WorldWideScience

Sample records for acid x-ray crystallography

  1. X-ray Crystallography Facility

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  2. X-ray crystallography

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  3. X-ray lasers and crystallography

    Spence, John C. H.

    2014-01-01

    The development of X-ray lasers and their applications in crystallography is described. In the birth of this new field, IUCrJ is ideally positioned to present this research to both specialists in crystallography, and to the wider audience in structural biology.

  4. X-Ray Crystallography Reagent

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2003-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes per square centimeter at the interface. By placing the microcapsules in a high osmotic dewatering solution. the protein solution is gradually made saturated and then supersaturated. and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged. protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D smucture of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  5. Early days of X-ray crystallography

    Authier, André

    2013-01-01

    This book relates the discovery itself, the early days of X-ray crystallography, and the way the news of the discovery spread round the world. It explains how the first crystal structures were determined, and recounts which were the early applications of X-ray crystallography. It also tells how the concept of space lattice has developed since ancient times, and how our understanding of the nature of light has changed over time. The contributions of the main actors of the story, prior to the discovery, at the time of the discovery and immediately afterwards, are described through their writings and are put into the context of the time, accompanied by brief biographical details.

  6. Structure determination by X-ray crystallography

    Ladd, M F C

    1977-01-01

    Crystallography may be described as the science of the structure of materi­ als, using this word in its widest sense, and its ramifications are apparent over a broad front of current scientific endeavor. It is not surprising, therefore, to find that most universities offer some aspects of crystallography in their undergraduate courses in the physical sciences. It is the principal aim of this book to present an introduction to structure determination by X-ray crystal­ lography that is appropriate mainly to both final-year undergraduate studies in crystallography, chemistry, and chemical physics, and introductory post­ graduate work in this area of crystallography. We believe that the book will be of interest in other disciplines, such as physics, metallurgy, biochemistry, and geology, where crystallography has an important part to play. In the space of one book, it is not possible either to cover all aspects of crystallography or to treat all the subject matter completely rigorously. In particular, certain ...

  7. Structure determination by X-ray crystallography

    Ladd, M F C

    1995-01-01

    X-ray crystallography provides us with the most accurate picture we can get of atomic and molecular structures in crystals. It provides a hard bedrock of structural results in chemistry and in mineralogy. In biology, where the structures are not fully crystalline, it can still provide valuable results and, indeed, the impact here has been revolutionary. It is still an immense field for young workers, and no doubt will provide yet more striking develop­ ments of a major character. It does, however, require a wide range of intellectual application, and a considerable ability in many fields. This book will provide much help. It is a very straightforward and thorough guide to every aspect of the subject. The authors are experienced both as research workers themselves and as teachers of standing, and this is shown in their clarity of exposition. There are plenty of iliustrations and worked examples to aid the student to obtain a real grasp of the subject.

  8. Neutron Nucleic Acid Crystallography.

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination. PMID:26227050

  9. X-ray diffraction crystallography. Introduction, examples and solved problems

    Waseda, Yoshio; Shinoda, Kozo [Tohoku Univ., Sendai (Japan). Inst. of Multidisciplinary Research for Advanced Materials; Matsubara, Eiichiro [Kyoto Univ. (Japan). Dept. of Materials Science and Engineering

    2011-07-01

    X-ray diffraction crystallography for powder samples is a well-established and widely used method. It is applied to materials characterization to reveal the atomic scale structure of various substances in a variety of states. The book deals with fundamental properties of X-rays, geometry analysis of crystals, X-ray scattering and diffraction in polycrystalline samples and its application to the determination of the crystal structure. The reciprocal lattice and integrated diffraction intensity from crystals and symmetry analysis of crystals are explained. To learn the method of X-ray diffraction crystallography well and to be able to cope with the given subject, a certain number of exercises is presented in the book to calculate specific values for typical examples. This is particularly important for beginners in X-ray diffraction crystallography. One aim of this book is to offer guidance to solving the problems of 90 typical substances. For further convenience, 100 supplementary exercises are also provided with solutions. Some essential points with basic equations are summarized in each chapter, together with some relevant physical constants and the atomic scattering factors of the elements. (orig.)

  10. Polycapillary x-ray optics for macromolecular crystallography

    Polycapillary x-ray optics have found potential application in many different fields, including antiscatter and magnification in mammography, radiography, x-ray fluorescence, x-ray lithography, and x-ray diffraction techniques. In x-ray diffraction, an optic is used to collect divergent x-rays from a point source and redirect them into a quasi-parallel, or slightly focused beam. Monolithic polycapillary optics have been developed recently for macromolecular crystallography and have already shown considerable gains in diffracted beam intensity over pinhole collimation. Development is being pursued through a series of simulations and prototype optics. Many improvements have been made over the stage 1 prototype reported previously, which include better control over the manufacturing process, reducing the diameter of the output beam, and addition of a slight focusing at the output of the optic to further increase x-ray flux at the sample. The authors report the characteristics and performance of the stage 1 and stage 2 optics

  11. The 100th Anniversary of X-Ray Crystallography

    Kojić-Prodić, B.

    2013-07-01

    Full Text Available The important thing in science is not so much to obtain new facts as to discover new ways of thinking about them.W. L. BraggThe 100th anniversary of X-ray crystallography dates back to the first X-ray diffraction experiment on a crystal of copper sulphate pentahydrate. Max von Laue designed the theoretical background of the experiment, which was performed by German physicists W. Friedrich and P. Knipping in 1912. At that time, the mathematical formulation of the phenomenon and the fundamental concepts of crystallography were subjects of mineralogy. Altogether, they facilitated the development of methods for determination of the structure of matter at the atomic level. In 1913, father and son Bragg started to develop X-ray structure analysis for determination of crystal structures of simple molecules. Historic examples of structure determination starting from rock salt to complex, biologically important (macromolecules, such as globular proteins haemoglobin and myoglobin, DNA, vitamin B12 and the recent discovery of ribozyme, illustrate the development of X-ray structural analysis. The determination of 3D structures of these molecules by X-ray diffraction had opened new areas of scientific research, such as molecular biophysics, molecular genetics, structural molecular biology, bioinorganic chemistry, organometallic chemistry, and many others. The discovery and development of X-ray crystallography revolutionised our understanding of natural sciences – physics, chemistry, biology, and also science of materials. The scientific community recognised these fundamental achievements (including the discovery of X-rays by awarding twenty-eight Nobel prizes to thirty-nine men and two women. The explosive growth of science and technology in the 20th and 21st centuries had been founded on the detailed knowledge of the three-dimensional structure of molecules, which was the basis for explaining and predicting the physical, chemical, biological and

  12. A Compact X-Ray System for Macromolecular Crystallography

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for a macromolecular crystallography that combines a microfocus x-ray generator (40 micrometer full width at half maximum spot size at a power level of 46.5 W) and a collimating polycapillary optic. The Cu Ka lpha x-ray flux produced by this optimized system through a 500,um diam orifice is 7.0 times greater than the x-ray flux previously reported by Gubarev et al. [M. Gubarev et al., J. Appl. Crystallogr. 33, 882 (2000)]. The x-ray flux from the microfocus system is also 2.6 times higher than that produced by a rotating anode generator equipped with a graded multilayer monochromator (green optic, Osmic Inc. CMF24-48-Cu6) and 40% less than that produced by a rotating anode generator with the newest design of graded multilayer monochromator (blue optic, Osmic, Inc. CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 W, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42 540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym)=5.0% for data extending to 1.70 A, and 4.8% for the complete set of data to 1.85 A. The amplitudes of the observed reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  13. A Compact X-Ray System for Macromolecular Crystallography. 5

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Joy, Marshall

    2000-01-01

    We describe the design and performance of a high flux x-ray system for macromolecular crystallography that combines a microfocus x-ray generator (40 gm FWHM spot size at a power level of 46.5Watts) and a 5.5 mm focal distance polycapillary optic. The Cu K(sub alpha) X-ray flux produced by this optimized system is 7.0 times above the X-ray flux previously reported. The X-ray flux from the microfocus system is also 3.2 times higher than that produced by the rotating anode generator equipped with a long focal distance graded multilayer monochromator (Green optic; CMF24-48-Cu6) and 30% less than that produced by the rotating anode generator with the newest design of graded multilayer monochromator (Blue optic; CMF12-38-Cu6). Both rotating anode generators operate at a power level of 5000 Watts, dissipating more than 100 times the power of our microfocus x-ray system. Diffraction data collected from small test crystals are of high quality. For example, 42,540 reflections collected at ambient temperature from a lysozyme crystal yielded R(sub sym) 5.0% for the data extending to 1.7A, and 4.8% for the complete set of data to 1.85A. The amplitudes of the reflections were used to calculate difference electron density maps that revealed positions of structurally important ions and water molecules in the crystal of lysozyme using the phases calculated from the protein model.

  14. Sub-atomic resolution X-ray crystallography and neutron crystallography: promise, challenges and potential

    Matthew P. Blakeley

    2015-07-01

    Full Text Available The International Year of Crystallography saw the number of macromolecular structures deposited in the Protein Data Bank cross the 100000 mark, with more than 90000 of these provided by X-ray crystallography. The number of X-ray structures determined to sub-atomic resolution (i.e. ≤1 Å has passed 600 and this is likely to continue to grow rapidly with diffraction-limited synchrotron radiation sources such as MAX-IV (Sweden and Sirius (Brazil under construction. A dozen X-ray structures have been deposited to ultra-high resolution (i.e. ≤0.7 Å, for which precise electron density can be exploited to obtain charge density and provide information on the bonding character of catalytic or electron transfer sites. Although the development of neutron macromolecular crystallography over the years has been far less pronounced, and its application much less widespread, the availability of new and improved instrumentation, combined with dedicated deuteration facilities, are beginning to transform the field. Of the 83 macromolecular structures deposited with neutron diffraction data, more than half (49/83, 59% were released since 2010. Sub-mm3 crystals are now regularly being used for data collection, structures have been determined to atomic resolution for a few small proteins, and much larger unit-cell systems (cell edges >100 Å are being successfully studied. While some details relating to H-atom positions are tractable with X-ray crystallography at sub-atomic resolution, the mobility of certain H atoms precludes them from being located. In addition, highly polarized H atoms and protons (H+ remain invisible with X-rays. Moreover, the majority of X-ray structures are determined from cryo-cooled crystals at 100 K, and, although radiation damage can be strongly controlled, especially since the advent of shutterless fast detectors, and by using limited doses and crystal translation at micro-focus beams, radiation damage can still take place

  15. Contribution of X-ray crystallography in energy related problems

    Crystallography is concerned with the study of the structure of matter at the atomic level in condensed state. The great practical importance of scientific knowledge of the structure of solid is self evident when consideration is given to the definition of desired physical and chemical properties. The strength of steel girders, the corrosion of alloys, the plasticity of lime, the wearing properties of case hardness steel, the dielectric capacity of materials, the lubricating properties of long chain paraffin's or of graphite, the stretching of rubber and innumerable other practical phenomena of every day life depend upon ultimate structure of these materials. To understand function to control, manipulate and best utilize their properties, and to produce materials with properties meeting a desired set of specification it is essential to understand thoroughly both the characteristics and origin of each property. Origins of materials properties lie in a combination of natural laws with the detailed structure and composition of materials, i.e. the choice, location, bonding, etc. of every atom in the material object. Therefore, to understand their various properties, it is important to explore the structure property relationship in materials. X-ray crystallography is not only helping to develop new materials having desired properties, but also in improving existing materials. Radiation effects, electrolytes, superconductors and catalysts etc. are just a few examples of many areas where crystallography is helping. With the invent of new radiation sources like synchrotron and new detectors materials and techniques, this almost 80 years old discipline continues to capture the interest of solid state physicists and chemists alike. (author)

  16. X-ray detectors for soft X-ray macromolecular crystallography

    Full text: Modern protein crystallography ultimately makes use of the two-dimensional position - sensitive detectors such as Image Plates and CCD with scintillation convertors coupled with fiber optics for detection of X-Ray diffraction pictures taken from macromolecular crystals. These detectors have high efficiency for 1.5-1.0 A synchrotron radiation, special resolution ∼80-50 μm and large effective area (i.e. Σ 300 mm2 for large MAR Image Plate). Both of these types of detectors lack energy resolution. A major drawback of Image Plates is long read-out time (2.5-4 minutes). CCD based devices permit data collection in a real time, however at present they are much more expensive. One of the novel and very promising trends in protein crystallography is to use soft X-ray synchrotron radiation between 2.2 keV and 6 keV (5.6 to 2.5 A) and there is an urgent need to develop suitable detection system for these kinds of applications. It is to be two- dimensional positional sensitive detector with pitch of about 10 to 20 μm, high efficiency and real-time readout. An active area of the detector is to be at least 20 x 20 mm2. It seems to be the simplest solution to use conventional direct-illumination CCD detectors because absorption length of the 5 A radiation in silicon is about 3 μm. However they lack, for example, energy resolution and optimum solution of the problem has yet to come. (author)

  17. X-Ray Crystallography: One Century of Nobel Prizes

    Galli, Simona

    2014-01-01

    In 2012, the United Nations General Assembly declared 2014 the International Year of Crystallography. Throughout the year 2014 and beyond, all the crystallographic associations and societies active all over the world are organizing events to attract the wider public toward crystallography and the numerous topics to which it is deeply interlinked.…

  18. A Compact X-Ray System for Support of High Throughput Crystallography

    Ciszak, Ewa; Gubarev, Mikhail; Gibson, Walter M.; Joy, Marshall K.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Standard x-ray systems for crystallography rely on massive generators coupled with optics that guide X-ray beams onto the crystal sample. Optics for single-crystal diffractometry include total reflection mirrors, polycapillary optics or graded multilayer monochromators. The benefit of using polycapillary optic is that it can collect x-rays over tile greatest solid angle, and thus most efficiently, utilize the greatest portion of X-rays emitted from the Source, The x-ray generator has to have a small anode spot, and thus its size and power requirements can be substantially reduced We present the design and results from the first high flux x-ray system for crystallography that combine's a microfocus X-ray generator (40microns FWHM Spot size at a power of 45 W) and a collimating, polycapillary optic. Diffraction data collected from small test crystals with cell dimensions up to 160A (lysozyme and thaumatin) are of high quality. For example, diffraction data collected from a lysozyme crystal at RT yielded R=5.0% for data extending to 1.70A. We compare these results with measurements taken from standard crystallographic systems. Our current microfocus X-ray diffraction system is attractive for supporting crystal growth research in the standard crystallography laboratory as well as in remote, automated crystal growth laboratory. Its small volume, light-weight, and low power requirements are sufficient to have it installed in unique environments, i.e.. on-board International Space Station.

  19. Apparatus and method for nanoflow liquid jet and serial femtosecond x-ray protein crystallography

    Bogan, Michael J.; Laksmono, Hartawan; Sierra, Raymond G.

    2016-03-01

    Techniques for nanoflow serial femtosecond x-ray protein crystallography include providing a sample fluid by mixing a plurality of a first target of interest with a carrier fluid and injecting the sample fluid into a vacuum chamber at a rate less than about 4 microliters per minute. In some embodiments, the carrier fluid has a viscosity greater than about 3 centipoise.

  20. Synthesis, spectroscopy, X-ray crystallography, and DFT computations of nanosized phosphazenes

    Shariatinia, Z.; Moghadam, E.J.; Maghsoudi, N.; Mousavi, H.S.M.; Dušek, Michal; Eigner, Václav

    2015-01-01

    Roč. 641, č. 5 (2015), s. 967-978. ISSN 0044-2313 Grant ostatní: AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : phosphazene * ultrasonic * nanoparticle * x-ray crystallography * DFT calculation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.160, year: 2014

  1. Structural investigation of bistrifluron using x-ray crystallography, NMR spectroscopy, and molecular modeling

    Moon, J K; Rhee, S K; Kim, G B; Yun, H S; Chung, B J; Lee, S S; Lim, Y H

    2002-01-01

    A new insecticide, bistrifluron acts as an inhibitor of insect development and interferes with the cuticle formation of insects. Since it shows low acute oral and dermal toxicities, it can be one of potent insecticides. Based on X-ray crystallography, NMR spectroscopy and molecular modeling, the structural studies of bistrifluron have been carried out.

  2. First Results from a Microfocus X-Ray System for Macromolecular Crystallography

    Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall

    1999-01-01

    The design and performance of a 40 Watt laboratory crystallography system optimized for the structure determination of small protein crystals are described. This system combines a microfocus x-ray generator (40 microns FWHM spot size at a power level of 40 Watts) and a short focal length (F = 2.6 mm) polycapillary collimating optic, and produces a small diameter quasi-parallel x-ray beam. Measurements of x-ray flux, divergence and spectral purity of the resulting x-ray beam are presented. The x-ray flux in a 250 microns diameter aperture produced by the microfocus system is 14.7 times higher .than that from a 3.15 kW rotating anode generator equipped with graphite monochromator. Crystallography data taken with the microfocus system are presented, and indicate that the divergence and spectral purity of the x-ray are sufficient to refine the diffraction data using a standard crystallographic software. Significant additional improvements in flux and beam divergence are possible, and plans for achieving these coals are discussed.

  3. X-ray Crystallography in Open-Framework Materials.

    Bloch, Witold M; Champness, Neil R; Doonan, Christian J

    2015-10-26

    Open-framework materials, such as metal-organic frameworks (MOFs) and coordination polymers have been widely investigated for their gas adsorption and separation properties. However, recent studies have demonstrated that their highly crystalline structures can be used to periodically organize guest molecules and non-structural metal compounds either within their pore voids or by anchoring to their framework architecture. Accordingly, the open framework can act as a matrix for isolating and elucidating the structures of these moieties by X-ray diffraction. This concept has broad scope for development as an analytical tool where obtaining single crystals of a target molecule presents a significant challenge and it additionally offers potential for obtaining insights into chemically reactive species that can be stabilized within the pore network. However, the technique does have limitations and as yet a general experimental method has not been realized. Herein we focus on recent examples in which framework materials have been utilized as a scaffold for ordering molecules for analysis by diffraction methods and canvass areas for future exploration. PMID:26373458

  4. Visualization of X-ray Beam Using CdWO4 Crystal for Macromolecular Crystallography

    Kazimierz J. Gofron

    2011-12-01

    Full Text Available In synchrotron diffraction experiments, it is typically assumed that the X-ray beam at the sample position is uniform, stable and has dimensions that are controlled by the focus and slits settings. As might be expected, this process is much more complex. We present here an investigation of the properties of a synchrotron X-ray beam at the sample position. The X-ray beam is visualized with a single crystal scintillator that converts X-ray photons into visible light photons, which can be imaged using Structure Biology Center (SBC on-axis and off-axis microscope optics. The X-ray penetration is dependent on the composition of the scintillator (especially the effective Z, and X-ray energy. Several scintillators have been used to visualize X-ray beams. Here we compare CdWO4, PbWO4, Bi4Ge3O12, Y3Al5O12:Ce (YAG:Ce, and Gd2O2S:Tb (phosphor. We determined that scintillator crystals made of CdWO4 and similar high-Z materials are best suited for the energy range (7–20 keV and are most suitable for beam visualization for macromolecular crystallography applications. These scintillators show excellent absorption, optical, and mechanical properties.

  5. Synthesis, X-ray crystallography, spectroscopy, electrochemistry, thermal and kinetic study of uranyl Schiff base complexes

    Asadi, Z.; Golzard, F.; Eigner, Václav; Dušek, Michal

    2013-01-01

    Roč. 66, č. 20 (2013), s. 3629-3646. ISSN 0095-8972 R&D Projects: GA ČR(CZ) GAP204/11/0809 Institutional support: RVO:68378271 Keywords : X-ray crystallography * uranyl Schiff base complex * kinetics of thermal decomposition * cyclic voltammetry * kinetics and mechanism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.224, year: 2013

  6. Time-resolved protein nano-crystallography using an X-ray free-electron laser

    We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photo-activated states of large membrane protein complexes in the form of nano-crystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 μs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems. (authors)

  7. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography. PMID:27150272

  8. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature.

    Tsujino, Soichiro; Tomizaki, Takashi

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinning of the crystal within a levitating droplet ensured an efficient sampling of the reciprocal space. The datasets were processed with a program suite developed for serial femtosecond crystallography (SFX). The structure, which was solved by molecular replacement, was found to be identical to the structure obtained by the conventional oscillation method for up to a 1.8-Å resolution limit. In particular, the absence of protein crystal damage resulting from the acoustic levitation was carefully established. These results represent a key step towards a fully automated sample handling and measurement pipeline, which has promising prospects for a high acquisition rate and high sample efficiency for room temperature X-ray crystallography. PMID:27150272

  9. A spherical drift chamber area detector for X-ray crystallography

    Bolon, C; Lanza, R; Quigley, G; Rich, A

    1979-01-01

    A multiwire proportional chamber system has been built as an area detector for use in X-ray crystallography with Cu K/sub alpha / radiation (1.54AA). The chamber, constructed by Charpak and collaborators at CERN, consists of a 10cm thick spherical interaction region with a radial electric field, a transition from spherical to plane geometry and a 50cm*50cm multiwire proportional chamber and subtends a 90 degrees opening angle. Two dimensional position information is obtained from orthogonal cathode planes using a high speed analog centroid finding technique. Data on spatial and energy resolution as a function of angle and depth of interaction in the spherical drift region using a collimated, pulsed, X-ray source are presented. Ionization loss as a function of drift distance and field and loss due to field shaping grids has also been measured. (6 refs).

  10. Dose, exposure time, and resolution in Serial X-ray Crystallography

    Starodub, D; Hembree, G; Howells, M; Shapiro, D; Chapman, H N; Fromme, P; Schmidt, K; Weierstall, U; Doak, R B; Spence, J C H

    2007-01-01

    The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed Serial Crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available molecular and X-ray fluxes and molecular alignment. Orientation of the diffracting molecules is achieved by laser alignment. We evaluate the incident X-ray fluence (energy/area) required to obtain a given resolution from (1) an analytical model, giving the count rate at the maximum scattering angle for a model protein, (2) explicit simulation of diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency cut off of the transfer function following iterative solution of the phase problem, and reconstruction of an electron density map in the projection approximation. These calculations include c...

  11. Large area high-resolution CCD-based X-ray detector for macromolecular crystallography

    Pokric, M; Jorden, A R; Cox, M P; Marshall, A; Long, P G; Moon, K; Jerram, P A; Pool, P; Nave, C; Derbyshire, G E; Helliwell, J R

    2002-01-01

    An X-ray detector system for macromolecular crystallography based on a large area charge-coupled device (CCD) sensor has been developed as part of a large research and development programme for advanced X-ray sensor technology, funded by industry and the Particle Physics and Astronomy Research Council (PPARC) in the UK. The prototype detector consists of two large area three-sides buttable charge-coupled devices (CCD 46-62 EEV), where the single CCD area is 55.3 mmx41.5 mm. Overall detector imaging area is easily extendable to 85 mmx110 mm. The detector consists of an optically coupled X-ray sensitive phosphor, skewed fibre-optic studs and CCDs. The crystallographic measurement requirements at synchrotron sources are met through a high spatial resolution (2048x1536 pixel array), high dynamic range (approx 10 sup 5), a fast readout (approx 1 s), low noise (<10e sup -) and much reduced parallax error. Additionally, the prototype detector system has been optimised by increasing its efficiency at low X-ray ene...

  12. Three-dimensional theory of emittance in Compton scattering and x-ray protein crystallography

    A complete, three-dimensional theory of Compton scattering is described, which fully takes into account the effects of the electron beam emittance and energy spread upon the scattered x-ray spectral brightness. The radiation scattered by an electron subjected to an arbitrary electromagnetic field distribution in vacuum is first derived in the linear regime, and in the absence of radiative corrections; it is found that each vacuum eigenmode gives rise to a single Doppler-shifted classical dipole excitation. This formalism is then applied to Compton scattering in a three-dimensional laser focus, and yields a complete description of the influence of the electron beam phase-space topology on the x-ray spectral brightness; analytical expressions including the effects of emittance and energy spread are also obtained in the one-dimensional limit. Within this framework, the x-ray brightness generated by a 25 MeV electron beam is modeled, fully taking into account the beam emittance and energy spread, as well as the three-dimensional nature of the laser focus; its application to x-ray protein crystallography is outlined. Finally, coherence, harmonics, and radiative corrections are also briefly discussed

  13. Automatic processing of macromolecular crystallography X-ray diffraction data at the ESRF.

    Monaco, Stéphanie; Gordon, Elspeth; Bowler, Matthew W; Delagenière, Solange; Guijarro, Matias; Spruce, Darren; Svensson, Olof; McSweeney, Sean M; McCarthy, Andrew A; Leonard, Gordon; Nanao, Max H

    2013-06-01

    The development of automated high-intensity macromolecular crystallography (MX) beamlines at synchrotron facilities has resulted in a remarkable increase in sample throughput. Developments in X-ray detector technology now mean that complete X-ray diffraction datasets can be collected in less than one minute. Such high-speed collection, and the volumes of data that it produces, often make it difficult for even the most experienced users to cope with the deluge. However, the careful reduction of data during experimental sessions is often necessary for the success of a particular project or as an aid in decision making for subsequent experiments. Automated data reduction pipelines provide a fast and reliable alternative to user-initiated processing at the beamline. In order to provide such a pipeline for the MX user community of the European Synchrotron Radiation Facility (ESRF), a system for the rapid automatic processing of MX diffraction data from single and multiple positions on a single or multiple crystals has been developed. Standard integration and data analysis programs have been incorporated into the ESRF data collection, storage and computing environment, with the final results stored and displayed in an intuitive manner in the ISPyB (information system for protein crystallography beamlines) database, from which they are also available for download. In some cases, experimental phase information can be automatically determined from the processed data. Here, the system is described in detail. PMID:23682196

  14. Analysis of urinary stone composition in Eastern India by X-ray diffraction crystallography

    Tarun Jindal

    2014-01-01

    Full Text Available Background: Stones in the urinary system are common in our country. This study was done to assess the composition of the urinary stones in eastern part of India. Materials and Methods: A prospective study was done over a period of thirty months. A total of 90 stones were analyzed in this time period by using X-ray diffraction crystallography. Results: Of the 90 stones analyzed, 77 were renal stones, 12 were ureteric stones and one was a bladder stone. Six stones (all renal did not have properties to be represented by X-ray diffraction crystallography. The overall prevalence of the oxalate containing stones was 85.7% with calcium oxalate monohydrate (COM being the major constituent. Calcium oxalate dihydrate (COD was the next most common constituent. Struvite stones constituted 9.5% of the stones analyzed. Pure calcium phosphate stones were found in 4.7% of the cases. Conclusion: Our study reveals that the stone composition in the eastern part of India is different from that in other parts of the country. We have a comparatively lower prevalence of oxalate stones while a higher prevalence of phosphate and struvite stones.

