst concentration and at constant conditions of 1.5h reaction time, 60oC reaction temperature and 6:1 methanol: tallow volume ratio. Gas chromatographic analysis of the beef tallow identified palmitic, stearic and oleic acids in it while the fatty acid methyl esters in the biodiesel product were oleate and linoleate. Catalysis was the most significant factor in the transesterification process.

  9. Chain Reaction Polymerization.

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  10. Contribution to the study of the oxidation reaction of Np(V) by nitric acid catalyzed par nitrous acid

    The oxidation reaction kinetics of Np(V) to Np(VI) by nitric acid catalyzed by nitrous acid was studied. In a first part, a detailed bibliographical survey was made of the oxidation-reduction reactions of U, Np, Pu, Am with nitrous and nitric acids (51 references). It is shown that only when both the organic and aqueous phases are mixed up, the extraction of a reaction product (NpVI) induces an equilibrium displacement. TBP was used as solvent. It is shown that the extraction of nitrous acid from the solvent enables the nitrous acid concentration to be kept constant and in the same order of magnitude than that of Np. This enables to show that Np(V) and nitrous acid have no simple orders. The temperature and nitric acid concentration dependence was studied. It is shown that tetravalent nitrogen must play a major part in the Np(V) oxidation

  11. Elucidating Latent Mechanistic Complexity in Competing Acid-Catalyzed Reactions of Salicylaldehyde-Derived Baylis-Hillman Adducts.

    Olomola, Temitope O; Klein, Rosalyn; Caira, Mino R; Kaye, Perry T

    2016-01-01

    (1)H NMR-based kinetic studies have revealed the latent mechanistic complexity of deceptively simple hydrochloric acid-catalyzed reactions of salicylaldehyde-derived Baylis-Hillman adducts. Reactions conducted at 0 °C afforded 2-(chloromethyl)cinnamic acid derivatives as the major products and the corresponding 3-(chloromethyl)coumarin derivatives as the minor products. In reactions conducted in refluxing acetic acid, however, the 3-(chloromethyl)coumarin derivatives are the sole products. Variable-temperature (1)H NMR analysis permitted the determination of the rate constants and kinetic parameters involved in the pseudo-first-order formation of (Z)-2-(chloromethyl)-3-(2-hydroxyphenyl)-2-propenoic acid. The kinetic data clearly preclude the operation of classical kinetic versus thermodynamic control and indicate the operation of three independent reaction pathways. Theoretical studies of these pathways undertaken at the B3LYP/6-31G(d) level permitted rationalization of the experimental data and provided insights into the possible mechanism of the enzymic E-Z isomerization and cyclization of (E)-cinnamic acid analogues to afford coumarins. PMID:26655750

  12. A Computational Study of Acid Catalyzed Aerosol Reactions of Atmospherically Relevant Epoxides

    Epoxides are important intermediates of atmospheric isoprene oxidation. Their subsequent reactions in the particle phase lead to the production of organic compounds detected in ambient aerosols. We apply density functional theory to determine the important kinetic factors that ...

  13. Efficient Lewis Acids Catalyzed Aza-Michael Reactions of Enones with Carbamates

    XIA Chun-Gu; XU Li-Wen

    2004-01-01

    The a-amino carbonyl functionality is not only a segment of biologically important natural products but also a versatile intermediate for the synthesis of nitrogen-containing compounds.1 The development of novel synthetic methods leading to a-amino ketone, a-amino acids or their derivatives has attracted much attention in organic synthesis.2 Among the traditional methods for generating a-amino carbonyl compounds, Mannich-type reaction is one of the classical and powerful methods.3 However, the classic Mannich reaction presents serious disadvantages, for example, there is still a drawback in that the silyl enolates have to be prepared from the corresponding carbonyl compounds. Alternatively, aza-Michael additions can be used to create carbon-heteroatom bonds by reaction of a,a-unsaturated carbonyl compounds with amines. Although recent advances have made this route more attractive, development of cheaper, simpler, and more efficient metal catalyst, especially which can be applied to chalcone, is highly desirable.In this paper, we demonstrated that the first aza-Michael reaction of chalcone with a less nucleophilic carbamates can be accomplished on Me3SiCFFeCl3 catalyst system under very mild conditions. Apart from experimental simplicity, the advantages of this methodology are the use of a very cheap Lewis acid catalyst and the insensitivity of the reaction mixture towards air and moisture.catalyst for aza-Michael reaction of chalcone and cyclic enones with carbamates. And with the cyclic enones with carbamates in dichloromethane at room temperature were also investigated. In this conjugate addition reaction, good to excellent yields of a-amino ketones were obtained with system could also mediates aza-Michael addition of carbamates to chalcone and derivatives.These new strategies opened efficient procedures for the synthesis of a-amino ketones under mild conditions.

  14. Cooperative Effects Between Arginine and Glutamic Acid in the Amino Acid-Catalyzed Aldol Reaction.

    Valero, Guillem; Moyano, Albert

    2016-08-01

    Catalysis of the aldol reaction between cyclohexanone and 4-nitrobenzaldehyde by mixtures of L-Arg and of L-Glu in wet dimethyl sulfoxide (DMSO) takes place with higher enantioselectivity (up to a 7-fold enhancement in the anti-aldol for the 1:1 mixture) than that observed when either L-Glu or L-Arg alone are used as the catalysts. These results can be explained by the formation of a catalytically active hydrogen-bonded complex between both amino acids, and demonstrate the possibility of positive cooperative effects in catalysis by two different α-amino acids. Chirality 28:599-605, 2016. © 2016 Wiley Periodicals, Inc. PMID:27362554

  15. Bidentate Lewis Acid Catalyzed Domino Diels-Alder Reaction of Phthalazine for the Synthesis of Bridged Oligocyclic Tetrahydronaphthalenes.

    Schweighauser, Luca; Bodoky, Ina; Kessler, Simon N; Häussinger, Daniel; Donsbach, Carsten; Wegner, Hermann A

    2016-03-18

    A domino process consisting of an inverse and a normal electron-demand Diels-Alder reaction is presented for the formation of bridged tri- and tetracyclic 1,2,3,4-tetrahydronaphthalenes catalyzed by a bidentate Lewis acid. The products were synthesized in a one-pot reaction from commercially available starting materials and contain up to six stereogenic centers. The tetrahydronaphthalenes were isolated as single diastereomers and are derivatives of phenylethylamine, which is well-known as a scaffold of amphetamine or dopamine. PMID:26943286

  16. Reaction Between U(Ⅳ)and Nitrous Acid Catalyzed by Plutonium%Pu催化HNO2氧化U(Ⅳ)的研究

    王浩文; 周贤明; 李高亮; 兰天; 刘金平; 常尚文; 何辉; 段红卫

    2014-01-01

    The oxidation of U(Ⅳ)by nitrous acid in the present of plutonium was studied. The influence of the concentration of nitrous acid,nitric acid,plutonium on the oxidation of U(Ⅳ)was investigated.The results show that plutonium can catalyze the reaction between U(Ⅳ)and nitrous acid.And the rate equation of the reaction between U(Ⅳ)and nitrous acid catalyzed by plutonium was obtained:-dc(U(Ⅳ))/dt=kc(U(Ⅳ))c1.3 (HNO3 )c1.3 (NO-2 ), k=(0.69±0.04)L2.6/(mol2.6 ·min)when the temperature was 29 ℃.The mechanism of the oxidation of U(Ⅳ)was discussed.%研究了Pu存在条件下 HNO2氧化 U(Ⅳ)的反应,并考察了 HNO2浓度、反应温度、HNO3浓度、Pu 浓度对 U(Ⅳ)氧化速率的影响。结果表明:Pu对 HNO2氧化 U(Ⅳ)的反应具有显著催化作用;获得了 Pu催化条件下 HNO2氧化 U(Ⅳ)的动力学方程:-dc(U(Ⅳ))/dt=kc(U(Ⅳ))c1.3(HNO3)c1.3(NO-2),得到了29℃时的反应速率常数k=(0.69±0.04)L2.6/(mol2.6·min)。并对反应历程进行了探讨。

  17. Organometallic Enantiomeric Scaffolding: General Access to 2-Substituted Oxa- and Azabicyclo[3.2.1]octenes via a Brønsted Acid-catalyzed [5+2] Cycloaddition Reaction

    Garnier, Ethel C.; Liebeskind, Lanny S.

    2008-01-01

    6-Substituted TpMo(CO)2(η-2,3,4-pyranyl)- and TpMo(CO)2(η-2,3,4-pyridinyl) scaffolds (Tp = hydridotrispyrazolylborato) function as reaction partners in an efficient regio- and stereocontrolled synthesis of functionalized oxa- and azabicyclo[3.2.1]octenes through a novel Brønsted acid-catalyzed [5+2] cycloaddition reaction. Excellent exo-selectivities are obtained and the reaction gives products with complete retention of enantiomeric purity when carried out with chiral, non-racemic scaffolds....

  18. Polymerization as a Model Chain Reaction

    Morton, Maurice

    1973-01-01

    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  19. Polyphosphorous acid catalyzed cyclization in the synthesis of cryptolepine derivatives

    2007-01-01

    11-Oxo-10,11-dihydroxy-5H-indolo[3,2,b]quinoline7-carboxylic acid was obtained specifically by polyphosphorous acid catalyzed cyclization with optimal reaction conditions. Biological assays showed that it potentially inhibits the proteasomal chymotrypsin-like activity in vitro and suppresses breast cancer cell growth.

  20. Computational Study on the Acid Catalyzed Reactions of Fluorine-Containing 2,4-Dialkoxy-3,4-dihydro-2H-pyrans with Aromatic Compounds

    Norio Ota

    2012-02-01

    Full Text Available The reaction of 2,4-diethoxy-6-trifluoromethyl-3,4-dihydro-2H-pyran (1 with aromatic compounds in refluxing acetonitrile in the presence of p-toluenesulfonic acid gave the mixture of 4-aryl-2-trifluoromethyl-4H-pyrans (3 and 6-aryl-1,1,1-trifluorohexa-3,5-dien-2-ones (4. In contrast, the same reaction carried out in trifluoroacetic acid at ambient temperature afforded 4-aryl-2-ethoxy-6-trifluoromethyl-3,4-dihydro-2H-pyrans (2 selectively. These two types of reactions giving quite different products under each condition were studied on the basis of DFT calculations. Moreover, the proposed mechanism for the reaction of 5-trifluoroacetyl-6-trifluoromethyl-3,4-dihydro-2H-pyran (5 with aromatic compounds affording butadiene derivatives (6 exclusively was also discussed based on the calculations and comparison with the reactivity of pyrylium intermediate (7.

  1. Theoretical Studies on the Asymmetric Baeyer-Villiger Oxidation Reaction of 4-Phenylcyclohexanone with m-Chloroperoxobenzoic Acid Catalyzed by Chiral Scandium(III)-N,N'-Dioxide Complexes.

    Yang, Na; Su, Zhishan; Feng, Xiaoming; Hu, Changwei

    2015-05-01

    The mechanism and enantioselectivity of the asymmetric Baeyer-Villiger oxidation reaction between 4-phenylcyclohexanone and m-chloroperoxobenzoic acid (m-CPBA) catalyzed by Sc(III) -N,N'-dioxide complexes were investigated theoretically. The calculations indicated that the first step, corresponding to the addition of m-CPBA to the carbonyl group of 4-phenylcyclohexanone, is the rate-determining step (RDS) for all the pathways studied. The activation barrier of the RDS for the uncatalyzed reaction was predicted to be 189.8 kJ mol(-1) . The combination of an Sc(III) -N,N'-dioxide complex and the m-CBA molecule can construct a bifunctional catalyst in which the Lewis acidic Sc(III) center activates the carbonyl group of 4-phenylcyclohexanone while m-CBA transfers a proton, which lowers the activation barrier of the addition step (RDS) to 86.7 kJ mol(-1) . The repulsion between the m-chlorophenyl group of m-CPBA and the 2,4,6-iPr3 C6 H2 group of the N,N'-dioxide ligand, as well as the steric hindrance between the phenyl group of 4-phenylcyclohexanone and the amino acid skeleton of the N,N'-dioxide ligand, play important roles in the control of the enantioselectivity. PMID:25809412

  2. Acid-catalyzed kinetics of indium tin oxide etching

    We report the kinetic characterization of indium tin oxide (ITO) film etching by chemical treatment in acidic and basic electrolytes. It was observed that film etching increased under more acidic conditions, whereas basic conditions led to minimal etching on the time scale of the experiments. Quartz crystal microbalance was employed in order to track the reaction kinetics as a function of the concentration of hydrochloric acid and accordingly solution pH. Contact angle measurements and atomic force microscopy experiments determined that acid treatment increases surface hydrophilicity and porosity. X-ray photoelectron spectroscopy experiments identified that film etching is primarily caused by dissolution of indium species. A kinetic model was developed to explain the acid-catalyzed dissolution of ITO surfaces, and showed a logarithmic relationship between the rate of dissolution and the concentration of undisassociated hydrochloric acid molecules. Taken together, the findings presented in this work verify the acid-catalyzed kinetics of ITO film dissolution by chemical treatment, and support that the corresponding chemical reactions should be accounted for in ITO film processing applications. - Highlights: • Acidic conditions promoted indium tin oxide (ITO) film etching via dissolution. • Logarithm of the dissolution rate depended linearly on the solution pH. • Acid treatment increased ITO surface hydrophilicity and porosity. • ITO film etching led to preferential dissolution of indium species over tin species

  3. Solid Acid-Catalyzed Cellulose Hydrolysis Monitored by In Situ ATR-IR Spectroscopy

    Zakzeski, J.; Grisel, R.J.H.; Smit, A.T.; Weckhuysen, B.M.

    2012-01-01

    The solid acid-catalyzed hydrolysis of cellulose was studied under elevated temperatures and autogenous pressures using in situ ATR-IR spectroscopy. Standards of cellulose and pure reaction products, which include glucose, fructose, hydroxymethylfurfural (HMF), levulinic acid (LA), formic acid, and

  4. Polymerization reaction in restricted space of layered double hydroxides (LDHs)

    SI Lichun; WANG Ge; CAI Fuli; WANG Zhiqiang; DUAN Xue

    2004-01-01

    This paper reported the preparation of styrene sulfonate intercalated layered double hydroxides (LDHs) material, SS-LDHs by coprecipitation method, followed by in-situ polymerization of the monomers in the interlayer space of LDHs. The polymerization reaction was monitored by UV and NMR. It is confirmed that when the reaction occurred at 100℃ for 24 h, part of monomers did not react .When the reaction was carried out at 150℃, the polymeriza tion of the intercalated monomers is complete to afford the polymer intercalated product PSS-LDHs. During the polymerization process, the layered structure remains well. At thesame time the gallery height increases with the lengthening of reaction time. This is preliminarily because that the PSS becomes more swelling with the amount of water it absorbs due to its hygroscopicity property.

  5. Dispersion Polymerization of Polystyrene Particles Using Alcohol as Reaction Medium.

    Cho, Young-Sang; Shin, Cheol Hwan; Han, Sujin

    2016-12-01

    In this study, monodisperse polystyrene nanospheres were prepared by dispersion polymerization using alcohol as reaction medium to prepare colloidal clusters of the latex beads. Polyvinylpyrrolidone (PVP) and 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTC) were used as dispersion stabilizer and comonomer, respectively. The particle size could be controlled by adjusting the reactant compositions such as the amount of stabilizer, comonomer, and water in the reactant mixture. The size and monodispersity of the polymeric particles could be also controlled by changing the reaction medium with different alcohols other than ethanol or adjusting the polymerization temperature. The synthesized particles could be self-organized inside water-in-oil emulsion droplets by evaporation-driven self-assembly to produce colloidal clusters of the polymeric nanospheres. PMID:26831684

  6. Dispersion Polymerization of Polystyrene Particles Using Alcohol as Reaction Medium

    Cho, Young-Sang; Shin, Cheol Hwan; Han, Sujin

    2016-02-01

    In this study, monodisperse polystyrene nanospheres were prepared by dispersion polymerization using alcohol as reaction medium to prepare colloidal clusters of the latex beads. Polyvinylpyrrolidone (PVP) and 2-(methacryloyloxy)ethyltrimethylammonium chloride (MTC) were used as dispersion stabilizer and comonomer, respectively. The particle size could be controlled by adjusting the reactant compositions such as the amount of stabilizer, comonomer, and water in the reactant mixture. The size and monodispersity of the polymeric particles could be also controlled by changing the reaction medium with different alcohols other than ethanol or adjusting the polymerization temperature. The synthesized particles could be self-organized inside water-in-oil emulsion droplets by evaporation-driven self-assembly to produce colloidal clusters of the polymeric nanospheres.

  7. Origins of Stereoselectivities in Chiral Phosphoric Acid-Catalyzed Allylborations and Propargylations of Aldehydes

    Wang, Hao; Jain, Pankaj; Antilla, Jon C.; Houk, K. N.

    2013-01-01

    The chiral BINOL-phosphoric acid catalyzed allylboration and propargylation reactions are studied with density functional theory (B3LYP and B3LYP-D3). Two different models were recently proposed for these reactions by Goodman and our group, respectively. In Goodman's model for allylborations, the catalyst interacts with the boronate pseudo-axial oxygen. By contrast, our model for propargylations predicts that the catalyst interacts with the boronate pseudo-equatorial oxygen. In both models, t...

  8. Kinetics of Model Reactions for Interfacial Polymerization

    Henry Hall

    2012-02-01

    Full Text Available To model the rates of interfacial polycondensations, the rates of reaction of benzoyl chloride and methyl chloroformate with various aliphatic monoamines in acetonitrile were determined at 25 °C. Buffering with picric acid slowed these extremely fast reactions so the rate constants could be determined from the rate of disappearance of picrate ion. The rates of the amine reactions correlated linearly with their Swain-Scott nucleophilicities.

  9. Kinetics of Model Reactions for Interfacial Polymerization

    Henry Hall; Robert Bates; Jeffrey Robertson; Anne Padias; Trevor Centeno-Hall

    2012-01-01

    To model the rates of interfacial polycondensations, the rates of reaction of benzoyl chloride and methyl chloroformate with various aliphatic monoamines in acetonitrile were determined at 25 °C. Buffering with picric acid slowed these extremely fast reactions so the rate constants could be determined from the rate of disappearance of picrate ion. The rates of the amine reactions correlated linearly with their Swain-Scott nucleophilicities.

  10. Dyes as Photoinitiators or Photosensitizers of Polymerization Reactions

    Christian Ley

    2010-12-01

    Full Text Available A short but up-to-date review on the role of dyes in the photoinitiation processes of polymerization reactions is presented. Radical and cationic reactions are largely encountered in the radiation curing and the imaging areas for use in traditional coating applications as well as in high tech sectors such as nanofabrication, computer-to-plate processing, laser direct imaging, manufacture of optical elements, etc. Recent promising developments concerned with the introduction of the silyl radical chemistry that enhances the polymerization efficiency are also discussed.

  11. Transfer Reactions in Phenyl Carbamate Ethyl Acrylate Polymerizations

    Bennet, Francesca; Roelle, Thomas; Faecke, Thomas; Weiser, Marc-Stephan; Bruder, Friedrich-Karl; Barner-Kowollik, Christopher; Junkers, Thomas

    2013-01-01

    The transfer reactions occurring during polymerization of 2-(phenylcarbamoyloxy)ethyl acrylate (PhCEA) were studied by a detailed product mapping with electrospray ionization mass spectrometry (ESI-MS). Unlike postulated before, PhCEA exhibits the same characteristic transfer reactions as other acrylic monomers at elevated temperatures, resulting in vinyl-terminated and saturated products. Transfer to monomer via abstraction of a hydrogen atom from the ester side chain as suggested before is ...

  12. Kinetics of oxido-reduction reactions of Np in nitric solutions. Oxidation of Np(IV) into Np(V), oxidation of Np(V) into Np(VI) by nitric acid catalyzed by nitrous acid

    In nitric solutions, only the reaction kinetics of Np(IV), (V) and (VI) are slow enough to be measurable. The kinetics of the reactions: Np4++1/2NO3-+3/2H2O→NpO2++1/2HNO2+5/2H+ (I) and NpO2++1/2NO3-+3/2H+→NpO22++1/2HNO2+1/2H2O (II) are investigated. The reaction I is experimentally studied by absorption spectrophotometry. Three reaction kinetics laws are observed in 1M nitric solutions for an initial concentration in Np(IV) of about 10-2. The oxidation mechanism of Np(IV) is compared with that of the similar reactions of U(IV) and Pu(IV). The importance of catalysis phenomena of metallic ions (in particular iron) are observed in the oxidation reactions of tetravalent uranides. The reaction II is experimentally studied by solvent extraction of Np(VI) produced and absorption spectrophotometry. It is shown that the reaction kinetics law depends on the value of the HNO2/Np(V) ratio. The reaction of Np(V) takes place by the action of the intermediary protonated state NpO2H2+ with N2O4. The results are compared with those of the similar reactions of U and Pu

  13. Studies on the runaway reaction of ABS polymerization process

    Hu, K.-H. [Department of Occupational Safety and Health, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan (China); Kao, C.-S. [Department of Safety, Health and Environmental Engineering, National United University, Taiwan (China); Duh, Y.-S. [Department of Occupational Safety and Health, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan (China)], E-mail: yihshingduh@yahoo.com.tw

    2008-11-15

    Taiwan has the largest acrylonitrile-butadiene-styrene (ABS) copolymer production in the world. Preventing on unexpected exothermic reactions and related emergency relief hazard is essential in the safety control of ABS emulsion polymerization. A VSP2 (Vent Sizing Package 2) apparatus is capable of studying both normal and abnormal conditions (e.g., cooling failure, mischarge, etc.) of industrial process. In this study, the scenarios were verified from the following abnormal conditions: loss of cooling, double charge of initiator, overcharge of monomer, without charge of solvent, and external fire. An external fire with constant heating will promote higher self-heat rate and this is recommended as the worst case scenario of emulsion polymerization on butadiene. Cooling failure coupled with bulk system of reactant was determined to be the credible worst case in ABS emulsion polymerization. Finally, the emergency vent sizing based on thermokinetics from VSP associated with DIERS methodology were used for evaluating the vent sizing and compared to that of the industrial plants.

  14. Development of Fluorous Lewis Acid-Catalyzed Reactions

    Joji Nishikido; Osamu Yamazaki; Xiuhua Hao; Akihiro Yoshida

    2006-01-01

    Organic synthetic methodology in the 21st century aims to conform to the principles of green sustainable chemistry (GSC) and we may expect that in the future, the realization of GSC will be an important objective for chemical industries. An important aim of synthetic organic chemistry is to implement waste-free and environmentally-benign industrial processes using Lewis acids as versatile as aluminum choride. A key technological objective of our work in this area has been to achieve a “c...

  15. Acid-Catalyzed Reaction of Epoxides on Atmospheric Nanoparticles

    Xu, W.; Gomez-Hernandez, M.; Lal, V.; Qiu, C.; Khalizov, A. F.; Wang, L.; Zhang, R.

    2013-12-01

    Aerosol plays an important role in affecting the earth climate and harming human health. Atmospheric aerosols can be formed from either primary emissions or gas-to-particle conversion process. Numerous studies, including both experimental and theoretical, have been carried out to elucidate the mechanism of gas-to-particle conversion process (a.k.a. nucleation) and the later growth stage of newly formed nanoparticles. However, a complete list of species involving in the nucleation and growth processes of nanoparticles is still poorly understood. The growth of newly formed sulfuric acid - water nanoparticles has been suggested to involve several potential organic vapors, such as amines, glyoxal, 2-4 hexadienal, and epoxides. In the present study, new formed sulfuric acid -water nanoparticles were size selected by a differential mobility analyzer and exposed to epoxide vapors. The size-change after exposure was detected using the second differential mobility analyzer. The size-enlarged particles were then collected by an electrostatic precipitator, thermal vaporized, and analyzed by an ion drift chemical ionization mass spectrometer. Our results show that the sizes of nanoparticles are increased considerably and the magnitude of the increment in size is size-dependent. Mass spectrometry analysis of the nanoparticles after exposure demonstrates that low volatile organosulfate and oligomers are formed in nanoparticles upon their exposure to epoxide vapors.

  16. Solid acid-catalyzed depolymerization of barley straw driven by ball milling.

    Schneider, Laura; Haverinen, Jasmiina; Jaakkola, Mari; Lassi, Ulla

    2016-04-01

    This study describes a time and energy saving, solvent-free procedure for the conversion of lignocellulosic barley straw into reducing sugars by mechanocatalytical pretreatment. The catalytic conversion efficiency of several solid acids was tested which revealed oxalic acid dihydrate as a potential catalyst with high conversion rate. Samples were mechanically treated by ball milling and subsequently hydrolyzed at different temperatures. The parameters of the mechanical treatment were optimized in order to obtain sufficient amount of total reducing sugar (TRS) which was determined following the DNS assay. Additionally, capillary electrophoresis (CE) and Fourier transform infrared spectrometry (FT-IR) were carried out. Under optimal conditions TRS 42% was released using oxalic acid dihydrate as a catalyst. This study revealed that the acid strength plays an important role in the depolymerization of barley straw and in addition, showed, that the oxalic acid-catalyzed reaction generates low level of the degradation product 5-hydroxymethylfurfural (HMF). PMID:26859328

  17. Antibacterial properties of cyanoacrylate tissue adhesive: Does the polymerization reaction play a role?

    Romero Ivana

    2009-01-01

    Full Text Available Purpose: To ascertain if the polymerization reaction also contributes additionally to the antibacterial effects of two commonly used cyanoacrylate tissue adhesives. Materials and Methods: Fresh liquid ethyl-cyanoacrylate (EC and N-butyl-cyanoacrylate (BC adhesives were applied onto 6-mm sterile filter paper discs. In the first group, the adhesive-soaked discs were immediately placed onto confluent monolayer cultures of bacteria, allowing the polymerization reaction to proceed while in culture. In the second group, the adhesive-soaked disc was allowed to first polymerize prior to being placed onto the bacterial cultures. Four types of bacteria were studied: Staphylococcus aureus , Streptococcus pneumoniae , Escherichia coli , and Pseudomonas aeruginosa . Immediately after the discs were applied, the cultures were incubated at 35° C for 24 h. Bacterial inhibitory halos were measured in the cultures at the end of the incubation period. Results: For EC, exposure of the bacteria to the cyanoacrylate polymerization reaction increased the bacterial inhibitory halos in Streptococcus pneumonia, Staphylococcus aureus and Escherichia coli. For BC, it increased the bacterial inhibitory halos in Staphylococcus aureus and Streptococcus pneumoniae . No inhibitory halos were observed in Pseudomonas aeruginosa. The bactericidal effect was higher in actively polymerizing EC, compared to previously polymerized EC in Staphylococcus aureus , Streptococcus pneumoniae, and Escherichia coli ; however, no such differences were observed for BC. Conclusions: The polymerization reaction may also be an important factor in the antibacterial properties of EC and BC.

