WorldWideScience

Sample records for acid storage tank

  1. Construction of a stainless steel storage tank for phosphoric acid

    Buh, Igor

    2006-01-01

    The main purpose of this thesis was to get acquainted with all necessary procedures for steel storage tank manufacturing and assembly control. The representative storage tank was built from stainless steel and it was designed to hold 750 m3 of phosphoric acid. In the first section all legally mandatory control procedures are described and they are applied to our storage tank in the second section. Welding control is presented, which consists of destructive and non-destructive inspections of t...

  2. Oil Storage Facilities - Storage Tank Locations

    NSGIC GIS Inventory (aka Ramona) — A Storage Tank Location is a DEP primary facility type, and its sole sub-facility is the storage tank itself. Storage tanks are aboveground or underground, and are...

  3. HAWAII UNDERGROUND STORAGE TANKS

    This is a point coverage of underground storage tanks(UST) for the state of Hawaii. The original database was developed and is maintained by the State of Hawaii, Dept. of Health. The point locations represent facilities where one or more underground storage tanks occur. Each fa...

  4. Liquid metal storage tank

    The present invention concerns a liquid metal storage tank used for an FBR type reactor plant. It comprises a tank main body disposed in a pit chamber, a sealing tub disposed at an upper outer circumferential surface of the tank main body, a roof portion which closes the opening a the upper end of the pit chamber, a sealing partitioning cylinder suspended from the lower surface of the roof and having its lower end extended to the inside of the tub and a sealing liquid metal filled in the tub. The tank main body is kept at a high temperature by the liquid metal while the roof in the upper portion of the pit chamber is kept at a low temperature. Further, since the tank main body and the inside of the pit chamber are sealed by the sealing partitioning cylinder, no large thermal stresses are caused to the wall of the tank main body. Even if hydrogen gases are generated in the tank main body, since they can be released to the inside of the pit chamber, the integrity of the tank can be maintained, even if abrupt pressure elevation is caused in the tank main body. (I.S.)

  5. Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order; TOPICAL

    This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system

  6. Regulated underground storage tanks

    This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ''roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation

  7. Underground Storage Tanks in Iowa

    Iowa State University GIS Support and Research Facility — Underground storage tank (UST) sites which store petroleum in Iowa. Includes sites which have been reported to DNR, and have active or removed underground storage...

  8. HAWAII LEAKING UNDERGROUND STORAGE TANKS

    Point coverage of leaking underground storage tanks(LUST) for the state of Hawaii. The original database was developed and is maintained by the State of Hawaii, Dept. of Health. The point locations represent facilities where one or more leaking underground storage tank exists. ...

  9. Double wall underground storage tank

    Canaan, E.B. Jr.; Wiegand, J.R.; Bartlow, D.H.

    1993-07-06

    A double wall underground storage tank is described comprising: (a) a cylindrical inner wall, (b) a cylindrical outer wall comprising plastic resin and reinforcement fibers, and (c) a layer of spacer filaments wound around the inner wall, the spacer filaments separating the inner and outer walls, and the spacer filaments being at least partially surrounded by voids to enable liquids to flow along the filaments.

  10. Operating characteristics of LNG storage tanks

    Bukacek, R.F.

    1978-01-01

    Although liquefied natural gas (LNG) storage tanks might seem to be the most passive components in the LNG plant or ship, this appearance of quiescence arises only because we too easily imagine LNG storage to be like the storage of water. The contents of an LNG storage tank are in continuous dynamic reaction because of heat leak into the tanks, changes in barometric pressure, and the circumstances surrounding the addition and withdrawal of LNG.

  11. Storage Tanks - Selection Of Type, Design Code And Tank Sizing

    The present work gives an insight into the proper selection of type, design code and sizing of storage tanks used in the Petroleum and Process industries. In this work, storage tanks are classified based on their design conditions. Suitable design codes and their limitations are discussed for each tank type. The option of storage under high pressure and ambient temperature, in spherical and cigar tanks, is compared to the option of storage under low temperature and slight pressure (close to ambient) in low temperature and cryogenic tanks. The discussion is extended to the types of low temperature and cryogenic tanks and recommendations are given to select their types. A study of pressurized tanks designed according to ASME code, conducted in the present work, reveals that tanks designed according to ASME Section VIII DIV 2 provides cost savings over tanks designed according to ASME Section VIII DlV 1. The present work is extended to discuss the parameters that affect sizing of flat bottom cylindrical tanks. The analysis shows the effect of height-to-diameter ratio on tank instability and foundation loads

  12. Pad B Liquid Hydrogen Storage Tank

    Hall, Felicia

    2007-01-01

    Kennedy Space Center is home to two liquid hydrogen storage tanks, one at each launch pad of Launch Complex 39. The liquid hydrogen storage tank at Launch Pad B has a significantly higher boil off rate that the liquid hydrogen storage tank at Launch Pad A. This research looks at various calculations concerning the at Launch Pad B in an attempt to develop a solution to the excess boil off rate. We will look at Perlite levels inside the tank, Boil off rates, conductive heat transfer, and radiant heat transfer through the tank. As a conclusion to the research, we will model the effects of placing an external insulation to the tank in order to reduce the boil off rate and increase the economic efficiency of the liquid hydrogen storage tanks.

  13. Comparative safety analysis of LNG storage tanks

    Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

    1982-07-01

    LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

  14. Treatment of radioactive wastes from DOE underground storage tanks

    Bench-scale batch tests have been conducted with sludge and supernate tank waste from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology process for use in a comprehensive sludge processing flow sheet as a means of concentrating the radionuclides and reducing the volumes of storage tank waste at national sites for final disposal. This paper discusses the separation of the sludge solids and supernate, the basic washing of the sludge solids, the acidic dissolution of the sludge solids, and the removal of the radionuclides from the supernate

  15. Underground storage tank management plan

    NONE

    1994-09-01

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  16. Underground storage tank management plan

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations

  17. Indian Country Leaking Underground Storage Tanks

    U.S. Environmental Protection Agency — In 1986, Congress amended Subtitle I of the Solid Waste Disposal Act, directing EPA to regulate Underground Storage Tanks (USTs). EPA directly implements the UST...

  18. Leaking Underground Storage Tank Sites in Iowa

    Iowa State University GIS Support and Research Facility — Leaking Underground Storage Tank (LUST) sites where petroleum contamination has been found. There may be more than one LUST site per UST site.

  19. Hanford Site Waste Storage Tank Information Notebook

    Husa, E.I.; Raymond, R.E.; Welty, R.K.; Griffith, S.M.; Hanlon, B.M.; Rios, R.R.; Vermeulen, N.J.

    1993-07-01

    This report provides summary data on the radioactive waste stored in underground tanks in the 200 East and West Areas at the Hanford Site. The summary data covers each of the existing 161 Series 100 underground waste storage tanks (500,000 gallons and larger). It also contains information on the design and construction of these tanks. The information in this report is derived from existing reports that document the status of the tanks and their materials. This report also contains interior, surface photographs of each of the 54 Watch List tanks, which are those tanks identified as Priority I Hanford Site Tank Farm Safety Issues in accordance with Public Law 101-510, Section 3137*.

  20. 40 CFR 280.220 - Ownership of an underground storage tank or underground storage tank system or facility or...

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Ownership of an underground storage tank or underground storage tank system or facility or property on which an underground storage tank or underground storage tank system is located. 280.220 Section 280.220 Protection of Environment...

  1. Compliance review for the UNH Storage Tank

    Low, J.M.

    1992-05-19

    The purpose of Project S-4257, USF-UNH 150,000 Gallon Storage Tank, is to provide interim storage for the liquid uranyl nitrate (UNH) product from H-Canyon until the UNH can be processed in the new Uranium Solidification Facility (Project S-2052). NPSR was requested by Project Management and DOE-SR to perform a design compliance review for the UNH Storage Tank to support the Operational Readiness Review (ORR) and the Operational Readiness Evaluation (ORE), respectively. The project was reviewed against the design criteria contained in the DOE Order 6430.1A, General Design Criteria. This report documents the results of the compliance review.

  2. Steel corrosion in radioactive waste storage tanks

    A collaborative study is being conducted by CNEA and USDOE (Department of Energy of the United States of America) to investigate the effects of tank waste chemistry on radioactive waste storage tank corrosion. Radioactive waste is stored in underground storage tanks that contain a combination of salts, consisting primarily of sodium nitrate, sodium nitrite and sodium hydroxide. The USDOE, Office of River Protection at the Hanford Site, has identified a need to conduct a laboratory study to better understand the effects of radioactive waste chemistry on the corrosion of waste storage tanks at the Hanford Site. The USDOE science need (RL-WT079-S Double-Shell Tanks Corrosion Chemistry) called for a multi year effort to identify waste chemistries and temperatures within the double-shell tank (DST) operating limits for corrosion control and operating temperature range that may not provide the expected corrosion protection and to evaluate future operations for the conditions outside the existing corrosion database. Assessment of corrosion damage using simulated (non-radioactive) waste is being made of the double-shell tank wall carbon steel alloy. Evaluation of the influence of exposure time, and electrolyte composition and/or concentration is being also conducted. (author)

  3. Liquid storage tanks under seismic excitations

    The safety and reliable performance of nuclear power plants is of great concern to both the nuclear community and the general public. A nuclear power plant has to be designed to withstand any earthquakes that may occur at its location. Since a nuclear power plant has many liquid storage tanks, the dynamic response of these tanks under seismic excitations must properly analyzed in order to design these tanks to survive the earthquakes to which they may be subjected. The dynamic response of liquid-storage tanks subjected to ground excitations has been the subject of numerous studies in the past thirty years. However, most of the studies were focused on the responses of the tanks such that the contained liquid can be considered to be incompressible and inviscid. Thus, the effect of liquid viscosity on the dynamic response of the liquid-tank system is often ignored. This is justified for water-storage tanks because water has a very small viscosity. However, there are cases where the liquid viscosity is not small in comparison with that of water. For such cases the designs of these tanks based on the inviscid assumption become questionable, and the effect of viscosity on the dynamic response needs to be assessed. To the best of our knowledge, due to the complexity of the problem, the effect of viscosity has not been studied satisfactorily to date. Since the governing equations are very complicated if viscosity is included in the analysis, the closed form solutions in most cases are unattainable. Therefore, it is necessary to use a computer code to solve the equations-numerically. The computer code used in this study is the finite element code, FLUSTR-ANL(FLUid-STRucture interaction code developed at Argonne National Laboratory) (Chang et al.1988). In this study, the tanks are assumed to be rigid and rigidly supported on their bases, and the responses are considered to be linear

  4. Liquid storage tanks under seismic excitations

    A nuclear power plant has to be designed to withstand any earthquakes that may occur at its location. Since a nuclear power plant has many liquid storage tanks, the dynamic response of these tanks under seismic excitations must be properly analyzed in order to design these tanks to survive the earthquakes to which they may be subjected. The dynamic response of liquid-storage tanks subjected to ground excitations has been the subject of numerous studies in the past thirty years. However, most of the studies were focused on the responses of the tanks such that the contained liquid can be considered to be incompressible and inviscid. Thus, the effect of liquid viscosity on the dynamic response of the liquid-tank system is often ignored. This is justified for water-storage tanks because water has a very small viscosity. However, there are cases where the liquid viscosity is not small in comparison with that of water. For such cases the designs of these tanks based on the inviscid assumption become questionable, and the effect of viscosity on the dynamic response needs to be assessed. To the best of our knowledge, due to the complexity of the problem, the effect of viscosity has not been studied satisfactorily to date. Since the governing equations are very complicated if viscosity is included in the analysis, the closed form solutions in most cases are unattainable. Therefore, it is necessary to use a computer code to solve the equations numerically. The computer code used in this study is the finite element code, FLUSTR-ANL (FLUid-STRucture interaction code developed at Argonne National Laboratory). In this study, the tanks are assumed to be rigid and rigidly supported on their bases, and the responses are considered to be linear

  5. Acoustic imaging of underground storage tank wastes

    Acoustics is a potential tool to determine the properties of high level wastes stored in Underground Storage Tanks. Some acoustic properties were successfully measured by a limited demonstration conducted in 114-TX. This accomplishment provides the basis for expanded efforts to qualify techniques which depend on the acoustic properties of tank wastes. This work is being sponsored by the Department of Energy under the Office of Science and Technology. In FY-1994, limited Tank Waste Remediation Systems EM-30 support was available at Hanford and Los Alamos National Laboratory. The Massachusetts Institute of Technology (MIT) and Earth Resources Laboratory (ERL) were engaged for analysis support, and Elohi Geophysics, Inc. for seismic testing services. Westinghouse-Hanford Company provided the testing and training, supplied the special engineering and safety analysis equipment and procedures, and provided the trained operators for the actual tank operations. On 11/9/94, limited in-tank tests were successfully conducted in tank 114-TX. This stabilized Single Shell Tank was reported as containing 16.8 feet of waste, the lower 6.28 feet of which contained interstitial liquid. Testing was conducted over the lower 12 feet, between two Liquid Observation Wells thirty feet apart. The ''quick-look'' data was reviewed on-site by MIT and Elohi

  6. 30 CFR 57.4401 - Storage tank foundations.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage tank foundations. 57.4401 Section 57... and Control Flammable and Combustible Liquids and Gases § 57.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm...

  7. 30 CFR 56.4401 - Storage tank foundations.

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Storage tank foundations. 56.4401 Section 56... Control Flammable and Combustible Liquids and Gases § 56.4401 Storage tank foundations. Fixed, unburied, flammable or combustible liquid storage tanks shall be securely mounted on firm foundations. Piping shall...

  8. Underground Storage Tanks - UST_IDEM_IN: Underground Storage Tanks in Indiana (Indiana Department of Environmental Management, Point Shapefile)

    NSGIC GIS Inventory (aka Ramona) — UST_IDEM_IN is a point shapefile that contains regulated underground storage tank locations (including leaking underground storage tanks) in Indiana, provided by...

  9. Development of an energy storage tank model

    Buckley, Robert Christopher

    A linearized, one-dimensional finite difference model employing an implicit finite difference method for energy storage tanks is developed, programmed with MATLAB, and demonstrated for different applications. A set of nodal energy equations is developed by considering the energy interactions on a small control volume. The general method of solving these equations is described as are other features of the simulation program. Two modeling applications are presented: the first using a hot water storage tank with a solar collector and an absorption chiller to cool a building in the summer, the second using a molten salt storage system with a solar collector and steam power plant to generate electricity. Recommendations for further study as well as all of the source code generated in the project are also provided.

  10. Position paper -- Waste storage tank heat removal

    The purpose of this paper is to develop and document a position on the heat removal system to be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility (MWTF), project W-236A. The current preliminary design for the waste storage primary tank heat removal system consists of the following subsystems: (1) a once-through dome space ventilation system; (2) a recirculation dome space ventilation system; and (3) an annulus ventilation system. Recently completed and ongoing studies have evaluated alternative heat removal systems in an attempt to reduce system costs and to optimize heat removal capabilities. In addition, a thermal/heat transfer analysis is being performed that will provide assurance that the heat removal systems selected will be capable of removing the total primary tank design heat load of 1.25 MBtu/hr at an allowable operating temperature of 190 F. Although 200 F is the design temperature limit, 190 F has been selected as the maximum allowable operating temperature limit based on instrumentation sensitivity, instrumentation location sensitivity, and other factors. Seven options are discussed and recommendations are made

  11. Computer modeling of ORNL storage tank sludge mobilization and mixing

    This report presents and analyzes the results of the computer modeling of mixing and mobilization of sludge in horizontal, cylindrical storage tanks using submerged liquid jets. The computer modeling uses the TEMPEST computational fluid dynamics computer program. The horizontal, cylindrical storage tank configuration is similar to the Melton Valley Storage Tanks (MVST) at Oak Ridge National (ORNL). The MVST tank contents exhibit non-homogeneous, non-Newtonian rheology characteristics. The eventual goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents of the tanks

  12. Risk based inspection for atmospheric storage tank

    Nugroho, Agus; Haryadi, Gunawan Dwi; Ismail, Rifky; Kim, Seon Jin

    2016-04-01

    Corrosion is an attack that occurs on a metallic material as a result of environment's reaction.Thus, it causes atmospheric storage tank's leakage, material loss, environmental pollution, equipment failure and affects the age of process equipment then finally financial damage. Corrosion risk measurement becomesa vital part of Asset Management at the plant for operating any aging asset.This paper provides six case studies dealing with high speed diesel atmospheric storage tank parts at a power plant. A summary of the basic principles and procedures of corrosion risk analysis and RBI applicable to the Process Industries were discussed prior to the study. Semi quantitative method based onAPI 58I Base-Resource Document was employed. The risk associated with corrosion on the equipment in terms of its likelihood and its consequences were discussed. The corrosion risk analysis outcome used to formulate Risk Based Inspection (RBI) method that should be a part of the atmospheric storage tank operation at the plant. RBI gives more concern to inspection resources which are mostly on `High Risk' and `Medium Risk' criteria and less on `Low Risk' shell. Risk categories of the evaluated equipment were illustrated through case study analysis outcome.

  13. Seismic response of flexible cylindrical liquid storage tanks

    Liquid slosh and tank wall vibrations are studied experimentally in a flexible model storage tank subject to simulated earthquake environments. The program objective is to determine the validity of simple analytical models for representing this earthquake dynamics problem. (Auth.)

  14. Enforcement of federal underground storage tank regulations

    During the 1980s, underground storage tanks (USTs) were leaking petroleum products into the soil and groundwater at an alarming rate. The federal government has recently developed an UST regulatory program that includes operating and financial responsibility requirements. Federal regulation requires UST system owners to notify state environmental agencies of the existence of these systems, and directs the EPA to formulate regulations concerning UST release detection, prevention, and corrective action, as well as for financial responsibility for leaks of regulated substances from USTs. State environmental agencies are required to compile tank inventories and to provide this information to the EPA. The EPA is mandated to establish a federal program for the regulation of USTs that allows state programs to operate in lieu of the federal program is they are no less strict than the federal requirements and can be adequately enforced. To recover shallow spills, the contaminated soil may be excavated and placed in a landfill. For deeper pollution, the only methods of treatment are flushing and recovery or an in-situ treatment, such as biological degradation using bacteria. Ethical issues include the relationship between the public demand for petroleum products, environmental damage, and the conflicts encountered by environmental consulting firms. Legal issues concern the notification of the public and the sale of property on which storage tanks are located, as well as the increasing involvement of the legal system in enforcement of environmental legislation

  15. FFTF vertical sodium storage tank preliminary thermal analysis

    In the FFTF Shutdown Program, sodium from the primary and secondary heat transport loops, Interim Decay Storage (IDS), and Fuel Storage Facility (FSF) will be transferred to four large storage tanks for temporary storage. Three of the storage tanks will be cylindrical vertical tanks having a diameter of 28 feet, height of 22 feet and fabricated from carbon steel. The fourth tank is a horizontal cylindrical tank but is not the subject of this report. The storage tanks will be located near the FFTF in the 400 Area and rest on a steel-lined concrete slab in an enclosed building. The purpose of this work is to document the thermal analyses that were performed to ensure that the vertical FFTF sodium storage tank design is feasible from a thermal standpoint. The key criterion for this analysis is the time to heat up the storage tank containing frozen sodium at ambient temperature to 400 F. Normal operating conditions include an ambient temperature range of 32 F to 120 F. A key parameter in the evaluation of the sodium storage tank is the type of insulation. The baseline case assumed six inches of calcium silicate insulation. An alternate case assumed refractory fiber (Cerablanket) insulation also with a thickness of six inches. Both cases assumed a total electrical trace heat load of 60 kW, with 24 kW evenly distributed on the bottom head and 36 kW evenly distributed on the tank side wall

  16. Sludge washing and dissolution of Melton Valley Storage Tank waste

    Focus is on experimental and modeling R ampersand D for comprehensive sludge/supernatant processing flowsheet being done for the Underground Storage Tank Integration Demonstration; emphasis is on Hanford tank waste disposal involving dissolution of the sluge before pretreatment. Combination of tests on actual Melton Valley Storage Tank (MVST) sludge, tests on sludge simulants, and modeling of sludge chemistry provides a broad evaluation of sludge and supernate processing. The information is useful for both MVST and Hanford tank wastes

  17. 100-N Area underground storage tank closures

    Rowley, C.A.

    1993-08-01

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  18. 100-N Area underground storage tank closures

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D

  19. Underground storage tanks: The environmental health role

    Petroleum contamination of shallow aquifers resulting from antiquated underground petroleum storage systems has had a significant economical, as well as environmental impact on the nation's urban and rural communities. The cost for assessment and clean-up of a service station petroleum leak in Caliente, Nevada (population: 1,111) may go as high as $3 million. Whereas in a more urban area such as Las Vegas, Nevada, 317 petroleum clean-up operations of leaking underground storage tanks (USTs) have been initiated in a three-year period between October 1990 and October 1993. The leaking UST problem, brought to national attention during the late 1970s and early 1980s, has had such an impact that the EPA has enlisted state and local environmental and health agencies to take an important lead role to find, mitigate, and prevent petroleum leaks into the unseen subsurface environment. The 1990s will witness a national amelioration of shallow aquifers

  20. An Underground Storage Tank Integrated Demonstration report

    The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study's products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge

  1. 40 CFR 52.1931 - Petroleum storage tank controls.

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Petroleum storage tank controls. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Oklahoma § 52.1931 Petroleum... plan, the petroleum storage tanks listed in paragraphs (b) through (e) of this section shall be...

  2. Vapor sampling of the headspace of radioactive waste storage tanks

    Reynolds, D.A., Westinghouse Hanford

    1996-05-22

    This paper recants the history of vapor sampling in the headspaces of radioactive waste storage tanks at Hanford. The first two tanks to receive extensive vapor pressure sampling were Tanks 241-SY-101 and 241-C-103. At various times, a gas chromatography, on-line mass spectrometer, solid state hydrogen monitor, FTIR, and radio acoustic ammonia monitor have been installed. The head space gas sampling activities will continue for the next few years. The current goal is to sample the headspace for all the tanks. Some tank headspaces will be sampled several times to see the data vary with time. Other tanks will have continuous monitors installed to provide additional data.

  3. Free vibration analysis of partially filled liquid storage tanks

    A study on the free vibration analysis of partially filled liquid storage tanks is presented. The tanks considered are the upright circular cylindrical tanks that are rigidly supported at the base. the top of the tanks are either free or constrained. Two types of constraints are considered, namely, hinged and roller support. The governing differential equations for the tank-liquid system are obtained by application of the Rayleigh-Ritz procedure in combination with Lagrange's equation. The response functions examined include the frequency of the fundamental mode of vibration of the tank-liquid system and the associated modal pressure

  4. A robotic end effector for inspection of storage tanks

    Hughes, G.; Gittleman, M. [Oceaneering Space Systems, Houston, TX (United States)

    1995-10-01

    The structural integrity of waste storage tanks is of primary importance to the DOE, and is one aspect of the High-Level Waste Tank Remediation focus area. Cracks and/or corrosion damage in the inner tank walls can lead to the release of dangerous substances into the environment. The detection and sizing of corrosion and cracking in steel tank walls through remote non destructive evaluation (NDE) is the primary focus of this work.

  5. Dynamic analysis of multiple liquid-storage tanks

    Mykoniou, Konstantinos

    2016-01-01

    The seismic analysis of liquid-storage tanks proceeds ordinarily on the basis of neglecting the dynamic interaction with adjacent tanks, although they are frequently arranged next to each other, for instance in tank farms. In this work, a study on the dynamic behavior of tanks is therefore carried out, which takes into account group interaction effects.To this aim, a refined substructure technique in the frequency domain is developed, which permits consideration of the interaction effects amo...