  15. X-ray tests of microfocusing mono-capillary optic for protein crystallography

    Bilderback, D H

    2001-01-01

    A single, borosilicate-glass capillary was drawn into a 30.5 cm long elliptical shape. The inside diameter was 0.40 mm at the large base end and 0.13 mm at the tip. With 12 keV X-rays from the CHESS D1 bending magnet, the single-bounce capillary produced a focus of better than 18 mu m in diameter (FHWM) at a 3 cm distance from the capillary tip. A flux gain of 110 in the focus position was observed along with a total flux in the spot of 4x10 sup 1 sup 0 X-rays/s (conditions: 5.3 GeV, 182 mA, 1.5% bandwidth multilayer, 12 keV X-rays). A measurement of the far field focus ring diameter yielded a divergence of 3.8 mrad, in good agreement with the 4 mrad design of the optic for protein crystallography. Using a small 25 mu m square beam, we measured the local reflectivity to be greater than 95% and the inner slope errors of the capillary to average about +-150 mu rad, both from raw and elliptically shaped tubing. Our conclusion is that more perfect starting tubing (i.e. one with lower slope errors) is needed to ma...

  16. In meso in situ serial X-ray crystallography of soluble and membrane proteins

    A method for performing high-throughput in situ serial X-ray crystallography with soluble and membrane proteins in the lipid cubic phase is described. It works with microgram quantities of protein and lipid (and ligand when present) and is compatible with the most demanding sulfur SAD phasing. The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β2-adrenoreceptor–Gs protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at macromolecular

  17. In meso in situ serial X-ray crystallography of soluble and membrane proteins

    Huang, Chia-Ying [Trinity College, Dublin (Ireland); Olieric, Vincent [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Ma, Pikyee [Trinity College, Dublin (Ireland); Panepucci, Ezequiel [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Diederichs, Kay [Universität Konstanz, M647, D-78457 Konstanz (Germany); Wang, Meitian, E-mail: meitian.wang@psi.ch [Paul Scherrer Institute, CH-5232 Villigen (Switzerland); Caffrey, Martin, E-mail: meitian.wang@psi.ch [Trinity College, Dublin (Ireland)

    2015-05-14

    A method for performing high-throughput in situ serial X-ray crystallography with soluble and membrane proteins in the lipid cubic phase is described. It works with microgram quantities of protein and lipid (and ligand when present) and is compatible with the most demanding sulfur SAD phasing. The lipid cubic phase (LCP) continues to grow in popularity as a medium in which to generate crystals of membrane (and soluble) proteins for high-resolution X-ray crystallographic structure determination. To date, the PDB includes 227 records attributed to the LCP or in meso method. Among the listings are some of the highest profile membrane proteins, including the β{sub 2}-adrenoreceptor–G{sub s} protein complex that figured in the award of the 2012 Nobel Prize in Chemistry to Lefkowitz and Kobilka. The most successful in meso protocol to date uses glass sandwich crystallization plates. Despite their many advantages, glass plates are challenging to harvest crystals from. However, performing in situ X-ray diffraction measurements with these plates is not practical. Here, an alternative approach is described that provides many of the advantages of glass plates and is compatible with high-throughput in situ measurements. The novel in meso in situ serial crystallography (IMISX) method introduced here has been demonstrated with AlgE and PepT (alginate and peptide transporters, respectively) as model integral membrane proteins and with lysozyme as a test soluble protein. Structures were solved by molecular replacement and by experimental phasing using bromine SAD and native sulfur SAD methods to resolutions ranging from 1.8 to 2.8 Å using single-digit microgram quantities of protein. That sulfur SAD phasing worked is testament to the exceptional quality of the IMISX diffraction data. The IMISX method is compatible with readily available, inexpensive materials and equipment, is simple to implement and is compatible with high-throughput in situ serial data collection at

  18. Development of a shutterless continuous rotation method using an X-ray CMOS detector for protein crystallography

    Hasegawa, Kazuya; Hirata, Kunio; Shimizu, Tetsuya; Shimizu, Nobutaka; Hikima, Takaaki; Baba, Seiki; Kumasaka, Takashi; Yamamoto, Masaki

    2009-01-01

    A new shutterless continuous rotation method using an X-ray complementary metal-oxide semiconductor (CMOS) detector has been developed for high-speed, precise data collection in protein crystallography. The principle of operation and the basic performance of the X-ray CMOS detector (Hamamatsu Photonics KK C10158DK) have been shown to be appropriate to the shutterless continuous rotation method. The data quality of the continuous rotation method is comparable to that of the conventional oscill...

  19. Synthesis, x-ray crystallography and leishmanicidal activity of benzimidazolinyl piperidine derivative

    Protozoan parasites of the Leishmania genus are the main cause of vector-borne disease leishmaniasis throughout the world. It is caused by at least 17 different species of protozoan Leishmania and transmitted by the bite of infected sand flies. Leishmaniasis could be fatal. Present drugs have limitations to cure it due to the development of drug resistance. Hence, to design an effective leishmanicidal agent would be of great interest. Benzimidazolinyl piperidine has served as potential target due to a vast range of biological activities. In the present study a new 4-(2-keto-1-benzimidazolinyl)piperidine derivative, 1-(2-(4-fluorophenyl)-2-oxoethyl)-4-(2-oxo-2,3-dihydro-1H-benzo(d)imidazol) piperidinium bromide has been synthesized and characterized by X-ray crystallography, 1D and 2D NMR spectroscopy. Evaluation by in vitro leishmanicidal assay showed good activity. (author)

  20. NATO Advanced Study Institute on Chemical Crystallography with Pulsed Neutrons and Synchrotron X-Rays

    Jeffrey, George

    1988-01-01

    X-ray and neutron crystallography have played an increasingly impor­ tant role in the chemical and biochemical sciences over the past fifty years. The principal obstacles in this methodology, the phase problem and com­ puting, have been overcome. The former by the methods developed in the 1960's and just recognised by the 1985 Chemistry Nobel Prize award to Karle and Hauptman, the latter by the dramatic advances that have taken place in computer technology in the past twenty years. Within the last decade, two new radiation sources have been added to the crystallographer's tools. One is synchrotron X-rays and the other is spallation neutrons. Both have much more powerful fluxes than the pre­ vious sources and they are pulsed rather than continuos. New techniques are necessary to fully exploit the intense continuos radiation spectrum and its pulsed property. Both radiations are only available from particular National Laboratories on a guest-user basis for scientists outside these Na­ tional Laboratories. Hi...

  1. The need for a shared database infrastructure: combining X-ray crystallography and electron microscopy

    Advances in structural biology are opening greater opportunities for understanding biological structures from the cellular to the atomic level. Particularly promising are the links that can be established between the information provided by electron microscopy and the atomic structures derived from X-ray crystallography and nuclear magnetic resonance spectroscopy. Combining such different kinds of structural data can result in novel biological information on the interaction of biomolecules in large supramolecular assemblies. As a consequence, the need to develop new databases in the field of structural biology that allow for an integrated access to data from all the experimental techniques is becoming critical. Pilot studies performed in recent years have already established a solid background as far as the basic information that an integrated macromolecular structure database should contain, as well as the basic principles for integration. These efforts started in the context of the BioImage project, and resulted in a first complete database prototype that provided a versatile platform for the linking of atomic models of X-ray diffraction data with electron microscopy information. Analysis of the requirements needed to combine data at different levels of resolution have resulted in sets of specifications that make possible the integration of all these different types in the context of a web environment. The case of a structural study linking electron microscopy and X-ray data, which is already contained within the BioImage data base and in the Protein Data Bank, is used here to illustrate the current approach, while a general discussion highlights the urgent need for integrated databases. (orig.)

  2. NATURAL CYCLOPENTANOID CYANOHYDRIN GLYCOSIDES .13. STRUCTURE DETERMINATION OF NATURAL EPOXYCYCLOPENTANES BY X-RAY CRYSTALLOGRAPHY AND NMR-SPECTROSCOPY

    Olafsdottir, E. S.; Sorensen, A. M.; Cornett, Claus; Jaroszewski, J. W.

    1991-01-01

    nonannellated cyclopentane derivatives. The new glucosides were shown, by NMR spectroscopy (including NOE measurements), X-ray crystallography, and enzymatic hydrolysis to the corresponding cyanohydrins, to be (1R,2R,3R,4R)- and (1S,2S,3S,4S)-1-(beta-D-glucopyranosyloxy)-2,3-epoxy-4-hydroxycyclopenta ne-1...

  3. X-ray Structure of Native Scorpion Toxin BmBKTx1 by Racemic Protein Crystallography Using Direct Methods

    Mandal, Kalyaneswar; Pentelute, Brad L.; Tereshko, Valentina; Kossiakoff, Anthony A.; Kent, Stephen B.H.; (UC)

    2009-04-08

    Racemic protein crystallography, enabled by total chemical synthesis, has allowed us to determine the X-ray structure of native scorpion toxin BmBKTx1; direct methods were used for phase determination. This is the first example of a protein racemate that crystallized in space group I41/a.

  4. Life in the fast lane for protein crystallization and X-ray crystallography

    Pusey, Marc L.; Liu, Zhi-Jie; Tempel, Wolfram; Praissman, Jeremy; Lin, Dawei; Wang, Bi-Cheng; Gavira, Jose A.; Ng, Joseph D.

    2005-01-01

    The common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high-rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today's high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from

  5. Development of an X-ray HARP–FEA detector system for high-throughput protein crystallography

    A new detector system for protein crystallography based on an X-ray HARP–FEA is presented. A new detector system for protein crystallography is now being developed based on an X-ray HARP–FEA (high-gain avalanche rushing amorphous photoconductor–field emitter array), which consists of an amorphous selenium membrane and a matrix field emitter array. The combination of the membrane avalanche effect with a single driven FEA has several advantages over currently available area detectors, including higher sensitivity, higher spatial resolution and a higher frame rate. Preliminary evaluation of the detector has been carried out and its effectiveness has been confirmed. Next, diffraction images were measured with continuous rotation of a protein crystal, and the images were compared with those measured by the existing CCD detector; the system successfully obtained high-spatial-resolution images. Using shutterless measurement, the total measurement time can be reduced significantly, making the method appropriate for high-throughput protein crystallography. The X-ray HARP–FEA detector is an attractive candidate for the next generation of X-ray area detectors

  6. Watching proteins function with 150-ps time-resolved X-ray crystallography

    Anfinrud, Philip

    2007-03-01

    We have used time-resolved Laue crystallography to characterize ligand migration pathways and dynamics in wild-type and several mutant forms of myoglobin (Mb), a ligand-binding heme protein found in muscle tissue. In these pump-probe experiments, which were conducted on the ID09B time-resolved beamline at the European Synchrotron and Radiation Facility, a laser pulse photodissociates CO from an MbCO crystal and a suitably delayed X-ray pulse probes its structure via Laue diffraction. Single-site mutations in the vicinity of the heme pocket docking site were found to have a dramatic effect on ligand migration. To visualize this process, time-resolved electron density maps were stitched together into movies that unveil with <2-å spatial resolution and 150-ps time-resolution the correlated protein motions that accompany and/or mediate ligand migration. These studies help to illustrate at an atomic level relationships between protein structure, dynamics, and function.

  7. -2,4-Dichlorobenzoyl phosphoric triamides: Synthesis, spectroscopic and X-ray crystallography studies

    Khodayar Gholivand; Nasrin Oroujzadeh; Zahra Shariatinia

    2010-07-01

    New phosphoric triamides 1-9 were synthesized by the reaction of -2,4-dichlorobenzoyl phosphoramidic dichloride with various cyclic aliphatic amines and the products were characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. Surprisingly, the 1H NMR spectrum of 2 indicated long range 6 (P, H) coupling constant = 1.3, 1.4 Hz and those of molecules 3, 4, 6-8 display longrange 4 (H, H) coupling constants (1.8-1.9 Hz) for the coupling of aromatic protons in 2,4-dichlorophenyl rings. 1H NMR spectra indicated 3 (PNCH) for enantiotopic and diastereotopic benzylic CH2 protons in compounds 7 and 8. The spectroscopic data of newly synthesized compounds were compared with those related -benzoyl derivatives. The structures of compounds 5, 8 and 10 (2,4-Cl2-C6H3C(O)NHP(O)[NCH2CH(CH3)2]2) have been determined by X-ray crystallography. The structures form centrosymmetric dimers through intermolecular strong -P=O…H-N-hydrogen bonds. The dimers connect to each other via rather strong and weak C-H…O plus weak C-H…Cl H-bonds to produce a 1-D network for 5 while 3-D polymeric chains for 8 and 10.

  8. Alignment protocol for effective use of hard x-ray quad collimator for micro-crystallography

    Xu, S.; Nagarajan, V.; Sanishvili, R.; Fischetti, R. F.

    2011-09-01

    In October 2009, a quad, mini-beam collimator was implemented at GM/CA CAT that allowed users to select between a 5, 10, or 20 micron mini-beam or a 300 micron scatter guard for macromolecular crystallography. Initial alignment of each pinhole to the optical axis of each path through the mini-beam collimator is performed under an optical microscope using an alignment jig. Next, the pre-aligned collimator and its kinematic mount are moved to the beamline and attached to a pair of high precision translation stages attached to an on-axis-visualization system for viewing the protein crystal under investigation. The collimator is aligned to the beam axis by two angular and two translational motions. The pitch and yaw adjustments are typically only done during initial installation, and therefore are not motorized. The horizontal and vertical positions are adjusted remotely with high precision translational stages. Final alignment of the collimator is achieved using several endstation components, namely, a YAG crystal at the sample position to visualize the mini-beam, a CCD detector to record an X-ray background image, and a PIN diode to record the mini-beam intensity. The alignment protocol and its opto-mechanical instrumentation design will be discussed in detail.

  9. A split-beam probe-pump-probe scheme for femtosecond time resolved protein X-ray crystallography

    Jasper J. van Thor

    2015-01-01

    Full Text Available In order to exploit the femtosecond pulse duration of X-ray Free-Electron Lasers (XFEL operating in the hard X-ray regime for ultrafast time-resolved protein crystallography experiments, critical parameters that determine the crystallographic signal-to-noise (I/σI must be addressed. For single-crystal studies under low absorbed dose conditions, it has been shown that the intrinsic pulse intensity stability as well as mode structure and jitter of this structure, significantly affect the crystallographic signal-to-noise. Here, geometrical parameters are theoretically explored for a three-beam scheme: X-ray probe, optical pump, X-ray probe (or “probe-pump-probe” which will allow experimental determination of the photo-induced structure factor amplitude differences, ΔF, in a ratiometric manner, thereby internally referencing the intensity noise of the XFEL source. In addition to a non-collinear split-beam geometry which separates un-pumped and pumped diffraction patterns on an area detector, applying an additional convergence angle to both beams by focusing leads to integration over mosaic blocks in the case of well-ordered stationary protein crystals. Ray-tracing X-ray diffraction simulations are performed for an example using photoactive yellow protein crystals in order to explore the geometrical design parameters which would be needed. The specifications for an X-ray split and delay instrument that implements both an offset angle and focused beams are discussed, for implementation of a probe-pump-probe scheme at the European XFEL. We discuss possible extension of single crystal studies to serial femtosecond crystallography, particularly in view of the expected X-ray damage and ablation due to the first probe pulse.

  10. Iterative Mass Spectrometry and X-Ray Crystallography to Study Ion-Trapping and Rearrangements by a Flexible Cluster

    Zhang, Kun; Kurmoo, Mohamedally; Wei, Lian-Qiang; Zeng, Ming-Hua

    2013-01-01

    An important aspect of chemical reactions involves understanding the intermediate steps from reactants to products. The iterative use of mass spectrometry and X-Ray crystallography is demonstrated to be a powerful combination in this respect. We have applied them in identifying molecular clusters in solution followed by their solid-state structural characterizations. We used a key ligand, 2-[(2-hydroxy-3-methoxy-benzylidene)-amino]-ethanesulfonate (L), which serves as chelating/bridging units...

  11. Volume-conserving trans-cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography

    Jung, Yang Ouk; Lee, Jae Hyuk; Kim, Joonghan; Schmidt, Marius; Moffat, Keith; Šrajer, Vukica; Ihee, Hyotcherl

    2013-03-01

    Trans-to-cis isomerization, the key reaction in photoactive proteins, usually cannot occur through the standard one-bond-flip mechanism. Owing to spatial constraints imposed by a protein environment, isomerization probably proceeds through a volume-conserving mechanism in which highly choreographed atomic motions are expected, the details of which have not yet been observed directly. Here we employ time-resolved X-ray crystallography to visualize structurally the isomerization of the p-coumaric acid chromophore in photoactive yellow protein with a time resolution of 100 ps and a spatial resolution of 1.6 Å. The structure of the earliest intermediate (IT) resembles a highly strained transition state in which the torsion angle is located halfway between the trans- and cis-isomers. The reaction trajectory of IT bifurcates into two structurally distinct cis intermediates via hula-twist and bicycle-pedal pathways. The bifurcating reaction pathways can be controlled by weakening the hydrogen bond between the chromophore and an adjacent residue through E46Q mutation, which switches off the bicycle-pedal pathway.

  12. Direct detection of x-rays for protein crystallography employing a thick, large area CCD

    Atac, Muzaffer; McKay, Timothy

    1999-01-01

    An apparatus and method for directly determining the crystalline structure of a protein crystal. The crystal is irradiated by a finely collimated x-ray beam. The interaction of the x-ray beam with the crystal produces scattered x-rays. These scattered x-rays are detected by means of a large area, thick CCD which is capable of measuring a significant number of scattered x-rays which impact its surface. The CCD is capable of detecting the position of impact of the scattered x-ray on the surface of the CCD and the quantity of scattered x-rays which impact the same cell or pixel. This data is then processed in real-time and the processed data is outputted to produce a image of the structure of the crystal. If this crystal is a protein the molecular structure of the protein can be determined from the data received.

  13. NSLS-II Biomedical beamlines for macromolecular crystallography, FMX and AMX, and for X-ray scattering, LIX: current developments

    We present the current status of development of the two macromolecular crystallography (MX) beamlines, FMX and AMX, and the X-ray scattering beamline LIX, at the National Synchrotron Light Source-II (NSLS-II) [1]. Together, FMX and AMX will cover a broad range of use cases from serial crystallography on micron sized crystals, to very large unit cell complexes, to rapid sample screening, e.g. for the always-hard-to-grow membrane proteins and for ligand binding studies. The LIX beamline will support a variety of X-ray scattering measurements for studies on proteins in solution, lipid membranes and biological tissues. We have performed Synchrotron Radiation Workshop (SRW) [2] and Shadow[3] simulations to help select optimal methods to modify the size of the beam easily and smoothly at both FMX and AMX. The very low emittance of the NSLS-II storage ring and the resulting low divergence of the X-ray beam, as well as the long optical path lengths in the photon delivery systems lead to stringent requirements e.g. for vibrational stability and mirror quality. We discuss beamline design considerations addressing these challenges, such as combining mirror optics with compound refractive lenses (CRLs).

  14. An Excel Spreadsheet for a One-Dimensional Fourier Map in X-ray Crystallography

    Clegg, William

    2004-01-01

    The teaching of crystal structure determination with single-crystal X-ray diffraction at undergraduate level faces numerous challenges. Single-crystal X-ray diffraction is used in a vast range of chemical research projects and forms the basis for a high proportion of structural results that are presented to high-school, undergraduate, and graduate…

  15. Ultrasonic acoustic levitation for fast frame rate X-ray protein crystallography at room temperature

    Soichiro Tsujino; Takashi Tomizaki

    2016-01-01

    Increasing the data acquisition rate of X-ray diffraction images for macromolecular crystals at room temperature at synchrotrons has the potential to significantly accelerate both structural analysis of biomolecules and structure-based drug developments. Using lysozyme model crystals, we demonstrated the rapid acquisition of X-ray diffraction datasets by combining a high frame rate pixel array detector with ultrasonic acoustic levitation of protein crystals in liquid droplets. The rapid spinn...

  16. Crystallography using synchrotron radiation X-ray. Application of Weissenberg and time resolved Laue methods to macromolecular structure analysis

    The three-dimensional structures of macromolecules under static and dynamic conditions are very important for the study of molecular biology. X-ray crystallography is the most powerful tool to obtain the three-dimensional structures of the macromolecules of especially large size, for which synchrotron radiation X-ray is used, The collection of diffraction data is the first, most important step for crystalline structure analysis. Efforts have been exerted to establish the data collection system using monochromatic synchrotron radiation X-ray (SRX). The diffraction intensity data collection system combined with a newly developed Weissenberg camera for macromolecules and an image plate (IP) using SRX has been established at the Photon Factory. Many important biological structures by high resolution have already come out with this data collection system, which is used also for the study on enzymatic reaction mechanism. A time resolved Laue camera has been designed, and the preliminary experiment has been carried out in the Photon Factory. These systems are reported. (K.I.)

  17. CCD[charge-coupled device]-based synchrotron x-ray detector for protein crystallography: Performance projected from an experiment

    The intense x radiation from a synchrotron source could, with a suitable detector, provide a complete set of diffraction images from a protein crystal before the crystal is damaged by radiation (2 to 3 min). An area detector consisting of a 40 mm dia. x-ray fluorescing phosphor, coupled with an image intensifier and lens to a CCD image sensor, was developed to determine the effectiveness of such a detector in protein crystallography. The detector was used in an experiment with a rotating anode x-ray generator. Diffraction patterns from a lysozyme crystal obtained with this detector are compared to those obtained with film. The two images appear to be virtually identical. The flux of 104 x-ray photons/s was observed on the detector at the rotating anode generator. At the 6-GeV synchrotron being designed at Argonne, the flux on an 80 x 80 mm2 detector is expected to be >109 photons/s. The projected design of such a synchrotron detector shows that a diffraction-peak count >106 could be obtained in ∼0.5 s. With an additional ∼0.5 s readout time of a 512 x 512 pixel CCD, the data acquisition time per frame would be ∼1 s so that ninety 10 diffraction images could be obtained, with approximately 1% precision, in less than 3 min

  18. Over-exposure from working with an X-ray crystallography set

    A service engineer was engaged in setting up and aligning a goniometer for use with a new X-ray generator and tube stand in the physics department of a university. The goniometer was of an old type, not matching with the shutter system of the tube shield. A piece of brass tubing 4cm in length was being used as a temporary enclosure for the useful X-ray beam, but the engineer realised after about four hours operation that the useful beam was not totally enclosed. A film badge worn by the engineer at waist level recorded a dose of less than 0.2rems, but the generator table had possibly shielded it. A later reconstruction of the incident produced an estimate of 2rems as the dose to the engineer's trunk surface. It was impossible to estimate the dose to his hands and wrists resulting from direct exposure to the X-ray beam, but the dose received must have been below 500 to 600rems, since no unusual skin effects have subsequently been detected. The incident demonstrates the need for adequate training, frequent monitoring especially when the useful beam is not totally enclosed, and an appreciation of the hazards involved when working with crystallographic equipment generating very intense X-ray beams. The combination of pieces of equipment made by different manufacturers requires particular care. Maintenance and alignment of modern crystallographic apparatus can also be hazardous to inexperienced operators. (U.K.)

  19. Synthesis, X-ray crystallography, and DFT calculations of a novel phosphoramide

    Shariatinia, Z.; Dušek, Michal; Eigner, Václav

    2014-01-01

    Roč. 640, č. 14 (2014), 2945-2955. ISSN 0044-2313 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : phosphoramide * x-ray structure * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.160, year: 2014

  20. Au 133 (SPh - t Bu) 52 Nanomolecules: X-ray Crystallography, Optical, Electrochemical, and Theoretical Analysis

    Dass, Amala; Theivendran, Shevanuja; Nimmala, Praneeth Reddy; Kumara, Chanaka; Jupally, Vijay Reddy; Fortunelli, Alessandro; Sementa, Luca; Barcaro, Giovanni; Zuo, Xiaobing; Noll, Bruce C.

    2015-04-15

    Crystal structure determination has revolutionized modern science in biology, chemistry, and physics. However, the difficulty in obtaining periodic crystal lattices which are needed for X-ray crystal analysis has hindered the determination of atomic structure in nanomaterials, known as the "nanostructure problem". Here, by using rigid and bulky ligands, we have overcome this limitation and successfully solved the X-ray crystallographic structure of the largest reported thiolated gold nanomolecule, Au133S52. The total composition, Au-133(SPh-tBu)(52), was verified using high resolution electrospray ionization mass spectrometry (ESI-MS). The experimental and simulated optical spectra show an emergent surface plasmon resonance that is more pronounced than in the slightly larger Au-144(SCH2CH2Ph)(60). Theoretical analysis indicates that the presence of rigid and bulky ligands is the key to the successful crystal formation.

  1. Radiation-damage-free quantum crystallography and resolution-enhanced x-ray imaging techniques using quantum multipath interference of thermal light

    Li, Zheng; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N; Shih, Yanhua

    2016-01-01

    Using higher order coherence of thermal light sources, we can achieve enhancement of resolution of standard x-ray imaging techniques, such as x-ray diffraction and phase contrast imaging. The cost of implementing such schemes is minimal comparing to the schemes using entangled two-photon pairs. The proposed diffractive quan- tum crystallography using multipath interference of thermal light can be eventually free of radiation damage, because the diffraction pattern could be formed by using low energy photons of optical wavelength. Thus it is promising to apply the proposed quantum crystallography scheme to nanocrystalline or non-crystalline samples that are too difficult to be crystallized.

  2. Hydrogen atoms can be located accurately and precisely by x-ray crystallography

    Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M.; Woźniak, Krzysztof; Jayatilaka, Dylan

    2016-01-01

    Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A–H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A–H bond lengths with those from neutron measurements for A–H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors.