  18. Kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid

    Girisuta, B.; Janssen, L. P. B. M.; Heeres, H. J.

    2007-01-01

    A variety of interesting bulk chemicals is accessible by the acid-catalyzed hydrolysis of cellulose. An interesting example is levulinic acid, a versatile precursor for fuel additives, polymers, and resins. A detailed kinetic study on the acid-catalyzed hydrolysis of cellulose to levulinic acid is r

  19. Numerical Analysis Of Hooke Jeeves-Runge Kutta To Determine Reaction Rate Equation In Pyrrole Polymerization

    The numerical analysis of Hooke Jeeves Methods combined with Runge Kutta Methods is used to determine the exact model of reaction rate equation of pyrrole polymerization. Chemical polymerization of pyrrole was conducted with FeCI3 / pyrrole solution at concentration ratio of 1.62 mole / mole and 2.18 mole / mole with varrying temperature of 28, 40, 50, and 60 oC. FeCl3 acts as an oxidation agent to form pyrrole cation that will polymerize. The numerical analysis was done to examine the exact model of reaction rate equation which is derived from reaction equation of initiation, propagation, and termination. From its numerical analysis, it is found that the pyrrole polymerization follows third order of pyrrole cation concentration

  20. A two-step acid-catalyzed process for the production of biodiesel from rice bran oil

    Zullaikah, S.; Lai, Chao Chin; Vali, S.R.; Ju, Yi Hsu [National Taiwan Univ. of Science and Technology, Taipei (China). Dept. of Chemical Engineering

    2005-11-15

    A study was undertaken to examine the effect of temperature, moisture and storage time on the accumulation of free fatty acid in the rice bran. Rice bran stored at room temperature showed that most triacylglyceride was hydrolyzed and free fatty acid (FFA) content was raised up to 76% in six months. A two-step acid-catalyzed methanolysis process was employed for the efficient conversion of rice bran oil into fatty acid methyl ester (FAME). The first step was carried out at 60 {sup o}C. Depending on the initial FFA content of oil, 55-90% FAME content in the reaction product was obtained. More than 98% FFA and less than 35% of TG were reacted in 2 h. The organic phase of the first step reaction product was used as the substrate for a second acid-catalyzed methanolysis at 100 {sup o}C. By this two-step methanolysis reaction, more than 98% FAME in the product can be obtained in less than 8 h. Distillation of reaction product gave 99.8% FAME (biodiesel) with recovery of more than 96%. The residue contains enriched nutraceuticals such as {gamma}-oryzanol (16-18%), mixture of phytosterol, tocol and steryl ester (19-21%). (author)

  1. Numerical modeling and simulation of polymerization reactions in coiled flow inverters

    Garg, Dhiraj Kumar

    2014-01-01

    This thesis aimed at improving the modeling and simulation of free radical polymerization (FRP) in batch as well as in flow reactors. A generalized explicit analytical solution (AS) was obtained in case of variable volume, bulk/solution polymerization, homogeneous and isothermal batch reactor. The reaction steps included initiation, propagation, transfer to monomer, transfer to solvent, transfer to chain transfer agent (CTA), termination by combination and disproportionation. Different models...

  2. Origins of stereoselectivities in chiral phosphoric acid catalyzed allylborations and propargylations of aldehydes.

    Wang, Hao; Jain, Pankaj; Antilla, Jon C; Houk, K N

    2013-02-01

    The chiral BINOL-phosphoric acid catalyzed allylboration and propargylation reactions are studied with density functional theory (B3LYP and B3LYP-D3). Two different models were recently proposed for these reactions by Goodman and our group, respectively. In Goodman's model for allylborations, the catalyst interacts with the boronate pseudoaxial oxygen. By contrast, our model for propargylations predicts that the catalyst interacts with the boronate pseudoequatorial oxygen. In both models, the phosphoric acid stabilizes the transition state by forming a strong hydrogen bond with the oxygen of the boronate and is oriented by a formyl hydrogen bond (Goodman model) and by other electrostatic attractions in our model. Both of these models have now been reinvestigated for both allylborations and propargylations. For the most effective catalyst for these reactions, the lowest energy transition state corresponds to Goodman's axial model, while the best transition state leading to the minor enantiomer involves the equatorial model. The high enantioselectivity observed with only the bulkiest catalyst arises from the steric interactions between the substrates and the bulky groups on the catalyst, and the resulting necessity for distortion of the catalyst in the disfavored transition state. PMID:23298338

  3. Precision synthesis of functional materials via RAFT polymerization and click-type chemical reactions

    Flores, Joel Diez

    2011-12-01

    The need to tailor polymeric architectures with specific physico-chemical properties via the simplest, cleanest, and most efficient synthetic route possible has become the ultimate goal in polymer synthesis. Recent progress in macromolecular science, such as the discoveries of controlled/"living" free radical polymerization (CRP) methods, has brought about synthetic capabilities to prepare (co)polymers with advanced topologies, predetermined molecular weights, narrow molecular weight distributions, and precisely located functional groups. In addition, the establishment of click chemistry has redefined the selected few highly efficient chemical reactions that become highly useful in post-polymerization modification strategies. Hence, the ability to make well-defined topologies afforded by controlled polymerization techniques and the facile incorporation of functionalities along the chain via click-type reactions have yielded complex architectures, allowing the investigation of physical phenomena which otherwise could not be studied with systems prepared via conventional methods. The overarching theme of the research work described in this dissertation is the fusion of the excellent attributes of reversible addition-fragmentation chain transfer (RAFT) polymerization method, which is one of the CRP techniques, and click-type chemical reactions in the precision of synthesis of advanced functional materials. Chapter IV is divided into three sections. In Section I, the direct RAFT homopolymerization of 2-(acryloyloxy)ethyl isocyanate (AOI) and subsequent post-polymerization modifications are described. The polymerization conditions were optimized in terms of the choice of RAFT chain transfer agent (CTA), polymerization temperature and the reaction medium. Direct RAFT polymerization of AOI requires a neutral CTA, and relatively low reaction temperature to yield AOI homopolymers with low polydispersities. Efficient side-chain functionalization of PAOI homopolymers was

  4. Lewis acid-catalyzed intramolecular [3+2] cycloaddition of cyclopropane 1,1-diesters with alkynes for the synthesis of cyclopenta[c]chromene skeletons.

    Xia, Xiao-Feng; Song, Xian-Rong; Liu, Xue-Yuan; Liang, Yong-Min

    2012-06-01

    An efficient method to construct cyclopenta[c]chromene skeletons by Lewis acid-catalyzed intramolecular [3+2] cycloaddition of cyclopropane 1,1-diesters with alkynes is presented. Two new fused cycles can be formed in one step in moderate to excellent yields (up to 94 %), and the products can be converted into bioactive barbituric acid derivatives (1) under simple reaction conditions. PMID:22488826

  5. Polymerization in non-uniform reaction fields : Monte Carlo description of structure buildup during photopolymerization

    Gupta, Anshu

    1993-01-01

    A Monte Carlo 3D off lattice percolation in a non-uniform reaction field is reported. Monomers are simulated as point particles of functionality (coordination number), f=3. The non-uniform field is expressed as an exponentially decaying reaction probability in one dimension tailored to simulate the photopolymerization process. It is argued that tubular reactors and other polymerizations in non-uniform fields will show similar qualitative features. Two cases of molecular mobility are studied. ...

  6. Effect of Small Reaction Locus in Free-Radical Polymerization: Conventional and Reversible-Deactivation Radical Polymerization

    Hidetaka Tobita

    2016-01-01

    When the size of a polymerization locus is smaller than a few hundred nanometers, such as in miniemulsion polymerization, each locus may contain no more than one key-component molecule, and the concentration may become much larger than the corresponding bulk polymerization, leading to a significantly different rate of polymerization. By focusing attention on the component having the lowest concentration within the species involved in the polymerization rate expression, a simple formula can pr...

  7. Radiation-induced polymerization and polymer reactions sensitized by onium salts

    Reactions in irradiated solutions of diphenyliodonium and triphenylsulfonium salts, Ph2IPF6 and Ph3SPF6, have been investigated by the steady-state and pulse radiolysis experiments. The initiation mechanisms of the radiatioin-induced polymerization and polymer reactions sensitized by the salts were discussed according to the results of the radiolysis studies. The salts promote the cationic polymerization by various mechanisms depending on solvents. The non-nucleophilic anion, PF6-, stabilizes the initiating cations toward neutralization through the ion-pair formation in dichloromethane. Free radicals having low oxidation potentials are oxidized by Ph2IPF6 to the corresponding cations. For ethereal monomers the oxidation of the free radicals is chain reactions resulting in an extremely high rate of polymerization. In bulk tetrahydrofuran the salts scavenge the solvated electron to initiate the cationic living polymerization. A cationic grafting is initiated by Ph2IPF6 for poly(α-methylstyrene) to give very high molecular weight polymers. (author)

  8. Crosslinking reaction in the cationic polymerization of 1,3-pentadiene

    彭宇行; 张文传; 肖潮萍; 刘佳林; 寸琳锋; 郑朝辉; 邓建国; 关英; 刘莉

    1999-01-01

    The cationic polymerization of 1,3-pentadiene (PD) initiated by AlCl3 in n-hexane was carried out. Effects of arenes, alkyl halides and ethers on the gel formation resulting from crosslinking reaction were investigated. The erosslinking was reduced by various arenes through a chain transfer mechanism. Alkyl halides such as tert-butyl chloride and allyl chloride could complex with AlCl3 to generate an initiating system giving rise to a gel-free polymerization, while benzyl chloride reduced the formation of gel by chain transfer. Ethers exerted two effects on the polymerization system: giving a complex initiating system with AlCl3 to produce a relatively high molecular weight polymer, or reducing crosslinking by lowering activity of carbocations.

  9. The physical and chemical properties of polymerization reaction for contact lens irradiated by electron beam

    Can EB irradiation be possible the polymerization of HEMA without the cross-linker and initiator? The physical and chemical properties of the polymers are compared between the two polymerization methods Discuss the effects of the EB irradiation on the polymerization for having a good physical properties for the both hard and soft contact lens. EB irradiation can be used to the polymerization reaction and the EB polymerization take place at a very short period of time without any cross-linker and initiator and initiator above 100 kGy of EB dose. The polymer synthesized by EB irradiation can improve the physical properties of contact lens → increase of the OH group on the surface by EB irradiation, resulting in increase o the water content and oxygen permeability of the contact lens The contact lens synthesized by EB irradiation could improve the physical properties of the contact lens, and specially can apply to a disposable soft contact lens with high water content and oxygen permeability

  10. The physical and chemical properties of polymerization reaction for contact lens irradiated by electron beam

    Sin, Junghyeok; Jun, Jin [Dongshin Univ., Naju (Korea, Republic of)

    2010-07-01

    Can EB irradiation be possible the polymerization of HEMA without the cross-linker and initiator? The physical and chemical properties of the polymers are compared between the two polymerization methods Discuss the effects of the EB irradiation on the polymerization for having a good physical properties for the both hard and soft contact lens. EB irradiation can be used to the polymerization reaction and the EB polymerization take place at a very short period of time without any cross-linker and initiator and initiator above 100 kGy of EB dose. The polymer synthesized by EB irradiation can improve the physical properties of contact lens {yields} increase of the OH group on the surface by EB irradiation, resulting in increase o the water content and oxygen permeability of the contact lens The contact lens synthesized by EB irradiation could improve the physical properties of the contact lens, and specially can apply to a disposable soft contact lens with high water content and oxygen permeability.

  11. Reaction kinetics and modeling of photoinitiated cationic polymerization of an alicyclic based diglycidyl ether

    Harikrishna, R., E-mail: r.harikrishna@ncl.res.in [Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008 (India); Ponrathnam, S. [Polymer Science and Engineering Division, National Chemical Laboratory, Pune 411008 (India); Tambe, S.S. [Chemical Engineering and Process Development Division, National Chemical Laboratory, Pune 411008 (India)

    2014-01-01

    Highlights: • Photocationic polymerization of alicyclic based diglycidyl ether was carried out. • Kinetic parameters were influenced by gelation and diffusional restrictions. • Applicability of autocatalytic model was established by nonlinear regression. • System showed higher activation energy than cycloaliphatic and aromatic diepoxides. -- Abstract: Photoinitiated cationic polymerization of cycloaliphatic diepoxides had received tremendous attention, while studies with lesser polymerizable diglycidyl ethers are comparatively less reported. The present work deals with the photoinitiated cationic polymerization of cyclohexane dimethanol diglycidyl ether followed by estimation of kinetic parameters. The effects of concentration of photoinitiator and temperature on curing performance were studied using photo differential scanning calorimeter or photo DSC with polychromatic radiation. It was observed that the rate of polymerization as well as ultimate conversion increased with increasing concentration of photoinitiator and temperature. The influences of gelation as well as diffusional restrictions have remarkable effect on cure performance. The kinetic parameters as per autocatalytic kinetic model were studied by Levenberg–Marquardt nonlinear regression method instead of conventional linear method for obtaining more accurate values of apparent rate constant. It was observed that the model fits with data from initial stages to almost towards the end of the reaction. The activation energy was found to be higher than the values reported for more reactive cycloaliphatic diepoxides. The value of pre-exponential factor increased with increase in activation energy showing influence of gelation at early stages of reaction.

  12. (+)-Tartaric Acid-Catalyzed High Regio- and Stereoselective Aminobromination of Olefins%(+)-Tartaric Acid-Catalyzed High Regio- and Stereoselective Aminobromination of Olefins

    陈战国; 魏俊发; 李文丽; 王芸; 赵朋飞; 石先莹

    2011-01-01

    (+)-Tartaric acid-catalyzed aminobromination of α,β-unsaturated ketones, α,β-unsaturated esters and simple olefins utilizing TsNHJNBS as the nitrogen/halogen sources at room temperature without protection of inert gases achieved good yields (up to 92% yield) of vicinal haloamino products with excellent regio- and stereoselectivity, even just 10% of (+)-tartaric acid was used as catalyst. The regio- and stereochemistry was unambiguously confirmed by X-ray structural analysis of products 2b and 12e. The electron-rich and deficient olefins show significant differences in activity to the aminobromination reaction and give the opposite regioselectivities. The 21 cases have been investigated which indicated that our protocol has the advantage of a large scope of olefins. Additionally, tartaric acid as catalyst has the advantage of avoiding any hazardous metals retained in products.

  13. Laser-induced reaction and polymerization of formaldehyde in low-temperature amorphous solids

    Wight, Charles A.; Tang, Thomas W.; Mansueto, Edward S.

    1989-10-01

    Photochemical reactions of formaldehyde with chlorine have been investigated in thin films from 10-77 K. The amorphous films are formed by deposition of gaseous formaldehyde doped with small amounts of Cl2 onto an optical window mounted at the cold tip of a close-cycle refrigerator. Excimer laser irradiation at 308 nm dissociates some of the chlorine molecules to atoms, initiating chemical reactions within the solid. Polymerization of the solid is initiated in the presence of a strong acid (e.g., HCl). Photopolymerization has also been achieved by photoexcitation of small amounts of 2-nitrophenol doped into solid formaldehyde.

  14. Acid-Catalyzed Preparation of Biodiesel from Waste Vegetable Oil: An Experiment for the Undergraduate Organic Chemistry Laboratory

    Bladt, Don; Murray, Steve; Gitch, Brittany; Trout, Haylee; Liberko, Charles

    2011-01-01

    This undergraduate organic laboratory exercise involves the sulfuric acid-catalyzed conversion of waste vegetable oil into biodiesel. The acid-catalyzed method, although inherently slower than the base-catalyzed methods, does not suffer from the loss of product or the creation of emulsion producing soap that plagues the base-catalyzed methods when…

  15. 4-Dimenthylaminopyridine or Acid-Catalyzed Synthesis of Esters: A Comparison

    van den Berg, Annemieke W. C.; Hanefeld, Ulf

    2006-01-01

    A set of highly atom-economic experiments was developed to highlight the differences between acid- and base-catalyzed ester syntheses and to introduce the principles of atom economy. The hydrochloric acid-catalyzed formation of an ester was compared with the 4-dimethylaminopyradine-catalyzed ester synthesis.

  16. Optimizing the Acid Catalyzed Synthesis of Hyperbranched Poly(Glycerol-diacids) Oligomers

    Oligomeric pre-polymers were synthesized by the acid-catalyzed condensation of glycerol with succinic acid, glutaric acid and azelaic acid in dimethylsulfoxide (DMSO) or dimethylformamide (DMF). The prepolymers were obtained, on average in 84% yield, and were characterized by proton NMR, MALDI-TOF ...

  17. Furfural production from fruit shells by acid-catalyzed hydrolysis

    Demirbas, A. [Selcuk Univ., Konya (Turkey). Dept. of Chemical Engineering

    2006-01-21

    Pentosans are hydrolyzed to pentoses by dilute mineral acid hydrolysis. The main source of pentosans is hemicelluloses. Furfural can be produced by the acid hydrolysis of pentosan from fruit shells such as hazelnut, sunflower, walnut, and almond of agricultural wastes. Further dehydration reactions of the pentoses yield furfural. The hydrolysis of each shell sample was carried out in dilute sulfuric acid (0.05 to 0.200 mol/l), at high temperature (450-525 K), and short reaction times (from 30 to 600 s). (author)

  18. The reaction efficiency of thermal energy oxygen atoms with polymeric materials

    Koontz, S. L.; Nordine, Paul

    1990-01-01

    The reaction efficiency of several polymeric materials with thermal-energy (0.04 eV translational energy), ground-state (O3P) oxygen atoms was determined by exposing the materials to a room temperature gas containing a known concentration of atomic oxygen. The reaction efficiency measurements were conducted in two flowing afterglow systems of different configuration. Atomic oxygen concentration measurements, flow, transport and surface dose analysis is presented in this paper. The measured reaction efficiencies of Kapton, Mylar, polyethylene, D4-polyethylene and Tedlar are .001 to .0001 those determined with high-energy ground-state oxygen atoms in low earth orbit or in a high-velocity atom beam. D4-polyethylene exhibits a large kinetic isotope effect with atomic oxygen at thermal but not hyperthermal atom energies.

  19. Stochastic simulation of biological reactions, and its applications for studying actin polymerization

    Molecular events in biological cells occur in local subregions, where the molecules tend to be small in number. The cytoskeleton, which is important for both the structural changes of cells and their functions, is also a countable entity because of its long fibrous shape. To simulate the local environment using a computer, stochastic simulations should be run. We herein report a new method of stochastic simulation based on random walk and reaction by the collision of all molecules. The microscopic reaction rate Pr is calculated from the macroscopic rate constant k. The formula involves only local parameters embedded for each molecule. The results of the stochastic simulations of simple second-order, polymerization, Michaelis–Menten-type and other reactions agreed quite well with those of deterministic simulations when the number of molecules was sufficiently large. An analysis of the theory indicated a relationship between variance and the number of molecules in the system, and results of multiple stochastic simulation runs confirmed this relationship. We simulated Ca2+ dynamics in a cell by inward flow from a point on the cell surface and the polymerization of G-actin forming F-actin. Our results showed that this theory and method can be used to simulate spatially inhomogeneous events

  20. Lactic Acid Yield Using Different Bacterial Strains, Its Purification, and Polymerization through Ring-Opening Reactions

    F. G. Orozco

    2014-01-01

    Full Text Available Laboratory-scale anaerobic fermentation was performed to obtain lactic acid from lactose, using five lactic acid bacteria: Lactococcus lactis, Lactobacillus bulgaricus, L. delbrueckii, L. plantarum, and L. delbrueckii lactis. A yield of 0.99 g lactic acid/g lactose was obtained with L. delbrueckii, from which a final concentration of 80.95 g/L aqueous solution was obtained through microfiltration, nanofiltration, and inverse osmosis membranes. The lactic acid was polymerized by means of ring-opening reactions (ROP to obtain poly-DL-lactic acid (PDLLA, with a viscosity average molecular weight (Mv of 19,264 g/mol.

  1. Solid acid catalyzed biodiesel production from waste cooking oil

    Jacobson, Kathlene; Gopinath, Rajesh; Meher, Lekha Charan; Dalai, Ajay Kumar [Catalysis and Chemical Reaction Engineering Laboratories, Department of Chemical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9 (Canada)

    2008-12-17

    Various solid acid catalysts were evaluated for the production of biodiesel from low quality oil such as waste cooking oil (WCO) containing 15 wt.% free fatty acids. The zinc stearate immobilized on silica gel (ZS/Si) was the most effective catalyst in simultaneously catalyzing the transesterification of triglycerides and esterification of free fatty acid (FFA) present in WCO to methyl esters. The optimization of reaction parameters with the most active ZS/Si catalyst showed that at 200 C, 1:18 oil to alcohol molar ratio and 3 wt.% catalysts loading, a maximum ester yield of 98 wt.% could be obtained. The catalysts were recycled and reused many times without any loss in activity. (author)

  2. Heteropoly acid catalyzed hydrolysis of glycogen to glucose

    Complete conversion of glycogen to glucose is achieved by using H3PW12O40·nH2O (HPW) and H4SiW12O40·nH2O (HSiW) as catalysts for the hydrolysis under optimized hydrothermal conditions (mass fraction of catalyst 2.4%, 373 K and 2 h reaction time). The reusability of the catalyst (HPW) was demonstrated. In addition to carrying out the glycogen hydrolysis in an autoclave, other novel methods such as microwave irradiation and sonication have also been investigated. At higher mass fraction of the heteropoly acids (10.5%), glycogen could be completely converted to glucose under microwave irradiation. Sonication of an aqueous solution of glycogen in the presence of HPW and HSiW also yielded glucose. Thus, heteropoly acids are efficient, environmentally friendly and reusable catalysts for the conversion of glycogen to glucose. - Highlights: • Hydrothermal, microwave and sonication based methods of hydrolysis. • Heteropoly acids are green catalysts for glycogen hydrolysis. • Glycogen from cyanobacteria is demonstrated as a potential feedstock for glucose

  3. Modification of Clays by Sol-Gel Reaction and Their Use in the Ethylene In Situ Polymerization for Obtaining Nanocomposites

    E. Moncada

    2012-01-01

    Full Text Available The nanocomposites formation by in situ polymerization used a metallocene catalyst (butyl-2-cyclopentadienyl zirconium 2-chlorines and a hectorite synthetic clay type which is discussed. This research was carried out in two phases. The first phase consisted of mixing the components of the metallocenic polymerization reaction (metallocene-methylaluminoxane-ethylene with clay in a reactor. In the second phase, the metallocenic catalytic system was supported by clay particles and then a polymerization reaction was made. In this second phase, the clay particles were modified using a sol-gel reaction with different pH values: pH = 3, pH = 8, and pH = 12. The results were compared in terms of the catalytic activity in the different systems (phase 1 and phase 2 and the nanoparticle morphology of nanocomposites generated in this study.

