WorldWideScience

Sample records for acid-based doubly cross-linked

  1. Structural Analysis and Mechanical Characterization of Hyaluronic Acid-Based Doubly Cross-Linked Networks.

    Jha, Amit K; Hule, Rohan A; Jiao, Tong; Teller, Sean S; Clifton, Rodney J; Duncan, Randall L; Pochan, Darrin J; Jia, Xinqiao

    2009-01-01

    We have created a new class of hyaluronic acid (HA)-based hydrogel materials with HA hydrogel particles (HGPs) embedded in and covalently cross-linked to a secondary network. HA HGPs with an average diameter of ∼900 nm and narrow particle size distribution were synthesized using a refined reverse micelle polymerization technique. The average mesh size of the HGPs was estimated to be approximately 5.5 to 7.0 nm by a protein uptake experiment. Sodium periodate oxidation not only introduced aldehyde groups to the particles but also reduced the average particle size. The aldehyde groups generated were used as reactive handles for subsequent cross-linking with an HA derivative containing hydrazide groups. The resulting macroscopic gels contain two distinct hierarchical networks (doubly cross-linked networks, DXNs): one within individual particles and another among different particles. Bulk gels (BGs) formed by direct mixing of HA derivatives with mutually reactive groups were included for comparison. The hydrogel microstructures were collectively characterized by microscopy and neutron scattering techniques. Their viscoelasticity was quantified at low frequencies (0.1-10 Hz) using a controlled stress rheometer and at high frequencies (up to 200 Hz) with a home-built torsional wave apparatus. Both BGs and DXNs are stable elastic gels that become stiffer at higher frequencies. The HA-based DXN offers unique structural hierarchy and mechanical properties that are suitable for soft tissue regeneration. PMID:20046226

  2. Synthesis and Properties of Lactic Acid-based Cross-linked Poly(ester-amide)

    Yue Ying HE; Cong Ming XIAO

    2006-01-01

    A novel lactic acid-based cross-linked poly(ester-amide) (LCPEA) was synthesized. The gel fraction of the LCPEA could be modulated by the reaction conditions and it affected the mechanical and thermal properties of the LCPEA. The tensile strength, elastic modulus and bend strength of the LCPEA of 65% gel fraction were 4.65, 136.55 and 39.63 MPa, respectively. The thermal decomposition temperature (50 wt%) of the LCPEA was around 410 ℃.

  3. Study of the effect of mixing approach on cross-linking efficiency of hyaluronic acid-based hydrogel cross-linked with 1,4-butanediol diglycidyl ether.

    Al-Sibani, Mohammed; Al-Harrasi, Ahmed; Neubert, Reinhard H H

    2016-08-25

    Regardless of various strategies reported for cross-linking hyaluronic acid (HA) with 1,4-butanediol diglycidyl ether (BDDE), seeking new strategies that enhance cross-linking efficiency with a low level of cross-linker is essential. In this work, we studied the influence of mixing approach on two cross-linked BDDE-HA hydrogels prepared by two different mixing approaches; the large-batch mixing approach in which the hydrogel quantities were all mixed as a single lump in one container (hydrogel 1), and the small-batches mixing approach in which the hydrogel quantities were divided into smaller batches, mixed separately at various HA/BDDE ratios then combined in one reaction mixture (hydrogel 2). The result showed that the cross-linking reaction was mixing process-dependent. Degradation tests proved that, in relation to hydrogel 1, hydrogel 2 was more stable, and exhibited a higher resistance towards hyaluronidase activity. The swelling ratio of hydrogel 1 was significantly higher than that of hydrogel 2 in distilled water; however, in phosphate buffer saline, both hydrogels showed no significant difference. SEM images demonstrated that hydrogel 2 composite showed a denser network structure and smaller pore-size than hydrogel 1. In comparison to native HA, the occurrence of chemical modification in the cross-linked hydrogels was confirmed by FTIR and NMR distinctive peaks. These peaks also provided evidence that hydrogel 2 exhibited a higher degree of modification than hydrogel 1. In conclusion, the small-batches mixing approach proved to be more effective than large-batch mixing in promoting HA-HA entanglement and increasing the probability of BDDE molecules for binding with HA chains. PMID:27312477

  4. Interfacial Bioorthogonal Cross-Linking

    Zhang, Han; Dicker, Kevin T.; Xu, Xian; Jia, Xinqiao; Fox, Joseph M.

    2014-01-01

    Described herein is interfacial bioorthogonal cross-linking, the use of bioorthogonal chemistry to create and pattern biomaterials through diffusion-controlled gelation at the liquid-gel interface. The basis is a rapid (k 2 284000 M–1 s–1) reaction between strained trans-cyclooctene (TCO) and tetrazine (Tz) derivatives. Syringe delivery of Tz-functionalized hyaluronic acid (HA-Tz) to a bath of bis-TCO cross-linker instantly creates microspheres with a cross-linked shell through which bis-TCO ...

  5. Collagen cross linking: Current perspectives

    Srinivas K Rao

    2013-01-01

    Full Text Available Keratoconus is a common ectatic disorder occurring in more than 1 in 1,000 individuals. The condition typically starts in adolescence and early adulthood. It is a disease with an uncertain cause and its progression is unpredictable, but in extreme cases, vision deteriorates and can require corneal transplant surgery. Corneal collagen cross-linking (CCL with riboflavin (C3R is a recent treatment option that can enhance the rigidity of the cornea and prevent disease progression. Since its inception, the procedure has evolved with newer instrumentation, surgical techniques, and is also now performed for expanded indications other than keratoconus. With increasing experience, newer guidelines regarding optimization of patient selection, the spectrum of complications and their management, and combination procedures are being described. This article in conjunction with the others in this issue, will try and explore the uses of collagen cross-linking (CXL in its current form.

  6. Electrospinning formaldehyde cross-linked zein solutions

    In order to develop zein fibers with improved physical properties and solvent resistance, formaldehyde was used as the cross-linking reagent before spinning. The cross-linking reaction was carried out in either acetic acid or ethanolic-HCl where the amount of cross-linking reagent was between 1 and...

  7. Histone cross-linking by transglutaminase.

    Kim, Jae-Hong; Nam, Kang Hoon; Kwon, Oh-Seok; Kim, In Gyu; Bustin, Michael; Choy, Hyon E; Park, Sang Chul

    2002-05-24

    Transglutaminases irreversibly catalyze covalent cross-linking of proteins by forming isopeptide bonds between peptide-bound glutamine and lysine residues. Among several transglutaminases, tissue-type transglutaminase (tTGase) is most ubiquitously found in every type of cells and tissues in animals, but its natural substrate has yet to be identified. In an attempt to identify the natural substrate for tTGase, we examined in vitro if core histones were subject to cross-linking by tTGase. We found core histone subunits, H2A and H2B, were specifically cross-linked by tTGase. The cross-linking was between either one or both glutamines at C-terminal end of H2A (-VTIAQ104 GGVLPNTQ112 SVLLPKKTESSKSK-C' end) and the first and/or third lysine from C-terminal end of H2B (-AVESEGK116 AVTKYTSSK125-C' end). The cross-linking occurred only when these subunits were released from nucleosome but not when these were organized in nucleosome. Most interestingly, in chicken erythrocyte the cross-linked H2A-H2B was present in a significant amount. From these results, it can be proposed that tTGase-mediated cross-linking is an another form of core histone modification and it may play a role of chromatin condensation during erythrocyte differentiation. PMID:12054678

  8. Chemical cross-linking of Chlamydia trachomatis

    Birkelund, Svend; Lundemose, AG; Christiansen, Gunna

    1988-01-01

    Purified elementary bodies (EBs) of Chlamydia trachomatis serovar L2 were analyzed by chemical cross-linking with disuccinimidyl selenodipropionate. The effect of the cross-linking was analyzed by immunoblotting sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated components which...... forms of MOMP without LPS, was observed. A totally different membrane structure must be present in reticulate bodies, since there, MOMP was so heavily cross-linked that it did not enter the polyacrylamide gel and thus became impossible to analyze. Furthermore, the monoclonal antibody, which reacted with...

  9. Cross-linking chemistry of squid beak.

    Miserez, Ali; Rubin, Daniel; Waite, J Herbert

    2010-12-01

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance ((1)H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed. PMID:20870720

  10. Cross-linking Chemistry of Squid Beak*

    Miserez, Ali; Rubin, Daniel; Waite, J. Herbert

    2010-01-01

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of the sclerotization chemistry and describe additional cross-links from D. gigas beak. All cross-links presented in this report share common building blocks, a family of di-, tri-, and tetra-histidine-catecholic adducts, that were separated by affinity chromatography and high performance liquid chromatography (HPLC) and identified by tandem mass spectroscopy and proton nuclear magnetic resonance (1H NMR). The data provide additional insights into the unusually high cross-link density found in mature beaks. Furthermore, we propose both a low molecular weight catechol, and peptidyl-dopa, to be sclerotization agents of squid beak. This appears to represent a new strategy for forming hard tissue in animals. The interplay between covalent cross-linking and dehydration on the graded properties of the beaks is discussed. PMID:20870720

  11. Macromolecular Flexibility and Aggregation Tendency of Non-Cross-Linked and Cross-Linked Cationic Polysoaps

    Wang, Guang-Jia; Engberts, Jan B.F.N.

    1998-01-01

    The aggregation tendency of non-cross-linked and cross-linked poly(alkylmethyl-diallylammonium halides) bearing n-dodecyl and n-decyl side chains ((CL)-CopolC1-12-Cl, (CL)-CopolC1-12-Br and (CL)-CopolC1-10-Br, respectively) in aqueous solution has been evaluated by measuring their critical aggregate

  12. Cross-linked structure of network evolution

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks

  13. Cross-linked structure of network evolution

    Bassett, Danielle S., E-mail: dsb@seas.upenn.edu [Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Sage Center for the Study of the Mind, University of California, Santa Barbara, California 93106 (United States); Wymbs, Nicholas F.; Grafton, Scott T. [Department of Psychology and UCSB Brain Imaging Center, University of California, Santa Barbara, California 93106 (United States); Porter, Mason A. [Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); CABDyN Complexity Centre, University of Oxford, Oxford, OX1 1HP (United Kingdom); Mucha, Peter J. [Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina, Chapel Hill, North Carolina 27599 (United States); Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, North Carolina 27599 (United States)

    2014-03-15

    We study the temporal co-variation of network co-evolution via the cross-link structure of networks, for which we take advantage of the formalism of hypergraphs to map cross-link structures back to network nodes. We investigate two sets of temporal network data in detail. In a network of coupled nonlinear oscillators, hyperedges that consist of network edges with temporally co-varying weights uncover the driving co-evolution patterns of edge weight dynamics both within and between oscillator communities. In the human brain, networks that represent temporal changes in brain activity during learning exhibit early co-evolution that then settles down with practice. Subsequent decreases in hyperedge size are consistent with emergence of an autonomous subgraph whose dynamics no longer depends on other parts of the network. Our results on real and synthetic networks give a poignant demonstration of the ability of cross-link structure to uncover unexpected co-evolution attributes in both real and synthetic dynamical systems. This, in turn, illustrates the utility of analyzing cross-links for investigating the structure of temporal networks.

  14. The cross linking of EPDM and NBR rubber

    Samardžija-Jovanović Suzana

    2005-01-01

    Full Text Available In the process of macromolecule cross linking, the choice of type and quantity of the components and the experimental conditions are important to obtain the new cross linked materials with better mechanical and chemical characteristics. The cross linking method depends on the rubber type and structure. Intermolecular cross linking results in the formation elastomer network. The basis of the cross linking process, between ethylene propylene diene rubber (EPDM and acrylonitrile butadiene rubber (NBR, is a chemical reaction. Fillers and other additives are present in different mass ratios in the material. The exploitation properties of the cross linked materials depend on the quantity of additive in the cross linked systems.

  15. Cross-linking Chemistry of Squid Beak*

    Miserez, Ali; Rubin, Daniel; Waite, J. Herbert

    2010-01-01

    In stark contrast to most aggressive predators, Dosidicus gigas (jumbo squids) do not use minerals in their powerful mouthparts known as beaks. Their beaks instead consist of a highly sclerotized chitinous composite with incremental hydration from the tip to the base. We previously reported l-3,4-dihydroxyphenylalanine (dopa)-histidine (dopa-His) as an important covalent cross-link providing mechanical strengthening to the beak material. Here, we present a more complete characterization of th...

  16. Thermal Analyse sof Cross-Linked Polyethylene

    Radek Polansky

    2007-01-01

    Full Text Available The paper summarizes results obtained during the structural analyses measurements (Differential Scanning Calorimetry DSC, Thermogravimetry TG, Thermomechanical analysis TMA and Fourier transform infrared spectroscopy FT-IR. The samples of cross-linked polyethylene cable insulation were tested via these analyses. The DSC and TG were carried out using simultaneous thermal analyzer TA Instruments SDT Q600 with connection of Fourier transform infrared spectrometer Nicolet 380. Thermomechanical analysis was carried out by TMA Q400EM TA Instruments apparatus.

  17. Characterization of Cross-Linked Lipase Aggregates

    Prabhavathi Devi, Bethala Lakshmi Anu; Guo, Zheng; Xu, Xuebing

    2009-01-01

    Commercially available microbial lipases from different sources were immobilized as cross-linked enzyme aggregates (CLEAs) using different precipitants and glutaraldehyde as cross-linkers. These CLEAs were assayed based on esterification between lauric acid and n-propanol in solvent-free systems....... change upon CLEA formation. This work presents a characterization of CLEAs based on an esterification activity assay, which is useful for exploring the synthetic application potential of CLEA technology with favorable perspectives....

  18. Positive tone cross-linked resists based on photoacid inhibition of cross linking

    Lawson, Richard A.; Chun, Jun Sung; Neisser, Mark; Tolbert, Laren M.; Henderson, Clifford L.

    2014-03-01

    A resist imaging design that utilizes photoacid inhibition of cationic polymerization and cross-linking during a postexposure bake step has been studied. The key to the design approach is the use of two different polymerization catalysts/initiators: (1) a photoacid produced from a photoacid generator (PAG) upon exposure of the resist that can result in polymerization and cross-linking of the resist matrix and (2) a thermal cross-linking catalyst (TCC) designed to thermally catalyze epoxide-phenol cross-linking. The TCC can be chosen from a variety of compounds such as triphenylphosphine (TPP) or imidazole. When only one of these catalysts (e.g TPP or photoacid) is present in an epoxide and phenol containing resist matrix, it will individually catalyze cross-linking. When they are present together, they effectively quench one another and little to no cross-linking occurs. This approach can be used to switch the tone of a resist from negative (photoacid catalyzed) to positive (TCC catalyzed and photoacid inhibited). The effect of the ratio of TCC:PAG was examined and the optimal ratio for positive tone behavior was determined. Resist contrast can be modified by optimization of epoxide:phenol ratio in the formulation. Dual tone behavior with positive tone at low dose and negative tone at higher doses can be observed in certain formulation conditions. Initial EUV patterning shows poor results, but the source of the poor imaging is not yet understood.

  19. Collagen cross-linking in thin corneas

    Prema Padmanabhan

    2013-01-01

    Full Text Available Collagen cross-linking (CXL has become the standard of care for progressive keratoconus, after numerous clinical studies have established its efficacy and safety in suitably selected eyes. The standard protocol is applicable in eyes which have a minimum corneal thickness of 400 μm after epithelial debridement. This prerequisite was stipulated to protect the corneal endothelium and intraocular tissues from the deleterious effect of ultraviolet-A (UVA radiation. However, patients with keratoconus often present with corneal thickness of less than 400 μm and could have otherwise benefited from this procedure. A few modifications of the standard procedure have been suggested to benefit these patients without a compromise in safety. Transepithelial cross-linking, pachymetry-guided epithelial debridement before cross-linking, and the use of hypoosmolar riboflavin are some of the techniques that have been attempted. Although clinical data is limited at the present time, these techniques are worth considering in patients with thin corneas. Further studies are needed to scientifically establish their efficacy and safety.

  20. Radiation cross-linking of montmorillonite/polypropylene composite

    Polypropylene/montmorillonite composite was prepared via melt compounding process. The dispersion of montmorillonite in the composite was analyzed by XRD (X Ray Diffraction) and TEM (Transmission Electron Microscope). Electronic radiation was applied to the composite in air. The effects of cross-linking agent and montmorillonite on polypropylene cross-linking was studied. The results indicated that cross-linking did not take place in absence of cross-linking agent, while in presence of both cross-linking agent and montmorillonite polypropylene cross-lining occurred in certain radiation dose range. The cross-linked polypropylene/montmorillonite composite exhibited improved mechanical properties. (authors)

  1. Cross-linking for microbial keratitis

    Jayesh Vazirani

    2013-01-01

    Full Text Available The success of collagen cross-linking as a clinical modality to modify the clinical course in keratoconus seems to have fueled the search for alternative applications for this treatment. Current clinical data on its efficacy is limited and laboratory data seems to indicate that it performs poorly against resistant strains of bacteria and against slow growing organisms. However, the biological plausibility of crosslinking and the lack of effective strategies in managing infections with these organisms continue to focus attention on this potential treatment. Well-conducted experimental and clinical studies with controls are required to answer the questions of its efficacy in future.

  2. Radiation cross-linking of montmorillonite/polypropylene composite

    Polypropylene/montmorillonite composite was prepared via melt compounding process. The dispersion of montmorillonite in the composite was analyzed by XRD (X-ray diffraction) and TEM (Transmission electron microscope). Electronic radiation was applied to make the composite radiation cross-linked in air. The effect of cross-linking agent and montmorillonite on the properties of polypropylene cross-linking was studied. The results indicated that cross-linking did not take place in absence of cross-linking agent, while in presence of both cross-linking agent and montmorillonite polypropylene cross-linking occurred in certain absorbed dose range. The cross-linked polypropylene/montmorillonite composite exhibited improved mechanical properties. (authors)

  3. Macromolecular Flexibility and Aggregation Tendency of Non-Cross-Linked and Cross-Linked Cationic Polysoaps

    Wang, Guang-Jia; Jan B.F.N. Engberts

    1998-01-01

    The aggregation tendency of non-cross-linked and cross-linked poly(alkylmethyl-diallylammonium halides) bearing n-dodecyl and n-decyl side chains ((CL)-CopolC1-12-Cl, (CL)-CopolC1-12-Br and (CL)-CopolC1-10-Br, respectively) in aqueous solution has been evaluated by measuring their critical aggregate concentration (CAC). Polysoaps (CL)-CopolC1-12-Cl, (CL)-CopolC1-12-Br and (CL)-CopolC1-10-Br all show the same change of their aggregation tendency accompanying an increase in the content of the c...

  4. 21 CFR 177.2420 - Polyester resins, cross-linked.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyester resins, cross-linked. 177.2420 Section... as Components of Articles Intended for Repeated Use § 177.2420 Polyester resins, cross-linked. Cross-linked polyester resins may be safely used as articles or components of articles intended for...

  5. 21 CFR 177.1211 - Cross-linked polyacrylate copolymers.

    2010-04-01

    ... polyacrylate copolymers consist of: (1) The grafted copolymer of cross-linked sodium polyacrylate identified as... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Cross-linked polyacrylate copolymers. 177.1211... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1211 Cross-linked...

  6. Riboflavin for corneal cross-linking.

    O'Brart, D P S

    2016-06-01

    Corneal collagen cross-linking (CXL) with riboflavin and ultraviolet A (UVA) radiation is the first therapeutic modality that appears to arrest the progression of keratoconus and other corneal ectasias. Riboflavin is central to the process, acting as a photosensitizer for the production of oxygen singlets and riboflavin triplets. These free radicals drive the CXL process within the proteins of the corneal stroma, altering its biomechanical properties. Riboflavin also absorbs the majority of the UVA radiation, which is potentially cytotoxic and mutagenic, within the anterior stroma, preventing damage to internal ocular structures, such as the corneal endothelium, lens and retina. Clinical studies report cessation of ectatic progression in over 90% of cases and the majority document significant improvements in visual, keratometric and topographic parameters. Clinical follow-up is limited to 5-10 years, but suggests sustained stability and enhancement in corneal shape. Sight-threatening complications are rare. The optimal stromal riboflavin dosage for CXL is as yet undetermined. PMID:27458610

  7. Cross-link guided molecular modeling with ROSETTA.

    Abdullah Kahraman

    Full Text Available Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass spectrometry into ROSETTA protocols for comparative and de novo modeling and protein-protein docking. We demonstrate that the cross-link validation and visualization software Xwalk facilitates successful cross-link data integration. Besides the protocols we introduce XLdb, a database of chemical cross-links from 14 different publications with 506 intra-protein and 62 inter-protein cross-links, where each cross-link can be mapped on an experimental structure from the Protein Data Bank. Finally, we demonstrate on a protein-protein docking reference data set the impact of virtual cross-links on protein docking calculations and show that an inter-protein cross-link can reduce on average the RMSD of a docking prediction by 5.0 Å. The methods and results presented here provide guidelines for the effective integration of chemical cross-link data in molecular modeling calculations and should advance the structural analysis of particularly large and transient protein complexes via hybrid structural biology methods.

  8. Nonlinear elasticity of cross-linked networks

    John, Karin; Caillerie, Denis; Peyla, Philippe; Raoult, Annie; Misbah, Chaouqi

    2013-04-01

    Cross-linked semiflexible polymer networks are omnipresent in living cells. Typical examples are actin networks in the cytoplasm of eukaryotic cells, which play an essential role in cell motility, and the spectrin network, a key element in maintaining the integrity of erythrocytes in the blood circulatory system. We introduce a simple mechanical network model at the length scale of the typical mesh size and derive a continuous constitutive law relating the stress to deformation. The continuous constitutive law is found to be generically nonlinear even if the microscopic law at the scale of the mesh size is linear. The nonlinear bulk mechanical properties are in good agreement with the experimental data for semiflexible polymer networks, i.e., the network stiffens and exhibits a negative normal stress in response to a volume-conserving shear deformation, whereby the normal stress is of the same order as the shear stress. Furthermore, it shows a strain localization behavior in response to an uniaxial compression. Within the same model we find a hierarchy of constitutive laws depending on the degree of nonlinearities retained in the final equation. The presented theory provides a basis for the continuum description of polymer networks such as actin or spectrin in complex geometries and it can be easily coupled to growth problems, as they occur, for example, in modeling actin-driven motility.

  9. Industrial applications of different methods of cross-linking polyethylene

    The temperature limits for the continuous and temporary overload operation of cables insulated with low density polyethylene are increased very significantly if the polymer is cross-linked. Two free-radical cross-linking processes, one based on high temperature peroxide vulcanisation and the other on the low temperature cure of an alkoxy silane condensation, are described and compared with radiation induced cross-linking in cable manufacture. (author)

  10. 3H-collagen turnover in non-cross-linked and aldehyde-cross-linked dermal collagen grafts.

    Oliver, R. F.; Barker, H; Cooke, A.; L. Stephen

    1982-01-01

    Using trypsin-purified rat dermal collagen labelled with tritiated hydroxyproline and proline, a study has been made of hydroxyproline turnover in non-cross-linked and glutaraldehyde- and formaldehyde-cross-linked collagen when implanted s.c. in unlabelled isogenic rats. Grafts cross-linked with 0.01% glutaraldehyde maintained their collagen mass over a 22-week period, loss of original collagen being balanced by the gain in new collagen (22% at 22 weeks). Cross-linking with 5% formaldehyde te...

  11. Research Progress in Corneal Cross-linking Agents

    Na Li; Xiujun Peng; Zhengjun Fan

    2014-01-01

    Corneal collagen cross-linking with UVA-riboflavin is cur-rently the only method for preventing the progression of kera-toconus from the pathological perspective. Topical application of a direct cross-linking agent is now attracting widespread at-tention in clinical settings..This article reviews the research progress in the application of indirect or direct cross-linking agents (e.g., riboflavin, glucose, ribose, glutaraldehyde, formaldehyde,.glyceraldehyde,.short chain aliphatic β-nitro alcohol, and genipin) in the treatment of corneal diseases and analyzes the cross-linking efficacy,.toxicity,.and merits and disadvantages of each cross-linking agent,.providing clinical information for further studies.

  12. Surface cross-linked humic acid - polysodium acrylate superabsorbent

    Chu, M.; Zhu, S.; Li, H.; Huang, Z.; Zhang, X. [China University of Mining and Technology, Beijing (China)

    2005-03-01

    A novel composite super-absorbent of humic acid-polysodium acrylate was invented by surface cross-linking reaction of lignite humic acid and poly. Humic acid was abstracted from leonardite and poly was synthesized by solution polymerization. Water absorbing mechanism of composite superabsorbent was explored based on FTIR and SEM. The effect of surface cross-linking reaction conditions, such as the ratio of methanol to water, cross-linking agent concentration, and the amount of humic acid on water absorbing were investigated. Experiments show that the water absorbency of superabsorbent can be greatly improved by humic acid. When the mass fraction of humic acid is 10%, the ratio of cross-linking agent to PSA is 0.2%, and the ratio of methanol to water is 1.8, the water absorbency is the best: 750 g/g for deionied water and 260 g/g for running. water. 9 refs., 5 figs., 1 tab.

  13. Enzymatic digestibility of peptides cross-linked by ionizing radiation

    Digestibility by proteolytic enzymes of peptides cross-linked by ionizing radiation was investigated. Small peptides of alanine and phenylalanine were chosen as model compounds and aminopeptidases and carboxypeptidases were used as proteolytic enzymes. Peptides exposed to γ-radiation in aqueous solution were analysed by high-performance liquid chromatography before and after hydrolysis by aminopeptidase M, leucine aminopeptidase carboxypeptidase A and carboxypeptidase Y. The results obtained clearly demonstrate the different actions of these enzymes on cross-linked aliphatic and aromatic peptides. Peptide bonds of cross-linked dipeptides of alanine were completely resistant to enzymatic hydrolysis whereas the enzymes, except for carboxypeptidase Y, cleaved all peptide bonds of cross-linked peptides of phenylalanine. The actions of the enzymes on these particular compounds are discussed in detail. (author)

  14. Shaped articles of cross-linked fluorocarbon polymers

    A process is described which comprises (1) contacting (a) a shaped article of a polymeric composition wherein the polymer is a fluorocarbon polymer having a melting point of at least 2000C, the article having a tensile strength of at least 3,000 psi, with (b) a fluid composition comprising a cross-linking agent, until the article contains at least 2.5% by weight of the cross-linking agent; and (2) irradiating the shaped article with ionising radiation to a dosage not exceeding 50 Mrads under conditions such that the composition is cross-linked sufficiently to impart thereto an M100 value of at least 300 psi, while maintaining a tensile strength of at least 3000 psi, the shaped article containing a specified proportion of the cross-linking agent. (author)

  15. Cross-Link Guided Molecular Modeling with ROSETTA

    Kahraman, Abdullah; Herzog, Franz; Leitner, Alexander; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2013-01-01

    Chemical cross-links identified by mass spectrometry generate distance restraints that reveal low-resolution structural information on proteins and protein complexes. The technology to reliably generate such data has become mature and robust enough to shift the focus to the question of how these distance restraints can be best integrated into molecular modeling calculations. Here, we introduce three workflows for incorporating distance restraints generated by chemical cross-linking and mass s...

  16. Photochemical Patterning of Ionically Cross-Linked Hydrogels

    Marion Bruchet

    2013-08-01

    Full Text Available Iron(III cross-linked alginate hydrogel incorporating sodium lactate undergoes photoinduced degradation, thus serving as a biocompatible positive photoresist suitable for photochemical patterning. Alternatively, surface etching of iron(III cross-linked hydrogel contacting lactic acid solution can be used for controlling the thickness of the photochemical pattering. Due to biocompatibility, both of these approaches appear potentially useful for advanced manipulation with cell cultures including growing cells on the surface or entrapping them within the hydrogel.

  17. Elasticity of cross-linked semiflexible biopolymers under tension

    von der Heydt, Alice; Benetatos, Panayotis; Zippelius, Annette

    2013-01-01

    Aiming at the mechanical properties of cross-linked biopolymers, we set up and analyze a model of two weakly bending wormlike chains subjected to a tensile force, with regularly spaced inter-chain bonds (cross-links) represented by harmonic springs. Within this model, we compute the force-extension curve and the differential stiffness exactly and discuss several limiting cases. Cross-links effectively stiffen the chain pair by reducing thermal fluctuations transverse to the force and alignment direction. The extra alignment due to cross-links increases both with growing number and with growing strength of the cross-links, and is most prominent for small force f. For large f, the additional, cross-link-induced extension is subdominant except for the case of linking the chains rigidly and continuously along their contour. In this combined limit, we recover asymptotically the elasticity of a weakly bending wormlike chain without constraints, stiffened by a factor four. The increase in differential stiffness can ...

  18. Using pLink to Analyze Cross-Linked Peptides.

    Fan, Sheng-Bo; Meng, Jia-Ming; Lu, Shan; Zhang, Kun; Yang, Hao; Chi, Hao; Sun, Rui-Xiang; Dong, Meng-Qiu; He, Si-Min

    2015-01-01

    pLink is a search engine for high-throughput identification of cross-linked peptides from their tandem mass spectra, which is the data-analysis step in chemical cross-linking of proteins coupled with mass spectrometry analysis. pLink has accumulated more than 200 registered users from all over the world since its first release in 2012. After 2 years of continual development, a new version of pLink has been released, which is at least 40 times faster, more versatile, and more user-friendly. Also, the function of the new pLink has been expanded to identifying endogenous protein cross-linking sites such as disulfide bonds and SUMO (Small Ubiquitin-like MOdifier) modification sites. Integrated into the new version are two accessory tools: pLabel, to annotate spectra of cross-linked peptides for visual inspection and publication, and pConfig, to assist users in setting up search parameters. Here, we provide detailed guidance on running a database search for identification of protein cross-links using the 2014 version of pLink. PMID:25754995

  19. Spectroscopic characterization of collagen cross-links in bone

    Paschalis, E. P.; Verdelis, K.; Doty, S. B.; Boskey, A. L.; Mendelsohn, R.; Yamauchi, M.