  6. Underground storage tank 431-D1U1, Closure Plan

    Mancieri, S.

    1993-09-01

    This document contains information about the decommissioning of Tank 431-D1U1. This tank was installed in 1965 for diesel fuel storage. This tank will remain in active usage until closure procedures begin. Soils and ground water around the tank will be sampled to check for leakage. Appendices include; proof of proper training for workers, health and safety briefing record, task hazard analysis summary, and emergency plans.

  7. A robotic end effector for inspection of storage tanks

    The structural integrity of waste storage tanks is of primary importance to the DOE, and is one aspect of the High-Level Waste Tank Remediation focus area. Cracks and/or corrosion damage in the inner tank walls can lead to the release of dangerous substances into the environment. The detection and sizing of corrosion and cracking in steel tank walls through remote non destructive evaluation (NDE) is the primary focus of this work

  8. Underground storage tank insurance - a review

    New markets and challenges for the insurance industry have been created as a result of the Federal financial responsibility requirements for owners and operators of under-ground storage tanks. EPA established a phase-in schedule, with larger owners/operators required to comply first, and smaller ones later. The amount of coverage required is also variable, depending on the number of tanks and petroleum usage. EIL insurance and state funds have emerged as the primary mechanisms available to fulfill those requirements. For insurance, underwriting criteria, limits, deductibles, and conditions of coverage vary from company to company. State funds also vary widely in type of coverage available, deductibles and limits of coverage. Several funds are now reexamining their ability to pay claims, and are making changes between insurance and state funds include (1) insurance provides pay-on-behalf coverage versus reimbursement coverage from most state funds; (2) greater degree of claim handling involvement by insurance companies versus funds; (3) claims made coverage from insurance companies versus retroactive coverage available from most state funds; (4) defense coverage and subrogation is available from insurance companies but not from state funds

  9. Hydrogen Peroxide Storage in Small Sealed Tanks

    Whitehead, J.

    1999-10-20

    Unstabilized hydrogen peroxide of 85% concentration has been prepared in laboratory quantities for testing material compatibility and long term storage on a small scale. Vessels made of candidate tank and liner materials ranged in volume from 1 cc to 2540 cc. Numerous metals and plastics were tried at the smallest scales, while promising ones were used to fabricate larger vessels and liners. An aluminum alloy (6061-T6) performed poorly, including increasing homogeneous decay due to alloying elements entering solution. The decay rate in this high strength aluminum was greatly reduced by anodizing. Better results were obtained with polymers, particularly polyvinylidene fluoride. Data reported herein include ullage pressures as a function of time with changing decay rates, and contamination analysis results.

  10. Development of computer code PNST for analyzing transient phenomena in plutonium nitrate storage tank

    After being separated and purified by the Purex process, Plutonium is temporarily stored in storage tanks in form of plutonium nitrate solution. In the solution, radiolysis gases are generated with α-decay of plutonium and plutonium concentration proceeds with evaporation of water and nitric acid. Nitric acid solution is added to the solution for the prevention of concentration of plutonium in the tank. On the other hand, it is known that plutonium forms polymer in case of low acid concentration. If solution of low acid concentration (in extreme case, water or basic solution) is added to the storage tank by miss operation or failure of equipments, the formation of the polymer will happen. The formation of the polymer and the subsequent precipitation might jeopardize the criticality safety. A simulation code PNST (Simulation code for Transient Phenomena in a Plutonium Nitrate Storage Tank) has been developed for the safety evaluation of plutonium nitrate storage tank under normal and abnormal conditions. PNST consists of PNST-N and PNST-A. The variation of valences of chemical species, generation of radiolysis gases and volume of the storage solution in the normal condition are analyzed by PNST-N. On the other hand, the polymerization behavior of plutonium by adding solution of low acid concentration is calculated by PNST-A. This report is prepared as an explanation of the code as well as an user's manual. (author)

  11. Vehicular hydrogen storage using lightweight tanks

    Mitlitsky, F; Weisberg, A H; Myers, B

    2000-07-22

    Lightweight hydrogen storage for vehicles is enabled by adopting and adapting aerospace tankage technology. The weight, volume, and cost are already acceptable and improving. Prototype tankage was demonstrated with 11.3% hydrogen by weight, 1.74 million inch (44.3 km) burst performance factor (P{sub b}V/W), and 3.77 kWh/kg specific energy for the tank and hydrogen (LHV). DOE cannot afford full scale aerospace development costs. For example, it costs many tens of $M to develop a rocket motor casing with a safety factor (SF) of 1.25. Large teams of experts are required to design, develop, and test new processes. Car companies are buying existing technology with only modest investments in research and development (R&D). The Lawrence Livermore National Laboratory (LLNL) team is maximizing the leverage from DOE funding by joining with industry to solve technical risks at the component level. LLNL is developing fabrication processes with IMPCO Technologies, Thiokol Propulsion, and Aero Tec Laboratories (ATL). LLNL is creating commercial products that are close to adoption under DOE solicitation. LLNL is breaking ground to achieve greater than 10% hydrogen by weight tankage with safety that exceeds the requirements of NGV2 standards modified for hydrogen. Risk reduction is proceeding along three axes: (1) Commercializable products will be available next year with {approx}90% confidence; (2) R&D progress is pushing the envelope in lightweight tankage for vehicles; and (3) Integration challenges are being met with partners in industry and DOE demo programs. This project is a key part of LLNL's effort to develop high cycle life energy storage systems with >600 Wh/kg specific energy for various applications, including: high altitude long endurance solar rechargeable aircraft, zero emission vehicles, hybrid energy storage/propulsion systems for spacecraft, energy storage for premium power, remote power sources, and peak shaving.

  12. Polymers for subterranean containment barriers for underground storage tanks (USTs)

    The US Department of Energy (DOE) set up the Underground Storage Tank Integrated Demonstration Program (USTID) to demonstrate technologies for the retrieval and treatment of tank waste, and closure of underground storage tanks (USTs). There are more than 250 underground storage tanks throughout the DOE complex. These tanks contain a wide variety of wastes including high level, low level, transuranic, mixed and hazardous wastes. Many of the tanks have performed beyond the designed lifetime resulting in leakage and contamination of the local geologic media and groundwater. To mitigate this problem it has been proposed that an interim subterranean containment barrier be placed around the tanks. This would minimize or prevent future contamination of soil and groundwater in the event that further tank leakages occur before or during remediation. Use of interim subterranean barriers can also provide sufficient time to evaluate and select appropriate remediation alternatives. The DOE Hanford site was chosen as the demonstration site for containment barrier technologies. A panel of experts for the USTID was convened in February, 1992, to identify technologies for placement of subterranean barriers. The selection was based on the ability of candidate grouts to withstand high radiation doses, high temperatures and aggressive tank waste leachates. The group identified and ranked nine grouting technologies that have potential to place vertical barriers and five for horizontal barriers around the tank. The panel also endorsed placement technologies that require minimal excavation of soil surrounding the tanks

  13. Earthquake response considerations of broad liquid storage tanks

    Cambra, F. J.

    1982-11-01

    The influences of tank geometry and foundation stiffness variation on the simulated seismic structural response of a model broad tank are discussed. An empirical method for describing tank bottom plate uplift geometry is proposed which recognizes radial catenary force and foundation stiffness. Axial symmetric lift, static tilt and dynamic shaking table tests were performed in the University of California, Berkeley, earthquake simulator laboratory. A structural geometric survey of a 63 ft - 10 inches tall by 289 ft - 6 inches diameter crude oil storage tank was conducted to establish a comparative base by which to evaluate the model tank eccentricities.

  14. Effect of viscosity on seismic response of waste storage tanks

    A study of the effect of viscosity on the dynamic response of a liquid storage tank subjected to base excitations is presented. The tank is a typical high level waste storage tank which has a diameter of 50 ft. and liquid height of 20.4 ft. The liquid density is taken to be 93.6 lb/ft3. The tank is assumed to be rigid. Both harmonic and earthquake excitations are used in the study. The finite element method is employed to attack the problem. The response functions examined include the sloshing wave height and the impulsive and convective components of the hydrodynamic pressure. A small tank, about 1/15 the size of the typical waste storage tank, is also used in the study to understand the effect of viscosity on the response of liquid storage tanks and to investigate the dependency of the viscosity effect on the size of the tank. The results of this study show that the effect of viscosity depends strongly on the size of the liquid-tank system. For the typical waste storage tank considered, the effect of viscosity on the sloshing wave height and the impulsive and convective pressures is very small and can be neglected. For the viscosity effect to become noticeable in the response of the typical waste storage tank, the liquid viscosity must be greater than 10,000 cP. This value is far greater than the estimated viscosity value of the high level wastes, which may range from 60 to 200 cP

  15. Optimal Use of Duplex Stainless Steel in Storage Tanks

    Talus, Eva

    2013-01-01

    The aim of this work is to get a better understanding of how optimal weight savings of the cylindrical shell plates in storage tanks can be reached using higher strength duplex material. The design criteria will be based on the requirements given by the American Petroleum Institute standards API 650 for welded storage tanks and API 12B for bolted storage tanks. The expected result is that use of duplex stainless steel instead of austenitic stainless steel can reduce the weight of the material...

  16. Underground storage tank 511-D1U1 closure plan

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

  17. Glass Bubbles Insulation for Liquid Hydrogen Storage Tanks

    Sass, J. P.; SaintCyr, W. W.; Barrett, T. M.; Baumgartner, R. G.; Lott, J. W.; Fesmire, J. E.

    2009-01-01

    A full-scale field application of glass bubbles insulation has been demonstrated in a 218,000 L liquid hydrogen storage tank. This work is the evolution of extensive materials testing, laboratory scale testing, and system studies leading to the use of glass bubbles insulation as a cost efficient and high performance alternative in cryogenic storage tanks of any size. The tank utilized is part of a rocket propulsion test complex at the NASA Stennis Space Center and is a 1960's vintage spherical double wall tank with an evacuated annulus. The original perlite that was removed from the annulus was in pristine condition and showed no signs of deterioration or compaction. Test results show a significant reduction in liquid hydrogen boiloff when compared to recent baseline data prior to removal of the perlite insulation. The data also validates the previous laboratory scale testing (1000 L) and full-scale numerical modeling (3,200,000 L) of boiloff in spherical cryogenic storage tanks. The performance of the tank will continue to be monitored during operation of the tank over the coming years. KEYWORDS: Glass bubble, perlite, insulation, liquid hydrogen, storage tank.

  18. Maintaining of the demineralized water quality in storage tanks

    Two processes for maintaining the quality of the mineralized water in storage tanks are considered. A slight overpressure of nitrogen can be created above the water, or the air flowing in the tank can be cleaned by passing it through a soda-containing lime filter

  19. Leakage detection system for radioactive waste storage tanks

    The patent describes a combination of elements for detecting leakage of electrically conductive fluids from tanks, including a reference electrode, an AC generator connected between the tank and the reference electrode, and one or more sensing electrodes positioned between the tank and the reference electrode. The storage tank and reference electrode are in contact with the ground. When the AC generator is energized, current flows in the circuit, and creates an electric field in the ground between the tank and the reference electrode. The sensing electrodes are positioned so that they are within the electric field when the AC generator is energized. An electric potential measuring device, such as a voltmeter, is used to measure the electric potential at the sensing electrodes relative to the tank. A significant change in the electric potential at any one or more of the sensing electrodes is an indication that a leak has occurred in the tank

  20. Study of LNG evaporation phenomenon in aboveground storage tank

    Hariti, R.; Benbrik, A. [Boumerdes Univ., Boumerdes (Algeria). Physical Engineering of Hydrocarbons Laboratory; Lemonnier, D. [Poitiers Futuroscope Univ., Chasseneuil (France). National Engineering School for Mechanics and Aerotechnics, Laboratory of Thermal Studies

    2007-07-01

    Controlling the evaporation phenomenon of liquefied natural gas (LNG) in storage tanks is strongly related to heat transfer under ambient conditions. In the natural gas liquefaction complex of Skikda located in Algeria, control and follow-up in the exploitation of the LNG storage tanks is done only by observing a temperature profile of the internal wall of the tank, using thermocouples laid out according to the height. This practice is important to detect the defects of heat insulation in the tank wall and makes it possible to avoid all the risks of incidents due to excessive evaporation. This paper discussed the development of a simple numerical model that simulated the rate of evaporation of LNG in a storage tank under real storage conditions at a liquefaction complex in Skikda (Algeria). The paper presented the equations for the modelling of heat transfer in the storage tank taking into account all the modes of heat exchange between the ambient conditions and the stored LNG. The paper also discussed the method of resolution. It was concluded that the evaporation rates predicted by the model were in agreement with the configurations corresponding to the real operating conditions. In addition, the results demonstrated the sensitivity of the rate of evaporation to various parameters like the LNG liquid level in the tank, the atmospheric temperature, the emissivity coefficient or incidental solar flow. 6 refs., 1 tab., 12 figs.

  1. Storage tank with internal neutron absorbers for fissile materials

    The advantages of the new storage tank design with internal neutron absorbers for fissile materials compared to the traditional slab tank design are as follows: The available volume of this vessel design has a value of more than 80%. The tank does not require neutron absorbers to be spaced between adjacent tanks as with the case with slab tanks. This results in a saving in cost and space. The tank is smaller in height and breadth and thus requires less room space for the same amount of storage capacity. Costs are reduced in manufacturing material and room space. The outer surface area of the tank is roughly 7 times smaller than the outer surface area of the slab tank and in less area for heat transfer in case of fire - improved safety. The tank manufacturing will require less welding points to be done and the type of welding required can be automated by machinery. The welding method required, is similar to the welding method that is used to weld the fuel rods for conventional HWR nuclear reactors and thus the technology is known, automated and proven. The tube bundle can be easily removed and more space is available inside the tank for inspection and maintenance of the vessel due to the circular geometry. The vessel design is similar to pressure vessel design which is a proven and well documented method.

  2. Study of Heat Transfer in Ice-storage Tank

    Anding He; Huanqun Qian; Zhihua Hu; Fangde Zhou

    2001-01-01

    The heat transfer process of ice formation on the outside of coil pipe in the ice storage tank with glycol solution as the second refrigerant was studied in this paper analytically and experimentally. A model was developed for the charging process and the conduction shape factor was applied. Also, the result obtained from the model was compared with the experimental data, both data were in agreement. The simple model is useful for the operation, design and optimization of the ice storage tank.

  3. Seismic analysis of base-isolated liquid storage tanks

    Shrimali, M. K.; Jangid, R. S.

    2004-08-01

    Three analytical studies for the seismic response of base-isolated ground supported cylindrical liquid storage tanks under recorded earthquake ground motion are presented. The continuous liquid mass of the tank is modelled as lumped masses referred as sloshing mass, impulsive mass and rigid mass. Firstly, the seismic response of isolated tanks is obtained using the modal superposition technique and compared with the exact response to study the effects of non-classical damping. The comparison of results with different tank aspect ratios and stiffness and damping of the bearing indicate that the effects of non-classical damping are insignificant implying that the response of isolated liquid storage tanks can be accurately obtained by the modal analysis with classical damping approximation. The second investigation involves the analysis of base-isolated liquid storage tanks using the response spectrum method in which the peak response of tank in different modes is obtained for the specified response spectrum of earthquake motion and combined with different combination rules. The results indicate that the peak response obtained by the response spectrum method matches well with the corresponding exact response. However, specific combination rule should be used for better estimation of various response quantities of the isolated tanks. Finally, the closed-form expressions for the modal parameters of the base-isolated liquid storage tanks are derived and compared with the exact values. A simplified approximate method is also proposed to evaluate the seismic response of isolated tanks. The response obtained from the above approximate method was found to be in good agreement with the exact response.

  4. Robotic system for remote inspection of underground storage tanks

    Westinghouse Idaho Nuclear Company, Inc. (WINCO), operates the Idaho Chemical Processing Plant (ICPP) for the US Department of Energy (DOE). WINCO's mission is to process government owned spent nuclear fuel. The process involves dissolving the fuel and extracting off uranium. The waste from this process is temporarily stored at the ICPP in underground storage tanks. The tanks were put in service between 1953 and 1966 and are operating 10 to 15 years beyond their design life. Five of the tanks will be replaced by 1998. The integrity of the remaining six tanks must be verified to continue their use until they can be replaced at a later data. In order to verify the tank integrity, a complete corrosion analysis must be performed. This analysis will require a remote visual inspection of the tank surfaces

  5. 200 Area plateau inactive miscellaneous underground storage tanks locations

    Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years

  6. Underground or aboveground storage tanks - A critical decision

    With the 1988 promulgation of the comprehensive Resource Conservation and Recovery Act (RCRA) regulations for underground storage of petroleum and hazardous substances, many existing underground storage tank (UST) owners have been considering making the move to aboveground storage. While on the surface, this may appear to be the cure-all to avoiding the underground leakage dilemma, there are many other new and different issues to consider with aboveground storage. The greatest misconception is that by storing materials above ground, there is no risk of subsurface environmental problems. It should be noted that with the aboveground storage tank (AGST) systems, there is still considerable risk of environmental contamination, either by the failure of onground tank bottoms or the spillage of product onto the ground surface where it subsequently finds its way to the ground water. In addition, there are added safety concerns that must be addressed. The greatest interest in AGSTs comes from managers with small volumes of used oil, fresh oil, solvents, chemicals, or heating oil. Dealing with small capacity tanks is not so different than large bulk storage - and, in fact, it lends itself to more options, such as portable storage, tank within tank configurations and inside installations. So what are the other specific areas of concern besides environmental to be addressed when making the decision between underground and aboveground tanks? The primary issues that will be addressed in this presentation are: (1) safety; (2) product losses; (3) cost comparison of USTs vs AGSTs; (4) space availability/accessibility; (5) precipitation handling; (6) aesthetics and security; (7) pending and existing regulations

  7. Microbiologically influenced corrosion (MIC) of storage tank bottom plates

    Syafaat, Taufik A.; Ismail, Mokhtar Che

    2015-07-01

    Aboveground atmospheric storage tanks (AST) receive crude oil from offshore for storage and further processing. Integrity issue of AST storing crude oil is not only affected by external corrosion but also internal corrosion from crude oil that supports the growth of the microorganisms originating from the reservoir. The objective of this research is to study the effect of sulfate reduction bacteria (SRB) on the corrosion of AST. The results indicates that SRB has significant effect on the corrosion rate of storage tank bottom plate.

  8. Failure analysis for JNK Boracic acid Tank Room of NPP

    2011-01-01

    The JNK Boracic acid Tank Room is important safety equipment for Nuclear Power Plant. Corrosion,crack and leaked Boracic acid were found on the some welding area of the liners of the JNK Tank Room during operation.

  9. Sloshing analysis of viscous liquid storage tanks

    The effect of viscosity on the sloshing response of tanks containing viscous liquids is studied using the in-house finite element computer code, FLUSTR-ANL. Two different tank sizes each filled at two levels, are modeled, and their dynamic responses under harmonic and seismic ground motions are simulated. The results are presented in terms of the wave height, and pressures at selected nodes and elements in the finite element mesh. The viscosity manifests itself as a damping effect, reducing the amplitudes. Under harmonic excitation, the dynamic response reaches the steady-state faster as the viscosity value becomes larger. The fundamental sloshing frequency for each study case stays virtually unaffected by an increase in viscosity. For the small tank case, a 5% difference is observed in the fundamental frequency of the smallest (1 cP) and the highest (1000 cP) viscosity cases considered in this study. The fundamental frequencies of the large tank are even less sensitive

  10. Solar Storage Tank Insulation Influence on the Solar Systems Efficiency

    Negoitescu Arina

    2012-09-01

    Full Text Available For the storage tank of a solar system for domestic hot water production was analyzed the insulation thickness and material influence. To this end, it was considered a private house, occupied by 3 persons, located in zone I of thermal radiation, for which has been simulated the domestic hot water production process. The tank outlet hot water temperature was considered of 45°C. For simulation purposes, as insulation materials for the storage tank were taking into account glass wool and polyurethane with various thicknesses. Finally, was carried out the comparative analysis of two types of tanks, in terms of the insulation thickness influence on the solar fraction, annual solar contribution and solar annual productivity. It resulted that polyurethane is the most advantageous from all points of view.

  11. Stress evaluation of the primary tank of a double-shell underground storage tank facility

    A facility called the Multi-Function Waste Tank Facility (MWTF) is being designed at the Department of Energy's Hanford site. The MWTF is expected to be completed in 1998 and will consist of six underground double-shell waste storage tanks and associated systems. These tanks will provide safe and environmentally acceptable storage capacity to handle waste generated during single-shell and double-shell tank safety mitigation and remediation activities. This paper summarizes the analysis and qualification of the primary tank structure of the MWTF, as performed by ICF Kaiser Hanford during the latter phase of Title 1 (Preliminary) design. Both computer finite element analysis (FEA) and hand calculations methods based on the so-called Tank Seismic Experts Panel (TSEP) Guidelines were used to perform the analysis and evaluation. Based on the evaluations summarized in this paper, it is concluded that the primary tank structure of the MWTF satisfies the project design requirements. In addition, the hand calculations performed using the methodologies provided in the TSEP Guidelines demonstrate that, except for slosh height, the capacities exceed the demand. The design accounts for the adverse effect of the excessive slosh height demand, i.e., inadequate freeboard, by increasing the hydrodynamic wall and roof pressures appropriately, and designing the tank for such increased pressures

  12. Seismic Analysis of Reinforced Concrete Shaft Support Water Storage Tank

    Bharti Tekwani

    2016-05-01

    Full Text Available This paper compares the results of Seismic Analysis of Reinforced Concrete Shaft Support Water Storage Tank carried out in accordance with IS: 1893- 1984 and IS: 1893-2002 (Part-2 draft code. The analysis is carried out for shaft supported water tank of 500,750 and 1000 Cu.m capacity, located in four seismic zones (Zone-II, Zone -III, Zone-IV, Zone-V and on three different soil types (Hard rock, Medium soil, Soft soil. Further, 1000 kl tank for conditions - tank full, tank empty are also considered in this study. The analysis was performed using MAT LAB. The parameters of comparison include base shears, base moments and time history analysis. The above models are analyzed for different time history data such as El Centro, Kobe, Ji-Ji, Erzincan. The comparison is made between the structural responses of one mass and two mass models of above capacity.

  13. Reduction of mixing in jet-fed water storage tanks

    Martinson, Brett; Lucey, A.

    2004-01-01

    Contrary to usual mains-water practice, mixing in water storage tanks used in rainwater harvesting systems is undesirable because pathogen die-off can occur in the unmixed water prior to its extraction for use. The principal cause of mixing in these tanks is the momentum of the inflow during a rainfall event. We investigate the effect of inflow-jet configuration on the proportion of stored water in a tank which mixes with the slightly cooler inflow of rooftop water. Scale experiments are cond...

  14. Design of crude oil storage tank for acoustic emission testing

    The integrity of crude oil storage tank needs to be well managed because they can contain a large inventory of hazardous material and because of the high cost such as cleaning and waste disposal prior to disposal and maintenance. Costs involved in cleaning and inspection can be up to several hundreds thousand Malaysian Ranting. If the floor then proves to be in good condition, these costs have been wasted. Acoustic Emission (AE) is proposed to be use for monitoring the floor of the storage tank on line without doing cleaning and waste disposal. A storage tank will be fabricated for storing the crude oil and then the corrosion process will be monitor using AE method. This paper will discuss the background, material and is technical specification, design and also the difficulties faced during design and fabrication process. (Author)

  15. Dynamic modeling of stratification for chilled water storage tank

    Air conditioning of buildings can be costly and energy consuming. Application of thermal energy storage (TES) reduces cost and energy consumption. The efficiency of the overall operation is affected by storage tank sizing design, which affects thermal stratification of water during charging and discharging processes in TES system. In this study, numerical simulation is used to determine the relationship between tank size and good thermal stratification. Three dimensional simulations with different tank height-to-diameter ratio (HD) and inlet Reynolds number (Re) are investigated. The effect of the number of diffuser holes is also studied. For shallow tanks (low HD) simulations, no acceptable thermocline thickness can be seen for all Re experimented. Partial mixing is observed throughout the process. Medium HD tanks simulations show good thermocline behavior and clear distinction between warm and cold water can be seen. Finally, deep tanks (high HD) show less acceptable thermocline thickness as compared to that of medium HD tanks. From this study, doubling and halving the number of diffuser holes show no significant effect on the thermocline behavior

  16. RCRA closure plan for underground storage tank 105-C

    Miles, W.C. Jr.