  4. A modified reaction cartridge for direct protein sequencing on polymeric membranes.

    Sheer, D G; Yuen, S; Wong, J; Wasson, J; Yuan, P M

    1991-10-01

    A newly designed reaction vessel implements a vertical cross-flow type reactor with the Applied Biosystems multi-mode reaction cartridge design. This cartridge is designed for sequencing samples on polyvinylidine difluoride-type membranes. The benefits of this design include a reduced reaction chamber volume that results in lower rates of chemical consumption and less risk of sample loss or contamination during sequencing. Visualization of the membrane in the reaction chamber during sequencing facilitates optimization of drying, washing, extraction and transfer times. The cycle modifications described in this report are designed to optimize post-coupling extraction, cleavage and post-cleavage extraction steps during "flow across" conditions for polymeric membranes. Also, efficient washing and drying of membranes allows for a fast cycle time of 30 minutes when using Pulsed Liquid chemistry. Examples of Blott cartridge utility for sequencing polyvinylidine difluoride-bound proteins in the low picomole range are shown by analyzing samples prepared by a two-dimensional purification scheme using the 230A HPEC and sodium dodecyl sulfate polyacrylamide gel electrophoresis. PMID:1793588

  5. Synthesis of Antiviral Tetrahydrocarbazole Derivatives by Photochemical and Acid-catalyzed C-H Functionalization via Intermediate Peroxides (CHIPS)

    Gulzar, Naeem; Klussmann, Martin

    2014-01-01

    The direct functionalization of C-H bonds is an important and long standing goal in organic chemistry. Such transformations can be very powerful in order to streamline synthesis by saving steps, time and material compared to conventional methods that require the introduction and removal of activating or directing groups. Therefore, the functionalization of C-H bonds is also attractive for green chemistry. Under oxidative conditions, two C-H bonds or one C-H and one heteroatom-H bond can be transformed to C-C and C-heteroatom bonds, respectively. Often these oxidative coupling reactions require synthetic oxidants, expensive catalysts or high temperatures. Here, we describe a two-step procedure to functionalize indole derivatives, more specifically tetrahydrocarbazoles, by C-H amination using only elemental oxygen as oxidant. The reaction uses the principle of C-H functionalization via Intermediate PeroxideS (CHIPS). In the first step, a hydroperoxide is generated oxidatively using visible light, a photosensitizer and elemental oxygen. In the second step, the N-nucleophile, an aniline, is introduced by Brønsted-acid catalyzed activation of the hydroperoxide leaving group. The products of the first and second step often precipitate and can be conveniently filtered off. The synthesis of a biologically active compound is shown. PMID:24998636

  6. System Identification for Experimental Study for Polymerization Catalyst Reaction in Fluidized Bed

    Ahmmed Saadi Ibrehem

    2011-11-01

    Full Text Available In this work, system identification method is used to capture the reactor characteristics of production rate of polyethylene (PE based on published experimental data. The identification method is used to measure the percentage effect on the production rate of PE by measuring the effect of input factors of temperature of reaction, hydrogen concentration, and [Al]/[Ti] molar catalyst ratio. Temperature of reaction has big effects equal 52.4 % on the output of the system and 47.6 % on interaction of the system's parameters compare to other two factors. Also, hydrogen concentration has big effect equal 45.66 % on the output of the system and 14.7 % on interaction of the system's parameters. [Al]/[Ti] molar catalyst ratio has big effect on interaction of the system equal 28.6 and 1.94 % on the output of the system but less than the reaction temperature and hydrogen concentration. All these results depend on experiment results and these results are very important in industrial plants. ©2011 BCREC UNDIP. All rights reserved(Received: 13rd May 2011; Revised: 27th July 2011; Accepted: 22th September 2011[How to Cite: Ahmmed S. Ibrehem. (2011. System Identification for Experimental Study for Polymerization Catalyst Reaction in Fluidized Bed. Bulletin of Chemical Reaction Engineering & Catalysis, 6 (2: 137-146. doi:10.9767/bcrec.6.2.874.137-146][How to Link / DOI: http://dx,doi.org/10.9767/bcrec.6.2.874.137-146 || or local:  http://ejournal.undip.ac.id/index.php/bcrec/article/view/874 ] | View in 

  7. Preparation of Polystyrenylphosphonous Acid of Low Polymerization Degree and Influence of Initiators upon the Free Radical Reaction Mechanism

    2002-01-01

    The polystyrenylphosphonous acid (PSPA) of low polymerization degree was prepared with one step reaction. The reaction mechanism was changed with different initiators. For the reaction with AIBN or BPO as the initiator, there are 2 or 3 series of radical reaction chains and 5 or 9 series of polystyrenyl products. The main products are PSPA without or with the fragment of the initiator H[CH(C6H5)-CH2]n-PO2H2 and C6H5CO2-[CH2CH (C6H5)]n-PO2H2 respectively.

  8. Computer simulation of reaction-induced self-assembly of cellulose via enzymatic polymerization

    We present a comparison between results of computer simulations and neutron scattering/electron microscopy observations on reaction-induced self-assembly of cellulose molecules synthesized via in vitro polymerization at specific sites of enzymes in an aqueous reaction medium. The experimental results, obtained by using a combined small-angle scattering (SAS) analysis of USANS (ultra-SANS), USAXS (ultra-SAXS), SANS (small-angle neutron scattering), and SAXS (small-angle x-ray scattering) methods over an extremely wide range of wavenumber q (as wide as four orders of magnitude) and of a real-space analysis with field-emission scanning electron microscopy elucidated that: (i) the surface structure of the self-assembly in the medium is characterized by a surface fractal dimension of Ds = 2.3 over a wide length scale (∼30 nm to ∼30 μm); (ii) its internal structure is characterized by crystallized cellulose fibrils spatially arranged with a mass fractal dimension of Dm = 2.1. These results were analysed by Monte Carlo simulation based on the diffusion-limited aggregation of rod-like molecules that model the cellulose molecules. The simulations show similar surface fractal dimensions to those observed in the experiments

  9. Computer simulation of reaction-induced self-assembly of cellulose via enzymatic polymerization

    Kawakatsu, Toshihiro [Department of Physics, Faculty of Science, Tohoku University, Sendai 980-8578 (Japan); Tanaka, Hirokazu [Advanced Science Research Center (ASRC), Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195, Japan (Japan); Koizumi, Satoshi [Advanced Science Research Center (ASRC), Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan); Hashimoto, Takeji [Advanced Science Research Center (ASRC), Japan Atomic Energy Agency (JAEA), Tokai, Ibaraki 319-1195 (Japan)

    2006-09-13

    We present a comparison between results of computer simulations and neutron scattering/electron microscopy observations on reaction-induced self-assembly of cellulose molecules synthesized via in vitro polymerization at specific sites of enzymes in an aqueous reaction medium. The experimental results, obtained by using a combined small-angle scattering (SAS) analysis of USANS (ultra-SANS), USAXS (ultra-SAXS), SANS (small-angle neutron scattering), and SAXS (small-angle x-ray scattering) methods over an extremely wide range of wavenumber q (as wide as four orders of magnitude) and of a real-space analysis with field-emission scanning electron microscopy elucidated that: (i) the surface structure of the self-assembly in the medium is characterized by a surface fractal dimension of D{sub s} = 2.3 over a wide length scale ({approx}30 nm to {approx}30 {mu}m); (ii) its internal structure is characterized by crystallized cellulose fibrils spatially arranged with a mass fractal dimension of D{sub m} = 2.1. These results were analysed by Monte Carlo simulation based on the diffusion-limited aggregation of rod-like molecules that model the cellulose molecules. The simulations show similar surface fractal dimensions to those observed in the experiments.

  10. Synthesis of phytuberin. 4-endo-tet acid-catalyzed cyclization of alpha-hydroxy epoxides.

    Prangé, Thierry; Rodríguez, María S; Suárez, Ernesto

    2003-05-30

    The total synthesis of phytuberin, a phytoalexin of the Solanum genus, from (-)-alpha-santonin is reported. The key steps include (a) reductive cleavage of the C-O bond of the gamma-lactone with concomitant protection of the C1 double bond, (b) Sharpless stereocontrolled hydroxy-assisted epoxidation of allylic alcohol 6 and simultaneous deprotection of the C1 double bond, (c) a rare 4-endo-tet acid-catalyzed cyclization of an alpha-hydroxy epoxide, and (d) an unprecedented 4-exo selenocyclization of a homoallylic alcohol. PMID:12762747

  11. ACID-CATALYZED REACTIONS IN SULFURIC ACID AEROSOLS: CHARACTERIZATION AND IMPACT ON ICE NUCLEATION

    Several different experimental results are possible. It may be that as long as the water content of the aerosol is known, ice nucleation conditions can be predicted using an accepted model for homogeneous ice nucleation. However, in aerosol systems where larger organics form...

  12. Enhancement of Activity and Selectivity in Acid-Catalyzed Reactions by Dealuminated Hierarchical Zeolites

    Sazama, Petr; Sobalík, Zdeněk; Dědeček, Jiří; Jakubec, Ivo; Parvulescu, V. I.; Bastl, Zdeněk; Rathouský, Jiří; Jirglová, Hana

    2013-01-01

    Roč. 52, č. 7 (2013), s. 2038-2041. ISSN 1433-7851 R&D Projects: GA ČR GAP106/11/0624; GA MPO FR-TI3/316 Institutional support: RVO:61388955 ; RVO:61388980 Keywords : alkylation * cracking * dealumination Subject RIV: CF - Physical ; Theoretical Chemistry; CA - Inorganic Chemistry (UACH-T) Impact factor: 11.336, year: 2013

  13. Solid state polymerization of pet/pc extruded blend: effect of reaction temperature on thermal, morphological and viscosity properties

    Luis Claudio Mendes; Isaac Albert Mallet; Sibele Piedade Cestari; Frederico Gonçalves de Albuquerque Dias; Patricia Soares da Costa Pereira

    2014-01-01

    A systematic study of solid state polymerization (SSP), concerning the melt extruded blend of poly(ethylene terephthalate)/polycarbonate (catalyzed PET/PC, 80/20 wt %), as a function of temperature range (180-190°C) for a fixed time (6 h) is presented. The materials obtained were evaluated by differential scanning calorimetry (DSC), thermogravimetry/derivative thermogravimetry (TG/DTG), optical microscopy (OM) and intrinsic viscosity (IV) analysis. After SSP, at all reaction temperatures, PET...

  14. Evaluation of processing rate and reaction products in the polymeric material furnace using the molten slag

    A prototype furnace, which adopted the new technique for combusting the polymeric material, was manufactured. In this furnace, the polymeric materials such as rubber were fed to molten slag. The ash, generated at the surface of the polymeric material, dissolved into melt, which promoted the surface combustion of the fixed carbon. The advantages of the new furnace are: (1) High treating rate was realized at so low air excessive ratio as 0.5 ∼ 0.7. (2) The fineness of the unburned particles made the combustion in the after burner easy. (3) The reduction of flying ash coming from the gasification zone lowered the load of the ceramic filters. (author)

  15. DFT Study of Solvent Effects in Acid-Catalyzed Diels-Alder Cycloadditions of 2,5-Dimethylfuran and Maleic Anhydride.

    Salavati-fard, Taha; Caratzoulas, Stavros; Doren, Douglas J

    2015-09-24

    Density functional theory electronic structure calculations were used to explore the mechanism for the Diels-Alder reaction between 2,5-dimethylfuran and maleic anhydride (MA). Reaction paths are reported for uncatalyzed and Lewis and Brønsted acid-catalyzed reactions in vacuum and in a broad range of solvents. The calculations show that, while the uncatalyzed Diels-Alder reaction is thermally feasible in vacuum, a Lewis acid (modeled as Na(+)) lowers the activation barrier by interacting with the dienophile (MA) and decreasing the HOMO-LUMO gap of the reactants. A Brønsted acid (modeled as a proton) can bind to a carbonyl oxygen in MA, changing the reaction mechanism from concerted to stepwise and eliminating the activation barrier. Solvation effects were studied with the SMD model. Electrostatic effects play the largest role in determining the solvation energy of the transition state, which tracks the net dipole moment at the transition state. For the uncatalyzed reaction, the dipole moment is largely determined by charge transfer between the reactants, but in the reactions with ionic catalysts, there is no simple relationship between solvation of the transition state and charge transfer between the reactants. Nonelectrostatic contributions to solvation of the reactants and transition state also make significant contributions to the activation energy. PMID:26331220

  16. Formation of Triblock Copolymers via a Tandem Enhanced Spin Capturing-Nitroxide-Mediated Polymerization Reaction Sequence

    Junkers, Thomas; Zang, Lin; Wong, Edgar H. H.; Dingenouts, Nico; Barner-Kowollik, Christopher

    2011-01-01

    The preparation of ABA-type block copolymers via tandem enhanced spin capturing polymerization (ESCP) and nitroxide-mediated polymerization (NMP) processes is explored in-depth. Midchain alkoxyamine functional polystyrenes (M(n) = 6200, 12,500 and 19,900 g mol(-1)) were chain extended with styrene as well as tert-butyl acrylate at elevated temperature NMP conditions (T = 110 degrees C) generating a tandem ESCP-NMP sequence. Although the chain extensions and thus the block copolymer formation ...

  17. Kinetics of Acid-Catalyzed Dehydration of Cyclic Hemiacetals in Organic Aerosol Particles in Equilibrium with Nitric Acid Vapor.

    Ranney, April P; Ziemann, Paul J

    2016-04-28

    Previous studies have shown that 1,4-hydroxycarbonyls, which are often major products of the atmospheric oxidation of hydrocarbons, can undergo acid-catalyzed cyclization and dehydration in aerosol particles to form highly reactive unsaturated dihydrofurans. In this study the kinetics of dehydration of cyclic hemiacetals, the rate-limiting step in this process, was investigated in a series of environmental chamber experiments in which secondary organic aerosol (SOA) containing cyclic hemiacetals was formed from the reaction of n-pentadecane with OH radicals in dry air in the presence of HNO3. A particle beam mass spectrometer was used to monitor the formation and dehydration of cyclic hemiacetals in real time, and SOA and HNO3 were quantified in filter samples by gravimetric analysis and ion chromatography. Measured dehydration rate constants increased linearly with increasing concentration of HNO3 in the gas phase and in SOA, corresponding to catalytic rate constants of 0.27 h(-1) ppmv(-1) and 7.0 h(-1) M(-1), respectively. The measured Henry's law constant for partitioning of HNO3 into SOA was 3.7 × 10(4) M atm(-1), ∼25% of the value for dissolution into water, and the acid dissociation constant was estimated to be SOA and that dehydration of cyclic hemiacetals was catalyzed by molecular HNO3 rather than by H(+). The Henry's law constant and kinetics relationships measured here can be used to improve mechanisms and models of SOA formation from the oxidation of hydrocarbons in dry air in the presence of NOx, which are conditions commonly used in laboratory studies. The fate of cyclic hemiacetals in the atmosphere, where the effects of higher relative humidity, organic/aqueous phase separation, and acid catalysis by molecular H2SO4 and/or H(+) are likely to be important, is discussed. PMID:27043733

  18. A theoretical guide for fabricating a conductive molecular wire on a silicon surface via an in situ surface polymerization reaction

    Yao, Xiaojing; Wang, Jinlan; Yuan, Shijun; Zhang, Xiuyun; Wu, Gang; Wang, Xiaobai; Yang, Shuo-Wang

    2015-09-01

    It has been a long-standing goal to make conductive molecular wires or linear polymer chains on traditional semiconductors or insulator substrates to satisfy the ongoing miniaturization in electronic devices. Here, we have proposed a surface in situ polymerization reaction for a pre-absorbed molecule, 4-hydrazinyl-3-(pyridin-4-ylmethyl)-benzaldehyde (HPyMB), to produce a conductive molecular wire on a silicon surface. Our first-principles calculations show that HPyMB molecules can absorb alternatively on the exposed Si atoms created via ultrahigh vacuum scanning tunneling microscopy on a hydrogen passivated H-Si(001)2 × 1 surface along the [110] direction. The adsorption is exothermic and its generated energy is sufficient for the following intermolecular dehydration polymerization reaction to overcome the activation energy barriers and thereafter form a molecular wire on the surface. This polymerized molecular wire is mechanically stable since it is chemically bonded onto the surface. After polymerization, the system becomes conductive due to the charge transfer from the molecule-surface bonds to their pyridine rings. More importantly, by removing 1.1 electrons from the system, the surface polymer chain is the sole conductive channel. Furthermore, its conducting nature remains robust even under a large external electric field. Our findings open a new window for the fabrication of conductive molecular wires or polymer chains on semiconductor surfaces, and provide insights into the mechanism behind the molecular wire conductivity.It has been a long-standing goal to make conductive molecular wires or linear polymer chains on traditional semiconductors or insulator substrates to satisfy the ongoing miniaturization in electronic devices. Here, we have proposed a surface in situ polymerization reaction for a pre-absorbed molecule, 4-hydrazinyl-3-(pyridin-4-ylmethyl)-benzaldehyde (HPyMB), to produce a conductive molecular wire on a silicon surface. Our first

  19. Aerobic oxidation of benzylic aldehydes to acids catalyzed by iron (Ⅲ) meso-tetraphenylporphyrin chloride under ambient conditions

    2007-01-01

    Highly efficient aerobic oxidation of benzylic aldehydes to the corresponding acids catalyzed by iron (Ⅲ) meso-tetraphenylporphyrin chloride (Fe(TPP)Cl) under ambient conditions was developed. The catalyst has been proved to be an excellent catalyst for the system in the presence of molecular oxygen and isobutryaldehyde at room temperature.

  20. Self-Assembled DNA Hydrogel Based on Enzymatically Polymerized DNA for Protein Encapsulation and Enzyme/DNAzyme Hybrid Cascade Reaction.

    Xiang, Binbin; He, Kaiyu; Zhu, Rong; Liu, Zhuoliang; Zeng, Shu; Huang, Yan; Nie, Zhou; Yao, Shouzhuo

    2016-09-01

    DNA hydrogel is a promising biomaterial for biological and medical applications due to its native biocompatibility and biodegradability. Herein, we provide a novel, versatile, and cost-effective approach for self-assembly of DNA hydrogel using the enzymatically polymerized DNA building blocks. The X-shaped DNA motif was elongated by terminal deoxynucleotidyl transferase (TdT) to form the building blocks, and hybridization between dual building blocks via their complementary TdT-polymerized DNA tails led to gel formation. TdT polymerization dramatically reduced the required amount of original DNA motifs, and the hybridization-mediated cross-linking of building blocks endows the gel with high mechanical strength. The DNA hydrogel can be applied for encapsulation and controllable release of protein cargos (for instance, green fluorescent protein) due to its enzymatic responsive properties. Moreover, this versatile strategy was extended to construct a functional DNAzyme hydrogel by integrating the peroxidase-mimicking DNAzyme into DNA motifs. Furthermore, a hybrid cascade enzymatic reaction system was constructed by coencapsulating glucose oxidase and β-galactosidase into DNAzyme hydrogel. This efficient cascade reaction provides not only a potential method for glucose/lactose detection by naked eye but also a promising modular platform for constructing a multiple enzyme or enzyme/DNAzyme hybrid system. PMID:27526861

  1. The Formation of Polymeric Products in Reactions of Polyvalent Recoil Atoms

    One of the features of the hot-atom reactions obtained as a result of nuclear transformations is that labelled polymeric products can be formed. This tendency is very marked in the case of polyvalent recoil atoms, where the polymer yield can, in certain cases, reach an amount of about 90% of the total activity. The aim of the present research is a study of the behaviour of recoil atoms of sulphur-35 and carbon-14, obtained in the nuclear reactions Cl35(n, p)S35 and N14(n, p) C14 in gas and liquid phases. It can be assumed that in the stabilization process hot carbon atoms form methylene biradicals, whose behaviour, by reason of their reaction capacity, greatly resembles that of atomic sulphur. The investigations were conducted like those for paraffins (CH4, C2H6 ), and for cyclic hydrocarbons (cyclohexane, cyclohexene, benzene). The binary systems comprising hydrocarbons on the one hand and S35 and C14 hot-atom donors on the other were subjected to irradiation. Compounds of CCI4, HCl and ammonia were used as the donors. Irradiation was carried out on a reactor of type IRT-1000 with a thermal neutron flux of 1011-1012 n/cm2. s. It is shown that for various compounds in the liquid phase, up to 60-90% of the sulphur-35 becomes stabilized in the form of a polymer, the yield of which is highly dependent on the composition, passing through the maximum at a nearly equimolecular ratio of components. In the gas phase the polymer yield amounts to 30-40% of the total activity. By means of paper radiochromatography it was established that labelled polymer products have a complex structure and are, at the least, a mixture of compounds of two qualitatively different types whose yield changes in various ways depending upon the ratio of the components. An increase in irradiation time leads to an increase in the labelled polymer yield. In the case of the liquid phase system C6H12-CCl4, the molecular weight of the polymer was determined by capillary diffusion and found to be 5000

  2. Metal nanoparticles/ionic liquid/cellulose: polymeric membrane for hydrogenation reactions

    Marcos Alexandre Gelesky

    2014-01-01

    Full Text Available Rhodium and platinum nanoparticles were supported in polymeric membranes with 10, 20 and 40 µm thickness. The polymeric membranes were prepared combining cellulose acetate and the ionic liquid (IL 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonylimide (BMI.(NTf2. The presence of metal nanoparticles induced an increase in the polymeric membrane surface areas. The increase of the IL content resulted in an improvement of elasticity and decrease in tenacity and toughness, whereas the stress at break was not affected. The presence of IL probably causes an increase in the separation between the cellulose molecules that result in a higher flexibility and processability of the polymeric membrane. The CA/IL/M(0 combinations exhibit an excellent synergistic effect that enhances the activity and durability of the catalyst for the hydrogenation of cyclohexene. The CA/IL/M(0 polymeric membrane displays higher catalytic activity (up to 7.353 h-1 for the 20 mm of CA/IL/Pt(0 and stability than the nanoparticles dispersed only in the IL.

  3. Novel ionic liquids as reaction medium for atom transfer radical polymerization of methyl methacrylate

    Guo Qiao Lai; Fu Min Ma; Zi Qiang Hu; Hua Yu Qiu; Jian Xiong Jiang; Ji Rong Wu; Li Min Chen; Lian Bin Wu

    2007-01-01

    Atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) employing ethyl 2-bromoisobutyrate (EBiB)/CuBr as the initiating system was investigated at 50 ℃ in the absence of any additional ligand in the three room temperature ionic liquids (RTILs), 1-methyl-imidazolium acetate ([mim][CH3COO]), 1-methylimidazolium propionate ([mim][CH3CH2COO]) and 1-methylimidazolium butyrate ([mim] [CH3CH2CH2COO]), respectively. All the polymerization in the three RTILs proceeded in a well-controlled manner. The sequence of the apparent polymerization rate constants was kapp([mim][CH3COO]) > kapp([mim][CH3CH2COO]) > kapp ([mim][CH3CH2CH2COO]).

  4. The effect of a number of selective points in modeling of polymerization reacting Monte Carlo method: studying the initiation reaction

    Sadi, M; Dabir, B

    2003-01-01

    Monte Carlo Method is one of the most powerful techniques to model different processes, such as polymerization reactions. By this method, without any need to solve moment equations, a very detailed information on the structure and properties of polymers are obtained. The number of algorithm repetitions (selected volumes of reactor for modelling which represent the number of initial molecules) is very important in this method. In Monte Carlo method calculations are based on the random number of generations and reaction probability determinations. so the number of algorithm repetition is very important. In this paper, the initiation reaction was considered alone and the importance of number of initiator molecules on the result were studied. It can be concluded that Monte Carlo method will not give accurate results if the number of molecules is not satisfied to be big enough, because in that case , selected volume would not be representative of the whole system.

  5. Effect of degree of polymerization and of temperature on the reactivity of poly(vinyl alcohol) by applying T-for-H exchange reaction

    In order to reveal the effect of the degree of polymerization and of temperature on the reactivity of functional polymers, the hydrogen-isotope exchange reaction between poly(vinyl alcohol) (PVA) having each degree of polymerization and tritiated water vapor (HTO vapor) was dynamically observed at 35-80 deg C in a gas-solid system. The reason of the observation at 35 deg C is to clarify the possibility of the T-for-H exchange reaction at a temperature near the environment. The degree of polymerization of PVA used in this work was 500, 1000, 2000, 2800, or 3500. Applying the A''-McKay plot method to the data obtained in each observation, the rate constant (k) for each PVA in the reaction was calculated. Moreover, the Arrhenius plot for each PVA was made by using the k values. Comparing the k values and the results obtained previously, the following six matters have been clarified. In the temperature range of 35-80 deg C, the T-for-H exchange reaction between HTO vapor and each PVA occurred, and in this case, the atoms participating in the reaction are the H atoms in the OH groups in PVA and T atoms in HTO vapor. The reactivity of each PVA increases with rising temperature, and decreases with increasing the degree of polymerization. The rate of the decreasing of k with increasing the degree of polymerization changes at near the degree of polymerization of 1000, and the rate is fairly large under the degree of 1000. Under the degree of polymerization of 1000, the reactivity of PVA is more affected by the effect of the degree of polymerization than by the effect of temperature, and the reactivity is large when the degree of polymerization is small. Over the degree of polymerization of 1000, the reactivity of PVA is affected by both the degree of polymerization and temperature, and the reactivity is large when temperature is high. For the T-for-H exchange reaction in a gas-solid system, the reaction form is unchanged in the range of 35-80 deg C, and the reactivity at 35

  6. Polymerization dependence of the reactivity of polyacrylamide observed with hydrogen-isotope exchange reaction in a liquid-solid system

    The tritium (T) labeled polyacrylamide (abbreviated PAAm(T) below) was synthesized using the hydrogen-isotope exchange reaction (gas-solid reaction) between HTO vapor and PAAm. The degree of the polymerization of PAAm used was 2800 (and 80000) (abbreviated PAAm2800 (and PAAm80000) below). Using the PAAm(T) thus obtained, the hydrogen-isotope exchange reaction (liquid-solid reaction) between PAAm(T) and each liquid organic material has been observed at the temperature range of 50 to 90degC. Applying the A''-McKay plot method to the data thus obtained, the rate constant (k) for the reaction was obtained. Including k obtained previously, the value of k thus obtained were compared with each other. The following six items have consequently been confirmed. The reactivity of PAAm80000 is larger than that of PAAm2800. PAAm2800 is about 0.4 times PVA2900 in reactivity. The temperature dependence of the reactivity of PAAm2800 is about 6 times that of PVA-2900. The reactivity of these three compounds for several liquid organic materials can roughly be expressed as follows: (PVA2900):(PAAm80000):(PAAm2800)=1:1:0.3. It is possible to use PAAm as a solid material in the liquid-solid reaction (instead of PVA). The method used in this work can be useful to clarify the reactivity of a certain material, and to obtain the data for the prevention of tritium-contamination. (author)

  7. PNPCB heterocycles via thermal and Lewis acid catalyzed trans-hydroborations.

    Fan, Louie; Stephan, Douglas W

    2016-05-31

    The compounds iPr2P(BH3)N3, tBu2PC[triple bond, length as m-dash]CR (R = Ph , tBu , Cy ) and Ph2PC[triple bond, length as m-dash]CR (R = Ph , tBu , Cy ) were reacted to give the products tBu2P(C[triple bond, length as m-dash]CR)NP(BH3)iPr2 (R = Ph , tBu , Cy ) and Ph2P(C[triple bond, length as m-dash]CR)NP(BH3)iPr2 (R = Ph , tBu , Cy ). Subsequent thermally induced or Lewis acid catalyzed intramolecular hydroboration of and afforded the PNPCB heterocyclic compounds Ph2P(C[double bond, length as m-dash]CHPh)NP(BH2)iPr2 and tBu2P(C[double bond, length as m-dash]CHPh)NP(BH2)iPr2, respectively. Compounds and were crystallographically characterized and the mechanisms and implications for the synthesis of inorganic heterocycles are considered. PMID:27177164

  8. Recovery of arabinan in acetic acid-catalyzed hydrothermal pretreatment on corn stover

    Xu, Jian; Hedegaard, Mette Christina; Thomsen, Anne Belinda

    2009-01-01

    Acetic acid-catalyzed hydrothermal pretreatment was done on corn stover under 195 °C, 15 min with the acetic acid ranging from 5 × 10−3 to 0.2 g g−1 corn stover. After pretreatment, the water-insoluble solids (WISs) and liquors were collected respectively. Arabinan recoveries from both WIS and...... liquors were investigated. The results indicate that there was no detectable arabinan left in the WIS when the acetic acid of 0.1 and 0.2 g g−1 corn stover were used in the pretreatment. The arabinan contents in the other WISs were not more than 10%. However, the arabinan found in the liquors was not...... covering the amount of arabinan released from the raw corn stover. For the arabinan recovery from liquor fractions, the highest of 43.57% was obtained by the pretreatment of acetic acid of 0.01 g g−1 of corn stover and the lowest was only 26.77% when the acetic acid of 0.2 g g−1 corn stover was used. As...