    2001-01-01

    Collagen is the most abundant protein of the organic matrix in mineralizing tissues. One of its most critical properties is its cross-linking pattern. The intermolecular cross-linking provides the fibrillar matrices with mechanical properties such as tensile strength and viscoelasticity. In this study, Fourier transform infrared (FTIR) spectroscopy and FTIR imaging (FTIRI) analyses were performed in a series of biochemically characterized samples including purified collagen cross-linked peptides, demineralized bovine bone collagen from animals of different ages, collagen from vitamin B6-deficient chick homogenized bone and their age- and sex-matched controls, and histologically stained thin sections from normal human iliac crest biopsy specimens. One region of the FTIR spectrum of particular interest (the amide I spectral region) was resolved into its underlying components. Of these components, the relative percent area ratio of two subbands at approximately 1660 cm(-1) and approximately 1690 cm(-1) was related to collagen cross-links that are abundant in mineralized tissues (i.e., pyridinoline [Pyr] and dehydrodihydroxylysinonorleucine [deH-DHLNL]). This study shows that it is feasible to monitor Pyr and DHLNL collagen cross-links spatial distribution in mineralized tissues. The spectroscopic parameter established in this study may be used in FTIRI analyses, thus enabling the calculation of relative Pyr/DHLNL amounts in thin (approximately 5 microm) calcified tissue sections with a spatial resolution of approximately 7 microm.

  20. Bacterial use of biofilms cross-linked by gamma irradiation

    Gamma-irradiation was used to produce sterile free-standing biodegradable caseinate films. The effect of irradiation doses (i.e. number of cross-links) on the bacterial use of these films using a strain of Pseudomonas aeruginosa was investigated. Results showed that the main difference in overall utilisation for both films (4 or 64 kGy) was observed in terms of period of utilisation which was delayed 8 days for the film containing the highest number of cross-links (64 kGy)

  1. The Database of Ribosomal Cross-links: an update.

    Baranov, P. V.; Kubarenko, A V; Gurvich, O L; Shamolina, T A; Brimacombe, R

    1999-01-01

    The Database of Ribosomal Cross-links (DRC) was created in 1997. Here we describe new data incorporated into this database and several new features of the DRC. The DRC is freely available via World Wide Web at http://visitweb.com/database/ or http://www. mpimg-berlin-dahlem.mpg.de/ approximately ag_ribo/ag_brimacombe/drc/

  2. Load transfer mechanisms in cross-linked DWNT fibers

    Filleter, T.; Naraghi, M.; Moravsky, A.; Bernal, R.; Loutfy, R. O.; Espinosa, H. D.

    2011-03-01

    The application of carbon nanotubes (CNT) to macroscopic composite fibers has been limited by weak shear interfaces between adjacent CNT shells and composite matrix elements. A fundamental understanding of load transfer at multiple length-scales is needed to identify how the exceptional mechanical properties of CNTs can be scaled to produce high-performance fibers. Through in-situ electron microscopy tensile testing we have elucidated load transfer mechanisms across multiple scales of cross-linked double-walled nanotube (DWNT) fibers. A low density of polymer cross-links is found to increase the total energy dissipated at failure and ductility of fibers by 5 and 10X, respectively, without reducing strength. This mutiscale approach has identified a need to enhance shear interactions between individual DWNTs within the hierarchical DWNT fiber structures. Through in-situ TEM electron irradiation studies we have shown that load can be effectively transferred to inner DWNTs within bundles by covalently cross-linking the interfaces of adjacent DWNTs and shells. We have observed order of magnitude increases in strength and modulus and identified their dependence on irradiation dose. In future a combined approach of irradiation induced covalent and polymer cross-linking may lead to high-performance DWNT-based fibers and composites with tunable mechanical properties.

  3. Hyper-cross-linked, hybrid membranes via interfacial polymerization

    Raaijmakers, M.J.T.

    2015-01-01

    Hyper-cross-linked, hybrid membranes consist of covalent networks of alternating organic and inorganic, or biological groups. This thesis reports on the preparation of such hybrid networks via interfacial polymerization. The structure-property relationships of the hybrid networks depend strongly on

  4. Molecular mechanisms in deformation of cross-linked hydrogel nanocomposite.

    Mathesan, Santhosh; Rath, Amrita; Ghosh, Pijush

    2016-02-01

    The self-folding behavior in response to external stimuli observed in hydrogels is potentially used in biomedical applications. However, the use of hydrogels is limited because of its reduced mechanical properties. These properties are enhanced when the hydrogels are cross-linked and reinforced with nanoparticles. In this work, molecular dynamics (MD) simulation is applied to perform uniaxial tension and pull out tests to understand the mechanism contributing towards the enhanced mechanical properties. Also, nanomechanical characterization is performed using quasi static nanoindentation experiments to determine the Young's modulus of hydrogels in the presence of nanoparticles. The stress-strain responses for chitosan (CS), chitosan reinforced with hydroxyapatite (HAP) and cross-linked chitosan are obtained from uniaxial tension test. It is observed that the Young's modulus and maximum stress increase as the HAP content increases and also with cross-linking process. Load displacement plot from pullout test is compared for uncross-linked and cross-linked chitosan chains on hydroxyapatite surface. MD simulation reveals that the variation in the dihedral conformation of chitosan chains and the evolution of internal structural variables are associated with mechanical properties. Additional results reveal that the formation of hydrogen bonds and electrostatic interactions is responsible for the above variations in different systems. PMID:26652360

  5. Viscoelastic Nanomechanics of Ionically Cross-linked Polyelectrolyte Networks

    Han, Biao; Lee, Daeyeon; Han, Lin

    2015-03-01

    Understanding the mechanics of ionic polyelectrolyte networks is critical for applications where nm-to-um mechanics is the key to success. This study aims to reveal the roles of ionic cross-links and fixed charges in the viscoelasticity of layer-by-layer poly(allylamine hydrochloride)/poly(acrylic acid) microfilms, PAH/PAA, a complex held by pH-sensitive amine-carboxyl links. AFM-nanoindentation and force relaxation (tip R =12.5um) was performed at ionic strength(IS) =0.01-1.0M, pH =5.5-2.0 (pKa of PAA =2.3). When pH changes from 5.5 to 2.0, the films swell for 4x from densely linked, net neutral state to loosely linked, positively charged one. A >100x reduction in indentation modulus was observed at all IS, suggesting the dominance of decrease in cross-link density. In most states, more than 90% force relaxation was observed, where cross-link breaking/reformation likely dominates viscoelasticity. However, at pH =2.5 and IS =0.01M, when electrical double layer repulsion is important (Debye length =3nm), relaxation was about 60%, highlighting the contribution of fixed charges. In summary, this study revealed unique viscoelastic behaviors of PAH/PAA due to the pH- and IS-dependent cross-link and charge densities.

  6. Transient Anisocoria after Corneal Collagen Cross-Linking

    George D. Kymionis

    2014-01-01

    Full Text Available Purpose. To report a case with transient anisocoria after corneal collagen cross-linking (CXL. Methods. Case report. Results. A 24-year-old male underwent corneal collagen cross-linking (CXL in his right eye for keratoconus. At the end of the procedure, the pupil of the treated eye was irregular and dilated, while the pupil of the fellow eye was round, regular, and reactive (anisocoria. The following day, pupils were round, regular, and reactive in both eyes. Conclusion. Anisocoria may be a transient and innocuous complication after CXL. A possible cause for this complication might be the anesthetic drops used before and during the surgical procedure or/and the ultraviolet A irradiation during the treatment.

  7. Hydration and swelling of amorphous cross-linked starch microspheres.

    Wojtasz, Joanna; Carlstedt, Jonas; Fyhr, Peter; Kocherbitov, Vitaly

    2016-01-01

    Hydration of cross-linked starch microspheres, commercially available as a medical device, was investigated using a multi-method approach. We found that the uptake of water is accompanied by substantial swelling and changes of the polymer structure. Sorption calorimetry provided information about thermodynamics of water sorption, revealed presence of isothermal glass transition and absence of hydration-induced crystallization, observed in non-cross linked starch material. The changes in the surface and bulk properties of microspheres at different water-starch concentrations were investigated using synchrotron radiation X-ray scattering and analyzed using concept of fractals. The obtained information, combined with the results of differential scanning calorimetry, was used to construct a phase diagram of the studied material. Finally, hydration induced evolution of polymer structure revealed by the X-ray scattering was linked to the changes observed during swelling with optical microscopy. PMID:26453872

  8. Plasma cross linked fibrin degradation products in pulmonary embolism.

    Rowbotham, B J; Egerton-Vernon, J; Whitaker, A. N.; Elms, M J; Bunce, I H

    1990-01-01

    Plasma concentrations of cross linked fibrin degradation products, a marker of intravascular thrombosis and fibrinolysis, were measured in 495 patients with suspected pulmonary embolism referred for ventilation-perfusion lung scanning to determine whether concentrations are increased in pulmonary embolism and their potential use in diagnosis. Lung scans were described as normal (n = 66) or as showing a low (n = 292), indeterminate (n = 58), or high probability (n = 79) of pulmonary embolism. ...

  9. Method of enzymatically cross-linking proteins and phenolic polymers

    Oudgenoeg, G.; Piersma, S.; Boeriu, C.; Gruppen, H.; Hessing, M.; Voragen, A. G. J.; Laane, N.C.M.; Hilhorst, M.H.

    2000-01-01

    The present invention relates to a method of cross-linking a protein or peptide and a phenolic polymer or oligomer having substituents derived from carboxylic acids containing hydroxyl substituted phenyl groups by means of an enzyme and an oxidizing agent suitable for the enzyme in a solvent, which method comprises reacting a mixture of protein or peptide, oxidizing agent, enzyme and polymer or oligomer in the solvent, wherein the method is controlled such that in the mixture the ratio of tar...

  10. Method of enzymatically cross-linking proteins and phenolic polymers

    Oudgenoeg, G.; Boeriu, C.G.; Hilhorst, H.M.; Gruppen, H.; Laane, N.C.M.; Voragen, A. G. J.

    2002-01-01

    The present invention relates to a method of cross-linking a protein or peptide and a phenolic polymer or oligomer having substituents derived from carboxylic acids containing hydroxyl substituted phenyl groups by means of an enzyme and an oxidizing agent suitable for the enzyme in a solvent, which method comprises reacting a mixture of protein or peptide, oxidizing agent, enzyme and polymer or oligomer in the solvent, wherein the method is controlled such that in the mixture the ratio of tar...

  11. Optimized Fragmentation Regime for Diazirine Photo-Cross-Linked Peptides.

    Giese, Sven H; Belsom, Adam; Rappsilber, Juri

    2016-08-16

    Cross-linking/mass spectrometry has evolved into a robust technology that reveals structural insights into proteins and protein complexes. We leverage a new tribrid instrument with improved fragmentation capacities in a systematic comparison to identify which fragmentation method would be best for the identification of cross-linked peptides. Specifically, we explored three fragmentation methods and two combinations: collision-induced dissociation (CID), beam-type CID (HCD), electron-transfer dissociation (ETD), ETciD, and EThcD. Trypsin-digested, SDA-cross-linked human serum albumin (HSA) served as a test sample, yielding over all methods and in triplicate analysis in total 2602 matched PSMs and 1390 linked residue pairs at 5% false discovery rate, as confirmed by the crystal structure. HCD wins in number of matched peptide-spectrum-matches (958 PSMs) and identified links (446). CID is most complementary, increasing the number of identified links by 13% (58 links). HCD wins together with EThcD in cross-link site calling precision, with approximately 62% of sites having adjacent backbone cleavages that unambiguously locate the link in both peptides, without assuming any cross-linker preference for amino acids. Overall quality of spectra, as judged by sequence coverage of both peptides, is best for EThcD for the majority of peptides. Sequence coverage might be of particular importance for complex samples, for which we propose a data dependent decision tree, else HCD is the method of choice. The mass spectrometric raw data has been deposited in PRIDE (PXD003737). PMID:27454319

  12. Supersaturated lysozyme solution structure studied by chemical cross-linking.

    Hall, Clayton L; Clemens, John R; Brown, Amanda M; Wilson, Lori J

    2005-06-01

    Glutaraldehyde cross-linking followed by separation has been used to detect aggregates of chicken egg-white lysozyme (CEWL) in supersaturated solutions. In solutions of varying NaCl content, the number of aggregates was found to be related to the ionic strength of the solution. Separation by SDS-PAGE showed that percentage of dimer in solution ranged from 25.3% for no NaCl to 27.1% at 15% NaCl, and the aggregates larger than dimer increased from 1.9% for no NaCl to 36.8% at 15% NaCl. Conversely, the percentage of monomers decreased from 72.8% without NaCl to 36.1% at 15% NaCl. Molecular weights by capillary electrophoresis (SDS-CE) were found to be multiples of the monomer molecular weights, with the exception of trimer, which indicates a very compact structure. Native separation was accomplished using size-exclusion chromatography (SEC) and gave a lower monomer concentration and higher aggregate concentration than SDS-CE, which is a denaturing separation method. Most noticeably, trimers were absent in the SEC separation. The number of aggregates did not change with increased time between addition of NaCl and addition of cross-linking agent when separated by gel electrophoresis (SDS-PAGE). The results suggest that high ionic strength CEWL solutions are highly aggregated and that denaturing separation methods disrupt cross-linked products. PMID:15930646

  13. Radiation-induced cross-linking of polyethylene

    The effect is assessed of the admixtures of unsaturated polyester resins and acrylate resins on the physical and mechanical properties of radiation cross-linked polyethylene. The results were compared with the properties of polyethylene to which triallyl cyanurate was added as a cross-linking agent. Homogeneous mixtures were prepared by calendering at elevated temperature; for irradiation accelerated electrons in doses of 6g, 120 and 180 kGy were used. Evaluated for the individual samples were the structural tensile strength and ductility, the static modulus of elasticity in shear, the loss factor, the maximum of mechanical losses defined by the loss factor, and characteristic temperature T corresponding to glass transition temperature Tsub(g). The compositions using triallyl cyanurate show higher increase in the whole system rigidity than those with unsaturated polyester resins and acrylate resins. Thus, higher cross-linking can be achieved using triallyl cyanurate and irradiation. In most evaluations, a significant improvement of properties could be seen when doses up to 120 kGy had been used. For higher doses (180 kGy) a decrease was recorded while in compositions comprising 10% of triallyl cyanurate improved mechanical properties were shown even at these radiation doses. (B.S.)

  14. Polyimide Aerogels with Three-Dimensional Cross-Linked Structure

    Panek, John

    2010-01-01

    Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.

  15. Core-cross-linked polymer micelles via living polymerizations

    This work reports a general synthesis to core-cross-linked polymer micelles directly from monomers by two typical living polymerizations, anionic polymerization and atom transfer radical polymerization. The micelle concentrations are hundred times higher than those by traditional synthetic method using selective solvents. The morphologies of polymer micelles can be controlled to be spheres, fibers, and graft-like aggregates by varying the experimental conditions. Micelles with the same polymer in both the core and the shell have also been synthesized by this approach.

  16. Mapping protein structural changes by quantitative cross-linking

    Kukačka, Zdeněk; Strohalm, Martin; Kavan, Daniel; Novák, Petr

    2015-01-01

    Roč. 89, NOV 2015 (2015), s. 112-120. ISSN 1046-2023 R&D Projects: GA MŠk(CZ) EE2.3.20.0055; GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109 Grant ostatní: OPPC(XE) CZ.2.16/3.1.00/24023 Institutional support : RVO:61388971 Keywords : Chemical cross-linking * Proteolysis * Mass spectrometry Subject RIV: CE - Biochemistry Impact factor: 3.645, year: 2014

  17. LET dependence of DNA-protein cross-links

    We have preliminary data indicating a fluence-dependent yield of particle-induced protein cross-links (DPC's) with a dependency on LET and particle residual energy. Our data indicate that the DPC yield for hamster fibroblasts in vitro irradiated at 32 keV/μm is similar to that reported for hamster cells irradiated with cobalt-60 gamma rays. At 100-120 keV/μm there is some evidence for an enhanced DPC yield with increasing particle fluence, but there are differences in the yields that are dependent on particle track structure

  18. Newer protocols and future in collagen cross-linking

    Arthur B Cummings

    2013-01-01

    Full Text Available Corneal Cross-Linking (CXL is an established surgical procedure for the treatment of corneal disorders such as corneal ectasia and keratoconus. This method of treatment stabilises the corneal structure and increases rigidity, reducing the requirement for corneal transplantation. Since its development, many scientific studies have been conducted to investigate ways of improving the procedure. Biomechanical stability of the cornea after exposure to UV-A light, and the effect of shortening procedure time has been some of the many topics explored

  19. Thermoset-cross-linked lignocellulose: a moldable plant biomass.

    Karumuri, Sriharsha; Hiziroglu, Salim; Kalkan, A Kaan

    2015-04-01

    The present work demonstrates a high biomass content (i.e., up to 90% by weight) and moldable material by controlled covalent cross-linking of lignocellulosic particles by a thermoset through epoxide-hydroxyl reactions. As an example for lignocellulosic biomass, Eastern redcedar was employed. Using scanning fluorescence microscopy and vibrational spectroscopy, macroscopic to molecular scale interactions of the thermoset with the lignocellulose have been revealed. Impregnation of the polymer resin into the biomass cellular network by capillary action as well as applied pressure results in a self-organizing structure in the form of thermoset microrods in a matrix of lignocellulose. We also infer permeation of the thermoset into the cell walls from the reaction of epoxides with the hydroxyls of the lignin. Compression tests reveal, at 30% thermoset content, thermoset-cross-linked lignocellulose has superior mechanical properties over a commercial wood plastic composite while comparable stiffness and strength to bulk epoxy and wood, respectively. The failure mechanism is understood to be crack propagation along the particle-thermoset interface and/or interparticle thermoset network. PMID:25734539

  20. Cross-linking e segmento de anel corneano intraestromal

    Adimara da Candelaria Renesto

    2011-02-01

    Full Text Available O cross-linking corneano é um procedimento usado para a estabilização mecânica e aumento da rigidez corneana em pacientes com ceratocone (reduzindo a possibilidade de progressão, e também em processos inflamatórios de afinamento corneano. Os segmentos de anéis corneanos intraestromais têm como princípio o aplanamento central da córnea. Inicialmente utilizados para correção de baixa miopia, a principal indicação atual é em pacientes com ceratocone, para melhorar a acuidade visual não corrigida, a acuidade visual corrigida e permitir uma melhor tolerância ao uso de lentes de contato como também retardar a necessidade de um transplante de córnea. O objetivo deste artigo é revisar algumas publicações relacionadas ao cross-linking corneano e à inserção do segmento de anel intraestromal, apresentando suas indicações, resultados e complicações relatadas até o momento.

  1. Covalently Cross-Linked Arabinoxylans Films for Debaryomyces hansenii Entrapment.

    González-Estrada, Ramsés; Calderón-Santoyo, Montserrat; Carvajal-Millan, Elizabeth; Ascencio Valle, Felipe de Jesús; Ragazzo-Sánchez, Juan Arturo; Brown-Bojorquez, Francisco; Rascón-Chu, Agustín

    2015-01-01

    In the present study, wheat water extractable arabinoxylans (WEAX) were isolated and characterized, and their capability to form covalently cross-linked films in presence of Debaryomyces hansenii was evaluated. WEAX presented an arabinose to xylose ratio of 0.60, a ferulic acid and diferulic acid content of 2.1 and 0.04 µg∙mg(-1) WEAX, respectively and a Fourier Transform Infra-Red (FT-IR) spectrum typical of WEAX. The intrinsic viscosity and viscosimetric molecular weight values for WEAX were 3.6 dL∙g(-1) and 440 kDa, respectively. The gelation of WEAX (1% w/v) with and without D. hansenii (1 × 10(7) CFU∙cm(-2)) was rheologically investigated by small amplitude oscillatory shear. The entrapment of D. hansenii decreased gel elasticity from 1.4 to 0.3 Pa, probably by affecting the physical interactions between WEAX chains. Covalently cross-linked WEAX films containing D. hansenii were prepared by casting. Scanning electron microscopy images show that WEAX films containing D. hansenii were porous and consisted of granular-like and fibre microstructures. Average tensile strength, elongation at break and Young's modulus values dropped when D. hansenii was present in the film. Covalently cross-lined WEAX containing D. hansenii could be a suitable as a functional entrapping film. PMID:26102070

  2. Covalently Cross-Linked Arabinoxylans Films for Debaryomyces hansenii Entrapment

    Ramsés González-Estrada

    2015-06-01

    Full Text Available In the present study, wheat water extractable arabinoxylans (WEAX were isolated and characterized, and their capability to form covalently cross-linked films in presence of Debaryomyces hansenii was evaluated. WEAX presented an arabinose to xylose ratio of 0.60, a ferulic acid and diferulic acid content of 2.1 and 0.04 µg∙mg−1 WEAX, respectively and a Fourier Transform Infra-Red (FT-IR spectrum typical of WEAX. The intrinsic viscosity and viscosimetric molecular weight values for WEAX were 3.6 dL∙g−1 and 440 kDa, respectively. The gelation of WEAX (1% w/v with and without D. hansenii (1 × 107 CFU∙cm−2 was rheologically investigated by small amplitude oscillatory shear. The entrapment of D. hansenii decreased gel elasticity from 1.4 to 0.3 Pa, probably by affecting the physical interactions between WEAX chains. Covalently cross-linked WEAX films containing D. hansenii were prepared by casting. Scanning electron microscopy images show that WEAX films containing D. hansenii were porous and consisted of granular-like and fibre microstructures. Average tensile strength, elongation at break and Young’s modulus values dropped when D. hansenii was present in the film. Covalently cross-lined WEAX containing D. hansenii could be a suitable as a functional entrapping film.

  3. Collagen cross-linking: Strengthening the unstable cornea

    Oren Tomkins

    2008-05-01

    Full Text Available Oren Tomkins, Hanna J GarzoziDepartment of Ophthalmology, Bnai Zion Medical Center, Haifa, IsraelAbstract: Corneal ectasia, a weakening of corneal integrity, occurs both due to acquired and congenital conditions such as keratoconus. It is a progressing condition that affects both visual acuity, and corneal stability. Various methods exist for correcting this impairment, however none address the inherit pathology, an increase laxity of the corneal stroma. Collagen crosslinking, a new, minimally invasive method, aims to strengthen the stroma by inducing cross links between neighboring collagen fibers. This method results in an increase in corneal tensile strength, with no medium term adverse effects on its normal architecture. Clinically, treated patients display improvement in both visual acuity and keratometric readings. This method may provide clinicians with easily accessible tools to stop the progression, and even correct visual deterioration due to corneal ectasia. Here we review the current information regarding this new method, as well as discuss its potential benefits and downfalls.Keywords: corneal cross-linking, corneal ectasia, keratoconus, stroma, cornea

  4. One-step electrospinning of cross-linked chitosan fibers.

    Schiffman, Jessica D; Schauer, Caroline L

    2007-09-01

    Chitin is a nitrogen-rich polysaccharide that is abundant in crustaceans, mollusks, insects, and fungi and is the second most abundant organic material found in nature next to cellulose. Chitosan, the N-deacetylated derivative of chitin, is environmentally friendly, nontoxic, biodegradable, and antibacterial. Fibrous mats are typically used in industries for filter media, catalysis, and sensors. Decreasing fiber diameters within these mats causes many beneficial effects such as increased specific surface area to volume ratios. When the intrinsically beneficial effects of chitosan are combined with the enhanced properties of nanofibrous mats, applications arise in a wide range of fields, including medical, packaging, agricultural, and automotive. This is particularly important as innovative technologies that focus around bio-based materials are currently of high urgency, as they can decrease dependencies on fossil fuels. We have demonstrated that Schiff base cross-linked chitosan fibrous mats can be produced utilizing a one-step electrospinning process that is 25 times faster and, therefore, more economical than a previously reported two-step vapor-cross-linking method. These fibrous mats are insoluble in acidic, basic, and aqueous solutions for 72 h. Additionally, this improved production method results in a decreased average fiber diameter, which measures 128 +/- 40 nm. Chemical and structural analyses were conducted utilizing Fourier transform infrared spectroscopy, solubility studies, and scanning electron microscopy. PMID:17696400

  5. Collagen Cross-Linking: Current Status and Future Directions

    Marine Hovakimyan

    2012-01-01

    Full Text Available Collagen cross-linking (CXL using UVA light and riboflavin (vitamin B2 was introduced as a clinical application to stabilize the cornea by inducing cross-links within and between collagen fibers. CXL has been investigated extensively and has been shown clinically to arrest the progression of keratoconic or post-LASIK ectasia. With its minimal cost, simplicity, and proven positive clinical outcome, CXL can be regarded as a useful approach to reduce the number of penetrating keratoplasties performed. Small case series have also indicated that CXL is beneficial in corneal edema by reducing stromal swelling behavior and in keratitis by inhibiting pathogen growth. Despite these encouraging results, CXL remains a relatively new method that is potentially associated with complications. Aspects such as side effects and recurrence rates have still to be elucidated. In light of the growing interest in CXL, our paper summarizes present knowledge about this promising approach. We have intentionally endeavored to include the more relevant studies from the recent literature to provide an overview of the current status of CXL.

  6. Optimization model for UV-Riboflavin corneal cross-linking

    Schumacher, S.; Wernli, J.; Scherrer, S.; Bueehler, M.; Seiler, T.; Mrochen, M.

    2011-03-01

    Nowadays UV-cross-linking is an established method for the treatment of keraectasia. Currently a standardized protocol is used for the cross-linking treatment. We will now present a theoretical model which predicts the number of induced crosslinks in the corneal tissue, in dependence of the Riboflavin concentration, the radiation intensity, the pre-treatment time and the treatment time. The model is developed by merging the difussion equation, the equation for the light distribution in dependence on the absorbers in the tissue and a rate equation for the polymerization process. A higher concentration of Riboflavin solution as well as a higher irradiation intensity will increase the number of induced crosslinks. However, performed stress-strain experiments which support the model showed that higher Riboflavin concentrations (> 0.125%) do not result in a further increase in stability of the corneal tissue. This is caused by the inhomogeneous distribution of induced crosslinks throughout the cornea due to the uneven absorption of the UV-light. The new model offers the possibility to optimize the treatment individually for every patient depending on their corneal thickness in terms of efficiency, saftey and treatment time.

  7. Tea derived galloylated polyphenols cross-link purified gastrointestinal mucins.

    Pantelis Georgiades

    Full Text Available Polyphenols derived from tea are thought to be important for human health. We show using a combination of particle tracking microrheology and small-angle neutron scattering that polyphenols acts as cross-linkers for purified gastrointestinal mucin, derived from the stomach and the duodenum. Both naturally derived purified polyphenols, and green and black tea extracts are shown to act as cross-linkers. The main active cross-linking component is found to be the galloylated forms of catechins. The viscosity, elasticity and relaxation time of the mucin solutions experience an order of magnitude change in value upon addition of the polyphenol cross-linkers. Similarly small-angle neutron scattering experiments demonstrate a sol-gel transition with the addition of polyphenols, with a large increase in the scattering at low angles, which is attributed to the formation of large scale (>10 nm heterogeneities during gelation. Cross-linking of mucins by polyphenols is thus expected to have an impact on the physicochemical environment of both the stomach and duodenum; polyphenols are expected to modulate the barrier properties of mucus, nutrient absorption through mucus and the viscoelastic microenvironments of intestinal bacteria.

  8. Microbial Keratitis After Collagen Cross-linking Treatment

    Banu Torun Acar

    2012-07-01

    Full Text Available A 33-year-old woman presented with pain, redness, and diminution of vision that occurred 2 days after collagen cross-linking had been performed for keratoconus in the right eye. Culture results from the patient's contact lens and corneal scrapings were positive for Staphylococcus epidermidis. According to the results of antibiotic susceptibility testing, the patient was treated with hourly topical fortified vancomycin and exocin. Before collagen cross-linking, the best-corrected visual acuity (BCVA was 4/10, the manifest refraction was -7.00 -1.755 3°. Four months after the procedure, the BCVA was 4/10, the manifest refraction was -5.50 -1.75 10°. Slit-lamp examination revealed a mild residual haze in the upper midperipheral cornea, and stromal opacities had disappeared. Collagen crosslinking is less invasive compared to other methods for treatment of keratoconus, but epithelial debridement and bandage contact lens wearing may lead to the development of bacterial keratitis. (Turk J Oph thal mol 2012; 42: 300-2

  9. CrossWork: Software-assisted identification of cross-linked peptides

    Rasmussen, Morten; Refsgaard, Jan; Peng, Li;

    2011-01-01

    Work searches batches of tandem mass-spectrometric data, and identifies cross-linked and non-cross-linked peptides using a standard PC. We tested CrossWork by searching mass-spectrometric datasets of cross-linked complement factor C3 against small (1 protein) and large (1000 proteins) search spaces, and show...

  10. Effects of processing conditions on the reliability of cross-linked polyethylene cable insulation. Progress report

    Phillips, P.J.