  3. X-ray instrumentation for SR beamlines

    Kovalchuk, M V; Zheludeva, S I; Aleshko-Ozhevsky, O P; Arutynyan, E H; Kheiker, D M; Kreines, A Y; Lider, V V; Pashaev, E M; Shilina, N Y; Shishkov, V A

    2000-01-01

    The main possibilities and parameters of experimental X-ray stations are presented: 'Protein crystallography', 'X-ray structure analysis', 'High-precision X-ray optics', 'X-ray crystallography and material science', 'X-ray topography', 'Photoelectron X-ray standing wave' that are being installed at Kurchatov SR source by A.V. Shubnikov Institute of Crystallography.

  4. Azo coupling of 4-nitrophenyldiazonium chloride with aliphatic nucleophiles: an integrated organic synthesis and X-ray crystallography experiment

    This article describes an undergraduate experiment for the synthesis of p-nitrophenyldiazonium chloride and its coupling with acetylacetone and two enaminones, 4-phenylamino-pent-3-en-2-one and 4-amino-pent-3-en-2-one, in an adaptation of a previously reported synthetic protocol. The azo dyes 4-(E)-phenylamino-3-[(E)-2-(4-nitrophenylazo)]-3-penten-2-one and 4-(E)-amino-3-[(E)-2-(4-nitrophenylazo)]-3-penten-2-one were obtained, and the solid state structure of this latter azo compound was characterized by single crystal X-ray diffraction studies. This two-week integrated laboratory approach involves simple synthetic experiments and microwave chemistry in the organic laboratory plus crystallography analysis, suitable for novice students on undergraduate experimental chemistry courses. (author)

  5. Structure description ambiguity depending upon which edition of International Tables for (X-ray) Crystallography is used

    Parthe, E.; Gelato, L.M.; Chabot, B.

    1988-11-01

    The editorial policy of certain scientific journals where crystal structure data are published does not expressly specify that all three fractional coordinates of the atoms in the asymmetric unit have to be given for all Wyckoff sites. Owing to the differences between the 1952 edition and the 1983 edition of International Tables for (X-ray) Crystallography - in the way the xyz triplets of certain Wyckoff sites are formulated and also the interchange of Wyckoff letters assigned to the sites - failure to give all three atom coordinates may lead to ambiguities. It is shown that for seven monoclinic space groups (setting with unique axis c), three tetragonal and one cubic space groups (all with origin choice 2, i.e. symmetry centre at the origin) the shortened description may lead to different atom arrangements depending upon which edition of the International Tables is used.

  6. Structure description ambiguity depending upon which edition of International Tables for (X-ray) Crystallography is used

    The editorial policy of certain scientific journals where crystal structure data are published does not expressly specify that all three fractional coordinates of the atoms in the asymmetric unit have to be given for all Wyckoff sites. Owing to the differences between the 1952 edition and the 1983 edition of International Tables for (X-ray) Crystallography - in the way the xyz triplets of certain Wyckoff sites are formulated and also the interchange of Wyckoff letters assigned to the sites - failure to give all three atom coordinates may lead to ambiguities. It is shown that for seven monoclinic space groups (setting with unique axis c), three tetragonal and one cubic space groups (all with origin choice 2, i.e. symmetry centre at the origin) the shortened description may lead to different atom arrangements depending upon which edition of the International Tables is used. (orig.)

  7. FIST - a suite of X-ray powder crystallography programs for use with a HP-65 calculator

    Programs for X-ray powder crystallography are defined for use with a Hewlett Packard HP-65 (programmable) pocket calculator. These include the prediction of all Bragg reflections for defined P-, F-, I-cubic, tetragonal, hexagonal and orthorhombic cells; the calculation of the position of a specific Bragg reflection from defined unit cells with all symmetries except triclinic; interconversion of theta, 2theta, sin2theta and d, as well as the calculation of the Nelson-Riley function; the computation of crystal densities; the interconversion of rhombohedral and hexagonal unit cells, lsub(c) determinations for graphite, the calculation of a and c for boron carbide; and Miller index transformations between various unit cells. (author)

  8. Microwave assisted synthesis, X-ray crystallography and DFT calculations of selected aromatic thiosemicarbazones

    Serda, Maciej; Małecki, Jan G.; Mrozek-Wilczkiewicz, Anna; Musioł, Robert; Polański, Jarosław

    2013-04-01

    Series of four benzaldehyde thiosemicarbazones has been synthesized under microwave irradiation and characterized structurally by means of infrared and NMR spectroscopies and mass spectrometry. Their crystal structures were determined by single crystal X-ray analysis followed by DFT calculations. Partial charges on the molecular surface and dipole moments of the structures were calculated. Crystal structures are stabilized by intramolecular hydrogen bonding and stacking interactions. Studied compounds are interesting as antiproliferative and antifungal agents acting through interactions with iron. Thus presented results may be useful in design new more active or specific structures.

  9. A damage-free structural determination of the highly X-ray irradiation-sensitive active site of bovine heart cytochrome c oxidase by the femtosecond X-ray laser crystallography using SACLA

    A peroxide-like ligand in the O2 reduction site of the fully oxidized bovine heart cytochrome c oxidase (CcO) as isolated blocks the proton pump activity of CcO. High resolution structural determination of the ligand-bound O2 reduction site was essentially impossible because of the high sensitivity of the bound ligand to X-ray irradiation. The present high resolution and damage-free determination of the site by the femtosecond X-ray crystallographic analysis using SACLA, an X-ray free electron laser facility, has provided various insights for the mechanism of proton pump. Furthermore, the successful determination by femtosecond level X-ray irradiation assures that X-ray structural changes during the physiological processes driven by proteins are able to be followed with the time resolution sufficiently high for following any physiologically relevant process in the protein. The concept of Picobiology, for which the present newly developed time-resolved X-ray structural technique together with a recently established time-resolved infrared spectroscopy are prerequisite, is introduced for showing the importance of the femtosecond X-ray laser crystallography for understanding of Life Process. (author)

  10. Domain Movements upon Activation of Phenylalanine Hydroxylase Characterized by Crystallography and Chromatography-Coupled Small-Angle X-ray Scattering.

    Meisburger, Steve P; Taylor, Alexander B; Khan, Crystal A; Zhang, Shengnan; Fitzpatrick, Paul F; Ando, Nozomi

    2016-05-25

    Mammalian phenylalanine hydroxylase (PheH) is an allosteric enzyme that catalyzes the first step in the catabolism of the amino acid phenylalanine. Following allosteric activation by high phenylalanine levels, the enzyme catalyzes the pterin-dependent conversion of phenylalanine to tyrosine. Inability to control elevated phenylalanine levels in the blood leads to increased risk of mental disabilities commonly associated with the inherited metabolic disorder, phenylketonuria. Although extensively studied, structural changes associated with allosteric activation in mammalian PheH have been elusive. Here, we examine the complex allosteric mechanisms of rat PheH using X-ray crystallography, isothermal titration calorimetry (ITC), and small-angle X-ray scattering (SAXS). We describe crystal structures of the preactivated state of the PheH tetramer depicting the regulatory domains docked against the catalytic domains and preventing substrate binding. Using SAXS, we further describe the domain movements involved in allosteric activation of PheH in solution and present the first demonstration of chromatography-coupled SAXS with Evolving Factor Analysis (EFA), a powerful method for separating scattering components in a model-independent way. Together, these results support a model for allostery in PheH in which phenylalanine stabilizes the dimerization of the regulatory domains and exposes the active site for substrate binding and other structural changes needed for activity. PMID:27145334

  11. Syntheses, spectroscopic study and X-ray crystallography of some new phosphoramidates and lanthanide(III) complexes of N-(4-nitrobenzoyl)-N',N''-bis(morpholino)phosphoric triamide

    Gholivand, K.; Mostaanzadeh, H.; Kovaľ, Tomáš; Dušek, Michal; Erben, M.F.; Stoeckli-Evans, H.; Della Védova, C.O.

    2010-01-01

    Roč. 66, Part 4 (2010), s. 441-450. ISSN 0108-7681 Grant ostatní: AVČR(CZ) Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : phosphoramidates * lanthanide(III) complexes * NMR * IR spectroscopy * x-ray crystallography Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.829, year: 2010

  12. Structural Elucidation of Dendritic Host-Guest Complexes by X-ray Crystallography and Molecular Dynamics Simulations

    Chang, T; Pieterse, K.; Broeren, M.A.C.; Kooijman, H.; Spek, A.L.; Hilbers, M.F.; Meijer, E. W.

    2007-01-01

    The multiple monovalent binding of adamantyl-urea poly(propyleneimine) dendrimers with carboxylic acid-urea guests was investigated using molecular dynamics simulations and Xray crystallography to better understand the structure and behavior of the dynamic multivalent complex in solution. The results from the two methods are consistent and suggest a preferred molecular picture of this complicated aggregate of multiple components. The guest molecules can bind to the dendrimer in a variety of w...

  13. Kissing G domains of MnmE monitored by X-ray crystallography and pulse electron paramagnetic resonance spectroscopy.

    Simon Meyer

    2009-10-01

    Full Text Available MnmE, which is involved in the modification of the wobble position of certain tRNAs, belongs to the expanding class of G proteins activated by nucleotide-dependent dimerization (GADs. Previous models suggested the protein to be a multidomain protein whose G domains contact each other in a nucleotide dependent manner. Here we employ a combined approach of X-ray crystallography and pulse electron paramagnetic resonance (EPR spectroscopy to show that large domain movements are coupled to the G protein cycle of MnmE. The X-ray structures show MnmE to be a constitutive homodimer where the highly mobile G domains face each other in various orientations but are not in close contact as suggested by the GDP-AlF(x structure of the isolated domains. Distance measurements by pulse double electron-electron resonance (DEER spectroscopy show that the G domains adopt an open conformation in the nucleotide free/GDP-bound and an open/closed two-state equilibrium in the GTP-bound state, with maximal distance variations of 18 A. With GDP and AlF(x, which mimic the transition state of the phosphoryl transfer reaction, only the closed conformation is observed. Dimerization of the active sites with GDP-AlF(x requires the presence of specific monovalent cations, thus reflecting the requirements for the GTPase reaction of MnmE. Our results directly demonstrate the nature of the conformational changes MnmE was previously suggested to undergo during its GTPase cycle. They show the nucleotide-dependent dynamic movements of the G domains around two swivel positions relative to the rest of the protein, and they are of crucial importance for understanding the mechanistic principles of this GAD.

  14. Inhibition of d-xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography

    A joint X-ray/neutron structure of d-xylose isomerase in complex with the inhibitor sorbitol was determined at room temperature at an acidic pH of 5.9. Protonation of the O5 O atom of the sugar was directly observed in the nuclear density maps. Under acidic conditions sorbitol gains a water-mediated interaction with the enzyme active site, which may explain the increased potency of the inhibitor at low pH. d-Xylose isomerase (XI) converts the aldo-sugars xylose and glucose to their keto analogs xylulose and fructose, but is strongly inhibited by the polyols xylitol and sorbitol, especially at acidic pH. In order to understand the atomic details of polyol binding to the XI active site, a 2.0 Å resolution room-temperature joint X-ray/neutron structure of XI in complex with Ni2+ cofactors and sorbitol inhibitor at pH 5.9 and a room-temperature X-ray structure of XI containing Mg2+ ions and xylitol at the physiological pH of 7.7 were obtained. The protonation of oxygen O5 of the inhibitor, which was found to be deprotonated and negatively charged in previous structures of XI complexed with linear glucose and xylulose, was directly observed. The Ni2+ ions occupying the catalytic metal site (M2) were found at two locations, while Mg2+ in M2 is very mobile and has a high B factor. Under acidic conditions sorbitol gains a water-mediated interaction that connects its O1 hydroxyl to Asp257. This contact is not found in structures at basic pH. The new interaction that is formed may improve the binding of the inhibitor, providing an explanation for the increased affinity of the polyols for XI at low pH

  15. Inhibition of d-xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography

    Kovalevsky, Andrey, E-mail: ayk@lanl.gov [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Hanson, B. Leif [University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Mason, Sax A. [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Forsyth, V. Trevor [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Keele University, Staffordshire (United Kingdom); Fisher, Zoe [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Mustyakimov, Marat [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Oak Ridge National Laboratory, PO Box 2008, MS 6475, Oak Ridge, TN 37831 (United States); Blakeley, Matthew P. [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Keen, David A. [Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX (United Kingdom); Langan, Paul [Oak Ridge National Laboratory, PO Box 2008, MS 6475, Oak Ridge, TN 37831 (United States); Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States)

    2012-09-01

    A joint X-ray/neutron structure of d-xylose isomerase in complex with the inhibitor sorbitol was determined at room temperature at an acidic pH of 5.9. Protonation of the O5 O atom of the sugar was directly observed in the nuclear density maps. Under acidic conditions sorbitol gains a water-mediated interaction with the enzyme active site, which may explain the increased potency of the inhibitor at low pH. d-Xylose isomerase (XI) converts the aldo-sugars xylose and glucose to their keto analogs xylulose and fructose, but is strongly inhibited by the polyols xylitol and sorbitol, especially at acidic pH. In order to understand the atomic details of polyol binding to the XI active site, a 2.0 Å resolution room-temperature joint X-ray/neutron structure of XI in complex with Ni{sup 2+} cofactors and sorbitol inhibitor at pH 5.9 and a room-temperature X-ray structure of XI containing Mg{sup 2+} ions and xylitol at the physiological pH of 7.7 were obtained. The protonation of oxygen O5 of the inhibitor, which was found to be deprotonated and negatively charged in previous structures of XI complexed with linear glucose and xylulose, was directly observed. The Ni{sup 2+} ions occupying the catalytic metal site (M2) were found at two locations, while Mg{sup 2+} in M2 is very mobile and has a high B factor. Under acidic conditions sorbitol gains a water-mediated interaction that connects its O1 hydroxyl to Asp257. This contact is not found in structures at basic pH. The new interaction that is formed may improve the binding of the inhibitor, providing an explanation for the increased affinity of the polyols for XI at low pH.

  16. Structural Properties of Human CaMKII Ca2+ /Calmodulin-Dependent Protein Kinase II using X-ray Crystallography

    Cao, Yumeng Melody; McSpadden, Ethan; Kuriyan, John; Department of Molecular; Cell Biology; Department of Chemistry Team

    To this day, human memory storage remains a mystery as we can at most describe the process vaguely on a cellular level. Switch-like properties of Calcium/Calmodulin-Dependent Protein Kinase II make it a leading candidate in understanding the molecular basis of human memory. The protein crystal was placed in the beam of a synchrotron source and the x-ray crystallography data was collected as reflections on a diffraction pattern that undergo Fourier transform to obtain the electron density. We observed two drastic differences from our solved structure at 2.75Å to a similar construct of the mouse CaMKII association domain. Firstly, our structure is a 6-fold symmetric dodecamer, whereas the previously published construct was a 7-fold symmetric tetradecamer. This suggests the association domain of human CaMKII is a dynamic structure that is triggered subunit exchange process. Secondly, in our structure the N-terminal tag is docked as an additional beta-strand on an uncapped beta-sheet present in each association domain protomer. This is concrete evidence of the involvement of the polypeptide docking site in the molecular mechanism underlining subunit exchange. In the future, we would like to selectively inhibit the exchange process while not disrupting the other functionalities of CaMKII.

  17. Iterative mass spectrometry and X-ray crystallography to study ion-trapping and rearrangements by a flexible cluster.

    Zhang, Kun; Kurmoo, Mohamedally; Wei, Lian-Qiang; Zeng, Ming-Hua

    2013-01-01

    An important aspect of chemical reactions involves understanding the intermediate steps from reactants to products. The iterative use of mass spectrometry and X-Ray crystallography is demonstrated to be a powerful combination in this respect. We have applied them in identifying molecular clusters in solution followed by their solid-state structural characterizations. We used a key ligand, 2-[(2-hydroxy-3-methoxy-benzylidene)-amino]-ethanesulfonate (L), which serves as chelating/bridging units to stabilize the precursor [Li₄Ni₆(OH)₂(L)₆(CH₃CN)₆](ClO₄)₂·4CH₃CN. The results of subsequent reactions witness a cascade of processes involving fragmentation, inner bridging ligand substitution (OH⁻ to OCH₃⁻), changing modes of binding (chelate to monodentate) of the key ligand, ion-trapping and exchange (Li⁺, Na⁺ and Ca²⁺) and their site preferences, coordinating and non-coordinating solvents (CH₃CN to CH₃OH, H₂O and EtOH) replacement. The flexibility of the Ni₃OL₃ species in solution permits the formation of six derivatives. The complimentary techniques open a broader prospect for cluster design and applications. PMID:24343303

  18. Probing the Role of Divalent Metal Ions in a Bacterial Psychrophilic Metalloprotease: Binding Studies of an Enzyme in the Crystalline State by X-Ray Crystallography

    Ravaud, Stephanie; Gouet, Patrice; Haser, Richard; Aghajari, Nushin

    2003-01-01

    The psychrophilic alkaline metalloprotease (PAP) produced by a Pseudomonas bacterium isolated in Antarctica belongs to the clan of metzincins, for which a zinc ion is essential for catalytic activity. Binding studies in the crystalline state have been performed by X-ray crystallography in order to improve the understanding of the role of the zinc and calcium ions bound to this protease. Cocrystallization and soaking experiments with EDTA in a concentration range from 1 to 85 mM have resulted ...

  19. X-ray instrumentation for SR beamlines

    Kovalchuk, M.V.; Shilin, Yu.N.; Zheludeva, S.I. E-mail: zheludeva@ns.crys.ras.ru; Aleshko-Ozhevsky, O.P.; Arutynyan, E.H.; Kheiker, D.M.; Kreines, A.Ya.; Lider, V.V.; Pashaev, E.M.; Shilina, N.Yu.; Shishkov, V.A

    2000-06-21

    The main possibilities and parameters of experimental X-ray stations are presented: 'Protein crystallography', 'X-ray structure analysis', 'High-precision X-ray optics', 'X-ray crystallography and material science', 'X-ray topography', 'Photoelectron X-ray standing wave' that are being installed at Kurchatov SR source by A.V. Shubnikov Institute of Crystallography.

  20. X-ray crystal structure of N-6 adenine deoxyribose nucleic acid methyltransferase from Streptococcus pneumoniae

    Tran, Phidung Hong

    X-ray diffraction by using resonant anomalous scattering has become a popular tool for solving crystal structures in the last ten years with the expanded availability of tunable synchrotron radiation for protein crystallography. Mercury atoms were used for phasing. The crystal structure of N-6 deoxyribose nucleic acid methyltransferase from Streptoccocus pneumoniae (DpnM) was solved by using the Multiple Anomalous Diffraction technique. The crystal structure reveals the formation of mercaptide between the mercury ion and the thiol group on the cysteine amino acid in a hydrophobic environment. The crystal structure contains the bound ligand, S- adenosyl-l-methionine on the surface of the concave opening. The direction of the β-strands on the beta sheets are identical to other solved methyltransferases. The highly conserved motifs, DPPY and the FxGxG, are found to be important in ligand binding and possibly in methyl group transfer. The structure has a concave cleft with an opening on the order of 30 Å that can accommodate a DNA duplex. By molecular modelling coupled to sequence alignment, two other highly conserved residues Arg21 and Gly19 are found to be important in catalysis.

  1. Determination of plutonium in nitric acid solutions using energy dispersive L X-ray fluorescence with a low power X-ray generator

    This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1–20 g L−1 is given

  2. Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction

    Michael Heymann

    2014-09-01

    Full Text Available An emulsion-based serial crystallographic technology has been developed, in which nanolitre-sized droplets of protein solution are encapsulated in oil and stabilized by surfactant. Once the first crystal in a drop is nucleated, the small volume generates a negative feedback mechanism that lowers the supersaturation. This mechanism is exploited to produce one crystal per drop. Diffraction data are measured, one crystal at a time, from a series of room-temperature crystals stored on an X-ray semi-transparent microfluidic chip, and a 93% complete data set is obtained by merging single diffraction frames taken from different unoriented crystals. As proof of concept, the structure of glucose isomerase was solved to 2.1 Å, demonstrating the feasibility of high-throughput serial X-ray crystallography using synchrotron radiation.

  3. Complementarity of neutron and ultrahigh resolution synchrotron X-ray protein crystallography studies: Results with concanavalin A at cryo and room temperature

    The complementarity of synchrotron derived ultrahigh resolution X-ray and neutron protein crystallography is explored via an ensemble of part lectin concanavalin A crystal structures. Thus a resume of the study of a cryo 0.94 A and a neutron (+X-ray) protein crystal 2.4 A structure in room temperature is made and these are then compared in their efficiency to determine the positions of the bound solvent atoms i.e. as hydrogens and deuteriums. First results are also presented of comparisons of two ultrahigh resolution protein crystal structures, the 0.94 A and the new 0.92 A structure. Thus the variability is in the multiple occupancies of side chains. Overall, one can see that a 'complete' structure definition, with today's experimental capabilities, is possible and can include structure ensemble variations. (author)

  4. Shoot-and-Trap: Use of specific X-ray damage to study structural protein dynamics by temperature-control led cryo-crystallography

    Colletier, J.P.; Sanson, B.; Weik, M. [Univ Grenoble 1, Lab Biophys Mol, F-38027 Grenoble (France); Bourgeois, D. [CEA-CNRS-Univ Grenoble 1, Inst Biol Struct Jean Pierre Ebel, Commissariat Energie Atom, Lab Cristallogenese etCristallog Prot, F-38027 Grenoble (France); Fournier, D. [CNRS, Inst Pharmacol et Biol Struct, Grp Biotechnol Prot, F-31077 Toulouse (France); Bourgeois, D. [European Synchrotron Radiat Facil, F-38000 Grenoble (France); Silman, I. [Weizmann Inst Sci, Dept Neurobiol, IL-76100 Rehovot (Israel); Sussman, J.L. [Weizmann Inst Sci, Dept Struct Biol, IL-76100 Rehovot (Israel)

    2008-07-01

    Although X-ray crystallography is the most widely used method for macromolecular structure determination, it does not provide dynamical information, and either experimental tricks or complementary experiments must be used to overcome the inherently static nature of crystallographic structures. Here we used specific X-ray damage during temperature-controlled crystallographic experiments at a third-generation synchrotron source to trigger and monitor (Shoot-and-Trap) structural changes putatively involved in an enzymatic reaction. In particular, a non-hydrolyzable substrate analogue of acetylcholinesterase, the 'off-switch' at cholinergic synapses, was radio-cleaved within the buried enzymatic active site. Subsequent product clearance, observed at 150 K but not at 100 K, indicated exit from the active site possibly via a 'backdoor'. The simple strategy described here is, in principle, applicable to any enzyme whose structure in complex with a substrate analogue is available and, therefore, could serve as a standard procedure in kinetic crystallography studies. (authors)

  5. Single-Crystal Raman Spectroscopy and X-ray Crystallography at Beamline X26-C of the NSLS

    Three-dimensional structures derived from X-ray diffraction of protein crystals provide a wealth of information. Features and interactions important for the function of macromolecules can be deduced and catalytic mechanisms postulated. Still, many questions can remain, for example regarding metal oxidation states and the interpretation of 'mystery density', i.e. ambiguous or unknown features within the electron density maps, especially at ∼2 (angstrom) resolutions typical of most macromolecular structures. Beamline X26-C at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL), provides researchers with the opportunity to not only determine the atomic structure of their samples but also to explore the electronic and vibrational characteristics of the sample before, during and after X-ray diffraction data collection. When samples are maintained under cryo-conditions, an opportunity to promote and follow photochemical reactions in situ as a function of X-ray exposure is also provided. Plans are in place to further expand the capabilities at beamline X26-C and to develop beamlines at NSLS-II, currently under construction at BNL, which will provide users access to a wide array of complementary spectroscopic methods in addition to high-quality X-ray diffraction data.

  6. Clear as Crystal: The Story of the Braggs--How X-Ray Crystallography Has Contributed to Science

    George, Robert; Patterson, John

    2014-01-01

    Here is a brief history of the work of two of Australia's most famous scientists, Sir William Bragg and his son Sir Lawrence Bragg. Jointly awarded the Nobel Prize in 1915 for their groundbreaking research into the use of X-rays to study the chemical structure and function of molecules, they have contributed to our heritage and to science at…

  7. Au133(SPh-tBu)52 Nanomolecules: X-ray Crystallography, Optical, Electrochemical, and Theoretical Analysis

    Dass, Amala; Theivendran, Shevanuja; Nimmala, Praneeth Reddy; Kumara, Chanaka; Jupally, Vijay Reddy; Fortunelli, Alessandro; Sementa, Luca; Barcaro, Giovanni; Zuo, Xiaobing; Noll, Bruce C.

    2015-04-15

    Crystal structure determination has revolutionized modern science in biology, chemistry, and physics. However, the difficulty in obtaining periodic crystal lattices which are needed for X-ray crystal analysis has hindered the determination of atomic structure in nanomaterials, known as the “nanostructure problem”. Here, by using rigid and bulky ligands, we have overcome this limitation and successfully solved the X-ray crystallographic structure of the largest reported thiolated gold nanomolecule, Au133S52. The total composition, Au133(SPh-tBu)52, was verified using high resolution electrospray ionization mass spectrometry (ESI-MS). The experimental and simulated optical spectra show an emergent surface plasmon resonance that is more pronounced than in the slightly larger Au144(SCH2CH2Ph)60. Theoretical analysis indicates that the presence of rigid and bulky ligands is the key to the successful crystal formation.

  8. Testing of gadolinium oxy-sulphide phosphors for use in CCD-based X-ray detectors for macromolecular crystallography

    Pokric, M

    2002-01-01

    The resolution and detective quantum efficiency of CCD-based detectors used for X-ray diffraction is primarily affected by the layer of phosphor that converts incident X-ray photons into visible photons. The optimum thickness of this phosphor layer is strongly dependent on the fraction of absorbed incident X-ray photons and required spatial resolution. A range of terbium doped gadolinium oxy-sulphide (Gd sub 2 O sub 2 S : Tb) phosphor samples, provided by Applied Scintillation Technologies, have been evaluated for spatial resolution, light output and uniformity. The phosphor samples varied in coating weight (10-25 mg/cm sup 2), grain size (2.5, 4, 10 mu m), and applied coating (no coating, reflectors and absorbers). In addition, a non-uniform layer was introduced to some samples in order to provide an inherent diffusion layer. The experimental results showed that the introduction of a reflector increases the point spread function (PSF) and increases light yield up to 30%, while an absorber reduces the PSF tai...