  9. Photochemical Production of Interpenetrating Polymer Networks; Simultaneous Initiation of Radical and Cationic Polymerization Reactions

    Jean Pierre Fouassier

    2014-10-01

    Full Text Available In this paper, we propose to review the ways to produce, through photopolymerization, interpenetrating polymer networks (IPN based, e.g., on acrylate/epoxide or acrylate/vinylether blends and to outline the recent developments that allows a one-step procedure (concomitant radical/cationic polymerization, under air or in laminate, under various irradiation conditions (UV/visible/near IR; high/low intensity sources; monochromatic/polychromatic sources; household lamps/laser diodes/Light Emitting Diodes (LEDs. The paper illustrates the encountered mechanisms and the polymerization profiles. A short survey on the available monomer systems and some brief examples of the attained final properties of the IPNs is also provided.

  10. Solid state polymerization of pet/pc extruded blend: effect of reaction temperature on thermal, morphological and viscosity properties

    Luis Claudio Mendes

    2014-08-01

    Full Text Available A systematic study of solid state polymerization (SSP, concerning the melt extruded blend of poly(ethylene terephthalate/polycarbonate (catalyzed PET/PC, 80/20 wt %, as a function of temperature range (180-190°C for a fixed time (6 h is presented. The materials obtained were evaluated by differential scanning calorimetry (DSC, thermogravimetry/derivative thermogravimetry (TG/DTG, optical microscopy (OM and intrinsic viscosity (IV analysis. After SSP, at all reaction temperatures, PET glass transition and heating crystallization temperatures slightly decreased, melting temperature slightly increased, while degree of crystallinity was practically invariable. The DTG curves indicated that, at least, three phases remained. The OM images revealed that the morphology is constituted of a PET matrix and a PC dispersed phase. In the interfacial region we noticed the appearance of structures like bridges linking the matrix and the dispersed domains. These bridges were correlated to the PET/PC block copolymer obtained during blending in the molten state. IV increased for all polymerization temperatures, due to the occurrence of PET chain extension reactions - esterification and transesterification. The IV range for bottle grade PET was achieved.

  11. N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids

    Graphical abstract: N, S co-doped CDs with orange luminescence were synthesized through one-pot polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. - Highlights: • N, S co-doped CDs were synthesized by one-pot carbonization reactions, using two different amino acids as raw materials. • The as-obtained N, S co-doped CDs showed unique orange fluorescence under excitation at room temperature. • The products could be applied in the imaging of peritoneal macrophages of mice without any functionalization. - Abstract: For practical application, it is highly desirable to obtain carbon dots (CDs) through environmentally benign synthetic route, using green raw materials. On the other hand, at present, most of CDs reported in the literature showed blue, green and yellow emission. Therefore it is still necessary to develop new strategy to obtain CDs with longer wavelength emission in order to expand their application range. Toward this end, in this study, N, S co-doped CDs were synthesized through one-pot condensation polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. Taking the reaction of L-serine with L-cystine as an example, the as-obtained products were characterized by various techniques such as transmission electron microscopy, elemental analysis, Fourier-transform infrared spectrum, X-ray photoelectron spectra, and so on. Interestingly, N, S co-doped CDs displayed unique orange emission at room temperature. The possible photoluminescence mechanism of N, S co-doped CDs was proposed. Furthermore, the as-synthesized N, S co-doped CDs were directly applied in the imaging of peritoneal macrophages of mice

  12. LC-MS/MS analysis of uncommon paracetamol metabolites derived through in vitro polymerization and nitration reactions in liquid nitrogen.

    Trettin, Arne; Jordan, Jens; Tsikas, Dimitrios

    2014-09-01

    Paracetamol (acetaminophen, APAP) is a commonly used analgesic drug. Known paracetamol metabolites include the glucuronide, sulfate and mercapturate. N-Acetyl-benzoquinonimine (NAPQI) is considered the toxic intermediate metabolite of paracetamol. In vitro and in vivo studies indicate that paracetamol is also metabolized to additional poorly characterized metabolites. For example, metabolomic studies in urine samples of APAP-treated mice revealed metabolites such as APAP-sulfate-APAP and APAP-S-S-APAP in addition to the classical phase II metabolites. Here, we report on the development and application of LC-MS and LC-MS/MS approaches to study reactions of unlabelled and (2)H-labelled APAP with unlabelled and (15)N-labelled nitrite in aqueous phosphate buffers (pH 7.4) upon their immersion into liquid nitrogen (-196°C). In mechanistic studies, these reactions were also studied in aqueous buffer prepared in (18)O-labelled water. LC-MS and LC-MS/MS analyses were performed on a reverse-phase material (C18) using gradient elution (2mM ammonium acetate/acetonitrile), in positive and negative electrospray mode. We identified a series of APAP metabolites including di-, tri- and tetra-APAP, mono- and di-nitro-APAP and nitric ester of di-APAP. Our study indicates that nitrite induces oxidation, i.e., polymerization and nitration of APAP, when buffered APAP/nitrite solutions are immersed into liquid nitrogen. These reactions are specific for nitrite with respect to nitrate and do not proceed via intermediate formation of NAPQI. Potassium ions and physiological saline but not thiols inhibit nitrite- and shock-freeze-induced reactions of paracetamol. The underlying mechanism likely involves in situ formation of NO2 radicals from nitrite secondary to profound pH reduction (down to pH 1) and disproportionation. Polymeric paracetamol species can be analyzed as pentafluorobenzyl derivatives by LC-MS but not by GC-MS. PMID:24365200

  13. N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids

    Zeng, Ya-Wen [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Ma, De-Kun, E-mail: dkma@wzu.edu.cn [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Wang, Wei; Chen, Jing-Jing; Zhou, Lin; Zheng, Yi-Zhou [Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 (China); Yu, Kang, E-mail: yukang62@126.com [Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 (China); Huang, Shao-Ming, E-mail: smhuang@wzu.edu.cn [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China)

    2015-07-01

    Graphical abstract: N, S co-doped CDs with orange luminescence were synthesized through one-pot polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. - Highlights: • N, S co-doped CDs were synthesized by one-pot carbonization reactions, using two different amino acids as raw materials. • The as-obtained N, S co-doped CDs showed unique orange fluorescence under excitation at room temperature. • The products could be applied in the imaging of peritoneal macrophages of mice without any functionalization. - Abstract: For practical application, it is highly desirable to obtain carbon dots (CDs) through environmentally benign synthetic route, using green raw materials. On the other hand, at present, most of CDs reported in the literature showed blue, green and yellow emission. Therefore it is still necessary to develop new strategy to obtain CDs with longer wavelength emission in order to expand their application range. Toward this end, in this study, N, S co-doped CDs were synthesized through one-pot condensation polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. Taking the reaction of L-serine with L-cystine as an example, the as-obtained products were characterized by various techniques such as transmission electron microscopy, elemental analysis, Fourier-transform infrared spectrum, X-ray photoelectron spectra, and so on. Interestingly, N, S co-doped CDs displayed unique orange emission at room temperature. The possible photoluminescence mechanism of N, S co-doped CDs was proposed. Furthermore, the as-synthesized N, S co-doped CDs were directly applied in the imaging of peritoneal macrophages of mice.

  14. Polymerization of euphorbia oil with Lewis acid in carbon dioxide media

    Boron trifluoride diethyl etherate (BF3-OEt2) Lewis acid catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, in liquid carbon dioxide was conducted in an effort to develop useful vegetable oil based polymers. The resulting polymers (RPEO) were characterized by FTIR, 1H-...

  15. Tandem Suzuki-Miyaura coupling/acid-catalyzed cyclization between vinyl ether boronates and vinyl halides: a concise approach to polysubstituted furans.

    Butkevich, Alexey N; Meerpoel, Lieven; Stansfield, Ian; Angibaud, Patrick; Corbu, Andrei; Cossy, Janine

    2013-08-01

    Polysubstituted 2-(ω-hydroxyalkyl)furans were prepared by tandem Suzuki-Miyaura coupling/acid-catalyzed cyclization starting from appropriately substituted 3-haloallylic alcohols and dihydrofuran-, dihydropyran- or glycal-derived pinacol boronates. PMID:23855589

  16. Polymerization-induced phase separation in polyether-sulfone modified epoxy resin systems: effect of curing reaction mechanism

    2007-01-01

    Polyethersulfone (PES)-modified epoxy systems with stepwise reaction were studied throughout the entire curing process by using optical microscopes, time-resolved light scattering (TRLS), and a rheolometry instrument compared with that of chainwise polymerization. The results suggested that the phase separation process is mainly controlled by the diffusion of epoxy oligomers for stepwise mechanism system and by that of epoxy monomers for chainwise mechanism system. In case of high PES content (SPES-20%) light-scattering results showed a viscoelastic phase separation and the characteristic relaxation time of phase separation can be described well by the WLF equation. However, in the case of low PES content (SPES-14%) secondary phase separation phenomenon was observed by Optical Microscope and further demonstrated by rheological study.

  17. Laboratory studies of the reactive uptake of biogenic species: Evidence for the direct polymerization of isoprene, terpenes and sesquiterpenes on acidic aerosols

    Li, S.; Liggio, J.; Mihele, C.; Brook, J.

    2006-12-01

    Numerous studies on heterogeneous reactions have shown that polymerization of semi-volatile and volatile organic compounds occurs in aerosols. To date, most evidence suggests that gaseous hydrocarbon oxidation products containing carbonyl functionality are the prime candidates for these processes. Such processes involve primarily hydration, acetal formation, polymerization and aldol-condensation reactions, resulting in oligomer products of potential significance with respect to secondary organic aerosol formation (SOA). However, little information on the heterogeneous reactions of unsaturated hydrocarbons (olefins) is known. Given that biogenic species, many of them unsaturated, make up a considerable portion of hydrocarbons emitted globally, direct reactive uptake of these compounds on aerosols would also potentially be a major source of SOA. In the present study, individual biogenic hydrocarbons were exposed to pre-existing acidic sulfate aerosols within a 2 m3 Teflon reaction chamber under varying relative humidity conditions. An Aerosol Mass Spectrometer was used to quantify any subsequent increase in organic mass as a function of time, and to obtain information regarding the structure of products via aerosol mass spectra. A Proton Transfer Reaction Mass Spectrometer was used to measure the gas-phase concentrations of isoprene, terpenes (?-pinene, ?-pinene, limonene, and carene) and sesquiterpenes (?-caryophylene and humulene) in the reaction chamber. Results from these experiments show that a significant amount of these compounds are taken up by the acidic aerosols rapidly, in a polymerization process which was highly dependent on the particle acidity. This polymerization mechanism likely involves the oxygenation of the resulting polymers via acid catalyzed hydration. The uptake of the unsaturated hydrocarbons suggests that gas-phase oxidation of biogenics to condensable products is not the only route to SOA. Details of the polymerization and hydration

  18. Electrophoresis of derivatized polyethylene glycols: A useful method for monitoring of reactions on soluble polymeric carrier

    Šebestík, Jaroslav; Niederhafner, Petr; Šafařík, Martin; Hlaváček, Jan

    2005-01-01

    Roč. 11, č. 4 (2005), 291-296. ISSN 1573-3149 R&D Projects: GA ČR(CZ) GA203/03/1362; GA ČR(CZ) GA203/04/1421 Institutional research plan: CEZ:AV0Z4055905 Keywords : electrophoresis * PEG * peptides * monitoring of reactions Subject RIV: CC - Organic Chemistry

  19. Chapter 19 (Part 3): Enolate Reactions

    Christiansen, Mike A

    2012-01-01

    In this video I'll continue teaching you about various reactions (with mechanisms) that we can do using carbonyl compounds, due to the acidities of their alpha-hydrogens. These reactions include the aldol reaction, the Claisen condensation, the Robinson annulation, acid-catalyzed decarboxylation, and the malonic ester synthesis. --Dr. Mike Christiansen from Utah State University

  20. Tannic acid Catalyzed an Efficient Synthesis of 2,4,5-Triaryl-1H-Imidazole

    Shitole Nana Vikram

    2013-05-01

    Full Text Available Tannic acid (C76H52O46 has been found to be an efficient catalyst for one-pot synthesis of 2,4,5-triaryl substituted imidazoles by the reaction of an arylaldehyde, benzyl/benzoin and an ammonium acetate. The short reaction time and excellent yields making this protocol practical and economically attractive.

  1. Synthesis of pteroylglutamic acid-3',5'-2H2 by trifluoroacetic acid catalyzed exchange with deuterium oxide

    Pteroylglutamic acid (PGA) was deuterated by trifluoroacetic acid catalyzed exchange with deuterium oxide. The product, pteroylglutamic acid-3',5'-2H2, was specifically deuterated in the aromatic protons of the p-aminobenzoyl (PABA) moiety; the protons on C7 and C9 and in the glutamic acid residue were not exchanged. Deuterium incorporation was measured by chemical ionization mass spectrometry (CI-MS). Pteroylglutamates were cleaved by a base-catalyzed, oxidative hydrolysis to PABA, which was converted to the methyl ester, N-trifluoroacetate for analysis by gas chromatography-chemical ionization-mass spectrometry. Products from the exchange typically contained 1 percent 2H1 and 90 percent 2H2 species. The procedure may be used to label specifically various analogs of PGA with deuterium in the PABA portion of the molecule

  2. Kinetics and mechanism of the acid-catalyzed decomposition of omega-diazoacetophenones and their o-carbomethyoxy derivatives

    Denisova, T.G.

    1988-01-01

    The kinetics of the acid-catalyzed decomposition of omega-diazoacetophenones and their o-carbomethoxy derivatives have been studied and their rate constants and activation energies measured in dioxane-H/sub 2/O (D/sub 2/O) and aqueous (D/sub 2/O)-dioxane mixtures (40:60 by volume) in the presence of H/sub 2/SO/sub 4/ (D/sub 2/SO/sub 4/), as well as in acetic and deuteroacetic acids, in the temperature range 290-328 K. Based on the results of k/sub H//k/sub D/ and ..delta..S not identical to measurements, assumptions have been made concerning the mechanism of the catalytic decomposition of the indicated diazoketones.

  3. Acid-catalyzed conversion of mono- and poly-sugars into platform chemicals: effects of molecular structure of sugar substrate.

    Hu, Xun; Wu, Liping; Wang, Yi; Song, Yao; Mourant, Daniel; Gunawan, Richard; Gholizadeh, Mortaza; Li, Chun-Zhu

    2013-04-01

    Hydrolysis/pyrolysis of lignocellulosic biomass always produces a mixture of sugars with distinct structures as intermediates or products. This study tried to elucidate the effects of molecular structure of sugars on their acid-catalyzed conversions in ethanol/water. Location of carbonyl group in sugars (fructose versus glucose) and steric configuration of hydroxyl groups (glucose versus galactose) significantly affected yields of levulinic acid/ester (fructose>glucose>galactose). The dehydration of fructose to 5-(hydroxymethyl)furfural produces much less soluble polymer than that from glucose and galactose, which results in high yields of levulinic acid/ester from fructose. Anhydrate sugar such as levoglucosan tends to undergo the undesirable decomposition to form less levulinic acid/ester. Catalytic behaviors of the poly-sugars (sucrose, maltose, raffinose, β-cyclodextrins) were determined much by their basic units. However, their big molecular sizes create the steric hindrance that significantly affects their followed conversion over solid acid catalyst. PMID:23454803

  4. Molecular mechanism of acid-catalyzed hydrolysis of peptide bonds using a model compound.

    Pan, Bin; Ricci, Margaret S; Trout, Bernhardt L

    2010-04-01

    The stability of peptide bonds is a critical aspect of biological chemistry and therapeutic protein applications. Recent studies found elevated nonenzymatic hydrolysis in the hinge region of antibody molecules, but no mechanism was identified. As a first step in providing a mechanistic interpretation, this computational study examines the rate-determining step of the hydrolytic reaction of a peptide bond under acidic pH by a path sampling technique using a model compound N-MAA. Most previous computational studies did not include explicit water molecules, whose effects are significant in solution chemistry, nor did they provide a dynamic picture for the reaction process in aqueous conditions. Because no single trajectory can be used to describe the reaction dynamics due to fluctuations at finite temperatures, a variant version of the transition path sampling technique, the aimless shooting algorithm, was used to sample dynamic trajectories and to generate an ensemble of transition trajectories according to their statistical weights in the trajectory space. Each trajectory was computed as the time evolution of the molecular system using the Car-Parrinello molecular dynamics technique. The likelihood maximization procedure and its modification were used in extracting dynamically relevant degrees of freedom in the system, and approximations of the reaction coordinate were compared. Its low log-likelihood score and poor p(B) histogram indicate that the C-O distance previously assumed as the reaction coordinate for the rate-determining step is inadequate in describing the dynamics of the reaction. More than one order parameter in a candidate set including millions of geometric quantities was required to produce a convergent reaction coordinate model; its involvement of many degrees of freedom suggests that this hydrolytic reaction step is very complex. In addition to affecting atoms directly involved in bond-making and -breaking processes, the water network also has

  5. Ruthenium Hydride/Brønsted Acid-Catalyzed Tandem Isomerization/N-Acyliminium Cyclization Sequence for the Synthesis of Tetrahydro-β-carbolines

    Hansen, Casper Lykke; Clausen, Janie Regitse Waël; Ohm, Ragnhild Gaard;

    2013-01-01

    This paper describes an efficient tandem sequence for the synthesis of 1,2,3,4-tetrahydro-β-carbolines (THBCs) relying on a ruthenium hydride/Brønsted acid- catalyzed isomerization of allylic amides to N-acyliminium ion intermediates which are trapped by a tethered indolenucleophile. The...

  6. Lewis-acid catalyzed depolymerization of Protobind lignin in supercritical water and ethanol

    Guvenatam, Burcu; Heeres, Erik H.J.; Pidko, Evgeny A.; Hensen, Ernie J. M.

    2016-01-01

    The use of metal acetates, metal chlorides and metal triflates as Lewis acid catalysts for the depolymerization of soda lignin under supercritical conditions was investigated. The reactions were carried out at 400 degrees C in water and ethanol. Lignin conversion in supercritical water led to format

  7. The Lewis acid catalyzed synthesis of hyperbranched Oligo(glycerol-diacid)s in aprotic polar media

    The Lewis-acid, titanium (IV) butoxide (15% (w/w; catalyst/reactants)), was used to catalyze the condensation of 0.05 mol glycerol with 0.10 mol of either succinic acid, glutaric acid, or azelaic acid to produce oligomers. The reactions were refluxed in dilute solutions of dimethylsulfoxide (DMSO) o...

  8. Sulfamic Acid-Catalyzed Lead Perovskite Formation for Solar Cell Fabrication on Glass or Plastic Substrates.

    Guo, Yunlong; Sato, Wataru; Shoyama, Kazutaka; Nakamura, Eiichi

    2016-04-27

    Lead perovskite materials such as methylammonium triiodoplumbate(II) (CH3NH3PbI3, PV) are promising materials for printable solar cell (SC) applications. The preparation of PV involves a series of energetically costly cleavages of the μ-iodo bridges via conversion of a mixture of PbI2 (PI) and methylammonium iodide (CH3NH3I, MAI) in N,N-dimethylformamide (DMF) into a precursor solution containing a polymeric strip of a plumbate(II) dimer [(MA(+))2(PbI3(-))2·(DMF)2]m, which then produces a perovskite film with loss of DMF upon spin-coating and heating of the substrate. We report here that the PI-to-PV conversion and the PV crystal growth to micrometer size can be accelerated by a small amount of zwitterionic sulfamic acid (NH3SO3, SA) and that sulfamic acid facilitates electron transfer to a neighboring electron-accepting layer in an SC device. As a result, an SC device on indium tin oxide (ITO)/glass made of a 320 nm thick PV film using 0.7 wt % SA showed a higher short-circuit current, open-circuit voltage, and fill factor and hence a 22.5% higher power conversion efficiency of 16.02% compared with the device made without SA. The power conversion efficiency value was reproducible (±0.3% for 25 devices), and the device showed very small hysteresis. The device without any encapsulation showed a respectable longevity on a shelf under nitrogen under ambient light. A flexible device similarly fabricated on ITO/poly(ethylene naphthalate) showed an efficiency of 12.4%. PMID:27054265

  9. Novel Routes to Ethylene Glycol Synthesis via Acid-Catalyzed Carbonylation of Formaldehyde and Dimethoxymethane

    Celik, Fuat Emin

    2010-01-01

    Carbon-carbon bond forming carbonylation reactions were investigated as candidates to replace ethene epoxidation as the major source of ethylene glycol production. This work was motivated by the potentially lower cost of carbon derived from synthesis gas as compared to ethylene. Synthesis gas can be produced from relatively abundant and cheap natural gas, coal, and biomass resources whereas ethylene is derived from increasingly scarce and expensive crude oil. From synthesis gas, a range of...

  10. Metathesis Polymerization Reactions Induced by the Bimetallic Complex (Ph4P2[W2(μ-Br3Br6

    Despoina Chriti

    2015-12-01

    Full Text Available The reactivity of the bimetallic complex (Ph4P2[W2(μ-Br3Br6] ({W 2.5 W}7+, a′2e3 towards ring opening metathesis polymerization (ROMP of norbornene (NBE and some of its derivatives, as well as the mechanistically related metathesis polymerization of phenylacetylene (PA, is presented. Our results show that addition of a silver salt (AgBF4 is necessary for the activation of the ditungsten complex. Polymerization of PA proceeds smoothly in tetrahydrofuran (THF producing polyphenylacetylene (PPA in high yields. On the other hand, the ROMP of NBE and its derivatives is more efficient in CH2Cl2, providing high yields of polymers. 13C Cross Polarization Magic Angle Spinning (CPMAS spectra of insoluble polynorbornadiene (PNBD and polydicyclopentadiene (PDCPD revealed the operation of two mechanisms (metathetic and radical for cross-linking, with the metathesis pathway prevailing.

  11. Upcycling potato peel waste - Data of the pre-screening of the acid-catalyzed liquefaction.

    Ventura, Patrícia; Bordado, João Carlos Moura; Mateus, Maria Margarida; Galhano Dos Santos, Rui

    2016-06-01

    Herein, the data acquired regarding the preliminary and exploratory experiments conducted with potato peel as a biomass source for the direct thermochemical liquefaction is disclosed. The procedure was carried out in a 2-ethylhexanol/DEG solvent mixture at 160 °C in the presence of p-Toluenesulfonic acid. The adopted procedure afforded a bio-oil in high yield (up to 93%) after only 30 min. For longer reaction times, higher amounts of solid residues were obtained leading, consequently, to lower yields. PMID:27182538

  12. An Efficient Procedure for Esterification of Aryloxyacetic Acid and Arylthioacetic Acid Catalyzed by Silica Sulfuric Acid

    LI,Hong-Ya; LI,Ji-Tai; LI,Hui-Zhang

    2004-01-01

    @@ Aryloxyacetate and arylthioacetate are wildly used in herbicides, plant regulator and insecticides. Recently, Wille et al. have reported that methyl aryloxyacetate is an efficient agent to prevent and treat allergic contact dermatitis.[1] The most popular synthesis is by heating sodium phenoxide (mercaptide) with ethyl chloroacetate in DMF,[2] or by the esterification of acid with alcohol using concentrated H2SO4 as catalyst.[3] In this paper, synthesis of aryloxyacetate and aryl thioacetate from aryloxyacetic acid and arylthioacetic acid respectively in ether catalyzed by silica sulfuric acid in 83%~94% yields is described. The catalyst is reused for 3 times without significant loss of activity (Entry 4). Compared with common procedures, the present procedure possesses the advantages of the operational simplicity, short reaction time,less-corrosion, high yield and reusable catalyst.

  13. EPR spectroscopy of catalytic systems based on nickel complexes of 1,4-diaza-1,3-butadiene (alpha-diimine) ligands in hydrogenation and polymerization reactions

    The catalytic systems based on .-diimine complexes of Ni(0) and Ni(II) of the general formulas NiBr2(DAD-R) (R = -C3H7 or -CH3) and Ni(DAD-CH3)2 (DAD(-C3H7) = 1,4-bis(2,6-diiso-propylphenyl)-2,3-(dimethyl-1,4-diazabuta-1,3-diene, DAD(-CH3) = 1,4-bis 2,6-dimethylphenyl)-2,3-dimethyl-1,4-diazabuta-1,3-diene), with Lewis acids (AlEt3, AlEt2Cl, AlEtCl2, B(F5C6)3, BF3 centre dot OEt2) in hydrogenation and polymerization reactions were investigated by the EPR spectroscopy method. The Ni(I) complexes of a (DAD-R)NiX2AlXy(C2H5)3-y composition (instead of the aluminum atom may be a boron atom) were identified where R = -CH3 or -C3H7, X = Br, X = Cl or -C2H5. The .-diimines radical-anions are included in the derivatives of aluminum or boron. It is found that there occur oxidation reactions between Ni(DAD-CH3)2 and aluminum organic compounds or boron derivatives, resulting in the formation of paramagnetic complexes. It is shown that there is no direct relationship between activity in polymerization or hydrogenation reactions and concentration of paramagnetic particles.