    1990-10-01

    A Reactor Department program for repairing heat exchangers created a low level radioactive waste, which was held in underground storage tank (UST) 105-C, hereafter referred to as the tank. According to Procedures used at the facility, the waste`s pH was adjusted to the 8.0--12.0 range before shipping it to the SRS Waste Management Department. For this reason, area personnel did not anticipate that the waste which is currently contained in the tank would have corrosive hazardous characteristic. However, recent analysis indicates that waste contained in the tank has a pH of greater than 12.5, thereby constituting a hazardous waste. Because the Department of Energy-Savannah River Office (DOE-SR) could not prove that the hazardous waste had been stored in the tank for less than 90 days, the State of South Carolina Department of Health and Environmental Control (SCDHEC) alleged that DOE-SR was in violation of the 1976 Code of Laws of South Carolina. As agreed in Settlement Agreement 90-74-SW between the DOE and SCDHEC, this is the required closure plan for Tank 105-C. The purpose of this document is to present SCDHEC with an official plan for closing the underground storage tank. Upon approval by SCDHEC, the schedule for closure will be an enforceable portion of this agreement.

  17. RCRA closure plan for underground storage tank 105-C

    A Reactor Department program for repairing heat exchangers created a low level radioactive waste, which was held in underground storage tank (UST) 105-C, hereafter referred to as the tank. According to Procedures used at the facility, the waste's pH was adjusted to the 8.0--12.0 range before shipping it to the SRS Waste Management Department. For this reason, area personnel did not anticipate that the waste which is currently contained in the tank would have corrosive hazardous characteristic. However, recent analysis indicates that waste contained in the tank has a pH of greater than 12.5, thereby constituting a hazardous waste. Because the Department of Energy-Savannah River Office (DOE-SR) could not prove that the hazardous waste had been stored in the tank for less than 90 days, the State of South Carolina Department of Health and Environmental Control (SCDHEC) alleged that DOE-SR was in violation of the 1976 Code of Laws of South Carolina. As agreed in Settlement Agreement 90-74-SW between the DOE and SCDHEC, this is the required closure plan for Tank 105-C. The purpose of this document is to present SCDHEC with an official plan for closing the underground storage tank. Upon approval by SCDHEC, the schedule for closure will be an enforceable portion of this agreement

  18. Effect of viscosity on seismic response of waste storage tanks

    Tang, Yu; Uras, R.A.; Chang, Yao-Wen.

    1992-06-01

    The dynamic response of liquid-storage tanks subjected to harmonic excitations and earthquake ground motions has been studied. A rigid tank of negligible mass, rigidly supported at the base having a diameter of 50 ft. and fluid height of 20.4 ft. was used in the computer analysis. The liquid is assumed to have a density of 1.5 g/ml. Viscosity values, {mu} = 60, 200, 100, and 10,000 cP, were used in the numerical analyses to study the effects of viscosity on sloshing wave height, impulsive and convective pressure on the tank wall, base shear and base moments. Harmonic excitations as well as earthquake ground motions were used as input motions. The harmonic excitations used in the analyses covers a wide range of frequencies, including both the resonant and non-resonant frequencies. Two earthquake motions were used. One matches the Newmark-Hall median response spectrum and is anchored at 0.24 g for a rock site with a damping of 2% and a time duration of 10 s. The other is the 1978 Tabas earthquake which had a peak ZPA of 0.81 g and a time duration of 29 s. A small tank, about 1/15 the size of the typical waste storage tank, was used in the harmonic excitation study to investigate the effect of viscosity on the response of liquid-storage tanks and how the viscosity effect is affected by the size of the storage tank. The results of this study show that for the typical waste storage tank subjected to earthquake motions, the effect of viscosity on sloshing wave height and impulsive and convective pressures is very small and can be neglected. For viscosity effect to become noticeable in the response of the typical waste storage tank, the waste viscosity must be greater than 10,000 cP. This value is far greater than the estimated viscosity value of the high level wastes, which may range from 60 to 200 cP for some tanks.

  19. Effect of viscosity on seismic response of waste storage tanks

    The dynamic response of liquid-storage tanks subjected to harmonic excitations and earthquake ground motions has been studied. A rigid tank of negligible mass, rigidly supported at the base having a diameter of 50 ft. and fluid height of 20.4 ft. was used in the computer analysis. The liquid is assumed to have a density of 1.5 g/ml. Viscosity values, μ = 60, 200, 100, and 10,000 cP, were used in the numerical analyses to study the effects of viscosity on sloshing wave height, impulsive and convective pressure on the tank wall, base shear and base moments. Harmonic excitations as well as earthquake ground motions were used as input motions. The harmonic excitations used in the analyses covers a wide range of frequencies, including both the resonant and non-resonant frequencies. Two earthquake motions were used. One matches the Newmark-Hall median response spectrum and is anchored at 0.24 g for a rock site with a damping of 2% and a time duration of 10 s. The other is the 1978 Tabas earthquake which had a peak ZPA of 0.81 g and a time duration of 29 s. A small tank, about 1/15 the size of the typical waste storage tank, was used in the harmonic excitation study to investigate the effect of viscosity on the response of liquid-storage tanks and how the viscosity effect is affected by the size of the storage tank. The results of this study show that for the typical waste storage tank subjected to earthquake motions, the effect of viscosity on sloshing wave height and impulsive and convective pressures is very small and can be neglected. For viscosity effect to become noticeable in the response of the typical waste storage tank, the waste viscosity must be greater than 10,000 cP. This value is far greater than the estimated viscosity value of the high level wastes, which may range from 60 to 200 cP for some tanks

  20. Seismic response analysis of cylindrical liquid storage tank

    One of the important structures as the object of aseismatic design is the tanks containing liquid. These tanks are often seen in crude oil storage areas, petroleum complexes, chemical plants, thermal and nuclear power stations. As for the safety when such tanks storing liquids encounter earthquakes, the method of aseismatic design is traditionally employed, in which the impact pressure of the liquids induced by horizontal earthquakes and the oscillating pressure due to the movement of liquid surfaces are calculated by the theory of Housner, and both pressures are summed up. However, recently the tanks storing liquids have become large, and the stiffness of tank structures tends to lower relatively as compared with the quantity of the stored liquids. In such case, the natural frequency of the tank structures at the time of containing liquids lowers considerably, therefore it is necessary to carry out the aseismatic analysis taking the deflection of the side walls of tanks into account. There are various methods of solving this problem, but problems remain in them. In the method of solution proposed by the author, tanks are treated by the finite element method, and the liquids contained are treated analytically using velocity potential theory. Also the method of earthquake response analysis determining the exciting energy of the earthquake in horizontal direction is described. (Kako, I.)

  1. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks

  2. Tank Waste Remediation System Inactive Miscellaneous Underground Storage Tanks Program Plan

    The Program Management Plan (PMP) describes the approach that will be used to manage the Tank Waste Remediation System (TWRS) Inactive Miscellaneous Underground Storage Tank (IMUST) Program. The plan describes management, technical, and administrative control systems that will be used to plan and control the IMUSTs Program performance. The technical data to determine the IMUSTs status for inclusion in the Single Shell Tank Farm Controlled Clean and Stable (CCS) Program. The second is to identify and implement surveillance, characterization, stabilization, and modifications to support CCS prior to final closure

  3. Case Study in Corporate Memory Recovery: Hanford Tank Farms Miscellaneous Underground Waste Storage Tanks - 15344

    Washenfelder, D. J.; Johnson, J. M.; Turknett, J. C.; Barnes, T. J.; Duncan, K. G.

    2015-01-07

    In addition to managing the 177 underground waste storage tanks containing 212,000 m3 (56 million gal) of radioactive waste at the U. S. Department of Energy’s Hanford Site 200 Area Tank Farms, Washington River Protection Solutions LLC is responsible for managing numerous small catch tanks and special surveillance facilities. These are collectively known as “MUSTs” - Miscellaneous Underground Storage Tanks. The MUSTs typically collected drainage and flushes during waste transfer system piping changes; special surveillance facilities supported Tank Farm processes including post-World War II uranium recovery and later fission product recovery from tank wastes. Most were removed from service following deactivation of the single-shell tank system in 1980 and stabilized by pumping the remaining liquids from them. The MUSTs were isolated by blanking connecting transfer lines and adding weatherproofing to prevent rainwater entry. Over the next 30 years MUST operating records were dispersed into large electronic databases or transferred to the National Archives Regional Center in Seattle, Washington. During 2014 an effort to reacquire the historical bases for the MUSTs’ published waste volumes was undertaken. Corporate Memory Recovery from a variety of record sources allowed waste volumes to be initially determined for 21 MUSTs, and waste volumes to be adjusted for 37 others. Precursors and symptoms of Corporate Memory Loss were identified in the context of MUST records recovery.

  4. Soil load above Hanford waste storage tanks (2 volumes)

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs

  5. Soil load above Hanford waste storage tanks (2 volumes)

    Pianka, E.W. [Advent Engineering Services, Inc., San Ramon, CA (United States)

    1995-01-25

    This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.

  6. Hanford Tank Farm interim storage phase probabilistic risk assessment outline

    This report is the second in a series examining the risks for the high level waste (HLW) storage facilities at the Hanford Site. The first phase of the HTF PSA effort addressed risks from Tank 101-SY, only. Tank 101-SY was selected as the initial focus of the PSA because of its propensity to periodically release (burp) a mixture of flammable and toxic gases. This report expands the evaluation of Tank 101-SY to all 177 storage tanks. The 177 tanks are arranged into 18 farms and contain the HLW accumulated over 50 years of weapons material production work. A centerpiece of the remediation activity is the effort toward developing a permanent method for disposing of the HLW tank's highly radioactive contents. One approach to risk based prioritization is to perform a PSA for the whole HLW tank farm complex to identify the highest risk tanks so that remediation planners and managers will have a more rational basis for allocating limited funds to the more critical areas. Section 3 presents the qualitative identification of generic initiators that could threaten to produce releases from one or more tanks. In section 4 a detailed accident sequence model is developed for each initiating event group. Section 5 defines the release categories to which the scenarios are assigned in the accident sequence model and presents analyses of the airborne and liquid source terms resulting from different release scenarios. The conditional consequences measured by worker or public exposure to radionuclides or hazardous chemicals and economic costs of cleanup and repair are analyzed in section 6. The results from all the previous sections are integrated to produce unconditional risk curves in frequency of exceedance format

  7. Corrosion Evaluation of INTEC Waste Storage Tank WM-182

    ). For purposes of waste storage, this is a negligible amount of metal loss. Localized corrosion such as cracking, pitting, preferential weld attack, or weld heat affected zone attack is not expected to be a materials problem in the tank

  8. Innovative tank emptying system for the retrieval of salt, sludge and IX resins from storage tanks of NPPs

    RWE NUKEM recently developed a new Tank Emptying System (TESY) for the extraction of stored radioactive boric acid/borate salt blocks, sludge and IX resin from NPP stainless steel tanks of several hundred cubic meters content in Russia. RWE NUKEM has chosen the emptying concept consisting of a tracked submersible vehicle ('Crawler'), with jet nozzles for solution, agitation and fluidization, and a suction head to pick up the generated solution or suspension respectively. With the employment of RWE NUKEM's TESY system, spent radioactive salt deposits, ion-exchange resins and sludge, can be emptied and transferred out of the tank. The sediment, crystallized and settled during storage, will be agitated with increased temperature and suitable pH value and then picked up in form of a suspension or solution directly at the point of mobilization. This new Tank Emptying System concept enables efficiently to retrieve stored salt and other sediment waste, reduces operating time, safes cost for spare parts, increases the safety of operation and minimizes radiation exposure to personnel. All emptying tasks are performed remotely from a panel board and TV monitor located in a central control room. The TESY system consists of the following main components: glove box, crawler, submersible pump, heater, TV camera and spot light, control panel and monitor, water separation and feed unit, sodium hydroxide dosing unit. The system is specially requested for the removal of more than 2,500 cubic meter salt solution generated from the dissolution of some 300 cubic meter crystallized salt deposit per tank and per year. The TESY system is able to dissolve efficiently the salts and retrieve solutions and other liquefied suspensions. TESY is adaptable to all liquid waste storage facilities and especially deployable for tanks with limited access openings (<550 mm)

  9. Petroleum storage tank cleaning using commercial microbial culture products

    Schneider, D.R.; Entzeroth, L.C.; Timmis, A.; Whiteside, A.; Hoskins, B.C.

    1995-12-31

    The removal of paraffinic bottom accumulations from refinery storage tanks represents an increasingly costly area of petroleum storage management. Microorganisms can be used to reduce paraffinic bottoms by increasing the solubility of bottom material and by increasing the wax-carrying capacity of carrier oil used in the cleaning process. The economic savings of such treatments are considerable. The process is also intrinsically safer than alternative methods, as it reduces and even eliminates the need for personnel to enter the tank during the cleaning process. Both laboratory and field sample analyses can be used to document changes in tank material during the treatment process. These changes include increases in volatile content and changes in wax distribution. Several case histories illustrating these physical and chemical changes are presented along with the economics of treatment.

  10. Computer modeling of forced mixing in waste storage tanks

    Numerical simulation results of fluid dynamic and physical processes in radioactive waste storage tanks are presented. Investigations include simulation of jet mixing pump induced flows intended to mix and maintain particulate material uniformly distributed throughout the liquid volume. Physical effects of solids are included in the code. These are particle size through a settling velocity and mixture properties through density and viscosity. Calculations have been accomplished for a centrally located, rotationally-oscillating, horizontally-directed jet mixing pump for two cases. One case is with low jet velocity and high settling velocity. It results in nonuniform distribution. The other case is with high jet velocity and low settling velocity. It results in uniform conditions. Results are being used to aid in experiment design and to understand mixing in the waste tanks. These results are to be used in conjunction with scaled experiments to define limits of pump operation to maintain uniformity of the mixture in the storage tanks during waste retrieval operations

  11. K Basins sludge removal temporary sludge storage tank system

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A recommendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge

  12. K Basins sludge removal temporary sludge storage tank system

    Mclean, M.A.

    1997-06-12

    Shipment of sludge from the K Basins to a disposal site is now targeted for August 2000. The current path forward for sludge disposal is shipment to Tank AW-105 in the Tank Waste Remediation System (TWRS). Significant issues of the feasibility of this path exist primarily due to criticality concerns and the presence of polychlorinated biphenyls (PCBS) in the sludge at levels that trigger regulation under the Toxic Substance Control Act. Introduction of PCBs into the TWRS processes could potentially involve significant design and operational impacts to both the Spent Nuclear Fuel and TWRS projects if technical and regulatory issues related to PCB treatment cannot be satisfactorily resolved. Concerns of meeting the TWRS acceptance criteria have evolved such that new storage tanks for the K Basins sludge may be the best option for storage prior to vitrification of the sludge. A reconunendation for the final disposition of the sludge is scheduled for June 30, 1997. To support this decision process, this project was developed. This project provides a preconceptual design package including preconceptual designs and cost estimates for the temporary sludge storage tanks. Development of cost estimates for the design and construction of sludge storage systems is required to help evaluate a recommendation for the final disposition of the K Basin sludge.

  13. Structural analysis of ORNL underground gunite waste storage tanks

    The North Tank Farm (NTF) and the South Tank Farm (STF) located at ORNL contains 8 underground waste storage tanks which were built around 1943. The tanks were used to collect and store the liquid portion of the radioactive and/or hazardous chemical wastes produced as part of normal facility operations at ORNL, but are no longer part of the active Low Level Liquid Waste system of the Laboratory. The tanks were constructed of gunite. The six STF tanks are 50 ft in diameter, and have a 12 ft sidewall, and an arched dome rising another 6.25 ft. The sidewall are 6 in. thick and have an additional 1.5 in. gunite liner on the inside. There is a thickened ring at the wall-dome juncture. The dome consists of two 5 in. layers of gunite. The two tanks in the NTF are similar, but smaller, having a 25 ft diameter, no inner liner, and a dome thickness of 3.5 in. Both sets of tanks have welded wire mesh and vertical rebars in the walls, welded wire mesh in the domes, and horizontal reinforcing hoop bars pre-tensioned to 35 to 40 ksi stress in the walls and thickened ring. The eight tanks are entirely buried under a 6 ft layer of soil cover. The present condition of the tanks is not accurately known, since access to them is extremely limited. In order to evaluate the structural capability of the tanks, a finite element analysis of each size tank was performed. Both static and seismic loads were considered. Three sludge levels, empty, half-full, and full were evaluated. In the STF analysis, the effects of wall deterioration and group spacing were evaluated. These analyses found that the weakest element in the tanks is the steel resisting the circumferential (or hoop) forces in the dome ring, a fact verified separately by an independent reviewer. However, the hoop steel has an adequate demand/capacity ratio. Buckling of the dome and the tank walls is not a concern

  14. Technical bases for leak detection surveillance of waste storage tanks. Revision 1

    This document provides the technical bases for specification limits, monitoring frequencies and baselines used for leak detection and intrusion (for single shell tanks only) in all single and double shell radioactive waste storage tanks, waste transfer lines, and most catch tanks and receiver tanks in the waste tank farms and associated areas at Hanford

  15. Modeling and integration of a heat storage tank in a compressed air electricity storage process

    Highlights: • Large-scale heat storage tank behavior is explored with a two dimensional model. • Thermal storage tank efficiencies are estimated thanks to dimensionless numbers. • Abacuses of the tank efficiency are provided. • The link between tank efficiency and A-CAES global efficiency is generated. - Abstract: In an adiabatic compressed air energy storage process (A-CAES), heat storage tank operation is a key factor that determines the overall energy performance of the process. To highlight energy issues linked to a correct tank design in the specific case of an A-CAES system, a two-dimensional thermal numerical model was developed. Thermal efficiencies of the tank are presented with abacus defined from the four dimensionless numbers defining the thermal behavior of the reservoir. Cycling effects are explored with a realistic case study corresponding to an A-CAES system design to deliver an electrical power of 250 MWel for 4 h, the daily peak demand. Extended beyond the thermal reservoir, A-CAES thermodynamic analysis combined with the dynamic simulation makes it possible to generate a direct quantitative link between reservoir sizing and A-CAES global efficiency

  16. Nondestructive examination technologies for inspection of radioactive waste storage tanks

    The evaluation of underground radioactive waste storage tank structural integrity poses a unique set of challenges. Radiation fields, limited access, personnel safety and internal structures are just some of the problems faced. To examine the internal surfaces a sensor suite must be deployed as an end effector on a robotic arm. The purpose of this report is to examine the potential failure modes of the tanks, rank the viability of various NDE technologies for internal surface evaluation, select a technology for initial EE implementation, and project future needs for NDE EE sensor suites

  17. Seismic response of flexible cylindrical liquid storage tanks

    Liquid slosh and tank wall flexural vibrations are studied in a flexible model storage tank subject to simulated earthquake environments. Emphasis is placed on determining the influence of wall flexural vibrations on induced stresses. The approach is basically experimental, whereby similitude considerations are first presented. Then, a series of scale model experiments are conducted, and preliminary observations are evaluated. These evaluations allow formulation of an approximate analytical model for prediction of seismically induced stress. Validity range for this model is established by comparison of various predicted responses with observed results. (Auth.)

  18. DI-2-ETHYLHEXYL PHTHALATE AND DI-N-BUTYL PHTHALATE IN TISSUES OF COMMON CARP (Cyprinus Carpio L.) AFTER HARVEST AND AFTER STORAGE IN FISH STORAGE TANKS

    Vlasta Stancová; Lenka Puškárová; Alžbeta Jarošová

    2011-01-01

    The aim of the present study was to determine whether the influence of fish pond and fish storage tank conditions change the content of phthalic acid esters (di-n-butyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP)) in the carcass of the Common carp. Samples obtained from the autumn harvest of two fish ponds (R1 and R2) in 2007 and 2010 from the South Moravia and after a seven-week-long storage in fish storage tanks were analyzed. It was found that in the samples (2007) from both fish ...

  19. Integrated heat exchanger design for a cryogenic storage tank

    Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U. [NASA Kennedy Space Center, Cryogenics Test Laboratory, NE-F6, KSC, FL 32899 (United States); Tomsik, T. M. [NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135 (United States); Conyers, H. J. [NASA Stennis Space Center, Building 3225, SSC, MS 39529 (United States)

    2014-01-29

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

  20. Integrated heat exchanger design for a cryogenic storage tank

    Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications

  1. Closure Report for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada

    Corrective Action Unit (CAU) 134 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Aboveground Storage Tanks' and consists of the following four Corrective Action Sites (CASs), located in Areas 3, 15, and 29 of the Nevada Test Site: (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain

  2. Underground Storage Tank Integrated Demonstration (UST-ID)

    The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m3) to 106 gallons (3785 m3). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina

  3. External pressure limitations for 0--15 psi storage tanks

    Large cylindrical storage tanks are designed in accordance with design rules of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section 3, Subsection NC, Article NC-3900 or American Petroleum Institute (API) Standard 620. Both of these Codes have identical requirements. These Codes provide a limit on the partial vacuum in the gas or vapor space not to exceed 1 oz/in2 to ensure stability of cylindrical walls against collapse. This criterion seems to be too conservative for the underground double shell storage tanks to be built at Hanford for the Department of Energy. The analysis presented herein shows that the bottom plate of the Hanford tank is the most critical component when an empty tank is subjected to partial vacuum. However, the allowable external pressures for both cylindrical walls and the bottom plate are significantly higher than 1 oz/in2. The allowable external pressure for the bottom plate is largely dependent upon the plate uplift considerations which in turns depends on the plate thickness. The large displacement non-linear elastic analyses and the eigenvalue buckling solutions indicate that considerable wrinkling can occur before a snap-through buckling failure occurs

  4. Estimating Residual Solids Volume In Underground Storage Tanks

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to

  5. Estimating Residual Solids Volume In Underground Storage Tanks

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The

  6. Cathodic protection for the bottoms of above ground storage tanks

    Mohr, John P. [Tyco Adhesives, Norwood, MA (United States)

    2004-07-01

    Impressed Current Cathodic Protection has been used for many years to protect the external bottoms of above ground storage tanks. The use of a vertical deep ground bed often treated several bare steel tank bottoms by broadcasting current over a wide area. Environmental concerns and, in some countries, government regulations, have introduced the use of dielectric secondary containment liners. The dielectric liner does not allow the protective cathodic protection current to pass and causes corrosion to continue on the newly placed tank bottom. In existing tank bottoms where inadequate protection has been provided, leaks can develop. In one method of remediation, an old bottom is covered with sand and a double bottom is welded above the leaking bottom. The new bottom is welded very close to the old bottom, thus shielding the traditional cathodic protection from protecting the new bottom. These double bottoms often employ the use of dielectric liner as well. Both the liner and the double bottom often minimize the distance from the external tank bottom. The minimized space between the liner, or double bottom, and the bottom to be protected places a challenge in providing current distribution in cathodic protection systems. This study examines the practical concerns for application of impressed current cathodic protection and the types of anode materials used in these specific applications. One unique approach for an economical treatment using a conductive polymer cathodic protection method is presented. (author)

  7. Structural analysis of underground gunite storage tanks. Environmental Restoration Program

    This report documents the structural analysis of the 50-ft diameter underground gunite storage tanks constructed in 1943 and located in the Oak Ridge National Laboratory (ORNL) South Tank Farm, known as Facility 3507 in the 3500-3999 area. The six gunite tanks (W-5 through W-10) are spaced in a 2 x 3 matrix at 60 ft on centers with 6 ft of soil cover. Each tank (Figures 1, 2, and 3) has an inside diameter of 50 ft, a 12-ft vertical sidewall having a thickness of 6 in. (there is an additional 1.5-in. inner liner for much of the height), and a spherical domed roof (nominal thickness is 10 in.) rising another 6 ft, 3 in. at the center of the tank. The thickness of both the sidewall and the domed roof increases to 30 in. near their juncture. The tank floor is nominally 3-in. thick, except at the juncture with the wall where the thickness increases to 9 in. The tanks are constructed of gunite (a mixture of Portland cement, sand, and water in the form of a mortar) sprayed from the nozzle of a cement gun against a form or a solid surface. The floor and the dome are reinforced with one layer of welded wire mesh and reinforcing rods placed in the radial direction. The sidewall is reinforced with three layers of welded wire mesh, vertical 1/2-in. rods, and 21 horizontal rebar hoops (attached to the vertical rods) post-tensioned to 35,000 psi stress. The haunch at the sidewall/roof junction is reinforced with 17 horizontal rebar hoops post-tensioned with 35,000 to 40,000 psi stress. The yield strength of the post-tensioning steel rods is specified to be 60,000 psi, and all other steel is 40,000 psi steel. The specified 28-day design strength of the gunite is 5,000 psi

  8. 19 CFR 151.28 - Gauging of sirup or molasses discharged into storage tanks.