    1981-03-01

    Crystallization and morphology were investigated in cross-linked PE. /sup 13/C NMR was used to quantify the cross-links. Production of cable is being studied. Dielectric constant and loss of cross-linked PE are being measured. (DLC)

  11. Protein cross-linking tools for the construction of nanomaterials.

    Domeradzka, Natalia E; Werten, Marc Wt; Wolf, Frits A de; de Vries, Renko

    2016-06-01

    Across bioengineering there is a need to couple proteins to other proteins, or to peptides. Although traditional chemical conjugations have dominated in the past, more and more highly specific coupling strategies are becoming available that are based on protein engineering. Here we review the use of protein modification approaches such as enzymatic and autocatalytic protein-protein coupling, as well as the use of hetero-dimerizing (or hetero-oligomerizing) modules, applied to the specific case of linking together de novo designed recombinant polypeptides into precisely structured nanomaterials. Such polypeptides are increasingly being investigated for biomedical and other applications. In this review, we describe the protein-engineering based cross-linking strategies that dramatically expand the repertoire of possible molecular structures and, hence, the range of materials that can be produced from them. PMID:26871735

  12. Customized pachymetric guided epithelial debridement for corneal collagen cross linking

    Jankov Mirco

    2009-08-01

    Full Text Available Abstract Backround We describe a modified method for deepitheliazation prior to corneal cross linking (CXL. The technique may overcome the current corneal pachymetric limitation parameter (over 400 microns that is necessary for the safety of the procedure without affecting the overall benefits. Methods In a series of two patients, with inferior topographic steepening and regional thinning (less than 400 microns corresponding to the area of corneal steepening, CXL after customized epithelial removal was performed. Results There were no intra- or postoperative adverse events seen by the nine month follow up examination. Stabilization of the corneal ectasia was observed up to nine months post-costumized pachymetric-guided epithelial removal. Conclusion The technique of customized pachymetric-guided epithelial removal is easy to perform and may overcome the limitations of the preoperative corneal pachymetry expanding the application of the procedure in patients with regional corneal thinning.

  13. Thermally reversible cross-linked poly(ether-urethanes

    V. Gaina

    2013-07-01

    Full Text Available Cross-linked poly(ether-urethanes were prepared by Diels-Alder (DA reaction of the furan-containing poly(ether-urethane to bismaleimides and showed thermal reversibility evidenced by differential scanning calorimetry and attenuated total reflectance in conjunction with Fourier transform infrared spectroscopy (ATR-FTIR. The furan-containing poly(ether-urethanes were synthesized by the polyaddition reaction of 1,6-hexamethylene diisocyanate (HMDI or 4,4'- dibenzyl diisocyanate (DBDI to poly(tetramethylene ether glycol (PTMEG having Mn = 250, 650, 1000, 1500 and 2000 and 2-[N,N-bis(2-methyl-2-hydroxyethylamino]furfuryl as chain extender by the solution prepolymer method. The molar ratio of isocyanate: PTMEG:chain extender varied from 2:1:1 to 4:1:3, which produces a molar concentration of furyl group ranging between 3.65•10–4 and 1.25•10–3 mol/g.

  14. The cross-linking of polyethylene irradiated in multilayer system

    The polyethylene films characterized by different thickness and cross-linking efficiency were irradiated with 1.5 MeV electrons at average current density of 0.016 mA cm-2. The samples were in the form of film stacks with or without distance supports between polymer layers. Some of the samples were irradiated in nitrogen atmosphere. The absorbed dose in a given polymer layer was estimated from the gel content. From the dose-gel dependence estimated for every polymer layer and dose-depth dependence based on the literature data, the gel-depth and dose-depth curves were plotted. From the comparison of those curves with experimental data it was concluded that the absorbed dose depends on the polymer film thickness and the presence or absence of the gas phase between polymer layers. (author)

  15. Radiation cross-linking of PTC conductive polymers

    An electrical device comprising a PTC conductive polymer is irradiated so that it is very highly cross-linked. A dosage of at least 50 Mrads, preferably at least 80 Mrads, especially at least 120 Mrads is used except that where the device includes planar electrodes which are present during irradiation the minimum dose is 120 Mrads. In this way, for example, it is possible to make a circuit protection device which will continue to provide effective protection even after repeated exposure to a voltage of 200 volts. A PTC protection device may be produced by moulding carbon loaded polymer round three electrodes the centre one of which is then removed to leave an aperture between the other two electrodes. (author)

  16. Adding Chemical Cross-Links to a Physical Hydrogel

    Ester Chiessi

    2009-09-01

    Full Text Available Synergistic hydrogels are often encountered in polysaccharide mixtures widely used in food and biopharma products. The xanthan and konjac glucomannan pair provides one of the most studied synergistic hydrogels. Recently we showed that the junction zones stabilizing the 3D structure of this gel are present as macromolecular complexes in solution formed by the partially depolymerised polysaccharidic chains. The non-covalent interactions stabilizing the structure of the polysaccharidic complex cause the melting of the ordered structure of the complex in the solution and of the hydrogels. Introduction of chemical cross-links in the 3D structure of the synergistic hydrogel removes this behaviour, adding new features to the swelling and to the viscoelastic properties of the cured hydrogel. The use of epichlorohydrin as low molecular weight cross-linker does not impact unfavourably on the viability of NIH 3T3 fibroblasts.

  17. Adding chemical cross-links to a physical hydrogel.

    Paradossi, Gaio; Finelli, Ivana; Cerroni, Barbara; Chiessi, Ester

    2009-01-01

    Synergistic hydrogels are often encountered in polysaccharide mixtures widely used in food and biopharma products. The xanthan and konjac glucomannan pair provides one of the most studied synergistic hydrogels. Recently we showed that the junction zones stabilizing the 3D structure of this gel are present as macromolecular complexes in solution formed by the partially depolymerised polysaccharidic chains. The non-covalent interactions stabilizing the structure of the polysaccharidic complex cause the melting of the ordered structure of the complex in the solution and of the hydrogels. Introduction of chemical cross-links in the 3D structure of the synergistic hydrogel removes this behaviour, adding new features to the swelling and to the viscoelastic properties of the cured hydrogel. The use of epichlorohydrin as low molecular weight cross-linker does not impact unfavourably on the viability of NIH 3T3 fibroblasts. PMID:19783949

  18. Encapsulation of cobalt nanoparticles in cross-linked-polymer cages

    Hatamie, Shadie [Department of Electronic-Science, Fergusson College, Pune 411 004 (India); Dhole, S.D. [Department of Physics, University of Pune, Pune 411 007 (India); Ding, J. [Department of Materials Science and Engineering, National University of Singapore, 7, Engineering Drive 1, Singapore 117574 (Singapore); Kale, S.N. [Department of Electronic-Science, Fergusson College, Pune 411 004 (India)], E-mail: sangeetakale2004@gmail.com

    2009-07-15

    Nanoparticles embedded in polymeric cages give rise to interesting applications ranging from nanocatalysis to drug-delivery systems. In this context, we report on synthesis of cobalt (Co) nanoparticles trapped in polyvinyl alcohol (PVA) matrix to yield self-supporting magnetic films in PVA slime. A 20 nm, Co formed in FCC geometry encapsulated with a weak citrate coat when caged in PVA matrix exhibited persistence of magnetism and good radio-frequency response. Cross-linking of PVA chains to form cage-like structures to arrest Co nanoparticles therein, is believed to be the reason for oxide-free nature of Co, promising applications in biomedicine as well as in radio-frequency shielding.

  19. Stiffening of semiflexible biopolymers and cross-linked networks

    Van Dillen, T; Van der Giessen, E

    2006-01-01

    We study the mechanical stiffening behavior in two-dimensional (2D) cross-linked networks of semiflexible biopolymer filaments under simple shear. Filamental constituents immersed in a fluid undergo thermally excited bending motions. Pulling out these undulations results in an increase in the axial stiffness. We analyze this stiffening behavior of 2D semiflexible filaments in detail: we first investigate the average, {static} force-extension relation by considering the initially present undulated configuration that is pulled straight under a tensile force, and compare this result with the average response in which undulation dynamics is allowed during pulling, as derived earlier by MacKintosh and coworkers. We will show that the resulting mechanical behavior is rather similar, but with the axial stiffness being a factor 2 to 4 larger in the dynamic model. Furthermore, we study the stretching contribution in case of extensible filaments and show that, for 2D filaments, the mechanical response is dominated by {...

  20. Studies on N-vinylformamide cross-linked copolymers

    Świder, Joanna; Tąta, Agnieszka; Sokołowska, Katarzyna; Witek, Ewa; Proniewicz, Edyta

    2015-12-01

    Copolymers of N-vinylformamide (NVF) cross-linked with three multifunctional monomers, including divinylbenzene (DVB), ethylene glycol dimethacrylate (EGDMA), and N,N‧-methylenebisacrylamide (MBA) were synthetized by a three-dimensional free radical polymerization in inverse suspension using 2,2‧-azobis(2-methylpropionamide) dihydrochloride (AIBA) as an initiator. Methyl silicon oil was used as the continuous phase during the polymerization processes. Fourier-transform adsorption infrared (FT-IR) spectra revealed the presence of silicone oil traces and suggested that silicone oil strongly interacted with the copolymers surface. Purification procedure allowed to completely remove the silicon oil traces from P(NVF-co-DVB) only. The morphology and the structure of the investigated copolymers were examined by optical microscopy, FT-IR, and FT-Raman (Fourier-transform Raman spectroscopy) methods.

  1. Photo-cross-linking of amniotic membranes for limbal epithelial cell cultivation

    Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw

    2014-12-01

    In the present study, we developed photo-cross-linked amniotic membrane (AM) as a limbal stem cell niche. After ultraviolet (UV) irradiation for varying time periods, the biological tissues were studied by determinations of cross-linking structure, degradability, and nutrient permeation ability. Our results showed that the number of cross-links per unit mass of AM significantly increased with increasing illumination time from 5 to 50 min. However, the cross-link formation was inhibited by longer irradiation time (i.e., 150 min), probably due to the scission of tissue collagen chains through irradiation. The biological stability and matrix permeability of photo-cross-linked AM materials strongly depended on their cross-linking densities affected by the UV irradiation. In vitro biocompatibility studies including cell viability and pro-inflammatory gene expression analyses demonstrated that, irrespective of the irradiation time employed, the physically cross-linked biological tissues exhibited negligible cytotoxicity and similar interleukin-6 (IL-6) mRNA levels. The data clearly indicate that these AM matrices do not cause potential harm to the corneal epithelial cells. After the growth of limbal epithelial cells (LECs) on AM substrates, Western blot analyses were conducted to examine the expression of ABCG2. It was found that the ability of UV-irradiated AM to maintain the undifferentiated precursor cell phenotype was significantly enhanced with increasing extent of photo-cross-linking. In summary, the UV irradiation time may have a profound influence on the fabrication of photo-cross-linked AM matrices for LEC cultivation. - Highlights: • We report the development of photo-cross-linked AM as a limbal stem cell niche. • Cross-linked structure of tissue materials was controlled by UV irradiation time. • Biostability and matrix permeability of AM depended on cross-linking density. • All the studied photo-cross-linked AM showed good in vitro biocompatibility.

  2. Photo-cross-linking of amniotic membranes for limbal epithelial cell cultivation

    In the present study, we developed photo-cross-linked amniotic membrane (AM) as a limbal stem cell niche. After ultraviolet (UV) irradiation for varying time periods, the biological tissues were studied by determinations of cross-linking structure, degradability, and nutrient permeation ability. Our results showed that the number of cross-links per unit mass of AM significantly increased with increasing illumination time from 5 to 50 min. However, the cross-link formation was inhibited by longer irradiation time (i.e., 150 min), probably due to the scission of tissue collagen chains through irradiation. The biological stability and matrix permeability of photo-cross-linked AM materials strongly depended on their cross-linking densities affected by the UV irradiation. In vitro biocompatibility studies including cell viability and pro-inflammatory gene expression analyses demonstrated that, irrespective of the irradiation time employed, the physically cross-linked biological tissues exhibited negligible cytotoxicity and similar interleukin-6 (IL-6) mRNA levels. The data clearly indicate that these AM matrices do not cause potential harm to the corneal epithelial cells. After the growth of limbal epithelial cells (LECs) on AM substrates, Western blot analyses were conducted to examine the expression of ABCG2. It was found that the ability of UV-irradiated AM to maintain the undifferentiated precursor cell phenotype was significantly enhanced with increasing extent of photo-cross-linking. In summary, the UV irradiation time may have a profound influence on the fabrication of photo-cross-linked AM matrices for LEC cultivation. - Highlights: • We report the development of photo-cross-linked AM as a limbal stem cell niche. • Cross-linked structure of tissue materials was controlled by UV irradiation time. • Biostability and matrix permeability of AM depended on cross-linking density. • All the studied photo-cross-linked AM showed good in vitro biocompatibility.

  3. Tuning nanoscale viscoelasticity of polyelectrolyte complexes with multiple types of cross-links

    Ma, Tianzhu; Han, Biao; Lee, Daeyeon; Han, Lin

    Mechanical properties of hydrogels are manifestation of cross-link type and density, fixed charges and water-polymer interactions. In this study, we revealed how different types of cross-links regulate the nanoscale viscoelasticity of polyelectrolyte networks. Ionically cross-linked PAH/PAA layer-by-layer complexes were modified to include covalent cross-links using EDC. AFM-nanoindentation and force relaxation were performed at various ionic strength (0.01-1M) and pH (1.5-5.5). As-assembled networks, held only by ionic cross-links, underwent >95% relaxation, dominated by cross-link breaking and re-formation. Addition of covalent cross-links increased the instantaneous modulus by 1.6-fold and attenuated relaxation to ~80% of net neutral states (pH >=3.5), as covalent cross-links provide additional elastic components. The network remained stabilized when all ionic cross-links were dissociated at pH poroelasticity. Taken together, this study demonstrates the potential of using multiple cross-linking types to tune the viscoelastic mechanisms in polyelectrolyte complexes.

  4. Reactive electrospinning and biodegradation of cross-linked methacrylated polycarbonate nanofibers

    The objectives of this study were to fabricate cross-linked biodegradable polycarbonate nanofibers and to investigate their biodegradability by different enzymes. Poly(2,3-dihydroxycarbonate) was synthesized from naturally occurring l-tartaric acid. The hydroxyl groups on the functional polycarbonate were converted to methacrylate groups to enable the polymer to cross-link under UV irradiation. Smooth cross-linked methacrylated polycarbonate nanofibers (300-1800 nm) were fabricated by a reactive electrospinning process with in situ UV radiation from a mixed solution of linear methacrylated polycarbonate (MPC) and poly(ethylene oxide) (PEO) (MPC:PEO = 9:1) in methanol/chloroform (50/50). These cross-linked nanofibers have shown excellent solvent resistance and their solubility decreases with increasing degree of cross-linking. The thermal properties of linear and cross-linked polycarbonate nanofibers were investigated by differential scanning calorimetry and thermogravimetric analysis. The cross-linked polycarbonate nanofibers show no melting point below 200 0C and their decomposition temperature increases with increasing cross-linking degree. Their biodegradation products by five different enzymes were analyzed using liquid chromatography-mass spectrometry (LC-MS). The biodegradability of the polycarbonate nanofibers decreases with increasing cross-linking degree. These nanofibers were found to support human fibroblast survival and to promote cell attachment. This study demonstrates that cross-linked biodegradable polycarbonate nanofibers with different chemical properties and biodegradability can be fabricated using the novel reactive electrospinning technology to meet the needs of different biomedical applications.

  5. Cross-linked polyethylenimine–tripolyphosphate nanoparticles for gene delivery

    Huang XZ

    2014-10-01

    Full Text Available Xianzhang Huang,1 Sujing Shen,2 Zhanfeng Zhang,1 Junhua Zhuang1 1Department of Laboratory Science, Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 2Department of Laboratory Science, Guangdong Second Provincial Traditional Chinese Medicine Hospital, Guangzhou, People’s Republic of China Abstract: The high transfection efficiency of polyethylenimine (PEI makes it an attractive potential nonviral genetic vector for gene delivery and therapy. However, the highly positive charge of PEI leads to cytotoxicity and limits its application. To reduce the cytotoxicity of PEI, we prepared anion-enriched nanoparticles that combined PEI with tripolyphosphate (TPP. We then characterized the PEI-TPP nanoparticles in terms of size, zeta potential, and Fourier-transform infrared (FTIR spectra, and assessed their transfection efficiency, cytotoxicity, and ability to resist deoxyribonuclease (DNase I digestion. The cellular uptake of PEI-TPP with phosphorylated internal ribosome entry site–enhanced green fluorescent protein C1 or FAM (fluorouracil, Adriamycin [doxorubicin] and mitomycin-labeled small interfering ribonucleic acids (siRNAs was monitored by fluorescence microscopy and confocal laser microscopy. The efficiency of transfected delivery of plasmid deoxyribonucleic acid (DNA and siRNA in vitro was 1.11- to 4.20-fold higher with the PEI-TPP particles (7.6% cross-linked than with the PEI, at all N:P ratios (nitrogen in PEI to phosphorus in DNA tested. The cell viability of different cell lines was more than 90% at the chosen N:P ratios of PEI-TPP/DNA complexes. Moreover, PEI-TPP nanoparticles resisted digestion by DNase I for more than 2 hours. The time-dependent absorption experiment showed that 7.6% of cross-linked PEI-TPP particles were internalized by 293T cells within 1 hour. In summary, PEI-TPP nanoparticles effectively transfected cells while conferring little or no toxicity, and thus have potential application in gene

  6. Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry

    Steen, Hanno; Jensen, Ole Nørregaard

    2002-01-01

    . Mass spectrometry (MS) has emerged as a sensitive and efficient analytical technique for determination of such cross-linking sites in proteins. The present review of the field describes a number of MS-based approaches for the characterization of cross-linked protein-nucleic acid complexes and for......Photochemical cross-linking is a commonly used method for studying the molecular details of protein-nucleic acid interactions. Photochemical cross-linking aids in defining nucleic acid binding sites of proteins via subsequent identification of cross-linked protein domains and amino acid residues...... sequencing of peptide-nucleic acid heteroconjugates. The combination of photochemical cross-linking and MS provides a fast screening method to gain insights into the overall structure and formation of protein-oligonucleotide complexes. Because the analytical methods are continuously refined and protein...

  7. Pyridinium cross-links in heritable disorders of collagen

    Pasquali, M.; Still, M.J.; Dembure, P.P. [Emory Univ., Atlanta, GA (United States)] [and others

    1995-12-01

    Ehlers-Danlos syndrome (EDS) is a heterogeneous group of inherited disorders of collagen that is characterized by skin fragility, skin hyperextensibility, and joint hypermobility. EDS type VI is caused by impaired collagen lysyl hydroxylase (procollagen-lysine, 2-oxoglutarate 5-dioxygenase; E.C.1.14.11.4), the ascorbate-dependent enzyme that hydroxylates lysyl residues on collagen neopeptides. Different alterations in the gene for collagen lysyl hydroxylase have been reported in families with EDS type VI. In EDS type VI, impairment of collagen lysyl hydroxylase results in a low hydroxylysine content in mature collagen. Hydroxylysine is a precursor of the stable, covalent, intermolecular cross-links of collagen, pyridinoline (Pyr), and deoxypyridinoline (Dpyr). Elsewhere we reported in preliminary form that patients with EDS type VI had a distinctive alteration in the urinary excretion of Pyr and Dpyr. In the present study, we confirm that the increased Dpyr/Pyr ratio is specific for EDS type VI and is not observed in other inherited or acquired collagen disorders. In addition, we find that skin from patients with EDS type VI has reduced Pyr and increased Dpyr, which could account for the organ pathology. 19 refs., 1 tab.

  8. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    Xiaoqing Zhang

    2015-07-01

    Full Text Available Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP, followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d33 coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d33 ⋅ g33 for a more typical d33 value of 400 pC/N is about 11.2 GPa−1. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm2 and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  9. Energy harvesting from vibration with cross-linked polypropylene piezoelectrets

    Zhang, Xiaoqing [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Institute for Telecommunications Technology, Merckstrasse 25, 64283 Darmstadt (Germany); Wu, Liming [Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology & School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Sessler, Gerhard M., E-mail: g.sessler@nt.tu-darmstadt.de [Institute for Telecommunications Technology, Merckstrasse 25, 64283 Darmstadt (Germany)

    2015-07-15

    Piezoelectret films are prepared by modification of the microstructure of polypropylene foam sheets cross-linked by electronic irradiation (IXPP), followed by proper corona charging. Young’s modulus, relative permittivity, and electromechanical coupling coefficient of the fabricated films, determined by dielectric resonance spectra, are about 0.7 MPa, 1.6, and 0.08, respectively. Dynamic piezoelectric d{sub 33} coefficients up to 650 pC/N at 200 Hz are achieved. The figure of merit (FOM, d{sub 33} ⋅ g{sub 33}) for a more typical d{sub 33} value of 400 pC/N is about 11.2 GPa{sup −1}. Vibration-based energy harvesting with one-layer and two-layer stacks of these films is investigated at various frequencies and load resistances. At an optimum load resistance of 9 MΩ and a resonance frequency of 800 Hz, a maximum output power of 120 μW, referred to the acceleration g due to gravity, is obtained for an energy harvester consisting of a one-layer IXPP film with an area of 3.14 cm{sup 2} and a seismic mass of 33.7 g. The output power can be further improved by using two-layer stacks of IXPP films in electric series. IXPP energy harvesters could be used to energize low-power electronic devices, such as wireless sensors and LED lights.

  10. Self-beating artificial cells: design of cross-linked polymersomes showing self-oscillating motion.

    Tamate, Ryota; Ueki, Takeshi; Yoshida, Ryo

    2015-02-01

    Biomimetic cross-linked polymersomes that exhibit a self-beating motion without any on-off switching are developed. The polymersomes are made from a well-defined synthetic thermoresponsive diblock copolymer, and the thermoresponsive segment includes ruthenium catalysts for the oscillatory chemical reaction and vinylidene groups to cross-link the polymersomes. Autonomous volume and shape oscillations of the cross-linked polymersomes are realized following redox changes of the catalysts. PMID:25504232

  11. Interstrand Cross-Link Formation in Duplex and Triplex DNA by Modified Pyrimidines

    Peng, Xiaohua; Hong, In Seok; Li, Hong; Seidman, Michael M.; Greenberg, Marc M.

    2008-01-01

    DNA interstrand cross-links have important biological consequences and are useful biotechnology tools. Phenylselenyl substituted derivatives of thymidine (1) and 5-methyl-2′-deoxycytidine (5) produce interstrand cross-links in duplex DNA when oxidized by NaIO4. The mechanism involves a [2,3]-sigmatropic rearrangement of the respective selenoxides to the corresponding methide type intermediates, which ultimately produce the interstrand cross-links. Determination of the rate constants for the s...

  12. Cross-Linked Slurry Cast Composite Modified Double Base Propellants : Mechanical Properties

    V. K. Bhat

    1987-01-01

    Full Text Available Cross-linking of NC by TDI in slurry cast CMDB propellant enhanced TS by about 100 per cent. Coated AP with resorcinol, phloroglucinol, hexanetriol or silicone oil etc. along with cross-linking of NC raised TS from 18 - 30 kg/cm2. Inclusion of phloroglucinol and silicone oil gave increased burning rates. The probable mechanism of action of cross-linking and improvement of mechanical properties by coating of AP has been discussed.

  13. Solvent Composition is Critical for Carbodiimide Cross-Linking of Hyaluronic Acid as an Ophthalmic Biomaterial

    Jui-Yang Lai

    2012-01-01

    Hyaluronic acid (HA) is one of the most important ophthalmic biomaterials, while also being used for tissue engineering and drug delivery. Although chemical cross-linking is an effective way to improve the material performance, it may as a consequence be detrimental to the living cells/tissues. Given that the cross-linking efficiency is mediated by the solvent composition during the chemical modification, this study aims to explore the stability and biocompatibility of carbodiimide cross-link...

  14. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

    Park, Won Ho

    2016-01-01

    Min Hee Kim, Won Ho Park Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon, Korea Abstract: In this study, the synthesis of silk fibroin (SF) hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray) irradiation was investigated, as were the resultant hydrogel’s properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel i...

  15. Tailoring the properties of cholecyst-derived extracellular matrix using carbodiimide cross-linking.

    Burugapalli, Krishna

    2009-01-01

    Modulation of properties of extracellular matrix (ECM) based scaffolds is key for their application in the clinical setting. In the present study, cross-linking was used as a tool for tailoring the properties of cholecyst-derived extracellular matrix (CEM). CEM was cross-linked with varying cross-linking concentrations of N,N-(3-dimethyl aminopropyl)-N\\'-ethyl carbodiimide (EDC) in the presence of N-hydroxysuccinimide (NHS). Shrink temperature measurements and ATR-FT-IR spectra were used to determine the degree of cross-linking. The effect of cross-linking on degradation was tested using the collagenase assay. Uniaxial tensile properties and the ability to support fibroblasts were also evaluated as a function of cross-linking. Shrink temperature increased from 59 degrees C for non-cross-linked CEM to 78 degrees C for the highest EDC cross-linking concentration, while IR peak area ratios for the free -NH(2) group at 3290 cm(-1) to that of the amide I band at 1635 cm(-1) decreased with increasing EDC cross-linking concentration. Collagenase assay demonstrated that degradation rates for CEM can be tailored. EDC concentrations 0 to 0.0033 mmol\\/mg CEM were the cross-linking concentration range in which CEM showed varied susceptibility to collagenase degradation. Furthermore, cross-linking concentrations up to 0.1 mmol EDC\\/mg CEM did not have statistically significant effect on the uniaxial tensile strength, as well as morphology, viability and proliferation of fibroblasts on CEM. In conclusion, the degradation rates of CEM can be tailored using EDC-cross-linking, while maintaining the mechanical properties and the ability of CEM to support cells.

  16. Effect of Cross-Linking and Enzymatic Hydrolysis Composite Modification on the Properties of Rice Starches

    Gao-Qiang Liu

    2012-07-01

    Full Text Available Native rice starch lacks the versatility necessary to function adequately under rigorous industrial processing, so modified starches are needed to meet the functional properties required in food products. This work investigated the impact of enzymatic hydrolysis and cross-linking composite modification on the properties of rice starches. Rice starch was cross-linked with epichlorohydrin (EPI with different concentrations (0.5%, 0.7%, 0.9% w/w, on a dry starch basis, affording cross-linked rice starches with the three different levels of cross-linking that were named R1, R2, and R3, respectively. The cross-linked rice starches were hydrolyzed by α-amylase and native, hydrolyzed, and hydrolyzed cross-linked rice starches were comparatively studied. It was found that hydrolyzed cross-linked rice starches showed a lower the degree of amylase hydrolysis compared with hydrolyzed rice starch. The higher the degree of cross-linking, the higher the capacity to resist enzyme hydrolysis. Hydrolyzed cross-linked rice starches further increased the adsorptive capacities of starches for liquids and decreased the trend of retrogradation, and it also strengthened the capacity to resist shear compared to native and hydrolyzed rice starches.

  17. Peculiarities of the structure and properties of highly cross-linked polymer networks

    Data on the structure and properties of highly cross-linked polymer networks in which the distance between cross-link points is several repeating units or even less than one unit, up to the networks consisting of nothing but cross-link points containing no linear fragments, are generalised. The dependences of a number of physical properties (the glass transition temperature, the modulus of elasticity, etc.) on the degree of cross-linking and the influence of various defects (branchings, dangled chains, etc.) on the properties of highly cross-linked networks are analysed. It is shown that the passage from sparse networks to highly cross-linked networks is accompanied by fundamental changes in their properties and that these properties can be described quantitatively taking into account the chemical structure of the network. The influence of the chemical structure of a cross-link point of the network on the properties is analysed; it is shown that the distances between the cross-link points in such networks can be estimated by nontraditional methods. Particular attention is paid to the cross-linked systems that are the basis for gradient-modulus materials in which the modulus of elasticity, the refractive index, and other properties vary over a wide range. The bibliography includes 93 references.

  18. Synthesis of Cross-Linked DNA Containing Oxidized Abasic Site Analogues

    2015-01-01

    DNA interstrand cross-links are an important family of DNA damage that block replication and transcription. Recently, it was discovered that oxidized abasic sites react with the opposing strand of DNA to produce interstrand cross-links. Some of the cross-links between 2′-deoxyadenosine and the oxidized abasic sites, 5′-(2-phosphoryl-1,4-dioxobutane) (DOB) and the C4-hydroxylated abasic site (C4-AP), are formed reversibly. Chemical instability hinders biochemical, structural, and physicochemical characterization of these cross-linked duplexes. To overcome these limitations, we developed methods for preparing stabilized analogues of DOB and C4-AP cross-links via solid-phase oligonucleotide synthesis. Oligonucleotides of any sequence are attainable by synthesizing phosphoramidites in which the hydroxyl groups of the cross-linked product were orthogonally protected using photochemically labile and hydrazine labile groups. Selective unmasking of a single hydroxyl group precedes solid-phase synthesis of one arm of the cross-linked DNA. The method is compatible with commercially available phosphoramidites and other oligonucleotide synthesis reagents. Cross-linked duplexes containing as many as 54 nt were synthesized on solid-phase supports. Subsequent enzyme ligation of one cross-link product provided a 60 bp duplex, which is suitable for nucleotide excision repair studies. PMID:24949656

  19. Effect of radiation cross-linking on the abrasive wear behaviour of polyethylenes

    Gul, Rizwan M.; Khan, Tahir I.

    2014-06-01

    This study explores the differences in the dry abrasive wear behavior of different polyethylenes, and compares the effect of radiation cross-linking on the wear behavior. Four different types of polyethylenes: LDPE, LLDPE, HDPE and UHMWPE were studied. Cross-linking was carried out by high energy electron beam with radiation dose of 200 kGy. The results show that in unirradiated state UHMWPE has excellent wear resistance, with HDPE showing comparable wear properties; both LDPE and LLDPE exhibit high wear rate. Cross-linking improves wear rate of LDPE and UHMWPE, however, the wear rate of HDPE and LLDPE increases with cross-linking.