  14. Lewis acid-catalyzed in situ transesterification/esterification of microalgae in supercritical ethanol.

    Jin, Binbin; Duan, Peigao; Xu, Yuping; Wang, Bing; Wang, Feng; Zhang, Lei

    2014-06-01

    The activities of several Lewis acid catalysts such SnCl2, FeCl3, ZnCl2, AlCl3, and NbCl5 for the in situ transesterification/esterification of lipid contained within a microalga (Chlorella pyrenoidosa) in ethanol at 350°C were examined to identify the most suitable catalyst in term of crude biodiesel (CBD) yield. Of those catalysts tested, ZnCl2 showed the highest performance toward the CBD production. Using ZnCl2 as catalyst, effects of reaction temperature (200-370 °C), time (0-120 min), ethanol to microalga ratio (EtOH:MA) (5/5-40/5), catalyst loading (0-30 wt.%), and algae moisture (0-80 wt.%) on the yields of product fractions and the properties of CBD were studied. The presence of ZnCl2 not only promoted the production of CBD but also showed activities toward the deoxygenation and denitrogenation of CBD. The moisture content in the starting material is the most influential factor affecting the yield and properties of CBD. PMID:24768889

  15. Synthesis and characterization of liquid-crystalline supramolecular architecture by a combination of molecular recognition and polymerization reaction

    Ahn, Cheol-Hee

    In nature, self-assembly with well defined shapes obtained from combinations of polymeric building blocks with complex architecture are abundant since they are responsible for the production of structural materials and for the generation of some of the most efficient mechanisms. One of the many roles liquid crystallinity plays in natural systems is in their self-assembly and organization. The assembly of these complex natural systems is largely under thermodynamic control which is manipulated by their liquid crystallinity. The goal of this thesis is to use Nature as a model for the development of new synthetic concepts and strategies in the field of polymer science. The two models selected are rod-like and icosahedral viruses. The strategy involved in this thesis requires the design of libraries of monodendritic building blocks with well defined flat tapered and conical shapes which self-assemble into cylindrical and respectively spherical shapes. By analogy with viruses these supermolecules will generated hexagonal columnar and spherical cubic thermotropic phases. These liquid crystalline phases allow the determination of their shape by X-ray diffraction and Scanning Force Microscopy. Libraries of flat tapered and conical monodendritic building blocks will be functionalized with polymerizable groups and polymerized to generate the first examples of polymers of cylindrical and spherical shapes with diameter and length, and diameter controlled at the nanoscale level. The organization of these dendritic monomers in a liquid crystalline assembly is also used to aggregate their polymerizable groups in a reactor of artificially enhanced concentration and restricted geometry during the polymerization process and therefore, generate a new approach to the control of polymerization. The resulting liquid crystallinity provides access to the thermodynamically controlled assembly and characterization of these newly developed polymers. With few exceptions, there is no precedent

  16. Reaction calorimetry in supercritical fluids: a study of the dispersion polymerization of methyl methacrylate in supercritical carbon dioxide

    Fortini, Sophie

    2006-01-01

    This thesis is devoted to the study of the dispersion polymerization of methyl methacrylate in supercritical carbon dioxide (scCO2), using a poly(dimethylsiloxane) macromonomer (PDMS macromonomer) as stabilizer. Supercritical fluids (SCF) and SCF mixtures are characterized by a temperature and a pressure above their critical point(s), which is the last point on the vaporization line of a pure component. This means that these fluids operate from moderate to high pressure. They can be used in v...

  17. Reaction calorimetry in supercritical fluids: a study of the dispersion polymerization of methyl methacrylate in supercritical carbon dioxide

    Fortini, Sophie; De Meyer, Thierry

    2007-01-01

    This thesis is devoted to the study of the dispersion polymerization of methyl methacrylate in supercritical carbon dioxide (scCO2), using a poly(dimethylsiloxane) macromonomer (PDMS macromonomer) as stabilizer. Supercritical fluids (SCF) and SCF mixtures are characterized by a temperature and a pressure above their critical point(s), which is the last point on the vaporization line of a pure component. This means that these fluids operate from moderate to high pressure. They can be used in v...

  18. One-pot synthesis of hyperbranched poly(amido amine) clicked with a sugar shell via Michael addition polymerization and thiol click reaction

    2010-01-01

    This paper reports the production of glycopolymers via a simple and flexible method.A novel glycopolymer with a hyperbranched poly(amido amine) core and a sugar shell (HPAA-GLc) was synthesized by using thiol-ene click reaction via facile one-pot method.Hyperbranched poly(amido amine) with vinyl terminals was first synthesized by Michael addition polymerization of N,N’-methylene bisacrylamide (MBA) with 1-(2-aminoethyl) piperazine (AEPZ).Subsequently,thiol-ene click reaction between vinyl units of hyperbranched poly(amido amine) and thio-glucose was performed in situ.Based on the NMR result,all the vinyl groups reacted with thiol-glucose in 120 min.Strong photoluminescence emission was observed from the aqueous solution of HPAA-GLc.

  19. Aza‐Michael addition reaction: Post‐polymerization modification and preparation of PEI/PEG‐based polyester hydrogels from enzymatically synthesized reactive polymers

    Hoffmann, Christian; Stuparu, Mihaiela C.; Daugaard, Anders Egede;

    2015-01-01

    The utility of aza‐Michael addition chemistry for post‐polymerization functionalization of enzymatically prepared polyesters is established. For this, itaconate ester and oligoethylene glycol are selected as monomers. A Candida Antarctica lipase B catalyzed polycondensation reaction between the two...... monomers provides the polyesters, which carry an activated carbon‐carbon double bond in the polymer backbone. These electron deficient alkenes represent suitable aza‐Michael acceptors and can be engaged in a nucleophilic addition reaction with small molecular mono‐amines (aza‐Michael donors) to yield...... functionalized linear polyesters. Employing a poly‐amine as the aza‐Michael donor, on the other hand, results in the formation of hydrophilic polymer networks....

  20. Amino acid-catalyzed seed regrowth synthesis of photostable high fluorescent silica nanoparticles with tunable sizes for intracellular studies

    Size-controlled fluorescence silica nanoparticles (NPs) are widely used for nanotoxicological studies, and diagnostic and targeted therapies. Such particles can be easily visualized and localized within cell environments and their interactions with cellular components can be monitored. We developed an amino acid-catalyzed seed regrowth technique (ACSRT) to synthesize spherical rhodamine-doped silica NPs with tunable sizes, low polydispersity index as well as high labeling efficiency and enhanced fluorescence photostability. Via ACSRT, fluorescent silica NPs can be obtained by introducing the fluorophore in seed formation step, while a precise control over particle size can be achieved by simply adjusting the concentration of reactants in the regrowth step. Unlike the conventional methods, the proposed ACSRT permits the synthesis of fluorescent silica NPs in a water-based system, without the use of any surfactants and co-surfactants. By this approach, additional linkers for covalent coupling of the fluorophore to silica matrix can be omitted, while a remarkable doping efficiency is achieved. The suitability of these particles for biomedical application is demonstrated by in vitro tests with normal and malignant bone cells. We show that the particles can be easily and unambiguously visualized by a conventional fluorescence microscope, localized, and distinguished within intracellular components. In addition, it is presented that the cellular uptake and cytotoxic profile of silica NPs are strongly correlated to the particle size, concentration, and cell line. The results of in vitro experiments demonstrate that tunable fluorescent silica NPs synthesized with ACSRT can be potentially used for toxicological assessments and nanomedical studies

  1. Visual detection of glial cell line-derived neurotrophic factor based on a molecular translator and isothermal strand-displacement polymerization reaction

    Zhang LY

    2015-03-01

    Full Text Available Li-Yong Zhang,1,* Tao Xing,1,* Li-Xin Du,1,* Qing-Min Li,2 Wei-Dong Liu,1 Ji-Yue Wang,1 Jing Cai31Department of neurosurgery, Liaocheng People’s Hospital, Liaocheng, Shandong, People’s Republic of China; 2Department of Neurosurgery, Tai’an Central Hospital, Tai’an, Shandong, People’s Republic of China; 3Department of Neurosurgery, LinYi People Hospital, LinYi, Shandong, People’s Republic of China*These authors contributed equally to this workBackground: Glial cell line-derived neurotrophic factor (GDNF is a small protein that potently promotes the survival of many types of neurons. Detection of GDNF is vital to monitoring the survival of sympathetic and sensory neurons. However, the specific method for GDNF detection is also un-discovered. The purpose of this study is to explore the method for protein detection of GDNF.Methods: A novel visual detection method based on a molecular translator and isothermal strand-displacement polymerization reaction (ISDPR has been proposed for the detection of GDNF. In this study, a molecular translator was employed to convert the input protein to output deoxyribonucleic acid signal, which was further amplified by ISDPR. The product of ISDPR was detected by a lateral flow biosensor within 30 minutes.Results: This novel visual detection method based on a molecular translator and ISDPR has very high sensitivity and selectivity, with a dynamic response ranging from 1 pg/mL to 10 ng/mL, and the detection limit was 1 pg/mL of GDNF.Conclusion: This novel visual detection method exhibits high sensitivity and selectivity, which is very simple and universal for GDNF detection to help disease therapy in clinical practice.Keywords: lateral flow biosensor, molecular translator, isothermal strand-displacement polymerization reaction

  2. Cyclization Phenomena in the Sol-Gel Polymerization of a,w-Bis(triethoxysilyl)alkanes and Incorporation of the Cyclic Structures into Network Silsesquioxane Polymers

    Alam, T.M.; Carpenter, J.P.; Dorhout, P.K.; Greaves, J.; Loy, D.A.; Shaltout, R.; Shea, K.J.; Small, J.H.

    1999-01-04

    Intramolecular cyclizations during acid-catalyzed, sol-gel polymerizations of ct,co- bis(tietioxysilyl)aWmes substintidly lengtien gelties formonomers witietiylene- (l), propylene- (2), and butylene-(3)-bridging groups. These cyclizations reactions were found, using mass spectrometry and %i NMR spectroscopy, to lead preferentially to monomeric and dimeric products based on six and seven membered disilsesquioxane rings. 1,2- Bis(triethoxysilyl)ethane (1) reacts under acidic conditions to give a bicyclic drier (5) that is composed of two annelated seven membered rings. Under the same conditions, 1,3- bis(triethoxysilyl)propane (2), 1,4-bis(triethoxysilyl)butane (3), and z-1,4- bis(triethoxysilyl)but-2-ene (10) undergo an intramolecular condensation reaction to give the six membemd and seven membered cyclic disilsesquioxanes 6, 7, and 11. Subsequently, these cyclic monomers slowly react to form the tricyclic dirners 8,9 and 12. With NaOH as polymerization catalyst these cyclic silsesquioxanes readily ~aeted to afford gels that were shown by CP MAS z%i NMR and infr=d spectroscopes to retain some cyclic structures. Comparison of the porosity and microstructwe of xerogels prepared from the cyclic monomers 6 and 7 with gels prepared directly from their acyclic precursors 2 and 3, indicate that the final pore structure of the xerogels is markedly dependent on the nature of the precursor. In addition, despite the fact that the monomeric cyclic disilsesquioxane species can not be isolated from 1-3 under basic conditions due to their rapid rate of gelation, spectroscopic techniques also detected the presence of the cyclic structures in the resulting polymeric gels.

  3. Effects of Soluble Lignin on the Formic Acid-Catalyzed Formation of Furfural: A Case Study for the Upgrading of Hemicellulose.

    Dussan, Karla; Girisuta, Buana; Lopes, Marystela; Leahy, James J; Hayes, Michael H B

    2016-03-01

    A comprehensive study is presented on the conversion of hemicellulose sugars in liquors obtained from the fractionation of Miscanthus, spruce bark, sawdust, and hemp by using formic acid. Experimental tests with varying temperature (130-170 °C), formic acid concentration (10-80 wt %), carbohydrate concentrations, and lignin separation were carried out, and experimental data were compared with predictions obtained by reaction kinetics developed in a previous study. The conversions of xylose and arabinose into furfural were inherently affected by the presence of polymeric soluble lignin, decreasing the maximum furfural yields observed experimentally by up to 24 %. These results were also confirmed in synthetic mixtures of pentoses with Miscanthus and commercial alkali lignin. This observation was attributed to side reactions involving intermediate stable sugar species reacting with solubilized lignin during the conversion of xylose into furfural. PMID:26805656

  4. The Effect of Limited Diffusion and Wet–Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids

    Paul G. Higgs

    2016-06-01

    Full Text Available A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction.

  5. The Effect of Limited Diffusion and Wet-Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids.

    Higgs, Paul G

    2016-01-01

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479

  6. The Effect of Limited Diffusion and Wet–Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids

    Higgs, Paul G.

    2016-01-01

    A long-standing problem for the origins of life is that polymerization of many biopolymers, including nucleic acids and peptides, is thermodynamically unfavourable in aqueous solution. If bond making and breaking is reversible, monomers and very short oligomers predominate. Recent experiments have shown that wetting and drying cycles can overcome this problem and drive the formation of longer polymers. In the dry phase, bond formation is favourable, but diffusion is restricted, and bonds only form between monomers that are initially close together. In the wet phase, some of the bonds are hydrolyzed. However, repositioning of the molecules allows new bonds to form in the next dry phase, leading to an increase in mean polymer length. Here, we consider a simple theoretical model that explains the effect of cycling. There is an equilibrium length distribution with a high mean length that could be achieved if diffusion occurred freely in the dry phase. This equilibrium is inaccessible without diffusion. A single dry cycle without diffusion leads to mean lengths much shorter than this. Repeated cycling leads to a significant increase in polymerization relative to a single cycle. In the most favourable case, cycling leads to the same equilibrium length distribution as would be achieved if free diffusion were possible in the dry phase. These results support the RNA World scenario by explaining a potential route to synthesis of long RNAs; however, they also imply that cycling would be beneficial to the synthesis of other kinds of polymers, including peptides, where bond formation involves a condensation reaction. PMID:27338479

  7. Mechanism of carbon monoxide reactions under high pressure catalyzed by acids and bases

    Takezaki, Y.

    1978-05-01

    A review, based mainly on work done at Kyoto University, covers the mechanisms and kinetics of acid-catalyzed carbonylations, including the hydrogen fluoride-catalyzed addition of carbon monoxide to methallyl chloride, the sulfuric acid-catalyzed synthesis of succinic acid from acrylic acid, and the conversion of toluene to p-tolualdehyde in hydrogen fluoride/boron trifluoride by the Gattermann-Koch reaction; and of base-catalyzed reactions, including the production of methyl formate from methanol with 1,8-diazabicyclo (5,4,0)undec-7-ene catalyst and of malonic acid from potassium acetate and potassium carbonate. Graphs, tables, and 34 references.

  8. The study of the Suzuki cross-combination reaction in a carborane series

    Products of the Suzuki cross-combination reaction of 9-iodine-m-carborane and 9-iodine-o-carborane with phenylboric acid and with dibutyl ester of vinylboric acid catalyzed by diverse palladium compounds have been studied. It has been ascertained that in carborane series the reaction proceeds in some other way than with organic halogen compounds

  9. Structural Determination of Copolymers from the Cross-catalyzed Reactions of Phenol-formaldehyde and Polymeric Methylenediphenyl Diisocyanate

    Haupt, Robert A

    2013-01-01

    This work reports the elucidation of the structure of a copolymer generated by the cross- catalyzed reactions of PF and pMDI prepolymers.  The electronic behavior of phenolic monomers as perturbed by alkali metal hydroxides in an aqueous environment was studied with 1H and 13C NMR.  Changes in electronic structure and thus reactivity were related to solvated ionic radius, solvent dielectric constant, and their effect on ion generated electric field strength. NMR chemical shifts were used to p...

  10. Structural and morphology comparison between m-LaVO4 and LaVO3 compounds prepared by sol-gel acrylamide polymerization and solid state reaction

    We contrast the production of LaVO3 polycrystalline samples obtained by reduction of m-LaVO4 prepared by sol-gel acrylamide polymerization (SGAP) and solid state reaction (SSR). For SGAP the formation of m-LaVO4 occurs at 400 deg. C, for SSR at 1400 deg. C. For m-LaVO4-SGAP we observe a homogeneous morphology with needle-shaped grains of 50 nm average size. The SSR presents a broader size distribution in the micrometer range. Both m-LaVO4 samples were reduced into LaVO3 using a Zr rod at 850 deg. C in vacuum. LaVO3-SGAP presents a homogeneous grain distribution with an average size of 745 nm. LaVO3-SSR has an average size of 3.45 μm. The stoichiometry of all compounds was confirmed by energy dispersive X-ray spectroscopy. X-ray powder diffraction and transmission electron microscopy give crystal structures in agreement with those reported in the literature.

  11. Preparation of polyhedral oligomeric silsesquioxane-based hybrid monolith by ring-opening polymerization and post-functionalization via thiol-ene click reaction.

    Liu, Zhongshan; Ou, Junjie; Lin, Hui; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2014-05-16

    A polyhedral oligomeric silsesquioxane (POSS) hybrid monolith was simply prepared by using octaglycidyldimethylsilyl POSS (POSS-epoxy) and cystamine dihydrochloride as monomers via ring-opening polymerization. The effects of composition of prepolymerization solution and polycondensation temperature on the morphology and permeability of monolithic column were investigated in detail. The obtained POSS hybrid monolithic column showed 3D skeleton morphology and exhibited high column efficiency of ∼71,000 plates per meter in reversed-phase mechanism. Owing to this POSS hybrid monolith essentially possessing a great number of disulfide bonds, the monolith surface would expose thiol groups after reduction with dithiothreitol (DTT), which supplied active sites to functionalize with various alkene monomers via thiol-ene click reaction. The results indicated that the reduction with DTT could not destroy the 3D skeleton of hybrid monolith. Both stearyl methylacrylate (SMA) and benzyl methacrylate (BMA) were selected to functionalize the hybrid monolithic columns for reversed-phase liquid chromatography (RPLC), while [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)-ammonium hydroxide (MSA) was used to modify the hybrid monolithic column in hydrophilic interaction chromatography (HILIC). These modified hybrid monolithic columns could be successfully applied for separation of small molecules with high efficiency. It is demonstrated that thiol-ene click reaction supplies a facile way to introduce various functional groups to the hybrid monolith possessing thiol groups. Furthermore, due to good permeability of the resulting hybrid monoliths, we also prepared long hybrid monolithic columns in narrow-bore capillaries. The highest column efficiency reached to ∼70,000 plates using a 1-m-long column of 75μm i.d. with a peak capacity of 147 for isocratic chromatography, indicating potential application in separation and analysis of complex biosamples. PMID:24725471

  12. Biodegradable Shape Memory Polymeric Material from Epoxidized Soybean Oil and Polycaprolactone

    Takashi Tsujimoto; Takeshi Takayama; Hiroshi Uyama

    2015-01-01

    This article deals with the synthesis of plant oil-based shape memory materials from epoxidized soybean oil (ESO) and polycaprolactone (PCL). PolyESO/PCLs were synthesized by an acid-catalyzed curing in the presence of PCL. During the reaction, PCL scarcely reacted with ESO and the crystallinity of the PCL component decreased to form a semi-interpenetrating network structure. The incorporation of the PCL components improved the maximum stress and strain at break of ESO-based network polymer. ...

  13. Synthesis of 1,1-Diphenylethylene (DPE): The Marriage of a Grignard Reaction and a Column Chromatography Experiment

    Alty, Lisa T.; France, Marcia B.; Alty, Isaac G.; Saber, Christine A.; Smith, Donna M.

    2016-01-01

    The synthesis of 1,1-diphenylethylene (DPE) via a Grignard reaction, followed by an acid-catalyzed dehydration reaction, yields a mixture of compounds. DPE is a high boiling liquid that cannot be purified using simple distillation. However, it is easily separated from the more polar starting material and intermediate alcohol using both thin layer…

  14. Use of the SPARC software program to calculate hydrolysis rate constants for the polymeric brominated flame retardants BC-58 and FR-1025.

    Rayne, Sierra; Forest, Kaya

    2016-05-11

    The SPARC software program was used to estimate the acid-catalyzed, neutral, and base-catalyzed hydrolysis rate constants for the polymeric brominated flame retardants BC-58 and FR-1025. Relatively rapid hydrolysis of BC-58, producing 2,4,6-tribromophenol-and ultimately tetrabromobisphenol A-as the hydrolytically stable end products from all potential hydrolysis reactions, is expected in both environmental and biological systems with starting material hydrolytic half-lives (t1/2,hydr) ranging from less than 1 h in marine systems, several hours in cellular environments, and up to several weeks in slightly acid fresh waters. Hydrolysis of FR-1025 to give 2,3,4,5,6-pentabromobenzyl alcohol is expected to be slower (t1/2,hydr less than 0.5 years in marine systems up to several years in fresh waters) than BC-58, but is also expected to occur at rates that will contribute significantly to environmental and in vivo loadings of this compound. PMID:26889790

  15. Experimental and Theoretical Studies of the Acid-Catalyzed Conversion of Furfuryl Alcohol to Levulinic Acid in Aqueous Solution

    Gonzalez Maldonado, Gretchen M.; Assary, Rajeev S.; Dumesic, James A.; Curtiss, Larry A.

    2012-02-14

    The conversion of furfuryl alcohol (FAL) to levulinic acid over Amberlyst TM 15 in aqueous media was investigated using a combination of liquid chromatography-mass spectrometry (LC-MS) measurements, isotopic labeling studies, nuclear magnetic resonance (NMR) spectroscopy, and ab initio quantum chemical calculations using the G4MP2 method. The results of these combined studies showed that one of the major reaction pathways takes place via a geminal diol species (4,5,5- trihydroxypentan-2-one, denoted as intermediate A), formed by the addition of two water molecules to FAL, where two of the oxygen atoms from FAL are retained. This geminal diol species can also be produced from another intermediate found to be a dimer-like species, denoted as intermediate B. This dimer-like species is formed at the early stages of reaction, and it can also be converted to intermediate A, indicating that intermediate B is the product of the reaction of FAL with another early intermediate. Quantum chemical calculations suggested this to be a protonated acyclic species. Reaction of this early intermediate with water produces intermediate A, while reaction with FAL produces intermediate B.

  16. Elektroaktive polymerer

    West, K.

    Traditionelt tænker vi på polymerer (plastik) som elektrisk isolerende materialer - det som er udenpå ledningerne. I dag kender vi imidlertid også polymerer med intrinsisk elektrisk ledningsevne, og plast er på vej ind i anvendelser, der tidligereudelukkende var baseret på metaller og uorganiske...... halvledere. Hertil kommer, at en del af de ledende polymerer kan stimuleres til at skifte mellem en ledende og en halvledende tilstand, hvorved de ændret både form og farve. I foredraget gives der enrække eksempler på anvendelse af polymerer som elektriske komponenter - rækkende fra polymer elektronik over...

  17. Oxidation of alkanes with m-chloroperbenzoic acid catalyzed by iron(III) chloride and a polydentate amine

    Shul’pin, Georgiy B.; Stoeckli-Evans, Helen; Mandelli, Dalmo; Kozlov, Yuriy N.; Tesouro Vallina, Ana; Woitiski, Camile B.; Jimenez, Ricardo S.; Carvalho, Wagner A.

    2009-01-01

    Tetradentate amine N,N′-bis(2-pyridylmethylene)-1,4-diaminodiphenyl ether (compound 1) dramatically accelerates the oxidation of alkanes with MCPBA in acetonitrile catalyzed by FeCl3, whereas N,N′-bis(2-pyrrolidinmethylene)-1,4-diaminodiphenyl ether (2) does not affect the reaction. The selectivity of the reaction in the presence of 1 is noticeably higher than that in its absence. On the basis of the kinetic study and selectivity parameters a mechanism has been proposed which includes the for...

  18. An efficient synthesis of isocoumarins via a CuI catalyzed cascade reaction process

    2009-01-01

    3-Alkyl isocoumarins are provided by CuI/amino acid-catalyzed Sonogashira coupling reaction of o-bromo benzoic acids and terminal alkynes and the subsequent additive cyclization. This cascade process allows synthesis of diverse isocoumarins by varying both coupling partners bearing a wide range of functional groups.

  19. Synthesis of beta-lactones by the regioselective, cobalt and Lewis acid catalyzed carbonylation of simple and functionalized epoxides.

    Lee, J T; Thomas, P J; Alper, H

    2001-08-10

    The PPNCo(CO)(4) and BF(3) x Et(2)O catalyzed carbonylation of simple and functionalized epoxides in DME gives the corresponding beta-lactones regioselectively in good to high yields. The carbonylation occurred selectively at the unsubstituted C-O bond of the epoxide ring, and this reaction tolerates various functional groups such as alkenyl, halide, hydroxy, and alkyl ether. PMID:11485465

  20. Probing the "additive effect" in the proline and proline hydroxamic acid catalyzed asymmetric addition of nitroalkanes to cyclic enones.

    Hanessian, Stephen; Govindan, Subramaniyan; Warrier, Jayakumar S

    2005-11-01

    The effect of chirality and steric bulk of 2,5-disubstituted piperazines as additives in the conjugate addition of 2-nitropropane to cyclohexenone, catalyzed by l-proline, was investigated. Neither chirality nor steric bulk affects the enantioselectivity of addition, which gives 86-93% ee in the presence of achiral and chiral nonracemic 2,5-disubstituted piperazines. Proline hydroxamic acid is shown for the first time to be an effective organocatalyst in the same Michael reaction. PMID:16189834

  1. Microwave-Assisted Resolution of α-Lipoic Acid Catalyzed by an Ionic Liquid Co-Lyophilized Lipase

    Ning Liu

    2015-05-01

    Full Text Available The combination of the ionic liquid co-lyophilized lipase and microwave irradiation was used to improve enzyme performance in enantioselective esterification of α-lipoic acid. Effects of various reaction conditions on enzyme activity and enantioselectivity were investigated. Under optimal condition, the highest enantioselectivity (E = 41.2 was observed with a high enzyme activity (178.1 μmol/h/mg when using the ionic liquid co-lyophilized lipase with microwave assistance. Furthermore, the ionic liquid co-lyophilized lipase exhibited excellent reusability under low power microwave.