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Gauging of sirup or molasses discharged into... Sugars, Sirups, and Molasses § 151.28 Gauging of sirup or molasses discharged into storage tanks. (a) Plans of storage tank to be filed. When sirup or molasses is imported in bulk in tank vessels and is...

  9. [Study on the quantitative estimation method for VOCs emission from petrochemical storage tanks based on tanks 4.0.9d model].

    Li, Jing; Wang, Min-Yan; Zhang, Jian; He, Wan-Qing; Nie, Lei; Shao, Xia

    2013-12-01

    VOCs emission from petrochemical storage tanks is one of the important emission sources in the petrochemical industry. In order to find out the VOCs emission amount of petrochemical storage tanks, Tanks 4.0.9d model is utilized to calculate the VOCs emission from different kinds of storage tanks. VOCs emissions from a horizontal tank, a vertical fixed roof tank, an internal floating roof tank and an external floating roof tank were calculated as an example. The consideration of the site meteorological information, the sealing information, the tank content information and unit conversion by using Tanks 4.0.9d model in China was also discussed. Tanks 4.0.9d model can be used to estimate VOCs emissions from petrochemical storage tanks in China as a simple and highly accurate method. PMID:24640914

  10. Behavior of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30,000 MW day·t-1. A distillation apparatus was designed to operate with small-volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: ruthenium is only volatilized in the final phase of evaporation, just before desiccation; for a final temperature limited to 160 degree C, the total fraction of volatilized ruthenium reaches 12%; in the presence of H2O, HNO3, NOx and O2, the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide (probably RuO2) on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source

  11. Erection of a Stainless-Steel Tank for Storing a Phosphoric Acid

    Vojvodič Tuma, J.; Celin, R.

    2007-01-01

    A storage tank for 93 % phosphoric acid was built in Luka Koper from 7 mm thick ground hot-rolled plates of 316L stainless steel. The capacity of the storage tank is of the 750 m3, diameter of 11 m and the height of 8,2 m. The shell plates were welded manually using the shielded metal-arc and gas-metal-arc processes. Before the erection, welding procedure tests according to EN 288-3 were carried out. During the construction several non-destructive examination methods were used, such as radiog...

  12. Technical aspects of underground storage tank closure. Final report

    The overall objective of the study was to develop a deeper understanding of UST residuals at closure: their quantities, origins, physical/chemical properties, ease of removal by various cleaning methods, and their environmental mobility and persistence. The investigation covered underground storage tanks containing: gasoline, diesel oil, and fuel oil. It obtained information in two phases. Phase I elicited data via telephone contacts with knowledgeable individuals including tank cleaning companies, from literature cited by these experts, on-site visits and from questionnaires completed by state representatives. Phase II monitored selected tank cleaning cases and made quantitative measurements of the amounts of residuals left in USTs before and after cleaning, characterizing the nature of the residuals and any rinses generated during the cleaning process. To support the objectives of the study, the following information was collected for each UST site included in the study: estimates of volumes of tank residuals and secondary wastes, hazardous characteristics and chemical composition of the residuals and secondary wastes, detailed descriptions of the cleaning methods used, and background information on the UST/site that relates to the nature of the residuals. The report documents the study findings in order to aid regulators and to assist those implementing/overseeing closure activities

  13. Behaviour of ruthenium in the case of shutdown of the cooling system of HLLW storage tanks

    The consequences of the failure of the cooling system of fission product storage tanks over a variable period were investigated as part of the safety analysis of the La Hague spent fuel reprocessing plant. Due to the considerable heat release, induced by the fission products, a prolonged shutdown of the tank cooling system could cause the progressive evaporation of the solutions to dryness, and culminate in the formation of volatile species of ruthenium and their release in the tank venting circuit. To determine the fraction of ruthenium likely to be transferred from the storage tanks in volatile or aerosol form during the failure, evaporation tests were conducted by evaporating samples of actual nitric acid solutions of fission products, obtained on the laboratory scale after the reprocessing of several kilograms of MOX fuels irradiated to 30.000 MW day ·t-1. A distillation apparatus was designed to operate with small-volume solution samples, reproducing the heating conditions existing in the reprocessing plant within a storage tank for fission products. The main conclusions drawn from these experiments are as follows: - ruthenium is only volatilized in the final phase of evaporation, just before desiccation, - for a final temperature limited to 160 deg. C, the total fraction of volatilized ruthenium reaches 12%, - in the presence of H2O, HNO3, NOx and O2, the volatilized ruthenium recombines mainly in the form of ruthenium nitrosyl nitrates, or decomposes into ruthenium oxide (probably RuO2) on the walls of the apparatus. Assuming a heating power density of 10 W/liter of concentrate, and a perfectly adiabatic storage system, the minimum time required to reach dryness can be estimated at 90 h, allowing substantial time to take action to restore a cooling source. It is probable that, in an industrial storage tank, the heat losses from the tank and the offgas discharge ducts will cause recondensation and internal reflux, which will commensurately delay dryness and

  14. Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks

    ROGERS, C.A.

    2000-02-17

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

  15. Criticality Safety Evaluation of Hanford Site High-Level Waste Storage Tanks

    This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions

  16. Specialized video systems for use in underground storage tanks

    The Robotics Development Groups at the Savannah River Site and the Hanford site have developed remote video and photography systems for deployment in underground radioactive waste storage tanks at Department of Energy (DOE) sites as a part of the Office of Technology Development (OTD) program within DOE. Figure 1 shows the remote video/photography systems in a typical underground storage tank environment. Viewing and documenting the tank interiors and their associated annular spaces is an extremely valuable tool in characterizing their condition and contents and in controlling their remediation. Several specialized video/photography systems and robotic End Effectors have been fabricated that provide remote viewing and lighting. All are remotely deployable into and from the tank, and all viewing functions are remotely operated. Positioning all control components away from the facility prevents the potential for personnel exposure to radiation and contamination. Overview video systems, both monaural and stereo versions, include a camera, zoom lens, camera positioner, vertical deployment system, and positional feedback. Each independent video package can be inserted through a 100 mm (4 in.) diameter opening. A special attribute of these packages is their design to never get larger than the entry hole during operation and to be fully retrievable. The End Effector systems will be deployed on the large robotic Light Duty Utility Arm (LDUA) being developed by other portions of the OTD-DOE programs. The systems implement a multi-functional ''over the coax'' design that uses a single coaxial cable for all data and control signals over the more than 900 foot cable (or fiber optic) link

  17. Economic Evaluation of Tank Storage and Pot Calcination of Power-Reactor Fuel-Reprocessing Wastes

    As part of a comprehensive study undertaken to evaluate the economics and hazards associated with methods for ultimate disposal of highly radioactive liquid and solid wastes, costs have been estimated for interim storage of the wastes in tanks and conversion to solids by pot calcination. A 6-t(metric)/d capacity fuel-processing plant was assumed, processing 1500 t/yr of uranium fuel of 10 000-MWd/t bum-up and 270 t/yr of thorium fuel of 20 000-MWd/t burn-up, which would process all the fuel from a 15 000-MWe nuclear economy. Costs for storage of acidic and neutralized Purex and Thorex wastes were estimated for storage in stainless- steel tanks for acidic wastes and mild steel for neutralized waste. With interim storage time defined as filling time plus full time, tank costs were minimum when the full time was roughly 40 to 75% of the interim storage time. For 0.5 - 30 yr storage, costs ranged from 2.0 x 10-3 to 9.3 x 10-3 mill/kWhe for acid wastes and from 1.5 x 10-3 to 4.7 x 10-3 mill/kWhe for alkaline wastes. Costs were estimated for converting acidic and reacidified Purex and Thorex wastes to solids by pot calcination and for producing glass from acidic Thorex wastes. The vessels studied were made of 6-, 12-, and 24-in-diam. stainless-steel pipe, 10 ft high, with estimated costs of $500, $855 and $2515. Aging had negligible effect on costs for processing in a vessel of a given size, because capital costs were only about 10% of vessel and operating costs, but permitted larger vessels to be used; costs for processing in 6-in-diam. vessels were two to three times those in 24-in-diam.vessels. The lowest cost was 0.87 x 10-2 mill/kWhe for processing-acidic Purex and .Thorex wastes in 24-in-diam. vessels and the highest was 5.0 x 10-2 mill/kWhe for processing reacidified Purex and Thorex wastes in 6-in-diam. vessels. (author)

  18. Earthquake-induced sloshing effects on seismic qualification of liquid storage tanks

    The paper presents a methodology to evaluate earthquake-induced sloshing effects for seismic qualification of liquid storage tanks. The modal sloshing properties are derived based on an 'Equivalent Rectangular Tank' method. Response spectrum analysis is used to be calculated the sloshing response. The total tank base shear and overturning moment are obtained which can be used for seismic qualification analysis of tanks and tank supports/foundations. This general approach is applicable to general tanks such as vertical-cylindrical, horizontal-cylindrical, spherical, elliptical, and other irregular practical tanks

  19. Large underground radioactive waste storage tanks successfully cleaned at Oak Ridge National Laboratory

    Waste retrieval operations were successfully completed in two large underground radioactive waste storage tanks in 1997. The US Department of Energy (DOE) and the Gunite Tanks Team worked cooperatively during two 10-week waste removal campaigns and removed approximately 58,300 gallons of waste from the tanks. About 100 gallons of a sludge and liquid heel remain in each of the 42,500 gallon tanks. These tanks are 25 ft. in diameter and 11 ft. deep, and are located in the North Tank Farm in the center of Oak Ridge National Laboratory. Less than 2% of the radioactive contaminants remain in the tanks, proving the effectiveness of the Radioactive Tank Cleaning System, and accomplishing the first field-scale cleaning of contaminated underground storage tanks with a robotic system in the DOE complex

  20. Control system design for robotic underground storage tank inspection systems

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission

  1. Control system design for robotic underground storage tank inspection systems

    Kiebel, G.R.

    1994-09-01

    Control and data acquisition systems for robotic inspection and surveillance systems used in nuclear waste applications must be capable, versatile, and adaptable to changing conditions. The nuclear waste remediation application is dynamic -- requirements change as public policy is constantly re-examined and refocused, and as technology in this area advances. Control and data acquisition systems must adapt to these changing conditions and be able to accommodate future missions, both predictable and unexpected. This paper describes the control and data acquisition system for the Light Duty Utility Arm (LDUA) System that is being developed for remote surveillance and inspection of underground storage tanks at the Hanford Site and other US Department of Energy (DOE) sites. It is a high-performance system which has been designed for future growth. The priority mission at the Hanford site is to retrieve the waste generated by 50 years of production from its present storage and process it for final disposal. The LDUA will help to gather information about the waste and the tanks it is stored in to better plan and execute the cleanup mission.

  2. Using virtual objects to aid underground storage tank teleoperation

    In this paper we describe an algorithm by which obstructions and surface features in an underground storage tank can be modeled and used to generate virtual barrier function for a real-time telerobotic system, which provides an aid to the operator for both real-time obstacle avoidance and for surface tracking. The algorithm requires that the slave's tool and every object in the waste storage tank be decomposed into convex polyhedral primitives, with the waste surface modeled by triangular prisms. Intrusion distance and extraction vectors are then derived at every time step by applying Gilbert's polyhedra distance algorithm, which has been adapted for the task. This information is then used to determine the compression and location of nonlinear virtual spring-dampers whose total force is summed and applied to the manipulator/teleoperator system. Experimental results using a PUMA 560 and a simulated waste surface validate the approach, showing that it is possible to compute the algorithm and generate smooth, realistic pseudo forces for the teleoperator system using standard VME bus hardware

  3. Seismic response of flexible cylindrical liquid storage tanks

    Liquid slosh and tank wall vibrations are studied experimentally in a flexible model storage tank subject to simulated earthquake environments. A similitude study is first performed to develop the important nondimensional parameters. An aluminum model tank of 62.87 cm diameter, 76.2 cm height, and 0.51 mm wall thickness, having flat rigid bottom and top cover is instrumented to measure liquid slosh amplitudes and pressures, and tank wall vibrations and strains. Simulation of a scaled earthquake environment is provided by a biaxial shake table having the capability of simultaneous independent horizontal and vertical excitation. Ground motion time histories are developed from random signals, and are modified to produce specified different earthquake response spectra along each axis. It is found that liquid slosh amplitudes are principally related to horizontal seismic displacements, while pressures and shell wall flexural vibrations are principally related to both horizontal and vertical seismic accelerations. Wall vibrations and strains are found to be as sensitive to vertical accelerations as they are to horizontal accelerations. The wall response is comprised principally of the first several flexural or breathing modes which have multiple waves around the shell circumference. Influence of vertical excitation on this type response is surmised to occur through either geometric eccentricities or through parametric excitation mechanisms. Shell wall responses damp out rapidly after the seismic event has subsided. However, low frequency liquid slosh persists for a long time duration after the seismic event. By comparison with predictions from a simple analytical model, liquid pressures are separated into impulsive, or acceleration loads, and convective, or slosh loads. The simple analytical model is shown to be inadequate for certain parameter ranges and earthquake conditions. Explanations for the discrepancies are offered

  4. Experimental investigation on simultaneous charging and discharging of an oil storage tank

    Highlights: ► Simultaneous charging and discharging of an oil storage tank is investigated. ► Three different cases are studied and water is boiled in all cases. ► Thermal stratification is evident for all the three cases. ► Sufficient amount of energy is stored in the storage tank to cook low heat foods. - Abstract: An experimental setup for simultaneous charging and discharging experiments to be performed on an oil storage tank is presented. The experimental setup enables thermal energy to be stored in the storage tank as well as water to be heated up for a cooking application in a simultaneous charging and discharge cycle. Results of three different simultaneous charging and discharging cases are presented. The three different cases of simultaneous charging and discharging are; (i) an initially unstratified storage tank, (ii) an initially stratified storage tank, and (iii) an initially unstratified storage tank at the top and stratified at the bottom. The three different cases of simultaneous charging and discharging indicate that water can be boiled within 2 h of the charging/discharging cycle and a sufficient amount of energy can be stored in the storage tank. It is suggested that foods which take longer cooking times can be cooked with the boiling water. The energy stored can be used to heat up or cook foods that require lower cooking temperatures. Thermal stratification in the storage is evident for all of the three cases.

  5. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    Lessing, Paul A.

    2004-09-07

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  6. Polymeric hydrogen diffusion barrier, high-pressure storage tank so equipped, method of fabricating a storage tank and method of preventing hydrogen diffusion

    Lessing, Paul A.

    2008-07-22

    An electrochemically active hydrogen diffusion barrier which comprises an anode layer, a cathode layer, and an intermediate electrolyte layer, which is conductive to protons and substantially impermeable to hydrogen. A catalytic metal present in or adjacent to the anode layer catalyzes an electrochemical reaction that converts any hydrogen that diffuses through the electrolyte layer to protons and electrons. The protons and electrons are transported to the cathode layer and reacted to form hydrogen. The hydrogen diffusion barrier is applied to a polymeric substrate used in a storage tank to store hydrogen under high pressure. A storage tank equipped with the electrochemically active hydrogen diffusion barrier, a method of fabricating the storage tank, and a method of preventing hydrogen from diffusing out of a storage tank are also disclosed.

  7. Heat removal characteristics of waste storage tanks. Revision 1

    A topical report that examines the relationship between tank heat load and maximum waste temperatures. The passive cooling response of the tanks is examined, and loss of active cooling in ventilated tanks is investigated

  8. Decontamination of naturally contaminated liquid nitrogen storage tanks

    Gilson Antonio Pessoa; Mara Iolanda Batistella Rubin; Carlos Antonio Mondino Silva; Denize Costa da Rosa

    2014-01-01

    The objective of this study was to evaluate the efficacy of cleaning and decontamination procedures in liquid nitrogen tanks. We evaluated 151 canisters and 133 bottoms from 133 nitrogen tanks of companies or farms for the presence of bacteria and fungi. Samples were collected from the canisters and the bottom of tanks containing liquid nitrogen. Tanks were divided into Group 1 (G1): tanks decontaminated with 2% glutaraldehyde - Glutaron® II (n = 16 canisters in 8 tanks); Group 2 (G2): decont...

  9. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities

  10. Melton Valley Storage Tanks Capacity Increase Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    NONE

    1995-04-01

    The US Department of Energy (DOE) proposes to construct and maintain additional storage capacity at Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, for liquid low-level radioactive waste (LLLW). New capacity would be provided by a facility partitioned into six individual tank vaults containing one 100,000 gallon LLLW storage tank each. The storage tanks would be located within the existing Melton Valley Storage Tank (MVST) facility. This action would require the extension of a potable water line approximately one mile from the High Flux Isotope Reactor (HFIR) area to the proposed site to provide the necessary potable water for the facility including fire protection. Alternatives considered include no-action, cease generation, storage at other ORR storage facilities, source treatment, pretreatment, and storage at other DOE facilities.

  11. Closure report for underground storage tank 161-R1U1 and its associated underground piping

    Underground storage tank (UST) 161-31 R at the Lawrence Livermore National Laboratory (LLNL) was registered with the State Water Resources Control Board on June 27, 1984. UST 161-31R was subsequently renamed UST 161-R1U1 (Fig. A-1, Appendix A). UST 161-R1U1 was installed in 1976, and had a capacity of 383 gallons. This tank system consisted of a fiberglass reinforced plastic tank, approximately 320 feet of polyvinyl chloride (PVC) underground piping from Building 161, and approximately 40 feet of PVC underground piping from Building 160. The underground piping connected laboratory drains and sinks inside Buildings 160 and 161 to UST 161-R1U1. The wastewater collected in UST 161-R1U1, contained organic solvents, metals, inorganic acids, and radionuclides, most of which was produced within Building 161. On June 28, 1989, the UST 161-R1U1 piping system.around the perimeter of Building 161 failed a precision test performed by Gary Peters Enterprises (Appendix B). The 161-R1U1 tank system was removed from service after the precision test. In July 1989, additional hydrostatic tests and helium leak detection tests were performed (Appendix B) to determine the locations of the piping failures in the Building 161 piping system. The locations of the piping system failures are shown in Figure A-2 (Appendix A). On July 11, 1989, LLNL submitted an Unauthorized Release Report to Alameda County Department of Environmental Health (ACDEH), Appendix C

  12. Effect of entry of subcooled cryogen on thermal stratification in a cryogenic storage tank

    Wang, Pao-lien

    1995-01-01

    The purpose of this study was to predict if subcooled cryogenic liquid entering the bottom of a storage tank will destroy the thermal stratification of the tank. After an extensive literature search, a formula for maximum critical Reynolds Number which used to predict the destratification of a cryogenic tank was found. Example of calculations and graphics to determine the mixing of fluid in the tank were presented.

  13. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective

  14. Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms

    Vail, T.S.

    1997-05-29

    This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective.