  20. Mass spectrometric analysis of a UV-cross-linked protein-DNA complex: tryptophans 54 and 88 of E. coli SSB cross-link to DNA

    Steen, H; Petersen, J; Mann, M;

    2001-01-01

    Protein-nucleic acid complexes are commonly studied by photochemical cross-linking. UV-induced cross-linking of protein to nucleic acid may be followed by structural analysis of the conjugated protein to localize the cross-linked amino acids and thereby identify the nucleic acid binding site. Mass...... spectrometry is becoming increasingly popular for characterization of purified peptide-nucleic acid heteroconjugates derived from UV cross-linked protein-nucleic acid complexes. The efficiency of mass spectrometry-based methods is, however, hampered by the contrasting physico-chemical properties of nucleic...... acid and peptide entities present in such heteroconjugates. Sample preparation of the peptide-nucleic acid heteroconjugates is, therefore, a crucial step in any mass spectrometry-based analytical procedure. This study demonstrates the performance of four different MS-based strategies to characterize E...

  1. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  2. Effect of γ-radiation on cross-linking of carboxylated oligobutadiene in the presence of diethylene glycol divinyl ether

    Radiothermal cross-linking of carboxylated oligobutadiene in the presence of diethylene glycol divinyl ether was studied. It was shown that preliminary radiation treatment increases the efficiency of subsequent cross-linking of the system, and the number of intermolecular cross-links attains the maximum possible value in this case, versus 40% of the theoretical value for purely thermal cross-linking

  3. Encapsulation of volatiles by homogenized partially-cross linked alginates.

    Inguva, Pavan K; Ooi, Shing Ming; Desai, Parind M; Heng, Paul W S

    2015-12-30

    Cross-linked calcium alginate gels are too viscous to be efficaciously incorporated into spray dried formulations. Thus, viscosity reduction is essential to ensure the processability of calcium alginate gels to be sprayed. Viscosity reduction by high pressure homogenization can open new formulation possibilities. Presently, testing of microcapsule integrity is also limited because either single particle tests neglect collective particle behaviours in bulk or bulk testing methods are often associated with single compressions which may not fully characterize individual particle strengths. The aim of this study was sub-divided into three objectives. First objective was to evaluate the impact of high pressure homogenization on gel viscosity. Second objective was to explore the use of the homogenized gels with modified starch for microencapsulation by spray drying. The final objective was to develop a stamping system as microcapsule strength tester that can assess microcapsules in bulk and evaluate the impact of multiple compressions. Collectively, this study would lead towards developing a pressure-activated patch of microcapsules with encapsulated volatiles and the method to assess the patch efficacy. The alginate gels largely experienced an exponential decay in viscosity when homogenized. Furthermore, the homogenized gels were successfully incorporated in spray drying formulations for microencapsulation. The custom-designed microcapsule strength tester was successfully used and shown to possess the required sensitivity to discern batches of microcapsules containing volatiles to have different release profiles. Addition of homogenized gels strengthened the microcapsules only at high wall to core ratios with low mass-load alginate gels. High mass-load gels weaken the microcapsules, exhibiting a higher release at low stamping pressures and wrinkling on the microcapsules surface. PMID:26581772

  4. The theory and art of corneal cross-linking

    Rebecca McQuaid

    2013-01-01

    Full Text Available Before the discovery of corneal cross-linking (CXL, patients with keratoconus would have had to undergo corneal transplantation, or wear rigid gas permeable lenses (RGPs that would temporarily flatten the cone, thereby improving the vision. The RGP contact lens (CL would not however alter the corneal stability and if the keratoconus was progressive, the continued steepening of the cone would occur under the RGP CL. To date, the Siena Eye has been the largest study to investigate long term effects of standard CXL. Three hundred and sixty-three eyes were treated and monitored over 4 years, producing reliable long-term results proving long-term stability of the cornea by halting the progression of keratoconus, and proving the safety of the procedure. Traditionally, CXL requires epithelial removal prior to corneal soakage of a dextran-based 0.1% riboflavin solution, followed by exposure of ultraviolet-A (UV-A light for 30 min with an intensity of 3 mW/cm2. A series of in vitro investigations on human and porcine corneas examined the best treatment parameters for standard CXL, such as riboflavin concentration, intensity, wavelength of UV-A light, and duration of treatment. Photochemically, CXL is achieved by the generation of chemical bonds within the corneal stroma through localized photopolymerization, strengthening the cornea whilst minimizing exposure to the surrounding structures of the eye. In vitro studies have shown that CXL has an effect on the biomechanical properties of the cornea, with an increased corneal rigidity of approximately 70%. This is a result of the creation of new chemical bonds within the stroma.

  5. Analytical characterisation of glutardialdehyde cross-linking products in gelatine-gum arabic complex coacervates

    Encapsulates having shells of cross-linked mixtures of proteins and polysaccharides are widely used in the food and pharmaceutical industry for controlled release of actives and flavour compounds. In order to be able to predict the behaviour and the release characteristics of the microcapsules, a better understanding of the nature and extent of the cross-linking reaction is needed. Several analytical techniques were applied for the characterisation of glutardialdehyde (GDA) cross-linked encapsulates made of gelatine and gum arabic. To allow the use of sensitive, high-resolution methods such as chromatography and mass spectrometry, the sample first had to be hydrolysed. In this way, a mixture of amino acids, small peptides and the cross-link moieties was obtained. High-resolution liquid chromatography coupled to high-resolution mass spectrometry (HPLC-MS) was applied to detect possible cross-link markers through a comparison of HPLC-MS mass-chromatograms obtained for cross-linked and non-cross-linked coacervates. HPLC-MS/MS was used to identify the species responsible for the differences. Cross-linking occurred between GDA molecules and lysine and hydroxylysine ε-amino groups, and up to eight cross-link products of different nature could be identified. They included pyridinium ions and Schiff bases, and also unreacted GDA condensation products. Next, based on the insight gained in the possible chemical structures present in the cross-link markers, methods for selective labelling of these functionalities were employed to allow easier detection of related reaction products. Both liquid chromatography (LC) and gas chromatography (GC) were used in these experiments. Unfortunately, these approaches failed to detect new cross-link markers, most likely as a result of the low levels at which these are present

  6. Analytical characterisation of glutardialdehyde cross-linking products in gelatine-gum arabic complex coacervates

    Fuguet, Elisabet [Advanced Measurement and Imaging, Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT Vlaardingen (Netherlands)], E-mail: eli.fuguet@gmail.com; Platerink, Chris van [Advanced Measurement and Imaging, Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT Vlaardingen (Netherlands); Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research, Utrecht University, Sorbonnelaan 16, 3584 CA Utrecht (Netherlands); Janssen, Hans-Gerd [Advanced Measurement and Imaging, Unilever Food and Health Research Institute, Olivier van Noortlaan 120, 3133 AT Vlaardingen (Netherlands); van' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands)

    2007-11-26

    Encapsulates having shells of cross-linked mixtures of proteins and polysaccharides are widely used in the food and pharmaceutical industry for controlled release of actives and flavour compounds. In order to be able to predict the behaviour and the release characteristics of the microcapsules, a better understanding of the nature and extent of the cross-linking reaction is needed. Several analytical techniques were applied for the characterisation of glutardialdehyde (GDA) cross-linked encapsulates made of gelatine and gum arabic. To allow the use of sensitive, high-resolution methods such as chromatography and mass spectrometry, the sample first had to be hydrolysed. In this way, a mixture of amino acids, small peptides and the cross-link moieties was obtained. High-resolution liquid chromatography coupled to high-resolution mass spectrometry (HPLC-MS) was applied to detect possible cross-link markers through a comparison of HPLC-MS mass-chromatograms obtained for cross-linked and non-cross-linked coacervates. HPLC-MS/MS was used to identify the species responsible for the differences. Cross-linking occurred between GDA molecules and lysine and hydroxylysine {epsilon}-amino groups, and up to eight cross-link products of different nature could be identified. They included pyridinium ions and Schiff bases, and also unreacted GDA condensation products. Next, based on the insight gained in the possible chemical structures present in the cross-link markers, methods for selective labelling of these functionalities were employed to allow easier detection of related reaction products. Both liquid chromatography (LC) and gas chromatography (GC) were used in these experiments. Unfortunately, these approaches failed to detect new cross-link markers, most likely as a result of the low levels at which these are present.

  7. Effects of Supercritical CO 2 Conditioning on Cross-Linked Polyimide Membranes

    Kratochvil, Adam M.

    2010-05-25

    The effects of supercritical CO2 (scCO2) conditioning on high-performance cross-linked polyimide membranes is examined through gas permeation and sorption experiments. Under supercritical conditions, the cross-linked polymers do not exhibit a structural reorganization of the polymer matrix that was observed in the non-cross-linkable, free acid polymer. Pure gas permeation isotherms and mixed gas permeabilities and selectivities show the cross-linked polymers to be much more stable to scCO2 conditioning than the free acid polymer. In fact, following scCO2 conditioning, the mixed gas CO2 permeabilities of the cross-linked polymers increased while the CO2/CH4 separation factors remained relatively unchanged. This response highlights the stability and high performance of these cross-linked membranes in aggressive environments. In addition, this response reveals the potential for the preconditioning of cross-linked polymer membranes to enhance productivity without sacrificing efficiency in practical applications which, in effect, provides another tool to \\'tune\\' membrane properties for a given separation. Finally, the dual mode model accurately describes the sorption and dilation characteristics of the cross-linked polymers. The changes in the dual mode sorption model parameters before and after the scCO2 exposure also provide insights into the alterations in the different glassy samples due to the cross-linking and scCO2 exposure. © 2010 American Chemical Society.

  8. Lamb and Cow Performance when Fed Corn Silage that has Reduced Ferulate Cross Linking

    Ferulate-mediated lignin/hemicellulose cross linking in grasses reduces in vitro NDF digestibility (IVNDFD). Impact of ferulate cross linking on animal performance was examined in lamb digestibility and dairy cow performance trials using the seedling ferulate ester (sfe) corn mutant that reduces cro...

  9. New insight into enzymatic cross-linking of globular proteins: from nanostructure to functionality

    Sariçay, Y.

    2014-01-01

    ABSTRACT In last two decades, enzymatic cross-linking of proteins has a growing interest in food technology for better tailoring protein functionality. However, the relation between physical and functional properties of enzymatically cross-linked proteins has been hardly addressed s

  10. An Investigation on Rheology of Peroxide Cross-linking of Low Density Polyethylene

    Ghasemi, Ismaeil; Rasmussen, Henrik K.; Szabo, Peter;

    2005-01-01

    One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross-linking on th...

  11. Carboxymethyl starch cross-linked by electron beam radiation in presence of acrylic acid sensitizer

    Carboxymethyl starch (CMS) can be cross-linked by electron beam radiation to form a biocompatible and environment-friendly hydrogel at a high absorbed dose and a condensed CMS concentration. Acrylic acid (AAc) can be used as a sensitizer in order to reduce the absorbed doses to an acceptable certain level. At an absorbed dose of 3-4 kGy, the gel content of crosslinked CMS can be obtained about 50% with 5% (w/w) AAc concentration used. The compressive strength of CMS samples increased with increasing their cross-linked densities due to raising absorbed doses. The swelling ratio of cross-linked CMS was also attainable at a maximum of 50 times in the distilled water. The enzymatic degradation of cross-linked CMS was carried out in acetate buffer pH 4.6 with 0.1% α-amylase enzymatic solution incubated at 40℃ for 6 h. The crosslinked CMS samples were degraded slower than uncrosslinked CMS ones. The results indicated that the highly cross-linked CMS was almost fully degradable when the enzymatic hydrolysis was performed during 6 h. The FT IR spectra of cross-linked CMS in the presence of AAc were examined to observe the carboxyl group of AAc in the structure of cross-linked CMS. The hydrophilic of cross-linked CMS surface was determined by a contact-angle analysis. (authors)

  12. Covalently Cross-Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications

    Yang, Jingshuai; Aili, David; Li, Qingfeng; Cleemann, Lars Nilausen; Jensen, Jens Oluf; Bjerrum, Niels J.; He, Ronghuan

    2013-01-01

    Covalently cross-linked polymer membranes were fabricated from poly(aryl sulfone benzimidazole) (SO(2) PBI) and poly(vinylbenzyl chloride) (PVBCl) as electrolytes for high-temperature proton-exchange-membrane fuel cells. The cross-linking imparted organo insolubility and chemical stability agains...

  13. Persulfate initiated ultra-low cross-linked poly(N-isopropylacrylamide) microgels possess an unusual inverted cross-linking structure.

    Virtanen, O L J; Mourran, A; Pinard, P T; Richtering, W

    2016-05-01

    Cross-linking density and distribution are decisive for the mechanical and other properties of stimuli-sensitive poly(N-isopropylacrylamide) microgels. Here we investigate the structure of ultra-low cross-linked microgels by static light scattering and scanning force microscopy, and show that they have an inverted cross-linking structure with respect to conventional microgels, contrary to what has been assumed previously. The conventional microgels have the largest polymer volume fraction in the core from where the particle density decays radially outwards, whereas ultra-low cross-linked particles have the highest polymer volume fraction close to the surface. On a solid substrate these particles form buckled shapes at high surface coverage, as shown by scanning force micrographs. The special structure of ultra-low cross-linked microgels is attributed to cross-linking of the particle surface, which is exposed to hydrogen abstraction by radicals generated from persulfate initiators during and after polymerization. The particle core, which is less accessible to the diffusion of radicals, has consequently a lower polymer volume fraction in the swollen state. By systematic variation of the cross-linker concentration it is shown that the cross-linking contribution from peroxide under typical synthesis conditions is weaker than that from the use of 1 mol% N,N'-methylenebisacrylamide. Soft deformable hydrogel particles are of interest because they emulate biological tissues, and understanding the underlying synthesis principle enables tailoring the microgel structure for biomimetic applications. Deformability of microgels is usually controlled by the amount of added cross-linker; here we however highlight an alternative approach through structural softness. PMID:27033731

  14. Investigation of anisotropic thermal transport in cross-linked polymers

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  15. Collagen cross-linking of skin in patients with amyotrophic lateral sclerosis

    Ono, S.; Yamauchi, M.

    1992-01-01

    Collagen cross-links of skin tissue (left upper arm) from 11 patients with amyotrophic lateral sclerosis (ALS) and 9 age-matched control subjects were quantified. It was found that patients with ALS had a significant reduction in the content of an age-related, stable cross-link, histidinohydroxylysinonorleucine, that was negatively correlated with the duration of illness. The contents of sodium borohydride-reducible labile cross-links, dehydro-hydroxylysinonorleucine and dehydro-histidinohydroxymerodesmosine, were significantly increased and were positively associated with the duration of illness (r = 0.703, p less than 0.05 and r = 0.684, p less than 0.05, respectively). The results clearly indicate that during the course of ALS, the cross-linking pathway of skin collagen runs counter to its normal aging, resulting in a "rejuvenation" phenomenon of skin collagen. Thus, cross-linking of skin collagen is affected in ALS.

  16. Hydroxyl radical induced cross-linking between phenylalanine and 2-deoxyribose

    Farahani, M.; Simic, M.G.

    1988-06-28

    Hydroxy radicals induce cross-linking between phenylalanine (Phe) and 2-deoxyribose (dR) via formation of corresponding free radical intermediates. The cross-linked products were separated and identified by capillary gas chromatography-mass spectrometry. When phenylalanine and 2-deoxyribose radicals were generated in a 1:1 ratio, the predominant interaction was between Phe and dR radicals while the Phe-Phe and dR-dR cross-links were less abundant. The newly discovered cross-linked between 2-deoxyribose and phenylalanine may serve as a model for radiation or free radical induced cross-linking between DNA and proteins and in general between sugar moieties and amino acids.

  17. Characterization of the bombesin receptor on mouse pancreatic acini by chemical cross-linking

    Huang, S.C.; Yu, D.H.; Wank, S.A.; Gardner, J.D.; Jensen, R.T. (National Institutes of Health, Bethesda, MD (USA))

    1990-11-01

    Bombesin (BN), gastrin-releasing peptide (GRP) and GRP(18-27) (neuromedin C) were equipotent and 30-fold more potent than neuromedin B (NMB) in inhibiting binding of {sup 125}I-GRP to and in stimulating amylase release from mouse pancreatic acini. In the present study we used {sup 125}I-GRP and chemical cross-linking techniques to characterize the mouse pancreatic BN receptor. After binding of {sup 125}I-GRP to membranes, and incubation with various chemical cross-linking agents, cross-linked radioactivity was analyzed by SDS-PAG electrophoresis and autoradiography. With each of 4 different chemical cross-linking agents, there was a single broad polypeptide band of Mr 80,000. Cross-linking did not occur in the absence of the cross-linking agent. Cross-linking was inhibited only by peptides that interact with the BN receptor such as GRP, NMB, GRP(18-27) or BN. Dose-inhibition curves for the ability of BN or NMB to inhibit binding of {sup 125}I-GRP to membranes or cross-linking to the 80,000 polypeptide demonstrated for both that BN was 15-fold more potent than NMB. The apparent molecular weight of the cross-linked polypeptide was unchanged by adding dithiothreitol. N-Glycanase treatment reduced the molecular weight of the cross-linked peptide to 40,000. The present results indicate that the BN receptor on mouse pancreatic acinar cell membranes resembles that recently described on various tumor cells in being a single glycoprotein with a molecular weight of 76,000. Because dithiothreitol had no effect, this glycoprotein is not a subunit of a larger disulfide-linked structure.

  18. Characterization of the bombesin receptor on mouse pancreatic acini by chemical cross-linking

    Bombesin (BN), gastrin-releasing peptide (GRP) and GRP(18-27) (neuromedin C) were equipotent and 30-fold more potent than neuromedin B (NMB) in inhibiting binding of 125I-GRP to and in stimulating amylase release from mouse pancreatic acini. In the present study we used 125I-GRP and chemical cross-linking techniques to characterize the mouse pancreatic BN receptor. After binding of 125I-GRP to membranes, and incubation with various chemical cross-linking agents, cross-linked radioactivity was analyzed by SDS-PAG electrophoresis and autoradiography. With each of 4 different chemical cross-linking agents, there was a single broad polypeptide band of Mr 80,000. Cross-linking did not occur in the absence of the cross-linking agent. Cross-linking was inhibited only by peptides that interact with the BN receptor such as GRP, NMB, GRP(18-27) or BN. Dose-inhibition curves for the ability of BN or NMB to inhibit binding of 125I-GRP to membranes or cross-linking to the 80,000 polypeptide demonstrated for both that BN was 15-fold more potent than NMB. The apparent molecular weight of the cross-linked polypeptide was unchanged by adding dithiothreitol. N-Glycanase treatment reduced the molecular weight of the cross-linked peptide to 40,000. The present results indicate that the BN receptor on mouse pancreatic acinar cell membranes resembles that recently described on various tumor cells in being a single glycoprotein with a molecular weight of 76,000. Because dithiothreitol had no effect, this glycoprotein is not a subunit of a larger disulfide-linked structure

  19. Disuccinimidyl suberate cross-linked hemoglobin as a novel red blood cell substitute

    LU; Xiuling; ZHENG; Chunyang; XU; Yuhong; SU; Zhiguo

    2005-01-01

    Disuccinimidyl suberate (DSS) intramolecularly cross-linked hemoglobin (Hb) was developed as a novel red blood cell substitute. A multi-angle laser light scattering detector coupled with size exclusion HPLC was applied to determine the molecular weight of the modified Hb. SDS-PAGE was also used as a complement. It was proved that 83.8% of the product was intramolecularly cross-linked Hb with weight-average molecular weights (Mw) of 67.5 kD, 12% was dimeric Hb with Mw of 146.6 kD, and 4.2% was trimeric Hb with Mw of 306.4 kD. The tetramer structure of the cross-linked Hb was stable as shown in size-exclusion chromatography using a mobile phase containing 1 mol/L MgCl2. Analysis by LC-MS demonstrated that the reaction of DSS with Hb mainly took place between the twoα subunits within a Hb molecule, resulting in stabilization of the tetramer structure. However, the cross-linking was not site-specific. The P50 of the cross-linked Hb decreased from 21.8 mmHg to 14.3 mmHg, and the Hill coefficient decreased from 2.22 to 1.41. Result of isoelectric focusing showed that the pI of DSS cross-linked Hb was in the range of 4.6-5.2, similar to that of serum albumin. The safety of DSS cross-linked Hb was favored by animal tests on rats and guinea pigs. Exchange transfusion experiment with DSS cross-linked Hb using rats as a model indicated no pressor effect or other significant side effects. The characteristics and properties of DSS cross-linked Hb were also compared with that of diaspirin cross-linked Hb reported in the literature.

  20. Corneal changes following collagen cross linking and simultaneous topography guided photoablation with collagen cross linking for keratoconus

    Prema Padmanabhan

    2014-01-01

    Full Text Available Purpose: To compare the outcome of Collagen cross-linking (CXL with that following topography-guided customized ablation treatment (T-CAT with simultaneous CXL in eyes with progressive keratoconus. Materials and Methods: This was a prospective, non-randomized single centre study of 66 eyes with progressive keratoconus. Of these, 40 eyes underwent CXL and 26 eyes underwent T-CAT + CXL. The refractive, topographic, tomographic and aberrometric changes measured at baseline, 1, 3 and 6 months post-operatively were compared between both groups. Results: After a mean follow-up of 7.7 ± 1.3 months, the mean retinoscopic cylinder decreased by 1.02 ± 3.16 D in the CXL group ( P = 0.1 and 2.87 ± 3.22 D in the T-CAT + CXL group ( P = 0.04. The Best corrected visual acuity increased by 2 lines or more in 10% of eyes in the CXL group and in 23.3% of eyes in the T-CAT + CXL group. The mean steepest-K reduced by 0.40 ± 3.71 D ( P = 0.77 in the CXL group and by 2.91 ± 2.01D ( P = 0.03 in the T-CAT + CXL group. The sag factor and surface asymmetry index showed no significant change in the CXL group but reduced by 3.59 ± 5.94 D ( P = 0.01 and 0.72 ± 1.18 ( P = 0.02 respectively in the T-CAT + CXL group. There was a significant increase in the highest posterior corneal elevation in both groups (9.57 ± 14.93 μ in the CXL group and 7.85 ± 9.25 μ in the T-CAT + CXL group, P ≤ 0.001 for both. There was significantly greater reduction of mean coma ( P < 0.001 and mean higher-order aberrations ( P = 0.01 following T-CAT + CXL compared to CXL. Conclusions: CAT + CXL is an effective approach to confer biomechanical stability and to improve the corneal contour in eyes with keratoconus and results in better refractive, topographic and aberrometric outcomes than CXL alone.

  1. A Comparative Study of the Characteristics of Cross-Linked, Oxidized and Dual-Modified Rice Starches

    Xiao, Hua-Xi; Lin, Qin-Lu; Liu, Gao-Qiang; Yu, Feng-Xiang

    2012-01-01

    Rice starch was cross-linked with epichlorohydrin (0.3%, w/w, on a dry starch basis) and oxidized with sodium hypochlorite (2.5% w/w), respectively. Two dual-modified rice starch samples (oxidized cross-linked rice starch and cross-linked oxidized rice starch) were obtained by the oxidation of cross-linked rice starch and the cross-linking of oxidized rice starch at the same level of reagents. The physicochemical properties of native rice starch, cross-linked rice starch and oxidized rice sta...

  2. Adsorption of Cu and Mn on covalently cross-linked alginate gel beads.

    Gotoh, Takeshi; Matsushima, Keiei; Kikuchi, Ken-Ichi

    2004-04-01

    The covalently cross-linked alginate gel beads were prepared by the reactions of Ca(2+)-doped alginate gel beads, which were formed by spraying a viscous alginate solution into a calcium chloride solution, with cyanogen bromide and following 1,6-diaminohexane. The cross-linking of alginate matrix decreased the mean bead diameter by about 30% and made the beads durable in some extent under alkaline conditions. The adsorption of metal ions on the covalently cross-linked alginate gel beads was rapid and reached at equilibrium within 30 min at 25 degrees C. Adsorption isotherms of Cu(II), Mn(II), and Ca2+ on the beads possessed a stepwise shape, which was firstly determined by Rorrer et al. [Ind. Eng. Chem. Res. 32 (1993) 2170] for cross-linked chitosan gel beads and explained by a pore-blockage mechanism. Higher selectivity was determined against Cu(II) over Mn(II) and Ca2+, especially at a low concentration region. These metal adsorption profiles for the covalently cross-linked alginate gel beads was almost the same as those for the un-cross-linked beads, indicating that the cross-linking reactions were performed without interfering the adsorption characteristics of alginate gel beads. PMID:14720547

  3. Modified gum arabic cross-linked gelatin scaffold for biomedical applications

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. - Highlights: • Gum arabic cross-linked gelatin scaffold was developed for tissue engineering. • Cross-linking was achieved by Schiff's base reaction. • The scaffold is non-cytotoxic and non adherent to fibroblast and hepatocytes. • The scaffolds are potential candidates for spheroid cell culture

  4. Composition of cross-linked 125I-follitropin-receptor complexes

    Both of the alpha and beta subunits of intact human follitropin (FSH) were radioiodinated with 125I-sodium iodide and chloramine-T and could be resolved on sodium dodecyl sulfate-polyacrylamide gels. Radioiodinated FSH was affinity-cross-linked with a cleavable (nondisulfide) homobifunctional reagent to its membrane receptor on the porcine granulosa cell surface as well as to a Triton X-100-solubilized form of the receptor. Cross-linked samples revealed three additional bands of slower electrophoretic mobility, corresponding to 65, 83, and 117 kDa, in addition to the hormone bands. The hormone alpha beta dimer band corresponded to 43 kDa. Formation of the three bands requires the 125I-hormone to bind specifically to the receptor with subsequent cross-linking. Binding was prevented by an excess of the native hormone but not by other hormones. A monofunctional analog of the cross-linking reagent failed to produce the three bands. Reagent concentration-dependent cross-linking revealed that their formation was sequential; smaller complexes formed first and then larger ones. When gels of cross-linked complexes were treated to cleave covalent cross-links and then electrophoresed in a second dimension, 18-, 22-, and 34-kDa components were released, in addition to the alpha and beta subunits of the hormone

  5. Modified gum arabic cross-linked gelatin scaffold for biomedical applications

    Sarika, P.R. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India); Cinthya, Kuriakose [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); Jayakrishnan, A. [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036 (India); Anilkumar, P.R., E-mail: anilkumarpr@sctimst.ac.in [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); James, Nirmala Rachel, E-mail: nirmala@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India)

    2014-10-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. - Highlights: • Gum arabic cross-linked gelatin scaffold was developed for tissue engineering. • Cross-linking was achieved by Schiff's base reaction. • The scaffold is non-cytotoxic and non adherent to fibroblast and hepatocytes. • The scaffolds are potential candidates for spheroid cell culture.

  6. XLSearch: a Probabilistic Database Search Algorithm for Identifying Cross-Linked Peptides.

    Ji, Chao; Li, Sujun; Reilly, James P; Radivojac, Predrag; Tang, Haixu

    2016-06-01

    Chemical cross-linking combined with mass spectrometric analysis has become an important technique for probing protein three-dimensional structure and protein-protein interactions. A key step in this process is the accurate identification and validation of cross-linked peptides from tandem mass spectra. The identification of cross-linked peptides, however, presents challenges related to the expanded nature of the search space (all pairs of peptides in a sequence database) and the fact that some peptide-spectrum matches (PSMs) contain one correct and one incorrect peptide but often receive scores that are comparable to those in which both peptides are correctly identified. To address these problems and improve detection of cross-linked peptides, we propose a new database search algorithm, XLSearch, for identifying cross-linked peptides. Our approach is based on a data-driven scoring scheme that independently estimates the probability of correctly identifying each individual peptide in the cross-link given knowledge of the correct or incorrect identification of the other peptide. These conditional probabilities are subsequently used to estimate the joint posterior probability that both peptides are correctly identified. Using the data from two previous cross-link studies, we show the effectiveness of this scoring scheme, particularly in distinguishing between true identifications and those containing one incorrect peptide. We also provide evidence that XLSearch achieves more identifications than two alternative methods at the same false discovery rate (availability: https://github.com/COL-IU/XLSearch ). PMID:27068484

  7. Evaluation of cross-linked gelatin membranes as delivery carriers for retinal sheets

    The delivery of intact sheet transplants to the subretinal space can prevent cell loss that is generally associated with the injection of cell suspensions or cell aggregates. The aim of this study was to develop chemically modified gelatin matrices that enhance the delivery efficiency and analyze whether the gelatin membranes cross-linked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) can be considered as potential carriers for retinal sheets. The characteristics of EDC cross-linked gelatin membranes were determined by mechanical and in vitro degradation tests, melting point measurements, cell proliferation assays, cytokine expression analyses, and tissue delivery studies. Gelatin membranes without cross-linking and glutaraldehyde cross-linked gelatin samples were used for comparison. Results of this study indicated that introduction of cross-links is capable of rendering the gelatin network more stable against mechanical stresses and deformations as well as rapid hydrolysis during intraocular delivery of delicate tissue sheets. In comparison with the glutaraldehyde treated samples, the EDC cross-linked gelatin membranes showed a better degradation profile and a relatively higher cytocompatibility. In addition, after EDC cross-linking, the gelatin matrices having an acceptable melting point could be used for the fabrication of a sandwich-like carrier with a high transfer and encapsulation efficiency. These findings suggest that the cross-linking agent type gives an influence on delivery functionality of gelatin membranes. In summary, the EDC cross-linked gelatin is an ideal candidate for use as a carrier material in retinal sheet delivery applications.