  2. Upcycling potato peel waste – Data of the pre-screening of the acid-catalyzed liquefaction

    Ventura, Patrícia; Bordado, João Carlos Moura; Mateus, Maria Margarida; Galhano dos Santos, Rui

    2016-01-01

    Herein, the data acquired regarding the preliminary and exploratory experiments conducted with potato peel as a biomass source for the direct thermochemical liquefaction is disclosed. The procedure was carried out in a 2-ethylhexanol/DEG solvent mixture at 160 °C in the presence of p-Toluenesulfonic acid. The adopted procedure afforded a bio-oil in high yield (up to 93%) after only 30 min. For longer reaction times, higher amounts of solid residues were obtained leading, consequently, to lower yields. PMID:27182538

  3. The Formation of Pyrroline and Tetrahydropyridine Rings in Amino Acids Catalyzed by Pyrrolysine Synthase (PylD)

    Quitterer, Felix

    2014-06-10

    The dehydrogenase PylD catalyzes the ultimate step of the pyrrolysine pathway by converting the isopeptide L-lysine-Nε-3R-methyl-D-ornithine to the 22nd proteinogenic amino acid. In this study, we demonstrate how PylD can be harnessed to oxidize various isopeptides to novel amino acids by combining chemical synthesis with enzyme kinetics and X-ray crystallography. The data enable a detailed description of the PylD reaction trajectory for the biosynthesis of pyrroline and tetrahydropyridine rings as constituents of pyrrolysine analogues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Frontal Polymerization in Microgravity

    Pojman, John A.

    1999-01-01

    Frontal polymerization systems, with their inherent large thermal and compositional gradients, are greatly affected by buoyancy-driven convection. Sounding rocket experiments allowed the preparation of benchmark materials and demonstrated that methods to suppress the Rayleigh-Taylor instability in ground-based research did not significantly affect the molecular weight of the polymer. Experiments under weightlessness show clearly that bubbles produced during the reaction interact very differently than under 1 g.

  5. Kinetics of aniline polymerization initiated with iron(III) chloride

    KATARINA B. JEREMIC; SLOBODAN M. JOVANOVIC

    2006-01-01

    The reaction kinetics of the chemical polymerization of aniline in aqueous acid solutions with FeCl3 as the oxidant (initiator) was investigated at 25 oC. The polymerization was performed in a special reactor which enabled the initial concentration of oxidant to be kept constant during the polymerization reaction. The order of the reaction of ANI polymerization with respect to FeCl3 was calculated as n = 0.18. The rate constant k of the polymerization reaction was found to be 9.1x10-5 (mol dm...

  6. A study of the acid-catalyzed hydrolysis of cellulose dissolved in ionic liquids and the factors influencing the dehydration of glucose and the formation of humins.

    Dee, Sean J; Bell, Alexis T

    2011-08-22

    An investigation was carried out into the hydrolysis of cellulose dissolved in 1-ethyl-3-methylimidazolium chloride ([Emim][Cl]) and 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) catalyzed by mineral acids. Glucose, cellobiose, and 5-hydroxymethylfurfural (5-HMF) were observed as the primary reaction products. The initial rate of glucose formation was determined to be of first order in the concentrations of dissolved glucan and protons and of zero order in the concentration of water. The absence of a dependence on water concentration suggests that cleavage of the β-1,4-glycosidic linkages near chain ends is irreversible. The apparent activation energy for glucose formation is 96 kJ mol(-1). The absence of oligosaccharides longer than cellobiose suggests that cleavage of interior glycosidic bonds is reversible due to the slow diffusional separation of cleaved chains in the highly viscous glucan/ionic liquid solution. Progressive addition of water during the course of glucan hydrolysis inhibited the rate of glucose dehydration to 5-HMF and the formation of humins. The inhibition of glucose dehydration is attributed to stronger interaction of protons with water than the 2-OH atom of the pyranose ring of glucose, the critical step in the proposed mechanism for the formation of 5-HMF. The reduction in humin formation associated with water addition is ascribed to the lowered concentration of 5-HMF, since the formation of humins is suggested to proceed through the condensation polymerization of 5-HMF with glucose. PMID:21809450

  7. Poly(glycidyl methacrylate) microspheres: preparation by poly(acrylic acid)-stabilized dispersion polymerization and effect of some reaction parameters

    Koubková, Jana; Horák, Daniel

    2013-01-01

    Roč. 2, č. 3 (2013), s. 218-225. ISSN 2164-9634 R&D Projects: GA ČR GCP207/12/J013 Institutional support: RVO:61389013 Keywords : glycidyl methacrylate * dispersion polymerization * poly(acrylic acid) Subject RIV: CD - Macromolecular Chemistry

  8. A study of the elemental reactions involved in the initiation of the polymerization of tetrahydrofuran induced by the photosensitization of a triphenylsulphonium salt by perylene

    Neumann Miguel G.

    2003-01-01

    Full Text Available The photopolymerization of THF was studied in the presence of a triphenylsulphonium salt and perylene. The mechanism involves an electron transfer from the excited singlet state of perylene to triphenylsulphonium ions, resulting in perylene cation radicals that react with tetrahydrofuran. The calculated apparent yield of cation radicals follows the same general trend than the measured polymerization rates.

  9. A study of the elemental reactions involved in the initiation of the polymerization of tetrahydrofuran induced by the photosensitization of a triphenylsulphonium salt by perylene

    Neumann Miguel G.; Rodrigues Maira R.

    2003-01-01

    The photopolymerization of THF was studied in the presence of a triphenylsulphonium salt and perylene. The mechanism involves an electron transfer from the excited singlet state of perylene to triphenylsulphonium ions, resulting in perylene cation radicals that react with tetrahydrofuran. The calculated apparent yield of cation radicals follows the same general trend than the measured polymerization rates.

  10. Structural basis of reverse nucleotide polymerization

    Nakamura, Akiyoshi; Nemoto, Taiki; Heinemann, Ilka U.; Yamashita, Keitaro; Sonoda, Tomoyo; Komoda, Keisuke; Tanaka, Isao; Söll, Dieter; Yao, Min

    2013-01-01

    Template-dependent RNA and DNA polymerization is a vital reaction in the cell and is believed to occur exclusively in the forward direction (5′-3′), which poses significant challenges to the cell in, for example, lagging strand synthesis. Although cells are mostly limited to unidirectional polymerization, we find that reverse polymerization is structurally and chemically possible utilizing the same structural core, the conserved palm domain of canonical polymerases. The structure of a unique ...

  11. Preparation of polymeric nanocapsules by γ-ray initiated miniemulsion polymerization stabilized by polymeric surfactant

    An alkali soluble polymeric surfactant, copolymer of butyl methacrylate and methacrylic acid, has been prepared by free radical solution polymerization initiated by γ-ray and used as stabilizer in preparation of polymeric nanocapsules by γ-ray initiated miniemulsion polymerization. Effect of the amount of surfactant and costabilizer (hexadecane) and the styrene/hexadecane ratio on the morphological characteristics of the polymer/oil composite particle was systematically studied. The morphologies of final latexes particles were compared with those obtained by γ-ray initiated miniemulsion polymerization used SDS as surfactant. The results indicated that the structure can be adjusted to cover the whole range from independent particles over partially engulfed structures to structurally integer nanocapsules by varying the parameters such as the type and amount of surfactant and the styrene/hexadecane ratio, as well as dose rate. The use of this polymeric surfactant leads to large amounts of nanocapsules in the case of a lower concentration of hexadecane, which is due to the graft reaction between polymer and polymeric surfactant. (authors)

  12. Synthesis of star and H-shape polymers via a combination of cobalt-mediated radical polymerization and nitrone-mediated radical coupling reactions

    Detrembleur, Christophe; Debuigne, Antoine; Altintas, Ozcan; Conradi, Matthias; Wong, Edgar H. H.; Jerome, Christine; Barner-Kowollik, Christopher; Junkers, Thomas

    2012-01-01

    Via consecutive cobalt-mediated radical polymerization (CMRP), nitrone-mediated radical coupling (NMRC) and copper catalyzed azide-alkyne cycloaddition (CuAAC), polymers with mikto-arm star and H-shape architecture were synthesized. Poly(vinyl acetate)(40)-block-poly(acrylonitrile)(78)-Co(acac)(2) polymers were synthesized via CMRC and subsequently coupled using an alkyne functional nitrone. The coupling efficiency of the NMRC process was assessed employing N-tert-butyl alpha-phenyl nitrone (...

  13. Living olefin polymerization processes

    Schrock, Richard R.; Baumann, Robert

    1999-01-01

    Processes for the living polymerization of olefin monomers with terminal carbon-carbon double bonds are disclosed. The processes employ initiators that include a metal atom and a ligand having two group 15 atoms and a group 16 atom or three group 15 atoms. The ligand is bonded to the metal atom through two anionic or covalent bonds and a dative bond. The initiators are particularly stable under reaction conditions in the absence of olefin monomer. The processes provide polymers having low polydispersities, especially block copolymers having low polydispersities. It is an additional advantage of these processes that, during block copolymer synthesis, a relatively small amount of homopolymer is formed.

  14. Origins of selectivity in Brønsted acid-promoted diazoalkane-azomethine reactions (the aza-Darzens aziridine synthesis).

    Troyer, Timothy L; Muchalski, Hubert; Hong, Ki Bum; Johnston, Jeffrey N

    2011-04-01

    The mechanism of the Brønsted acid-catalyzed aza-Darzens reaction is explored by charting the stereochemical outcome of the triflic acid-promoted conversion of trans-triazolines to cis-aziridines. These experiments are consistent with the intermediacy of an α-diazonium-β-amino ester intermediate. PMID:21366339

  15. Facile synthesis of hollow Sn–Co@PMMA nanospheres as high performance anodes for lithium-ion batteries via galvanic replacement reaction and in situ polymerization

    Highlights: • Hollow Sn–Co nanospheres were synthesized via a facile galvanic replacement method. • PMMA layers were uniform coated on the surface of Sn–Co composites via in situ emulsion polymerization. • The coating layers are beneficial to suppress the aggregation and stabilize the SEI formation on the surface. • Excellent cycling stability and rate capability were obtained by coating PMMA protective layers on the surface of hollow Sn–Co nanospheres. - Abstract: Polymethyl methacrylate (PMMA)-coated hollow Sn–Co nanospheres (Sn–Co@PMMA) with superior electrochemical performance had been synthesized via a facile galvanic replacement method followed by an in situ emulsion polymerization route. The properties were investigated in detail and results show that the hollow Sn–Co nanospheres were evenly coated with PMMA. Benefiting from the protection of the PMMA layers, the hollow Sn–Co@PMMA nanocomposite is capable of retaining a high capacity of 590 mAh g−1 after 100 cycles with a coulomb efficiency above 98%, revealing better electrochemical properties compared with hollow Sn–Co anodes. The PMMA coating could help accommodate the mechanical strain caused by volume expansion and stabilize the solid electrolyte interphase (SEI) film formed on the electrode. Such a facile process could be further extended to other anode materials for lithium-ion batteries

  16. Facile synthesis of hollow Sn–Co@PMMA nanospheres as high performance anodes for lithium-ion batteries via galvanic replacement reaction and in situ polymerization

    Yu, Xiaohui; Jiang, Anni; Yang, Hongyan; Meng, Haowen; Dou, Peng; Ma, Daqian [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Xu, Xinhua, E-mail: xhxutju@gmail.com [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2015-08-30

    Highlights: • Hollow Sn–Co nanospheres were synthesized via a facile galvanic replacement method. • PMMA layers were uniform coated on the surface of Sn–Co composites via in situ emulsion polymerization. • The coating layers are beneficial to suppress the aggregation and stabilize the SEI formation on the surface. • Excellent cycling stability and rate capability were obtained by coating PMMA protective layers on the surface of hollow Sn–Co nanospheres. - Abstract: Polymethyl methacrylate (PMMA)-coated hollow Sn–Co nanospheres (Sn–Co@PMMA) with superior electrochemical performance had been synthesized via a facile galvanic replacement method followed by an in situ emulsion polymerization route. The properties were investigated in detail and results show that the hollow Sn–Co nanospheres were evenly coated with PMMA. Benefiting from the protection of the PMMA layers, the hollow Sn–Co@PMMA nanocomposite is capable of retaining a high capacity of 590 mAh g{sup −1} after 100 cycles with a coulomb efficiency above 98%, revealing better electrochemical properties compared with hollow Sn–Co anodes. The PMMA coating could help accommodate the mechanical strain caused by volume expansion and stabilize the solid electrolyte interphase (SEI) film formed on the electrode. Such a facile process could be further extended to other anode materials for lithium-ion batteries.

  17. Threshold Particle Diameters in Miniemulsion Reversible-Deactivation Radical Polymerization

    Hidetaka Tobita

    2011-01-01

    Various types of controlled/living radical polymerizations, or using the IUPAC recommended term, reversible-deactivation radical polymerization (RDRP), conducted inside nano-sized reaction loci are considered in a unified manner, based on the polymerization rate expression, Rp = kp[M]K[Interm]/[Trap]. Unique miniemulsion polymerization kinetics of RDRP are elucidated on the basis of the following two factors: (1) A high single molecule concentration in a nano-sized particle; and (2) a signifi...

  18. Polymerization of epoxy resins studied by positron annihilation

    The polymerization process of epoxy resins (bisphenol-A dicyanate) was studied using positron-annihilation spectroscopy. The polymerization from monomer to polymer through a polymerization reaction was followed by positron-annihilation lifetime spectroscopy measurements. Resins kept at curing temperatures (120, 150 and 200 oC) changed form from of powder to a solid through a liquid. The size of the intermolecular spaces of the solid samples increased along with the progress of polymerization. (author)

  19. On-demand photoinitiated polymerization

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  20. Reaction mechanism and application progress of soap-free emulsion polymerization for polyacrylate%丙烯酸酯无皂乳液聚合反应机理及应用进展

    张文博; 赵振河; 张鹏

    2012-01-01

    丙烯酸酯无皂聚合乳液在涂料印花粘合剂中占有重要地位,在功能性微球及无机复合材料制备方面的应用也日益广泛.本文阐述了丙烯酸酯无皂乳液聚合的机理及应用进展%Polyacrylate soap - free emulsion plays an important role in pigment printing binder,and its applications in functical microspheres and inorganic composite material preparation also become research hotspnt.This paper deseribed the reaction mechanism of soap-free emulsion polymerization for polycrylate,and introduced the domestic and oversea application progress of polyacrylate soap-free emulsion in recent years.

  1. Metallocene-catalyzed alkene polymerization and the observation of Zr-allyls

    Landis, Clark R.; Christianson, Matthew D.

    2006-01-01

    Single-site polymerization catalysts enable exquisite control over alkene polymerization reactions to produce new materials with unique properties. Knowledge of catalyst speciation and fundamental kinetics are essential for full mechanistic understanding of zirconocene-catalyzed alkene polymerization. Currently the effect of activators on fundamental polymerization steps is not understood. Progress in understanding activator effects requires determination of fundamental kinetics for zirconoce...

  2. Polymerization Simulator for Introductory Polymer and Material Science Courses

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  3. Alcohol polymerization using electron emission

    We report a means of instantaneous alcohol polymerization using electron emission at room temperature. We selected 1-butanol as a source of alcohol polymer. A 1-butanol molecule has a simple molecular structure and is a good candidate for analyzing reaction mechanisms. Direct electron emission onto the surface of volatile 1-butanol prevented intense discharge and gently composed 1-butanol-polymer at room temperature in air. The strategy enabled exciting liquids and instantaneously composing new materials at room temperature

  4. Functionalized polymer networks: synthesis of microporous polymers by frontal polymerization

    N S Pujari; A R Vishwakarma; T S Pathak; A M Kotha; S Ponrathnam

    2004-12-01

    A series of glycidyl methacrylate (GMA)–ethylene dimethacrylate (EGDM) copolymers of varying compositions were synthesized by free-radically triggered thermal frontal polymerization (FP) as well as by suspension polymerization (SP) using azobisisobutyronitrile [AIBN] as initiator. The two sets of copolymers were characterized by IR spectroscopy and mercury intrusion porosimetry, for determination of epoxy number and specific surface area. Frontal polymerization was more efficient, yielding greater conversions at much shorter reaction times. The self-propagating frontal polymerization also generates microporous material with narrow pore size distribution. It yields higher internal pore volume and surface area than suspension polymerization, surface morphologies are, however, inferior.

  5. The Lewis Acid-promoted Novel Cyclization Reactions Towards N-adn O-Containing Heterocycles

    Shoko; Yamazaki

    2007-01-01

    1 Results Nitrogen and oxygen-containing heterocyclic systems are important structures in organic chemistry because of their presence in many biologically active compounds.In this work,a new zinc and indium-promoted conjugate addition-cyclization reaction to afford nitrogen and oxygen-containing five-membered heterocycles has been developed.A Lewis acid-catalyzed cyclization of an ethenetricarboxylate derivative with propargylamines or propargyl alcohols to give methylenepyrrolidines and methylenetetrah...

  6. "Click" i polymerer 2

    Hvilsted, Søren

    2012-01-01

    "Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer......"Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer...

  7. Online observation of emulsion polymerization by fluorescence technique

    Rudschuck, S; Fuhrmann, J

    1999-01-01

    An online observation of local polarity via fluorescence spectroscopy was used to study the formation and growth of polymer particles during an emulsifier-free heterogeneous polymerization. The reaction mixture consisted of styrene dispersed in water and the polymerization was initiated by a macro-initiator (hydrolyzed propene-maleic acid copolymer with t-butyl perester groups). Pyrenyl probes were attached to the backbone of the initiator to analyze the heterogeneous reaction. The experimental results allow a clear distinction of different time regions during the heterogeneous polymerization. Information about the heating period, the latex formation, the particle growth and the final stage of the polymerization process (gel point) were obtained. (11 refs).

  8. Template polymerization of nucleotide analogues

    Orgel, L. E.

    1991-01-01

    Recent work on the template-directed reactions of the natural D-nucleotides has made it clear that l-nucleotides and nucleotide-like derivatives of other sugars would strongly inhibit the formation of long oligonucleotides. Consequently, attention is focusing on molecules simpler than nucleotides that might have acted as monomers of an information transfer system. We have begun a general exploration of the template directed reactions of diverse peptide analogues. I will present work by Dr. Taifeng Wu on oxidative oligomerization of phosphorothioates and of Dr. Mary Tohidi on the cyclic polymerization of nucleoside and related cyclic pyrophosphates.

  9. Survey and research on precision polymerization polymeric materials; Seimitsu jugo kobunshi zairyo ni kansuru chosa kenkyu

    NONE

    1996-03-01

    Survey and research on the precision control of primary structure of polymeric materials and the precision evaluation technology have been conducted to develop advanced polymeric materials. It is proposed that the three basic processes of polymer synthesis, i.e., addition, condensation, and biomimesis, in forming the precision polymerization skeleton are to be covered through a centralized joint research effort with participation of industry, academia, and the government institute and under the leadership of researchers from academic institutions as the team leaders. For the study of technology trends, international conferences held in UK, Germany, and Hawaii are introduced, and domestic meetings, i.e., Annual Polymer Congress and Polymer Conference, are summarized. In addition, Precision Polymerization Forum and International Workshop on Precision Polymerization were held. The basic studies include a quantum-chemical elucidation of the elementary process in polymerization reaction, time-resolved analysis of polymerization process and polymer properties, synthesis of polymers with controlled microstructures by coordination polymerization using metal complexes, synthesis of polymer with controlled microstructures by precision polycondensation, molecular recognition in catalyst-reaction site, and synthesis of imprinting polymers. 246 refs., 117 figs., 14 tabs.

  10. Polymerization Reactor Engineering.

    Skaates, J. Michael

    1987-01-01

    Describes a polymerization reactor engineering course offered at Michigan Technological University which focuses on the design and operation of industrial polymerization reactors to achieve a desired degree of polymerization and molecular weight distribution. Provides a list of the course topics and assigned readings. (TW)

  11. Applications or radiation polymerization hardening to composites

    Comprehensive investigation has been made into the application of the polymerization hardening by radiation, particularly electron beam, to the composites of polymers and other materials. The report is divided into four parts, namely 1) characteristics and problems of the reaction of curing by radiation polymerization, 2) improvement of the bonding capability of high molecular weight materials, 3) bonding by radiation, and 4) composites made by the impregnation and polymerization hardening of monomers. The first part includes the effects of dose rate, temperature rise during the hardening, the peculiarity of electron beam irradiation at high dose rate, reaction environment and additive effects. Main conclusions are as follows: caution must be taken to the amount of residual double bonds because they affect the quality of hardened polymers; the polymerization hardening reaction at high dose rate cannot be analogized by that at low dose rate; and the presence of the inhibitors of radical reaction is not preferable. The second part includes the surface treatment by irradiation and radiation graft polymerization. The irradiation of electron beam and chromic acid treatment are the most effective processes for the surface treatment, but some caution is required. The third part includes hair plantation and laminated films. The uses of adhesive tapes and vinyl wall papers are anticipated. The fourth part includes fiber reinforced plastics (FRP), concrete-polymer composites (CPC) and wood-plastic composites (WPC). (Iwakiri, K.)

  12. Modeling of free radical polymerization up to high conversion. II. Development of a mathematical model

    Tefera, N.; Weickert, G.; Westerterp, K.R.

    1997-01-01

    In free radical polymerization diffusion-controlled processes take place simultaneously to the normal chemical reactions. Despite extensive efforts to model such processes a consistent model for the design of a polymerization reactor has not yet been established. In this article a semiempirical model describing the conversion, polymerization degree, and molecular weight distribution (MWD) for the free radical polymerization is developed for the entire course of the reaction. The model include...

  13. Facile synthesis of N-rich carbon quantum dots by spontaneous polymerization and incision of solvents as efficient bioimaging probes and advanced electrocatalysts for oxygen reduction reaction.

    Lei, Zhouyue; Xu, Shengjie; Wan, Jiaxun; Wu, Peiyi

    2016-01-28

    In this study, uniform nitrogen-doped carbon quantum dots (N-CDs) were synthesized through a one-step solvothermal process of cyclic and nitrogen-rich solvents, such as N-methyl-2-pyrrolidone (NMP) and dimethyl-imidazolidinone (DMEU), under mild conditions. The products exhibited strong light blue fluorescence, good cell permeability and low cytotoxicity. Moreover, after a facile post-thermal treatment, it developed a lotus seedpod surface-like structure of seed-like N-CDs decorating on the surface of carbon layers with a high proportion of quaternary nitrogen moieties that exhibited excellent electrocatalytic activity and long-term durability towards the oxygen reduction reaction (ORR). The peak potential was -160 mV, which was comparable to or even lower than commercial Pt/C catalysts. Therefore, this study provides an alternative facile approach to the synthesis of versatile carbon quantum dots (CDs) with widespread commercial application prospects, not only as bioimaging probes but also as promising electrocatalysts for the metal-free ORR. PMID:26739885

  14. Polymerization of organized monomers

    Stoiljković Dragoslav M.

    2004-01-01

    Full Text Available The current explanations of olefin and vinyl monomer polymerization propose that monomer molecules are successively added one by one to the growing polymer chain. This may be true if the monomer molecules exist as individual species in a polymerizing system, e.g. in dilute solutions of monomer. There are cases, however, in which monomer molecules are organized: bulk liquid monomer, solid monomer, a monomer monolayer adsorbed on a support, etc. Various supra-molecular species and particles of monomer exist in such cases. In the 1960-ties, Semenov, Kargin and Kabanov proposed a theory of organized monomer polymerization. In the last 25 years, our research group has further developed and applied that theory to various polymerizing systems: the radical polymerization of compressed ethene gas, the radical polymerization of liquid methyl methacrylate, olefin polymerization by transition metals and by Al-based catalysts. An outline of the main achievements are presented in this article.

  15. Facile synthesis of N-rich carbon quantum dots by spontaneous polymerization and incision of solvents as efficient bioimaging probes and advanced electrocatalysts for oxygen reduction reaction

    Lei, Zhouyue; Xu, Shengjie; Wan, Jiaxun; Wu, Peiyi

    2016-01-01

    In this study, uniform nitrogen-doped carbon quantum dots (N-CDs) were synthesized through a one-step solvothermal process of cyclic and nitrogen-rich solvents, such as N-methyl-2-pyrrolidone (NMP) and dimethyl-imidazolidinone (DMEU), under mild conditions. The products exhibited strong light blue fluorescence, good cell permeability and low cytotoxicity. Moreover, after a facile post-thermal treatment, it developed a lotus seedpod surface-like structure of seed-like N-CDs decorating on the surface of carbon layers with a high proportion of quaternary nitrogen moieties that exhibited excellent electrocatalytic activity and long-term durability towards the oxygen reduction reaction (ORR). The peak potential was -160 mV, which was comparable to or even lower than commercial Pt/C catalysts. Therefore, this study provides an alternative facile approach to the synthesis of versatile carbon quantum dots (CDs) with widespread commercial application prospects, not only as bioimaging probes but also as promising electrocatalysts for the metal-free ORR.In this study, uniform nitrogen-doped carbon quantum dots (N-CDs) were synthesized through a one-step solvothermal process of cyclic and nitrogen-rich solvents, such as N-methyl-2-pyrrolidone (NMP) and dimethyl-imidazolidinone (DMEU), under mild conditions. The products exhibited strong light blue fluorescence, good cell permeability and low cytotoxicity. Moreover, after a facile post-thermal treatment, it developed a lotus seedpod surface-like structure of seed-like N-CDs decorating on the surface of carbon layers with a high proportion of quaternary nitrogen moieties that exhibited excellent electrocatalytic activity and long-term durability towards the oxygen reduction reaction (ORR). The peak potential was -160 mV, which was comparable to or even lower than commercial Pt/C catalysts. Therefore, this study provides an alternative facile approach to the synthesis of versatile carbon quantum dots (CDs) with widespread

  16. Kinetics of phosphotungstic acid catalyzed oxidation of propan-1,3-diol and butan-1,4-diol by N-chlorosaccharin

    Sanjay Kumar Singh

    2011-09-01

    Full Text Available The kinetic studies of N-chlorosaccharin (NCSA oxidation of propan-1,3-diol and butan-1,4-diol have been reported in presence of phophotungstic acid and in aqueous acetic acid medium. The reactions follow first-order in NCSA and one to zero order with respect to substrate and phosphotungstic acid. Increase in the concentration of added perchloric acid increases the rate of oxidation. A negative effect on the oxidation rate is observed for solvent whereas the ionic strength does not influence the rate of reaction. Addition of the reaction product, saccharin, exhibited retarding effect. Various activation parameters have been evaluated. The products of the reactions were identified as the corresponding aldehydes. A suitable scheme of mechanism consistent with the experimental results has been proposed.