  15. Performance of liquid storage tanks during the 1989 Loma Prieta earthquake

    Utilities and industrial facilities in the strong shaking area of the 1989 Loma Prieta earthquake include a large inventory of tanks of all types. The earthquake induced a few incidents of damage to tanks of old and modern design, and even to a retrofitted tank. This paper documents the performance of tank structures during this seismic event through a detailed description of the damage sustained by ground-based petroleum and water storage tanks and by elevated water tanks. It appears that site amplification of the long period ground motion components was a cause of large amplitude sloshing and the associated damage to tanks built on Bay Mud. It is also apparent that design procedures for ground-based unanchored tanks require a substantial updating to reflect the recent technical advances and the lessons learned for such a type of tanks

  16. HLLW storage tank materials: technical options and operating experience

    Storage tanks for concentrated fission product solutions are made of Z 2 CND 17-12 (AISI 316 L) stainless steel. The solution temperature is cooled below 60 deg. C and permanent stirring of the medium keeps the insolubles in suspension preventing the formation of wall deposits. This stainless steel was selected after a number of corrosion tests conducted ''in situ'' in the tanks of nuclear facilities and in radioactive fission product solutions prepared in the laboratory. All these tests demonstrated a superior localized corrosion resistance under radioactive deposits for AISI 316 L steel, when compared to AISI 304 L steel. Laboratory tests were also performed up to 100 deg. C in fission product solutions containing ferric ions (up to 20 g.1-1). Under these conditions, more severe than nominal operating conditions, 316 L steel exhibits some risks of intergranular attack. The operating conditions adopted, and the experience gained in France over the past 30 years, clearly vindicate the choice of 316 L steel. (author)

  17. Model based, sensor directed remediation of underground storage tanks

    Sensor rich, intelligent robots which function with respect to models of their environment have significant potential to reduce the time and cost for the cleanup of hazardous waste while increasing operator safety. Sandia National Laboratories is performing experimental investigations into the application of intelligent robot control technology to the problem of removing waste stored tanks. This paper describes the experimental environment employed at Saudi with particular attention to the computing and software control environment. Intelligent system control is achieved though the integration of extensive geometric and kinematic world models with real-time sensor based control. All operator interactions with the system are validate all operator commands before execution to provide a safe operation. Sensing is used to add information to the robot system's world model and to allow sensor based sensor control during selected operations. The results of a first Critical Feature Test are reported and the potential for applying advanced intelligent control concepts to the removal of waste in storage tanks is discussed

  18. Mixed waste removal from a hazardous waste storage tank

    The spent fuel transfer canal at the Oak Ridge Graphite Reactor was found to be leaking 400 gallons of water per day into the surrounding soil. Sampling of the sediment layer on the floor of the canal to determine the environmental impact of the leak identified significant radiological contamination and elevated levels of cadmium and lead which are hazardous under the Resource Conservation and Recovery Act (RCRA). Under RCRA regulations and Rules of Tennessee Department of Environment and Conservation, the canal was considered a hazardous waste storage tank. This paper describes elements of the radiological control program established in support of a fast-track RCRA closure plan that involved underwater mapping of the radiation fields, vacuuming, and ultra-filtration techniques that were successfully used to remove the mixed waste sediments and close the canal in a method compliant with state and federal regulations

  19. Explosion and fire analysis of the Dora gas storage tanks

    Full text.The location of the Dora natural gas storage tanks within a close proximity to densely populated areas necessitates a thorough study of the risk associated with accidental gas releases and potential subsequent explosions. This paper describes the type and mechanism of release, the explosion form, the ensuing severity and the areas that are correspondingly affected. A variety of leakage scenarios are explored using mathematical models that simulate gas discharge, liquid leaks and two-phase gaseous and liquid streams. Relevant explosion models are discussed covering confined explosions, unconfined vapor cloud explosions, boiling liquid expanding vapor explosions and pool fires including the identification of the elements necessary for fire initiation. Fire explosion damages and influencing factors are then presented with the purpose of effecting a thorough reflection on damage extent. Finally, hazard control programs are defined on the basis of hazard priorities among the likely scenarios

  20. Light duty utility remote manipulator for underground storage tank inspection and characterization

    The Light Duty Utility Arm (LDUA) is a remote manipulator system which is being designed and fabricated to perform surveillance and characterization activities in support of the remediation of underground storage tanks at the Hanford site as well as other DOE sites. The LDUA is a mechanical manipulator which utilizes an advanced control system to safely and reliably deploy a series of sensors to characterize underground storage tanks. The electrical components of the in tank system are radiation hardened and the mechanical components are designed to operate in the corrosive environment which exists in the tanks. The use of this system will allow the US Department of Energy to sample and characterize the waste material in the tanks prior to the initiation of waste retrieval operations. In addition to its use for inspecting and characterizing underground storage tanks, the system has the potential to be used in other environments where accessibility is limited and where high radiation levels exist

  1. Improvement of floating roof tanks for liquids, more particularly for storage tanks used in nuclear power plants

    The invention deals with floating roof tanks for liquids, comprising a cylindrical wall, a floating roof and a flexible membrane sealing the roof circumference to the wall. The present tank has a protection against a filling excess when the roof is at its upper position, an overflow pipe on the outer face of the wall with a U-shaped portion at its upper end at the maximal desired reservoir filling level. The invention can be applied to the storage tanks ensuring the reserve of degased water for a primary coolant circuit of a nuclear reactor

  2. Investigation and remediation of petroleum product releases from residential storage tanks

    Releases of petroleum products from leaking residential storage tanks are a growing problem in the state of New Jersey. Approximately two releases per day have been reported to the New Jersey Department of Environmental Protection. Product releases may cause aquifers to become contaminated, may effect surface water, or cause vapor problems inside households. As of 1992, there are no federal or state regulations pertaining to the maintenance and monitoring of residential petroleum storage tanks. Regulations are essential for protecting drinking water supplies. The regulations must address installation procedures, tank materials, monitoring, and tank location

  3. Fluid dynamic studies for a simulated Melton Valley Storage Tank slurry

    The Melton Valley Storage Tanks (MVSTs), are used for the collection and storage of remote-handled radioactive liquid wastes. These wastes, which were typically acidic when generated, were neutralized with the addition of sodium hydroxide to protect the storage tanks from corrosion, but this caused the transuranic and heavy metals to precipitate. These wastes will eventually need to be removed from the tanks for ultimate disposal. The objective of the research activities discussed in this report is to support the design of a pipeline transport system between the MVSTs and a treatment facility. Since the wastes in the MVSTs are highly radioactive, a surrogate slurry was developed for this study. Rheological properties of the simulated slurry were determined in a test loop in which the slurry was circulated through three pipeline viscometers of different diameters. Pressure drop data at varying flow rates were used to obtain shear stress and shear rate data. The data were analyzed, and the slurry rheological properties were analyzed by the Power Law model and the Bingham plastic model. The plastic viscosity and yield stress data obtained from the rheological tests were used as inputs for a piping design software package, and the pressure drops predicted by the software compared well with the pressure drop data obtained from the test loop. The minimum transport velocity was determine for the slurry by adding known nominal sizes of glass spheres to the slurry. However, it was shown that the surrogate slurry exhibited hindered settling, which may substantially decrease the minimum transport velocity. Therefore, it may be desired to perform additional tests with a surrogate with a lower concentration of suspended solids to determine the minimum transport velocity

  4. Closure Report for Underground Storage Tank 2310-U at the Pine Ridge West Repeater Station

    This document represents the Closure Report for Underground Storage Tank (UST) 2310-U at the Pine Ridge West Repeater Station, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2310-U was a 200-gal gasoline UST which serviced the emergency generator at the Repeater Station. The tank was situated in a shallow tank bay adjacent to the Repeater Station along the crest of Pine Ridge. The tank failed a tightness test in October 1989 and was removed in November 1989. The purpose of this report is to document completion of soil corrective action, present supporting analytical data, and request closure for this site

  5. Closure Report for Underground Storage Tank 2310-U at the Pine Ridge West Repeater Station

    1994-07-01

    This document represents the Closure Report for Underground Storage Tank (UST) 2310-U at the Pine Ridge West Repeater Station, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2310-U was a 200-gal gasoline UST which serviced the emergency generator at the Repeater Station. The tank was situated in a shallow tank bay adjacent to the Repeater Station along the crest of Pine Ridge. The tank failed a tightness test in October 1989 and was removed in November 1989. The purpose of this report is to document completion of soil corrective action, present supporting analytical data, and request closure for this site.

  6. Thermal performance behavior of a domestic hot water solar storage tank during consumption operation

    Transient thermal performance behavior of a vertical storage tank of a domestic solar water heating system with a mantle heat exchanger has been investigated numerically in the discharge/consumption mode. It is assumed that the tank is initially stratified during its previous heat storing/charging operation. During the discharging period, the city cold water is fed at the bottom of the tank and hot water is extracted from its top outlet port for consumption. Meanwhile, the collector loop is assumed to be active. The conservation equations in the axis-symmetric cylindrical co-ordinate have been used and discretised by employing the finite volume method. The low Reynolds number (LRN) k - ω model is utilized for treating turbulence in the fluid. The influence of the tank Grashof number, the incoming cold fluid Reynolds number and the size of the inlet port of the heat storage tank on the transient thermal characteristics of the tank is investigated and discussed. It is found that for higher values of Grashof number, the pre-established thermal stratification is well preserved during the discharging operation mode. It is also noticed that in order to have a tank with a proper thermal performance and or have least mixing inside the tank during the consumption period, the tank inflow Reynolds number and or its inflow port diameter should be kept below certain values. In these cases, the storage tank is enabling to provide proper amount of hot water with a proper temperature for consumption purposes.

  7. Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications

    Hua, Thanh [Argonne National Lab. (ANL), Argonne, IL (United States); Ahluwalia, Rajesh [Argonne National Lab. (ANL), Argonne, IL (United States); Peng, J. -K [Argonne National Lab. (ANL), Argonne, IL (United States); Kromer, Matt [TIAX LLC, Lexington, MA (United States); Lasher, Stephen [TIAX LLC, Lexington, MA (United States); McKenney, Kurtis [TIAX LLC, Lexington, MA (United States); Law, Karen [TIAX LLC, Lexington, MA (United States); Sinha, Jayanti [TIAX LLC, Lexington, MA (United States)

    2010-09-01

    This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab) and high-volume manufacturing cost (by TIAX LLC) were estimated for compressed hydrogen storage tanks. The results were compared to DOE's 2010, 2015, and ultimate full fleet hydrogen storage targets. The Well-to-Tank (WTT) efficiency as well as the off-board performance and cost of delivering compressed hydrogen were also documented in the report.

  8. Hydrodynamic behavior analysis of vertical-cylindrical liquid-storage tanks by mathematically analytic method

    Hydrodynamic behavior and response of vertical-cylindrical liquid-storage tank is considered. The equation of the liquid motion is shown by Laplace's differential equation with the fluid velocity potential. The solution of the Laplace's differential equation of the liquid motion is expressed with the modified Bessel functions. Only rigid tank is studied. The equivalent masses and heights for the tank contents are presented for engineering design model

  9. SORPTION OF URANIUM, PLUTONIUM AND NEPTUNIUM ONTO SOLIDS PRESENT IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS

    Oji, L; Bill Wilmarth, B; David Hobbs, D

    2008-05-30

    Solids such as granular activated carbon, hematite and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium and uranium from nuclear waste storage tank supernatant liqueur. Thus, the potential may exists for the accumulation of fissile materials in such nuclear waste storage tanks during lengthy nuclear waste storage and processing. To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular activated carbon, hematite and anhydrous sodium phosphate to sorb plutonium, neptunium and uranium from alkaline salt solutions. Tests with simulated and actual nuclear waste solutions established the affinity of the solids for plutonium, neptunium and uranium upon contact of the solutions with each of the solids. The removal of plutonium and neptunium from the synthetic salt solution by nuclear waste storage tank solids may be due largely to the presence of the granular activated carbon and transition metal oxides in these storage tank solids or sludge. Granular activated carbon and hematite also showed measurable affinity for both plutonium and neptunium. Sodium phosphate, used here as a reference sorbent for uranium, as expected, exhibited high affinity for uranium and neptunium, but did not show any measurable affinity for plutonium.

  10. Underground storage tank - Integrated Demonstration Technical Task Plan master schedule

    This document provides an integrated programmatic schedule (i.e., Master Schedule) for the U.S. Department of Energy (DOE) Underground Storage Tank-Integrated Demonstration (UST-ID) Program. It includes top-level schedule and related information for the DOE Office of Technology Development (EM-50) UST-ID activities. The information is based upon the fiscal year (FY) 1994 technical task plans (TTPS) and has been prepared as a baseline information resource for program participants. The Master Schedule contains Level 0 and Level 1 program schedules for the UST-ID Program. This document is one of a number of programmatic documents developed to support and manage the UST-ID activities. It is composed of the following sections: Program Overview - provides a summary background of the UST-ID Program. This summary addresses the mission, scope, and organizational structure of the program; Activity Description - provides a programmatic description of UST-ID technology development activities and lists the key milestones for the UST-ID systems. Master Schedules - contains the Level 0 and Level 1 programmatic schedules for the UST-ID systems. References - lists the UST-ID programmatic documents used as a basis for preparing the Master Schedule. The appendixes contain additional details related to site-specific technology applications

  11. New computation method for stratification pipes of solar storage tanks

    Goeppert, Stefan; Lohse, Rolf; Urbaneck, Thorsten; Schirmer, Ulrich; Platzer, Bernd; Steinert, Philipp [Department of Technical Thermodynamics, Chemnitz University of Technology, Reichenhainer Str. 70, 09126 Chemnitz (Germany)

    2009-09-15

    The efficiency of low-flow solar systems is strongly influenced by the quality of the thermal stratification in the storage tank. The better a thermal stratification can be generated and maintained, the higher can be the yield of the solar system. Fluid mechanical charge systems are often used for this purpose, which cause, however, undesirable sucking effects. Therefore, the knowledge of the appearing fluid flows as well as the knowledge of the consequences of constructive changes are very important for the design of such charge systems. However, simulations with CFD (Computational Fluid Dynamics) are very costly and time-consuming. In this article a new and much simpler computation method is introduced making the determination of the individual fluid flows and the estimation of the effects of constructive changes possible. The computations can be carried out within short time. The comparison with CFD gives a qualitatively good agreement for a simple charge system. The results of a constructive modification of the charge system reducing the sucking effect are discussed. The remaining quantitative differences result from the discrepancies between the non-ideal behaviour of the real fluid and the model assumptions and point out improvement potentials. (author)

  12. An analytical formula for elastic–plastic instability of large oil storage tanks

    Assuming axisymmetric buckling and according to the adjacent equilibrium criterion, a buckling critical stress formula of a perfect tank wall is first obtained through analysis of elastic–plastic buckling carried out by J2 plastic flow theory. Furthermore, combining the current tank seismic design standards and the results obtained in this paper, a new critical buckling stress formula of the tank wall is derived after correction for material plasticity by introducing a plasticity influence coefficient. Comparisons between the results obtained and those from the relevant formulas in the design standards of America, Japan, China and Europe are also performed. Our research shows that under interaction of high hydraulic and axial compression, the material properties of the tank wall change rapidly, and the buckling strength of the tank wall also decreases rapidly. The relation between the tank wall buckling critical stress and the hydraulic pressure is similar to Rotter's semi-empirical formula. The results presented in this paper can provide technical support in further protection of large oil storage tanks. Graphical abstract: These are buckling critical stresses of 5 × 104 m3 oil tank calculated by four standards and formulas obtained in this paper. With the increase of circumferential stress of the tank wall, buckling critical stresses from America, Japan and China standards keep constant, while values calculated by Europe standard and formulas in this paper decrease. This phenomenon is attributed to material plasticity. Highlights: ► We propose a simplified analytic model for large oil storage tank suffered elastic–plastic buckling. ► Elastic-plastic buckling analysis of a large oil storage tank was carried out by incremental theory of plasticity. ► A critical stress calculation formula of tank wall instability considering the correction of material plasticity was derived. ► Buckling strength of the tank wall would decrease rapidly under the

  13. LEAKING UNDERGROUND STORAGE TANKS: REMEDIATION WITH EMPHASIS ON IN SITU BIORESTORATION

    The current literature indicates that in situ biorestoration has great potential for remediation of aquifers contaminated by leaking underground storage tanks. In situ aquifer restoration involves the enhancement of the indigenous microflora to degrade subsurface pollutants. The ...

  14. Numerical Investigation of Effective Heat Conductivity of Fluid in Charging Process of Thermal Storage Tank

    Taheri, H.; Schmidt, F.P.; Gabi, M.

    2015-01-01

    This paper presents a numerical case study of heat transfer mechanisms during the charging process of a stratified thermal storage tank applied in a specific adsorption heat pump cycle. The effective thermal conductivity of the heat transfer fluid during the charging process is analyzed through CFD simulations using Unsteady Reynolds-averaged Navier-Stokes equations (URANS). The aim of the study is to provide an equivalent thermal conductivity for a one-dimensional storage tank model to be us...

  15. Filamentous fungi occurrence in free water and biofilms from drinking water storage tanks

    Silva, P. B. R.; Oliveira, H. M. B.; Santos, Cledir; Gusmão, N. B.; Lima, Nelson

    2015-01-01

    In some regions of Brazil, especially where the water is scarce, drinking water is stored in water storage tanks. This practice gives the consumer the guarantee of available water. The water storage conditions such as the exposure to hot weather when the tanks are on rooftops allow the development of microorganisms and microbial biofilms which can deteriorate the water quality and increase the risk to human health [1,2]. This study describes the filamentous fungi (FF) detected in free water a...

  16. ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS

    Wiersma, B.; Hansen, A.

    2013-11-13

    Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations

  17. Analysis of heat storage with a thermocline tank for concentrated solar plants

    Graells Vilella, Albert

    2013-01-01

    The storage system in a concentrated solar plant is considered an important concern to increase the capacity factor of the plant by producing power during the night or in cloudy days. This paper presents different storage materials, and introduces several storage systems available. Moreover, the paper is focused on the analysis of a thermocline system, which consists on a single tank that typically works with molten salt and quartzite rock as storage media. A simulation model of h...

  18. Refurbishment and retrofitting of SF6 gas storage tanks of the pelletron accelerator

    The BARC-TIFR Pelletron Accelerator Facility has completed more than twenty six years of successful round-the-clock operation, serving diverse users from institutions within and outside DAE. The main accelerating structure and associated subsystems are housed in the accelerator tank under SF6 gas medium. During maintenance of the accelerator, the SF6 gas present in the accelerator tank is transferred in the four storage tanks located on the terrace of the building open to outside environment. These four storage tanks (with ∼ 1/4th of the main tank volume each) are ∼ 4.27 m in diameter and ∼ 10 m in height each and are supported on RCC ring beams which are monolithically connected with the RCC structure below. Over the years, the anchor bolts and the base plates of support structure of storage tanks were found corroded and the foundation RCC ring beam indicated a few corrosion cracks. Health assessment of relevant structures and components were carried out. Considering the limitations of existing anchorage and also giving due considerations for reparability and replaceability, a new anchorage system was designed. The entire refurbishment and retrofitting works pertaining to the four SF6 gas storage tanks was executed in a time bound manner to comply with the then PASC (Particle Accelerator Safety Committee) recommendations successfully, without disrupting the operations of the round-the-clock running Pelletron Accelerator facility. In addition, the thickness measurements for the storage tanks were performed. The relief valves and rupture disc assemblies across the storage tanks were replaced and reinstalled after introducing appropriate manual valves as suggested by the PASC. A new test set up was fabricated to perform pneumatic testing at the recommended pressure off-line for these relief valves and rupture disc assemblies prior to reinstallation. This paper describes the comprehensive rehabilitation and retrofitting procedures that were carried out at the

  19. Analysis of embedded waste storage tanks subjected to seismic loading

    At the Savannah River Site, High Activity Wastes are stored in carbon steel tanks that are within reinforced concrete vaults. These soil-embedded tank/vault structures are approximately 80 ft. in diameter and 40 ft. deep. The tanks were studied to determine the essentials of governing variables, to reduce the problem to the least number of governing cases to optimize analysis effort without introducing excessive conservatism. The problem reduced to a limited number of cases of soil-structure interaction and fluid (tank contents)-structure interaction problems. It was theorized that substantially reduced input would be realized from soil structure interaction (SSI) but that it was also possible that tank-to-tank proximity would result in (re)amplification of the input. To determine the governing seismic input motion, the three dimensional SSI code, SASSI, was used. Significant among the issues relative to waste tanks is the determination of fluid response and tank behavior as a function of tank contents viscosity. Tank seismic analyses and studies have been based on low viscosity fluids (water) and the behavior is quite well understood. Typical wastes (salts, sludge), which are highly viscous, have not been the subject of studies to understand the effect of viscosity on seismic response. The computer code DYNA3D was used to study how viscosity alters tank wall pressure distribution and tank base shear and overturning moments. A parallel hand calculation was performed using standard procedures. Conclusions based on this study provide insight into the quantification of the reduction of seismic inputs for soil structure interaction for a open-quotes softclose quotes soil site

  20. Operation Performance of Central Solar Heating System with Seasonal Storage Water Tank in Harbin

    YE Ling; JIANG Yi-qiang; YAO Yang; ZHANG Shi-cong

    2009-01-01

    This paper presented a preliminary research on the central solar heating system with seasonal stor-age(CSHSSS)used in cold climate in China.A mathematical model of the solar energy seasonal storage water tank used in the central solar heating system was firstly developed based on energy conservation.This was fol-lowed by the simulation of the CSHSSS used in a two-floor villa in Harbin,and analysis of the impacts on storage water temperature of tank volume,solar collector area,tank burial depth,insulation thickness around the tank,etc.The results show there is a relatively economical tank volume to optimize the system efficiency,which de-creases with increasing tank volume at the constant collector area,and increases with increasing collector area at the constant tank volume.Furthermore,the insulation thickness has obvious effect on avoiding heat loss,while the tank burial depth doesn't.In addition-the relationship between the solar collector efficiency and storage wa-ter temperature is also obtained,it decreases quickly with increasing storing water temperature,and then in-creases slowly after starting space heating system.These may be helpful for relevant design and optimization in cold climates in China and all over the world.

  1. Modelling and Experimental Verification of Pressure Wave Following Gaseous Helium Storage Tank Rupture

    Chorowski, M.; Grabowski, M.; Jędrusyna, A.; Wach, J.

    Helium inventory in high energy accelerators, tokamaks and free electron lasers may exceed tens of tons. The gaseous helium is stored in steel tanks under a pressure of about 20 bar and at environment temperature. Accidental rupture of any of the tanks filled with the gaseous helium will create a rapid energy release in form of physical blast. An estimation of pressure wave distribution following the tank rupture and potential consequences to the adjacent research infrastructure and buildings is a very important task, critical in the safety aspect of the whole cryogenic system. According to the present regulations the TNT equivalent approach is to be applied to evaluate the pressure wave following a potential gas storage tank rupture. A special test stand was designed and built in order to verify experimentally the blast effects in controlled conditions. In order to obtain such a shock wave a pressurized plastic tank was used. The tank was ruptured and the resulting pressure wave was recorded using a spatially-distributed array of pressure sensors connected to a high-speed data acquisition device. The results of the experiments and the comparison with theoretical values obtained from thermodynamic model of the blast are presented. A good agreement between the simulated and measured data was obtained. Recommendations regarding the applicability of thermodynamic model of physical blast versus TNT approach, to estimate consequences of gas storage tank rupture are formulated. The laboratory scale experimental results have been scaled to ITER pressurized helium storage tanks.

  2. Underground storage tank 291-D1U1: Closure plan

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

  3. The electrostatic properties of Fiber-Reinforced-Plastics double wall underground storage gasoline tanks

    At present Fiber Reinforced Plastics (FRP) double wall underground storage gasoline tanks are wildly used. An FRP product with a resistance of more than 1011 Ω is a static non-conductor, so it is difficult for the static electricity in the FRP product to decay into the earth. In this paper an experimental system was built to simulate an automobile gasoline filling station. Some electrostatic parameters of the gasoline, including volume charge density, were tested when gasoline was unloaded into a FRP double wall underground storage tank. Measurements were taken to make sure the volume charge density in the oil-outlet was similar to the volume charge density in the tank. In most cases the volume charge density of the gasoline was more than 22.7 μC m−3, which is likely to cause electrostatic discharge in FRP double wall underground storage gasoline tanks. On the other hand, it would be hard to ignite the vapor by electrostatic discharge since the vapor pressure in the tanks is over the explosion limit. But when the tank is repaired or re-used, the operators must pay attention to the static electricity and some measurements should be taken to avoid electrostatic accident. Besides the relaxation time of charge in the FRP double wall gasoline storage tanks should be longer.