  8. Riboflavin/UVA collagen cross-linking-induced changes in normal and keratoconus corneal stroma.

    Sally Hayes

    Full Text Available PURPOSE: To determine the effect of Ultraviolet-A collagen cross-linking with hypo-osmolar and iso-osmolar riboflavin solutions on stromal collagen ultrastructure in normal and keratoconus ex vivo human corneas. METHODS: Using small-angle X-ray scattering, measurements of collagen D-periodicity, fibril diameter and interfibrillar spacing were made at 1 mm intervals across six normal post-mortem corneas (two above physiological hydration (swollen and four below (unswollen and two post-transplant keratoconus corneal buttons (one swollen; one unswollen, before and after hypo-osmolar cross-linking. The same parameters were measured in three other unswollen normal corneas before and after iso-osmolar cross-linking and in three pairs of swollen normal corneas, in which only the left was cross-linked (with iso-osmolar riboflavin. RESULTS: Hypo-osmolar cross-linking resulted in an increase in corneal hydration in all corneas. In the keratoconus corneas and unswollen normal corneas, this was accompanied by an increase in collagen interfibrillar spacing (p<0.001; an increase in fibril diameter was also seen in two out of four unswollen normal corneas and one unswollen keratoconus cornea (p<0.001. Iso-osmolar cross-linking resulted in a decrease in tissue hydration in the swollen normal corneas only. Although there was no consistent treatment-induced change in hydration in the unswollen normal samples, iso-osmolar cross-linking of these corneas did result in a compaction of collagen fibrils and a reduced fibril diameter (p<0.001; these changes were not seen in the swollen normal corneas. Collagen D-periodicity was not affected by either treatment. CONCLUSION: The observed structural changes following Ultraviolet-A cross-linking with hypo-osmolar or iso-osmolar riboflavin solutions are more likely a consequence of treatment-induced changes in tissue hydration rather than cross-linking.

  9. Evaluation of cross-linked gelatin membranes as delivery carriers for retinal sheets

    Lai, Jui-Yang, E-mail: jylai@mail.cgu.edu.tw [Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302 Taiwan (China); Biomedical Engineering Research Center, Chang Gung University, Taoyuan, 33302 Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taoyuan, 33302 Taiwan (China); Li, Ya-Ting [Institute of Biochemical and Biomedical Engineering, Chang Gung University, Taoyuan, 33302 Taiwan (China)

    2010-06-15

    The delivery of intact sheet transplants to the subretinal space can prevent cell loss that is generally associated with the injection of cell suspensions or cell aggregates. The aim of this study was to develop chemically modified gelatin matrices that enhance the delivery efficiency and analyze whether the gelatin membranes cross-linked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) can be considered as potential carriers for retinal sheets. The characteristics of EDC cross-linked gelatin membranes were determined by mechanical and in vitro degradation tests, melting point measurements, cell proliferation assays, cytokine expression analyses, and tissue delivery studies. Gelatin membranes without cross-linking and glutaraldehyde cross-linked gelatin samples were used for comparison. Results of this study indicated that introduction of cross-links is capable of rendering the gelatin network more stable against mechanical stresses and deformations as well as rapid hydrolysis during intraocular delivery of delicate tissue sheets. In comparison with the glutaraldehyde treated samples, the EDC cross-linked gelatin membranes showed a better degradation profile and a relatively higher cytocompatibility. In addition, after EDC cross-linking, the gelatin matrices having an acceptable melting point could be used for the fabrication of a sandwich-like carrier with a high transfer and encapsulation efficiency. These findings suggest that the cross-linking agent type gives an influence on delivery functionality of gelatin membranes. In summary, the EDC cross-linked gelatin is an ideal candidate for use as a carrier material in retinal sheet delivery applications.

  10. Biocatalytic cross-linking of pectic polysaccharides for designed food functionality

    Zaidel, Dayang Norulfairuz Abang; Meyer, Anne S.

    2012-01-01

    Recent research has demonstrated how cross-linking of pectic polysaccharides to obtain gel formation can be promoted by enzymatic catalysis reactions, and provide opportunities for functional upgrading of pectic polysaccharides present in agro-industrial sidestreams. This review highlights the me...... specific enzymatic reactions, and highlights the most recent data concerning enzyme catalyzed engineering of cross-links for in situ structural design of functional properties of foods.......Recent research has demonstrated how cross-linking of pectic polysaccharides to obtain gel formation can be promoted by enzymatic catalysis reactions, and provide opportunities for functional upgrading of pectic polysaccharides present in agro-industrial sidestreams. This review highlights...

  11. Permanent Set of Cross-Linking Networks: Comparison of Theory with Molecular Dynamics Simulations

    Rottach, Dana R.; Curro, John G.; Budzien, Joanne; Grest, Gary S.; Svaneborg, Carsten; Everaers, Ralf

    2006-01-01

    found from the strain of the network after it returns to the state-of-ease where the stress is zero. The permanent set simulations are compared with theory using the independent network hypothesis, together with the various theoretical rubber elasticity theories: affine, phantom, constrained junction......The permanent set of cross-linking networks is studied by molecular dynamics. The uniaxial stress for a bead-spring polymer network is investigated as a function of strain and cross-link density history, where cross-links are introduced in unstrained and strained networks. The permanent set is...

  12. Characterization of solid UV cross-linked PEGDA for biological applications

    Castro, David

    2013-10-20

    This paper reports on solid UV cross-linked Poly(ethylene)-glycol-diacrylate (PEGDA) as a material for microfluidic devices for biological applications. We have evaluated biocompatibility of PEGDA through two separate means: 1) by examining cell viability and attachment on cross-linked PEGDA surfaces for cell culture applications, and 2) by determining if cross-linked PEGDA inhibits the polymerase chain reaction (PCR) processes for on-chip PCR. Through these studies a correlation has been found between degree of curing and cell viability, attachment, as well as on PCR outcome.

  13. Grafted, cross-linked carbon black as a double-layer capacitor electrode material

    Richner, R.; Mueller, S.; Wokaun, A.

    2001-03-01

    Isocyanate prepolymers readily react with oxidic functional groups on carbon black. On carbon black grafted with diisocyanates, reactive isocyanate groups are available for cross-linking to a polyurethane system. This cross-linked carbon black was considered as a new active material for electrochemical electrodes. Active material for electric double-layer capacitor electrodes was produced which had values of specific capacitance of up to 200 F/g. Cross-linking efficiencies of up to 58 % of the polymers utilised were achieved. (author)

  14. Study of cross-linking reactions induced by gamma rays in hybrid membranes of Bisphenol-A-Polysulfone and precipitated silica

    In this work the bisphenol-A-polysulfone (PSF) was sulfonated using trimethyl silyl chlorosulfonate [(CH3)3SiSO3Cl] as a mild sulfonating agent in a homogeneous solution of dichloroethane. The sulfonation reaction was confirmed by acid-base titration and FTIR-spectroscopy analysis. The hybrid membranes were obtained by casting the sulfonated bisphenol-A-polysulfone (SPSF) and precipitated silica TixosilR 333 solutions in N-N-dimethylacetamide. Cross-linking in the hybrid membranes was obtained by irradiation, with doses ranging from 5 to 30 kGy using gamma ray from a 60Co source. The water uptake and the swelling of the membranes were estimated by measuring the change in weight between dry and wet conditions. The conductivity of the membranes in acid form was measured with the ac impedance technique using a PGSTAT30 frequency response analyzer. The hybrid cross-linked membranes have conductivity close to 10-1 S.cm-1 at 100% RH and 80 deg C. Electrochemical performances, thermo-mechanical stability and low cost make this cross-linked SPSF hybrid membrane an attractive material for fuel cells using a proton exchange membrane. (author)

  15. In Vivo Oxidative Stability Changes of Highly Cross-Linked Polyethylene Bearings: An Ex Vivo Investigation.

    Rowell, Shannon L; Reyes, Christopher R; Malchau, Henrik; Muratoglu, Orhun K

    2015-10-01

    The development of highly cross-linked UHMWPEs focused on stabilizing radiation-induced free radicals as the sole precursor to oxidative degradation. However, secondary in vivo oxidation mechanisms have been discovered. After a preliminary post-operative analysis, we subjected highly cross-linked retrievals with 1-4 years in vivo durations and never-implanted controls to accelerated aging to predict the extent to which their oxidative stability was compromised in vivo. Lipid absorption, oxidation, and hydroperoxides were measured using infrared spectroscopy. Gravimetric swelling was used to measure cross-link density. After aging, all retrievals, except vitamin E-stabilized components, regardless of initial lipid levels or oxidation, showed significant oxidative degradation, demonstrated by subsurface oxidative peaks, increased hydroperoxides and decreased cross-link density, compared to their post-operative material properties and never-implanted counterparts, confirming oxidative stability changes. PMID:26048729

  16. Effect of Cross-Link Density on Carbon Dioxide Separation in Polydimethylsiloxane-Norbornene Membranes.

    Hong, Tao; Niu, Zhenbin; Hu, Xunxiang; Gmernicki, Kevin; Cheng, Shiwang; Fan, Fei; Johnson, J Casey; Hong, Eunice; Mahurin, Shannon; Jiang, De-en; Long, Brian; Mays, Jimmy; Sokolov, Alexei; Saito, Tomonori

    2015-11-01

    The development of high-performance materials for carbon dioxide separation and capture will significantly contribute to a solution for climate change. Herein, (bicycloheptenyl)ethyl-terminated polydimethylsiloxane (PDMSPNB) membranes with varied cross-link densities were synthesized via ring-opening metathesis polymerization. The developed polymer membranes show higher permeability and better selectivity than those of conventional cross-linked PDMS membrane. The achieved performance (CO2 permeability≈6800 Barrer; CO2 /N2 selectivity≈14) is very promising for practical applications. The key to achieving this high performance is the use of an in situ cross-linking method for difunctional PDMS macromonomers, which provides lightly cross-linked membranes. By combining positron annihilation lifetime spectroscopy, broadband dielectric spectroscopy, and gas solubility measurements, key parameters necessary for achieving excellent performance have been elucidated. PMID:26482115

  17. Stabilized sulfonated aromatic polymers by in situ solvothermal cross-linking

    Maria Luisa eDi Vona

    2014-10-01

    Full Text Available The cross-link reaction via sulfone bridges of sulfonated polyetheretherketone (SPEEK by thermal treatment at 180 °C in presence of dimethylsulfoxide (DMSO is discussed. The modifications of properties subsequent to the cross-linking are presented. The mechanical strength as well as the hydrolytic stability increased with the thermal treatment time, i.e., with the degree of cross-linking. The proton conductivity was determined as function of temperature, IEC, degree of cross-linking and hydration number. The memory effect, which is the membrane ability to remember the water uptake reached at high temperature also at lower temperature, is exploited in order to achieve high values of conductivity. Membranes swelled at 110 °C can reach a conductivity of 0.14 S/cm at 80°C with a hydration number ( of 73.

  18. Vapor deposition of cross-linked fluoropolymer barrier coatings onto pre-assembled microfluidic devices.

    Riche, Carson T; Marin, Brandon C; Malmstadt, Noah; Gupta, Malancha

    2011-09-21

    The interior surfaces of pre-assembled poly(dimethylsiloxane) (PDMS) microfluidic devices were modified with a cross-linked fluoropolymer barrier coating that significantly increased the chemical compatibility of the devices. PMID:21850298

  19. Revisiting glutaraldehyde cross-linking: the case of the Arg–Lys intermolecular doublet

    A specific Lys–Arg cross-link is observed in trimeric barnase crystals. In addition to the common use of glutaraldehyde to nonspecifically cross-link protein crystals through lysine residues disposed on the surface of the protein, the use of gentle vapour diffusion of glutaraldehyde offers a convenient way to limit polymerization and to allow slow diffusion throughout the crystal. In the case of trimeric barnase crystals, a specific cross-link was observed between an lysine side chain and an arginine side chain that were spatially disposed at the ideal distance on the protein surface in the three monomers. Here, the direct observation of a specific Lys–Arg cross-link site is reported and a mechanism is proposed for the reaction

  20. A Review of Collagen Cross-Linking in Cornea and Sclera

    Xiao Zhang

    2015-01-01

    Full Text Available Riboflavin/UVA cross-linking is a technique introduced in the past decades for the treatment of keratoconus, keratectasia, and infectious keratitis. Its efficacy and safety have been investigated with clinical and laboratory studies since its first clinical application by Wollensak for the treatment of keratoconus. Although its complications are encountered during clinical practice, such as infection inducing risk, minimal invasion merits a further investigation on its future application in clinical practice. Recently, collagen cross-linking in sclera shows a promising prospect. In present study, we summarized the representative studies describing the clinical and laboratory application of collagen cross-linking published in past decades and provided our opinion on the positive and negative results of cross-linking in the treatment of ophthalmic disorders.

  1. Synthesis and Comparative Study of Novel Cross Linked Bio Polymers from Linseed Oil.

    K. Priya Rajini

    2015-08-01

    Full Text Available Novel cross linked biopolymers were synthesised from naturally available linseed oil. Epoxidation of linseed oil was carried out by per acetic acid method. Further an acrylated epoxidized resin (AELO was synthesised from the epoxidized linseed oil (ELO. The (AELO was characterised by spectral and physicochemical properties (Specific gravity, viscosity, Saponification value, iodine value.The Novel cross linked biopolymer were prepared by using AELO with Triethylene glycol trimethacrylate(TEGMA . The mechanical properties of cross linked biopolymer was improved by adding filler like wood flour. The environmental degradation was assessed by sem analysis. The outcome of the studies revealed that the newly prepared cross linked biopolymers are potential biodegradable material for various consumer applications like package materials, sporting goods and floor mats.

  2. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H; Cakmak, Selami; Nielsen, G Petur; Muratoglu, Orhun K

    Recent in vitro findings suggest that UHMWPE wear particles containing vitamin E (VE) may have reduced biologic activity and decreased osteolytic potential. We hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE would cause less osteolysis in a murine calvarial bone model...

  3. Anomalous cross-linking by mechlorethamine of DNA duplexes containing C-C mismatch pairs.

    Romero, R M; Mitas, M; Haworth, I S

    1999-03-23

    Nitrogen mustards such as mechlorethamine have previously been shown to covalently cross-link DNA through the N7 position of the two guanine bases of a d[GXC].d[GYC] duplex sequence, a so-called 1,3 G-G-cross-link, when X-Y = C-G or T-A. Here, we report the formation of a new mechlorethamine cross-link with the d[GXC].d[GYC] fragment when X-Y is a C-C mismatch pair. Mechlorethamine cross-links this fragment preferentially between the two mismatched cytosine bases, rather than between the guanine bases. The cross-link also forms when one or both of the guanine bases of the d[GCC].d[GCC] fragment are replaced by N7-deazaguanine, and, more generally, forms with any C-C mismatch, regardless of the flanking base pairs. Piperidine cleavage of the cross-link species containing the d[GCC].d[GCC] sequence gives DNA fragments consistent with alkylation at the mismatched cytosine bases. We also provide evidence that the cross-link reaction occurs between the N3 atoms of the two cytosine bases by showing that the formation of the C-C cross-link is pH dependent for both mechlorethamine and chlorambucil. Dimethyl sulfate (DMS) probing of the cross-linked d[GCC].d[GCC] fragment showed that the major groove of the guanine adjacent to the C-C mismatch is still accessible to DMS. In contrast, the known minor groove binder Hoechst 33258 inhibits the cross-link formation with a C-C mismatch pair flanked by A-T base pairs. These results suggest that the C-C mismatch is cross-linked by mechlorethamine in the minor groove. Since C-C pairs may be involved in unusual secondary structures formed by the trinucleotide repeat sequence d[CCG]n, and associated with triplet repeat expansion diseases, mechlorethamine may serve as a useful probe for these structures. PMID:10090751

  4. Fibromodulin Interacts with Collagen Cross-linking Sites and Activates Lysyl Oxidase*

    Kalamajski, Sebastian; Bihan, Dominique; Bonna, Arkadiusz; Rubin, Kristofer; Farndale, Richard W.

    2016-01-01

    The hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter. We investigated the possibility that a specific relationship exists between fibromodulin and lysyl oxidase, potentially imparting a spec...

  5. Measurement of cross linked fibrin derivatives in plasma: an immunoassay using monoclonal antibodies.

    Whitaker, A. N.; Elms, M J; Masci, P P; Bundesen, P G; Rylatt, D B; Webber, A J; Bunce, I H

    1984-01-01

    Fibrinogen degradation, fibrin polymerisation, and the insertion of cross links into fibrin by fibrin stabilising factor lead to the appearance of new antigenic determinants. Antibodies against these antigenic sites may react specifically with the derivatives but not with the parent molecules. We have utilised a monoclonal antibody, which interacts with the cross linked fragment D dimer and related high molecular weight fibrin derivatives, to develop an enzyme immunoassay which measures cross...

  6. Cross-linked demineralized dentin maintains its mechanical stability when challenged by bacterial collagenase

    Xu, Changqi; Wang, Yong

    2010-01-01

    The molecular structure, weight loss and mechanical properties of demineralized dentin of non-crosslinked/crosslinked by glutaraldehyde (GA) were investigated when being challenged by bacterial collagenase solution over time in the present study. Raman spectra proved that cross-linking occurred in demineralized dentin matrices after being treated with GA. Meanwhile, the weight of the cross-linked demineralized dentin matrices didn’t change after being challenged by bacterial collagenase solut...

  7. Mechanical Strength Improvements of Carbon Nanotube Threads through Epoxy Cross-Linking

    Qingyue Yu; Noe T. Alvarez; Peter Miller; Rachit Malik; Mark R. Haase; Mark Schulz; Vesselin Shanov; Xinbao Zhu

    2016-01-01

    Individual Carbon Nanotubes (CNTs) have a great mechanical strength that needs to be transferred into macroscopic fiber assemblies. One approach to improve the mechanical strength of the CNT assemblies is by creating covalent bonding among their individual CNT building blocks. Chemical cross-linking of multiwall CNTs (MWCNTs) within the fiber has significantly improved the strength of MWCNT thread. Results reported in this work show that the cross-linked thread had a tensile strength six time...

  8. Novel thermoplastic vulcanizates (TPVs based on silicone rubber and polyamide exploring peroxide cross-linking

    K. Naskar

    2014-04-01

    Full Text Available Novel thermoplastic vulcanizates (TPVs based on silicone rubber (PDMS and polyamide (PA12 have been prepared by dynamic vulcanization process. The effect of dynamic vulcanization and influence of various types of peroxides as cross-linking agents were studied in detail. All the TPVs were prepared at a ratio of 50/50 wt% of silicone rubber and polyamide. Three structurally different peroxides, namely dicumyl peroxide (DCP, 3,3,5,7,7-pentamethyl 1,2,4-trioxepane (PMTO and cumyl hydroperoxide (CHP were taken for investigation. Though DCP was the best option for curing the silicone rubber, at high temperature it suffers from scorch safety. An inhibitor 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO was added with DCP to stabilize the radicals in order to increase the scorch time. Though CHP (hydroperoxide had higher half life time than DCP at higher temperature, it has no significant effect on cross-linking of silicone rubber. PMTO showed prolonged scorch safety and better cross-linking efficiency rather than the other two. TPVs of DCP and PMTO were made up to 11 minutes of mixing. Increased values of tensile strength and elongation at break of PMTO cross-linked TPV indicate the superiority of PMTO. Scanning electron micrographs correlate with mechanical properties of the TPVs. High storage modulus (E' and lower loss tangent value of the PMTO cross-linked TPV indicate the higher degree of cross-linking which is also well supported by the overall cross-link density value. Thus PMTO was found to be the superior peroxide for cross-linking of silicone rubber at high temperature.

  9. Polymer Micelles with Cross-Linked Polyanion Core for Delivery of a Cationic Drug Doxorubicin

    Kim, Jong Oh; Kabanov, Alexander V.; Bronich, Tatiana K

    2009-01-01

    Polymer micelles with cross-linked ionic cores were prepared by using block ionomer complexes of poly(ethylene oxide)-b-poly(methacrylic acid) (PEO-b-PMA) copolymer and divalent metal cations as templates. Doxorubicin (DOX), an anthracycline anticancer drug, was successfully incorporated into the ionic cores of such micelles via electrostatic interactions. A substantial drug loading level (up to 50 w/w %) was achieved and it was strongly dependent on the structure of the cross-linked micelles...

  10. Phase diagram of selectively cross-linked block copolymers shows chemically microstructured gel

    von der Heydt, Alice; Zippelius, Annette

    2014-01-01

    We study analytically the intricate phase behavior of cross-linked $AB$ diblock copolymer melts, which can undergo two main phase transitions due to quenched random constraints: Gelation, i.e., spatially random localization of polymers forming a system-spanning cluster, is driven by increasing the number parameter $\\mu$ of irreversible, type-selective cross-links between random pairs of $A$ blocks. Self-assembly into a periodic pattern of $A$/$B$-rich microdomains (microphase separation) is c...

  11. Synthesis and Comparative Study of Novel Cross Linked Bio Polymers from Linseed Oil.

    K. Priya Rajini; S. Begila David

    2015-01-01

    Novel cross linked biopolymers were synthesised from naturally available linseed oil. Epoxidation of linseed oil was carried out by per acetic acid method. Further an acrylated epoxidized resin (AELO) was synthesised from the epoxidized linseed oil (ELO). The (AELO) was characterised by spectral and physicochemical properties (Specific gravity, viscosity, Saponification value, iodine value).The Novel cross linked biopolymer were prepared by using AELO with Triethylene glycol trime...

  12. Rheological Characterization of Cataplasm Bases Composed of Cross-Linked Partially Neutralized Polyacrylate Hydrogel

    Wang, Jian; Zhang, Hongqin; An, Dianyun; Yu, Jian; Li, Wei; Shen, Teng; Wang, Jianxin

    2014-01-01

    Viscoelasticity is a useful parameter for characterizing the intrinsic properties of the cross-linked polyacrylate hydrogel used in cataplasm bases. The aim of this study was to investigate the effects of various formulation parameters on the rheological characteristics of polyacrylate hydrogel. The hydrogel layers were formed using a partially neutralized polyacrylate (Viscomate™), which contained acrylic acid and sodium acrylate in different copolymerization ratios, as the cross-linked gel ...

  13. DNA Interstrand Cross-Linking Activity of (1-Chloroethenyl)oxirane, a Metabolite of β-chloroprene

    Wadugu, Brian A.; Ng, Christopher; Bartley, Bethany L.; Rowe, Rebecca J.; Millard, Julie T.

    2010-01-01

    With the goal of elucidating the molecular and cellular mechanisms of chloroprene toxicity, we examined the potential DNA cross-linking of the bifunctional chloroprene metabolite, (1-chloroethenyl)oxirane (CEO). We used denaturing polyacrylamide gel electrophoresis to monitor possible formation of interstrand cross-links by CEO within synthetic DNA duplexes. Our data suggest interstrand cross-linking at deoxyguanosine residues within 5′-GC and 5′-GGC sites, with the rate of cross-linking depe...

  14. Digestibility of β-lactoglobulin following cross-linking by Trametes versicolor laccase and apple polyphenols

    DRAGANA STANIĆ-VUČINIĆ

    2011-06-01

    Full Text Available β-Lactoglobulin (BLG is an important nutrient of dairy products and an important allergen in cow’s milk allergy. The aim of this study was to investigate the potential of laccase to cross-link BLG in the presence of an apple phenolic extract (APE and to characterize the obtained products for their digestibility by pepsin and pancreatin. The composition of the apple phenolics used for cross-linking was determined by liquid chromatography–electrospray ionization-mass spectrometry (LC–ESI-MS. The apple phenolic extract contained significant amounts of quercetin glycosides, catechins and chlorogenic acid. The laccase cross-linked BLG in the presence of apple phenolics. The polymerization rendered the protein insoluble in the reaction mixture. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE analysis of the cross-linking reaction mixture revealed a heterogeneous mixture of high molecular masses (cross-linked BLG, with a fraction of the BLG remaining monomeric. Enzymatic processing of BLG by laccase and apple polyphenols as mediators can decrease the biphasal pepsin–pancreatin digestibility of the monomeric and cross-linked protein, thus decreasing its nutritional value. In addition, reduced BLG digestibility can decrease its allergenic potential. Apple polyphenols can find usage in the creation of new, more functional food products, designed to prevent obesity and hypersensitivity-related disorders.

  15. Antifouling coatings based on covalently cross-linked agarose film via thermal azide-alkyne cycloaddition.

    Xu, Li Qun; Pranantyo, Dicky; Neoh, Koon-Gee; Kang, En-Tang; Teo, Serena Lay-Ming; Fu, Guo Dong

    2016-05-01

    Coatings based on thin films of agarose-poly(ethylene glycol) (Agr-PEG) cross-linked systems are developed as environmentally-friendly and fouling-resistant marine coatings. The Agr-PEG cross-linked systems were prepared via thermal azide-alkyne cycloaddition (AAC) using azido-functionalized Agr (AgrAz) and activated alkynyl-containing poly(2-propiolamidoethyl methacrylate-co-poly(ethylene glycol)methyl ether methacrylate) P(PEMA-co-PEGMEMA) random copolymers as the precursors. The Agr-PEG cross-linked systems were further deposited onto a SS surface, pre-functionalized with an alkynyl-containing biomimetic anchor, dopamine propiolamide, to form a thin film after thermal treatment. The thin film-coated SS surfaces can effectively reduce the adhesion of marine algae and the settlement of barnacle cyprids. Upon covalent cross-linking, the covalently cross-linked Agr-PEG films coated SS surfaces exhibit good stability in flowing artificial seawater, and enhanced resistance to the settlement of barnacle cyprids, in comparison to that of the surfaces coated with physically cross-linked AgrAz films. PMID:26836479

  16. Synthesis of a duplex oligonucleotide containing a nitrogen mustard interstrand DNA-DNA cross-link.

    Ojwang, J O; Grueneberg, D A; Loechler, E L

    1989-12-01

    Many cancer chemotherapeutic agents react with DNA and give adducts that block DNA replication, which is thought to result in cytotoxicity, especially in rapidly proliferating cells such as cancer cells. One class of these agents is bifunctionally reactive (e.g., the nitrogen mustards) and forms DNA-DNA cross-links. It is unknown whether inter- or intrastrand cross-links are more effective at blocking DNA replication. To evaluate this, a DNA shuttle vector is being constructed with an interstrand cross-link at a unique site. In the first step of this project, a duplex oligonucleotide containing an interstrand cross-link is isolated by denaturing polyacrylamide gel electrophoresis from the reaction of nitrogen mustard with two partially complementary oligodeoxynucleotides. The purified oligonucleotide product is characterized and shown to be cross-linked in a 5'-GAC-3' 3'-CTG-5' sequence by a nitrogen mustard moiety that is bound at the N(7)-position of the guanines in the opposing strands; the glycosylic bonds of these guanine adducts are stabilized in their corresponding imidazole ring-opened form. Nitrogen mustard is shown to react with a variety of oligonucleotides and, based upon these results, its preferred targets for interstrand cross-linking are 5'-GXC-3' sequences, where X can be any of the four deoxyribonucleotide bases. PMID:2819709

  17. Dual-Cross-Linked Methacrylated Alginate Sub-Microspheres for Intracellular Chemotherapeutic Delivery.

    Fenn, Spencer L; Miao, Tianxin; Scherrer, Ryan M; Oldinski, Rachael A

    2016-07-20

    Intracellular delivery vehicles comprised of methacrylated alginate (Alg-MA) were developed for the internalization and release of doxorubicin hydrochloride (DOX). Alg-MA was synthesized via an anhydrous reaction, and a mixture of Alg-MA and DOX was formed into sub-microspheres using a water/oil emulsion. Covalently cross-linked sub-microspheres were formed via exposure to green light, in order to investigate effects of cross-linking on drug release and cell internalization, compared to traditional techniques, such as ultraviolet (UV) light irradiation. Cross-linking was performed using light exposure alone or in combination with ionic cross-linking using calcium chloride (CaCl2). Alg-MA sub-microsphere diameters were between 88 and 617 nm, and ζ-potentials were between -20 and -37 mV. Using human lung epithelial carcinoma cells (A549) as a model, cellular internalization was confirmed using flow cytometry; different sub-microsphere formulations varied the efficiency of internalization, with UV-cross-linked sub-microspheres achieving the highest internalization percentages. While blank (nonloaded) Alg-MA submicrospheres were noncytotoxic to A549 cells, DOX-loaded sub-microspheres significantly reduced mitochondrial activity after 5 days of culture. Photo-cross-linked Alg-MA sub-microspheres may be a potential chemotherapeutic delivery system for cancer treatment. PMID:27378419

  18. Curcumin cross-linked collagen aerogels with controlled anti-proteolytic and pro-angiogenic efficacy.

    Dharunya, G; Duraipandy, N; Lakra, Rachita; Korapatti, Purna Sai; Jayavel, R; Kiran, Manikantan Syamala

    2016-01-01

    This paper elucidates the development of a curcumin cross-linked collagen aerogel system with controlled anti-proteolytic activity and pro-angiogenic efficacy. The results of this study showed that in situ cross-linking of curcumin with collagen leads to the development of aerogels with enhanced physical and mechanical properties. The integrity of collagen after cross-linking with curcumin was studied via FTIR spectroscopy. The results confirmed that the cross-linking with curcumin did not induce any structural changes in the collagen. The curcumin cross-linked collagen aerogels exhibited potent anti-proteolytic and anti-microbial activity. Scanning electron and atomic force microscopic analysis of curcumin cross-linked collagen aerogels showed a 3D microstructure that enhanced the adhesion and proliferation of cells. The highly organized geometry of collagen-curcumin aerogels enhanced the permeability and water-retaining ability required for the diffusion of nutrients that aid cellular growth. The pro-angiogenic properties of collagen-curcumin aerogels were ascribed to the cumulative effect of the nutraceutical and the collagen molecule, which augmented the restoration of damaged tissue. Further, these aerogels exhibited controlled anti-proteolytic activity, which makes them suitable 3D scaffolds for biomedical applications. This study provides scope for the development of biocompatible and bioresorbable collagen aerogel systems that use a nutraceutical as a cross-linker for biomedical applications. PMID:27509047