  17. Polypropylene/graphite nanocomposites by in situ polymerization

    This work presents the synthesis of nanocomposites of polypropylene/graphite by in situ polymerization using metallocene catalyst and graphene nanosheets. Initially was analyzed which of the metallocene catalysts rac-Et(Ind)2ZrCl2 or rac-Me2Si(Ind)2ZrCl2 produces polypropylene with mechanical properties more relevant. Then it were performed the in situ polymerization reactions to obtain the nanocomposites. The polymeric materials were characterized by XRD, DSC, GPC and DMTA. (author)

  18. Enhance decarboxylation reaction of carboxylic acids in clay minerals

    Clay minerals are important constituents of the Earth's crust. These minerals catalyze reactions in several ways: by energy transfer processes, redox reactions, stabilization of intermediates and by Broensted or Lewis acidity behavior. Important set of organic reactions can be improved in the precedence of clay minerals. Besides the properties of clays to catalyze chemical reactions, it is possible to enhance some of its reactions by using ionizing radiation. The phenomenon of radiation-induced catalysis may be connected with ionizing process in the solid and with the trapped non-equilibrium charge carriers. In this paper we are reporting the decarboxylation reaction of carboxylic acids catalyzed by clay and by irradiation of the system acid-clay. We studied the behaviour of several carboxylic acids and analyzed them by gas chromatography, X-ray and infrared spectroscopy. The results showed that decarboxylation of the target compound is the dominating pathway. The reaction is enhanced by gamma radiation in several orders of magnitude. (author)

  19. Methods for examination of antigenicity of heterogeneous polymerized hemoglobin

    Objective: To choose and establish the methods for examination of heterogeneous polymerized hemoglobin in order to offer the reference for evaluating the antigenicity of heterogeneous polymerized hemoglobin against human. Methods: Antigenicity of heterogeneous polymerized hemoglobin was examined for hypersensitivity, cell-mediated immunity reaction, humoral immunity reaction and cross-reaction of antigen. Results: The rabbit and guinea pig did not give rise to hypersensitivity. In immunized rabbits, the level of serum total IgG was normal, but the level of serum specific IgG was high. The examination of B lymphocytes showed that there was no significant difference (P>0.05) in comparison with control. Cross-reaction of antigen proved that bovine hemoglobin had cross-reaction with human hemoglobin. Suggesting that they may be homologous, the level of the serum specific antibody is high in the immunized animal. According to the immunology theories, the polymerized hemoglobin has antigenicity. (authors)

  20. Studies on the polymerization of acrolein oxime, 6

    Radiation-induced polymerization and copolymerization of acrolein oxime are investigated in different solvents and at a wide range of temperature for obtaining information on the reaction mechanism. Acrolein oxime is polymerized ionically, irrespective of dryness of the sample. Arrhenius plots for the polymerization rate, which do not yield a linear relation, can be adequately approximated by two straight lines. An anionic mechanism is operative above the room temperature, while a cationic mechanism predominates below -230C. The reaction in the intermediate temperature range proceeds by a competitive mechanism, and the rate of the anionic and cationic polymerizations becomes equal at the temperature near -50C. The reaction rate is proportional to the square root of dose rate at room temperature and -230C. On the basis of these data, it is proposed that the polymerization of acrolein oxime by γ-irradiation proceeds by free-ionic mechanisms. (author)

  1. Photoswitchable NHC-promoted ring-opening polymerizations.

    Neilson, Bethany M; Bielawski, Christopher W

    2013-06-18

    The UV-induced photocyclization of a dithienylethene-annulated N-heterocyclic carbene precatalyst enabled photoswitchable ring-opening polymerizations of ε-caprolactone and δ-valerolactone. The polymerizations proceeded efficiently in ambient light, however UV irradiation attenuated the reaction rate (k(amb)/k(UV) = 59). Subsequent visible light exposure reversed the photocyclization and restored catalytic activity. PMID:23665923

  2. A recoverable versatile photo-polymerization initiator catalyst

    Chen, Dianyu; Yuan, Rongxin; Roy, Soumyajit

    2012-01-01

    A photo-polymerization initiator based on an imidazolium and an oxometalate, viz., (BMIm)2(DMIm) PW12O40 (where, BMIm = 1-butyl-3-methylimizodium, DMIm = 3,3'-Dimethyl-1,1'-Diimidazolium) is reported. It polymerizes several industrially important monomers and is recoverable hence can be reused. The Mn and PDI are controlled and a reaction pathway is proposed.

  3. Selective Condensation Reaction of Phenol Using A Micromixer

    N.Daito; J.Yoshida; K.Mae

    2007-01-01

    1 Results Bisphenol-F,which is synthesized by the acid catalyzed condensation reaction of phenols and form aldehyde is a useful raw material of epoxy resins having superior heat resistance and low viscosity. The commodity bisphenol,however,includes high molecular weight compounds,which are derived from tris-phenols and other highly condensed compounds.Such contaminants impair largely the feature of low viscosity which the bisphenol-F epoxy resin has.To overcome this problem,the molar ratio of phenol/for...

  4. Nylon 6 polymerization in the solid state

    Gaymans, Reinoud J.; Amirtharaj, John; Kamp, Henk

    1982-01-01

    The postcondensation of nylon 6 in the solid state was studied. The reactions were carried out on fine powder in a fluidized bed reactor in a stream of dry nitrogen in the temperature range 110-205°C and during 1-24 h. The solid-state polymerization (SSP) did not follow melt kinetics, but was found

  5. Versatile Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Strategies for Successful Polymerization of Challenging Monomers and Their Mechanistic Studies.

    Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim

    2016-02-24

    Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies. PMID:26878670

  6. Emulsion Polymerization of Butyl Acrylate: Spin Trapping and EPR Study

    Kim, S.; Westmoreland, D.

    1994-01-01

    The propagating radical in the emulsion polymerization reaction of butyl acrylate was detected by Electron Paramagnetic Resonance spectroscopy using two spin trapping agents, 2-methyl-2nitrosopropane and alpha -N-tert-butylnitrone.

  7. Biocompatible post-polymerization functionalization of a water soluble poly(p-phenylene ethynylene)

    Swager, Timothy Manning; Vanveller, Brett Steven

    2010-01-01

    A biocompatible post-polymerization functionalization reaction takes advantage of a polymer's structural motif for the controllable attachment of biotin as a model biosensor that responds to streptavidin.

  8. Low-melting elemental metal or fusible alloy encapsulated polymerization initiator for delayed initiation

    Hermes, Robert E.

    2015-12-22

    An encapsulated composition for polymerization includes an initiator composition for initiating a polymerization reaction, and a capsule prepared from an elemental metal or fusible alloy having a melting temperature from about 20.degree. C. to about 200.degree. C. A fluid for polymerization includes the encapsulated composition and a monomer. When the capsule melts or breaks open, the initiator is released.

  9. Conducting Polymeric Materials

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons are the ch...... awarded the Nobel Prize in chemistry “for the discovery and development of conductive polymers”....

  10. Step-Growth Polymerization.

    Stille, J. K.

    1981-01-01

    Following a comparison of chain-growth and step-growth polymerization, focuses on the latter process by describing requirements for high molecular weight, step-growth polymerization kinetics, synthesis and molecular weight distribution of some linear step-growth polymers, and three-dimensional network step-growth polymers. (JN)

  11. Understanding the Mechanism of the Hydrogen Abstraction from Arachidonic Acid Catalyzed by the Human Enzyme 15-Lipoxygenase-2. A Quantum Mechanics/Molecular Mechanics Free Energy Simulation.

    Suardíaz, Reynier; Jambrina, Pablo G; Masgrau, Laura; González-Lafont, Àngels; Rosta, Edina; Lluch, José M

    2016-04-12

    Lipoxygenases (LOXs) are a family of enzymes involved in the biosynthesis of several lipid mediators. In the case of human 15-LOX, the 15-LOX-1 and 15-LOX-2 isoforms show slightly different reaction regiospecificity and substrate specificity, indicating that substrate binding and recognition may be different, a fact that could be related to their different biological role. Here, we have used long molecular dynamics simulations, QM(DFT)/MM potential energy and free energy calculations (using the newly developed DHAM method), to investigate the binding mode of the arachidonic acid (AA) substrate into 15-LOX-2 and the rate-limiting hydrogen-abstraction reaction 15-LOX-2 catalyzes. Our results strongly indicate that hydrogen abstraction from C13 in 15-LOX-2 is only consistent with the "tail-first" orientation of AA, with its carboxylate group interacting with Arg429, and that only the pro-S H13 hydrogen will be abstracted (being the pro-R H13 and H10 too far from the acceptor oxygen atom). At the B3LYP/6-31G(d) level the potential and free energy barriers for the pro-S H13 abstraction of AA by 15-LOX-2 are 18.0 and 18.6 kcal/mol, respectively. To analyze the kinetics of the hydrogen abstraction process, we determined a Markov model corresponding to the unbiased simulations along the state-discretized reaction coordinate. The calculated rates based on the second largest eigenvalue of the Markov matrices agree well with experimental measurements, and also provide the means to directly determine the pre-exponential factor for the reaction by comparing with the free energy barrier height. Our calculated pre-exponential factor is close to the value of kBT/h. On the other hand, our results suggest that the spin inversion of the complete system (including the O2 molecule) that is required to happen at some point along the full process to lead to the final hydroperoxide product, is likely to take place during the hydrogen transfer, which is a proton coupled electron transfer

  12. Applied bioactive polymeric materials

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  13. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  14. Experimental study of living free radical polymerization using trifunctional initiator and polymerization mediated by nitroxide

    Controlled free radical polymerization or living free radical polymerization has received increasing attention as a technique for the production of polymers with microstructure highly controlled. In particular, narrow molecular weight distributions are obtained with polydispersity very close to one. In this research it was investigate the controlled polymerization mediated by nitroxide, using a cyclic trifunctional peroxide. As long as we know, there are only publications in literature dealing with NMRP using mono- and bi-functional initiators. It was believed that the trifunctional peroxide can increase the rate of polymerization, since more free radicals are generated, if compared with initiators with lower functionality. Furthermore, the fact of the initiator be cyclic means that branches are not generated in the chains, which theoretically prevents an increase in polydispersity of the polymer. The effect of the dissociation constant of the trifunctional initiator in the velocity of the reaction was analyzed. (author)

  15. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T.E.; Ha, K. T.; L. Leong; Iraci, L.T.

    2014-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric ...

  16. 利用回声状态网络建立管式聚合反应的灰箱模型%An approach of grey-box modeling with echo state network for tubular polymerization reaction

    秦松; 曹柳林

    2014-01-01

    提出一种利用回声状态网络(echo state network, ESN)建立复杂分布参数系统模型的灰箱建模方法。此建模方法可以充分利用已知机理模型的结构信息和回声状态网络的逼近能力,可更好地描述和解释出系统各变量之间的因果关系,使模型的“灰箱”化程度更高。首先,根据系统方程和先验知识将初始系统特征团引入ESN储备池中,赋予网络节点实际物理意义,并以此建立结构逼近神经网络模型;然后,通过逐步回归分析方法,结合递归最小二乘算法选择最优系统特征团,并对网络结构进行优化,建立起描述系统特性关系的灰箱模型。本文以实验室规模的管式聚合反应过程作为实验对象,建立以温度分布为输出的数学模型,结果表明所提出的灰箱建模方法行之有效。%An approach of grey-box modeling with Echo State Network (ESN) is developed for modeling dynamic processes with nonlinear characteristics. This method can take full advantage of the already known structural information of the mechanism model at the early stage of modeling and make better use of the approximation ability of neural networks, thus resulting in higher accuracy of grey-box modeling. By combination the prior knowledge and systematic equations into ESN state pool, structure approaching neural network (SAAN) is established based on system feature block, and it is given actual significance. Then the optimal fundamental genes were chosen through recursive least square method with stepwise regression analysis to optimize the structure of SANN, so as to get the grey-box model. Detailed process of modeling was described in modeling of tubular polymerization reaction in laboratory scale. The simulation result proves that the approach is effective.ocesses heat exchanger network synthesis by taking place.

  17. Convective instabilities in traveling fronts of addition polymerization

    Pojman, John A.; Jones, Chris E.; Khan, Akhtar M.

    1993-01-01

    An autocatalytic reaction in an unstirred vessel can support a constant velocity wavefront resulting from the coupling of diffusion to the chemical reaction. A flare front is a common example in which heat is the autocatalytic species that diffuses into unreacted regions stimulating a reaction that produces more heat. Traveling fronts were studied in synthetic polymerization reactions under high pressure by workers in the former USSR. More recently, propagating fronts of methacrylic acid polymerization were studied under ambient conditions, both with video techniques and by NMR.

  18. Chelating polymeric membranes

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  19. Introduction to chemical reaction engineering

    This deals with chemical reaction engineering with thirteen chapters. The contents of this book are introduction on reaction engineering, chemical kinetics, thermodynamics and chemical reaction, abnormal reactor, non-isothermal reactor, nonideal reactor, catalysis in nonuniform system, diffusion and reaction in porosity catalyst, design catalyst heterogeneous reactor in solid bed, a high molecule polymerization, bio reaction engineering, reaction engineering in material process, control multi-variable reactor process using digital computer.

  20. Catalytic Polymerization of Acrylonitrile by Khulays Bentonite

    Matar M. Al-Esaimi

    2007-04-01

    Full Text Available The aqueous polymerization of acrylonitrile (AN catalyzed with exchanged Khulays bentonite . The influence of various polymerization parameters ( e.g., concentrations of Potassium Persulfate (K2S2O8 and monomer , various of organic solvents, and different temperature has been investigated. It was found that the rate of polymerization of AN was found to be dependent on monomer concentration, initiator and temperature. The activation energy of polymerization was calculated .Thermal properties of the polymer were studied by TGA and DSC techniques. © 2007 CREC UNDIP. All rights reserved.Received: 5 February 2007; Received in revised: 19 April 2007; Accepted: 7 May 2007[How to Cite: M. M. Al-Esaimi. (2007. Catalytic Polymerization of Acrylonitrile by Khulays Bentonite. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 32-36.  doi:10.9767/bcrec.2.1.4.6-10][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.1.4.6-10 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/4] 

  1. Romp as a versatile method for the obtention of differentiated polymeric materials

    Valdemiro P. Carvalho Jr.; Camila P. Ferraz; José Luiz S. Sá; Benedito S. Lima-Neto

    2012-01-01

    Ring Opening Metathesis Polymerization (ROMP) of cyclic olefins is a powerful transition metal-catalyzed reaction for syntheses of polymers and copolymers. The key feature of this reaction is the [2+2]-cycloaddition mechanism, with retention of the olefinic unsaturation in the polymer chain and occurrence of living polymerization. With the development of metal-carbene type catalysts for this process, many addressed polymeric materials have been successfully prepared to be employed in several ...

  2. Online Monitoring of Vinyl Chloride Polymerization in a Microreactor Using Raman Spectroscopy

    Dorobantu, Ioana-Miruna; Prat, Laurent E.; Xuereb, Catherine; Gourdon, Christophe; Lasuye, Thierry

    2012-01-01

    International audience A novel capillary-based microfluidic device has been designed to follow the vinyl chloride polymerization reaction. The use of a co-flow generation system enabled obtaining monodisperse vinyl chloride droplets within 200 µm in diameter, each one being considered as a polymerization reactor. During polymerization VCM droplets were visualized with a high speed camera. At the end of the reaction PVC grains were observed with a Scanning Electron Microscopy technique. Rea...

  3. Radical polymerization of monoethyl itaconate

    Katsikas Lynne; Nišević Nataša; Ignjatović Milka; Adamović Vladimir; Đakov Tatjana A.; Popović Ivanka G.

    2003-01-01

    The radical polymerization of monoethyl itaconate (MEI) was investigated in bulk and in solution at 60°C using a,a'-azobisisobutyronitrile as initiator. It was established that the obtained polymer poly(monoethyl itaconate) was insoluble in its monomer, implying that the bulk polymerization of MEI was a precipitation polymerization. The polymerization kinetics of MEI were discussed and compared to the polymerization kinetics of structurally similar alkyl itaconates. The homogeneous radical po...

  4. Biodegradable Shape Memory Polymeric Material from Epoxidized Soybean Oil and Polycaprolactone

    Takashi Tsujimoto

    2015-10-01

    Full Text Available This article deals with the synthesis of plant oil-based shape memory materials from epoxidized soybean oil (ESO and polycaprolactone (PCL. PolyESO/PCLs were synthesized by an acid-catalyzed curing in the presence of PCL. During the reaction, PCL scarcely reacted with ESO and the crystallinity of the PCL component decreased to form a semi-interpenetrating network structure. The incorporation of the PCL components improved the maximum stress and strain at break of ESO-based network polymer. The polyESO/PCL was gradually degraded by Pseudomonas cepasia lipase. Furthermore, the polyESO/PCLs exhibited excellent shape memory properties, and the strain fixity depended on the feed ratio of ESO and PCL. The shape memory-recovery behaviors were repeatedly practicable. The resulting materials are expected to contribute to the development of biodegradable intelligent materials.

  5. Clickable Polylactic Acids by Fast Organocatalytic Ring-Opening Polymerization in Continuous Flow

    Berg, van den Sebastiaan A.; Zuilhof, Han; Wennekes, Tom

    2016-01-01

    The use of microreactor technology for the ring-opening polymerization of l-lactide catalyzed by 1,5,7-triazabicyclo[4.4.0]dec-5-ene allows for rapid optimization of reaction parameters (reaction temperature and residence time). At moderate catalyst loading, good control over the polymerization i

  6. Controlled free radical polymerization of vinyl acetate with cobalt acetoacetonate

    Mohammad Ali Semsarzadeh; Sahar Amiri

    2012-03-01

    The polymerization of vinyl acetate with the complex catalyst of cobalt acetoacetonate [Co (acac)2] and DMF ligand with benzoyl peroxide initiator has been successfully carried out in bulk and in solution. The bulk polymerization has been used in a new route consisting of a one-step polymer formation in a fine capillary tube. In this process, the high rate of propagation was used to carry out the reaction in a microcapillary tube. Under 60°C, the colour-free reaction without solid catalyst impurity was 95% complete within a few hours. The high molecular weight of polyvinyl acetate (PVAc) with its relatively low molecular distribution without unreacted monomer provided a new method in microprocessing of the controlled radical polymerization of vinyl acetate in a one-step polymerization process. PVAc polymerization systems showed induction time, which was reduced in this reaction with using complex of DMF/ Co(acac)2. The kinetics of the reaction with a smaller degree of branching from this catalyst indicated that the electronegativity of the transition metal and diffusion of the homogeneous catalyst with DMF are important factors of fast polymerization in the bulk. Thermal properties of the polymer indicated a lower glass transition state. The easily reformed or stretched microsolid polymer demonstrated 20% crystallinity.

  7. Process Condition Optimization of the a-linolenic Acid Catalyzed by Pichia pastoris%巴斯德毕赤酵母催化生成a-亚麻酸的工艺条件优化

    冯康; 葛军军; 张昕欣

    2015-01-01

    利用正交实验优化了巴斯德毕赤酵母催化硬脂酸生成a-亚麻酸的工艺条件,结果显示催化时巴斯德毕赤酵母接种量对催化效率影响显著,在此基础上得到的最佳催化条件为pH值6.5,硬脂酸乙醇饱和溶液加量4 mL,巴斯德毕赤酵母接种量为1 mL。在此条件下,以a-亚麻酸甲酯气相色谱积分面积(18:3)/硬脂酸甲酯气相色谱积分面积(18:0)为标准计算出的转化率为7.16。%For a-linolenic acid production, process condition optimization of stearic acide catalyzed by Pichia pastoris was done by orthogonal design. The results indicated that there was a significant effect of the catalytic efficiency by inoculum size of Pichia pastoris. On this basis, the best catalyzed conditions were obtained:pH of 6. 5, addition amount of saturated ethanol solution of stearic acide was 4 mL, inoculum size of Pichia pastoris was 1 mL. Under the condition, conversion of stearic acide toa-linolenic acid was 7. 16.

  8. Reaction kinetics of polybutylene terephthalate polycondensation reaction

    Darda, P. J.; Hogendoorn, J. A.; Versteeg, G. F.; Souren, F.

    2005-01-01

    The kinetics of the forward polycondensation reaction of polybutylene terephthalate (PBT) has been investigated using thermogravimetric analysis (TGA). PBT - prepolymer with an initial degree of polymerization of 5.5 was used as starting material. The PBT prepolymer was prepared from dimethyl tereph

  9. Light induced polymerization of resin composite restorative materials

    Blažić Larisa

    2004-01-01

    Full Text Available Introduction Dimensional stability of polymer-based dental materials is compromised by polymerization reaction of the monomer. The conversion into a polymer is accompanied by a closer packing of molecules, which leads to volume reduction called curing contraction or polymerization shrinkage. Curing contraction may break the adhesion between the adhesive system and hard tooth tissues forming micrographs which may result in marginal deterioration, recurrent caries and pulp injury. Polymerization shrinkage of resin-based restorative dental materials Polymerization of the organic phase (monomer molecules of resin-based dental materials causes shrinkage. The space occupied by filler particles is not associated with polymerization shrinkage. However, high filler loading within certain limits, can contribute to a lesser curing contraction. Polymerization shrinkage stress and stress reduction possibilities Polymerization shrinkage stress of polymer-based dental resins can be controlled in various ways. The adhesive bond in tooth-restoration interface guides the contraction forces to cavity walls. If leakage occurs, complications like secondary caries and pulpal irritation may jeopardize the longevity of a restoration. Stress relieve can be obtained by modifications of the monomer and photoinitiator, or by specially designed tooth preparation and application of bases and liners of low modulus of elasticity. The polymerization contraction can be compensated by water absorption due to oral cavity surrounding. The newest approach to stress relief is based on modulation of polymerization initiation. Conclusion This work deals with polymerization contraction and how to achieve leak-proof restoration. Restorative techniques that may reduce the negative effect of polymerization shrinkage stress need further research in order to confirm up-to-date findings.

  10. The Research Progress on Mechanism and Kinetics for Ring Opening Polymerization Reaction of Octamethylcyclotetrasiloxane%八甲基环四硅氧烷开环聚合反应机理及动力学研究进展

    夏勇; 曹都; 祁争健; 孙宇; 李丰富

    2014-01-01

    Organosilicon foam stabilizer is synthesized by D4 ring opening polymerization, copolymerization and hydrosilylation methods with D4 , high hydrogen containing silicone oil and polyether as raw materials, which is an important foam stabilizer and emulsifier in polyurethane foams. D4 ring opening polymerization is one of the key of the preparation of organosilicon foam stabilizer. The research progress on mechanism and kinetics of D4 ring opening polymerization were introduced. The reference data and theoretical basis were provided for development and produc-tion of organosilicon foam stabilizer.%有机硅匀泡剂是制备聚氨酯泡沫塑料的重要助剂,主要以八甲基环四硅氧烷(以下简称D4)、高含氢硅油及聚醚多元醇等为原料经开环和共聚及硅氢加成等反应制得,其中,D4的开环聚合反应是制备有机硅匀泡剂的关键之一。评述了国内外D4开环聚合机理及动力学研究进展,以期为聚氨酯泡沫塑料用有机硅匀泡剂的研发和生产提供参考。

  11. PHOTOINDUCED CHARGE TRANSFER POLYMERIZATION OF STYRENE INITIATED BY ELECTRON ACCEPTOR

    CAO Weixiao; ZHANG Peng; FENG Xinde

    1995-01-01

    Photoinduced charge transfer polymerization of styrene(St) with electron acceptor as initiator was investigated. In case of fumaronitrile (FN) or maleic anhydride (MA) as initiator the polymerization takes place regularly, whereas the tetrachloro-1, 4-benzenequinone (TCQ), 2, 3-dichloro-5, 6-dicyano-1, 4-benzenequinone (DDQ) . or tetracyano ethylene (TCNE) as initiator the polymerization proceeds reluctantly only after the photoaddition reaction. A mechanism was proposed that free radicals would be formed following the charge and proton transfer in the exciplex formed between St and electron acceptors.

  12. Influence of Cyclodextrin on the Styrene Polymerization

    HU Jie; LIU Bai-ling

    2004-01-01

    Cyclodextrin (CD) are oligosaccharides consisting of 6( α ), 7( β ), 8( γ ) units of1,4-linked glucose. Due to their polar hydrophilic outer shell and relatively hydrophobic cavity, theyare able to build up host-guest complexes by inclusion of suitable hydrophobic molecules. Theformation of these complexes leads to significant changes of the solubility and reactivity of the guestmolecules, but without any chemical modification. Thus, water insoluble molecules may becomecompletely water soluble simply by mixing with an aqueous solution of native CD or CD-derivatives.Hydrogen bonds or hydrophobic interactions are responsible for the stability of the complexes and itturned out that the complexed monomers could be successfully polymerized by free radicalpolymerization in water.In our present work, using styrene as monomer, potassium peroxodisulfate as radical initiator thatreacted in water in the presence ofβ-CD but without any additional surfactant, the effect ofcyclodextrin on the polymerization was described. Additionally, the acceleration mechanism ofcyclodextrin in the polymerization was also explained based on dynamic study.Table 1 Effect of CD on the monomer reactivityIt is found that β -CD could greatly accelerate the polymerization, enhance the final conversion ofmonomer. And the more the amount of β-CD was introduced, the faster the polymerization wasobtained. From Figure 1, after 5 hours reaction at 80℃, the monomer conversion in the presence of1.0g cyclodextrin reached to 95%. However, that in absence of cyclodextrin was only 60%. And themonomer conversion was not to exceed 75% even reacted for 8 hours when no CD in reactionsystem.In order to describe the acceleration of CD in the polymerization quantitatively, based onCD and without CD. As shown in Table 1, CD produced significant effect on the monomer reactivity.The relative relativities of monomer were greatly increased with the increase of the amount of CD.