  4. Light duty utility remote manipulator for underground storage tank inspection and characterization

    The Light Duty Utility Arm (LDUA) is a remote manipulator which is being designed and fabricated to perform surveillance and characterization activities in support of the remediation of underground storage tanks at the Hanford site as well as other U.S. Department of Energy (DOE) sites. The LDUA is a highly dexterous manipulator which utilizes an advanced control system to safely and reliably deploy a series of sensors to characterize underground storage tanks. The electrical components of the in tank system are radiation hardened and the mechanical components are designed to operate in the corrosive environment which exists in the tanks. The use of this system will allow the DOE to sample and characterize the waste material in the tanks prior to the initiation of waste retrieval operations. (author) 2 figs

  5. South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments

    During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite trademark that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE's waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention

  6. Robotic system for remote inspection of underground storage tanks

    Westinghouse Idaho Nuclear Company (WINCO), operates the Idaho Chemical Processing Plant (ICPP) for the U.S. Department of Energy. The purpose of the ICPP is to process government-owned spent nuclear fuel. WINCO temporarily stores the waste from this process in eleven 11,358,620-ell (300,000-gal), 15.2-m (50-ft)-diam, high-level liquid waste tanks. Each of these stainless steel tanks is contained within an underground concrete vault. The only access to the interior tanks is through risers that extended from the ground level to the dome of the tanks. The performance of these tasks requires a robotic manipulator capable of accessing the interior of the tanks and positioning the various inspection devices. The remote tank inspection (RTI) robotic system will be used to inspect the tank walls using a high-resolution camera inspection system. In addition to the minimum specifications, the RTI system will be computer controlled, incorporate collision avoidance, and provide a graphic display of the robotic arm in the tank to aid the operator

  7. Analysis of waste storage tanks subjected to seismic loading

    At the Savannah River Site, High Activity Wastes are stored in carbon steel tanks that are within reinforced concrete vaults. These soil-embedded tank/vault structures are approximately 24m in diameter and 12m deep. Twenty-seven of these tanks required seismic analysis. The problem was reduced to a limited number of cases of soil-structure interaction and fluid-structure interaction problems. It was theorized that substantially reduced seismic input could be realized from soil structure interaction (SSI) but that it was also possible that tank-to-tank proximity could result in (re)amplification of the input. To determine the governing seismic input motion, the three dimensional SSI code, SASSI, was used. Also of concern was fluid response and tank behavior as a function of tank contents viscosity. Tank seismic analyses and studies have been based on low viscosity fluids (water) and the behavior is quite well understood. Typical wastes (salts, sludge), which are highly viscous, have not been the subject of studies to understand the effect of viscosity on seismic response. Conclusions based on this study provide insight into the quantification of the of seismic inputs for soil structure interaction for a 'soft' soil site and provides some conclusions for dealing with the viscosity variable. (author)

  8. Seismic response analysis of a high integrity liquid storage tank

    The paper reports a linear transient finite element stress analysis of a high integrity water filled tank. The flexibility of the tank wall was modelled, together with the hydrostatic and hydrodynamic effects of the seismic excitation. Design changes were indicated to avoid potential failure due to buckling and plastic collapse. (author)

  9. Design and calculation of a new storage tank for concentrating solar power plant

    Highlights: • A new storage tank for concentrating solar power has been designed. • Mathematical model of unsteady state heat conduction has been established. • The charge time and the temperature of the tank have been investigated. - Abstract: Concentrating solar power plant coupling with thermal energy storage is a popular technology during the solar application process. A multitude of researches focus on improving heat transfer performance of the whole system for getting the higher efficiency and lower cost. In this paper, a new storage tank for concentrating solar power has been designed, and the mathematical model of one-dimensional unsteady state heat conduction in cylindrical coordinates has been established and validated. Also, the charge time and the temperature of the tank have been investigated in the designing conditions based on this model. The results show that the new storage tank has a superior performance for the system in the charge period. The charge time from unsteady state to steady state heat conduction for the tank is about 9923 s. It can be found that there is a relatively good agreement of about 18.9% for the charge time between the mathematical model and the reference. The curve of the temperature versus the charge time for different thermal properties of the materials based on the model of this paper has been investigated. The results can provide a good reference for designing, operating, and energy-saving of thermal energy storage for concentrating solar power plants

  10. Nondestructive examination of DOE high-level waste storage tanks

    A number of DOE sites have buried tanks containing high-level waste. Tanks of particular interest am double-shell inside concrete cylinders. A program has been developed for the inservice inspection of the primary tank containing high-level waste (HLW), for testing of transfer lines and for the inspection of the concrete containment where possible. Emphasis is placed on the ultrasonic examination of selected areas of the primary tank, coupled with a leak-detection system capable of detecting small leaks through the wall of the primary tank. The NDE program is modelled after ASME Section XI in many respects, particularly with respects to the sampling protocol. Selected testing of concrete is planned to determine if there has been any significant degradation. The most probable failure mechanisms are corrosion-related so that the examination program gives major emphasis to possible locations for corrosion attack

  11. Smart solar tanks - Heat storage of the future?

    Furbo, Simon; Shah, Louise Jivan

    1997-01-01

    Preliminary investigations of a smart solar tank concept for small SDHW-systems have been carried out. In the tank the operation of the auxiliary energy supply system is controlled by the hot water demand and by the consumption pattern. Water at the top of the tank is only heated by the auxiliary...... energy supply system to a required temperature in periods with hot water demand. The tank is heated by the auxiliary energy supply system from the top so that the volume of water heated to the required temperature can be controlled in a flexible way. In periods with a large hot water demand the volume...... can be large and in periods with a small hot water demand the volume can be small. For instance, the energy supply system can be controlled on measurements of the energy content of the tank during all hours of the week and based on a required hot water consumption and consumption pattern which can be...

  12. AP 600 - In containment refueling water storage tank (IRWST) hydrodynamic analysis

    The AP600 is a 600 MWe Advanced Light Water Reactor that is being designed with passive safety features including an automatic depressurization system (ADS). During emergency conditions some of the ADS valves discharge into the in-containment refueling water storage tank (IRWST) under water through a sparger, producing hydrodynamic loads on the tank walls and equipment. The purpose of this paper is to present the IRWST hydrodynamic analyses, jointly performed by Ansaldo and Westinghouse, as part of the AP600 program, under Westinghouse's overall leadership, in conjunction with sparger tests conducted on a test tank model. An analytical procedure to predict hydrodynamic loads imposed on the AP600 IRWST tank from ADS discharges has been validated by a comparison with test tank measurements; the appropriate inclusion of fluid structure interaction effects allows significant pressure attenuations from the discharge region and indicates that relatively low structural effects are produced on tank main structures from induced wall pressures

  13. Status report for inactive miscellaneous underground storage tanks at Hanford Site 200 Areas

    The purpose of this status report is to summarize updated data and information from the FY 1994 strategy plan that is associated with inactive miscellaneous underground storage tanks (IMUSTs). Assumptions and processes to assess potential risks and operational concerns are documented in this report. Safety issue priorities are ranked based on a number of considerations. Sixty-three IMUSTs have been Identified and placed on the official IMUST list. All the tanks are associated with past Hanford Site operations. Of the 63 tanks., 19 are catch tanks, 20 are vault tanks, 3 are neutralization tanks, 8 are settling tanks, 2 are solvent makeup tanks used to store hexone, 2 are flush tanks, 3 are decontamination tanks, 1 is a diverter station, 1 is a receiver tank, 1 is an experimental tank, and 3 are waste handling tanks. It is important to proactively deal with the risks Imposed by these 63 tanks, and at the same time not jeopardize the existing commitments and schedules for mitigating and resolving identified safety issues related to the 177 SSTs and DSTS. Access controls and signs have been placed on all but the three official IMUSTs added most recently. An accelerated effort to identify authorization documents and perform unreviewed safety question (USQ) screening has been completed. According to a set of criteria consistent with the safety screening data quality objective (DQO) process, 6 IMUSTs are ranked high related to the hydrogen generation potential safety Issue, 1 is ranked high related to the ferrocyanide potential safety issue, 6 are ranked high related to the flammability potential safety issue, and 25 are ranked high related to the vapor emissions potential safety issue

  14. Thermocline storage for concentrated solar power : Techno-economic performance evaluation of a multi-layered single tank storage for Solar Tower Power Plant

    Ferruzza, Davide

    2015-01-01

    Solar Tower Power Plants with thermal energy storage are a promising technology for dispatchable renewable energy in the near future. Storage integration makes possible to shift the electricity production to more profitable peak hours. Usually two tanks are used to store cold and hot fluids, but this means both higher related investment costs and difficulties during the operation of the variable volume tanks. Another solution can be a single tank thermocline storage in a multi-layered configu...

  15. Preliminary Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    Baker, J. Mark

    2003-01-01

    The thermal stresses on a cryogenic storage tank strongly affect the condition of the tank and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A preliminary thermal stress analysis of a high-pressure cryogenic storage tank was performed. Stresses during normal operation were determined, as well as the transient temperature distribution. An elastic analysis was used to determine the thermal stresses in the inner wall based on the temperature data. The results of this elastic analysis indicate that the inner wall of the storage tank will experience thermal stresses of approximately 145,000 psi (1000 MPa). This stress level is well above the room-temperature yield strength of 304L stainless steel, which is about 25,000 psi (170 MPa). For this preliminary analysis, several important factors have not yet been considered. These factors include increased strength of 304L stainless steel at cryogenic temperatures, plastic material behavior, and increased strength due to strain hardening. In order to more accurately determine the thermal stresses and their affect on the tank material, further investigation is required, particularly in the area of material properties and their relationship to stress.

  16. Underground storage tank 253-D1U1 Closure Plan

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    This report is a closure plan for a diesel fuel tank at the Lawrence Livermore National Laboratory. Included are maps of the site, work plans, and personnel information regarding training and qualification.

  17. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  18. Modeling and analysis of ORNL horizontal storage tank mobilization and mixing

    The retrieval and treatment of radioactive sludges that are stored in tanks constitute a prevalent problem at several US Department of Energy sites. The tanks typically contain a settled sludge layer with non-Newtonian rheological characteristics covered by a layer of supernatant. The first step in retrieval is the mobilization and mixing of the supernatant and sludge in the storage tanks. Submerged jets have been proposed to achieve sludge mobilization in tanks, including the 189 m3 (50,000 gallon) Melton Valley Storage tanks (MVST) at Oak Ridge National Laboratory (ORNL) and the planned 378 m3 (100,000 gallon) tanks being designed as part of the MVST Capacity Increase Project (MVST-CIP). This report focuses on the modeling of mixing and mobilization in horizontal cylindrical tanks like those of the MVST design using submerged, recirculating liquid jets. The computer modeling of the mobilization and mixing processes uses the TEMPEST computational fluid dynamics program (Trend and Eyler 1992). The goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents

  19. Revision of design spectra for liquid sloshing of oil storage tank in Japan

    Zama, S. [National Research Inst. of Fire and Disaster, Chofu City, Tokyo (Japan)

    2007-07-01

    On the 26th of September, 2003, an earthquake occurred in Tokachi-oki, near Hokkaido just north of Japan, causing a tsunami and over one hundred collapsed houses. Oil storage tanks in and around Tomakomai, a coastal city in southern Hokkaido, were seriously damaged by liquid sloshing. In the Idemitsu refinery, two tank fires broke out and seven floating roofs sank, and 30 tanks incurred damage such as overflow and splash of oil, deformation of rolling ladder, weather shield, guide pole, gauge pole and air foam dam. This paper presented the results of an investigation by the Fire and Disaster Management Agency (FDMA) into the damage of oil storage tanks and cause of tank fires, as well as the characteristics of seismic ground motions near the tank sites. In this study, it was proposed that the empirical prediction equations be based on recent studies associated with the relations between earthquake magnitude and fault parameters. A database of more than 10,000 components of digitalized records was therefore developed. The paper discussed the structure of tank and liquid sloshing; the characteristics of seismic ground motions in the 2003 Tokachi-oki earthquake; heavy damage of the oil tank and its cause; the relation between the maximum sloshing wave height and damage in Tomakomai; and, the specified seismic design spectra for countermeasure against liquid sloshing, zoning and revised velocity response spectra. 26 refs., 14 figs.

  20. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ''Safety Measures for Waste Tanks at Hanford Nuclear Reservation,'' of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues

  1. Environmental and geometric optimisation of cylindrical drinking water storage tanks

    Sanjuan Delmás, David; Gabarrell Durany, Xavier; Rieradevall, Joan; Hernando-Canovas, Elena; Pujadas, Pablo; De la Fuente, Albert; Josa Garcia-Tornel, Alejandro

    2015-01-01

    The final publication is available at Springer via http://dx.doi.org/10.1007/s11367-015-0963-y Purpose: Urban water cycle construction processes are an important element to consider when assessing the sustainability of urban areas. The present study focuses on a structural and environmental analysis of cylindrical water tanks. The goal is to optimise cylindrical water tanks from both an environmental (environmental impacts due of life cycle assessment (LCA)) and a geometric perspective (bu...

  2. Variable friction pendulum system for seismic isolation of liquid storage tanks

    Earthquake response of liquid storage steel tanks isolated with variable friction pendulum system (VFPS) is investigated under normal component of six recorded near-fault ground motions. The continuous liquid mass of the tank is modeled as lumped masses known as sloshing mass, impulsive mass and rigid mass. The corresponding stiffness constants associated with these lumped masses are worked out depending upon the properties of the tank wall and liquid mass. The governing equations of motion of the tanks isolated with variable friction pendulum system are derived and solved by Newmark's step-by-step method assuming linear variation of acceleration over small time interval. In order to verify the effectiveness of the VFPS in tanks, the seismic response of tanks isolated with VFPS is compared with that of the same tanks isolated using the conventional friction pendulum system (FPS). Furthermore, a parametric study is also carried out to critically examine the behaviour of tanks isolated with VFPS. The various important parameters considered are the tank aspect ratio, the isolation period and initial time period of the VFPS. In addition, the seismic response of tanks isolated with VFPS under trigonometric cycloidal pulses is also investigated. From these investigations, it is concluded that with the installation of VFPS in tanks, the seismic response of tanks during near-fault ground motions can be controlled within a desirable range. Finally, it is also observed that the response of tanks isolated with VFPS under the near-fault ground motions and trigonometric cycloidal pulses matches well only when the isolation period reaches high values

  3. Polymer/Silicate Nanocomposites Used to Manufacture Gas Storage Tanks With Reduced Permeability

    Campbell, Sandi G.; Johnston, Chris

    2004-01-01

    Over the past decade, there has been considerable research in the area of polymer-layered silicate nanocomposites. This research has shown that the dispersion of small amounts of an organically modified layered silicate improves the polymer strength, modulus, thermal stability, and barrier properties. There have been several reports on the dispersion of layered silicates in an epoxy matrix. Potential enhancements to the barrier properties of epoxy/silicate nanocomposites make this material attractive for low permeability tankage. Polymer matrix composites (PMCs) have several advantages for cryogenic storage tanks. They are lightweight, strong, and stiff; therefore, a smaller fraction of a vehicle's potential payload capacity is used for propellant storage. Unfortunately, the resins typically used to make PMC tanks have higher gas permeability than metals. This can lead to hydrogen loss through the body of the tank instead of just at welds and fittings. One approach to eliminate this problem is to build composite tanks with thin metal liners. However, although these tanks provide good permeability performance, they suffer from a substantial mismatch in the coefficient of thermal expansion, which can lead to failure of the bond between the liner and the body of the tank. Both problems could be addressed with polymersilicate nanocomposites, which exhibit reduced hydrogen permeability, making them potential candidates for linerless PMC tanks. Through collaboration with Northrop Grumman and Michigan State University, nanocomposite test tanks were manufactured for the NASA Glenn Research Center, and the helium permeability was measured. An organically modified silicate was prepared at Michigan State University and dispersed in an epoxy matrix (EPON 826/JeffamineD230). The epoxy/silicate nanocomposites contained either 0 or 5 wt% of the organically modified silicate. The tanks were made by filament winding carbon fibers with the nanocomposite resin. Helium permeability

  4. Initial laboratory studies into the chemical and radiological aging of organic materials in underground storage tanks at the Hanford Complex

    The underground storage tanks at the Hanford Complex contain wastes generated over many years from plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct bearing on several specific safety issues, including potential energy releases from these tanks. The major portion of organic materials that have been added to the tanks consists of tributyl phosphate, dibutyl phosphate, butyl alcohol, hexone (methyl isobutyl ketone), normal paraffin hydrocarbons (NPH), ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetriadetic acid (HEDTA), other complexants, and lesser quantities of ion exchange polymers and minor organic compounds. A study of how thermal and radiological processes that may have changed the composition of organic tanks constituents has been initiated after a review of the open literature revealed little information was available about the rates and products of these processes under basic pH conditions. This paper will detail the initial findings as they relate to gas generation, e.g. H2, CO, NH3, CH4, and to changes in the composition of the organic and inorganic components brought about by ''Aging'' processes

  5. Case study to remove radioactive hazardous sludge from long horizontal storage tanks

    The removal of radioactive hazardous sludge from waste tanks is a significant problem at several US Department of Energy (DOE) sites. The use of submerged jets produced by mixing pumps lowered into the supernatant/sludge interface to produce a homogeneous slurry is being studied at several DOE facilities. The homogeneous slurry can be pumped from the tanks to a treatment facility or alternative storage location. Most of the previous and current studies with this method are for flat-bottom tanks with vertical walls. Because of the difference in geometry, the results of these studies are not directly applicable to long horizontal tanks such as those used at the Oak Ridge National Laboratory. Mobilization and mixing studies were conducted with a surrogate sludge (e.g., kaolin clay) using submerged jets in two sizes of horizontal tanks. The nominal capacities of these tanks were 0.87 m3 (230 gal) and 95 m3 (25,000 gal). Mobilization efficiencies and mixing times were determined for single and bidirectional jets in both tanks with the discharge nozzles positioned at two locations in the tanks. Approximately 80% of the surrogate sludge was mobilized in the 95-m3 tank using a fixed bidirectional jet (inside diameter = 0.035 m) and a jet velocity of 6.4 m/s (21 ft/s)

  6. On the Behavior of Different PCMs in a Hot Water Storage Tank against Thermal Demands

    Jacobo Porteiro

    2016-03-01

    Full Text Available Advantages, such as thermal storage improvement, are found when using PCMs (Phase Change Materials in storage tanks. The inclusion of three different types of materials in a 60 l test tank is studied. Two test methodologies were developed, and four tests were performed following each methodology. A thermal analysis is performed to check the thermal properties of each PCM. The distributions of the water temperatures inside the test tanks are evaluated by installing four Pt-100 sensors at different heights. A temperature recovery is observed after exposing the test tank to an energy demand. An energetic analysis that takes into account the energy due to the water temperature, the energy due to the PCM and the thermal loss to the ambient environment is also presented. The percentage of each PCM that remains in the liquid state after the energy demand is obtained.

  7. Remote installation of risers on underground nuclear waste storage tanks

    The West Valley Demonstration Project was established to solidify 2120 m3 (560,000) gallons of high-level nuclear waste generated during six years of commercial nuclear fuel reprocessing. This liquid will be processed to remove radioactive elements which, with the remaining sludge, will be combined with glass formers and be converted into borosilicate glass. Risers were installed on the high-level tank for installation of pumps which will be used to remove the liquid and sludge. The extensive use of remote technology was required to install the risers and to minimize operator exposure to high levels of radiation and contamination. The riser installation required remotely: drilling through two feet of concrete shielding; installing pump access pipes which are welded to the tank top; and cutting holes in tanks located 3658 mm (12) feet below ground. These operations were successfully completed 13 times without exposing personnel to high-level radiation or contamination. Specially designed remote equipment was developed for each step of this operation. Extensive operator training in the use of this equipment was performed on a tank with low radiation prior to work on the high-level tank. This paper discusses the application of remote technology that assured a quality job was safely accomplished. 3 refs., 18 figs., 2 tabs

  8. ESTIMATING INTERNAL CORROSION RATE AND INTERNAL INSPECTION INTERVAL OF ABOVEGROUND HYDROCARBON STORAGE TANKS

    MARTINEZ, Sanja

    2013-01-01

    Corrosion of aboveground storage tanks (AST) in hydrocarbon service shortens the tank’s life cycle and can lead to leaks and release of hazardous materials into the environment. Internal inspection is one of the main means to keep the tank’s integrity. Determination of internal inspection interval is imminent for balancing the safe operation requirement and inspection costs. In most instances, the area most vulnerable to corrosion in upright atmospheric AST is the tank bottom. In this paper w...

  9. A strategy for resolving high-priority Hanford Site radioactive waste storage tank safety issues

    High-activity radioactive waste has been stored in large underground storage tanks at the US Department of Energy's (DOE) Hanford Site in Eastern Washington State since 1944. Since then, more than 227,000 m3 (60 Mgal) of waste have been accumulated in 177 tanks. These caustic wastes consist of many different chemicals. The waste forms include liquids, slurries, salt cakes, and sludges. A number of safety issues have been raised about these wastes, and resolution of these issues is a top priority of DOE. A Waste Tank Safety Program has been established to resolve these high-priority safety issues. This paper will deal with three of these issues. The issues described are the release of flammable vapors from single- and double-shell tanks, the existence of organic chemicals, and/or ferrocyanide ion-containing fuel-rich mixtures of nitrate and nitrite salts in single-shell tanks

  10. A strategy for resolving high-priority Hanford Site radioactive waste storage tank safety issues

    Babad, H.; DeFigh-Price, C.; Fulton, J.C.

    1993-02-01

    High-activity radioactive waste has been stored in large underground storage tanks at the US Department of Energy`s (DOE) Hanford Site in Eastern Washington State since 1944. Since then, more than 227,000 m{sup 3} (60 Mgal) of waste have been accumulated in 177 tanks. These caustic wastes consist of many different chemicals. The waste forms include liquids, slurries, salt cakes, and sludges. A number of safety issues have been raised about these wastes, and resolution of these issues is a top priority of DOE. A Waste Tank Safety Program has been established to resolve these high-priority safety issues. This paper will deal with three of these issues. The issues described are the release of flammable vapors from single- and double-shell tanks, the existence of organic chemicals, and/or ferrocyanide ion-containing fuel-rich mixtures of nitrate and nitrite salts in single-shell tanks.

  11. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID)

  12. Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks

    Kyle, K.R.; Mayes, E.L.

    1994-07-29

    Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).