  9. Determination of plutonium in nitric acid solutions using energy dispersive L X-ray fluorescence with a low power X-ray generator

    Py, J. [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon (France); Commissariat à l’Énergie Atomique, Centre de Valduc, F-21120 Is-sur-Tille (France); Groetz, J.-E., E-mail: jegroetz@univ-fcomte.fr [Laboratoire Chrono-Environnement, UMR CNRS 6249, Université de Franche-Comté, 16 route de Gray, F-25030 Besançon (France); Hubinois, J.-C.; Cardona, D. [Commissariat à l’Énergie Atomique, Centre de Valduc, F-21120 Is-sur-Tille (France)

    2015-04-21

    This work presents the development of an in-line energy dispersive L X-ray fluorescence spectrometer set-up, with a low power X-ray generator and a secondary target, for the determination of plutonium concentration in nitric acid solutions. The intensity of the L X-rays from the internal conversion and gamma rays emitted by the daughter nuclei from plutonium is minimized and corrected, in order to eliminate the interferences with the L X-ray fluorescence spectrum. The matrix effects are then corrected by the Compton peak method. A calibration plot for plutonium solutions within the range 0.1–20 g L{sup −1} is given.

  10. Isolation and Characterization, Including by X-ray Crystallography, of Contact and Solvent-Separated Ion Pairs of Silenyl Lithium Species.

    Pinchuk, Daniel; Mathew, Jomon; Kaushansky, Alexander; Bravo-Zhivotovskii, Dmitry; Apeloig, Yitzhak

    2016-08-22

    Reaction of bromoacylsilane 1 (pink solution) with tBu2 MeSiLi (3.5 equiv) in a 4:1 hexane:THF solvent mixture at -78 °C to room temperature yields the solvent separated ion pair (SSIP) of silenyl lithium E-[(tBuMe2 Si)(tBu2 MeSi)C=Si(SiMetBu2 )](-) [Li⋅4THF](+) 2 a (green-blue solution). Removal of the solvent and addition of benzene converts 2 a into the corresponding contact ion pair (CIP) 2 b (violet-red solution) with two THF molecules bonded to the lithium atom. The 2 a⇌2 b interconversion is reversible upon THF⇌ benzene solvent change. Both 2 a and 2 b were characterized by X-ray crystallography, NMR and UV/Vis spectroscopy, and theoretical calculations. The degree of dissociation of the Si-Li bond has a large effect on the visible spectrum (and thus color) and on the silenylic (29) Si NMR chemical shift, but a small effect on the molecular structure. This is the first report of the X-ray molecular structure of both the SSIP and the CIP of any R2 E=E'RM species (E=C, Si; E'=C, Si; M=metal). PMID:27466152

  11. Toward resolving the catalytic mechanism of dihydrofolate reductase using neutron and ultrahigh-resolution X-ray crystallography [Neutron and ultrahigh resolution X-ray crystallography reveals water as the proton donor in the catalytic mechanism of dihydrofolate reductase

    Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate (DHF) to tetrahydrofolate (THF). An important step in the mechanism involves proton donation to the N5 atom of DHF. The inability to determine the protonation states of active site residues and substrate has led to the lack of consensus on a catalytic mechanism. To resolve this ambiguity, we conducted neutron and ultrahigh resolution X-ray crystallographic studies of the pseudo-Michaelis ternary complex of DHFR with folate and NADP+ from E. coli. The neutron data were collected to 2.0 Å resolution using a 3.6 mm3 crystal with the quasi-Laue technique, and the structure reveals that the N3 atom of folate is protonated while Asp27 is negatively charged. Previous mechanisms have proposed a keto-to-enol tautomerization of the substrate to facilitate protonation of the N5 atom. The structure supports the existence of the keto tautomer due to protonation of the N3 atom, suggesting tautomerization is unnecessary for catalysis. In the 1.05 Å resolution X-ray structure of the ternary complex, conformational disorder of the Met20 side chain is coupled to electron density for a partially occupied water within hydrogen-bonding distance of the N5 atom of folate; this suggests direct protonation of substrate by solvent. We propose a catalytic mechanism for DHFR that involves stabilization of the keto tautomer of the substrate, elevation of the pKa of the N5 atom of DHF by Asp27, and protonation of N5 by water whose access to the active site is gated by fluctuation of the Met20 side chain even though the Met-20 loop is closed

  12. Low-Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography

    Feld, Geoffrey K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); National Institute of Environmental Health Science, Research Triangle Park, NC (United States); Heymann, Michael [Brandeis Univ., Waltham, MA (United States); Univ. of Hamburg and DESY, Hamburg (Germany); Benner, W. Henry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pardini, Tommaso [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tsai, Ching -Ju [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Boutet, Sebastien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Coleman, Matthew A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hunter, Mark S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Li, Xiaodan [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Messerschmidt, Marc [SLAC National Accelerator Lab., Menlo Park, CA (United States); BioXFEL Science and Technology Center, Buffalo, NY (United States); Opathalage, Achini [Brandeis Univ., Waltham, MA (United States); Pedrini, Bill [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Williams, Garth J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Krantz, Bryan A. [Univ. of California, Berkeley, CA (United States); Fraden, Seth [Brandeis Univ., Waltham, MA (United States); Hau-Riege, Stefan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Evans, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Segelke, Brent W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frank, Matthias [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-27

    X-ray free-electron lasers (XFELs) offer a new avenue to the structural probing of complex materials, including biomolecules. Delivery of precious sample to the XFEL beam is a key consideration, as the sample of interest must be serially replaced after each destructive pulse. The fixed-target approach to sample delivery involves depositing samples on a thin-film support and subsequent serial introduction via a translating stage. Some classes of biological materials, including two-dimensional protein crystals, must be introduced on fixed-target supports, as they require a flat surface to prevent sample wrinkling. A series of wafer and transmission electron microscopy (TEM)-style grid supports constructed of low-Z plastic have been custom-designed and produced. Aluminium TEM grid holders were engineered, capable of delivering up to 20 different conventional or plastic TEM grids using fixed-target stages available at the Linac Coherent Light Source (LCLS). As proof-of-principle, X-ray diffraction has been demonstrated from two-dimensional crystals of bacteriorhodopsin and three-dimensional crystals of anthrax toxin protective antigen mounted on these supports at the LCLS. In conclusion, the benefits and limitations of these low-Z fixed-target supports are discussed; it is the authors' belief that they represent a viable and efficient alternative to previously reported fixed-target supports for conducting diffraction studies with XFELs.

  13. Elucidation of Lipid Binding Sites on Lung Surfactant Protein A Using X-ray Crystallography, Mutagenesis, and Molecular Dynamics Simulations.

    Goh, Boon Chong; Wu, Huixing; Rynkiewicz, Michael J; Schulten, Klaus; Seaton, Barbara A; McCormack, Francis X

    2016-07-01

    Surfactant protein A (SP-A) is a collagenous C-type lectin (collectin) that is critical for pulmonary defense against inhaled microorganisms. Bifunctional avidity of SP-A for pathogen-associated molecular patterns (PAMPs) such as lipid A and for dipalmitoylphosphatidylcholine (DPPC), the major component of surfactant membranes lining the air-liquid interface of the lung, ensures that the protein is poised for first-line interactions with inhaled pathogens. To improve our understanding of the motifs that are required for interactions with microbes and surfactant structures, we explored the role of the tyrosine-rich binding surface on the carbohydrate recognition domain of SP-A in the interaction with DPPC and lipid A using crystallography, site-directed mutagenesis, and molecular dynamics simulations. Critical binding features for DPPC binding include a three-walled tyrosine cage that binds the choline headgroup through cation-π interactions and a positively charged cluster that binds the phosphoryl group. This basic cluster is also critical for binding of lipid A, a bacterial PAMP and target for SP-A. Molecular dynamics simulations further predict that SP-A binds lipid A more tightly than DPPC. These results suggest that the differential binding properties of SP-A favor transfer of the protein from surfactant DPPC to pathogen membranes containing appropriate lipid PAMPs to effect key host defense functions. PMID:27324153

  14. New insight into the dynamic properties and the active site architecture of H-Ras p21 revealed by X-ray crystallography at very high resolution

    Klink Björn U

    2010-10-01

    Full Text Available Abstract Background In kinetic crystallography, the usually static method of X-ray diffraction is expanded to allow time-resolved analysis of conformational rearrangements in protein structures. To achieve this, reactions have to be triggered within the protein crystals of interest, and optical spectroscopy can be used to monitor the reaction state. For this approach, a modified form of H-Ras p21 was designed which allows reaction initiation and fluorescence readout of the initiated GTPase reaction within the crystalline state. Rearrangements within the crystallized protein due to the progressing reaction and associated heterogeneity in the protein conformations have to be considered in the subsequent refinement processes. Results X-ray diffraction experiments on H-Ras p21 in different states along the reaction pathway provide detailed information about the kinetics and mechanism of the GTPase reaction. In addition, a very high data quality of up to 1.0 Å resolution allowed distinguishing two discrete subconformations of H-Ras p21, expanding the knowledge about the intrinsic flexibility of Ras-like proteins, which is important for their function. In a complex of H-Ras•GppNHp (guanosine-5'-(β,γ-imido-triphosphate, a second Mg2+ ion was found to be coordinated to the γ-phosphate group of GppNHp, which positions the hydrolytically active water molecule very close to the attacked γ-phosphorous atom. Conclusion For the structural analysis of very high-resolution data we have used a new 'two-chain-isotropic-refinement' strategy. This refinement provides an alternative and easy to interpret strategy to reflect the conformational variability within crystal structures of biological macromolecules. The presented fluorescent form of H-Ras p21 will be advantageous for fluorescence studies on H-Ras p21 in which the use of fluorescent nucleotides is not feasible.

  15. Combination of X-ray crystallography, SAXS and DEER to obtain the structure of the FnIII-3, 4 domains of integrin α6β4

    Alonso-García, Noelia [Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca (Spain); García-Rubio, Inés [ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich (Switzerland); Academia General Militar, Carretera de Huesca s/n, 50090 Zaragoza (Spain); Manso, José A. [Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca (Spain); Buey, Rubén M. [Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca (Spain); University of Salamanca, Campus Unamuno, 37007 Salamanca (Spain); Urien, Hector [Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca (Spain); Sonnenberg, Arnoud [Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands); Jeschke, Gunnar [ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich (Switzerland); Pereda, José M. de, E-mail: pereda@usal.es [Consejo Superior de Investigaciones Científicas – University of Salamanca, Campus Unamuno, 37007 Salamanca (Spain)

    2015-04-01

    The structure of the FnIII-3, 4 region of integrin β4 was solved using a hybrid approach that combines crystallographic structures, SAXS, DEER and molecular modelling. The structure helps in understanding how integrin β4 might bind to other hemidesmosomal proteins and mediate signalling. Integrin α6β4 is a major component of hemidesmosomes that mediate the stable anchorage of epithelial cells to the underlying basement membrane. Integrin α6β4 has also been implicated in cell proliferation and migration and in carcinoma progression. The third and fourth fibronectin type III domains (FnIII-3, 4) of integrin β4 mediate binding to the hemidesmosomal proteins BPAG1e and BPAG2, and participate in signalling. Here, it is demonstrated that X-ray crystallography, small-angle X-ray scattering and double electron–electron resonance (DEER) complement each other to solve the structure of the FnIII-3, 4 region. The crystal structures of the individual FnIII-3 and FnIII-4 domains were solved and the relative arrangement of the FnIII domains was elucidated by combining DEER with site-directed spin labelling. Multiple structures of the interdomain linker were modelled by Monte Carlo methods complying with DEER constraints, and the final structures were selected against experimental scattering data. FnIII-3, 4 has a compact and cambered flat structure with an evolutionary conserved surface that is likely to correspond to a protein-interaction site. Finally, this hybrid method is of general application for the study of other macromolecules and complexes.

  16. Characteristic Ligand-Induced Crystal Forms of HIV-1 Protease Complexes: A Novel Discovery of X-Ray Crystallography

    Mixtures of saquinavir (SQV) and ritonavir (RTV) were cocrystallized with HIV-1 protease (PR) in an attempt to compare their relative potencies using a crystallographic approach and factors responsible for the respective crystal forms obtained were examined. The mixture ratio of the SQV/RTV was in the range of 1:1 to 1:50 with increasing concentration of dimethyl sulphoxide (DMSO) used. Two crystal forms of PR complexes were obtained. At concentrations of 0.8 and 1.2 % DMSO using 1:1 and 1:15 ratios of SQV/RTV, the crystal form was monoclinic while increasing the concentration of DMSO to 3.2 and 5.0% using 1:15 and 1:50 ratios of SQV/RTV, the orthorhombic crystal form was obtained. The high resolution X-ray crystal structures of the PR/ inhibitor complexes reveal that crystal forms with respective space groups are dependent on the occupancy of either SQV or RTV in the active site of the PR. The occupancy of either of the PR inhibitors in the active site of PR has interestingly demonstrated unique cooperativity effects in crystallization of protein-ligand complexes. The crystal forms obtained were also related to the concentration of DMSO and ammonium sulphate in crystallization, and storage conditions of purified PR. Surprisingly, the relative occupancies of these inhibitors in the active site suggested a competition between the two inhibitors which were not inhibition constants related. Analysis of the structures in both crystal forms show no difference in DMSO content but at higher concentration of DMSO (3.2 - 5.0%) in the orthorhombic crystal forms, there were protein-sulphate interactions which were absent in the monoclinic forms with lower concentration (0.8 - 1.2%) of DMSO. This work has clearly demonstrated that there is cooperativity in crystallization and the conditions of crystallization influence specific intermolecular contacts in crystal packing (crystal form). (author)

  17. SPECTROSCOPY STUDIES, X-RAY CRYSTALLOGRAPHY, AND ANTITUMOR EVALUATION OF THE BEHAVIOR OF REACTIONS OF BISDIMEDONE DERIVATIVES WITH MALONONITRILE OR WITH BENZYLIDENEMALONONITILE IN ETHANOLIC PIPERIDINE

    Fatima Al-Omran

    2014-03-01

    Full Text Available A simple, environmentally acceptable, a one-pot method, which is efficient, inexpensive, and rapid, afforded excellent yields of the 4H-chromeme derivatives 5 and 6 from a three-component reaction of dimedone, arylaldehdes 2a-b, and malononitrile and a two-component reaction of bisdimedones 3a-b and malononitrile, respectively. Refluxing ethanolic piperidine was used as the catalyst for the 10-min reactions. A one-pot reaction of benzylidenemalononitrile, instead of malononitrile, with bisdimedones 3a-b, using the aforementioned reaction, also provided the 4H-chromene derivative 5 in excellent yield. The structures of the newly synthesized compounds were elucidated by elemental analyses, X-ray crystallography, and a variety of spectroscopic methods, including proton and carbon nuclear magnetic resonance spectroscopy (1H-NMR and 13C-NMR, respectively, correlation spectroscopy (COSY, heteronuclear single quantum coherence spectroscopy (HSQC, heteronuclear multiple-bond correlation spectroscopy (HMBC, and mass spectrometry (MS. The inhibitory effects of the 4H-chromeme derivatives 5 and 6 on the in vitro growth of human tumor cell and normal cell lines were greater than that of the reference drug doxorubicin.

  18. Study of humic acids by small-angle X-ray and neutron scattering

    Humic acids are an important component of natural ecological system and represent a polydisperse complex of natural biopolymers with molecular masses from several to hundreds kilodaltons. They are both a source of organic compounds and a protector against anthropogenic pollutions of biosphere. The aim of the report is to underline some possibilities of small-angle X-ray and neutron scattering to study HA and their fractions. (author)

  19. Interaction of the replication terminator protein (RTP) with DNA probed by NMR spectroscopy and x-ray crystallography

    Full text: The arrest of replication forks during the termination of DNA replication in Bacillus subtilis is dependent upon the binding of the 30 kDa replication terminator protein (RTP) to its cognate Ter binding site. Two adjacently bound dimers of RTP form a termination complex that can prevent the progression of a replication fork approaching from one direction, but not the other. The crystal structure of free RTP has previously been solved, but the precise orientation with which it binds to Ter sites remains unknown. This information is important for understanding the molecular mechanism of replication fork arrest. We have used NMR spectroscopy to observe 1H-15N correlations arising from 15N-labelled RTP mutant, and to track their perturbations upon the addition of DNA. This showed that 60% of the amino acid residues are affected by the DNA interaction, and also that the complex is symmetrical. Assignment of the 1H-15N correlations was achieved using a suite of triple resonance NMR experiments with 15N,13C,2H enriched protein recorded at 800 MHz and using TROSY pulse sequences. This revealed that α3-helices are involved in the binding interaction, and that the 'wings' of RTP may not be contributing to binding. Crystals of the complex have been grown from the NMR sample, and data collected to 3.1 Angstroms is anticipated to provide further molecular detail

  20. Mapping the topographic epitope landscape on the urokinase plasminogen activator receptor (uPAR by surface plasmon resonance and X-ray crystallography

    Baoyu Zhao

    2015-12-01

    Full Text Available The urokinase-type plasminogen activator receptor (uPAR or CD87 is a glycolipid-anchored membrane protein often expressed in the microenvironment of invasive solid cancers and high levels are generally associated with poor patient prognosis (Kriegbaum et al., 2011 [1]. uPAR is organized as a dynamic modular protein structure composed of three homologous Ly6/uPAR domains (LU.This internally flexible protein structure of uPAR enables an allosteric regulation of the interactions with its two principal ligands: the serine protease urokinase-type plasminogen activator (uPA and the provisional matrix protein vitronectin (Vn (Mertens et al., 2012; Gårdsvoll et al., 2011; Madsen et al., 2007 [2–4]. The data presented here relates to the non-covalent trapping of one of these biologically relevant uPAR-conformations by a novel class of monoclonal antibodies (Zhao et al., 2015 [5] and to the general mapping of the topographic epitope landscape on uPAR. The methods required to achieve these data include: (1 recombinant expression and purification of a uPAR-hybrid protein trapped in the desired conformation [patent; WO 2013/020898 A12013]; (2 developing monoclonal antibodies with unique specificities using this protein as antigen; (3 mapping the functional epitope on uPAR for these mAbs by surface plasmon resonance with a complete library of purified single-site uPAR mutants (Zhao et al., 2015; Gårdsvoll et al., 2006 [5,6]; and finally (4 solving the three-dimensional structures for one of these mAbs by X-ray crystallography alone and in complex with uPAR [deposited in the PDB database as 4QTH and 4QTI, respectively].

  1. Mapping the topographic epitope landscape on the urokinase plasminogen activator receptor (uPAR) by surface plasmon resonance and X-ray crystallography.

    Zhao, Baoyu; Gandhi, Sonu; Yuan, Cai; Luo, Zhipu; Li, Rui; Gårdsvoll, Henrik; de Lorenzi, Valentina; Sidenius, Nicolai; Huang, Mingdong; Ploug, Michael

    2015-12-01

    The urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycolipid-anchored membrane protein often expressed in the microenvironment of invasive solid cancers and high levels are generally associated with poor patient prognosis (Kriegbaum et al., 2011 [1]). uPAR is organized as a dynamic modular protein structure composed of three homologous Ly6/uPAR domains (LU).This internally flexible protein structure of uPAR enables an allosteric regulation of the interactions with its two principal ligands: the serine protease urokinase-type plasminogen activator (uPA) and the provisional matrix protein vitronectin (Vn) (Mertens et al., 2012; Gårdsvoll et al., 2011; Madsen et al., 2007 [2-4]). The data presented here relates to the non-covalent trapping of one of these biologically relevant uPAR-conformations by a novel class of monoclonal antibodies (Zhao et al., 2015 [5]) and to the general mapping of the topographic epitope landscape on uPAR. The methods required to achieve these data include: (1) recombinant expression and purification of a uPAR-hybrid protein trapped in the desired conformation [patent; WO 2013/020898 A12013]; (2) developing monoclonal antibodies with unique specificities using this protein as antigen; (3) mapping the functional epitope on uPAR for these mAbs by surface plasmon resonance with a complete library of purified single-site uPAR mutants (Zhao et al., 2015; Gårdsvoll et al., 2006 [5,6]); and finally (4) solving the three-dimensional structures for one of these mAbs by X-ray crystallography alone and in complex with uPAR [deposited in the PDB database as 4QTH and 4QTI, respectively]. PMID:26504891

  2. [Diffuse x-ray wide-angle scattering of polyglutamic acid in solution].

    Fedorov, B A; Becker, M; Damaschun, G; Damaschun, H; Gedicke, C; Zirwer, D

    1977-01-01

    The diffuse wide angle x-ray scattering (WAXS) of polyglutamic acid (PGA) in solution was studied using an x-ray diffractometer with small aperture of the primary beam. The scattering curve was recorded at an angular interval from (article: see text). The experimental scattering intensity of PGA with alpha-helical CD spectrum showed a maximum at 14.4 nm-1. Unordered PGA in solution yielded no maximum at this scattering angle. The studies have proved that the scattering theory can be applied to globular proteins in solution as well as to chain molecules in solution in this angular interval. The differences between the calculated scattering curves and the experimental curves indicate minor movements of the side chains of PGA in solutions and slight structuring of the solvent at the surface of the polypeptide chain. PMID:25547

  3. Structures of Plutonium(IV) and Uranium(VI) with N,N-Dialkyl Amides from Crystallography, X-ray Absorption Spectra, and Theoretical Calculations.

    Acher, Eléonor; Hacene Cherkaski, Yanis; Dumas, Thomas; Tamain, Christelle; Guillaumont, Dominique; Boubals, Nathalie; Javierre, Guilhem; Hennig, Christoph; Solari, Pier Lorenzo; Charbonnel, Marie-Christine

    2016-06-01

    The structures of plutonium(IV) and uranium(VI) ions with a series of N,N-dialkyl amides ligands with linear and branched alkyl chains were elucidated from single-crystal X-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS), and theoretical calculations. In the field of nuclear fuel reprocessing, N,N-dialkyl amides are alternative organic ligands to achieve the separation of uranium(VI) and plutonium(IV) from highly concentrated nitric acid solution. EXAFS analysis combined with XRD shows that the coordination structure of U(VI) is identical in the solution and in the solid state and is independent of the alkyl chain: two amide ligands and four bidentate nitrate ions coordinate the uranyl ion. With linear alkyl chain amides, Pu(IV) also adopt identical structures in the solid state and in solution with two amides and four bidentate nitrate ions. With branched alkyl chain amides, the coordination structure of Pu(IV) was more difficult to establish unambiguously from EXAFS. Density functional theory (DFT) calculations were consequently performed on a series of structures with different coordination modes. Structural parameters and Debye-Waller factors derived from the DFT calculations were used to compute EXAFS spectra without using fitting parameters. By using this methodology, it was possible to show that the branched alkyl chain amides form partly outer-sphere complexes with protonated ligands hydrogen bonded to nitrate ions. PMID:27171842

  4. X-rays and some applications

    This book is one of the specialized books issued by the Arab Atomic Energy Agency about the key technologies of interest to Arab researchers . The book contains 10 chapters as follows: the nature of X-ray, methods of production and measurement of X-rays, X-ray and materials, X-ray crystallography, X-ray and chemistry, X-ray and physics, biological effects of X-ray, radiography in the field of medicine and biology, X-ray in the field of industry, other applications in agriculture, imaging artifacts and paintings and geology.

  5. Measuring the x-ray resolving power of bent potassium acid phthalate diffraction crystals

    Haugh, M. J., E-mail: haughmj@nv.doe.gov; Jacoby, K. D. [National Security Technologies, LLC, Livermore, California 94550 (United States); Wu, M.; Loisel, G. P. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)

    2014-11-15

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories in Albuquerque, New Mexico. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a double crystal diffractometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  6. Measuring the X-ray Resolving Power of Bent Potassium Acid Phthalate Diffraction Crystals

    Haugh, M. J. [NSTec; Wu, M. [SNL; Jacoby, K. D. [NSTec; Loisel, G. P. [SNL

    2014-11-01

    This report presents the results from measuring the X-ray resolving power of a curved potassium acid phthalate (KAP(001)) spectrometer crystal using two independent methods. It is part of a continuing effort to measure the fundamental diffraction properties of bent crystals that are used to study various characteristics of high temperature plasmas. Bent crystals like KAP(001) do not usually have the same diffraction properties as corresponding flat crystals. Models that do exist to calculate the effect of bending the crystal on the diffraction properties have simplifying assumptions and their accuracy limits have not been adequately determined. The type of crystals that we measured is being used in a spectrometer on the Z machine at Sandia National Laboratories (SNL) in Albuquerque, NM. The first technique for measuring the crystal resolving power measures the X-ray spectral line width of the characteristic lines from several metal anodes. The second method uses a diode X-ray source and a dual goniometer arrangement to measure the reflectivity curve of the KAP(001) crystal. The width of that curve is inversely proportional to the crystal resolving power. The measurement results are analyzed and discussed.

  7. Site-specific Incorporation of 3-Iodo-L-tyrosine into Proteins and Single-wavelength Anomalous Dispersion Phasing with Soft X-ray in Protein Crystallography

    Murayama, Kazutaka; Sakamoto, Kensaku

    Iodine is a good anomalous scatter for radiations from in-house X-ray generators (Cu/CrKα). Non-natural amino acid, 3-iodo-L-tyrosine, is able to be site-specifically incorporated into proteins with amber suppresser tRNA and mutated TyrRS from M. jannaschii in the E. coli expression system. To determine the crystal structure of acetyl transferase from T. thermophilus, iodotyrosine-containing proteins were prepared and crystallized. Structure determination was successfully conducted with the protein variant with iodotyrosine at position 111. Anomalous signals from iodotyrosine with Cu/CrKα radiations were both sufficient to calculate clear electron density map. In the crystal structure, iodotyrosine did not significantly disturb the native structure.