  19. Radiolysis of chromatin extracted from cultured mammalian cells: formation of DNA-protein cross links

    Chromatin extracted from Chinese hamster lung fibroblasts has been examined for the formation of radiation-induced DNA-protein cross links, using a membrane filter assay. The relative efficiencies of the aqueous radical intermediates, 0H., esub(aq)- and 02-, were investigated. Cross links were found in gamma-irradiated isolated chromatin and in chromatin irradiated in the cell before isolation. When isolated chromatin was irradiated under conditions in which the chromosomal proteins were dissociated from the DNA, no cross links were detectable. The most efficient radical for the production of cross links in irradiated, isolated chromatin was found to be the hydroxyl radical, whereas, the superoxide radical was essentially ineffective. For chromatin irradiated in the cell before isolation, the greatest effect was seen for cells irradiated in an atmosphere of nitrous oxide, suggesting the hydroxyl radical may be involved in the formation of cross links in intact cells also. The formation of cross links in chromatin irradiated in cells before isolation was considerably less efficient than in irradiated, isolated chromatin. (author)

  20. Triple shape memory effects of cross-linked polyethylene/polypropylene blends with cocontinuous architecture.

    Zhao, Jun; Chen, Min; Wang, Xiaoyan; Zhao, Xiaodong; Wang, Zhenwen; Dang, Zhi-Min; Ma, Lan; Hu, Guo-Hua; Chen, Fenghua

    2013-06-26

    In this paper, the triple shape memory effects (SMEs) observed in chemically cross-linked polyethylene (PE)/polypropylene (PP) blends with cocontinuous architecture are systematically investigated. The cocontinuous window of typical immiscible PE/PP blends is the volume fraction of PE (v(PE)) of ca. 30-70 vol %. This architecture can be stabilized by chemical cross-linking. Different initiators, 2,5-dimethyl-2,5-di(tert-butylperoxy)-hexane (DHBP), dicumylperoxide (DCP) coupled with divinylbenzene (DVB) (DCP-DVB), and their mixture (DHBP/DCP-DVB), are used for the cross-linking. According to the differential scanning calorimetry (DSC) measurements and gel fraction calculations, DHBP produces the best cross-linking and DCP-DVB the worst, and the mixture, DHBP/DCP-DVB, is in between. The chemical cross-linking causes lower melting temperature (Tm) and smaller melting enthalpy (ΔHm). The prepared triple shape memory polymers (SMPs) by cocontinuous immiscible PE/PP blends with v(PE) of 50 vol % show pronounced triple SMEs in the dynamic mechanical thermal analysis (DMTA) and visual observation. This new strategy of chemically cross-linked immiscible blends with cocontinuous architecture can be used to design and prepare new SMPs with triple SMEs. PMID:23713446

  1. Cross-linked chitosan improves the mechanical properties of calcium phosphate-chitosan cement.

    Aryaei, Ashkan; Liu, Jason; Jayatissa, Ahalapitiya H; Champa Jayasuriya, A

    2015-09-01

    Calcium phosphate (CaP) cements are highly applicable and valuable materials for filling bone defects by minimally invasive procedures. The chitosan (CS) biopolymer is also considered as one of the promising biomaterial candidates in bone tissue engineering. In the present study, some key features of CaP-CS were significantly improved by developing a novel CaP-CS composite. For this purpose, CS was the first cross-linked with tripolyphosphate (TPP) and then mixed with CaP matrix. A group of CaP-CS samples without cross-linking was also prepared. Samples were fabricated and tested based on the known standards. Additionally, the effect of different powder (P) to liquid (L) ratios was also investigated. Both cross-linked and uncross-linked CaP-CS samples showed excellent washout resistance. The most significant effects were observed on Young's modulus and compressive strength in wet condition as well as surface hardness. In dry conditions, the Young's modulus of cross-linked samples was slightly improved. Based on the presented results, cross-linking does not have a significant effect on porosity. As expected, by increasing the P/L ratio of a sample, ductility and injectability were decreased. However, in the most cases, mechanical properties were enhanced. The results have shown that cross-linking can improve the mechanical properties of CaP-CS and hence it can be used for bone tissue engineering applications. PMID:26046262

  2. Chemically cross-linked silk fibroin hydrogel with enhanced elastic properties, biodegradability, and biocompatibility

    Kim MH

    2016-06-01

    Full Text Available Min Hee Kim, Won Ho Park Department of Advanced Organic Materials and Textile Engineering System, Chungnam National University, Daejeon, Korea Abstract: In this study, the synthesis of silk fibroin (SF hydrogel via chemical cross-linking reactions of SF due to gamma-ray (γ-ray irradiation was investigated, as were the resultant hydrogel’s properties. Two different hydrogels were investigated: physically cross-linked SF hydrogel and chemically cross-linked SF hydrogel irradiated at different doses of γ-rays. The effects of the irradiation dose and SF concentration on the hydrogelation of SF were examined. The chemically cross-linked SF hydrogel was compared with the physically cross-linked one with regard to secondary structure and gel strength. Furthermore, the swelling behavior, crystallinity, and biodegradation of the SF hydrogels were characterized. To assay cell proliferation, the cell viability of human mesenchymal stem cells on the lyophilized SF hydrogel scaffolds was evaluated, and no significant cytotoxicity against human mesenchymal stem cells was observed. Keywords: silk fibroin, hydrogels, biodegradation rate, gamma irradiation, cross-linking

  3. Optical mechanical refinement of human amniotic membrane by dehydration and cross-linking.

    Tanaka, Yuji; Kubota, Akira; Yokokura, Shunji; Uematsu, Masafumi; Shi, Dong; Yamato, Masayuki; Okano, Teruo; Quantock, Andrew J; Nishida, Kohji

    2012-10-01

    The aim of this study was to develop a method for refining the optical and mechanical properties of human amniotic membrane (AM) to provide ophthalmic transparent implants for use during severe donor cornea shortages. AM was allowed to gradually dehydrate at 4-8 °C with and without chemical cross-linking. To improve the transparency of AM, a simple dehydration process using a refrigerator at 4-8 °C overnight was examined. For further improvements, dehydrated AM was then cross-linked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxy-succimide before rehydration. Light transmittance and tensile strength of individual specimens were evaluated. Light transmittance of AM improved from 50.9-77.7% at 550 nm by this simple low temperature dehydration process. Its high light transmittance was partially maintained at 70.1%, even after rehydration with normal saline. Interestingly, chemically cross-linked AM showed a significantly greater light transmittance of 81.5% under wet conditions. In addition, tensile strength was significantly increased after cross-linking from 2.32 N/mm(2) (native tissue) to 11.78 N/mm(2) (cross-linked specimens). Light transmittance and tensile strength were successfully improved by these approaches, including low temperature dehydration with and without chemical cross-linking. The use of refined AM could be feasible for use in current and future ophthalmic treatments. PMID:22489071

  4. Interstrand cross-link formation in duplex and triplex DNA by modified pyrimidines.

    Peng, Xiaohua; Hong, In Seok; Li, Hong; Seidman, Michael M; Greenberg, Marc M

    2008-08-01

    DNA interstrand cross-links have important biological consequences and are useful biotechnology tools. Phenylselenyl substituted derivatives of thymidine (1) and 5-methyl-2'-deoxycytidine (5) produce interstrand cross-links in duplex DNA when oxidized by NaIO4. The mechanism involves a [2,3]-sigmatropic rearrangement of the respective selenoxides to the corresponding methide type intermediates, which ultimately produce the interstrand cross-links. Determination of the rate constants for the selenoxide rearrangements indicates that the rate-determining step for cross-linking is after methide formation. Cross-linking by the thymidine derivative in duplex DNA shows a modest kinetic preference when flanked by pyrimidines as opposed to purines. In contrast, the rate constant for cross-link formation from 5 opposite dG in duplex DNA is strongly dependent upon the flanking sequence and, in general, is at least an order of magnitude slower than that for 1 in an otherwise identical sequence. Introduction of mispairs at the base pairs flanking 5 or substitution of the opposing dG by dI significantly increases the rate constant and yield for cross-linking, indicating that stronger hydrogen bonding between the methide derived from it and dG compared to dA and the respective electrophile derived from 1 limits reaction by increasing the barrier to rotation into the required syn-conformation. Incorporation of 1 or 5 in triplex forming oligonucleotides (TFOs) that utilize Hoogsteen base pairing also yields interstrand cross-links. The dC derivative produces ICLs approximately 10x faster than the thymidine derivative when incorporated at the 5'-termini of the TFOs and higher yields when incorporated at internal sites. The slower, less efficient ICL formation emanating from 1 is attributed to reaction at N1-dA, which requires local melting of the duplex. In contrast, 5 produces cross-links by reacting with N7-dG. The cross-linking reactions of 1 and 5 illustrate the versatility and

  5. Mesoscopic simulations of hydrophilic cross-linked polycarbonate polyurethane networks: structure and morphology.

    Iype, E; Esteves, A C C; de With, G

    2016-06-14

    Polyurethane (PU) cross-linked networks are frequently used in biomedical and marine applications, e.g., as hydrophilic polymer coatings with antifouling or low-friction properties and have been reported to exhibit characteristic phase separation between soft and hard segments. Understanding this phase-separation behavior is critical to design novel hydrophilic polymer coatings. However, most of the studies on the structure and morphology of cross-linked coatings are experimental, which only assess the phase separation via indirect methods. Herein we present a mesoscopic simulation study of the network characteristics of model hydrophilic polymer networks, consisting of PU with and without methyl-polyethylene glycol (mPEG) dangling chains. The systems are analyzed using a number of tools, such as the radial distribution function, the cross-link point density distribution and the Voronoi volume distribution (of the cross-linking points). The combined results show that the cross-linked networks without dangling chains are rather homogeneous but contain a small amount of clustering of cross-linker molecules. A clear phase separation is observed when introducing the dangling chains. In spite of that, the amount of cross-linker molecules connected to dangling chains only, i.e., not connected to the main network, is relatively small, leading to about 3 wt% extractables. Thus, these cross-linked polymers consist of a phase-separated, yet highly connected network. This study provides valuable guidelines towards new self-healing hydrophilic coatings based on the molecular design of cross-linked networks in direct contact with water or aqueous fluids, e.g., as anti-fouling self-repairing coatings for marine applications. PMID:27174657

  6. Vitamin E-diffused highly cross-linked UHMWPE particles induce less osteolysis compared to highly cross-linked virgin UHMWPE particles in vivo.

    Bichara, David A; Malchau, Erik; Sillesen, Nanna H; Cakmak, Selami; Nielsen, G Petur; Muratoglu, Orhun K

    2014-09-01

    Recent in vitro findings suggest that UHMWPE wear particles containing vitamin E (VE) may have reduced biologic activity and decreased osteolytic potential. We hypothesized that particles from VE-stabilized, radiation cross-linked UHMWPE would cause less osteolysis in a murine calvarial bone model when compared to virgin gamma irradiated cross-linked UHMWPE. Groups received equal amount of particulate debris overlaying the calvarium for 10 days. Calvarial bone was examined using high resolution micro-CT and histomorphometric analyses. There was a statistically significant difference between virgin (12.2%±8%) and VE-UHMWPE (3%±1.4%) groups in regards to bone resorption (P=0.005) and inflammatory fibrous tissue overlaying the calvaria (0.48 vs. 0.20, P<0.0001). These results suggest that VE-UHMWPE particles have reduced osteolytic potential in vivo when compared to virgin UHMWPE. PMID:24998319

  7. Protein structure prediction guided by cross-linking restraints - A systematic evaluation of the impact of the cross-linking spacer length

    Hofmann, Tommy; Meiler, Jens; Kalkhof, Stefan

    2015-01-01

    Recent development of high-resolution mass spectrometry (MS) instruments enables chemical cross-linking (XL) to become a high-throughput method for obtaining structural information about proteins. Restraints derived from XL-MS experiments have been used successfully for structure refinement and protein-protein docking. However, one formidable question is under which circumstances XL-MS data might be sufficient to determine a protein's tertiary structure de novo? Answering this question will not only include understanding the impact of XL-MS data on sampling and scoring within a de novo protein structure prediction algorithm, it must also determine an optimal cross-linker type and length for protein structure determination. While a longer cross-linker will yield more restraints, the value of each restraint for protein structure prediction decreases as the restraint is consistent with a larger conformational space. In this study, the number of cross-links and their discriminative power was systematically analyz...

  8. Influence of Reaction Conditions on the Formation of Radiation-Induced Cross-Links in Polystyrene

    Radiation-induced cross-linking in polystyrene was investigated using the method of gel determination given by Charlesby. Irradiation was performed in high vacuum. The major part of the crosslinks in polystyrene is produced during irradiation in a 'hot reaction', which is not influenced by temperature in the range of 30-70°C. From ESR measurements at -196°C it can be deduced that recombination of shortlived radical pairs is responsible for this reaction. Additional cross-links are formed in a post effect (∼10%). A kinetic analysis of the increase of cross-link formation with storage time at 30°C shows this reaction to be of first order. For long storage times (10 days at 30°C), especially at higher temperatures (40-80°C), the initial increase of cross-linking is followed by a decrease. This can only be explained if these crosslinks are formed during radical decay. Therefore there must be two post-effect reactions in the solid polymer with different activation energies. It appears probable that the post effect is due to trapped cyclo- hexadienyl and benzyl radicals, which are the primary radical species in polystyrene. The first order kinetics found for the increase in cross-linking during storage are ascribed to a transformation of cyclohexadienyl to benzyl radicals. By dissolution of the polymer with increasing storage time, the reaction of cyclohexadienyl radicals with benzyl radicals, which leads predominantly to disproportionation, is replaced by recombination of 2 benzyl radicals to form cross-links. At higher temperatures and long storage times, the benzyl radicals in the solid polymer must also disappear by reactions which do not form cross-links, probably by producing double bonds. Using additives such as anthracene, naphthoquinone, distyrylbenzene, hexachlorocyclohexane cross-link formation in the post effect is suppressed at low doses. With anthracene and distyryl benzene as additives, at higher doses some sensitization of cross-linking is observed

  9. DNA interstrand cross-link induced by estrogens as well as their complete and synergic carcinogenesis

    2000-01-01

    The estrogens show negative activity in Ames test, but estrodiol and diethylstilbestrol in estrogens both are carcinogens based upon animal experiments and epidemiological investigation. It is concluded from the di-region theory, a mechanism conception put forward by one of the present authors, that the carcinogenesis of estrogens is switched on by the covalent cross-link between complementary DNA bases induced by them. We verified for the first time by the DNA alkaline elution method that both estrodiol and diethylstilbestrol cause covalent cross-link between DNA-protein and DNA interstrands after metabolic activation with dosage correlation, but neither the non-carcinogens cholesterol nor pyrene can lead to these sorts of cross-link in the same condition. It has been known that there is a synergetic effect between estrogen and pollution of polycyclic aromatic hydrocarbons. Although non-carcinogenic pyrene alone cannot induce cross-link, its addition with equal molar quantity to estrodiol culture causes synergically the total and DNA interstrand cross-link ratios to be respectively four and three times more than the ones in the cultivation with estrodiol only. It is shown that not only the estrodiol set off the formation of pyrene bi-radicals, but also the pyrene radicals arouse conversely the production of estrodiol bi-radicals.

  10. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure.

    Wang, Kaiqiang; Luo, Shuizhong; Cai, Jing; Sun, Qiaoqiao; Zhao, Yanyan; Zhong, Xiyang; Jiang, Shaotong; Zheng, Zhi

    2016-04-15

    The rheological behavior and thermal properties of wheat gluten following partial hydrolysis using Alcalase and subsequent microbial transglutaminase (MTGase) cross-linking were investigated. The wheat gluten storage modulus (G') and thermal denaturation temperature (Tg) were significantly increased from 2.26 kPa and 54.43°C to 7.76 kPa and 57.69°C, respectively, by the combined action of partial hydrolysis (DH 0.187%) and cross-linking. The free SH content, surface hydrophobicity, and secondary structure analysis suggested that an appropriate degree of Alcalase-based hydrolysis allowed the compact wheat gluten structure to unfold, increasing the β-sheet content and surface hydrophobicity. This improved its molecular flexibility and exposed additional glutamine sites for MTGase cross-linking. SEM images showed that a compact 3D network formed, while SDS-PAGE profiles revealed that excessive hydrolysis resulted in high-molecular-weight subunits degrading to smaller peptides, unsuitable for cross-linking. It was also demonstrated that the combination of Alcalase-based partial hydrolysis with MTGase cross-linking might be an effective method for modifying wheat gluten rheological behavior and thermal properties. PMID:26616937

  11. Synthesis of surface protein-imprinted nanoparticles endowed with reversible physical cross-links.

    Yang, Chongchong; Yan, Xianming; Guo, Hao; Fu, Guoqi

    2016-01-15

    Researches on protein molecularly imprinted polymers have been challenged by the difficulties in facilitating biomacromolecular transfer, in particular upon the template removal step, and enhancing their recognition performance. Addressing these issues, herein we report synthesis of core–shell structured surface protein-imprinted nanoparticles with reversible physical cross-links formed in the imprinted nanoshells. The imprinted layers over nanoparticle supports are fabricated via aqueous precipitation polymerization (PP) of di(ethylene glycol) methyl ether methacrylate (MEO2MA), a thermo-responsive monomer bearing no strong H-bond donor, and other functional and cross-linking monomers. During polymerization, physical cross-links together with chemical cross-links are in site produced within the imprinted shells based on hydrophobic association among the PMEO2MA, favoring formation of high-quality imprints. While cooled appropriately below the polymerization temperature, these physical cross-links can be dissociated rapidly, thus facilitating removal of the embedded template. For proof of this concept, lysozyme-imprinted nanoparticles were synthesized at 37 °C over the nanoparticles functionalized with carboxylic and vinyl groups. The template removal from the imprinted nanoparticles was readily achieved by washing with a dilute acidic detergent solution at 4 °C. As-prepared imprinted nanoparticles showed greatly higher imprinting factor and specific rebinding than obtained with the same recipe but by solution polymerization (SP). Moreover, such imprinted nanomaterials exhibited satisfactory rebinding selectivity, kinetics and reusability. PMID:26313422

  12. Genipin cross-linked decellularized tracheal tubular matrix for tracheal tissue engineering applications

    Sun, Fei; Jiang, Yuan; Xu, Yanfei; Shi, Hongcan; Zhang, Siquan; Liu, Xingchen; Pan, Shu; Ye, Gang; Zhang, Weidong; Zhang, Fangbiao; Zhong, Chonghao

    2016-01-01

    Decellularization techniques have been widely used as an alternative strategy for organ reconstruction. This study investigated the mechanical, pro-angiogenic and in vivo biocompatibility properties of decellularized airway matrices cross-linked with genipin. New Zealand rabbit tracheae were decellularized and cross-linked with genipin, a naturally derived agent. The results demonstrated that, a significant (p < 0.05) increase in the secant modulus was computed for the cross-linked tracheae, compared to the decellularized samples. Angiogenic assays demonstrated that decellularized tracheal scaffolds and cross-linked tracheae treated with 1% genipin induce strong in vivo angiogenic responses (CAM analysis). Seven, 15 and 30 days after implantation, decreased (p < 0.01) inflammatory reactions were observed in the xenograft models for the genipin cross-linked tracheae matrices compared with control tracheae, and no increase in the IgM or IgG content was observed in rats. In conclusion, treatment with genipin improves the mechanical properties of decellularized airway matrices without altering the pro-angiogenic properties or eliciting an in vivo inflammatory response. PMID:27080716

  13. Mechanical Strength Improvements of Carbon Nanotube Threads through Epoxy Cross-Linking

    Qingyue Yu

    2016-01-01

    Full Text Available Individual Carbon Nanotubes (CNTs have a great mechanical strength that needs to be transferred into macroscopic fiber assemblies. One approach to improve the mechanical strength of the CNT assemblies is by creating covalent bonding among their individual CNT building blocks. Chemical cross-linking of multiwall CNTs (MWCNTs within the fiber has significantly improved the strength of MWCNT thread. Results reported in this work show that the cross-linked thread had a tensile strength six times greater than the strength of its control counterpart, a pristine MWCNT thread (1192 MPa and 194 MPa, respectively. Additionally, electrical conductivity changes were observed, revealing 2123.40 S·cm−1 for cross-linked thread, and 3984.26 S·cm−1 for pristine CNT thread. Characterization suggests that the obtained high tensile strength is due to the cross-linking reaction of amine groups from ethylenediamine plasma-functionalized CNT with the epoxy groups of the cross-linking agent, 4,4-methylenebis(N,N-diglycidylaniline.

  14. Surface characteristics determining the cell compatibility of ionically cross-linked alginate gels

    In this study we investigated differences in the characteristics determining the suitability of five types of ion (Fe3+, Al3+, Ca2+, Ba2+ and Sr2+)-cross-linked alginate films as culture substrates for cells. Human dermal fibroblasts were cultured on each alginate film to examine the cell affinity of the alginates. Since cell behavior on the surface of a material is dependent on the proteins adsorbed to it, we investigated the protein adsorption ability and surface features (wettability, morphology and charge) related to the protein adsorption abilities of alginate films. We observed that ferric, aluminum and barium ion-cross-linked alginate films supported better cell growth and adsorbed higher amounts of serum proteins than other types. Surface wettability analysis demonstrated that ferric and aluminum ion-cross-linked alginates had moderate hydrophilic surfaces, while other types showed highly hydrophilic surfaces. The roughness was exhibited only on barium ion-cross-linked alginate surface. Surface charge measurements revealed that alginate films had negatively charged surfaces, and showed little difference among the five types of gel. These results indicate that the critical factors of ionically cross-linked alginate films determining the protein adsorption ability required for their cell compatibility may be surface wettability and morphology. (paper)

  15. Physical properties of pectin-high amylose starch mixtures cross-linked with sodium trimetaphosphate.

    Carbinatto, Fernanda M; de Castro, Ana Dóris; Cury, Beatriz S F; Magalhães, Alviclér; Evangelista, Raul C

    2012-02-28

    Pectin-high amylose starch mixtures (1:4; 1:1; 4:1) were cross-linked at different degrees and characterized by rheological, thermal, X-ray diffraction and NMR analyses. For comparison, samples without cross-linker addition were also prepared and characterized. Although all samples behaved as gels, the results evidenced that the phosphorylation reaction promotes the network strengthening, resulting in covalent gels (highest critical stress, G' and recovery %). Likewise, cross-linked samples presented the highest thermal stability. However, alkaline treatment without cross-linker allowed a structural reorganization of samples, as they also behaved as covalent gels, but weaker than those gels from cross-linked samples, and presented higher thermal stability than the physical mixtures. X-ray diffractograms also evidenced the occurrence of physical and chemical modifications due to the cross-linking process and indicated that samples without cross-linker underwent some structural reorganization, resulting in a decrease of crystallinity. The chemical shift of resonance signals corroborates the occurrence of structural modifications by both alkaline treatment and cross-linking reaction. PMID:22178896

  16. Physico-chemical/biological properties of tripolyphosphate cross-linked chitosan based nanofibers

    Sarkar, Soumi Dey [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302 (India); Farrugia, Brooke L.; Dargaville, Tim R. [Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Groove, Queensland-4059 (Australia); Dhara, Santanu, E-mail: sdhara@smst.iitkgp.ernet.in [School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur-721302 (India)

    2013-04-01

    In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (∼ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ∼ 300% in 1 h and ∼ 40% degradation during 30 day study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix. - Highlights: ► Chitosan based nanofiber fabrication through electrospinning. ► Roles of solution viscosity and yield stress on spinnability of chitosan evidenced. ► Tripolyphosphate (TPP) cross-linking rendered structural stability to nanofibers. ► TPP cross-linking also improved cellular response on chitosan based nanofibers. ► Thus, chitosan based nanofibers are suitable for tissue engineering application.

  17. Small strain deformation measurements of konjac glucomannan solutions and the influence of borate cross-linking.

    Ratcliffe, Ian; Williams, Peter A; English, Robert J; Meadows, John

    2013-06-01

    The dynamic rheology of aqueous solutions of konjac glucomannan has been evaluated over a range of concentrations up to 2.35%, and the effect of borate cross-linking of such solutions evaluated in the range 0.02-40 mM borate. In preliminary work, conventional parallel plate geometries were employed and in situ cross-linking was investigated. For borate cross-linked samples a superior method, however, was found to be measurement of pre-formed cores of cross-linked polymer into which a four-bladed vane geometry was introduced. In order to compare with other associating polymer systems, rheological data were analysed by defining plateau moduli, corresponding relaxation times and zero shear viscosities and the scaling behaviour of these parameters with polymer and cross-linker concentrations was established. Maxwell fits and time-concentration superposition procedures were investigated. The rheological properties of the cross-linked polymer were shown to be the result of both increased network connectivity and retarded network dynamics. PMID:23618269

  18. Physico-chemical/biological properties of tripolyphosphate cross-linked chitosan based nanofibers

    In this study, chitosan-PEO blend, prepared in a 15 M acetic acid, was electrospun into nanofibers (∼ 78 nm diameter) with bead free morphology. While investigating physico-chemical parameters of blend solutions, effect of yield stress on chitosan based nanofiber fabrication was clearly evidenced. Architectural stability of nanofiber mat in aqueous medium was achieved by ionotropic cross-linking of chitosan by tripolyphosphate (TPP) ions. The TPP cross-linked nanofiber mat showed swelling up to ∼ 300% in 1 h and ∼ 40% degradation during 30 day study period. 3T3 fibroblast cells showed good attachment, proliferation and viability on TPP treated chitosan based nanofiber mats. The results indicate non-toxic nature of TPP cross-linked chitosan based nanofibers and their potential to be explored as a tissue engineering matrix. - Highlights: ► Chitosan based nanofiber fabrication through electrospinning. ► Roles of solution viscosity and yield stress on spinnability of chitosan evidenced. ► Tripolyphosphate (TPP) cross-linking rendered structural stability to nanofibers. ► TPP cross-linking also improved cellular response on chitosan based nanofibers. ► Thus, chitosan based nanofibers are suitable for tissue engineering application

  19. Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde

    Long-Biao Guo

    2013-05-01

    Full Text Available This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug.

  20. Stereocomplex formation of poly-lactic acid and its functional modification by radiation cross-linking

    Poly-lactic acid (PLA), a biodegradable polyester derived from renewable resources, is attracting the attention as environmentally-friendly polymers. PLA homopolymers consisting of poly-L-lactide (PLLA) and poly-D-lactide (PDLA) has poor heat stability, while the PLA stereocomplex, prepared from different PDLA and a high molecular weight PLLA, reveals a very high melting temperature and enhanced tensile properties. The heat stability can be significantly improved by radiation-induced cross-linking in the presence of triallyl isocyanurate (TAIC). Furthermore, 3% TAIC was suitable ratio for cross-linking of PLA homopolymers by gamma and electron beam irradiation with 30 kGy being an optimum dose for introducing the stable cross-linking network into PLA stereocomplexes. They reveal high heat stability, improved tensile strength and Young's modulus. (S. Ohno)

  1. Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking

    Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda

    2008-01-01

    Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.

  2. Cross-linked PAN-based thin-film composite membranes for non-aqueous nanofiltration

    Pérez-Manríquez, Liliana

    2015-01-01

    A new approach on the development of cross-linked PAN based thin film composite (TFC) membranes for non-aqueous application is presented in this work. Polypropylene backed neat PAN membranes fabricated by phase inversion process were cross-linked with hydrazine to get excellent solvent stability toward dimethylformamide (DMF). By interfacial polymerization a selective polyamide active layer was coated over the cross-linked PAN using N,N′-diamino piperazine (DAP) and trimesoyl chloride (TMC) as monomers. Permeation and molecular weight cut off (MWCO) experiments using various dyes were done to evaluate the performance of the membranes. Membranes developed by such method show excellent solvent stability toward DMF with a permeance of 1.7 L/m2 h bar and a molecular weight cut-off of less than 600 Da.

  3. Cheese whey protein recovery by ultrafiltration through transglutaminase (TG) catalysis whey protein cross-linking.

    Wen-Qiong, Wang; Lan-Wei, Zhang; Xue, Han; Yi, Lu

    2017-01-15

    In whey ultrafiltration (UF) production, two main problems are whey protein recovery and membrane fouling. In this study, membrane coupling protein transglutaminase (TG) catalysis protein cross-linking was investigated under different conditions to find out the best treatment. We found that the optimal conditions for protein recovery involved catalyzing whey protein cross-linking with TG (40U/g whey proteins) at 40°C for 60min at pH 5.0. Under these conditions, the recovery rate was increased 15-20%, lactose rejection rate was decreased by 10%, and relative permeate flux was increase 30-40% compared to the sample without enzyme treatment (control). It was noticeable that the total resistance and cake resistance were decreased after enzyme catalysis. This was mainly due to the increased particle size and decreased zeta potential. Therefore, membrane coupling enzyme catalysis protein cross-linking is a potential means for further use. PMID:27542447

  4. Study on Chemical Cross-linking Modification of Hyaluronan and the Biocompatibility of its Derivatives

    HU Guo-ying; LIU Xin; GU Han-qing

    2006-01-01

    Objective: Prepare cross-linked HA gels with higher mechanical stability,lower degradation velocity and desirable biocompatibility,so as to extend the usage of HA.Method: 1.Test molecular weight of HA (MrHA) by viscosimetry;2.Prepare cross-linked HA gels by DVS,GTA,DEC;3.Discuss the cross-linking and degradation procedure;4,evaluate the biocompatibility of the best HA gels.Results: The mechanical stability and durability to degradation of HA-DVS gels are superior to those of other gels,and when HA :DVS = 40:1 (g/g),at 35℃ and in 0.2M NaOH solution,the HA-DVS gel shows the best mechanical stability,and its cytotoxicity reaches class I,hemolysis ratio is lower than 5 %.Conclusion:Our HADVS gel can be used to prepare biologic scaffolds.