  13. Decision and systems analysis for underground storage tank waste retrieval systems and tank waste remediation system

    Hanford's underground tanks (USTs) pose one of the most challenging hazardous and radioactive waste problems for the Department of Energy (DOE). Numerous schemes have been proposed for removing the waste from the USTs, but the technology options for doing this are largely unproven. To help assess the options, an Independent Review Group (IRG) was established to conduct a broad review of retrieval systems and the tank waste remediation system. The IRG consisted of the authors of this report

  14. Assuring safe interim storage of Hanford high-level tank wastes

    The federal government established the Hanford Site in South-Eastern Washington near the City of Richland in 1943 to produce plutonium for national defense purposes. The Hanford Site occupies approximately 1,450 square kilometers (560 square miles) of land North of the City of Richland. The production mission ended in 1988, transforming the Hanford Site mission to waste management, environmental restoration, and waste disposal. Thus the primary site mission has shifted from production to the management and disposal of radioactive, hazardous, and mixed waste that exist at the Hanford Site. This paper describes the focus and challenges facing the Tank Waste Remediation System (TWRS) Program related to the dual and parallel missions of interim safe storage and disposal of the tank associated waste. These wastes are presently stored in 2.08E+05 liters (55,000) to 4.16E+06 liters (1,100,000) gallon low-carbon steel tanks. There are 149 single- and 28 double-shell radioactive underground storage tanks, as well as approximately 40 inactive miscellaneous underground storage tanks. In addition, the TWRS mission includes the storage and disposal of the inventory of 1,929 cesium and strontium capsules created as part of waste management efforts. Tank waste was a by-product of producing plutonium and other defense related materials. From 1944 through 1990, four (4) different major chemical processing facilities at the Hanford Site processed irradiated (spent) fuel from defense reactors to separate and recover plutonium for weapons production. As new and improved processes were developed over the last 50 years, the processing efficiency improved and the waste compositions sent to the tanks for storage changed both chemically and radiologically. The earliest separation processes (e.g., bismuth phosphate coprecipitation) carried out in T Plant (1944-1956) and B Plant (1945-1952) recovered only plutonium

  15. The effect of storage temperature and duration on the microbial quality of bulk tank milk.

    O'Connell, A; Ruegg, P L; Jordan, K; O'Brien, B; Gleeson, D

    2016-05-01

    The dairy industry in Ireland is currently undergoing a period of expansion and, as a result, it is anticipated that milk may be stored in bulk tanks on-farm for periods greater than 48 h. The objective of this study was to investigate the effects of storage temperature and duration on microbial quality of bulk tank milk when fresh milk is added to the bulk tank twice daily. Bulk tank milk stored at 3 temperatures was sampled at 24-h intervals during storage periods of 0 to 96 h. Bulk tank milk samples were analyzed for total bacterial count (TBC), psychrotrophic bacterial count (PBC), laboratory pasteurization count (LPC), psychrotrophic-thermoduric bacterial count (PBC-LPC), proteolytic bacterial count, lipolytic bacterial count, presumptive Bacillus cereus, sulfite-reducing Clostridia (SRC), and SCC. The bulk tank milk temperature was set at each of 3 temperatures (2°C, 4°C, and 6°C) in each of 3 tanks on 2 occasions during two 6-wk periods. Period 1 was undertaken in August and September, when all cows were in mid lactation, and period 2 was undertaken in October and November, when all cows were in late lactation. None of the bulk tank bacterial counts except the proteolytic count were affected by lactation period. The proteolytic bacterial count was greater in period 2 than in period 1. The TBC and PBC of milk stored at 6°C increased as storage duration increased. The TBC did not increase with increasing storage duration when milk was stored at 2°C or 4°C but the PBC of milk stored at 4°C increased significantly between 0 and 96 h. The numbers of proteolytic and lipolytic bacteria, LPC, or PBC-LPC in bulk tank milk were not affected by temperature or duration of storage. Presumptive B. cereus were detected in 10% of all bulk tank milk samples taken over the two 6-wk periods, with similar proportions observed in both. In bulk tank milk samples, a greater incidence of SRC was observed in period 2 (20%) compared with period 1 (3%). Milk produced on

  16. A Multi - Level Storage Tank Gauging And Monitoring System Using A Nanosecond Pulse

    Salah I. Yahya

    2013-11-01

    Full Text Available In this paper, a one-port time-domain/frequency-domain based technique using a short-circuited coaxial geometry inserted vertically in a liquid tank is designed and presented as a multi-level storage tank gauge and monitor. For storage tanks of small physical liquid levels, the attenuation inside the coaxial cable sensor may be neglected and both the physical liquid levels and liquid permittivity can be measured simultaneously, whereas,for large physical liquid levels, as in the crude oil mass storage tanks, the attenuation coefficient of the liquid filled coaxial cable sensor should be considered and predetermined for all level materials in the tanks, and then both liquid levels and permittivity can be measured simultaneously. In this work a multi-level liquid tank contains four different materials; air,combustion engine oil, water, and mud, with physical level thickness of 30-cm, 60-cm, 10-cm and 5-cm, respectively, was examined to measure both physical levels, assuming them unknown, and permittivity of each level content. From the measured data, the error of the calculated levels was less than 0.01, which may be improved to be almost neglected by considering the attenuation in the coaxial sensor and using a signal processing unit to display the levels accurately

  17. Dynamic analysis of liquid storage tank including hydrodynamic interaction by boundary element method

    Dynamic response of liquid storage tanks considering the hydrodynamic interactions due to earthquake ground motion has been extensively studied. Several finite element procedures, such as Balendra et. al. (1982) and Haroun (1983), have been devoted to investigate the dynamic interaction between the deformable wall of the tank and the liquid. Further, if the geometry of the storage tank can not be described by axi-symmetric case, the tank wall and the fluid domain must be discretized by three dimensional finite elements to investigate the fluid-structure-interactions. Thus, the need of large computer memory and expense of vast computer time usually make this analysis impractical. To demonstrate the accuracy and reliability of the solution technique developed herein, the dynamic behavior of ground-supported, deformed, cylindrical tank with incompressible fluid conducted by Haroun (1983) are analyzed. Good correlations of hydrodynamic pressure distribution between the computed results with the referenced solutions are noted. The fluid compressibility significantly affects the hydrodynamic pressures of the liquid-tank-interactions and the work which is done on this discussion is still little attention. Thus, the influences of the compressibility of the liquid on the reponse of the liquid storage due to ground motion are then drawn. By the way, the complex-valued frequency response functions for hydrodynamic forces of Haroun's problem are also displayed. (orig./GL)

  18. Temperature distribution of a hot water storage tank in a simulated solar heating and cooling system

    Namkoong, D.

    1976-01-01

    A 2,300-liter hot water storage tank was studied under conditions simulating a solar heating and cooling system. The initial condition of the tank, ranging from 37 C at the bottom to 94 C at the top, represented a condition midway through the start-up period of the system. During the five-day test period, the water in the tank gradually rose in temperature but in a manner that diminished its temperature stratification. Stratification was found not to be an important factor in the operation of the particular solar system studied.

  19. Static tilt tests of a full-sized cylindrical liquid storage tank model

    This paper is explaining a static tilt test with a full-scaled tank model, the objects of which are the above-ground type LNG,LPG and oil storage tanks. Main points of view to investigate are as follows: Stress and deformation at each part of the tank wall, the bottom plate and the anchor straps in case that the anchor straps are very effective; Behavior in case that the anchor straps are not very effective; Behavior in case of no anchors; Influence of the roof above the shell; and Influence of the foundation rigidity under the bottom plate

  20. Pursing other deep pockets: California's underground storage tank cleanup fund and insurance policies

    When faced with a potentially very expensive environmental cleanup, most companies and individuals try to do the only sensible thing, which is to find out if anyone else will pay the bill. This presentation will outline two avenues that may provide a substantial financial contribution to environmental cleanups: (a) California's Underground Storage Tank Cleanup Fund and (b) insurance policies. The Underground Storage Tank Cleanup Fund was established in 1989 to help eligible owners and operators of petroleum underground storage tanks (USTs) to: (a) get reimbursed for costs of unauthorized releases of petroleum from USTs; (b) get reimbursed for damages awarded to third parties as a result of unauthorized releases of petroleum from USTs; and (c) meet federal and state requirements that the UST owner and/or operator be able to pay for cleanup costs and damages to third parties caused by unauthorized releases of petroleum

  1. Seismic Analysis of a Liquid Storage Tank with a Baffle

    Gedikli, A.; Ergüven, M. E.

    1999-05-01

    The effects of a rigid baffle on the seismic response of liquid in a rigid cylindrical tank are presented. A baffle is an additional structural element which supplies a kind of passive control on the effects of earthquake motion. Fluid motion is assumed to be irrotational, incompressible and inviscid. The method of superposition of modes has been implemented to compute the seismic response. The boundary element method is used to evaluate the natural modes of liquid in a cylindrical tank. Linearized free surface conditions have been taken into consideration.

  2. Erection of a Stainless-Steel Tank for Storing a Phosphoric Acid

    Vojvodič Tuma, J.

    2007-01-01

    Full Text Available A storage tank for 93 % phosphoric acid was built in Luka Koper from 7 mm thick ground hot-rolled plates of 316L stainless steel. The capacity of the storage tank is of the 750 m3, diameter of 11 m and the height of 8,2 m. The shell plates were welded manually using the shielded metal-arc and gas-metal-arc processes. Before the erection, welding procedure tests according to EN 288-3 were carried out. During the construction several non-destructive examination methods were used, such as radiographic testing and visual and liquid penetrant examination. After the entire tank and roof structure were completed, a hydrostatic leak test was carried out. The surfaces of all the welds on the internal surface of the vessel were ground and the roughness was checked on site. The surfaces of the base material and the ground welds were passivated and tested for resistance to corrosion with electrochemical measurements.

  3. Knowledge-based emergency planning for storage tank farms

    Nevrlý, Václav; Bitala, P.; Nevrlá, P.; Střižík, Michal

    2008-01-01

    Roč. 10, č. 1 (2008), s. 10-15. ISSN 1335-4205 Institutional research plan: CEZ:AV0Z20760514 Keywords : emergency * preparedness * modeling tank fire boilover Subject RIV: AQ - Safety, Health Protection, Human - Machine http://www.utc.sk/komunikacie

  4. A study of the anti-corrosive coating for radioactive waste water storage tanks

    This paper describes briefly the testing results and method of a kind of anti-corrosive coating, which consisted of bitumen and other chemicals. The coating was tested in several kinds of simulated waste water under γ-irradiation. Some coupons of the coating were γ-irradiated in the air also. The tested coating has been applied to the Low-level radioactive waste water storage tanks, which are made of carbon steel, for more than 15 years. Those storage tanks are being used well now

  5. Tank designs for combined high pressure gas and solid state hydrogen storage

    Mazzucco, Andrea

    each storage solution investigated in this work. Attention is given to solutions that involve high-pressure solid-state and gas hydrogen storage with an integrated passive cooling system. A set of libraries is implemented in the modeling platform to select among different material compositions, kinetic...... compressed-hydrogen vessel respectively. For the former, these models are used to quantify the main design parameter, being the critical metal hydride thickness, for the tank/heat-exchanger system. For the metal hydride tank, the tubular layout in a shell and tube configuration with 2 mm inner diameter tubes...

  6. Modelling of a solid oxide fuel cell CHP system coupled with a hot water storage tank for a single household

    Liso, Vincenzo; Zhao, Yingru; Yang, Wenyuan;

    2015-01-01

    In this paper a solid oxide fuel cell (SOFC) system for cogeneration of heat and power integrated with a stratified heat storage tank is studied. The use of a storage tank with thermal stratification allows one to increase the annual operating hours of CHP: heat can be produced when the request is...

  7. Optical Data Storage in Acid Red Dyes

    Sankar, Deepa; Palanisamy, P. K.

    High-density optical data storage is a current field gaining importance where research work is done in abundance to bring about holographic CDs to light. Dye-doped gelatin films are promising candidates as recording materials for holographic data storage because of the ease of preparation and low cost. In this report we suggest some acid red dyes as useful recording materials for optical data storage. Acid red dyes namely Acid Red 73 and Acid Red 114 that are completely water-soluble are used to sensitize gelatin thin films for data storage. These dyes have their absorption peak around 514 nm. Two coherent beams of Argon ion laser (514.5 nm) are used to form the grating in the dye-sensitized gelatin films. The grating formed is found to be permanent. The diffraction efficiency of each material as a function of different parameters like dye concentration, writing beam intensities and their ratios and spatial frequency has been studied and presented. An attempt to store data in the sample has been made.

  8. Spacing effects on seismic responses of underground waste storage tanks

    In this paper, an investigation is performed for determination of the effects of spacing on seismic response of grouped underground tank structures. The study is carried out using a 2-D Finite Element Method, and the key mechanisms for transmitting structure-soil-structure interaction (SSSI) effects are identified. A parametric analysis is performed to quantify the SSSI effects. Results of the study are presented

  9. Acoustic imaging of underground storage tank wastes: A feasibility study. Final report

    The objectives for this underground storage tank (UST) imaging investigation are: (1) to assess the feasibility of using acoustic methods in UST wastes, if shown to be feasible, develop and assess imaging strategies; (2) to assess the validity of using chemical simulants for the development of acoustic methods and equipment. This investigation examined the velocity of surrogates, both salt cake and sludge surrogates. In addition collected seismic cross well data in a real tank (114-TX) on the Hanford Reservation. Lastly, drawing on the knowledge of the simulants and the estimates of the velocities of the waste in tank 114-TX the authors generated a hypothetical model of waste in a tank and showed that non-linear travel time tomographic imaging would faithfully image that stratigraphy

  10. Increasing Safety of Aging High-Level Radioactive Waste Storage Tanks

    Degradation of aging high-level radioactive waste (HLW) storage tanks due to cracking is a serious problem. Present fracture mechanics analyses assume small ductility and have limited applicability to these tanks. This research program addresses this limitation by combining slip line fracture mechanics (SLFM, a ductile fracture analysis approach) with fully plastic, 3-D finite element analyses to predict growth of part-through surface cracks to, and past, the point of penetration. An extensive experimental program supports the development. The sudden transition of stable ductile crack growth to unstable cleavage fracture, including event probability, is also examined. Developed capabilities will provide the basis for a reliable predictive model of fracture in HLW storage tanks across the DOE complex, but will also be applicable to spent nuclear fuel canisters, natural gas pipelines, and other safety critical engineered structures. Experimental, numerical and analytical results are presented along with a roadmap of programmatic direction

  11. Detection of simulated pitting corrosion and noises in crude oil storage tank by acoustic emission

    The damage mechanisms associated with crude oil storage tanks can be complex and varied and include pitting corrosion due to presence of species such as sulphate reducing bacteria. Acoustic Emission (AE) could be used to characterise the pitting corrosion signal in crude oil storage tanks but it is extremely difficult to simulate the pitting corrosion in the laboratory using crude oil as electrolyte because crude oil is considered as non corrosive medium. In this study, induced current have been introduced onto a surface ASTM 516 steel as an electrical source to simulate the electrical noise produced during pitting corrosion process and AE sensor have been used to detect this current. It is found that AE system could detect AE signal release during current induction this current and is expected that if the exact simulation of the current magnitude produced during pitting corrosion process is made available, AE characterisation of pitting corrosion in such tank could be made possible. (Author)

  12. Ormosil Beads for Insulation of Ground Cryogenic Storage Tanks Project

    National Aeronautics and Space Administration — Advanced materials are required to insulate cryogenic storage and distribution systems for liquid propellants such as hydrogen and oxygen, used in orbital transfer...

  13. FURY: ROBOTIC IN-SITU INSPECTION/CONDITION ASSESSMENT SYSTEM FOR UNDERGROUND STORAGE TANKS

    The Code of Federal Regulations (40 CFR 280-281) required all underground storage tanks (USTs) containing petroleum products to be brought into compliance to prevent environmental contamination through leakage. Replacing all older USTs can, in some cases, be prohibitively expensi...

  14. RCRA corrective action for underground storage tanks -- Subtitle C for Subtitle I

    The purpose of this report is to provide guidance to DOE and DOE contractor personnel responsible for planning and implementation of corrective measures addressing cleanup of releases of hazardous materials or regulated substances from underground storage tanks regulated under RCRA Subtitle C or Subtitle I

  15. Control of a long reach manipulator with suspension cables for waste storage tank remediation. Final report

    A long reach manipulator will be used for waste remediation in large underground storage tanks. The manipulator's slenderness makes it flexible and difficult to control. A low-cost and effective method to enhance the manipulator's stiffness is proposed in this research by using suspension cables. These cables can also be used to accurately measure the position of the manipulator's wrist

  16. Large eddy simulations of turbulent mixed convection in the charging of a rectangular thermal storage tank

    Highlights: • Turbulent mixed convection during water storage tank charging studied numerically. • Two different LES codes were used to obtain transient simulation results. • Comparison against available RANS results and experimental data. • Characterization of the tank thermal stratification, mixing, entropy production. -- Abstract: The Large Eddy Simulation (LES) approach is used to investigate numerically the mixed convection problem arising during the charging process of a rectangular water tank used for thermal energy storage. Two different charging conditions are considered depending on the temperature of the water entering the tank. The first charging scheme corresponds to a constant inlet temperature and the second one to a variable inlet temperature, simulating heating provided by solar collectors. Two conceptually different LES codes were employed and the results are compared against available unsteady RANS simulations, a semi-analytical one-dimensional model and experimental data. The mixing mechanisms in the store and the efficiency of storage have been quantified using appropriate dimensionless factors. LES simulations provided a significant insight into the charging process and the associated energy losses, especially during the early stages of the process. A detailed analysis of these flow fields reveals the association of mixing mechanisms with specific flow structures, and could potentially lead to improved designs for the components and the processes of thermal storage

  17. Performance improvement by discharge from different levels in solar storage tanks

    Furbo, Simon; Andersen, Elsa; Thür, Alexander;

    2005-01-01

    The thermal advantages by utilizing discharge from different levels in solar storage tanks are investigated, both for a small SDHW system and for a solar combisystem. The investigations showed that it is possible to increase the thermal performance of both types of systems by using two draw-off l...

  18. 78 FR 70076 - Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and...

    2013-11-22

    ... COMMISSION Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric Storage Tanks, and... Guidance (LR-ISG), LR-ISG-2012-02, ``Aging Management of Internal Surfaces, Fire Water Systems, Atmospheric... availability was published in the Federal Register on June 22, 2010 (75 FR 35510). The NRC staff has...

  19. Inspection and repair of storage tank bottoms and foundations using airbag lifting

    This paper reports that within the past five years the environmental impact on the operation of petro-chemical product storage tanks, constructed to standards such as API 650, has taken on critical implications for refineries and distribution centers. Pollution of the supporting foundation and possible widespread effects on ground water has resulted in moves to require the installation of double integrity bottoms. That is not to say, necessarily, a tank with two steel bottoms, but alternative means of reducing the failure probability to an acceptable public or statutory level. Clearly increased inspection of the tank bottom has merit and visual examination of the bottom from inside the tank can be supplemented by ultrasonic methods, acoustic leak detection and magnetic flux scanning. Tank lifting now offers a very cost effective method for underfloor inspection, combined with the opportunity to undertake repairs to the bottom and underside painting, together with improvements and repairs to the Bitsand surface of the tank pad. if necessary, an impervious membrane can also be installed with a leak detection trough formed around the tank edge

  20. Seismic response of unanchored and partially anchored liquid-storage tanks. Final report

    Ground-mounted vertical storage tanks are important components of nuclear plant safety systems. A systematic study is made of the principal effects of base uplifting on the seismic response of laterally excited, unanchored and partially anchored cylindrical liquid-storage tanks. The study consists of two parts: the first deals with the static uplifting resistance of the flexible base plate, and the second deals with the dynamic response of the uplifting system. An insight into the behavior of the uplifting base plate is first gained with the help of a prismatic beam solution. In Section 2, the solution is implemented exactly, whereas in Section 3 it is implemented approximately by use of the Ritz energy procedure. Solutions are next presented for axisymmetrically and asymmetrically uplifted base plate of tanks, in Section 4. For the axisymmetric case the solution is implemented exactly, as well as approximately by modeling the plate by a series of semiinfinite prismatic beams. The accuracy of the latter approach is confirmed by comparing its predictions with those of the former. In Section 5, a highly efficient and rational method is presented for the dynamic response analysis of uplifting tanks. Both unanchored tanks and partially anchored tanks, for which the number of anchor bolts at the base is insufficient to ensure full fixity, are considered. It is shown that base uplifting may reduce significantly the hydrodynamic pressures, but these reductions may be associated with increased axial compressive stresses in the tank wall and large plastic rotations at the plate-shell junction. For partially anchored tanks, energy loss due to bolt yielding is found to be small

  1. Double variable frequency pendulum isolator for seismic isolation of liquid storage tanks

    Research highlights: → The seismic response of liquid storage tanks isolated by the DVFPI is investigated. → Four DVFPI design cases are considered by varying properties of the both surfaces. → Criterion to optimize its performance is proposed based on minimum responses. → Different stiffness of top and bottom surfaces optimizes the DVFPI for a slender tank. → Equal stiffness of top and bottom surfaces optimizes the DVFPI for a broad tank. - Abstract: The paper describes the behaviour of liquid storage slender and broad tanks isolated by the double variable frequency pendulum isolator (DVFPI). The DVFPI is a double sliding isolation system having elliptical sliding surfaces. The geometry and coefficient of friction of top and bottom sliding surfaces can be unequal. The governing equations of motion and energy balance equation of the tank-isolation system subjected to bilateral ground excitation are derived and solved in the incremental form. In order to investigate the behaviour of the DVFPI, the response is obtained under different parametric variations for a set of 20 far-field earthquake ground motions. Four different combinations of the DVFPI design cases having different isolator geometry and coefficient friction at top and bottom sliding surfaces are studied and the criterion to optimize its performance is proposed based on minimum responses and energy quantities. Further, influences of the initial time period, coefficient of friction and frequency variation factors at the two sliding surfaces and the tank aspect ratio are investigated. It is found that the performance of the DVFPI can be optimized by designing the top sliding surface with high initial stiffness relative to the bottom one and the coefficient of friction of both sliding surfaces to be equal for a slender tank whereas both surfaces should be designed with equal initial stiffness and coefficient of friction for a broad tank.

  2. Closure Report for Corrective Action Unit 130: Storage Tanks Nevada Test Site, Nevada, Revision 0

    Alfred Wickline

    2009-03-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 130: Storage Tanks, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 130 are located within Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site. Corrective Action Unit 130 is comprised of the following CASs: • 01-02-01, Underground Storage Tank • 07-02-01, Underground Storage Tanks • 10-02-01, Underground Storage Tank • 20-02-03, Underground Storage Tank • 20-99-05, Tar Residue • 22-02-02, Buried UST Piping • 23-02-07, Underground Storage Tank This CR provides documentation supporting the completed corrective action investigations and provides data confirming that the closure objectives for CASs within CAU 130 were met. To achieve this, the following actions were performed: • Reviewed the current site conditions, including the concentration and extent of contamination. • Implemented any corrective actions necessary to protect human health and the environment. • Properly disposed of corrective action and investigation-derived wastes. From August 4 through September 30, 2008, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 130, Storage Tanks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, confirm that no residual contamination is present, and properly dispose of wastes. Constituents detected during the closure activities were evaluated against final action levels to identify

  3. Energy system investment model incorporating heat pumps with thermal storage in buildings and buffer tanks

    Individual compression heat pumps constitute a potentially valuable resource in supporting wind power integration due to their economic competitiveness and possibilities for flexible operation. When analysing the system benefits of flexible heat pump operation, effects on investments should be taken into account. In this study, we present a model that facilitates analysing individual heat pumps and complementing heat storages in integration with the energy system, while optimising both investments and operation. The model incorporates thermal building dynamics and covers various heat storage options: passive heat storage in the building structure via radiator heating, active heat storage in concrete floors via floor heating, and use of thermal storage tanks for space heating and hot water. It is shown that the model is well qualified for analysing possibilities and system benefits of operating heat pumps flexibly. This includes prioritising heat pump operation for hours with low marginal electricity production costs, and peak load shaving resulting in a reduced need for peak and reserve capacity investments. - Highlights: • Model optimising heat pumps and heat storages in integration with the energy system. • Optimisation of both energy system investments and operation. • Heat storage in building structure and thermal storage tanks included. • Model well qualified for analysing system benefits of flexible heat pump operation. • Covers peak load shaving and operation prioritised for low electricity prices

  4. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants

    Campos Celador, A., E-mail: alvaro.campos@ehu.es [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain); Odriozola, M.; Sala, J.M. [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain)

    2011-08-15

    Highlights: {yields} Three different modelling approaches for simulation of hot water tanks are presented. {yields} The three models are simulated within a residential cogeneration plant. {yields} Small differences in the results are found by an energy and exergy analysis. {yields} Big differences between the results are found by an advanced exergy analysis. {yields} Results on the feasibility study are explained by the advanced exergy analysis. - Abstract: This paper considers the effect that different hot water storage tank modelling approaches have on the global simulation of residential CHP plants as well as their impact on their economic feasibility. While a simplified assessment of the heat storage is usually considered in the feasibility studies of CHP plants in buildings, this paper deals with three different levels of modelling of the hot water tank: actual stratified model, ideal stratified model and fully mixed model. These three approaches are presented and comparatively evaluated under the same case of study, a cogeneration plant with thermal storage meeting the loads of an urbanisation located in the Bilbao metropolitan area (Spain). The case of study is simulated by TRNSYS for each one of the three modelling cases and the so obtained annual results are analysed from both a First and Second-Law-based viewpoint. While the global energy and exergy efficiencies of the plant for the three modelling cases agree quite well, important differences are found between the economic results of the feasibility study. These results can be predicted by means of an advanced exergy analysis of the storage tank considering the endogenous and exogenous exergy destruction terms caused by the hot water storage tank.