  8. Structure of Langmuir-Blodgett films of fatty acid salts from electron, x-ray, and neutron diffraction data

    The data on the structure of Langmuir-Blodgett films of fatty acid salts obtained by the methods of electron diffraction structure analysis are compared with the corresponding results of X-ray and neutron reflectivity measurements

  9. X-ray microtomography of hydrochloric acid propagation in carbonate rocks

    Acid treatments are used in the oil and gas industry, to increase the permeability of the carbonate reservoirs by creating preferential channels, called wormholes. Channels formation is strongly influenced by acid type and injection rate. The aim of this study is to evaluate some characteristics of the microporous system of carbonate rocks, before and after acidizing. For that purpose X-ray high-resolution microtomography was used. The results show that this technique can be used as a reliable method to analyze microstructural characteristics of the wormholes. - Highlights: • Wormholes are flow channels, which are created when acid is injected in rocks. • Wormhole morphology classification is a function of the acid injection rate. • Microtomography evaluates porous media as well as the wormholes structures formed

  10. Destruction of formic acid by soft X-rays in star-forming regions

    Boechat-Roberty, H M; Santos, A C F

    2005-01-01

    Formic acid is much more abundant in the solid state, both in interstellar ices and cometary ices, than in the interstellar gas (ice/gas ~ 10^{4}) and this point remains a puzzle. The goal of this work is to experimentally study ionization and photodissociation processes of HCOOH (formic acid), a glycine precursor molecule. The measurements were taken at the Brazilian Synchrotron Light Laboratory (LNLS), employing soft X-ray photons from toroidal grating monochromator TGM) beamline (200 - 310 eV). Mass spectra were obtained using photoelectron photoion coincidence (PEPICO) method. Kinetic energy distributions and abundances for each ionic fragment have been obtained from the analysis of the corresponding peak shapes in the mass spectra. Photoionization and photodissociation cross sections were also determined. Due to the large photodissociation cross section of HCOOH it is possible that in PDRs regions, just after molecules evaporation from the grain surface, formic acid molecules are almost totally destroyed...

  11. Oil-free hyaluronic acid matrix for serial femtosecond crystallography

    Sugahara, Michihiro; Song, Changyong; Suzuki, Mamoru; Masuda, Tetsuya; Inoue, Shigeyuki; Nakane, Takanori; Yumoto, Fumiaki; Nango, Eriko; Tanaka, Rie; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Numata, Keiji; Iwata, So

    2016-04-01

    The grease matrix was originally introduced as a microcrystal-carrier for serial femtosecond crystallography and has been expanded to applications for various types of proteins, including membrane proteins. However, the grease-based matrix has limited application for oil-sensitive proteins. Here we introduce a grease-free, water-based hyaluronic acid matrix. Applications for proteinase K and lysozyme proteins were able to produce electron density maps at 2.3-Å resolution.

  12. Oil-free hyaluronic acid matrix for serial femtosecond crystallography

    Michihiro Sugahara; Changyong Song; Mamoru Suzuki; Tetsuya Masuda; Shigeyuki Inoue; Takanori Nakane; Fumiaki Yumoto; Eriko Nango; Rie Tanaka; Kensuke Tono; Yasumasa Joti; Takashi Kameshima; Takaki Hatsui; Makina Yabashi; Osamu Nureki

    2016-01-01

    The grease matrix was originally introduced as a microcrystal-carrier for serial femtosecond crystallography and has been expanded to applications for various types of proteins, including membrane proteins. However, the grease-based matrix has limited application for oil-sensitive proteins. Here we introduce a grease-free, water-based hyaluronic acid matrix. Applications for proteinase K and lysozyme proteins were able to produce electron density maps at 2.3-Å resolution.

  13. Structure of a complex of uridine phosphorylase from Yersinia pseudotuberculosis with the modified bacteriostatic antibacterial drug determined by X-ray crystallography and computer analysis

    Balaev, V. V.; Lashkov, A. A., E-mail: alashkov83@gmail.com; Gabdoulkhakov, A. G.; Seregina, T. A.; Dontsova, M. V.; Mikhailov, A. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2015-03-15

    Pseudotuberculosis and bubonic plague are acute infectious diseases caused by the bacteria Yersinia pseudotuberculosis and Yersinia pestis. These diseases are treated, in particular, with trimethoprim and its modified analogues. However, uridine phosphorylases (pyrimidine nucleoside phosphorylases) that are present in bacterial cells neutralize the action of trimethoprim and its modified analogues on the cells. In order to reveal the character of the interaction of the drug with bacterial uridine phosphorylase, the atomic structure of the unligated molecule of uridine-specific pyrimidine nucleoside phosphorylase from Yersinia pseudotuberculosis (YptUPh) was determined by X-ray diffraction at 1.7 Å resolution with high reliability (R{sub work} = 16.2, R{sub free} = 19.4%; r.m.s.d. of bond lengths and bond angles are 0.006 Å and 1.005°, respectively; DPI = 0.107 Å). The atoms of the amino acid residues of the functionally important secondary-structure elements—the loop L9 and the helix H8—of the enzyme YptUPh were located. The three-dimensional structure of the complex of YptUPh with modified trimethoprim—referred to as 53I—was determined by the computer simulation. It was shown that 53I is a pseudosubstrate of uridine phosphorylases, and its pyrimidine-2,4-diamine group is located in the phosphate-binding site of the enzyme YptUPh.

  14. Exploring the Mechanism of β-Lactam Ring Protonation in the Class A β-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography

    Vandavasi, Venu Gopal; Weiss, Kevin L.; Cooper, Jonathan B.; Erskine, Peter T.; Tomanicek, Stephen J.; Ostermann, Andreas; Schrader, Tobias E.; Ginell, Stephan L.; Coates, Leighton

    2016-01-14

    The catalytic mechanism of class A beta-lactamases is often debated due in part to the large number of amino acids that interact with bound beta-lactam substrates. The role and function of the conserved residue Lys 73 in the catalytic mechanism of class A type beta-lactamase enzymes is still not well understood after decades of scientific research. To better elucidate the functions of this vital residue, we used both neutron and high-resolution X-ray diffraction to examine both the structures of the ligand free protein and the acyl-enzyme complex of perdeuterated E166A Toho-1 beta-lactamase with the antibiotic cefotaxime. The E166A mutant lacks a critical glutamate residue that has a key role in the deacylation step of the catalytic mechanism, allowing the acyl-enzyme adduct to be captured for study. In our ligand free structures, Lys 73 is present in a single conformation, however in all of our acyl-enzyme structures, Lys 73 is present in two different conformations, in which one conformer is closer to Ser 70 while the other conformer is positioned closer to Ser 130, which supports the existence of a possible pathway by which proton transfer from Lys 73 to Ser 130 can occur. This and further clarifications of the role of Lys 73 in the acylation mechanism may facilitate the design of inhibitors that capitalize on the enzymes native machinery.

  15. Structure of a complex of uridine phosphorylase from Yersinia pseudotuberculosis with the modified bacteriostatic antibacterial drug determined by X-ray crystallography and computer analysis

    Pseudotuberculosis and bubonic plague are acute infectious diseases caused by the bacteria Yersinia pseudotuberculosis and Yersinia pestis. These diseases are treated, in particular, with trimethoprim and its modified analogues. However, uridine phosphorylases (pyrimidine nucleoside phosphorylases) that are present in bacterial cells neutralize the action of trimethoprim and its modified analogues on the cells. In order to reveal the character of the interaction of the drug with bacterial uridine phosphorylase, the atomic structure of the unligated molecule of uridine-specific pyrimidine nucleoside phosphorylase from Yersinia pseudotuberculosis (YptUPh) was determined by X-ray diffraction at 1.7 Å resolution with high reliability (Rwork = 16.2, Rfree = 19.4%; r.m.s.d. of bond lengths and bond angles are 0.006 Å and 1.005°, respectively; DPI = 0.107 Å). The atoms of the amino acid residues of the functionally important secondary-structure elements—the loop L9 and the helix H8—of the enzyme YptUPh were located. The three-dimensional structure of the complex of YptUPh with modified trimethoprim—referred to as 53I—was determined by the computer simulation. It was shown that 53I is a pseudosubstrate of uridine phosphorylases, and its pyrimidine-2,4-diamine group is located in the phosphate-binding site of the enzyme YptUPh

  16. Resonant x-ray reflectivity from a bromine-labeled fatty acid Langmuir monolayer

    Resonant x-ray reflectivity exploits the energy dependence of atomic scattering factors to locate resonant atoms within the electron density distribution of thin films. We apply the technique to a monolayer of bromo-stearic acid at the air/water interface. The data collection protocol employed cycles through several energies in the vicinity of the bromine K absorption edge and verifies that the energy dependencies observed are indeed resonant effects. The analysis specifies the location of the Br atom with sub-angstrom precision and must consider both the real and imaginary parts of the changes in the scattering factor to be consistent with the known structure and stoichiometry of this test case

  17. The interaction of protein and polysilicic acid: an x-ray and neutron reflection study

    The objective of this study was to begin to emulate biomineralisation processes whereby an ordered network of silica, directed by an organic template, is constructed. Two preparative routes were applied. In the first method a protein-silica interaction was induced by near-matching the isoelectric point of a thin protein film (bovine milk beta-casein or beta-lactoglobulin) to that of a polysilicic acid sub-phase in order to form a composite material at the air-water interface. The film conformation adopted at the interface was then studied by reflectivity using neutrons and X-rays as a function of film compression and pH. The second method involved a self-assembly process, illustrated here by an attempt to include either hen egg-white lysozyme, bovine milk beta-casein or beta-lactoglobulin into a highly ordered silicate film grown at the air-water interface

  18. Osmium(III) analogues of KP1019: Electrochemical and chemical synthesis, spectroscopic characterization, x-ray crystallography, hydrolytic stability, and antiproliferative activity

    Kuhn, Paul-Steffen

    2014-10-20

    A one-electron reduction of osmium(IV) complexes trans-[OsIVCl4(Hazole)2], where Hazole = 1H-pyrazole ([1]0), 2H-indazole ([2]0), 1H-imidazole ([3]0), and 1H-benzimidazole ([4]0), afforded a series of eight new complexes as osmium analogues of KP1019, a lead anticancer drug in clinical trials, with the general formula (cation)[trans-OsIIICl4(Hazole)2], where cation = H2pz+ (H2pz[1]), H2ind+ (H2ind[2]), H2im+ (H2im[3]), Ph4P+ (Ph4P[3]), nBu4N+ (nBu4N[3]), H2bzim+ (H2bzim[4]), Ph4P+ (Ph4P[4]), and nBu4N+ (nBu4N[4]). All complexes were characterized by elemental analysis, 1H NMR spectroscopy, electrospray ionization mass spectrometry, UV-vis spectroscopy, cyclic voltammetry, while H2pz[1], H2ind[2], and nBu4[3], in addition, by X-ray diffraction. The reduced species [1]- and [4]- are stable in aqueous media in the absence of air oxygen and do not react with small biomolecules such as amino acids and the nucleotide 5′-dGMP. Cell culture experiments in five different human cancer cell lines (HeLa, A549, FemX, MDA-MB-453, and LS-174) and one noncancerous cell line (MRC-5) were performed, and the results were discussed and compared to those for KP1019 and cisplatin. Benzannulation in complexes with similar structure enhances antitumor activity by several orders of magnitude, implicating different mechanisms of action of the tested compounds. In particular, complexes H2ind[2] and H2bzim[4] exhibited significant antiproliferative activity in vitro when compared to H2pz[1] and H2im[3]. (Chemical Equation Presented).

  19. Electron Crystallography of Aquaporins

    Andrews, Simeon; Reichow, Steve L; Gonen, Tamir

    2008-01-01

    Aquaporins are a family of ubiquitous membrane proteins that form a pore for the permeation of water. Both electron and X-ray crystallography played major roles in determining the atomic structures of a number of aquaporins. This review focuses on electron crystallography, and its contribution to the field of aquaporin biology. We briefly discuss electron crystallography and the two-dimensional crystallization process. We describe features of aquaporins common to both electron and X-ray cryst...

  20. X-ray Excited Optical Fluorescence and Diffraction Imaging of Reactivity and Crystallinity in a Zeolite Crystal: Crystallography and Molecular Spectroscopy in One.

    Ristanović, Zoran; Hofmann, Jan P; Richard, Marie-Ingrid; Jiang, Tao; Chahine, Gilbert A; Schülli, Tobias U; Meirer, Florian; Weckhuysen, Bert M

    2016-06-20

    Structure-activity relationships in heterogeneous catalysis are challenging to be measured on a single-particle level. For the first time, one X-ray beam is used to determine the crystallographic structure and reactivity of a single zeolite crystal. The method generates μm-resolved X-ray diffraction (μ-XRD) and X-ray excited optical fluorescence (μ-XEOF) maps of the crystallinity and Brønsted reactivity of a zeolite crystal previously reacted with a styrene probe molecule. The local gradients in chemical reactivity (derived from μ-XEOF) were correlated with local crystallinity and framework Al content, determined by μ-XRD. Two distinctly different types of fluorescent species formed selectively, depending on the local zeolite crystallinity. The results illustrate the potential of this approach to resolve the crystallographic structure of a porous material and its reactivity in one experiment via X-ray induced fluorescence of organic molecules formed at the reactive centers. PMID:27145171

  1. Characterization of amino acid adlayers on InAs surfaces using X-ray photoelectron spectroscopy

    Removal of surface oxide layers and the prevention of their reformation is an essential step in the use of III-V semiconductor technologies. Highlighted here are data exploring the use of amino acid (AA) self-assembled monolayers (SAMs) to block the pre-growth of oxides on indium arsenide surfaces. Three different AAs were used: lysine, aspartic acid, and cysteine. The adlayers were characterized by atomic force microscopy (AFM), Raman, and angle resolved X-ray photoelectron spectroscopy (ARXPS). AFM data suggest that the AA functional groups affect the packing and orientation of the molecules on the surfaces, reinforced by contact angle data. Raman data provide proof that the type of functional group alters the intensity of the unscreened LO phonon, resulting in an electrostatic stabilization, in the case of lysine, which lends to the case of electrostatic interactions blocking oxide formation. ARXPS demonstrated that the degree of oxide blocking is dependent upon the type of functional group and further verifies inferences made from the Raman spectra. The degree of monolayer formation is also determined from this data. It is concluded that AA's can be useful means for blocking oxide growth on InAs (1 0 0) surfaces, which also provides insights into how protein and peptide side chains might interact with such surfaces.

  2. X-ray-induced photo-chemistry and X-ray absorption spectroscopy of biological samples

    George, Graham N.; Pickering, Ingrid J.; Pushie, M. Jake; Nienaber, Kurt; Hackett, Mark J.; Ascone, Isabella; Hedman, Britt; Hodgson, Keith O.; Aitken, Jade B.; Levina, Aviva; Glover, Christopher; Lay, Peter A.

    2012-01-01

    X-ray-induced photo-chemistry of metal sites within biological molecules is a concern for X-ray absorption spectroscopy, X-ray crystallography and other techniques in which samples are illuminated with X-rays. The effects of X-ray-induced photo-chemistry are reviewed and the methods used to mitigate these in X-ray absorption spectroscopy are outlined.

  3. Study of the earth's deep interior and crystallography. X-ray and neutron diffraction experiments under high pressures

    History of the study of the Earth's deep interior was reviewed. In order to understand Earth's deep interior from the view point of materials science, X-ray diffraction under high pressure and high temperature played very important role. Use of synchrotron radiation dramatically advanced this experimental technique and it is now possible to make precise X-ray study under the P-T conditions corresponding even to the center of the Earth. In order to clarify the behavior of light elements such as hydrogen, however, studies using neutron diffraction are also required. A new neutron beam line dedicated for high-pressure science is constructed at J-PARC and is now ready for use. (author)

  4. Azo coupling of 4-nitrophenyldiazonium chloride with aliphatic nucleophiles: an integrated organic synthesis and X-ray crystallography experiment; Acoplamento de cloreto de 4-nitrofenildiazonio com nucleofilos alifaticos: experimento integrado de sintese organica e cristalografia de raios X

    Cunha, Silvio; Marques, Monique F.; Rocha, Valeria, E-mail: silviodc@ufba.br [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Instituto de Quimica; Lariucci, Carlito; Vencato, Ivo [Universidade Federal de Goiania (UFG), GO (Brazil). Instituto de Fisica

    2013-11-01

    This article describes an undergraduate experiment for the synthesis of p-nitrophenyldiazonium chloride and its coupling with acetylacetone and two enaminones, 4-phenylamino-pent-3-en-2-one and 4-amino-pent-3-en-2-one, in an adaptation of a previously reported synthetic protocol. The azo dyes 4-(E)-phenylamino-3-[(E)-2-(4-nitrophenylazo)]-3-penten-2-one and 4-(E)-amino-3-[(E)-2-(4-nitrophenylazo)]-3-penten-2-one were obtained, and the solid state structure of this latter azo compound was characterized by single crystal X-ray diffraction studies. This two-week integrated laboratory approach involves simple synthetic experiments and microwave chemistry in the organic laboratory plus crystallography analysis, suitable for novice students on undergraduate experimental chemistry courses. (author)

  5. X-ray Crystallography, DFT Calculations and Molecular Docking of Indole-Arylpiperazine Derivatives as α1A-Adrenoceptor Antagonists

    Wei Xu; Jun-Jun Huang; Bin-Hao Shao; Xing-Jie Xu; Ren-Wang Jiang; Mu Yuan

    2015-01-01

    Indole-arylpiperazine derivatives have exhibited good selectivity for the α1A-adrenoceptor, but the structure-activity-binding mechanism relationship remains unclear. In the current study, three compounds (1, 2 and 3) were investigated through single-crystal X-ray diffraction analysis, density functional theory (DFT) calculations and molecular docking using a homology model of the α1A receptor. Compounds 1 and 3 form H-bonds networks to stabilize their three-dimensional structures, while C–H...

  6. Synthesis, X-ray crystallography, spectroscopic (FT-IR, 1H &13C NMR and UV), computational (DFT/B3LYP) and enzymes inhibitory studies of 7-hydroximinocholest-5-en-3-ol acetate

    Ahmad, Faheem; Parveen, Mehtab; Alam, Mahboob; Azaz, Shaista; Malla, Ali Mohammed; Alam, Mohammad Jane; Lee, Dong-Ung; Ahmad, Shabbir

    2016-07-01

    The present study reports the synthesis of 7-Hydroximinocholest-5-en-3-ol acetate (syn. 3β-acetoxycholest-5-en-7-one oxime; in general, steroidal oxime). The identity of steroidal molecule was confirmed by NMR, FT-IR, MS, CHN microanalysis and X-ray crystallography. DFT calculations on the titled molecule have been performed. The molecular structure and spectra interpreted by Gaussian hybrid computational analysis theory (B3LYP) are found to be in good correlation with the experimental data obtained from the various spectrophotometric techniques. The vibrational bands appearing in the FTIR are assigned with great accuracy using harmonic frequencies along with intensities and animated modes. Molecular properties like HOMO-LUMO analysis, chemical reactivity descriptors, MEP mapping, dipole moment and natural atomic charges have been presented at the same level of theory. Moreover, the Hirshfeld analysis was carried out to ascertain the secondary interactions and associated 2D fingerprint plots. The percentages of various interactions are pictorialized by fingerprint plots of Hirshfeld surface. Steroidal oxime exhibited promising inhibitory activity against acetylcholinesterase (AChE) as compared to the reference drug, tacrine. Molecular docking was performed to introduce steroidal molecules into the X-ray crystal structures of acetylcholinesterase at the active site to find out the probable binding mode. The results of molecular docking admitted that steroidal oxime may exhibit enzyme inhibitor activity.

  7. X-ray investigation of gene-engineered human insulin crystallized from a solution containing polysialic acid

    Timofeev, V. I.; Chuprov-Netochin, R. N.; Samigina, V. R.; Bezuglov, V. V.; Miroshnikov, K. A.; Kuranova, I. P.

    2010-01-01

    Attempts to crystallize the noncovalent complex of recombinant human insulin with polysialic acid were carried out under normal and microgravity conditions. Both crystal types belonged to the same space group, I213, with unit-cell parameters a = b = c = 77.365 Å, α = β = γ = 90.00°. The reported space group and unit-cell parameters are almost identical to those of cubic insulin reported in the PDB. The results of X-ray studies confirmed that the crystals obtained were cubic insulin crystals and that they contained no polysialic acid or its fragments. Electron-density maps were calculated using X-ray diffraction sets from earth-grown and microgravity-grown crystals and the three-dimensional structure of the insulin molecule was determined and refined. The conformation and secondary-structural elements of the insulin molecule in different crystal forms were compared. PMID:20208155

  8. Intergrown new zeolite beta polymorphs with interconnected 12-ring channels solved by combining electron crystallography and single-crystal X-ray diffraction

    Yu, Zhengbao

    2012-10-09

    Two new polymorphs of zeolite beta, denoted as SU-78A and SU-78B, were synthesized by employing dicyclohexylammonium hydroxides as organic structure-directing agents. The structure was solved by combining transmission electron microscopy and single-crystal X-ray diffraction. SU-78 is an intergrowth of SU-78A and SU-78B and contains interconnected 12-ring channels in three directions. The two polymorphs are built from the same building layer, similar to that for the zeolite beta family. The layer stacking in SU-78, however, is different from those in zeolite beta polymorph A, B, and C, showing new zeolite framework topologies. SU-78 is thermally stable up to 600 °C. © 2012 American Chemical Society.

  9. Titration of a Solid Acid Monitored by X-Ray Diffraction

    Dungey, Keenan E.; Epstein, Paul

    2007-01-01

    An experiment is described to introduce students to an important class of solid-state reactions while reinforcing concepts of titration by using a pH meter and a powder X-ray diffractometer. The experiment was successful in teaching students the abstract concepts of solid-state structure and diffraction by applying the diffraction concepts learned…

  10. Structural investigation of (2E)-2-(ethoxycarbonyl)-3-[(4-methoxyphenyl)amino]prop-2-enoic acid: X-ray crystal structure, spectroscopy and DFT

    Venkatesan, Perumal; Rajakannan, Venkatachalam; Venkataramanan, Natarajan S.; Ilangovan, Andivelu; Sundius, Tom; Thamotharan, Subbiah

    2016-09-01

    The title compound, (2E)-2-(ethoxycarbonyl)-3-[(4-methoxyphenyl)amino]prop-2-enoic acid is characterized by means of X-ray crystallography, spectroscopic methods and quantum chemical calculations. The title compound crystallizes in centrosymmetric space group P21/c. Moreover, the crystal structure is primarily stabilized through intramolecular Nsbnd H⋯O and Osbnd H⋯O and intermolecular Nsbnd H⋯O and Csbnd H⋯O interactions along with carbonyl⋯carbonyl and Csbnd H⋯C contacts. These intermolecular interactions are analysed and quantified by using Hirshfeld surface analysis, PIXEL energy, NBO, AIM and DFT calculations. The overall lattice energies of the title and parent compounds suggest that the title compound is stabilized by a 4.5 kcal mol-1 higher energy than the parent compound. The additional stabilization force comes from the methoxy substitution on the title molecule, which is evident since the methoxy group is involved in the intermolecular Csbnd H⋯O interaction as an acceptor. The vibrational modes of the interacting groups are investigated using both experimental and theoretical FT-IR and FT-Raman spectra. The experimental and theoretical UV-Vis spectra agree well. The time dependent DFT spectra show that the ligand-to-ligand charge transfer is responsible for the intense absorbance of the compound.

  11. Nucleic acid fragmentation on the millisecond timescale using a conventional X-ray rotating anode source: application to protein–DNA footprinting

    Henn, Arnon; Halfon, Jacob; Kela, Itai; Orion, Itzhak; Sagi, Irit

    2001-01-01

    Nucleic acid fragmentation (footprinting) by ·OH radicals is used often as a tool to probe nucleic acid structure and nucleic acid–protein interactions. This method has proven valuable because it provides structural information with single base pair resolution. Recent developments in the field introduced the ‘synchrotron X-ray footprinting’ method, which uses a high-flux X-ray source to produce single base pair fragmentation of nucleic acid in tens of milliseconds. We developed a complementar...

  12. Novel protein-inhibitor interactions in site 3 of Ca(2+)-bound S100B as discovered by X-ray crystallography.

    Cavalier, Michael C; Melville, Zephan; Aligholizadeh, Ehson; Raman, E Prabhu; Yu, Wenbo; Fang, Lei; Alasady, Milad; Pierce, Adam D; Wilder, Paul T; MacKerell, Alexander D; Weber, David J

    2016-06-01

    Structure-based drug discovery is under way to identify and develop small-molecule S100B inhibitors (SBiXs). Such inhibitors have therapeutic potential for treating malignant melanoma, since high levels of S100B downregulate wild-type p53 tumor suppressor function in this cancer. Computational and X-ray crystallographic studies of two S100B-SBiX complexes are described, and both compounds (apomorphine hydrochloride and ethidium bromide) occupy an area of the S100B hydrophobic cleft which is termed site 3. These data also reveal novel protein-inhibitor interactions which can be used in future drug-design studies to improve SBiX affinity and specificity. Of particular interest, apomorphine hydrochloride showed S100B-dependent killing in melanoma cell assays, although the efficacy exceeds its affinity for S100B and implicates possible off-target contributions. Because there are no structural data available for compounds occupying site 3 alone, these studies contribute towards the structure-based approach to targeting S100B by including interactions with residues in site 3 of S100B. PMID:27303795

  13. X-ray Crystallography, DFT Calculations and Molecular Docking of Indole-Arylpiperazine Derivatives as α1A-Adrenoceptor Antagonists.