  5. In vitro degradation of covalently cross-linked arabinoxylan hydrogels by bifidobacteria.

    Martínez-López, Ana L; Carvajal-Millan, Elizabeth; Micard, Valérie; Rascón-Chu, Agustín; Brown-Bojorquez, Francisco; Sotelo-Cruz, Norberto; López-Franco, Yolanda L; Lizardi-Mendoza, Jaime

    2016-06-25

    Arabinoxylan gels with different cross-linking densities, swelling ratios, and rheological properties were obtained by increasing the concentration of arabinoxylan from 4 to 6% (w/v) during oxidative gelation by laccase. The degradation of these covalently cross-linked gels by a mixture of two Bifidobacterium strains (Bifidobacterium longum and Bifidobacterium adolescentis) was investigated. The kinetics of the evolution of structural morphology of the arabinoxylan gel, the carbohydrate utilization profiles and the bacterial production of short-acid fatty acid (SCFA) were measured. Scanning electron microscopy analysis of the degraded gels showed multiple cavity structures resulting from the bacterial action. The total SCFA decreased when the degree of cross-linking increased in the gels. A slower fermentation of arabinoxylan chains was obtained for arabinoxylan gels with more dense network structures. These results suggest that the differences in the structural features and properties studied in this work affect the degradation time of the arabinoxylan gels. PMID:27083795

  6. Effect of irradiation dose on cross-link density of EPDM rubber

    This paper presents the effect of irradiation dose on the gel fraction and crosslink density of the ethylene-propylene–terpolymer (EPDM) rubber blended with polyfunctional monomer trimethylolpropane-trimethacrylate (TMPT) and cross-linked by electron beam (EB). Dependence of gel fraction and crosslink density on irradiation dose was determined from a dose range of 0 kGy to 50kGy. The results indicate that the application of new technologies will lead to a significant improvement in physical properties of finished products and to optimize the curing stage, the most important operation of the technological process for obtaining elastomeric materials. Key words : ethylene-propylene–terpolymer rubber, cross-linking, electron beam, cross-link density

  7. A genetic anomaly of oriented collagen biosynthesis and cross-linking: Keratoconus.

    Bourges, J L; Robert, A M; Robert, L

    2015-02-01

    Oriented collagen biosynthesis is one of the major mechanisms involved in tissue and organ formation during development. Corneal biogenesis is one example. Defects in this process lead to anomalies in tissue structure and function. The transparency of cornea and its achievement are a good example as well as its pathological modifications. Keratoconus is one example of this type of pathologies, involving also inappropriate cross-linking of collagen fibers. Among the tentatives to correct this anomaly, the riboflavin-potentiated UV-cross-linking (CXL) of keratoconus corneas appears clinically satisfactory, although none of the experiments and clinical results published prove effective cross-linking. The published results are reviewed in this article. PMID:25468492

  8. Controlled swollen and drug release from urea-cross-linked polyether/siloxane hybrids

    From a simple synthesis method we produced transparent ureasil cross-linked polyether (poly(ethylene oxide), PEO, or poly (propylene oxide), PPO) networks, whose designed inter cross-linking distance and tunable swell ability was assessed by small angle X-ray scattering on the D11A-SAXS1 beamline of the LNLS, we demonstrated that the controlled drug release from swell able hydrophilic ureasil-PEO materials can be sustained during some days, while from the unswell able ureasil-PPO ones, during some weeks. This outstanding feature conjugated with the bio medically safe formulation of the ureasil cross-linked polyether/siloxane hybrid widen their scope of application to include the domain of soft and implantable drug delivery devices. (author)

  9. In vitro calcification and in vivo biocompatibility of the cross-linked polypentapeptide of elastin

    The in vitro calcifiability and molecular weight dependence of calcification of the polypentapeptide, (L X Val1-L X Pro2-Gly3-L X Val4-Gly5)n, which had been gamma-irradiation cross-linked have been determined when exposed to dialyzates of normal, nonaugmented fetal bovine serum. The material was found to calcify: calcifiability was found to be highly molecular weight dependent and to be most favored when the highest molecular weight polymers (n approximately equal to 240) had been used for cross-linking. The in vivo biocompatibility, biodegradability, and calcifiability of the gamma-irradiation cross-linked polypentapeptide were examined in rabbits in both soft and hard tissue sites. The material was found to be biocompatible irrespective of its physical form and to be biodegradable but with n of 200 or less it was not shown to calcify or ossify in the rabbit tibial nonunion model

  10. Solution processed organic light-emitting diodes using the plasma cross-linking technology

    He, Kongduo; Liu, Yang; Gong, Junyi; Zeng, Pan; Kong, Xun; Yang, Xilu; Yang, Cheng; Yu, Yan; Liang, Rongqing; Ou, Qiongrong

    2016-09-01

    Solution processed multilayer organic light-emitting diodes (OLEDs) present challenges, especially regarding dissolution of the first layer during deposition of a second layer. In this work, we first demonstrated a plasma cross-linking technology to produce a solution processed OLED. The surfaces of organic films can be cross-linked after mixed acetylene and Ar plasma treatment for several tens of seconds and resist corrosion of organic solvent. The film thickness and surface morphology of emissive layers (EMLs) with plasma treatment and subsequently spin-rinsed with chlorobenzene are nearly unchanged. The solution processed triple-layer OLED is successfully fabricated and the current efficiency increases 50% than that of the double-layer OLED. Fluorescent characteristics of EMLs are also observed to investigate factors influencing the efficiency of the triple-layer OLED. Plasma cross-linking technology may open up a new pathway towards fabrication of all-solution processed multilayer OLEDs and other soft electronic devices.

  11. Comparison of Wear and Oxidation in Retrieved Conventional and Highly Cross-Linked UHMWPE Tibial Inserts.

    Currier, Barbara H; Currier, John H; Franklin, Katherine J; Mayor, Michael B; Reinitz, Steven D; Van Citters, Douglas W

    2015-12-01

    Two groups of retrieved tibial inserts from one manufacturer's knee system were analyzed to evaluate the effect of a highly cross-linked bearing surface on wear and in vivo oxidation. The two groups ((1) conventional gamma-inert sterilized and (2) highly cross-linked, coupled with the same rough (Ra=0.25) Ti-6Al-4V tray) were matched with statistically similar in vivo duration and patient variables. The retrieved inserts were analyzed for ketone oxidation and wear in the form of dimensional change. The difference in oxidation rate between highly cross-linked and conventional gamma-inert sterilized inserts did not reach statistical significance. Observations suggest that the majority of wear can be accounted for by the backside interface with the rough Ti-6Al-4V tray; however, wear measured by thickness-change rate was statistically indistinguishable between the two bearing materials. PMID:26143237

  12. Physical Characterization Of High Amylose/Pectin Mixtures Cross-Linked With Sodium Trimetaphosphate

    Some researches have reported that pectin and high amylose mixtures presented superior mechanical properties in relation to those of the isolated polymers. In this work, mixtures at different ratios (1:4; 1:1) of pectin and high amylose were crosslinked with sodium trimetaphosphate at different degrees by varying reaction conditions. All samples were characterized by rheological and X-ray diffraction analyses. Samples without cross-linker were prepared as control. The oscillatory dynamic tests showed that all samples exhibited predominant elastic behavior, although cross-linked samples presented higher G' values, suggesting that crosslinking by phosphorylation resulted in more strength structures. The diffractograms showed that cross-linked samples underwent structural modifications that resulted in increase of crystallinity due to cross-linking process. (author)

  13. Genipin Cross-Linked Polymeric Alginate-Chitosan Microcapsules for Oral Delivery: In-Vitro Analysis

    Hongmei Chen

    2009-01-01

    Full Text Available We have previously reported the preparation of the genipin cross-linked alginate-chitosan (GCAC microcapsules composed of an alginate core with a genipin cross-linked chitosan membrane. This paper is the further investigation on their structural and physical characteristics. Results showed that the GCAC microcapsules had a smooth and dense surface and a networked interior. Cross-linking by genipin substantially reduced swelling and physical disintegration of microcapsules induced by nongelling ions and calcium sequestrants. Strong resistance to mechanical shear forces and enzymatic degradation was observed. Furthermore, the GCAC membranes were permeable to bovine serum albumin and maintained a molecular weight cutoff at 70 KD, analogous to the widely studied alginate-chitosan, and alginate-poly-L-lysine-alginate microcapsules. The release features and the tolerance of the GCAC microcapsules in the stimulated gastrointestinal environment were also investigated. This GCAC microcapsule formulation offers significant potential as a delivery vehicle for many biomedical applications.

  14. Optimizing end-group cross-linking polymer electrolytes for fuel cell applications

    Kim, Yu Seung [Los Alamos National Laboratory; Lee, Kwan Soo [Los Alamos National Laboratory; Jeong, Myung - Hwan [GIST, KOREA; Lee, Jae - Suk [GIST, KOREA

    2009-01-01

    This paper demonstrates the optimization of proton conductivity and water uptake for cross-linkable polymer electrolytes through synthesis and characterization of end-group cross-linkable sulfonated poly(arylene ether) copolymers (ESF-BPs). The extent of reaction of cross-linking was controlled by reaction time resulting in a series of polymers with two, independent tunable parameters, degree of sulfonation (DS) and degree of cross-linking (DC). For the polymers presented, cross-linking improved proton conductivity while reducing water uptake, an uncommon trend in polymer electrolytes where water is critical for proton conduction. Other trends relating to changes are reported and the results yield insight into the role of DS and DC and how to optimize electrochemical properties and performance of polymer electrolytes through these tunable parameters. Select polymer electrolytes were tested in fuel cells where performance and durability with accelerated relative humidity cycling were compared with Nafion{reg_sign}.

  15. Radiation-chemical cross-linking of solid epoxycinnamic resin and its base compositions

    A study was made on some properties of three-dimensional product on the base of EHKS-20 oligomer and its compositions with EHAS-8A oligomer, as well as on possibility of stabilizing the process of radiation cross-linking of this oligomer. Absorbed radiation dose, equal to 1.6 MGy was required for total cross-lingking of EHKS-20 aligomer in electron accelerator and 0.8-1.2 MGy - for composition. Polymer thermal stability, soffening point, obtained during uniaxial sample straining, were evaluated. Radiation cross-linked EHKS-20 oligomer and its compositions are characterized by high dielectric properties and wet strength. Radiation cross-linking of oligomers can be sensitized by additions of maleic acid imides

  16. Collagen telopeptides (cross-linking sites) play a role in collagen gel lattice contraction

    Woodley, D. T.; Yamauchi, M.; Wynn, K. C.; Mechanic, G.; Briggaman, R. A.

    1991-01-01

    Solubilized interstitial collagens will form a fibrillar, gel-like lattice when brought to physiologic conditions. In the presence of human dermal fibroblasts the collagen lattice will contract. The rate of contraction can be determined by computer-assisted planemetry. The mechanisms involved in contraction are as yet unknown. Using this system it was found that the rate of contraction was markedly decreased when collagen lacking telopeptides was substituted for native collagen. Histidinohydroxylysinonorleucine (HHL) is a major stable trifunctional collagen cross-link in mature skin that involves a carboxyl terminal, telopeptide site 16c, the sixteenth amino acid residue from the carboxy terminal of the telopeptide region of alpha 1 (I) in type I collagen. Little, if any, HHL was present in native, purified, reconstituted, soluble collagen fibrils from 1% acetic acid-extracted 2-year-old bovine skin. In contrast, HHL cross-links were present (0.22 moles of cross-link per mole of collagen) in lattices of the same collagen contracted by fibroblasts. However, rat tail tendon does not contain HHL cross-links, and collagen lattices made of rat tail tendon collagen are capable of contraction. This suggests that telopeptide sites, and not mature HHL cross-links per se, are essential for fibroblasts to contract collagen lattices. Beta-aminopropionitrile fumarate (BAPN), a potent lathyrogen that perturbs collagen cross-linking by inhibition of lysyl oxidase, also inhibited the rate of lattice cell contraction in lattices composed of native collagen. However, the concentrations of BAPN that were necessary to inhibit the contraction of collagen lattices also inhibited fibroblast growth suggestive of cellular toxicity. In accordance with other studies, we found no inhibition of the rate of lattice contraction when fibronectin-depleted serum was used. Electron microscopy of contracted gels revealed typical collagen fibers with a characteristic axial periodicity. The data

  17. Solvent Composition is Critical for Carbodiimide Cross-Linking of Hyaluronic Acid as an Ophthalmic Biomaterial

    Jui-Yang Lai

    2012-10-01

    Full Text Available Hyaluronic acid (HA is one of the most important ophthalmic biomaterials, while also being used for tissue engineering and drug delivery. Although chemical cross-linking is an effective way to improve the material performance, it may as a consequence be detrimental to the living cells/tissues. Given that the cross-linking efficiency is mediated by the solvent composition during the chemical modification, this study aims to explore the stability and biocompatibility of carbodiimide cross-linked HA in relation to material processing conditions by varying the acetone/water volume ratio (from 70:30 to 95:5 at a constant 1-ethyl-3-(3-dimethyl aminopropyl carbodiimide (EDC concentration of 100 mM. Our results indicated that after the EDC treatment in the presence of an acetone/water mixture (85:15, v/v, the HA hydrogel membranes have the lowest equilibrium water content, the highest stress at break and the greatest resistance to hyaluronidase digestion. Live/Dead assays and pro-inflammatory cytokine expression analyses showed that the cross-linked HA hydrogel membranes, irrespective of the solvent composition, are compatible with human RPE cell lines without causing toxicity and inflammation. However, it should be noted that the test samples prepared by the cross-linking in the presence of acetone/water mixtures containing 70, 75, and 95 vol % of acetone slightly inhibit the metabolic activity of viable ARPE-19 cultures, probably due to the alteration in the ionic interaction between the medium nutrients and polysaccharide biomaterials. In summary, the water content, mechanical strength and RPE cell proliferative capacity strongly depends on the solvent composition for carbodiimide cross-linking of HA materials.

  18. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  19. Biomimetic acellular detoxified glutaraldehyde cross-linked bovine pericardium for tissue engineering

    Mathapati, Santosh; Bishi, Dillip Kumar [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India); Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Guhathakurta, Soma [Departmet of Engineering Design, Indian Institute of Technology Madras, Chennai (India); Cherian, Kotturathu Mammen [Frontier Lifeline Pvt Ltd. and Dr. K. M. Cherian Heart Foundation, Mogappair, Chennai (India); Venugopal, Jayarama Reddy; Ramakrishna, Seeram [Healthcare and Energy Materials Laboratory, NUSNNI, Faculty of Engineering, National University of Singapore (Singapore); Verma, Rama Shanker, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai (India)

    2013-04-01

    Glutaraldehyde (GLUT) processing, cellular antigens, calcium ions in circulation, and phospholipids present in the native tissue are predominantly responsible for calcification, degeneration, and lack of natural microenvironment for host progenitor cell migration in tissue implants. The study presents an improved methodology for adhesion and proliferation of endothelial progenitor cells (EPCs) without significant changes in biomechanical and biodegradation properties of the processed acellular bovine pericardium. The anti-calcification potential of the processed tissue was enhanced by detoxification of GLUT-cross-linked bovine pericardium by decellularization, pretreating it with ethanol or removing the free aldehydes by citric acid treatment and lyophilization. The treated tissues were assessed for biomechanical properties, GLUT ligand quantification, adhesion, proliferation of EPCs, and biodegradability. The results indicate that there was no significant change in biomechanical properties and biodegradability when enzymatic hydrolysis (p > 0.05) is employed in detoxified acellular GLUT cross-linked tissue (DBP–G–CA–ET), compared with the native detoxified GLUT cross-linked bovine pericardium (NBP–G–CA–ET). DBP–G–CA–ET exhibited a significant (p > 0.05) increase in the viability of EPCs and cell adhesion as compared to acellular GLUT cross-linked bovine pericardium (p < 0.05). Lyophilized acellular detoxified GLUT cross-linked bovine pericardium, employed in our study as an alternative to conventional GLUT cross-linked bovine pericardium, might provide longer durability and better biocompatibility, and reduce calcification. The developed bovine pericardium patches could be used in cardiac reconstruction and repair, arteriotomy, soft tissue repair, and general surgical procedures with tissue regeneration dimensions. - Highlights: ► We improved the quality of patch biomaterial for cardiovascular surgical procedures. ► Bovine pericardium was

  20. Defective DNA cross-link removal in Chinese hamster cell mutants hypersensitive to bifunctional alkylating agents

    DNA repair-deficient mutants from five genetic complementation groups isolated previously from Chinese hamster cells were assayed for survival after exposure to the bifunctional alkylating agents mitomycin C or diepoxybutane. Groups 1, 3, and 5 exhibited 1.6- to 3-fold hypersensitivity compared to the wild-type cells, whereas Groups 2 and 4 exhibited extraordinary hypersensitivity. Mutants from Groups 1 and 2 were exposed to 22 other bifunctional alkylating agents in a rapid assay that compared cytotoxicity of the mutants to the wild-type parental strain, AA8. With all but two of the compounds, the Group 2 mutant (UV4) was 15- to 60-fold more sensitive than AA8 or the Group 1 mutant (UV5). UV4 showed only 6-fold hypersensitivity to quinacrine mustard. Alkaline elution measurements showed that this compound produced few DNA interstrand cross-links but numerous strand breaks. Therefore, the extreme hypersensitivity of mutants from Groups 2 and 4 appeared specific for compounds the main cytotoxic lesions of which were DNA cross-links. Mutant UV5 was only 1- to 4-fold hypersensitive to all the compounds. Although the initial number of cross-links was similar for the three cell lines, the efficiency of removal of cross-links was lowest in UV4 and intermediate in UV5. These results suggest that the different levels of sensitivity are specifically related to different efficiencies of DNA cross-link removal. The phenotype of hypersensitivity to both UV radiation and cross-link damage exhibited by the mutants in Groups 2 and 4 appears to differ from those of the known human DNA repair syndromes

  1. Reaction of nucleic acids with cis-diamminedichloroplatinum(II): interstrand cross-links

    In the reaction of cis-diamminedichloroplatinum(II) (cis-DDP) with double-helical (dC-dG)4-(dC-dG)4 or (dC-dG)5-(dC-dG)5, intrastrand and interstrand cross-links between two guanine residues are formed. This is shown by gel electrophoresis in denaturing conditions of the reaction products and by high-performance liquid chromatography (HPLC) analysis of the products digested with nuclease P1. In the reaction of cis-DDP and poly(dG-dC)-poly(dG-dC), at relatively low levels of platination, it is mainly interstrand cross-links between two guanine residues that are formed. This is shown by HPLC analysis of the nuclease P1 digest and by gel electrophoresis in denaturing and nondenaturing conditions of the platinated polymer after cleavage with the restriction enzyme HhaI. Moreover, the antibodies to platinated poly(dG-dC)-poly(dG-dC) cross-react with the interstrand cross-linked (dC-dG)4 or (dC-dG)5 but not with the intrastrand cross-linked (dG-dC)4 or (dC-dG)5. These antibodies cross-react with platinated natural DNA. The amount of interstrand cross-links deduced from radioimmunoassays (0.5% of the total bound platinum) is lower than that (2%) deduced by gel electrophoresis in denaturing conditions of a platinated DNA restriction fragment. By gel electrophoresis, it is also shown that in vitro the isomer trans-DDP is more efficient in forming interstrand cross-links than cis-DDP

  2. Chemical and structural characterization of interstrand cross-links formed between abasic sites and adenine residues in duplex DNA

    Price, Nathan E.; Catalano, Michael J.; Liu, Shuo; Wang, Yinsheng; Gates, Kent S.

    2015-01-01

    A new type of interstrand DNA–DNA cross-link between abasic (Ap) sites and 2′-deoxyadenosine (dA) residues was recently reported, but the chemical structure and properties of this lesion were not rigorously established. Here we characterized the nucleoside cross-link remnant released by enzymatic digestion of duplex DNA containing the dA-Ap cross-link. A synthetic standard was prepared for the putative nucleoside cross-link remnant 6 in which the anomeric carbon of the 2-deoxyribose residue was connected to the exocyclic N6-amino group of dA. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis showed that the synthetic material 6 matched the authentic cross-link remnant released by enzymatic digestion of cross-linked DNA. These findings establish the chemical structure of the dA-Ap cross-link released from duplex DNA and may provide methods for the detection of this lesion in cellular DNA. Both the nucleoside cross-link remnant 6 and the cross-link in duplex DNA were quite stable at pH 7 and 37°C, suggesting that the dA-Ap cross-link could be a persistent lesion with the potential to block the action of various DNA processing enzymes. PMID:25779045

  3. Digestibility of β-lactoglobulin following cross-linking by Trametes versicolor laccase and apple polyphenols

    DRAGANA STANIĆ-VUČINIĆ; TANJA ĆIRKOVIĆ VELIČKOVIĆ; RATKO M. JANKOV; JANA OGNJENOVIĆ; BOJANA KRAVIĆ; ZIYAD TANTOUSH; LUKA MIHAJLOVIĆ

    2011-01-01

    β-Lactoglobulin (BLG) is an important nutrient of dairy products and an important allergen in cow’s milk allergy. The aim of this study was to investigate the potential of laccase to cross-link BLG in the presence of an apple phenolic extract (APE) and to characterize the obtained products for their digestibility by pepsin and pancreatin. The composition of the apple phenolics used for cross-linking was determined by liquid chromatography–electrospray ionization-mass spectrometry (LC–ESI-MS)....

  4. Dynamically vulcanized biobased polylactide/natural rubber blend material with continuous cross-linked rubber phase.

    Chen, Yukun; Yuan, Daosheng; Xu, Chuanhui

    2014-03-26

    We prepared a biobased material, dynamically vulcanized polylactide (PLA)/natural rubber (NR) blend in which the cross-linked NR phase owned a continuous network-like dispersion. This finding breaks the traditional concept of a sea-island morphology formed after dynamic vulcanization of the blends. The scan electron microscopy and dissolution/swell experiments provided the direct proof of the continuous cross-linked NR phase. This new biobased PLA/NR blend material with the novel structure is reported for the first time in the field of dynamic vulcanization and shows promise for development for various functional applications. PMID:24621374

  5. Kinetics of enzyme-catalyzed cross-linking of feruloylated arabinan from sugar beet

    Abang Zaidel, Dayang Norulfairuz; Arnous, Anis; Holck, Jesper;

    2011-01-01

    the kinetics of HRP catalyzed cross-linking of FA esterified to α-(1,5)-linked arabinans are affected by the length of the arabinan chains carrying the feruloyl substitutions. The kinetics of the HRP-catalyzed cross-linking of four sets of arabinan samples from sugar beet pulp, having different...... molecular weights and hence different degrees of polymerization, were monitored by the disappearance of FA absorbance at 316 nm. MALDI-TOF/TOF-MS analysis confirmed that the sugar beet arabinans were feruloyl-substituted, and HPLC analysis verified that the amounts of diFAs increased when FA levels...

  6. Grafted Cross-Linked Polyolefin Substrates for Peptide Synthesis and Assays

    Pedersen, Walther Batsberg; Winther, Lars; Almdal, Kristoffer; Berg, Rolf Henrik

    1999-01-01

    PCT No. PCT/DK94/00245 Sec. 371 Date Dec. 18, 1995 Sec. 102(e) Date Dec. 18, 1995 PCT Filed Jun. 20, 1994 PCT Pub. No. WO95/00533 PCT Pub. Date Jan. 5, 1995A solid support for the solid-phase synthesis of peptides or proteins in high yield and in high purity, suited both to the synthesis of a single peptide or protein and to the parallel and substantially simultaneous synthesis of a plurality thereof, is based on a cross-linked polyolefin, especially polyethylene, substrate, the cross-linking...

  7. In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying

    Zhao, Weifeng; Nugroho, Robertus Wahyu N.; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine

    2015-01-01

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼1–4 μm contain O-acetyl-galactoglucomannan as...

  8. 1.3. Features of formation of cross-linked polymers of ethynyl-piperidol

    This article is devoted to features of formation of cross-linked polymers of ethynyl-piperidol. Therefore, the synthesis of cross-linked polymers was carried out. For the synthesis were used the multifunctional (ethynyl vinyl trimethyl piperidol, isopropenyl trimethyl ethynyl piperidol, N-vinyl pyrrolidone) and bifunctional monomers of N,N'-methyl bis acrylamide and ethylene glycol dimethacrylate. The reaction was carried out in organic solvent and in water. Properties of hydrogels obtained on the base of homopolymers of ethynyl-piperidol derivatives were considered. Properties of hydrogels obtained on the base of copolymers of ethynyl-piperidol derivatives were considered as well.

  9. An Investigation on Rheology of Peroxide Cross-linking of Low Density Polyethylene

    Ghasemi, Ismaeil; Rasmussen, Henrik K.; Szabo, Peter; Morshedian, Jalil

    2005-01-01

    One of the most important post-reactor modifications of polyethylene is cross-linking. It improves some properties of polyethylene such as environmental stress cracking resistance, chemical and abrasion resistance, and service temperature. In this study, the effect of peroxide cross-linking on the...... the change of bulk viscosity due to network developing was determined. For delivering of local derivatives smoothing techniques were applied on creep data. The rate of increment of viscosity increased with increasing the temperature, and the major of this increment took place in the first stages of...

  10. The Fanconi anemia pathway and DNA interstrand cross-link repair

    Xiaoyu Su; Jun Huang

    2011-01-01

    Fanconi anemia (FA) is an autosomal or X-linked recessive disorder characterized by chromosomal instability,bone marrow failure,cancer susceptibility,and a profound sensitivity to agents that produce DNA interstrand cross-link (ICL).To date,15 genes have been identified that,when mutated,result in FA or an FA-like syndrome.It is believed that cellular resistance to DNA interstrand cross-linking agents requires all 15 FA or FA-like proteins.Here,we review our current understanding of how these FA proteins participate in ICL repair and discuss the molecular mechanisms that regulate the FA pathway to maintain genome stability.

  11. Increasing Thermal Stability of Gelatin by UV-Induced Cross-Linking with Glucose

    Evan M. Masutani

    2014-01-01

    Full Text Available The effects of ultraviolet (254 nm radiation on a hydrated gelatin-glucose matrix were investigated for the development of a physiologically thermostable substrate for potential use in cell scaffold production. Experiments conducted with a differential scanning calorimeter indicate that ultraviolet irradiation of gelatin-glucose hydrogels dramatically increases thermal stability such that no melting is observed at temperatures of at least 90°C. The addition of glucose significantly increases the yield of cross-linked product, suggesting that glucose has a role in cross-link formation. Comparisons of lyophilized samples using scanning electron microscopy show that irradiated materials have visibly different densities.

  12. Physical and mechanical properties of gamma radiation cross-linked polyethylene

    Granulated LDPE 2003 polyethylene was extruded and irradiated under nitrogen with 150, 200 and 300 kGy gamma rays doses to produce cross-linking. The study of the physical and mechanical properties shows that the product has a high degree of molecular cross-linking, can be heated up to 200 C for 2 hours without deformation and that the mechanical properties improve. Preliminary aging tests indicate that after heating at 60 C for 4 weeks no physical or mechanical deterioration can be observed. (author)

  13. 1,3-Diphenylethenylcarbazolyl-Based Monomer for Cross-Linked Hole Transporting Layers

    Maryte Daskeviciene

    2015-05-01

    Full Text Available A new cross-linkable monomer containing 1,3-diphenylethenylcarbazolyl-based hole-transporting moieties and four reactive epoxy groups, was prepared by a multistep synthesis route from 1,3-bis(2,2-diphenylethenyl-9H-carbazol-2-ol and its application for the in situ formation of cross-linked hole transporting layers was investigated. A high concentration of flexible aliphatic epoxy chains ensures good solubility and makes this compound an attractive cross-linking agent. The synthesized compounds were characterized by various techniques, including differential scanning calorimetry, xerographic time of flight, and electron photoemission in air methods.

  14. The Effect of Glutaraldehyde Cross-Linking on the Enzyme Activity of Immobilized &beta-Galactosidase on Chitosan Bead

    He Chen

    2013-07-01

    Full Text Available The effect of glutaraldehyde solution concentration, cross-linking time, cross-linking pH and cross-linking temperature on the enzyme activity of the immobilized &beta-galactosidase on Chitosan beads were studied. The enzyme activity was measured after immobilized by detecting the absorbance value at 420 nm.The results were as follows: the immobilized enzyme activity reached the maximum when the concentration of glutaraldehyde solution was 0.3%.The immobilized enzyme had optimal cross-linking time of 3h, optimal cross-linking pH of 6.5, optimal cross-linking temperature of 25°C, under these conditions, the immobilized enzyme activity reached 101, 96, 90 U/g, respectively.

  15. Modelling the structure of latexin-carboxypeptidase A complex based on chemical cross-linking and molecular docking

    Mouradov, Dmitri; Craven, Ari; Forwood, Jade Kenneth; Flanagan, Jack U.; García-Castellanos, Raquel; Gomis-Rüth, F. Xavier; Hume, David A.; Martin, Jennifer Lynn; Kobe, Bostjan; Huber, Thomas

    2006-01-01

    We have determined the three-dimensional structure of the protein complex between latexin and carboxypeptidase A using a combination of chemical cross-linking, mass spectrometry and molecular docking. The locations of three intermolecular cross-links were identified using mass spectrometry and these constraints were used in combination with a speed-optimised docking algorithm allowing us to evaluate more than 3 × 1011 possible conformations. While cross-links represent only limited structural...

  16. ROMP-based thermosetting polymers from modified castor oil with various cross-linking agents

    Ding, Rui

    Polymers derived from bio-renewable resources are finding an increase in global demand. In addition, polymers with distinctive functionalities are required in certain advanced fields, such as aerospace and civil engineering. In an attempt to meet both these needs, the goal of this work aims to develop a range of bio-based thermosetting matrix polymers for potential applications in multifunctional composites. Ring-opening metathesis polymerization (ROMP), which recently has been explored as a powerful method in polymer chemistry, was employed as a unique pathway to polymerize agricultural oil-based reactants. Specifically, a novel norbornyl-functionalized castor oil alcohol (NCA) was investigated to polymerize different cross-linking agents using ROMP. The effects of incorporating dicyclopentadiene (DCPD) and a norbornene-based crosslinker (CL) were systematically evaluated with respect to curing behavior and thermal mechanical properties of the polymers. Isothermal differential scanning calorimetry (DSC) was used to investigate the conversion during cure. Dynamic DSC scans at multiple heating rates revealed conversion-dependent activation energy by Ozawa-Flynn-Wall analysis. The glass transition temperature, storage modulus, and loss modulus for NCA/DCPD and NCA/CL copolymers with different cross-linking agent loading were compared using dynamic mechanical analysis. Cross-link density was examined to explain the very different dynamic mechanical behavior. Mechanical stress-strain curves were developed through tensile test, and thermal stability of the cross-linked polymers was evaluated by thermogravimetric analysis to further investigate the structure-property relationships in these systems.