  13. Investigation on the Inverse Emulsion Polymerization of Acrylic Acid

    2002-01-01

    Polyacrylic acid particles in nano-scale were synthesized using an inverse (W/O) emulsion polymerization method. The particle size and size change of inverse micelles which solubilize a part of monomer solution was monitored by PCS (photon correlation spectroscopy) and the particles of polyacrylic acid were viewed in scanning electron microscope for the first time. It was concluded that the inverse micelles were primarily the polymerization reaction sites.

  14. On radiation polymerization of vinyl esters of glycols and aminoalcohols

    Water-soluble polymers, based on ethylene-, diethyleneglycol monovinyl ethers and monoethanolamine vinyl ether, which contain reactive hydroxyl and amino groups in the side chain are synthesized by radiation-induced polymerization method (60Co γ-irradiation at different dose rates and temperatures). Polymerization radical mechanism is determined and absolute values of rate constants of propagation and termination are found in aqueous solutions anomalous change of the reaction rate and MM of polymers depending on the monomer content is detected

  15. Light induced polymerization of resin composite restorative materials

    Blažić Larisa; Marković Dubravka; Đurić Milanko

    2004-01-01

    Introduction Dimensional stability of polymer-based dental materials is compromised by polymerization reaction of the monomer. The conversion into a polymer is accompanied by a closer packing of molecules, which leads to volume reduction called curing contraction or polymerization shrinkage. Curing contraction may break the adhesion between the adhesive system and hard tooth tissues forming micrographs which may result in marginal deterioration, recurrent caries and pulp injury. Polymerizatio...

  16. Propylene polymerization in a circulating slugging fluidized bed reactor

    Putten, van, J.P.M.

    2004-01-01

    The work presented in this thesis is concerned with research on the riser of a circulating fluidized bed system for olefin polymerization. In the riser section, fluidization takes place in the transporting slugging mode and polymer particles are produced in the riser in a non-isothermal way. Properties of the polymerization reaction and of the hydrodynamics were studied and their behavior with respect to conditions in the reactor were described. A reactor model was constructed that accurately...

  17. POLYMERIC SURFACTANT STRUCTURE

    P.M. Saville; J.W. White

    2001-01-01

    Polymeric surfactants are amongst the most widespread of all polymers. In nature, proteins and polysaccharides cause self organization as a result of this surfactancy; in industry, polymeric surfactants play key roles in the food, explosives and surface coatings sectors. The generation of useful nano- and micro-structures in films and emulsions as a result of polymer amphiphilicity and the application of mechanical stress is discussed. The use of X-ray and neutron small angle scattering and reflectivity to measure these structures and their dynamic properties will be described. New results on linear and dendritic polymer surfactants are presented.

  18. Inflation of a Polymeric Menbrane

    Kristensen, Susanne B.; Larsen, Johannes R.; Hassager, Ole

    1998-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane.......We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane....

  19. Variable Effect during Polymerization

    Lunsford, S. K.

    2005-01-01

    An experiment performing the polymerization of 3-methylthiophene(P-3MT) onto the conditions for the selective electrode to determine the catechol by using cyclic voltammetry was performed. The P-3MT formed under optimized conditions improved electrochemical reversibility, selectivity and reproducibility for the detection of the catechol.

  20. Biodiesel forming reactions using heterogeneous catalysis

    Liu, Yijun

    other comparisons between the catalytic behaviors of liquid and solid acids suggests a common mode of operation of their Bronsted acid sites in carrying out esterification of a carboxylic acid with alcohol. The hypothesized Eley-Rideal type heterogeneous reaction mechanism involving a nucleophilic attack between adsorbed carboxylic acid and unadsorbed alcohol as the rate-limiting step was found to fit well the experimental observations and successfully predict the esterification rate obtained with SAC-13 as reaction progresses. The SAC-13 catalysis assay was also extended to carboxylic acids of higher molecular weights. A set of carboxylic acids with various alkyl chain lengths was used to investigate the structural effect of reacting carboxylic acids on heterogeneous catalyzed esterification. It was found that the reactivity of carboxylic acids was controlled by steric factors as the alkyl chain linearly lengthened. Despite their increased hydrophobicity, large carboxylic acids hardly impacted the deactivating effect of water on Bronsted acid sites. However, catalyst reusability and regeneration showed significant dependency on the size of the carboxylic acid used. With the use of larger reacting carboxylic acids, SAC-13 underwent more significant activity loss in consecutive reaction cycles due to stronger adsorption of the larger organics in the polymeric domains of the Nafion resin. In parallel to the research activity on acid catalyzed esterification, the use of strong solid bases with organic functionality (quarternary ammonium, QN+) was investigated from a fundamental perspective. Using triacetin as a model compound for TG molecules, the effectiveness of this Bronsted base functionality in transesterification was demonstrated even at mild reaction conditions. But its catalytic behavior including catalyst selectivity and deactivation was significantly affected by the nature of the adopted support. A purposive design of the immobilizing matrix is expected to

  1. Radiation-induced polymerization of acrylated systems

    Complete text of publication follows. It has been generally accepted that ionizing radiation induces free radical polymerization in acrylate compounds. It is also reported that, following primary ionization events, acrylates and methacrylates scavenge thermalized electrons to give rise to radical anions and radical cations, which undergo reactions producing the corresponding free radicals. Acrylates have received the most attention in radiation curable pressure sensitive adhesives (PSAs). 2-EHA is well known for its unique pressure-sensitive adhesive properties. An understanding of its primary mechanism of polymerization is of industrial as well as fundamental interest. High entanglement and high molecular weight between crosslinks are crucial for the high shear and peel strength, required of PSAs. Such polymers may be formed using thermal and UV-initiation in solvent or emulsion. Electron beam can also provide these properties when the monomer is polymerized at moderate dose rates and at low temperature. Pulsed electron beam provides a special advantage under conditions where the dose per pulse is below the threshold for overlap (ca. 40 Gy/pulse) and the pulse rate is high enough (>1 kHz) to maintain a quasi-heterogeneous mode at high doses rates. Maintaining low temperature in the early stages of polymerization is important in achieving good properties

  2. Polymeric bicontinuous microemulsions

    Bates, F.S.; Maurer, W.W.; Lipic, P.M.; Hillmyer, M.A.; Almdal, K.; Mortensen, K.; Fredrickson, G.H.; Lodge, T.P.

    1997-01-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in nurtures containing a model diblock copolymer and two homopolymers. Alt....... Although we attribute development of this equilibrium morphology to the effects of fluctuations, mean-field theory provides a quantitative strategy for preparing the bicontinuous state at blend compositions near an isotropic Lifshitz point....

  3. Polymeric bicontinuous microemulsions

    Bates, F.S.; Maurer, W.W.; Lipic, P.M.;

    1997-01-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in nurtures containing a model diblock copolymer and two homopolymers....... Although we attribute development of this equilibrium morphology to the effects of fluctuations, mean-field theory provides a quantitative strategy for preparing the bicontinuous state at blend compositions near an isotropic Lifshitz point....

  4. Polymeric Bicontinuous Microemulsions

    Bates, Frank S.; Maurer, Wayne W.; Lipic, Paul M.; Hillmyer, Marc A.; Almdal, Kristoffer; Mortensen, Kell; Fredrickson, Glenn H.; Lodge, Timothy P.

    1997-08-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in mixtures containing a model diblock copolymer and two homopolymers. Although we attribute development of this equilibrium morphology to the effects of fluctuations, mean-field theory provides a quantitative strategy for preparing the bicontinuous state at blend compositions near an isotropic Lifshitz point.

  5. Radiation-induced polymerization of hydrogen cyanide

    The chain reaction of HCN polymerization in a γ-radiation field does not occur at 77 K. When irradiated HCN is warmed up to ambient temperature, a polymer is formed. The heat of polymerization of HCN is 44.0±6.0 kJ/mol and the polymer yield reaches 2.5% for a dose of 725 kGy. Amorphous polymer products (with yields increasing up to 33.5%) and needle crystals (presumably HCN tetramer) are formed upon storage of irradiated HCN at room temperature. The polymer is stable below 700 K, has a conductivity of 3x10-5Ω-1cm-f1, and displays an EPR spectrum typical of polyconjugated systems. A radical mechanism of the formation of conjugated chain -C=N-C=N- is suggested. The tetramer is produced by a combination of aminocyanocarbene biradicals

  6. Radiation polymerization of tetrafluoroethylene in freon-22

    The radiation-induced solution-polymerization of tetrafluoroethylene in Freon-22 has been investigated over a temperature range of - 62 degrees celcius to 0 degrees celcius. The rate of polymerization for the in-source process was found to be directly propertional to monomer concentration and an activation energy of only 7,66 kj/mole was calculated. The number-average molecular mass of the product PTFE ranged from 2X104 to 6X104 and was relatively independent of the usual reaction parameters. The rate of postpolymerization was also found to be directly proportional to monomer concentration. The postpolyerization process did not result in any enchancement of the initial PTFE molecular mass

  7. Reversible and Irreversible Binding of Nanoparticles to Polymeric Surfaces

    Wolfgang H. Binder

    2009-01-01

    Full Text Available Reversible and irreversible binding of CdSe-nanoparticles and nanorods to polymeric surfaces via a strong, multiple hydrogen bond (= Hamilton-receptor/barbituric acid is described. Based on ROMP-copolymers, the supramolecular interaction on a thin polymer film is controlled by living polymerization methods, attaching the Hamilton-receptor in various architectures, and concentrations. Strong binding is observed with CdSe-nanoparticles and CdSe-nanorods, whose surfaces are equipped with matching barbituric acid-moieties. Addition of polar solvents, able to break the hydrogen bonds leads to the detachment of the nanoparticles from the polymeric film. Irreversible binding is observed if an azide/alkine-“click”-reaction is conducted after supramolecular recognition of the nanoparticles on the polymeric surface. Thus reversible or irreversible attachment of the nanosized objects can be achieved.

  8. Studies on Macro—kinetics of Gas Phase Polymerization of Butadiene with Rare—earch Catalyst

    FANGDonyu; SUNJianzhong; 等

    2002-01-01

    The study of the kinetics of gas phase polymerization of butadiene with heterogeneous catalyst based on neodymium(Nd) was carried out.The effects of reaction temperature,reaction pressure,dispersing medium, and types of catalyst on kinetics of polymerization were investigated .A kinetic model with two kinds of active sites was proposed.The results show that the effects of the reaction temperature and the types of dispersing medium and catalyst on the kinetic performance of polymerization are significant,and that the combined model of first and second order decay of active site of catalyst can be used to describe the phenomena.

  9. Plasma polymerization for cell adhesive/anti-adhesive implant coating

    Meichsner, Juergen; Testrich, Holger; Rebl, Henrike; Nebe, Barbara

    2015-09-01

    Plasma polymerization of ethylenediamine (C2H8N2, EDA) and perfluoropropane (C3F8, PFP) with admixture of argon and hydrogen, respectively, was studied using an asymmetric 13.56 MHz CCP. The analysis of the plasma chemical gas phase processes for stable molecules revealed consecutive reactions: C2H8N2 consumption, intermediate product NH3, and main final product HCN. In C3F8- H2 plasma the precursor molecule C3F8 and molecular hydrogen are consumed and HF as well as CF4 and C2F6 are found as main gaseous reaction products. The deposited plasma polymer films on the powered electrode are strongly cross-linked due to ion bombardment. The stable plasma polymerized films from EDA are characterized by high content of nitrogen with N/C ratio of about 0.35. The plasma polymerized fluorocarbon film exhibit a reduced F/C ratio of about 1.2. Adhesion tests with human osteoblast cell line MG-63 on coated Ti6Al4V samples (polished) compared with uncoated reference sample yielded both, the enhanced cell adhesion for plasma polymerized EDA and significantly reduced cell adhesion for fluorocarbon coating, respectively. Aging of the plasma polymerized EDA film, in particular due to the reactions with oxygen from air, showed no significant change in the cell adhesion. The fluorocarbon coating with low cell adhesion is of interest for temporary implants. Funded by the Campus PlasmaMed.

  10. Linear interfacial polymerization: theory and simulations with dissipative particle dynamics.

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V

    2014-11-21

    Step-growth alternating interfacial polymerization between two miscible or immiscible monomer melts is investigated theoretically and by dissipative particle dynamics simulations. In both cases the kinetics for an initially bilayer system passes from the reaction to diffusion control. The polymer composed of immiscible monomers precipitates at the interface forming a film of nearly uniform density. It is demonstrated that the reaction proceeds in a narrow zone, which expands much slower than the whole film, so that newly formed polymer is extruded from the reaction zone. This concept of "reactive extrusion" is used to analytically predict the degree of polymerization and distribution of all components (monomers, polymer, and end groups) within the film in close agreement with the simulations. Increasing the comonomer incompatibility leads to thinner and more uniform films with the higher average degree of polymerization. The final product is considerably more polydisperse than expected for the homogeneous step-growth polymerization. The results extend the previous theoretical reports on interfacial polymerization and provide new insights into the internal film structure and polymer characteristics, which are important for membrane preparation, microencapsulation, and 3D printing technologies. A systematic way of mapping the simulation data onto laboratory scales is discussed. PMID:25416911

  11. One-Pot Synthesis of N-(α-Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere

    Wang, Xinbo

    2015-11-06

    A facile one-pot synthesis of N-(α-peroxy)indole and N-(α-peroxy)carbazole has been developed using metal-free, organo-acid-catalyzed three-component condensation reactions of indole/carbazole, aldehyde, and peroxide. Based on the reaction discovered, a new synthetic proposal for Fumitremorgin A and Verruculogen is introduced. Such a protocol could be easily handled and scaled up in an open atmosphere with a wide substrate scope, enabling the construction of a new molecule library.

  12. Modeling of free radical polymerization up to high conversion. II. Development of a mathematical model

    Tefera, N.; Weickert, G.; Westerterp, K.R.

    1997-01-01

    In free radical polymerization diffusion-controlled processes take place simultaneously to the normal chemical reactions. Despite extensive efforts to model such processes a consistent model for the design of a polymerization reactor has not yet been established. In this article a semiempirical mode

  13. Ring-Opening Polymerization of Lactide to Form a Biodegradable Polymer

    Robert, Jennifer L.; Aubrecht, Katherine B.

    2008-01-01

    In this laboratory activity for introductory organic chemistry, students carry out the tin(II) bis(2-ethylhexanoate)/benzyl alcohol mediated ring-opening polymerization of lactide to form the biodegradable polymer polylactide (PLA). As the mechanism of the polymerization is analogous to that of a transesterification reaction, the experiment can be…

  14. Packaging based on polymeric materials

    Jovanović Slobodan M.; Živković Predrag M.; Stoiljković Dragoslav M.

    2005-01-01

    In the past two years the consumption of common in the developed countries world wide (high tonnage) polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging m...

  15. Effect of ultrasonic pretreatment on emulsion polymerization of styrene.

    Nagatomo, Daichi; Horie, Takafumi; Hongo, Chizuru; Ohmura, Naoto

    2016-07-01

    This study investigated the effect of pretreatment of ultrasonic irradiation on emulsion polymerization of styrene to propose a process intensification method which gives high conversion, high reaction rate, and high energy efficiency. The solution containing styrene monomer was irradiated by a horn mounted on the ultrasonic transducer with the diameter of 5mm diameter and the frequency of 28 kHz before starting polymerization. The pretreatment of ultrasound irradiation as short as 1 min drastically improved monomer dispersion and increased reaction rate even under the agitation condition with low rotational speed of impeller. Furthermore, the ultrasonic pretreatment resulted in higher monomer concentration in polymer particles and produced larger polymer particles than conventional polymerization without ultrasonic pretreatment. PMID:26964957

  16. Phosphazene-promoted anionic polymerization

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  17. Polymerization Evaluation by Spectrophotometric Measurements.

    Dunach, Jaume

    1985-01-01

    Discusses polymerization evaluation by spectrophotometric measurements by considering: (1) association degrees and molar absorptivities; (2) association degrees and equilibrium constants; and (3) absorbance and equilibrium constants. (JN)

  18. Radiation polymerization of unsaturated polyester

    Radiation polymerization of unsaturated polyester has been studied, either under electron beams or gamma rays. Addition of reducing agents of dyes will reduce the rate of polymerization. Rate of polymerization is proportional to 1sup(a), where the value of ''a'' is dependent on the composition of the monomer and polymer (1= dose rate). Infrared examinations indicated that for higher dose of irradiation, 8,5 Mrad in the case of unsaturated polyester STRATYL under electron beams, either polymerization or degradation of ester groups can take place. (author)

  19. Sustainable polymerizations in recoverable microemulsions.

    Chen, Zhenzhen; Yan, Feng; Qiu, Lihua; Lu, Jianmei; Zhou, Yinxia; Chen, Jiaxin; Tang, Yishan; Texter, John

    2010-03-16

    Free radical and atom-transfer radical polymerizations were conducted in monomer/ionic liquid microemulsions. After the polymerization and isolation of the resultant polymers, the mixture of the catalyst and ionic liquids (surfactant and continuous phase) can be recovered and reused, thereby dramatically improving the environmental sustainability of such chemical processing. The addition of monomer to recovered ionic liquid mixtures regenerates transparent, stable microemulsions that are ready for the next polymerization cycle upon addition of initiator. The method combines the advantages of IL recycling and microemulsion polymerization and minimizes environmental disposable effects from surfactants and heavy metal ions. PMID:20170175

  20. Reaction Kinetics and Viscosity Variation of HTPB/N100 Polymerization System%HTPB/N100体系的聚合反应动力学和粘度变化

    郑申声; 关立峰; 董兰; 吴奎先

    2011-01-01

    Hydroxyl-terminated polybutadiene(HTPB)/N100 reaction kinetics was investigated by method of the ratio of concentration and time.Matlab software was applied to calculate the reaction order and rate constant under different temperatures.The effects of various additions of catalyst on reaction rate, and the relationship between time and viscosity for HTPB/N100 reactionwere studied.Results show that the reaction of HTPB/N100 belongs to the first order reaction, and activation energy is 70.57 kJ · mol-1.With the increasing of catalyst proportion,the reaction rate constants increase, and the established exponential model for time-dependent of reaction system reveals their quantitative relationship.%采用浓度-时间比法研究端羟基聚丁二烯(HTPB)/N100反应动力学,利用Matlab软件计算得到反应级数和不同温度下反应速率常数,考察了反应速率变化对催化剂用量的依赖关系,并对过程中粘度与时间的变化关系进行研究.结果表明:HTPB/N100反应符合一级反应规律,活化能Ea=70.57 kJ·mol-1;反应速率常数与催化剂用量成正相关;建立反应体系的粘度-时间指数模型能准确反映过程中两者间的关系.

  1. Interfacial polymerization of conductive polymers: Generation of polymeric nanostructures in a 2-D space.

    Dallas, Panagiotis; Georgakilas, Vasilios

    2015-10-01

    In the recent advances in the field of conductive polymers, the fibrillar or needle shaped nanostructures of polyaniline and polypyrrole have attracted significant attention due to the potential advantages of organic conductors that exhibit low-dimensionality, uniform size distribution, high crystallinity and improved physical properties compared to their bulk or spherically shaped counterparts. Carrying the polymerization reaction in a restricted two dimensional space, instead of the three dimensional space of the one phase solution is an efficient method for the synthesis of polymeric nanostructures with narrow size distribution and small diameter. Ultra-thin nanowires and nanofibers, single crystal nanoneedles, nanocomposites with noble metals or carbon nanotubes and layered materials can be efficiently synthesized with high yield and display superior performance in sensors and energy storage applications. In this critical review we will focus not only on the interfacial polymerization methods that leads to polymeric nanostructures and composites and their properties, but also on the mechanism and the physico-chemical processes that govern the diffusion and reactivity of molecules and nanomaterials at an interface. Recent advances for the synthesis of conductive polymer composites with an interfacial method for energy storage applications and future perspectives are presented. PMID:26272721

  2. Kinetics of Vinyl Polymerization of Methyl Methacrylate Initiated by Ce(IV)-Vanillin Redox System

    Palanivelu, M.; K. E. N. Nalla Mohamed; T. Hidayathulla Khan; M. Prem Nawaz

    2012-01-01

    The kinetics of polymerization of methyl methacrylate initiated by Ce(IV)-Vanillin redox system was studied in aqueous solution of sulfuric acid at 40°C. The rate of polymerization (Rp) and the reaction orders with respect to monomer, initiator and ligand have been determined and found to be 1.5, 0.5 and 0.5 respectively. The effect of concentration of sulfuric acid on the polymerization was also studied. The rate of polymerization was found to increase with increasing temperature 30–60°C and...

  3. Modeling lignin polymerization. Part 1: simulation model of dehydrogenation polymers.

    Parijs, F.R.D. van; Morreel, K.; Ralph, J.; Boerjan, W.; Merks, R.M.H.

    2010-01-01

    Lignin is a heteropolymer that is thought to form in the cell wall by combinatorial radical coupling of monolignols. Here, we present a simulation model of in vitro lignin polymerization, based on the combinatorial coupling theory, which allows us to predict the reaction conditions controlling the p

  4. Study of the kinetics and equilibria of the oligomerization reactions of 2-methylglyceric acid

    A. W. Birdsall

    2012-11-01

    Full Text Available The presence of a variety of chemical species related to the gaseous precursor isoprene in ambient secondary organic aerosol (SOA has stimulated investigations of the nature of SOA-phase chemical processing. Recent work has demonstrated that 2-methylglyceric acid (2-MG is an important isoprene-derived ambient SOA component and atmospheric chamber experiments have suggested that 2-MG may exist in oligomeric form (as oligoesters under conditions of low SOA water content. In order to better understand the thermodynamic and kinetic parameters of such oligomerization reactions, nuclear magnetic resonance techniques were used to study the bulk phase acid-catalyzed aqueous reactions (Fischer esterification of 2-MG. While the present results indicate that 2-MG oligoesters are formed in the bulk phase with similar water content equilibrium dependences as observed in atmospheric chamber SOA experiments, the acid-catalyzed rate of the Fischer esterification mechanism may be too slow to rationalize the 2-MG oligoester production timescales observed in the atmospheric chamber experiments. Furthermore, it appears that unrealistically high ambient SOA acidities would also be required for significant 2-MG oligoester content to arise via Fischer esterification. Therefore, the present results suggest that other, more kinetically facile, esterification mechanisms may be necessary to rationalize the existence of 2-MG oligomers in atmospheric chamber-generated and ambient SOA.

  5. Study of the kinetics and equilibria of the oligomerization reactions of 2-methylglyceric acid

    A. W. Birdsall

    2013-03-01

    Full Text Available The presence of a variety of chemical species related to the gaseous precursor isoprene in ambient secondary organic aerosol (SOA has stimulated investigations of the nature of SOA-phase chemical processing. Recent work has demonstrated that 2-methylglyceric acid (2-MG is an important isoprene-derived ambient SOA component and atmospheric chamber experiments have suggested that 2-MG may exist in oligomeric form (as oligoesters under conditions of low SOA water content. In order to better understand the thermodynamic and kinetic parameters of such oligomerization reactions, nuclear magnetic resonance techniques were used to study the bulk phase acid-catalyzed aqueous reactions (Fischer esterification of 2-MG. While the present results indicate that 2-MG oligoesters are formed in the bulk phase with similar water content equilibrium dependences as observed in atmospheric chamber SOA experiments, the acid-catalyzed rate of the Fischer esterification mechanism may be too slow to rationalize the 2-MG oligoester production timescales observed in the atmospheric chamber experiments. Furthermore, it appears that unrealistically high ambient SOA acidities would also be required for significant 2-MG oligoester content to arise via Fischer esterification. Therefore, the present results suggest that other, more kinetically facile, esterification mechanisms may be necessary to rationalize the existence of 2-MG oligomers in atmospheric chamber-generated and ambient SOA.

  6. Complex Macromolecular Architectures by Living Cationic Polymerization

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  7. Island Ripening via a Polymerization-Depolymerization Mechanism

    Hesse, Martin; von Boehn, Bernhard; Locatelli, Andrea; Sala, Alessandro; Menteş, Tevfik O.; Imbihl, Ronald

    2015-09-01

    In catalytic methanol oxidation on ultrathin vanadium oxide layers on Rh(111) (ΘV≈0.2 monolayer equivalent) we observe a 2D ripening of the VOx islands that is controlled by the catalytic reaction. Neighboring VOx islands move under reaction conditions towards each other and coalesce. The motion and the coalescence of the islands are explained by a polymerization-depolymerization equilibrium that is sensitive to gradients in the adsorbate coverages.

  8. INVESTIGATION OF THE SURFACE PROPERTIES OF POLYMERIC SOAPS OBTAINED BY RING-OPENING POLYMERIZATION OF EPOXIDIZED SOYBEAN OIL

    Epoxidized soybean oil (ESO) was converted to a polysoap via a two-step synthetic procedure of catalytic ring-opening polymerization (PESO), followed by hydrolysis with a base (HPESO). Various molecular weights of PESO and HPESO were prepared by varying the reaction temperature and/or catalyst conc...

  9. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  10. Construction of Nontoxic Polymeric UV-Absorber with Great Resistance to UV-Photoaging

    Huang, Zhong; Ding, Aishun; Guo, Hao; Lu, Guolin; Huang, Xiaoyu

    2016-01-01

    In this article, we developed a series of new nontoxic polymeric UV-absorbers through covalently attaching a benzophenone derivative onto the main chain of poly(vinyl chloride) (PVC) via mild and quantitative click chemistry. Azide groups were firstly introduced into the backbone of PVC via a nucleophilic reaction without affecting polymeric skeleton. Copper-catalyzed Husigen-Click cycloaddition reaction was performed between the pendant azide groups of PVC and alkynyl of (2-hydroxy-4-(prop-2...