  5. WVNS Tank Farm Process Support: Experimental evaluation of an inert gas (nitrogen) to mitigate external corrosion of high-level waste storage tanks

    Corrosion of the carbon steel waste storage tanks at West Valley Nuclear Services continues to be of concern, especially as the planned duration of waste storage time increases and sludge washing operations are conducted. The external surfaces of Tanks 8D-1 and 8D-2 have been exposed for more than 10 years to water that has intruded into the tank vaults. Visual inspection of the external tank surfaces using a remote video camera has shown indications of heavy corrosion in localized areas on the tank walls. Tests on mild steel specimens under simulated tank vault conditions showed that corrosion is related to the availability of oxygen for the corrosion reactions; consequently, removing oxygen as one of the reactants should effectively eliminate corrosion. In terms of the waste tanks, excluding oxygen from the annular vault space, such as by continuous flushing with an inert gas, should substantially decrease corrosion of the external surfaces of the mild steel tanks (100% exclusion of oxygen is probably not practicable). Laboratory corrosion testing was conducted at Pacific Northwest National Laboratory to give a preliminary assessment of the ability of nitrogen-inerting to reduce steel corrosion. This report summarizes test results obtained after 18-month corrosion tests comparing open-quotes nitrogen-inertedclose quotes corrosion with open-quotes air-equilibratedclose quotes corrosion under simulated tank vault conditions

  6. Experimental Analysis of Thermal Stratification in a Heat Storage Tank Using Stratification Pipe

    Boloņina, A.; Rochas, C.; Blumberga, D.

    2009-01-01

    The heat storage tank is an important element in any heating system where the heat source is not able to provide heat accordingly to consumer demand (for example solar collector systems, solid fuel boilers etc). Better heat storage efficiency can be achieved by providing good thermal stratification in the heat storage tanks. One of the best methods of increasing the degree of thermal stratification is the stratification pipes. In the Environmental monitoring laboratory of the Institute of Energy Systems and Environment (Riga Technical University, an experimental heat storage system has been developed and used for testing and studying stratification devices under different thermodynamic and hydraulic conditions. The experimental study carried out on the efficiency of the stratification pipe produced by German company SOLVIS Solar Systeme GmbH under different flow parameters, has been analyzed. The main aim of the experimental study was to define optimal heating system operation parameters to achieve good performance of the stratification pipe and a high degree of thermal stratification in the heat storage tank.

  7. Simulation of heat and mass transfer in activated carbon tank for hydrogen storage

    Xiao, Jinsheng [School of Automotive Engineering, Wuhan University of Technology, Hubei 430070 (China); State Key Laboratory of Advanced Technology for Materials Synthesis and Progressing, Wuhan University of Technology, Hubei 430070 (China); Hydrogen Research Institute, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, QC G9A 5H7 (Canada); Tong, Liang [School of Automotive Engineering, Wuhan University of Technology, Hubei 430070 (China); Department of Mechanical and Automotive Engineering, Huaxia College, Wuhan University of Technology, Hubei 430070 (China); Deng, Caihua [School of Automotive Engineering, Wuhan University of Technology, Hubei 430070 (China); Benard, Pierre; Chahine, Richard [Hydrogen Research Institute, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, QC G9A 5H7 (Canada)

    2010-08-15

    The charging process of hydrogen storage tank based on bed of activated carbon in a steel container at room temperature (295 K) and medium storage pressure (10 MPa) is simulated with an axisymmetric geometry model using the finite volume commercial solver Fluent. The mass flux profile at the entrance is established using user-defined functions (UDFs). The heat and mass transfer processes in the cylindrical steel tank packed with activated carbon are discussed considering the influence of viscous resistance and inertial resistance of the porous media. The velocity distribution and its effect on the temperature distribution are analyzed. The effects of the flow rate at the inlet and of the adsorption factor on the charging process are studied. A computational fluid dynamics (CFD) approach based on finite volume simulations is used. Results show that the temperature near the bottom of the tank is higher than that at the entrance, temperature in the center of the tank is higher than that near the wall and rises somewhat faster along the axial compared to the radial direction. The highest hydrogen absolute adsorption occurs at the entrance of the tank. A good agreement is found between the simulation results and the available experimental data. The maximum magnitude of the axial velocity is much higher than that of the radial component, resulting in more heat energy transfer along the axial direction than radial direction. In addition, the pressure reaches equilibrium earlier when the mass flow is higher, and the temperature reaches a maximum value faster. (author)

  8. FTA of loss of cooling to a HALW storage tank

    A fault tree analysis consisting of assumption of accident scenarios, construction of fault trees, and performing of analyses is given for a loss of cooling accident in a HALW (High Activity Liquid Waste) tank of a typical reprocessing facility. A systematic method is developed to avoid 'missing scenarios', and 'confused scenarios' which are major problems in these analyses. Model plant data, basic failure frequency data and a fault tree analysis code named FTL have been introduced from NUKEM GmbH, Germany. The analyzed occurrence frequencies for the assumed scenarios of the loss of cooling accident are discussed to show a design improvement measure to attain a more reliable system. These results are compared with general requirements to be selected as DBE (design basis event) used in the safety assessment of the facility design. DBE is an event which is considered to have relatively high occurrence probabilities and considerable effects on environment. (author)

  9. CSER 94-004: Criticality safety of double-shell waste storage tanks

    This criticality safety evaluation covers double-shell waste storage tanks (DSTs), double-contained receiver tanks (DCRTs), vault tanks, and the 242-A Evaporator located in the High Level Waste (HLW) Tank Farms on the Hanford Site. Limits and controls are specified and the basis for ensuring criticality safety is discussed. A minimum limit of 1,000 is placed upon the solids/plutonium mass ratio in incoming waste. The average solids/Pu mass ratio over all waste in tank farms is estimated to be about 74,500, about 150 times larger than required to assure subcriticality in homogeneous waste. PFP waste in Tank-102-SY has an estimated solids/Pu mass ratio of 10,000. Subcriticality is assured whenever the plutonium concentration is less than 2.6 g. The median reported plutonium concentration for 200 samples of waste solids is about 0.01 g (0.038 g/gal). A surveillance program is proposed to increase the knowledge of the waste and provide added assurance of the high degree of subcriticality

  10. Use of storage tank holdup measurements to reduce inventory differences in an ion exchange process

    Inventory differences (ID) in an ion exchange process area have plagued the Los Alamos National Laboratory for years. The problem has always been attributed to plutonium precipitation in banks of horizontally oriented storage tanks; however, efforts to maintain the precipitates at low enough or even stable levels failed. Factoring tank holdup measurements into the end-of-month inventory balance would probably solve the ID problem; however, the authors were advised that gamma-based holdup measurements would yield very poor quality holdup estimates because of difficulties in determining transmission corrections and tank ''cross talk.'' When the ID problem became particularly troublesome in the spring of 1985, the authors evaluated two different gamma-based measurement techniques for estimating tank holdup. Not only did holdup estimates made by the two techniques agree, but plutonium recovered during intensive tank cleanout confirmed that the holdup measurements were of sufficient accuracy to be used for material balance adjustments. The measurement method chosen for routine use is somewhat unique since it is calibrated using tank cleanout data and requires no transmission corrections. The holdup measurements are made on a monthly basis and have dramatically reduced end-of-month inventory differences. This paper will present both a description of the measurement methodology and the inventory difference improvements

  11. A new seismic damage analysis method for cylindrical liquid storage tanks in nuclear power plants

    This paper proposes a new seismic damage analysis method to analyze seismic response and dynamic buckling using the finite element method, and demonstrates that the proposed method can adequately evaluate the seismic damage of large-scale cylindrical liquid storage tanks installed in nuclear power plants. In the proposed method, the tank structure is modeled three-dimensionally by shell elements allowing geometric nonlinearity to be considered, while the liquid contained in the tank is modeled by solid elements which comply with Euler's equation. In addition, coupling analysis between fluid and structure, elastic-plastic analysis and large deformation analysis using an explicit method are adopted. Therefore, the proposed method can simulate fluid-structure coupled vibrations between the tank wall and the contained liquid, that is, sloshing and bulging, and dynamic elastic-plastic buckling behavior. The analytical results are in good agreement with the results of the buckling experiment, especially with respect to the coupled vibrations, buckling mode and buckling load. This shows that the proposed method can accurately simulate the seismic response and buckling behavior of the tanks during a powerful earthquake. It is concluded that the proposed seismic damage analysis method can evaluate the seismic performance of the tanks such as seismic safety margin. (author)

  12. Seismic analysis of a LNG storage tank isolated by a multiple friction pendulum system

    Zhang, Ruifu; Weng, Dagen; Ren, Xiaosong

    2011-06-01

    The seismic response of an isolated vertical, cylindrical, extra-large liquefied natural gas (LNG) tank by a multiple friction pendulum system (MFPS) is analyzed. Most of the extra-large LNG tanks have a fundamental frequency which involves a range of resonance of most earthquake ground motions. It is an effective way to decrease the response of an isolation system used for extra-large LNG storage tanks under a strong earthquake. However, it is difficult to implement in practice with common isolation bearings due to issues such as low temperature, soft site and other severe environment factors. The extra-large LNG tank isolated by a MFPS is presented in this study to address these problems. A MFPS is appropriate for large displacements induced by earthquakes with long predominant periods. A simplified finite element model by Malhotra and Dunkerley is used to determine the usefulness of the isolation system. Data reported and statistically sorted include pile shear, wave height, impulsive acceleration, convective acceleration and outer tank acceleration. The results show that the isolation system has excellent adaptability for different liquid levels and is very effective in controlling the seismic response of extra-large LNG tanks.

  13. Optimal design and management of thermal storage tanks for multi-energy district boilers

    Labidi, Mouchira; Eynard, Julien; Faugeroux, Olivier; Grieu, Stéphane

    2014-01-01

    As part of the second phase of the OptiEnR research project, the present work deals with improving multi-energy district boilers operation, by adding optimally sized and controlled thermal storage tanks to the plants. Previous studies focused on both a sizing approach based on a parametric analysis and an operation strategy. The aim of the present work is to improve the design of the tanks, in particular by evaluating the thermal losses and finding the adequate insulating materials. We focuse...

  14. Vehicular hydrogen storage using lightweight tanks (regenerative fuel cell systems)

    Mitlitsky, F; Myers, B; Weisberg, A H

    1999-06-01

    Energy storage systems with extremely high specific energy (>400 Wh/kg) have been designed that use lightweight tankage to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Lawrence Livermore National Laboratory (LLNL) will leverage work for aerospace applications supported by other sponsors (including BMDO, NASA, and USAF) to develop URFC systems for transportation and utility applications. Lightweight tankage is important for primary fuel cell powered vehicles that use on-board storage of hydrogen. Lightweight pressure vessels with state-of-the-art performance factors were designed, and prototypes are being fabricated to meet the DOE 2000 goals (4000 Wh/kg, 12% hydrogen by weight, 700 Wh/liter, and $20/kWh in high volume production). These pressure vessels use technologies that are easily adopted by industrial partners. Advanced liners provide permeation barriers for gas storage and are mandrels for composite overwrap. URFCs are important to the efficient use of hydrogen as a transportation fuel and enabler of renewable energy. H{sub 2}/halogen URFCs may be advantageous for stationary applications whereas H{sub 2}/O{sub 2} or H{sub 2}/air URFCs are advantageous for vehicular applications. URFC research and development is required to improve performance (efficiency), reduce catalyst loading, understand engineering operation, and integrate systems. LLNL has the experimental equipment and advanced URFC membrane electrode assemblies (some with reduced catalyst loading) for evaluating commercial hardware (not funded by DOE in FY1999).

  15. Influence of anchor behaviour on the earthquake response of liquid storage tanks

    The dynamic response of thin liquid storage tanks to earthquakes is a very complicated phenomenon, because it can be highly non linear. Among others, one can meet material and geometric non linearities of the tank shell leading eventually to static or dynamic buckling non linear behavior of anchor bolts, contact non-linearities due to the uplift of the tank base and to the unilateral character of the fluid pressure on the shell and high amplitude fluid oscillations. Moreover, linear or non linear soil structure interaction affects considerably the response of the fluid structure system under consideration. In this paper we focus attention on problems related only to the base uplift and anchors plastification. We study a tank similar to the Hualien project tank, but we neglect the soil structure interaction. The studied tank is representative of medium height to radius ratio ratio tanks with relatively thick bottom plate. The contact is simulated via a simple discrete penalty method in order to facilitate the calculation of the impact forces. Modal coordinates calculated for various Fourier harmonics are used for the dynamic analysis and the coupled modal equations of motion are solved with an explicit time integration algorithm. Obviously, this approach is less precise than a direct finite element analysis on the nodal basis but is less expensive. The scope of this paper is to discuss the efficiency of the proposed method to deal with problems like those aforementioned and to give some qualitative results concerning the influence of anchor bolts behaviour on the earthquake response of tanks. (author). 2 refs., 7 figs., 1 tab

  16. Guidelines for development of structural integrity programs for DOE high-level waste storage tanks

    Guidelines are provided for developing programs to promote the structural integrity of high-level waste storage tanks and transfer lines at the facilities of the Department of Energy. Elements of the program plan include a leak-detection system, definition of appropriate loads, collection of data for possible material and geometric changes, assessment of the tank structure, and non-destructive examination. Possible aging degradation mechanisms are explored for both steel and concrete components of the tanks, and evaluated to screen out nonsignificant aging mechanisms and to indicate methods of controlling the significant aging mechanisms. Specific guidelines for assessing structural adequacy will be provided in companion documents. Site-specific structural integrity programs can be developed drawing on the relevant portions of the material in this document

  17. Assessment of concentration mechanisms for organic wastes in underground storage tanks at Hanford

    Gerber, M.A.; Burger, L.L.; Nelson, D.A.; Ryan, J.L. (Pacific Northwest Lab., Richland, WA (United States)); Zollars, R.L. (Washington State Univ., Pullman, WA (United States))

    1992-09-01

    Pacific Northwest Laboratory (PNL) has conducted an initial conservative evaluation of physical and chemical processes that could lead to significant localized concentrations of organic waste constituents in the Hanford underground storage tanks (USTs). This evaluation was part of ongoing studies at Hanford to assess potential safety risks associated with USTs containing organics. Organics in the tanks could pose a potential problem if localized concentrations are high enough to propagate combustion and are in sufficient quantity to produce a large heat and/or gas release if in contact with a suitable oxidant. The major sources of oxidants are oxygen in the overhead gas space of the tanks and sodium nitrate and nitrite either as salt cake solids or dissolved in the supernatant and interstitial liquids.

  18. Assessment of concentration mechanisms for organic wastes in underground storage tanks at Hanford

    Pacific Northwest Laboratory (PNL) has conducted an initial conservative evaluation of physical and chemical processes that could lead to significant localized concentrations of organic waste constituents in the Hanford underground storage tanks (USTs). This evaluation was part of ongoing studies at Hanford to assess potential safety risks associated with USTs containing organics. Organics in the tanks could pose a potential problem if localized concentrations are high enough to propagate combustion and are in sufficient quantity to produce a large heat and/or gas release if in contact with a suitable oxidant. The major sources of oxidants are oxygen in the overhead gas space of the tanks and sodium nitrate and nitrite either as salt cake solids or dissolved in the supernatant and interstitial liquids

  19. Transient Thermal Behavior of a Vertical Solar Storage Tank with a Mantle Heat Exchanger During No-Flow Operation

    A. Barzegar; A. A. Dehghan

    2009-01-01

    Transient thermal behavior of a vertical storage tank of a domestic solar heating system with a mantle heat exchanger has been investigated numerically in the charging mode. It is assumed that the tank is initially filled with uniform cold water. At an instant of time, the hot fluid from collector outlet is uniformly injected in the upper section of the mantle heat exchanger and after heat transfer with the fluid inside the tank, withdrawn from the bottom part of the heat excha...

  20. Sampling and analysis plan for site assessment during the closure or replacement of nonradioactive underground storage tanks

    Gitt, M.J.

    1990-08-01

    The Tank Management Program is responsible for closure or replacement of nonradioactive underground storage tanks throughout the Idaho National Engineering Laboratory (INEL). A Sampling and Analysis Plan (SAP) has been developed that complies with EPA regulations and with INEL Tank Removal Procedures for sampling activities associated with site assessment during these closure or replacement activities. The SAP will ensure that all data are valid, and it also will function as a Quality Assurance Project Plan. 18 refs., 8 figs., 11 tabs.

  1. Radiological assessment of worker doses during sludge mobilization and removal at the Melton Valley storage tanks

    This report presents an assessment of potential radiation doses to workers during mobilization and removal of contaminated sludges from the Melton Valley Storage Tanks at Oak Ridge National Laboratory. The assessment is based on (1) measurements of radionuclide concentrations in sludge and supernatant liquid samples from the waste storage tanks, (2) measurements of gamma radiation levels in various areas that will be accessed by workers during normal activities, (3) calculations of gamma radiation levels for particular exposure situations, especially when the available measurements are not applicable, and (4) assumed scenarios for worker activities in radiation areas. Only doses from external exposure are estimated in this assessment. Doses from internal exposure are assumed to be controlled by containment of radioactive materials or respiratory protection of workers and are not estimated

  2. Chaotic behavior of LNG after stratification in main stream region of storage tank

    Jingjing WANG; Xiaoqian MA

    2008-01-01

    A study of the chaotic behavior of liquefied natural gas (LNG) after stratification in the main stream region of a storage tank was conducted. Based on non-linear dynamics, a 2-dimensional Rayleigh-Benard con-vection model was developed to simulate the convection, Lorenz equations of LNG convection were deduced from conservation equations, and the Runge-Kutta method was used to solve the equations. The results showed that when Pr = 1.33, 106 < r < 1470, chaos was obtained, which meant that the velocity field and the temperature field were highly unsteady. In addition, the influence of temperature and scale factor on the solutions and the corresponding range of parameters were studied. The results revealed that the chaos in LNG convection resulted from the interaction of buoyancy and viscid forces. A small quantity of heat impacting the storage tank would lead to a strong and unstable convection of LNG in the main stream region.

  3. Experimental module for removal of radioactive slurry from Lrw storage tanks

    This report gives information on elaboration and creation of an experimental module for removal radioactive slurry from LRW storage tanks. The main functional features of this experimental module are to suspend radioactive slurry packed in the bottom of a storage tank subjected to cleaning up, to suck the suspended radioactive slurry, to concentrate and separate radioactive slurry in a settling apparatus. The resulting flows from the module are concentrated and preconditioned radioactive slurry and LRW freed from solids. The concentrated and preconditioned radioactive slurry can be further directed for solidification by appropriate methods and LRW freed from solids can be cleaned by commonly used purification methods. The experimental module is supplied with a video-controlling system, which allows supervising the process of slurry removal. The experimental module is currently under testing with non-radioactive slurry therefore, there are no results of its application for real radioactive waste. (authors)

  4. Dynamic modeling of а heating system using geothermal energy and storage tank

    Milanović Predrag D.

    2012-01-01

    Full Text Available This paper analyzes a greenhouse heating system using geothermal energy and storage tank and the possibility of utilization of insufficient amount of heat from geothermal sources during the periods with low outside air temperatures. Crucial for these analyses is modelling of the necessary yearly energy requirements for greenhouse heating. The results of these analyses enable calculation of an appropriate storage tank capacity so that the energy efficiency of greenhouse heating system with geothermal energy could be significantly improved. [Acknowledgement. This work was supported by Ministry of Science and Technology Development of the Republic of Serbia through the National Energy Efficiency Program (Grant 18234 A. The authors are thankful to the stuff and management of the Company “Farmakom MB PIK 7. juli - Debrc” for their assistance during the realization of this project.

  5. C-tank transfers: Transuranic sludge removal from the C-1, C-2, and W-23 waste storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Two fluidic pulse jet mixing systems were used to successfully mobilize remote-handled transuranic sludge for retrieval from three 50,000-gal horizontal waste storage tanks at Oak Ridge National Laboratory (ORNL). The results of this operation indicate that the pulse jet system should be considered for mixing and bulk retrieval of sludges in other vertical and horizontal waste tanks at ORNL and at other U.S. Department of Energy sites

  6. C-tank transfers: Transuranic sludge removal from the C-1, C-2, and W-23 waste storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Dahl, T.L.; Lay, A.C.; Taylor, S.A.; Moore, J.W.

    1999-05-01

    Two fluidic pulse jet mixing systems were used to successfully mobilize remote-handled transuranic sludge for retrieval from three 50,000-gal horizontal waste storage tanks at Oak Ridge National Laboratory (ORNL). The results of this operation indicate that the pulse jet system should be considered for mixing and bulk retrieval of sludges in other vertical and horizontal waste tanks at ORNL and at other U.S. Department of Energy sites.

  7. Control of stress corrosion cracking in storage tanks containing radioactive waste

    Stress corrosion of carbon steel storage tanks containing alkaline nitrate radioactive waste, at the Savannah River Plant is controlled by specification of limits on waste composition and temperature. Cases of cracking have been observed in the primary steel shell of tanks designed and built before 1960 that were attributed to a combination of high residual stresses from fabrication welding and aggressiveness of fresh wastes from the reactor fuel reprocessing plants. The fresh wastes have the highest concentration of nitrate, which has been shown to be the cracking agent. Also as the waste solutions age and are reduced in volume by evaporation of water, nitrite and hydroxide ions become more concentrated and inhibit stress corrosion. Thus, by providing a heel of aged evaporated waste in tanks that receive fresh waste, concentrations of the inhibitor ions are maintained within specified ranges to protect against nitrate cracking. Tanks designed and built since 1960 have been made of steels with greater resistance to stress corrosion; these tanks have also been heat treated after fabrication to relieve residual stresses from construction operations. Temperature limits are also specified to protect against stress corrosion at elevated temperatures

  8. Aging mechanisms for steel components of high-level waste storage tanks

    High level storage tanks in service at the present time were fabricated from either carbon steel or low-carbon stainless steel, in each case surrounded by a concrete vault. A variety of potential degradation mechanisms may affect these steel tanks, including corrosion, stress-corrosion cracking, fatigue, radiation, erosion, and hydrogen embrittlement. Historically, some of the non-stress-relieved carbon steel tanks have leaked; in the only failure analysis performed to date, stress corrosion cracking in the heat-affected zone (HAZ) of the weld was identified as the cause. Potentially significant aging mechanisms include general corrosion, pitting and/or crevice corrosion stress-corrosion cracking, microbiologically-induced corrosion, concentration cell attack, and corrosion of external tank surfaces by in-leakage of ground water. Aging mechanisms which are deemed non-significant include thermal and radiation embrittlement, creep and stress relaxation, fatigue, erosion and erosion/corrosion wear, and hydrogen embrittlement. Justification for the potential significance or non-significance for each mechanism is provided, based on the current understanding of these processes and the environments to which the tanks are exposed

  9. Some suggestions for sloshing response analysis in liquid storage tanks subjected to earthquake ground motions

    The sloshing behavior of a tank is very sensitive to the characteristics of input motions, as well as the configuration of the tank-liquid system. Nevertheless, most of the past studies focused only on the configuration of tanks and the dynamic properties of the fluid motion. Therefore, the sloshing response in liquid storage tanks for earthquake excitation has not been properly predicted in many cases until now. As one useful parameter to characterize the significant frequency content of input earthquake motions, the peak ground acceleration to velocity (A/V) ratio is utilized. The ground motions, exhibiting a large amplitude, and very high frequency content in the strong-motion phase, generally result in high A/V ratios and very large spectral acceleration values in short periods, whereas the ground motions, containing intense, long-duration acceleration pulses, would generally lead to low A/V ratios and pronounced spectral acceleration values for a moderate or long period. Normal ground motions with significant energy content over a broad range of frequencies and exhibiting a highly irregular acceleration pattern would generally have medium A/V ratios and acceleration spectra similar to the standard design spectrum. In this study, the sloshing response in rigid rectangular tanks subjected to various earthquake ground motions with different peak A/V ratios is investigated

  10. High water level installation of monitoring wells for underground storage tanks

    This paper briefly describes a common monitoring well installation design for shallow ground water contamination resulting from leaky underground storage tanks. The paper describes drilling techniques used in unconsolidated Florida aquifers using hollow-stem augers. It describes methods for the prevention of heaving sands and sand-locking problems. It then goes on to describe the proper well casing placement and sealing techniques using neat cements. The proper sell screen level is also discussed to maximize the detection of floating hydrocarbons