  17. Elevated carboxy terminal cross linked telopeptide of type I collagen in alcoholic cirrhosis

    Møller, S; Hansen, M; Hillingsø, Jens;

    1999-01-01

    BACKGROUND: The carboxy terminal cross linked telopeptide of type I collagen (ICTP) has been put forward as a marker of bone resorption. Patients with alcoholic liver disease may have osteodystrophy. AIMS: To assess circulating and regional concentrations of ICTP in relation to liver dysfunction...

  18. Green Synthesis, Thermal Analysis and Degradation Kinetics of Cross-Linked Potato Starch

    Succinylation of starch was carried out with succinic anhydride homogeneously using N,N-dimethylacetamide (DMAc) at 70 degree C for 24 h. Starch succinates (SS) were then cross-linked using 1,1'-carbonyldiimidazole (CDI). This green method for cross-linking of SS using CDI is being reported for the first time. The SS and cross-linked starch succinate (CLSS) were characterized by FTIR spectroscopy and thermal analysis. The CLSS was found thermally more stable than SS as degradation maxima (Tdm) of CLSS (311 Degree C) was 70 Degree C higher than Tdm of SS (241 Degree C) noted for first and major step of degradation. Additionally, initial (Tdi) and final (Tdf) degradation temperatures of CLSS were higher than SS which is indicative of extra thermal stability imparted after cross-linking of starch via succinylation. Thermal degradation kinetics were calculated using Friedman, Broido and Chang methods. Energy of activation (Ea) was calculated for each step of degradation for SS and CLSS. Order of reaction (n) was calculated from Chang model and it was found that degradation in first step follows first order kinetics in SS and CLSS. (author)

  19. Controlled uptake and release of lysozyme from glycerol diglycidyl ether cross-linked oxidized starch microgel.

    Zhao, Luhai; Chen, Yuying; Li, Wei; Lu, Meiling; Wang, Shanshan; Chen, Xiaodong; Shi, Mengxuan; Wu, Jiande; Yuan, Qipeng; Li, Yuan

    2015-05-01

    A biodegradable microgel system based on glycerol-1,3-diglycidyl ether (GDGE) cross-linked TEMPO-oxidized potato starch polymers was developed for controlled uptake and release of proteins. A series of microgels were prepared with a wide range of charge density and cross-link density. We found both swelling capacity (SWw) and lysozyme uptake at saturation (Γsat) increased with increasing degree of oxidation (DO) and decreasing cross-link density. Microgel of DO100% with a low cross-link density (RGDGE/polymer (w/w) of 0.025) was selected to be the optimum gel type for lysozyme absorption; Γsat increased with increasing pH and decreasing ionic strength. It suggests that the binding strength was the strongest at high pH and low ionic strength, which was recognized as the optimum absorption conditions. The lysozyme release was promoted at low pH and high ionic strength, which were considered to be the most suitable conditions for triggering protein release. These results may provide useful information for the controlled uptake and release of proteins by oxidized starch microgels. PMID:25659699

  20. Cross-linking Electrospun Polydioxanone-Soluble Elastin Blends: Material Characterization

    Michael J. McClure

    2008-03-01

    Full Text Available The purpose of this study was to establish whether material properties of elastin co-electrospun with polydioxanone (PDO would change over time in both the uncross-linked state and the cross-linked state. First, uncross-linked scaffolds were placed in phosphate buffered saline (PBS for three separate time periods: 15 minutes, 1 hour, and 24 hours, and subsequently tested using uniaxial materials testing. Several cross-linking reagents were then investigated to verify their ability to crosslink elastin: 1-ethyl-3-(dimethylaminopropyl-carbodiimide (EDC, ethylene glycol diglycidyl ether (EGDE, and genipin. Uniaxial tensile testing was performed on scaffolds cross-linked with EDC and genipin, yielding results that warranted further investigation for PDO-elastin blends. Material properties of the cross-linked scaffolds were then found within range of both pig femoral artery and human femoral artery. These results demonstrate PDO-elastin blends could potentially be favorable as vascular grafts, thus warranting future in vitro and in vivo studies.

  1. Substituent distribution within cross-linked and hydroxypropylated sweet potato starch and potato starch

    Zhao, J.; Schols, H.A.; Chen Zenghong,; Jin Zhengyu,; Buwalda, P.L.; Gruppen, H.

    2012-01-01

    Revealing the substituents distribution within starch can help to understand the changes of starch properties after modification. The distribution of substituents over cross-linked and hydroxypropylated sweet potato starch was investigated and compared with modified potato starch. The starches were

  2. Temperature dependence of creep compliance of highly cross-linked epoxy: A molecular simulation study

    We have used molecular dynamics (MD) simulations to study the effect of temperature on the creep compliance of neat cross-linked epoxy. Experimental studies of mechanical behavior of cross-linked epoxy in literature commonly report creep compliance values, whereas molecular simulations of these systems have primarily focused on the Young’s modulus. In this work, in order to obtain a more direct comparison between experiments and simulations, atomistically detailed models of the cross-linked epoxy are used to study their creep compliance as a function of temperature using MD simulations. The creep tests are performed by applying a constant tensile stress and monitoring the resulting strain in the system. Our results show that simulated values of creep compliance increase with an increase in both time and temperature. We believe that such calculations of the creep compliance, along with the use of time temperature superposition, hold great promise in connecting the molecular insight obtained from molecular simulation at small length- and time-scales with the experimental behavior of such materials. To the best of our knowledge, this work is the first reported effort that investigates the creep compliance behavior of cross-linked epoxy using MD simulations

  3. Influence of cross-links formed by new anticancer platinum compounds on thermodynamic stability of DNA

    Hofr, Ctirad; Farrell, N.; Brabec, Viktor

    Santa Fe, 2004. s. 112. [CALCON 2004: Annual Calorimetry Conference /59./. 27.06.2004-01.07.2004, Santa Fe] R&D Projects: GA ČR GP202/01/D110; GA MŠk LZ1K03010 Keywords : cross-links * platinum compounds * DNA Subject RIV: BO - Biophysics

  4. Unique properties of DNA interstrand cross-links of antitumor oxaliplatin

    Kašpárková, Jana; Vojtíšková, Marie; Natile, G.; Brabec, Viktor

    Dubai , 2008. s. 1. [1st International Conference on Drug Design & Discovery. 04.02.2008-07.02.2008, Dubai ] R&D Projects: GA AV ČR(CZ) KAN200200651 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : oxaliplatin * DNA * interstrand cross-links Subject RIV: BO - Biophysics

  5. Isolation and removal of proteolytic enzymes with magnetic cross-linked erythrocytes

    New magnetic adsorbents for batch isolation and removal of various proteolytic enzymes were prepared by glutaraldehyde cross-linking of bovine, porcine and human erythrocytes in the presence of fine magnetic particles. Trypsin, chymotrypsin, alkaline bacterial protease and proteases present in various commercial enzyme preparations were efficiently adsorbed on these adsorbents; on the contrary, proteins without proteolytic activity were not adsorbed

  6. Isolation and removal of proteolytic enzymes with magnetic cross-linked erythrocytes

    Safarik, I. Ivo E-mail: safarik@uek.cas.cz; Safarikova, Mirka

    2001-07-01

    New magnetic adsorbents for batch isolation and removal of various proteolytic enzymes were prepared by glutaraldehyde cross-linking of bovine, porcine and human erythrocytes in the presence of fine magnetic particles. Trypsin, chymotrypsin, alkaline bacterial protease and proteases present in various commercial enzyme preparations were efficiently adsorbed on these adsorbents; on the contrary, proteins without proteolytic activity were not adsorbed.

  7. Ionically cross-linked hyaluronic acid: wetting, lubrication, and viscoelasticity of a modified adhesion barrier gel

    Katherine Vorvolakos

    2010-12-01

    Full Text Available Katherine Vorvolakos1, Irada S Isayeva1, Hoan-My Do Luu1, Dinesh V Patwardhan1, Steven K Pollack21Division of Chemistry and Material Science, 2Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USAAbstract: Hyaluronic acid (HA, in linear or cross-linked form, is a common component of cosmetics, personal care products, combination medical products, and medical devices. In all cases, the ability of the HA solution or gel to wet surfaces and/or disrupt and lubricate interfaces is a limiting feature of its mechanism of action. We synthesized ferric ion–cross-linked networks of HA based on an adhesion barrier, varied the degree of cross-linking, and performed wetting goniometry, viscometry, and dynamic mechanical analysis. As cross-linking increases, so do contact angle, viscosity, storage modulus, and loss modulus; thus, wetting and lubrication are compromised. These findings have implications in medical device materials, such as adhesion barriers and mucosal drug delivery vehicles.Keywords: hyaluron, adhesion barrier, wetting, contact angle, viscosity, lubrication, elasticity, viscoelastic, hydrogel, ferric

  8. Cross-linked aromatic cationic polymer electrolytes with enhanced stability for high temperature fuel cell applications

    Ma, Wenjia; Zhao, Chengji; Yang, Jingshuai;

    2012-01-01

    anchoring of the molecule. Combining the excellent thermal stability, the addition of a small amount of diamines enhanced both the chemical and mechanical stability and the phosphoric acid doping (PA) ability of membranes. Fuel cell performance based on impregnated cross-linked membranes have been...

  9. Baking Performance of Phosphorylated Cross-Linked Resistant Starch in Low-Moisture Bakery Goods

    Phosphorylated cross-linked resistant starch (RS) is a type 4 RS, which can be used for enhancing the benefits of dietary fiber. The baking performance of the RS was explored using wire-cut cookie baking and benchtop chemically-leavened cracker baking methods to produce low-moisture baked goods (coo...

  10. Vitamin C hinders radiation cross-linking in aqueous poly(vinyl alcohol) solutions

    Poly(vinyl alcohol) (PVA) is a promising semi-crystalline material for biomedical applications. It is soluble in water and can be formed into hydrogels by freezing and thawing or crystallizing from an aqueous theta solution such as that of polyethylene glycol (PEG). Radiation cross-linking caused by sterilization or high dose irradiation of concentrated PVA solutions could compromise some properties of these hydrogels. Therefore, we hypothesized that radiation cross-linking of PVA solutions and PVA-PEG theta gels could be prevented by using the antioxidant vitamin C as an anticross-linking agent. Our hypothesis tested positive. Vitamin C concentrations of 0.75 and 4.5 mol/mol of PVA repeating unit could prevent cross-linking in 17.5 wt/v% PVA solutions made with PVA molecular weight of 115,000 g/mol irradiated to 25 and 100 kGy, respectively. Vitamin C also prevented cross-linking in 25 kGy irradiated PVA-PEG theta gels containing up to 5 wt% PEG and decreased the viscosity of those up to 39 wt%

  11. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications

    The purpose of this study was to enhance the mechanical properties and slow the degradation of an electrospun fibrinogen scaffold, while maintaining the scaffold's high level of bioactivity. Three different cross-linkers were used to achieve this goal: glutaraldehyde vapour, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in ethanol and genipin in ethanol. Scaffolds with a fibrinogen concentration of 120 mg ml-1 were electrospun and cross-linked with one of the aforementioned cross-linkers. Mechanical properties were determined through uniaxial tensile testing performed on scaffolds incubated under standard culture conditions for 1 day, 7 days and 14 days. Cross-linked scaffolds were seeded with human foreskin fibroblasts (BJ-GFP-hTERT) and cultured for 7, 14 and 21 days, with histology and scanning electron microscopy performed upon completion of the time course. Mechanical testing revealed significantly increased peak stress and modulus values for the EDC and genipin cross-linked scaffolds, with significantly slowed degradation. However, cross-linking with EDC and genipin was shown to have some negative effect on the bioactivity of the scaffolds as cell migration throughout the thickness of the scaffold was slowed.

  12. UV-induced cross-linking of abscisic acid to binding proteins

    Conditions for UV-induced cross-linking of abscisic acid (ABA) through its enone chromophore to binding proteins were evaluated. The effects of a UV-light band between 260 and 530 nm on both unconjugated and protein-conjugated ABA, as well as on anti-ABA antibodies as models of ABA-binding proteins were determined. UV irradiation caused both isomerization and photolysis of ABA, but increasing the lower irradiation boundary to 345 nm strongly reduced photolysis and largely prevented isomerization. When conjugated to alkaline phosphatase (AP), ABA remained stable when using either a 320 or a 345 nm filter. At these wavelengths both binding of ABA to antibodies as well as AP enzymatic activity were maintained. UV-induced cross-linking of monoclonal anti-ABA antibodies to immobilized ABA was analysed by immunoassays. Optimal cross-linking was achieved after a 5 min irradiation period at 0°, using a long pass, cut-on filter to quench wavelengths below 290 nm. This cross-linking faithfully reflected cognate binding activity. (author)

  13. Phase diagram of selectively cross-linked block copolymers shows chemically microstructured gel

    von der Heydt, Alice; Zippelius, Annette

    2015-02-01

    We study analytically the intricate phase behavior of cross-linked AB diblock copolymer melts, which can undergo two main phase transitions due to quenched random constraints. Gelation, i.e., spatially random localisation of polymers forming a system-spanning cluster, is driven by increasing the number parameter μ of irreversible, type-selective cross-links between random pairs of A blocks. Self-assembly into a periodic pattern of A/B-rich microdomains (microphase separation) is controlled by the AB incompatibility χ inversely proportional to temperature. Our model aims to capture the system's essential microscopic features, including an ensemble of random networks that reflects spatial correlations at the instant of cross-linking. We identify suitable order parameters and derive a free-energy functional in the spirit of Landau theory that allows us to trace a phase diagram in the plane of μ and χ. Selective cross-links promote microphase separation at higher critical temperatures than in uncross-linked diblock copolymer melts. Microphase separation in the liquid state facilitates gelation, giving rise to a novel gel state whose chemical composition density mirrors the periodic AB pattern.

  14. Effect of cross-linking ultrahigh molecular weight polyethylene: Surface molecular orientation and wear characteristics

    Molecular orientation at the surface layer of cross-linked ultrahigh molecular weight polyethylene (UHMWPE) has been examined. Molecular orientation has been shown to affect the wear resistance and surface mechanical properties of UHMWPE under biomechanical loading conditions. This study utilizes a nondestructive synchrotron based soft x-ray technique; near edge x-ray absorption fine structure at the carbon K-edge to examine the degree of surface molecular orientation of UHMWPE subjected to various cross-linking/sterilization techniques as a function of stress and wear. UHMWPE samples prepared under gamma irradiation, ethylene-oxide (EtO) treatment, and electron beam irradiation were worn in a wear tester systematically. Results suggest that the cross-linking resists surface orientation when the samples were under tensile and biomechanical stresses. The molecular orientation in the C-C chains in the polymer showed a monotonic decrease with an increase in gamma irradiation dosage levels. EtO sterilized samples showed more C-C chain orientation than the electron beam irradiated samples, but lower than the 30 kGy gamma irradiated samples. Ordered C-C chains in UHMWPE samples have been associated with more crystallinity or large strain plastic deformation of the polymer. Higher levels of gamma irradiation appear to induce cross-linking of C-C chains and render a polymer with more amorphous phase which resists orientation after wear and imparts wear resistance to the polymer

  15. Cross-Linking of P.V.A. by Gamma Radiation

    The action of gamma rays on aqueous solutions of polyvinyl alcohol was observed by determination of the viscosity, sedimentation constant and acetylation rate. There was a very definite critical concentration, 0.28%, below which a B gel could not be formed by any dose. Above the critical concentration, the chief reaction was apparently intermolecular cross-linking which increased with dosage. Below the critical concentration the reactions were much more complex. At small doses there was probably some competition between inter- and intra- molecular cross-linking and the formation of more symmetrical molecular clusters. At higher doses the aggregates and the molecular clusters were subject to more and more internal and external cross-linking, leading finally to the formation of micro-gel particles. At decreasing concentrations (0.2 - 0.6%) intra-molecular cross-linking apparently became increasingly important. The effects of radiation were thought to depend upon the initial concentration of the polyvinyl alcohol solutions. (author)

  16. Cross-linking oppositely charged oil-in-water emulsions to enhance heteroaggregate stability.

    Maier, Christiane; Oechsle, Anja M; Weiss, Jochen

    2015-11-01

    The formation and subsequent enzymatic and chemical cross-linking of heteroaggregates from oppositely charged oil-in-water (O/W) emulsions was investigated. For this purpose, 10% (w/w) oil-in-water emulsions (d43whey protein isolate) or a negatively charged one (sugar beet pectin or Quillaja saponins). The oppositely charged emulsions were then combined at a volume ratio of 1:1 and treated with laccase or glutaraldehyde in order to further stabilize the electrostatically attached aggregates by covalently cross-linking the oppositely charged membranes. Emulsions and heteroaggregates were characterized by their rheological properties, their surface charge, particle size distribution, and microstructure using dynamic and static light scattering as well as confocal laser scanning microscopy. Prior to cross-linking, the emulsifiers' stabilization mechanism were found to greatly influence the formation of heteroaggregates. Laccase treatment (1.34 mU/mL) increased aggregate expansion by ca. 30% for the combined emulsions stabilized by Quillaja saponins/whey protein isolate, while combined Quillaja saponins/fish gelatin stabilized emulsions remained unaffected. When combined emulsions were treated with 50mM glutaraldehyde, aggregate size significantly increased 2- and 3-fold, respectively. Thus, our study provides novel insights into the enzymatic and chemical cross-linking of heteroaggregates composed of oppositely charged O/W emulsions. PMID:26298085

  17. Molecular Dynamics Simulations of Polymer Networks Undergoing Sequential Cross-Linking and Scission Reactions

    Rottach, Dana R.; Curro, John G.; Budzien, Joanne; Grest, Gary S.; Svaneborg, Carsten; Everaers, Ralf

    2007-01-01

    good agreement with the predictions of Flory and Fricker. It was found that the fractional stress reduction upon removal of the first-stage cross-links could be accurately calculated from the slip tube model of Rubinstein and Panyukov modified to use the theoretical transfer functions of Fricker.  ...

  18. Cross-linked self-assembled micelle based nanosensor for intracellular pH measurements

    Ek, Pramod Kumar; Søndergaard, Rikke Vicki; Windschiegl, Barbara;

    2014-01-01

    A micelle based nanosensor was synthesized and investigated as a ratiometric pH sensor for use in measurements in living cells by fluorescent microscopy. The nanosensor synthesis was based on self-assembly of an amphiphilic triblock copolymer, which was chemically cross-linked after micelle forma...

  19. In-vitro fermentability of cell walls as influenced by lignin composition and cross-linking.

    We assessed how diverse modifications in lignin composition and reductions in ferulate-lignin cross-linking influence the degradability of cell walls. Cell walls from nonlignified maize cell suspensions were artificially lignified with varying ratios of normal monolignols (coniferyl and sinapyl alco...

  20. Phase diagram of selectively cross-linked block copolymers shows chemically microstructured gel.

    von der Heydt, Alice; Zippelius, Annette

    2015-02-01

    We study analytically the intricate phase behavior of cross-linked AB diblock copolymer melts, which can undergo two main phase transitions due to quenched random constraints. Gelation, i.e., spatially random localisation of polymers forming a system-spanning cluster, is driven by increasing the number parameter μ of irreversible, type-selective cross-links between random pairs of A blocks. Self-assembly into a periodic pattern of A/B-rich microdomains (microphase separation) is controlled by the AB incompatibility χ inversely proportional to temperature. Our model aims to capture the system's essential microscopic features, including an ensemble of random networks that reflects spatial correlations at the instant of cross-linking. We identify suitable order parameters and derive a free-energy functional in the spirit of Landau theory that allows us to trace a phase diagram in the plane of μ and χ. Selective cross-links promote microphase separation at higher critical temperatures than in uncross-linked diblock copolymer melts. Microphase separation in the liquid state facilitates gelation, giving rise to a novel gel state whose chemical composition density mirrors the periodic AB pattern. PMID:25662662

  1. Isolation and removal of proteolytic enzymes with magnetic cross-linked erythrocytes

    Šafařík, Ivo; Šafaříková, Mirka

    2001-01-01

    New magnetic adsorbents for batch isolation and removal of various proteolytic enzymes were prepared by glutaraldehyde cross-linking of bovine, porcine and human erythrocytes in the presence of fine magnetic particles. Trypsin, chymotrypsin, alkaline bacterial protease and proteases present in various commercial enzyme preparations were efficiently adsorbed on these adsorbents; on the contrary, proteins without proteolytic activity were not adsorbed.

  2. Constrained swelling of polymer networks: characterization of vapor-deposited cross-linked polymer thin films

    Dušek, Karel; Choukourov, A.; Dušková-Smrčková, Miroslava; Biederman, H.

    2014-01-01

    Roč. 47, č. 13 (2014), s. 4417-4427. ISSN 0024-9297 R&D Projects: GA ČR GAP101/12/1306 Institutional support: RVO:61389013 Keywords : swelling * cross-linked polymer * elasticity Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.800, year: 2014

  3. An unprecedented single platform via cross-linking of zeolite and MOFs.

    Lim, Dae-Woon; Lee, Heeju; Kim, Sungjune; Cho, In Hwa; Yoon, Minyoung; Choi, Yong Nam

    2016-05-21

    The unprecedented ternary nanocomposites have been synthesized as a single platform via cross-linking of two nanoporous materials, MOFs and Pt nanoparticle (NP) loaded zeolite. The heterojunction of the novel nanocomposites is anticipated to work as a chemical platform for size selective catalytic hydrogenation or deuteration of small molecules. PMID:27086901

  4. Cross-linking methods of electrospun fibrinogen scaffolds for tissue engineering applications

    Sell, Scott A; Garg, Koyal; McClure, Michael J; Bowlin, Gary L [Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284-3067 (United States); Francis, Michael P [Department of Pathology, Virginia Commonwealth University, Richmond, VA 23298-0709 (United States); Simpson, David G [Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298-0709 (United States)], E-mail: glbowlin@vcu.edu

    2008-12-15

    The purpose of this study was to enhance the mechanical properties and slow the degradation of an electrospun fibrinogen scaffold, while maintaining the scaffold's high level of bioactivity. Three different cross-linkers were used to achieve this goal: glutaraldehyde vapour, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in ethanol and genipin in ethanol. Scaffolds with a fibrinogen concentration of 120 mg ml{sup -1} were electrospun and cross-linked with one of the aforementioned cross-linkers. Mechanical properties were determined through uniaxial tensile testing performed on scaffolds incubated under standard culture conditions for 1 day, 7 days and 14 days. Cross-linked scaffolds were seeded with human foreskin fibroblasts (BJ-GFP-hTERT) and cultured for 7, 14 and 21 days, with histology and scanning electron microscopy performed upon completion of the time course. Mechanical testing revealed significantly increased peak stress and modulus values for the EDC and genipin cross-linked scaffolds, with significantly slowed degradation. However, cross-linking with EDC and genipin was shown to have some negative effect on the bioactivity of the scaffolds as cell migration throughout the thickness of the scaffold was slowed.

  5. Radiation-chemical cross-linking of saturated elastomers with polymer peroxides

    This work presents investigation of radiation-chemical cross-linking of saturated elastomers by using the sol-gel analysis, also by physical and chemical methods for the study of the spectral measurement of molecular structure of HNBR with showed organic compounds

  6. Monitoring the internal structure of poly(N-vinylcaprolactam) microgels with variable cross-link concentration.

    Schneider, Florian; Balaceanu, Andreea; Feoktystov, Artem; Pipich, Vitaliy; Wu, Yaodong; Allgaier, Jürgen; Pyckhout-Hintzen, Wim; Pich, Andrij; Schneider, Gerald J

    2014-12-23

    The combination of a set of complementary techniques allows us to construct an unprecedented and comprehensive picture of the internal structure, temperature dependent swelling behavior, and the dependence of these properties on the cross-linker concentration of microgel particles based on N-vinylcaprolactam (VCL). The microgels were synthesized by precipitation polymerization using different amounts of cross-linking agent. Characterization was performed by small-angle neutron scattering (SANS) using two complementary neutron instruments to cover a uniquely broad Q-range with one probe. Additionally we used dynamic light scattering (DLS), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Previously obtained nuclear magnetic resonance spectroscopy (NMR) results on the same PVCL particles are utilized to round the picture off. Our study shows that both the particle radius and the cross-link density and therefore also the stiffness of the microgels rises with increasing cross-linker content. Hence, more cross-linker reduces the swelling capability distinctly. These findings are supported by SANS and AFM measurements. Independent DLS experiments also found the increase in particle size but suggest an unchanged cross-link density. The reason for the apparent contradiction is the indirect extraction of the parameters via a model in the evaluation of DLS measurements. The more direct approach in AFM by evaluating the cross section profiles of observed microgel particles gives evidence of significantly softer and more deformable particles at lower cross-linker concentrations and therefore verifies the change in cross-link density. DSC data indicate a minor but unexpected shift of the volume phase transition temperature (VPTT) to higher temperatures and exposes a more heterogeneous internal structure of the microgels with increasing cross-link density. Moreover, a change in the total energy transfer during the VPT gives evidence that the strength

  7. CD24 cross-linking induces apoptosis in, and inhibits migration of, MCF-7 breast cancer cells

    The biological effects of CD24 (FL-80) cross-linking on breast cancer cells have not yet been established. We examined the impact of CD24 cross-linking on human breast cancer cell line MCF-7. MCF-7 and MDA-MB-231 cells were treated with anti-rabbit polyclonal IgG or anti-human CD24 rabbit polyclonal antibodies to induce cross-linking, and then growth was studied. Changes in cell characteristics such as cell cycle modulation, cell death, survival in three-dimensional cultures, adhesion, and migration ability were assayed after CD24 cross-linking in MCF-7. Expression of CD24 was analyzed by flow cytometry in MDA-MB-231 and MCF-7 cells where 2% and 66% expression frequencies were observed, respectively. CD24 cross-linking resulted in time-dependent proliferation reduction in MCF-7 cells, but no reduction in MDA-MB-231 cells. MCF-7 cell survival was reduced by 15% in three-dimensional culture after CD24 cross-linking. Increased MCF-7 cell apoptosis was observed after CD24 cross-linking, but no cell cycle arrest was observed in that condition. The migration capacity of MCF-7 cells was diminished by 30% after CD24 cross-linking. Our results showed that CD24 cross-linking induced apoptosis and inhibited migration in MCF-7 breast cancer cells. We conclude that CD24 may be considered as a novel therapeutic target for breast cancer

  8. XLPM: efficient algorithm for the analysis of protein-protein contacts using chemical cross-linking mass spectrometry

    Jaiswal, Mihir; Crabtree, Nathaniel Mark; Bauer, Michael A; Hall, Roger; Raney, Kevin D.; Boris L Zybailov

    2014-01-01

    Background Chemical cross-linking is used for protein-protein contacts mapping and for structural analysis. One of the difficulties in cross-linking studies is the analysis of mass-spectrometry data and the assignment of the site of cross-link incorporation. The difficulties are due to higher charges of fragment ions, and to the overall low-abundance of cross-link species in the background of linear peptides. Cross-linkers non-specific at one end, such as photo-inducible diazirines, may compl...

  9. Protein Cross-Linking Capillary Electrophoresis for Protein-Protein Interaction Analysis.

    Ouimet, Claire M; Shao, Hao; Rauch, Jennifer N; Dawod, Mohamed; Nordhues, Bryce; Dickey, Chad A; Gestwicki, Jason E; Kennedy, Robert T

    2016-08-16

    Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs. PMID:27434096

  10. Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes

    Kim, Dae Sik; Park, Ho Bum; Lee, Young Moo [National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Rhim, Ji Won [Department of Chemical Engineering Hannam University, 133 Ojung-Dong, Daeduk-Gu, Daejon 306-791 (Korea, Republic of)

    2005-01-14

    Cross-linked poly(vinyl alcohol) (PVA)/poly(acrylic acid) (PAA)/silica hybrid membranes were prepared to evaluate the possibility of use as a proton exchange membrane for direct methanol fuel cell (DMFC). A chemical cross-linking agent having sulfonic acid group (-SO{sub 3}H) was used to increase proton conductivity, and simultaneously to prevent methanol transport through the cross-linked membranes. In addition, silica particles were dispersed into polymer matrices via sol-gel reaction under acidic conditions, expecting the barrier to the methanol transport. The proton and the methanol transport were investigated in terms of PVA/PAA compositions and cross-linker (sulfosuccinic acid, SSA) concentration. It was found that the compositions of PVA/PAA and the cross-linker concentration affected the transport properties of the membranes. Particularly, the concentration of cross-linker markedly affected the proton and the methanol transport because SSA was used not only as a chemical cross-linker but also as a donor of fixed anionic group (-SO{sub 3}{sup -}H{sup +}). The proton conductivities of the hybrid membrane were in the range of 10{sup -3}-10{sup -2} S/cm, and the methanol permeabilities ranged between 10{sup -8} and 10{sup -7} cm{sup 2}/s. Noticeably, the methanol permeabilities were reduced by cross-linking between PVA, PAA and SSA chains without a large sacrifice of proton conductivity. Moreover, the silica particles embedded in the cross-linked polymer membranes acted as a reducing material for fraction of free water as well as a methanol barrier to hinder pathway from penetrating methanol molecules.