    Xu, Wei; Huang, Jun-Jun; Shao, Bin-Hao; Xu, Xing-Jie; Jiang, Ren-Wang; Yuan, Mu

    2015-01-01

    Indole-arylpiperazine derivatives have exhibited good selectivity for the α1A-adrenoceptor, but the structure-activity-binding mechanism relationship remains unclear. In the current study, three compounds (1, 2 and 3) were investigated through single-crystal X-ray diffraction analysis, density functional theory (DFT) calculations and molecular docking using a homology model of the α1A receptor. Compounds 1 and 3 form H-bonds networks to stabilize their three-dimensional structures, while C-H···π interactions play a significant role in the packing of 2. Based on DFT-optimized conformations, the HOMO-LUMO energy gaps and molecular electrostatic potential (MEP) were theoretically calculated at the B3LYP/6-311G (d, p) level of theory. Chemical reactivity increases in the order of 3 < 2 < 1, and the maximum positive region of the MEP maps is mainly localized over the NH group. The binding mechanisms of ligand-α1A-adrenoceptor complexes were illustrated by molecular docking. Binding to Gln177 of the second extracellular loop region via hydrogen bonds is likely to be essential for α1A-selective antagonists. The present work sheds light on the studies of structure-activity-binding mechanism and aids in the design of α1A antagonists with high selectivity. PMID:26528963

  14. X-ray Crystallography, DFT Calculations and Molecular Docking of Indole-Arylpiperazine Derivatives as α1A-Adrenoceptor Antagonists

    Wei Xu

    2015-10-01

    Full Text Available Indole-arylpiperazine derivatives have exhibited good selectivity for the α1A-adrenoceptor, but the structure-activity-binding mechanism relationship remains unclear. In the current study, three compounds (1, 2 and 3 were investigated through single-crystal X-ray diffraction analysis, density functional theory (DFT calculations and molecular docking using a homology model of the α1A receptor. Compounds 1 and 3 form H-bonds networks to stabilize their three-dimensional structures, while C–H···π interactions play a significant role in the packing of 2. Based on DFT-optimized conformations, the HOMO-LUMO energy gaps and molecular electrostatic potential (MEP were theoretically calculated at the B3LYP/6-311G (d, p level of theory. Chemical reactivity increases in the order of 3 < 2 < 1, and the maximum positive region of the MEP maps is mainly localized over the NH group. The binding mechanisms of ligand-α1A-adrenoceptor complexes were illustrated by molecular docking. Binding to Gln177 of the second extracellular loop region via hydrogen bonds is likely to be essential for α1A-selective antagonists. The present work sheds light on the studies of structure-activity-binding mechanism and aids in the design of α1A antagonists with high selectivity.

  15. Isolation and x-ray structure of deoxycholic acid from the sponge Ircinia sp.

    Singh, K.S.; Kaminsky, W.

    GX [4d]. Acknowledgments - We are grateful to the Council of Scientific and Industrial Research (CSIR) and the Ministry of Earth Sciences (MoES), India for financial support as well as to the National Science Foundation, USA, grant 0840520... for providing funding for the X-ray equipment. We thank Deepak N. Naik for carrying out antimicrobial screening and Uday Mandrekar for sample collection. References [1] Singh KS, Kaminsky WH, Rodrigues C, Naik CG. (2009) Structural studies and antimicrobial...

  16. Use of X-ray and gamma-induced mutants of lactic acid bacteria in the manufacture of dairy products

    With the aid of X-ray and gamma irradiation were got mutants of lactic acid bacteria, which steadily retain acquired properties. Use of proteolytically active mutant strains in the production of armianski and sovetski cheeses shortened the time of their ripening and increased their quality. Gamma-mutant strain L. lactis 1621/I-M with high phenolstability was received and antibiotic activity with respect to some representatives of pathogenic microflora of the bowels. Use of this mutant in starters for sour milk products will raise their therapeutic effect against intestinal diseases. Deep morphological changes are taking place in lactic acid bacteria under the influence of ionizing radiation. (orig.)

  17. X-Ray Characterisation of Various Aluminium Phases in the Medicinal Herb Bacopa Monnieri Affected by Simulated Acid Rain

    Mallick, B.

    2012-01-01

    In the present investigation various aluminium-based new phases formed due to substitution of sulphur via simulated acid rain in Bacopa monnieri have been analyzed using X-ray diffraction (XRD) technique. So far there is no report on the effects of acid rain on the B. monnieri herb and its vital properties like memory-boosting mechanism. Therefore, in the present study, an attempt has been made to analyze the various aluminium phase (salt) formations due to the substitution of sulphur via sim...

  18. X-Ray Absorption Fine Structure Investigation of Copper(II) Mixed Ligand Complexes with Pyridinedicarboxylic Acid as Primary Ligand

    Dar, D. Ah.; Gaur, A.; Soni, B.; Shrivastava, B. D.; Prasad, J.; Srivastava, K.; Jha, S. N.; Bhattacharyya, D.

    2015-05-01

    The X-ray absorption fine structure (XAFS) spectra at the K-edge of the copper complexes Cu(PDC)(Mim)3 H2O ( 1) and Cu(PDC)2(EA)2H2O ( 2) (where PDC - Pyridine-2,3-dicarboxylic acid, Mim - 2-methylimidazole, and EA - ethyl acetate) have been investigated. The experimental extended X-ray absorption fine structure data of complex 1 have been analyzed by fitting the theoretical model generated from its own crystallographic data. The crystallographic data for complex 2 are not available. It has been found by comparing the intensity of the pre-edge peaks and X-ray absorption near edge structure features of complexes 1 and 2 that both complexes possess square pyramidal geometry around the copper centers and thus complex 2 is analogous to complex 1. Hence, the theoretical model generated for complex 1 has been fitted to the experimental EXAFS data of complex 2 to determine the structural parameters of complex 2. The coordination geometry of both complexes has been depicted. Further, the chemical shifts have been used to determine the oxidation state as well as to estimate the effective nuclear charge on the copper atom.

  19. Structure of HI-6*sarin-acetylcholinesterase determined by X-ray crystallography and molecular dynamics simulation: reactivator mechanism and design.

    Fredrik Ekström

    Full Text Available Organophosphonates such as isopropyl metylphosphonofluoridate (sarin are extremely toxic as they phosphonylate the catalytic serine residue of acetylcholinesterase (AChE, an enzyme essential to humans and other species. Design of effective AChE reactivators as antidotes to various organophosphonates requires information on how the reactivators interact with the phosphonylated AChEs. However, such information has not been available hitherto because of three main challenges. First, reactivators are generally flexible in order to change from the ground state to the transition state for reactivation; this flexibility discourages determination of crystal structures of AChE in complex with effective reactivators that are intrinsically disordered. Second, reactivation occurs upon binding of a reactivator to the phosphonylated AChE. Third, the phosphorous conjugate can develop resistance to reactivation. We have identified crystallographic conditions that led to the determination of a crystal structure of the sarin(nonaged-conjugated mouse AChE in complex with [(E-[1-[(4-carbamoylpyridin-1-ium-1-ylmethoxymethyl]pyridin-2-ylidene]methyl]-oxoazanium dichloride (HI-6 at a resolution of 2.2 A. In this structure, the carboxyamino-pyridinium ring of HI-6 is sandwiched by Tyr124 and Trp286, however, the oxime-pyridinium ring is disordered. By combining crystallography with microsecond molecular dynamics simulation, we determined the oxime-pyridinium ring structure, which shows that the oxime group of HI-6 can form a hydrogen-bond network to the sarin isopropyl ether oxygen, and a water molecule is able to form a hydrogen bond to the catalytic histidine residue and subsequently deprotonates the oxime for reactivation. These results offer insights into the reactivation mechanism of HI-6 and design of better reactivators.

  20. Fourier-transform Ghost Imaging with Hard X-rays

    Hong YU; Lu, Ronghua; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-01-01

    Knowledge gained through X-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. Atomic details of sample structures is achievable by X-ray crystallography, however, it is only applied to crystalline structures. Imaging techniques based on X-ray coherent diffraction or zone plates are capable of resolving the internal structure of non-crystalline materials at nanoscales, but it is still ...

  1. Synthesis and X-ray Crystallography of [Mg(H2O)6][AnO2(C2H5COO)3]2 (An = U, Np, or Pu).

    Serezhkin, Viktor N; Grigoriev, Mikhail S; Abdulmyanov, Aleksey R; Fedoseev, Aleksandr M; Savchenkov, Anton V; Serezhkina, Larisa B

    2016-08-01

    Synthesis and X-ray crystallography of single crystals of [Mg(H2O)6][AnO2(C2H5COO)3]2, where An = U (I), Np (II), or Pu (III), are reported. Compounds I-III are isostructural and crystallize in the trigonal crystal system. The structures of I-III are built of hydrated magnesium cations [Mg(H2O)6](2+) and mononuclear [AnO2(C2H5COO)3](-) complexes, which belong to the AB(01)3 crystallochemical group of uranyl complexes (A = AnO2(2+), B(01) = C2H5COO(-)). Peculiarities of intermolecular interactions in the structures of [Mg(H2O)6][UO2(L)3]2 complexes depending on the carboxylate ion L (acetate, propionate, or n-butyrate) are investigated using the method of molecular Voronoi-Dirichlet polyhedra. Actinide contraction in the series of U(VI)-Np(VI)-Pu(VI) in compounds I-III is reflected in a decrease in the mean An═O bond lengths and in the volume and sphericity degree of Voronoi-Dirichlet polyhedra of An atoms. PMID:27404584

  2. Repair of x-ray-induced deoxyribonucleic acid single-strand breaks in xth mutants of Escherichia coli.

    Seeberg, E; Steinum, A L

    1980-01-01

    An exonuclease III-deficient strain of Escherichia coli K-12, BW2001 (xthA11), was unable to perform rapid repair of X-ray-induced deoxyribonucleic acid single-strand breaks and appeared to have a defect in the priming of the 3'-termini necessary for initiation of repair synthesis at the breaks. This defect cannot be explained solely by the lack of exonuclease III activity, because other xth mutants tested, including a deletion mutant, repaired radiation-induced strand breaks at close to the ...

  3. X-ray investigation of gene-engineered human insulin crystallized from a solution containing polysialic acid

    Crystals of insulin have been grown from a solution containing insulin and polysialic acid and the three-dimensional structure of insulin in these crystals has been solved at 1.6 Å resolution. Attempts to crystallize the noncovalent complex of recombinant human insulin with polysialic acid were carried out under normal and microgravity conditions. Both crystal types belonged to the same space group, I213, with unit-cell parameters a = b = c = 77.365 Å, α = β = γ = 90.00°. The reported space group and unit-cell parameters are almost identical to those of cubic insulin reported in the PDB. The results of X-ray studies confirmed that the crystals obtained were cubic insulin crystals and that they contained no polysialic acid or its fragments. Electron-density maps were calculated using X-ray diffraction sets from earth-grown and microgravity-grown crystals and the three-dimensional structure of the insulin molecule was determined and refined. The conformation and secondary-structural elements of the insulin molecule in different crystal forms were compared

  4. Dominating IgE-binding epitope of Bet v 1, the major allergen of birch pollen, characterized by X-ray crystallography and site-directed mutagenesis

    Spangfort, Michael D; Mirza, Osman; Ipsen, Henrik;

    2003-01-01

    surface area of Bet v 1 and is clearly conformational. A synthetic peptide representing a sequential motif in the epitope (11 of 16 residues) did not inhibit the binding of mAb BV16 to Bet v 1, illustrating limitations in the use of peptides for B cell epitope characterization. The single amino acid...

  5. Particle-induced x-ray emission: Instrumentation, calibration, and application to contact lens solutions and fulvic acid solutions

    An expression was derived describing the profile of the proton beam at the PIXE target position. The expression was used to predict the profile for several experimental configurations. The profile was experimentally measured. The PIXE system was calibrated using solutions and commercial foils. Experimental data was adjusted for all absorbers and interferences, and a quadratic relationship was determined relating calibration factor and atomic number for each series of X-ray transitions. Calibration factors were determined for all elements above aluminum, for both a pinhole filter and a 14-mil mylar filter. A group of contact lens solutions was analyzed using PIXE, ICP, and ISE. A digestion method was developed for removal. of chloride ion. Cluster analysis was used to classify the data. A commercial humic acid was separated into three fractions. The fulvic acid was characterized, and separations of metal-fulvic acid complexes from metal ions in solution were attempted using ultrafiltration

  6. Particle-induced x-ray emission: Instrumentation, calibration, and application to contact lens solutions and fulvic acid solutions

    Jenson, D.D.

    1989-01-01

    An expression was derived describing the profile of the proton beam at the PIXE target position. The expression was used to predict the profile for several experimental configurations. The profile was experimentally measured. The PIXE system was calibrated using solutions and commercial foils. Experimental data was adjusted for all absorbers and interferences, and a quadratic relationship was determined relating calibration factor and atomic number for each series of X-ray transitions. Calibration factors were determined for all elements above aluminum, for both a pinhole filter and a 14-mil mylar filter. A group of contact lens solutions was analyzed using PIXE, ICP, and ISE. A digestion method was developed for removal. of chloride ion. Cluster analysis was used to classify the data. A commercial humic acid was separated into three fractions. The fulvic acid was characterized, and separations of metal-fulvic acid complexes from metal ions in solution were attempted using ultrafiltration.

  7. Understanding nucleic acid structural changes by comparing wide-angle x-ray scattering (WAXS) experiments to molecular dynamics simulations

    Pabit, Suzette A.; Katz, Andrea M.; Tolokh, Igor S.; Drozdetski, Aleksander; Baker, Nathan; Onufriev, Alexey V.; Pollack, Lois

    2016-05-01

    Wide-angle x-ray scattering (WAXS) is emerging as a powerful tool for increasing the resolution of solution structure measurements of biomolecules. Compared to its better known complement, small angle x-ray scattering (SAXS), WAXS targets higher scattering angles and can enhance structural studies of molecules by accessing finer details of solution structures. Although the extension from SAXS to WAXS is easy to implement experimentally, the computational tools required to fully harness the power of WAXS are still under development. Currently, WAXS is employed to study structural changes and ligand binding in proteins; however, the methods are not as fully developed for nucleic acids. Here, we show how WAXS can qualitatively characterize nucleic acid structures as well as the small but significant structural changes driven by the addition of multivalent ions. We show the potential of WAXS to test all-atom molecular dynamics (MD) simulations and to provide insight into understanding how the trivalent ion cobalt(III) hexammine (CoHex) affects the structure of RNA and DNA helices. We find that MD simulations capture the RNA structural change that occurs due to addition of CoHex.

  8. Insights into regioselective metabolism of mefenamic acid by cytochrome P450 BM3 mutants through crystallography, docking, molecular dynamics, and free energy calculations

    Capoferri, Luigi; Leth, Rasmus; Ter Haar, Ernst; Mohanty, Arun K; Grootenhuis, Peter D J; Vottero, Eduardo; Commandeur, Jan M N; Vermeulen, Nico P E; Jørgensen, Flemming Steen; Olsen, Lars; Geerke, Daan P

    2016-01-01

    active-site mutations such as V87I were reported to invert regioselectivity in NSAID hydroxylation. In this work, we combine crystallography and molecular simulation to study the effect of single mutations on binding and regioselective metabolism of mefenamic acid by M11 mutants. The heme domain of the...... protein mutant M11 was expressed, purified, and crystallized, and its X-ray structure was used as template for modeling. A multistep approach was used that combines molecular docking, molecular dynamics (MD) simulation, and binding free-energy calculations to address protein flexibility. In this way...... mefenamic acid by M11 and its mutants by including protein flexibility and dynamics in free-energy computation. In addition, we could obtain structural insights into the change in regioselectivity of mefenamic acid hydroxylation due to single active-site mutations. Our findings confirm that use of MD and...

  9. X-ray Photoelectron Spectroscopy of the Passive Surface of Nickel-Carbon Electrocatalysts after Polarisation in Sulfuric Acid

    Thin films of nickel-carbon prepared by d.c. magnetron sputter deposition have previously been shown to exhibit passivity against corrosion as well as electrocatalytic activity towards the hydrogen oxidation reaction of the low-temperature acidic fuel cell. Pure nickel dissolves rapidly under such conditions. X-ray photoelectron spectroscopy (XPS) of Ni-C films containing between 13 and 64 at.% Ni, and polarized at +0.15 V(SHE) in 1.5 M H2SO4 at room temperature demonstrates that this passivity is not due to oxide formation, but rather to the presence of the carbon component. XPS identifies the Ni component as being in the metallic state, both before and after polarization in acid. The carbon component comprises a range of phases, with a graphitic or graphenic component being responsible for passivation

  10. Acid-β-glycerophosphatase reaction products in the central nervous system mitochondria following x-ray irradiation

    A survey of the literature to date on the enzyme histochemistry of intracellular organelles has not yielded any reference to the presence of acid phosphatase reaction products in the mammalian mitochondria of the central nervous system. A combination of Gomori's acid phosphatase method, however, with standard electron microscopy has disclosed the presence of enzyme reaction products in the mitochondria of the central nervous system of rats from 2 hr to 22 weeks after x-ray irradiation, as well as in a cerebral biopsy performed on a patient affected by Huntington's chorea. No enzyme reaction products, on the other hand, were observed in serial sections that had been incubated in substrates either containing sodium fluoride or lacking in β-glycerophosphate. The abnormal mitochondrial enzyme reaction (chemical lesion) is considered to be the consequence of the pathologic process affecting the ultrastructural-chemical organization of the organelle

  11. Fast and simple method for determination of fatty acid methyl esters (FAME) in biodiesel blends using X-ray spectrometry.

    Sitko, Rafal; Zawisza, Beata; Kowalewska, Zofia; Kocot, Karina; Polowniak, Marzena

    2011-09-30

    The determination of fatty acid methyl esters (FAME) in diesel fuel blends is an important aspect of production and blending process as well as quality control of distribution operations. In this study, energy-dispersive X-ray fluorescence spectrometer (EDXRF) is used for the first time for determination of FAME in biodiesel blends. The principle of the method is based on intensity difference of X-ray radiation scattered from hydrocarbons and from FAME. The experiment shows that coherent and incoherent radiation, commonly applied for evaluation of the average atomic number of the sample with light matrix, cannot be applied for FAME determination. However, the application of scattered continuous radiation gives excellent correlation between FAME concentration and intensity of scattered radiation. The best results are obtained if continuum is collected in the range of energy between 10.5 and 15.0 keV for rhodium X-ray tube, operated at 35 kV. Linear relationship between the FAME concentration and the inverse of scattered continuous radiation is obtained with the correlation coefficients of 0.999. Standard deviation of measurement is ca. 0.46% (v/v) of FAME and detection limit is 1.2% (v/v) for 600 s counting time and 50% dead-time loss using Si-PIN detector. The investigation shows that crucial issue in determination of FAME in biodiesel blends using EDXRF spectrometer is the precision of measurements resulting from the counting statistics. Therefore, much better results (0.20% (v/v) standard deviation and 0.52% (v/v) detection limit) can be expected if higher intensity of primary radiation is applied and X-ray spectrum is collected by silicon drift detector of high input count rate. For concentration of FAME from 10 to 100% (v/v), the differences between reference method (Fourier transform infrared spectrometry) and the proposed method usually do not exceed 1% (v/v) of FAME. The proposed method is fast, simple and enables FAME determination in wide range of

  12. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy

    Morra, Matthew J.; Fendorf, Scott E.; Brown, Paul D.

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils.

  13. Speciation of sulfur in humic and fulvic acids using X-ray Absorption Near-Edge Structures (XANES) spectroscopy

    Morra, M.J.; Fendorf, S.E.; Brown, P.D. [Univ. of Idaho, Moscow, ID (United States)

    1997-02-01

    Sulfur species in soils and sediments have previously been determined indirectly using destructive techniques. A direct and more accurate method for S speciation would improve our understanding of S biogeochemistry. X-ray absorption near edge structure (XANES) spectroscopy was performed on purified humic and fulvic acids from terrestrial and aquatic environments. This methodology allows direct determination of S species using the relationship that exists with the energy required for core electron transitions and in some cases, correlation with additional spectral features. Soil, peat, and aquatic humic acids were dominated by sulfonates with an oxidation state of +5, but also contained ester-bonded sulfates with an oxidation state of +6. Leonardite humic acid contained ester-bonded sulfate and an unidentified S compound with an oxidation state of +4.0. In contrast, high-valent S in soil, peat, and aquatic fulvic acids was exclusively in the form of sulfonic acids. Reduced S species were also present in both humic and fulvic acids. XANES is a valuable method for the speciation of S in humic materials and of potential use in S speciation of unfractionated soils. 27 refs., 4 figs., 3 tabs.

  14. X-ray diffraction

    We have been interested in structural elucidation by x-ray diffraction of compounds of biological interest. Understanding exactly how atoms are arranged in three-dimensional arrays as molecules can help explain the relationship between structure and functions. The species investigated may vary in size and shape; our recent studies included such diverse substances as antischistosomal drugs, a complex of cadmium with nucleic acid base, nitrate salts of adenine, and proteins

  15. Rigid body essential X-ray crystallography

    Bjerrum, Esben Jannik; Biggin, Philip C

    2008-01-01

    The ligand-binding domain (LBD) from the ionotropic glutamate receptor subtype 2 (GluR2) has been shown to adopt a range of ligand-dependent conformational states. These states have been described in terms of the rotation required to fit subdomain (lobe) 2 following superposition of subdomain (lo...

  16. X-ray crystallography - principles of safety

    This is a 13 minute videotape which provides an introduction to the principles of safety, with the emphasis throughout on the need for each individual to cultivate safe working habits. The nature of the hazard is explained, and there are sections on: design of equipment; safe working practice; monitoring; warning signs and administrative controls. The use of interlocks is demonstrated, with examples of: mechanical, electrical and combination types, and individual partial and total enclosures are shown. (author)

  17. Joint x-ray

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  18. X-Ray Characterisation of Various Aluminium Phases in the Medicinal Herb Bacopa Monnieri Affected by Simulated Acid Rain

    B. Mallick

    2012-07-01

    Full Text Available In the present investigation various aluminium-based new phases formed due to substitution of sulphur via simulated acid rain in Bacopa monnieri have been analyzed using X-ray diffraction (XRD technique. So far there is no report on the effects of acid rain on the B. monnieri herb and its vital properties like memory-boosting mechanism. Therefore, in the present study, an attempt has been made to analyze the various aluminium phase (salt formations due to the substitution of sulphur via simulated acid rain (SiAR in B. Monnieri because of its toxicological importance. The new phases like AlH(SO42 and Al2S3 along with usual Al2O3:H2O, MgO, FeAl2(PO42(OH2:8H2O, (K2Ca(SO42:H2O, have been observed in B. monnieri when treated with sulphuric-simulated acid rain (S-SiAR of two different pH (3.39 and 5.45 for 20 weeks. These Al-based new salts formed in the above medicinal herb due to the induction of S-SiAR may cause Alzheimer’s disease and induce other abnormities.

  19. [Computed X-ray tomography in predicting the efficacy of oral cholelithiasis with bile acids].

    Fu, X B

    1993-02-01

    The efficacy of oral cholelitholytic therapy with chenodeoxycholic acid (CDCA) and ursodeoxycholic acid (UDCA) in 137 patients with gallstones was compared with their CT patterns. The best dissolving results were obtained from patients with the stones in isodense and faint category (OCG). Besides, gallstones, which showed no obvious filling defect on OCG but distinct echo and shadow on B-type ultrasonography, were also insoluble. PMID:8391902

  20. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids

    Nguyen, Hung T.; Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois; Case, David A.

    2014-12-01

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb+ and Sr2+) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein-Zernike equations, with results from the Kovalenko-Hirata closure being closest to experiment for the cases studied here.

  1. Conjugated linoleic acid inhibiting DNA repair damaged by x-ray

    Non-homologous end-joining is the most effective repair of DNA double strand break. Epidermal growth factor receptor activates DSB repairs. Integration of EGFR inhibitors with radiation or chemotherapy were used in lung cancer treatment. Radiosensitivity effect of conjugated linoleic acid on tumor cells and reduced metastasis are reported

  2. Chest x-ray

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  3. MALDI-FTMS for the characterization of ultraviolet and X-ray damage to nucleic acid constituents

    Both low energy (far-ultraviolet) and high energy (X-ray) radiation can cause DNA damage by inducing strand breaks, base modifications, and sugar alternations. These changes may lead to mutations and ultimately cell death if they cannot be biologically repaired. It is therefore necessary to characterize both the identities (at the isomeric level) and the abundances of the radiation-induced products to probe the nature of DNA damage in these cases. Matrix-assisted laser desorption/ionization Fourier transform mass spectroscopy (MALDI-FTMS) is well-suited for the direct detection and characterization of radiation-induced damage to nucleic acid constituents, including oligonucleotides. This technique eliminates the need to hydrolyze and derivatize the samples prior to mass analysis, thereby reducing the possibility of modifying the sample after irradiation. The accurate mass measurement and ion trapping capabilities of FTMS permit the detailed examination of the structures of these products. Reverse phase liquid chromatography (HPLC) is used to purify irradiated samples prior to mass analysis to quantitate the dose dependent formation of products after they have been identified by mass spectrometry

  4. Thoracic spine x-ray

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  5. A multiple CCD X-ray detector and its first operation with synchrotron radiation X-ray beam

    Suzuki, M; Kumasaka, T; Sato, K; Toyokawa, H; Aries, I F; Jerram, P A; Ueki, T

    1999-01-01

    A 4x4 array structure of 16 identical CCD X-ray detector modules, called the multiple CCD X-ray detector system (MCCDX), was submitted to its first synchrotron radiation experiment at the protein crystallography station of the RIKEN beamline (BL45XU) at the SPring-8 facility. An X-ray diffraction pattern of cholesterol powder was specifically taken in order to investigate the overall system performance.

  6. Dental x-rays

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film ... dentist's office. There are many types of dental x-rays. Some are: Bitewing Periapical Palatal (also called occlusal) ...

  7. X-ray apparatus

    A diagnostic x-ray device, readily convertible between conventional radiographic and tomographic operating modes, is described. An improved drive system interconnects and drives the x-ray source and the imaging device through coordinated movements for tomography

  8. Chest X-Ray

    Full Text Available ... the most commonly performed x-ray exams and use a very small dose of ionizing radiation to ... to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit ...

  9. X-ray (image)

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  10. Crystallization and preliminary X-ray diffraction analysis of the sialic acid-binding domain (VP8*) of porcine rotavirus strain CRW-8

    Scott, Stacy A. [Institute for Glycomics, Griffith University (Gold Coast Campus) PMB 50, Gold Coast Mail Centre, Queensland 9726 (Australia); Holloway, Gavan; Coulson, Barbara S. [Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010 (Australia); Szyczew, Alex J.; Kiefel, Milton J.; Itzstein, Mark von; Blanchard, Helen, E-mail: h.blanchard@griffith.edu.au [Institute for Glycomics, Griffith University (Gold Coast Campus) PMB 50, Gold Coast Mail Centre, Queensland 9726 (Australia)

    2005-06-01

    The sialic acid-binding domain (VP8*) component of the porcine CRW-8 rotavirus spike protein has been overexpressed in E. coli, purified and co-crystallized with an N-acetylneuraminic acid derivative. X-ray diffraction data have been collected to 2.3 Å, which has enabled determination of the structure by molecular replacement. Rotavirus recognition and attachment to host cells involves interaction with the spike protein VP4 that projects outwards from the surface of the virus particle. An integral component of these spikes is the VP8* domain, which is implicated in the direct recognition and binding of sialic acid-containing cell-surface carbohydrates and facilitates subsequent invasion by the virus. The expression, purification, crystallization and preliminary X-ray diffraction analysis of VP8* from porcine CRW-8 rotavirus is reported. Diffraction data have been collected to 2.3 Å resolution, enabling the determination of the VP8* structure by molecular replacement.

  11. X-Rays

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  12. Chest X-Ray

    Full Text Available ... by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  13. X-Ray Imaging

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  14. The role of the arachidonic acid cascade in the species-specific X-ray-induced inflammation of the rabbit eye

    To identify the mediator(s) of the apparently species-specific X-ray-induced inflammation of the rabbit eye, inhibitors of the synthesis and/or release of known or putative mediators of ocular inflammation were administered prior to irradiation. The X-ray-induced ocular inflammation, particularly the rise in intraocular pressure, was found to be inhibited by intravenous pretreatment of rabbits with flurbiprofen, indomethacin, or imidazole (1, 10, and 100 mg/kg i.v., respectively), or by combined intravitreal and topical administration of flurbiprofen. Systemic, intravitreal, and/or topical pretreatment with prednisolone or disodium cromoglycate or the retrobulbar injection of ethyl alcohol or capsaicin failed to block the inflammatory response, whereas vitamin E apparently exerted some protective effect. These findings show that the X-ray-induced inflammation of the rabbit eye is mediated, at least in part, by prostaglandins (PGs) and/or related autacoids. In addition, these results suggest that the unique sensitivity of the rabbit eye to X-ray-induced inflammation is due either to the presence in this species of a unique or uniquely effective triggering mechanism for the release of PG precursors or to the greater sensitivity of this species to the ocular inflammatory effects of PGs. Thus the rabbit eye may provide a unique model for studying some aspects of arachidonic acid release or ocular PG effects, but extreme caution must be exercised in generalizing such findings to other species

  15. The role of the arachidonic acid cascade in the species-specific X-ray-induced inflammation of the rabbit eye

    Bito, L.Z.; Klein, E.M.

    1982-05-01

    To identify the mediator(s) of the apparently species-specific X-ray-induced inflammation of the rabbit eye, inhibitors of the synthesis and/or release of known or putative mediators of ocular inflammation were administered prior to irradiation. The X-ray-induced ocular inflammation, particularly the rise in intraocular pressure, was found to be inhibited by intravenous pretreatment of rabbits with flurbiprofen, indomethacin, or imidazole (1, 10, and 100 mg/kg i.v., respectively), or by combined intravitreal and topical administration of flurbiprofen. Systemic, intravitreal, and/or topical pretreatment with prednisolone or disodium cromoglycate or the retrobulbar injection of ethyl alcohol or capsaicin failed to block the inflammatory response, whereas vitamin E apparently exerted some protective effect. These findings show that the X-ray-induced inflammation of the rabbit eye is mediated, at least in part, by prostaglandins (PGs) and/or related autacoids. In addition, these results suggest that the unique sensitivity of the rabbit eye to X-ray-induced inflammation is due either to the presence in this species of a unique or uniquely effective triggering mechanism for the release of PG precursors or to the greater sensitivity of this species to the ocular inflammatory effects of PGs. Thus the rabbit eye may provide a unique model for studying some aspects of arachidonic acid release or ocular PG effects, but extreme caution must be exercised in generalizing such findings to other species.

  16. Extended X-ray absorption fine structure data analysis of copper (II) hydroxamic acid mixed ligand complexes

    The X-ray absorption spectra of copper mixed ligand complexes, having hydroxamic acid as one of the ligands, have been recorded at the K-edge of copper at BL-8 Dispersive EXAFS beamline at the 2.5 GeV INDUS-2 Synchrotron, RRCAT, Indore, India. For the analysis of EXAFS data, crystallographic data of the complex or of its analog is required, which is not available. Hence, for the analysis of EXAFS data, theoretical EXAFS data of the studied complexes have been generated using the EXAFS equation employing computer software program Mathcad. Firstly, the experimental data has been processed using the computer program Athena to obtain the normalized absorption versus energy data. From the experimental EXAFS data, the phase shift parameter (an energy independent constant 5) has been computed using Lytle, Sayers and Stern's (LSS) method. The backscattering amplitude has been taken from the available theoretical tabulations and other parameters have been taken from crystallographic data of the copper metal. Fourier transforms of both the experimental and theoretical data have been computed, and the two Fourier transforms are found to agree with each other for all the complexes. The position of the first peak in the Fourier transform gives the value of the first shell bond length, which is shorter than the actual bond length as a result of energy dependence of the phase factor (δ(k)) in the sine function of the EXAFS equation. Since, the Fourier transform method and LSS method both are uncorrected for phase and other parameters of the EXAFS equation, the present method gives phase uncorrected bond length of the first coordination shell.

  17. Preconcentration of submicrogram amounts of metals from natural water for X-ray energy spectrometric determination using pyrrolidinecarbodithioic acid

    A method was developed for the routine determination of several trace metals in natural waters by X-ray energy spectrometry following precipitation with pyrrolidinecarbodithioate. Preoxidation with persulfate eliminates interferences by organic matter. By optimizing carrier ion selection and measurement conditions, one may determine dithioate-reactive elements with Z less than or equal to 50 by means of their K X-rays, and some with Z greater than or equal to 80 by means of their L X-rays. Determinations are feasible for several elements at concentrations down to 250 ng L-1, or below. Recoveries are generally greater than 90%, although some exceptions are noted. Reproducibility with real samples averaged about 25% relative standard deviation for five representative elements at concentrations above 250 ng L-1. 24 references, 5 figures, 4 tables

  18. Liquid structure of acetic acid-water and trifluoroacetic acid-water mixtures studied by large-angle X-ray scattering and NMR.

    Takamuku, Toshiyuki; Kyoshoin, Yasuhiro; Noguchi, Hiroshi; Kusano, Shoji; Yamaguchi, Toshio

    2007-08-01

    The structures of acetic acid (AA), trifluoroacetic acid (TFA), and their aqueous mixtures over the entire range of acid mole fraction xA have been investigated by using large-angle X-ray scattering (LAXS) and NMR techniques. The results from the LAXS experiments have shown that acetic acid molecules mainly form a chain structure via hydrogen bonding in the pure liquid. In acetic acid-water mixtures hydrogen bonds of acetic acid-water and water-water gradually increase with decreasing xA, while the chain structure of acetic acid molecules is moderately ruptured. Hydrogen bonds among water molecules are remarkably formed in acetic acid-water mixtures at xATFA molecules form not a chain structure but cyclic dimers through hydrogen bonding in the pure liquid. In TFA-water mixtures O...O hydrogen bonds among water molecules gradually increase when xA decreases, and hydrogen bonds among water molecules are significantly formed in the mixtures at xATFA molecules are considerably dissociated to hydrogen ions and trifluoroacetate in the mixtures. 1H, 13C, and 19F NMR chemical shifts of acetic acid and TFA molecules for acetic acid-water and TFA-water mixtures have indicated strong relationships between a structural change of the mixtures and the acid mole fraction. On the basis of both LAXS and NMR results, the structural changes of acetic acid-water and TFA-water mixtures with decreasing acid mole fraction and the effects of fluorination of the methyl group on the structure are discussed at the molecular level. PMID:17628099

  19. X-Ray Polarimetry

    Kaaret, Philip

    2014-01-01

    We review the basic principles of X-ray polarimetry and current detector technologies based on the photoelectric effect, Bragg reflection, and Compton scattering. Recent technological advances in high-spatial-resolution gas-filled X-ray detectors have enabled efficient polarimeters exploiting the photoelectric effect that hold great scientific promise for X-ray polarimetry in the 2-10 keV band. Advances in the fabrication of multilayer optics have made feasible the construction of broad-band ...

  20. Femtosecond X-ray protein nanocrystallography

    Chapman, Henry N. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; Univ. of Hamburg (Germany); Barty, Anton [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; White, Thomas A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; Aquila, Andrew [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; Schulz, Joachim [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; DePonte, Daniel P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; Martin, Andrew V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; Coppola, Nicola [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; Liang, Mengning [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; Caleman, Carl [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; Gumprecht, Lars [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; Stern, Stephan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science; Nass, Karol [Univ. of Hamburg (Germany); Fromme, Petra [Arizona State Univ., Tempe, AZ (United States). Dept. of Chemistry and Biochemistry; Hunter, Mark S. [Arizona State Univ., Tempe, AZ (United States). Dept. of Chemistry and Biochemistry; Grotjohann, Ingo [Arizona State Univ., Tempe, AZ (United States). Dept. of Chemistry and Biochemistry; Fromme, Raimund [Arizona State Univ., Tempe, AZ (United States). Dept. of Chemistry and Biochemistry; Kirian, Richard A. [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics; Weierstall, Uwe [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics; Doak, R. Bruce [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics; Schmidt, Kevin E. [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics; Wang, Xiaoyu [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics; Spence, John C. H. [Arizona State Univ., Tempe, AZ (United States). Dept. of Physics; Schlichting, Ilme [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science, Max Planck Advanced Study Group; Max Planck Inst. fur Medizinische Forschung, Heidelberg (Germany); Epp, Sascha W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science, Max Planck Advanced Study Group; Max Planck Inst. fur Kernphysik, Heidelberg (Germany); Rolles, Daniel [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science, Max Planck Advanced Study Group; Max Planck Inst. fur Medizinische Forschung, Heidelberg (Germany); Rudenko, Artem [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science, Max Planck Advanced Study Group; Max Planck Inst. fur Kernphysik, Heidelberg (Germany); Foucar, Lutz [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science, Max Planck Advanced Study Group; Max Planck Inst. fur Medizinische Forschung, Heidelberg (Germany); Rudek, Benedikt [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science, Max Planck Advanced Study Group; Max Planck Inst. fur Kernphysik, Heidelberg (Germany); Erk, Benjamin [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science, Max Planck Advanced Study Group; Max Planck Inst. fur Kernphysik, Heidelberg (Germany); Schmidt, Carlo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science, Max Planck Advanced Study Group; Max Planck Inst. fur Kernphysik, Heidelberg (Germany); Hömke, André [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science, Max Planck Advanced Study Group; Max Planck Inst. fur Kernphysik, Heidelberg (Germany); Strüder, Lothar [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science, Max Planck Advanced Study Group; Max Planck Society Semiconductor Lab., Munich (Germany); Ullrich, Joachim [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science, Max Planck Advanced Study Group; Max Planck Inst. fur Kernphysik, Heidelberg (Germany); Krasniqi, Faton [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Center for Free-Electron Laser Science, Max Planck Advanced Study Group; Max Planck Inst. fur Medizinische Forschung, Heidelberg (Germany); Lomb, Lukas [Max Planck Inst. fur Medizinische Forschung, Heidelberg (Germany); Shoeman, Robert L. [Max Planck Inst. fur Medizinische Forschung, Heidelberg (Germany); Bott, Mario [Max Planck Inst. fur Medizinische Forschung, Heidelberg (Germany); Barends, Thomas R. M. [Max Planck Inst. fur Medizinische Forschung, Heidelberg (Germany); Kuhnel, Kai-Uwe [Max Planck Inst. fur Kernphysik, Heidelberg (Germany); Schroter, Claus-Dieter [Max Planck Inst. fur Kernphysik, Heidelberg (Germany); Hartmann, Robert [PNSensor GmbH, Munich (Germany); Holl, Peter [PNSensor GmbH, Munich (Germany); Reich, Christian [PNSensor GmbH, Munich (Germany); Soltau, Heike [PNSensor GmbH, Munich (Germany); Kimmel, Nils [Max Planck Society Semiconductor Lab., Munich (Germany); Weidenspointner, Georg [Max Planck Society Semiconductor Lab., Munich (Germany); Max Planck Inst. fur Extraterrestrische Physik, Garching (Germany); Pietschner, Daniel [Max Planck Society Semiconductor Lab., Munich (Germany); Hauser, Günter [Max Planck Society Semiconductor Lab., Munich (Germany); Herrmann, Sven [Max Planck Society Semiconductor Lab., Munich (Germany); Schaller, Gerhard [Max Planck Society Semiconductor Lab., Munich (Germany); Schopper, Florian [Max Planck Society Semiconductor Lab., Munich (Germany); Andritschke, Robert [Max Planck Society Semiconductor Lab., Munich (Germany); Boutet, Sébastien [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Krzywinski, Jacek [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Bostedt, Christoph [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Messerschmidt, Marc [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Bozek, John D. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Williams, Garth J. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS); Bogan, Michael J. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Hampton, Christina Y. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Sierra, Raymond G. [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Starodub, Dmitri [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Gorke, Hubert [Forschungszentrum Julich (Germany); Hau-Riege, Stefan P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frank, Matthias [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Maia, Filipe R. N. C. [Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; Hajdu, Janos [Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; Timneanu, Nicusor [Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; Seibert, M. Marvin [Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; Andreasson, Jakob [Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; Rocker, Andrea [Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; Jönsson, Olof [Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; Svenda, Martin [Uppsala Univ. (Sweden). Dept. of Cell and Molecular Biology, Lab. of Molecular Biophysics; Holton, James M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Marchesini, Stefano [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Neutze, Richard [Univ. of Gothenburg (Sweden). Dept. of Chemistry, Biochemistry and Biophysics; Schorb, Sebastian [Technische Univ. Berlin (Germany). Inst. fur Optik und Atomare Physik (IOAP); Rupp, Daniela [Technische Univ. Berlin (Germany). Inst. fur Optik und Atomare Physik (IOAP); Adolph, Marcus [Technische Univ. Berlin (Germany). Inst. fur Optik und Atomare Physik (IOAP); Gorkhover, Tais [Technische Univ. Berlin (Germany). Inst. fur Optik und Atomare Physik (IOAP); Andersson, Inger [Swedish Univ. of Agricultural Sciences, Uppsala Biomedical Centre, Uppsala, (Sweden). Dept. of Molecular Biology; Barthelmess, Miriam [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Photon Science; Bajt, Saša [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Photon Science; Hirsemann, Helmut [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Photon Science; Potdevin, Guillaume [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Photon Science; Graafsma, Heinz [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Photon Science; Nilsson, Björn [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Photon Science

    2011-02-03

    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

  1. X-ray - skeleton

    A skeletal x-ray is an imaging test used to look at the bones. It is used to detect fractures , tumors, or ... in the health care provider's office by an x-ray technologist. You will lie on a table or ...

  2. Extremity x-ray

    An extremity x-ray is an image of the hands, wrist, feet, ankle, leg, thigh, forearm humerus or upper arm, hip, shoulder ... term "extremity" often refers to a human limb. X-rays are a form of radiation that passes through ...

  3. X-ray interferometers

    An improved type of amplitude-division x-ray interferometer is described. The wavelength at which the interferometer can operate is variable, allowing the instrument to be used to measure x-ray wavelength, and the angle of inclination is variable for sample investigation. (U.K.)

  4. Dental x-rays

    ... addition, many dentists are taking x-rays using digital technology. The image runs through a computer. The amount of radiation given off during the procedure is less than traditional methods. Other types of dental x-rays can create a 3-D picture ...

  5. X-ray diffraction study of Penicillium Vitale catalase in the complex with aminotriazole

    The three-dimensional structure of the enzyme catalase from Penicillium vitale in a complex with the inhibitor aminotriazole was solved and refined by protein X-ray crystallography methods. An analysis of the three-dimensional structure of the complex showed that the inhibition of the enzyme occurs as a result of the covalent binding of aminotriazole to the amino-acid residue His64 in the active site of the enzyme. An investigation of the three-dimensional structure of the complex resulted in the amino-acid residues being more precisely identified. The binding sites of saccharide residues and calcium ions in the protein molecule were found.

  6. X-ray structure of 1D-coordination polymer of copperII bearing 1,4-pyrazine-2,3-dicarboxylic acid and 2-aminopyrimidine

    Mirzaei Masoud; Eshtiagh-Hosseini Hossein; Hassanpoor Azam; Barba Victor

    2012-01-01

    The new 1D-coordination polymer of CuII ion, {(2- apymH)2[Cu(pyzdc)2] .6H2O}n, (2-apym = 2-aminopyrimidine, pyzdcH2 = 1,4- pyrazine-2,3-dicarboxylic acid), was synthesized based on proton transfer mechanism and characterized by elemental analysis, infrared spectroscopy, and single crystal X-ray diffraction. The coordination polymer consists of infinite anionic chains of [Cu(pyzdc)2]2- anion bridged crossing double chain running along a-axis and discrete (2-apymH)+ fragment. The CuII ion...

  7. Crystallization and preliminary X-ray crystallographic analysis of UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (VvGT5) from the grapevine Vitis vinifera

    The UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase (VvGT5) from the grapevine V. vinifera was purified and crystallized. The best crystal diffracted X-rays to 2.2 Å resolution and belonged to space group P6122. Grapevine (Vitis vinifera) glycosyltransferase 5 (VvGT5) is a UDP-glucuronic acid:flavonol-3-O-glucuronosyltransferase that catalyses the 3-O-specific glucuronosylation of flavonols using UDP-glucuronic acid as a sugar donor to produce flavonol 3-O-glucosides, which are important bioactive phytochemicals. Recombinant VvGT5 expressed in Escherichia coli cells was purified and crystallized by the sitting-drop vapour-diffusion method. A full set of X-ray diffraction data was collected to 2.2 Å Bragg spacing from a single crystal using a synchrotron-radiation source. The crystal was hexagonal, belonging to space group P6122, with unit-cell parameters a = b = 102.70, c = 535.92 Å. The initial phases were determined by the molecular-replacement method

  8. Crystallization and preliminary X-ray diffraction analysis of a Lys49-phospholipase A2 complexed with caffeic acid, a molecule with inhibitory properties against snake venoms

    Piratoxin I, a noncatalytic and myotoxic Lys49-phospholipase A2 from B. pirajai venom, was cocrystallized with the inhibitor caffeic acid and a data set was collected to a resolution of 1.65 Å. The electron-density map unambiguously indicated that three inhibitor molecules interact with the C-terminus of the protein. Phospholipases A2 (PLA2s) are one of the main components of bothropic venoms; in addition to their phospholipid hydrolysis action, they are involved in a wide spectrum of pharmacological activities, including neurotoxicity, myotoxicity and cardiotoxicity. Caffeic acid is an inhibitor that is present in several plants and is employed for the treatment of ophidian envenomations in the folk medicine of many developing countries; as bothropic snake bites are not efficiently neutralized by conventional serum therapy, it may be useful as an antivenom. In this work, the cocrystallization and preliminary X-ray diffraction analysis of the Lys49-PLA2 piratoxin I from Bothrops pirajai venom in the presence of the inhibitor caffeic acid (CA) are reported. The crystals diffracted X-rays to 1.65 Å resolution and the structure was solved by molecular-replacement techniques. The electron-density map unambiguously indicated the presence of three CA molecules that interact with the C-terminus of the protein. This is the first time a ligand has been observed bound to this region and is in agreement with various experiments previously reported in the literature

  9. Small-angle X-ray-scattering investigation and structural-model study of the fatty-acid synthetase from pig liver

    The structure of the fatty acid synthetase from pig liver was studied on models based upon structural and functional properties selected from pertinent results available from numerous investigations carried out with fatty acid synthetase from this and other sources. When comparing small-angle X-ray-scattering curves calculated with these models and curves obtained from small-angle X-ray-scattering experiments carried out with the pig-liver enzyme, we tried to select a model which would lead to an acceptable correlation between the calculated and the experimental curves and at the same time fulfil the known structural and the functional requirements. The comparison of the curves was started with a model of low complexity. The observed discrepancy, together with arguments from the structural and the functional properties, helped decide which is the next most reasonable model to be considered. This procedure was repeated for five models of increasing complexity. In the model which led to the best fit the multienzyme complex is composed of two halves in an asymmetric conformation including hollow spaces. This highly anisotropic model would imply that the two halves change their conformation each time a synthetic cycle is completed and that the growing fatty acid is handed over from one half to the other. (orig.)

  10. Bone X-Ray (Radiography)

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  11. Bone X-Ray (Radiography)

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  12. Bone X-Ray (Radiography)

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  13. Lumbosacral spine x-ray

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  14. Bone X-Ray (Radiography)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  15. Abdomen X-Ray (Radiography)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  16. X-ray apparatus

    A patient support system for X-ray equipment in arteriographic studies of the heart is described in detail. The support system has been designed to overcome many of the practical problems encountered in using previous types of arteriographic X-ray equipment. The support system is capable of horizontal movement and, by a series of shafts attached to the main support system, the X-ray source and image intensifier or detector may be rotated through the same angle. The system is highly flexible and details are given of several possible operational modes. (U.K.)

  17. X-ray lasers

    Elton, Raymond C

    2012-01-01

    The first in its field, this book is both an introduction to x-ray lasers and a how-to guide for specialists. It provides new entrants and others interested in the field with a comprehensive overview and describes useful examples of analysis and experiments as background and guidance for researchers undertaking new laser designs. In one succinct volume, X-Ray Lasers collects the knowledge and experience gained in two decades of x-ray laser development and conveys the exciting challenges and possibilities still to come._Add on for longer version of blurb_M>The reader is first introduced

  18. Chest X-Ray

    Full Text Available ... also be useful to help diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray requires no special preparation. ...

  19. Chest X-Ray

    Full Text Available ... However, it’s important to consider the likelihood of benefit to your health. While a chest x-ray use a tiny dose of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. ...

  20. X-Ray Diffraction.

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  1. Medical X-Rays

    ... The Conference of Radiation Control Program Directors (CRCPD) publishes Suggested State Regulations for the Control of Radiation , ... eSubmitter Guidance for Industry and Food and Drug Administration Staff - Assembler's Guide to Diagnostic X-Ray Equipment ...

  2. Chest X-Ray

    Full Text Available ... Angioplasty & vascular stenting Video: Arthrography Video: Contrast Material Radiology and You Take our survey About this Site ... radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  3. Chest X-Ray

    Full Text Available ... of ionizing radiation, the benefit of an accurate diagnosis far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  4. Chest X-Ray

    Full Text Available ... chest x-ray is used to evaluate the lungs, heart and chest wall and may be used ... diagnose and monitor treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A ...

  5. Chest X-Ray

    Full Text Available ... Site Index A-Z Spotlight June is Men's Health Month Recently posted: Focused Ultrasound for Uterine Fibroids ... to consider the likelihood of benefit to your health. While a chest x-ray use a tiny ...

  6. X-ray tubes

    An improved form of x-ray tube is described which consists of a rotatable anode disc and an electron beam source enclosed in an envelope. The beam of electrons strikes the edge of the anode disc at an acute angle, producing x-rays which are transmitted through a window in the envelope. To improve performance and life of the anode disc it is additionally reciprocated back and forth along its axis of rotation. Dimensions are specified. (U.K.)

  7. Bone X-Ray (Radiography)

    Full Text Available ... around or in bones. top of page How should I prepare? Most bone x-rays require no ... might interfere with the x-ray images. Women should always inform their physician and x-ray technologist ...

  8. Bone X-Ray (Radiography)

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  9. Bone X-Ray (Radiography)

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  10. Surface Structure and Chemical Switching of Thioctic Acid Adsorbed on Au(111) as Observed Using Near-Edge X-ray Absorption Fine Structure

    Meulenberg, R W; van Buuren, T; Vance, A L; Terminello, L J; Willey, T M; Bostedt, C; Fadley, C S

    2004-01-06

    Thioctic acid (alpha-lipoic acid) is a molecule with a large disulfide-containing base, a short alkyl-chain with four CH{sub 2} units, and a carboxyl termination. Self-assembled monolayer (SAM) films of thioctic acid adsorbed on Au(111) have been investigated with near-edge x-ray absorption fine structure (NEXAFS) spectroscopy and x-ray photoelectron spectroscopy (XPS) to determine film quality, bonding and morphology. Using standard preparation protocols for SAMs, that is, dissolving thioctic acid in ethanol and exposing gold to the solution, results in poor films. These films are highly disordered, contain a mixture of carboxyl and carboxylate terminations, have more than monolayer coverage, and exhibit unbound disulfide. Conversely, forming films by dissolving 1 mmol thioctic acid into 5% acetic acid in ethanol (as previously reported with carboxyl-terminated alkyl-thiols) forms ordered monolayers with small amounts of unbound sulfur. NEXAFS indicates tilted over endgroups with the carboxyl group normal on average 38{sup o} from the surface normal. Slight dichroism in other features indicates alkyl chains statistically more upright than prostrate on the surface. Reflection-absorption Fourier transform infrared (RA-FTIR) spectra indicate hydrogen bonding between neighboring molecules. In such well-formed monolayers, a stark reorientation occurs upon deprotonation of the endgroup by rinsing in a KOH solution. The carboxylate plane normal is now about 66{sup o} from sample normal, a much more upright orientation. Data indicate this reorientation may also cause a more upright orientation to the alkyl portion of the molecules.

  11. X-ray laser

    X-ray is among the most important research tools today, and has given priceless contributions to all disciplines within the natural sciences. State of the art in this field is called XFEL, X-ray Free Electron Laser, which may be 10 thousand million times stronger than the x-rays at the European Synchrotron Radiation Facility in Grenoble. In addition XFEL has properties that allow the study of processes which previously would have been impossible. Of special interest are depictions on atomic- and molecular level by the use of x-ray holographic methods, and being able to study chemical reactions in nature's own timescale, the femtosecond. Conclusion: The construction of x-ray lasers is a natural development in a scientific field which has an enormous influence on the surrounding society. While the discovery of x-ray was an important breakthrough in itself, new applications appear one after the other: Medical depiction, dissemination, diffraction, DNA and protein structures, synchrotron radiation and tomography. There is reason to believe that XFEL implies a technological leap as big as the synchrotrons some decades ago. As we are now talking about studies of femtosecond and direct depiction of chemical reactions, it is obvious that we are dealing with a revolution to come, with extensive consequences, both scientifically and culturally. (EW)

  12. Crystallization and preliminary X-ray crystallographic studies of a Lys49-phospholipase A2 homologue from Bothrops pirajai venom complexed with rosmarinic acid

    PrTX-I, a noncatalytic and myotoxic Lys49-phospholipase A2 from B. pirajai venom, was cocrystallized with the inhibitor rosmarinic acid from C. verbenacea. The crystals diffracted X-rays to 1.8 Å resolution and the structure was solved, indicating a remarkable electronic density for the ligand at the entrance to the hydrophobic channel. PrTX-I, a noncatalytic and myotoxic Lys49-phospholipase A2 from Bothrops pirajai venom, was crystallized in the presence of the inhibitor rosmarinic acid (RA). This is the active compound in the methanolic extract of Cordia verbenacea, a plant that is largely used in Brazilian folk medicine. The crystals diffracted X-rays to 1.8 Å resolution and the structure was solved by molecular-replacement techniques, showing electron density that corresponds to RA molecules at the entrance to the hydrophobic channel. The crystals belong to space group P212121, indicating conformational changes in the structure after ligand binding: the crystals of all apo Lys49-phospholipase A2 structures belong to space group P3121, while the crystals of complexed structures belong to space groups P21 or P212121

  13. Advances and problems in protein crystallography

    Řezáčová, Pavlína

    2009-01-01

    Roč. 16, 2a (2009), k7-k8. ISSN 1211-5894. [Struktura - Colloquium of Czech and Slovak Crystallographic Association. 22.06.2009-25.06.2009, Hluboká nad Vltavou] Institutional research plan: CEZ:AV0Z40550506 Keywords : protein crystallography * X-ray crystallography * structural biology Subject RIV: CC - Organic Chemistry

  14. Single molecule imaging with longer x-ray laser pulses

    Martin, Andrew V.; Corso, Justine K.; Caleman, Carl; Timneanu, Nicusor; Quiney, Harry M.

    2015-01-01

    During the last five years, serial femtosecond crystallography using x-ray laser pulses has developed into a powerful technique for determining the atomic structures of protein molecules from micrometer and sub-micrometer sized crystals. One of the key reasons for this success is the "self-gating" pulse effect, whereby the x-ray laser pulses do not need to outrun all radiation damage processes. Instead, x-ray induced damage terminates the Bragg diffraction prior to the pulse completing its pa...

  15. Incoherent x-ray scattering in single molecule imaging

    Slowik, Jan Malte; Dixit, Gopal; Jurek, Zoltan; Santra, Robin

    2014-01-01

    Imaging of the structure of single proteins or other biomolecules with atomic resolution would be enormously beneficial to structural biology. X-ray free-electron lasers generate highly intense and ultrashort x-ray pulses, providing a route towards imaging of single molecules with atomic resolution. The information on molecular structure is encoded in the coherent x-ray scattering signal. In contrast to crystallography there are no Bragg reflections in single molecule imaging, which means the coherent scattering is not enhanced. Consequently, a background signal from incoherent scattering deteriorates the quality of the coherent scattering signal. This background signal cannot be easily eliminated because the spectrum of incoherently scattered photons cannot be resolved by usual scattering detectors. We present an ab initio study of incoherent x-ray scattering from individual carbon atoms, including the electronic radiation damage caused by a highly intense x-ray pulse. We find that the coherent scattering pa...

  16. X-ray structure of 1D-coordination polymer of copperII bearing 1,4-pyrazine-2,3-dicarboxylic acid and 2-aminopyrimidine

    Mirzaei Masoud

    2012-01-01

    Full Text Available The new 1D-coordination polymer of CuII ion, {(2- apymH2[Cu(pyzdc2] .6H2O}n, (2-apym = 2-aminopyrimidine, pyzdcH2 = 1,4- pyrazine-2,3-dicarboxylic acid, was synthesized based on proton transfer mechanism and characterized by elemental analysis, infrared spectroscopy, and single crystal X-ray diffraction. The coordination polymer consists of infinite anionic chains of [Cu(pyzdc2]2- anion bridged crossing double chain running along a-axis and discrete (2-apymH+ fragment. The CuII ion is located on inversion centre in the basal plane of an elongated octahedron and two oxygen atoms from adjacent (pyzdc2-ligands occupy axial position. The interaction between oxygen atoms of water molecules along with the dicarboxylic acid play an important role in the overall supramolecular assembly.

  17. X-ray nanotomography

    Sasov, Alexander

    2004-10-01

    A compact laboratory x-ray "nano-CT" scanner has been created for 3D non-invasive imaging with 150-200 nanometers 3D spatial resolution, using advanced x-ray technologies and specific physical phenomena for signal detection. This spatial resolution in volume terms is 3 orders better than can be achieved in synchrotron tomography, 5 orders better then in existing laboratory micro-CT instruments and 10-12 orders better in comparison to clinical CT. The instrument employs an x-ray source with a 300-400nm x-ray spot size and uses small-angle scattering to attain a detail detectability of 150-200nm. An object manipulator allows positioning and rotation with an accuracy of 150nm. The x-ray detector is based on an intensified CCD with single-photon sensitivity. A typical acquisition cycle for 3D reconstruction of the full object volume takes from 10 to 60 minutes, with the collection of several hundred angular views. Subsequent volumetric reconstruction produces results as a set of cross sections with isotropic voxel size down to 140 x 140 x 140nm, or as a 3D-model, which can be virtually manipulated and measured. This unique spatial resolution in non-invasive investigations gives previously unattainable 3D images in several application areas, such as composite materials, paper and wood microstructure, biomedical applications and others.

  18. X-ray Pulsars

    Walter, Roland

    2016-01-01

    X-ray pulsars shine thanks to the conversion of the gravitational energy of accreted material to X-ray radiation. The accretion rate is modulated by geometrical and hydrodynamical effects in the stellar wind of the pulsar companions and/or by instabilities in accretion discs. Wind driven flows are highly unstable close to neutron stars and responsible for X-ray variability by factors $10^3$ on time scale of hours. Disk driven flows feature slower state transitions and quasi periodic oscillations related to orbital motion and precession or resonance. On shorter time scales, and closer to the surface of the neutron star, X-ray variability is dominated by the interactions of the accreting flow with the spinning magnetosphere. When the pulsar magnetic field is large, the flow is confined in a relatively narrow accretion column, whose geometrical properties drive the observed X-ray emission. In low magnetized systems, an increasing accretion rate allows the ignition of powerful explosive thermonuclear burning at t...

  19. X-ray astronomy

    This book contains the lectures, and the most important seminars held at the NATO meeting on X-Ray astronomy in Erice, July 1979. The meeting was an opportune forum to discuss the results of the first 8-months of operation of the X-ray satellite, HEAO-2 (Einstein Observatory) which was launched at the end of 1978. Besides surveying these results, the meeting covered extragalactic astronomy, including the relevant observations obtained in other portions of the electromagnetic spectrum (ultra-violet, optical, infrared and radio). The discussion on galactic X-ray sources essentially covered classical binaries, globular clusters and bursters and its significance to extragalactic sources and to high energy astrophysics was borne in mind. (orig.)

  20. Survey analysis and chemical characterization of solid inhomogeneous samples using a general homogenization procedure including acid digestion, drying, grinding and briquetting together with X-ray fluorescence.

    Sahlin, Eskil; Magnusson, Bertil

    2012-08-15

    A survey analysis and chemical characterization methodology for inhomogeneous solid waste samples of relatively large samples (typically up to 100g) using X-ray fluorescence following a general homogenization procedure is presented. By using a combination of acid digestion and grinding various materials can be homogenized e.g. pure metals, alloys, salts, ores, plastics, organics. In the homogenization step, solid material is fully or partly digested in a mixture of nitric acid and hydrochloric acid in an open vessel. The resulting mixture is then dried, grinded, and finally pressed to a wax briquette. The briquette is analyzed using wave-length dispersive X-ray fluorescence with fundamental parameters evaluation. The recovery of 55 elements were tested by preparing samples with known compositions using different alloys, pure metals or elements, oxides, salts and solutions of dissolved compounds. It was found that the methodology was applicable to 49 elements including Na, Mg, Al, Si, P, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, La, Ce, Ta, W, Re, Ir, Pt, Au, Tl, Pb, Bi, and Th, that all had recoveries >0.8. 6 elements were lost by volatilization, including Br, I, Os, and Hg that were completely lost, and S and Ge that were partly lost. Since all lanthanides are chemically similar to La and Ce, all actinides are chemically similar to Th, and Hf is chemically similar to Zr, it is likely that the method is applicable to 77 elements. By using an internal standard such as strontium, added as strontium nitrate, samples containing relatively high concentrations of elements not measured by XRF (hydrogen to fluorine), e.g. samples containing plastics, can be analyzed. PMID:22841048

  1. Powder X-ray diffraction study af alkali alanates

    Cao, Thao; Mosegaard Arnbjerg, Lene; Jensen, Torben René

    Powder X-ray diffraction study of alkali alanates Thao Cao, Lene Arnbjerg, Torben R. Jensen. Center for Materials Crystallography (CMC), Center for Energy Materials (CEM), iNANO and Department of Chemistry, Aarhus University, DK-8000, Denmark. Abstract: To meet the energy demand in the future...

  2. CRL X-RAY TUBE

    Kolchevsky, N. N.; Petrov, P. V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed.

  3. X-ray astronomical spectroscopy

    Holt, Stephen S.

    1987-01-01

    The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.

  4. Leaf-cutting ants toxicity of limonexic acid and degraded limonoids from Raulinoa echinata: X-ray structure of epoxy-fraxinellone

    Phytochemical survey of roots extracts of the South Brazilian endemic plant Raulinoa echinata Cowan, Rutaceae led to the isolation of known degraded limonoids: fraxinellone, fraxinellonone and epoxy-fraxinellone. The latter was previously isolated also from the stems, but the relative configuration could not be solved by NMR experiments. This paper deals with the X-ray diffraction analysis of epoxy-fraxinellone and its toxicity to leaf-cutting ants, describes the isolation of fraxinellonone and fraxinellone for the first time in Raulinoa. Epoxy-fraxinellone showed no toxicity to the leaf-cutting ants (Atta sexdens rubropilosa). The limonoid limonexic acid, isolated from stems, presented high toxicity to the leaf-cutting ants, diminishing considerably their longevity. (author)

  5. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8* sialic acid-binding domain of porcine rotavirus strain OSU

    Porcine rotavirus strain OSU VP8* domain has been expressed, purified and crystallized. X-ray diffraction data from different crystal forms of the VP8* domain have been collected to 2.65 and 2.2 Å resolution, respectively. The rotavirus outer capsid spike protein VP4 is utilized in the process of rotavirus attachment to and membrane penetration of host cells. VP4 is cleaved by trypsin into two domains: VP8* and VP5*. The VP8* domain is implicated in initial interaction with sialic acid-containing cell-surface carbohydrates and triggers subsequent virus invasion. The VP8* domain from porcine OSU rotavirus was cloned and expressed in Escherichia coli. Different crystal forms (orthorhombic P212121 and tetragonal P41212) were harvested from two distinct crystallization conditions. Diffraction data have been collected to 2.65 and 2.2 Å resolution and the VP8*65–224 structure was determined by molecular replacement

  6. The structure investigations of dehydroacetic acid and 1,8-diaminonaphthalene condensation product by NMR, MS, and X-ray measurements

    Kołodziej, B.; Morawiak, M.; Kamieński, B.; Schilf, W.

    2016-05-01

    A new unexpected product of condensation reaction of 1,8-diaminonaphthalene (DAN) and carbonyl compound (here: dehydroacetic acid (dha)) was synthesized. Discussion about the molecular structure of possible products of this reaction was done on the base of NMR studies. The structure of the titled product in both DMSO solution and in the solid state was resolved by analysis of its spectral data (X-ray structure analysis, multinuclear NMR in solution and solid state spectra) and MS measurements. The presented studies provided clear evidence that the titled product exists in diluted DMSO solution as the mixture of two kinetic free ionic species whereas in concentrated DMSO solution as well as in the solid state this system forms associated ionic pairs bonded together by hydrogen bonds.

  7. Leaf-cutting ants toxicity of limonexic acid and degraded limonoids from Raulinoa echinata: X-ray structure of epoxy-fraxinellone

    Biavatti, Maique W.; Westerlon, Rosangela [Universidade do Vale do Itajai, SC (Brazil). Programa de Pos-Graduacao em Ciencias Farmaceuticas]. E-mail: maique@univali.br; Vieira, Paulo C.; Silva, M. Fatima G.F. da; Fernandes, Joao B. [Sao Carlos Univ., SP (Brazil). Dept. de Quimica; Penaflor, M. Fernanda G.V.; Bueno, Odair C. [UNESP, Rio Claro, SP (Brazil). Centro de Estudos de Insetos Sociais; Ellena, Javier [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Fisica

    2005-11-15

    Phytochemical survey of roots extracts of the South Brazilian endemic plant Raulinoa echinata Cowan, Rutaceae led to the isolation of known degraded limonoids: fraxinellone, fraxinellonone and epoxy-fraxinellone. The latter was previously isolated also from the stems, but the relative configuration could not be solved by NMR experiments. This paper deals with the X-ray diffraction analysis of epoxy-fraxinellone and its toxicity to leaf-cutting ants, describes the isolation of fraxinellonone and fraxinellone for the first time in Raulinoa. Epoxy-fraxinellone showed no toxicity to the leaf-cutting ants (Atta sexdens rubropilosa). The limonoid limonexic acid, isolated from stems, presented high toxicity to the leaf-cutting ants, diminishing considerably their longevity. (author)

  8. Phosphole complexes of Gold(I) halides: Comparison of solution and solid-state structures by a combination of solution and CP/MAS 31P NMR spectroscopy and x-ray crystallography

    A series of complexes of 1-phenyldibenzophosphole (DBP), 1-phenyl-3,4,-dimethylphosphole (DMPP), and triphenylphosphine of the type LnAuX (n = 1, L = DBP, DMPP, Ph3P, X = Cl, Br, I; n = 3, L = DBP, X = Cl, Br, I; n = 3, L = Ph3P, X = Cl; n = 4, L = DBP, DMPP, X = PF6) have been prepared and characterized. The structures of (DBP)AuCl (1), (DBP)3AuCl (2), and (DMPP)AuCl (3) have been determined from three-dimensional x-ray data collected by counter methods. Crystal structure of the complexes is reported. The CP/MAS 31P(1H) NMR spectrum of complex 1 shows two resonances in a 1:1 intensity ratio, and the CP/MAS 31P(1H) NMR spectrum of complex 3 shows three resonances in a 1:1:1 intensity ratio for reasons that are not yet understood. Though the three phospholes are crystallographically inequivalent (d(AuP) = 2.359 (1), 2.382 (1), and 2.374 (2) angstrom) the molecule has effective Cs symmetry as evidenced by the observation of two 31P resonances in a 2:1 intensity ratio in its CP/MAS 31P(1H) NMR spectrum. Variable-temperature 31P(1H) NMR spectra obtained on solutions of LAuCl + L in various ratios were analyzed to determine the nature of the species present in solution and to gain information regarding their relative stabilities as a function of the nature of the phosphine. 79 refs., 8 figs., 9 tabs

  9. Chest X-Ray

    Full Text Available ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript ... Recently posted: Focused Ultrasound for Uterine Fibroids Dementia Video: General Ultrasound Video: Pediatric Nuclear Medicine Radiology and ...

  10. X-ray apparatus

    The invention discloses an X-ray apparatus that can be used for tomography with the aid of a computer. With this apparatus plus computer, it is possible to quickly achieve the required edge values whereby the influence of the movement is diminished

  11. Chest X-Ray

    Full Text Available ... Pediatric Ultrasound Video: Angioplasty & vascular stenting Video: Arthrography Radiology and You About this Site RadiologyInfo.org is ... radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, I’m Dr. Geoffrey ...

  12. Medical x-ray

    This book describes the fundamental subject about medical radiography. It is a multidisciplinary field that requires cross professional input from scientists, engineers and medical doctors. However, it is presented in simple language to suit different levels of readers from x-ray operators and radiographers to physists, general practitioners and radiology specialists.The book is written in accordance to the requirements of the standard syllabus approved by the Ministry of Health Malaysia for the training of medical x-ray operator and general practitioners. In general, the content is not only designed to provide relevant and essential subject for related professionals in medical radiological services such as x-ray operator, radiographer and radiologists, but also to address those in associated radiological services including nurses, medical technologists and physicists.The book is organized and arranged sequentially into 3 parts for easy reference: Radiation safety; X-ray equipment and associated facilities; Radiography practices. With proper grasping of all these parts, the radiological services could be provided with confident and the highest professional standard. Thus, medical imaging with highest quality that can provide useful diagnostic information at minimum doses and at cost effective could be assured

  13. Chest X-Ray

    Full Text Available ... this Site RadiologyInfo.org is produced by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript ... time! Spotlight Recently posted: Pediatric MRI Intravascular Ultrasound Video: Chest CT Video:Thyroid Ultrasound Video: Head CT ...

  14. Quantitative Imaging of Single, Unstained Viruses with Coherent X-rays

    Song, Changyong; Mancuso, Adrian; Amirbekian, Bagrat; Peng, Li; Sun, Ren; Shah, Sanket S; Zhou, Z Hong; Ishikawa, Tetsuya; Miao, Jianwei

    2008-01-01

    Since Perutz, Kendrew and colleagues unveiled the structure of hemoglobin and myoglobin based on X-ray diffraction analysis in the 1950s, X-ray crystallography has become the primary methodology used to determine the 3D structure of macromolecules. However, biological specimens such as cells, organelles, viruses and many important macromolecules are difficult or impossible to crystallize, and hence their structures are not accessible by crystallography. Here we report, for the first time, the recording and reconstruction of X-ray diffraction patterns from single, unstained viruses. The structure of the viral capsid inside a virion was visualized. This work opens the door for quantitative X-ray imaging of a broad range of specimens from protein machineries, viruses and organelles to whole cells. Moreover, our experiment is directly transferable to the use of X-ray free electron lasers, and represents a major experimental milestone towards the X-ray imaging of single macromolecules.

  15. Pyroelectric x-ray detectors and x-ray pyrometers

    This paper discusses pyroelectric detectors which are very promising x-ray detectors for intense pulsed x-ray/γ-ray measurements and can be used as x-ray pyrometers. They are fast, passive, and inherently flat in spectral response for low energy x-rays. The authors report tests of LiTaO3, Sr.5Ba.5Nb2O6 and LiNbO3 detectors at Nova laser with 1 ns low energy x-rays and at Zapp Z-pinch machine with 100 ns x-rays. The temporal and spectral responses are discussed

  16. Pyroelectric x-ray detectors and x-ray pyrometers

    Pyroelectric detectors are very promising x-ray detectors for intense pulsed x-ray/γ-ray measurements and can be used as x-ray pyrometers. They are fast, passive, and inherently flat in spectral response for low-energy x rays. We report our tests of LiTaO3 detectors at Nova laser with 1-ns low-energy x rays and at Zapp Z-pinch machine with 100-ns x rays. The temporal and spectral responses are discussed

  17. Characterization of D-glucaric acid using NMR, x-ray crystal structure, and MM3 molecular modeling analyses

    D-glucaric acid was characterized in solution by comparing NMR spectra from the isotopically unlabeled molecule with those from D-glucaric acid labeled with deuterium or carbon-13 atoms. The NMR studies provided unequivocal assignments for all carbon atoms and non-hydroxyl protons of the molecule. ...

  18. Effect of a Routine Synchrotron X-Ray Microtomography Scan on the Amino Acid Content of the Murchison CM Chondrite

    Friedrich, J. M.; Glavin, D. P.; Rivers, M. L.; Dworkin, J. P.

    2015-07-01

    We conducted experiments to examine if exposure to synchrotron radiation during a typical µCT scan causes detectable changes in the amino acid content of a carbonaceous chondrite. We found a µCT scan caused no change in the amino acid content.

  19. Fourier-transform Ghost Imaging with Hard X-rays

    Yu, Hong; Han, Shensheng; Xie, Honglan; Du, Guohao; Xiao, Tiqiao; Zhu, Daming

    2016-01-01

    Knowledge gained through X-ray crystallography fostered structural determination of materials and greatly facilitated the development of modern science and technology in the past century. Atomic details of sample structures is achievable by X-ray crystallography, however, it is only applied to crystalline structures. Imaging techniques based on X-ray coherent diffraction or zone plates are capable of resolving the internal structure of non-crystalline materials at nanoscales, but it is still a challenge to achieve atomic resolution. Here we demonstrate a novel lensless Fourier-transform ghost imaging method with pseudo-thermal hard X-rays by measuring the second-order intensity correlation function of the light. We show that high resolution Fourier-transform diffraction pattern of a complex structure can be achieved at Fresnel region, and the amplitude and phase distributions of a sample in spatial domain can be retrieved successfully. The method of lensless X-ray Fourier-transform ghost imaging extends X-ray...

  20. Coherent convergent-beam time-resolved X-ray diffraction

    Spence, John C. H.; Zatsepin, Nadia A.; Li, Chufeng

    2014-01-01

    The use of coherent X-ray lasers for structural biology allows the use of nanometre diameter X-ray beams with large beam divergence. Their application to the structure analysis of protein nanocrystals and single particles raises new challenges and opportunities. We discuss the form of these coherent convergent-beam (CCB) hard X-ray diffraction patterns and their potential use for time-resolved crystallography, normally achieved by Laue (polychromatic) diffraction, for which the monochromatic ...

  1. X ray Production. Chapter 5

    The differential absorption of X rays in tissues and organs, owing to their atomic composition, is the basis for the various imaging methods used in diagnostic radiology. The principles in the production of X rays have remained the same since their discovery. However, much refinement has gone into the design of X ray tubes to achieve the performance required for today’s radiological examinations. In this chapter, an outline of the principles of X ray production and a characterization of the radiation output of X ray tubes will be given. The basic processes producing X rays are dealt with in Section 1.4

  2. X-ray crystallographic, FT-IR and NMR studies as well as anticancer and antibacterial activity of the salt formed between ionophore antibiotic Lasalocid acid and amines

    Huczyński, Adam; Rutkowski, Jacek; Wietrzyk, Joanna; Stefańska, Joanna; Maj, Ewa; Ratajczak-Sitarz, Małgorzata; Katrusiak, Andrzej; Brzezinski, Bogumil; Bartl, Franz

    2013-01-01

    Two new complexes of the ionophore antibiotic Lasalocid acid (LAS) with phenylamine (PhA) and butylamine (BuA) were synthesized and their molecular structures were studied using single crystal X-ray diffraction and spectroscopic methods. In the solid state both amines are protonated and all NH3+ protons are hydrogen bonded to etheric, hydroxyl and carboxylic oxygen atoms of the LAS anion. In chloroform solutions the structure observed in the crystal of LAS-BuA complex is preserved and an equilibrium between the LAS-PhA complex and dissociated Lasalocid acid and phenylamine is observed. In vitro antimicrobial tests of the complexes showed a significant activity towards some strains of Gram-positive bacteria. For the first time Lasalocid acid and its complexes with amines were tested in vitro for cytotoxic activity against human cancer cell lines: A-549 (lung), MCF-7 (breast), HT-29 (colon) and mouse cancer cell line P-388 (leukemia). We found that LAS and its complexes are strong cytotoxic agents towards all tested cell lines. The cytostatic activity of the compounds studied is greater than that of cisplatin, indicating that Lasalocid and its complexes are promising candidates for new anticancer drugs.

  3. X-ray microtomography

    In this paper the authors describe the application of a new high-resolution X-ray tomographic microscope to the study of porous media. The microscope was designed to exploit the properties of a synchrotron X-ray source to perform three dimensional tomography on millimeter sized objects with micron resolution and has been used in materials science studies with both synchrotron and conventional and synchrotron sources will be compared. In this work the authors have applied the microscope to measure the three dimensional structure of fused bead packs and berea sandstones with micron resolution and have performed preliminary studies of flow in these media with the microscope operated in a digital subtraction radiography mode. Computer graphics techniques have been applied to the data to visually display the structure of the pore body system. Tomographic imaging after flow experiments should detect the structure of the oil-water interface in the pore network and this work is ongoing

  4. X-ray generators

    Volume 4 provides a comparative survey on generators for stationary applications as available on the German market. It provides decision-making tools, physical characteristics, suggestions for radiation protection and for safe appliance operation as well as a concept for inspections all of which have been developed jointly by physicians of various specialities, physicists, engineers, business men, hospital experts and medicotechnical X-ray staff on the basis of a well-tried working concept. The systematic representation of correlations relevant to decision-making processes is based on a profile of technico-physical characteristics (standard product information) which was established by way of interdisciplinary dialog and which will enable any hospital or clinic to easily equip its X-ray department in an economic and purposeful way. The information on device data, device descriptions and market survey furnish the data tested by the manufacturers without guarantee and subject to correction. (orig./HP)

  5. X-ray lithography

    An invention relating to the development of photo-resists used in X-ray lithography is described. A COP resist which has been exposed to X-ray radiation, is developed with methyl ethyl ketone (MEK) developer and an ethanol solvent. The resist is first developed in a strong developing solution and then with a weaker developer whose concentration is slightly above that required to obtain complete development. Preferably the resist is exposed so as to obtain about a fifty per cent developed thickness and the developing is carried out in steps, the first with a concentration of 5:1.8 (MEK to ethanol) for five seconds, the second using concentrations of 5:1.8 and 5:2.7 for ten seconds and the third with a concentration of 5:2.7 for five seconds. (author)

  6. Bone X-Ray (Radiography)

    Full Text Available ... and x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations ... patient's body not being imaged receive minimal radiation exposure. top of page What are the limitations of ...

  7. Bone X-Ray (Radiography)

    Full Text Available ... images for evaluation. National and international radiology protection organizations continually review and update the technique standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  8. Bone X-Ray (Radiography)

    Full Text Available ... fracture. guide orthopedic surgery, such as spine repair/fusion, joint replacement and fracture reductions. look for injury, ... and Media Arthritis X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety Images related to X-ray ( ...

  9. Bone X-Ray (Radiography)

    Full Text Available ... foot. top of page What are some common uses of the procedure? A bone x-ray is ... care is taken during x-ray examinations to use the lowest radiation dose possible while producing the ...

  10. Bone X-Ray (Radiography)

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... top of page What are the benefits vs. risks? Benefits Bone x-rays are the fastest and ...