WorldWideScience

Sample records for acid sequence-based amplification

  1. Real-Time Nucleic Acid Sequence-Based Amplification Using Molecular Beacons for Detection of Enterovirus RNA in Clinical Specimens

    Landry, Marie L.; Garner, Robin; Ferguson, David

    2005-01-01

    Real-time nucleic acid sequence-based amplification (NASBA) using molecular beacon technology (NASBA-beacon) was compared to standard NASBA with postamplification hybridization using electrochemiluminescently labeled probes (NASBA-ECL) for detection of enteroviruses (EV) in 133 cerebrospinal fluid and 27 stool samples. NASBA-ECL and NASBA-beacon were similar in sensitivity, detecting 55 (100%) and 52 (94.5%) EV-positive samples, respectively. There were no false positives. Both NASBA assays w...

  2. Construction Strategy for an Internal Amplification Control for Real-Time Diagnostic Assays Using Nucleic Acid Sequence-Based Amplification: Development and Clinical Application

    Rodríguez-Lázaro, David; D'Agostino, Martin; Pla, Maria; Cook, Nigel

    2005-01-01

    An important analytical control in molecular amplification-based methods is an internal amplification control (IAC), which should be included in each reaction mixture. An IAC is a nontarget nucleic acid sequence which is coamplified simultaneously with the target sequence. With negative results for the target nucleic acid, the absence of an IAC signal indicates that amplification has failed. A general strategy for the construction of an IAC for inclusion in molecular beacon-based real-time nu...

  3. Sensitivity and Specificity of Nucleic Acid Sequence-Based Amplification Method (NASBA for Diagnosis of Cutaneous Leishmaniasis

    Niazi, A

    2014-05-01

    Full Text Available Background and Objective: Employing advanced diagnostics for molecular identification of the Lishmania parasite is has a more sensitivity and specificity in comparison to the microscopic methods. RT- PCR is also introduced as one of the best known techniques for diagnosis of this parasite; however, the method is not widely used due to its expensive equipments and the time requested.the application of NASBA method is shown high efficient for diagnosis of live parasite. The aim of this study is comparison sensivity and specificity between NASBA isothermal amplification and RT-PCR for molecular detection of lishmania major. Material and Methods: 28 skin biopsy from Oscar of patients was prepared and total RNA was extracted. Then, the using of specific primers designed for 18srRNA region, this region was amplified using NASBA isothemal amplification. The RNA amplicons were produced in less than 90 minutes and then identified via electrophoresed agaros gel after staining with Syber Gold flourecent probes for the purpose increasing sensitivity and specificity Result: In this study, NASBA and RT-PCR method are sensitivity 81%, specificity of 51% and 100% respectively for detection of Leishmania parasites inscars Conclusion: NASBA isothermal method can be applied with high sensitivity and specificity for the identification of cutaneous leishmaniasis, this method can be fed with live microorganisms and response to treatment in patients examined. Keywords: Cutaneous Leishmanisis, NASBA, 18S rRNA

  4. Detection of Aspergillus fumigatus in a rat model of invasive pulmonary aspergillosis by real-time nucleic acid sequence-based amplification.

    Zhao, Yanan; Park, Steven; Warn, Peter; Shrief, Raghdaa; Harrison, Elizabeth; Perlin, David S

    2010-04-01

    Rapid and sensitive detection of Aspergillus from clinical samples may facilitate the early diagnosis of invasive pulmonary aspergillosis (IPA). A real-time nucleic acid sequence-based amplification (NASBA) method was investigated by use of an inhalational rat model of IPA. Immunosuppressed male Sprague-Dawley rats were exposed to Aspergillus fumigatus spores for an hour in an aerosol chamber. Bronchoalveolar lavage (BAL) fluid, lung tissues, and whole blood were collected from five infected rats at 1, 24, 48, 72, and 96 h postinfection and five uninfected rats at the end of the experiment. Total nucleic acid (TNA) was extracted on an easyMAG instrument. A primer-molecular beacon set targeting 28S rRNA was designed to detect Aspergillus spp. The results were compared to those of quantitative PCR (qPCR) (18S rDNA) and quantitative culture. The analytical sensitivity of the real-time NASBA assay was tissue burdens, while the CFU counts were stable over time. The fungal burdens in BAL fluid were more variable and not indicative of a progressive infection. The results of both real-time assays correlated well for both sample types (r = 0.869 and P tissue, r = 0.887 and P < 0.0001 for BAL fluid). For all whole-blood specimens, NASBA identified Aspergillus-positive samples in the group from which samples were collected at 72 h postinfection (three of five samples) and the group from which samples were collected at 96 h postinfection (five of five samples), but no positive results were obtained by culture or PCR. Real-time NASBA is highly sensitive and useful for the detection of Aspergillus in an experimental model of IPA. PMID:20129972

  5. Real-Time Detection of Noroviruses in Surface Water by Use of a Broadly Reactive Nucleic Acid Sequence-Based Amplification Assay

    Rutjes, Saskia A.; van den Berg, Harold H. J. L.; Lodder, Willemijn J.; Roda Husman, Ana Maria de

    2006-01-01

    Noroviruses are the most common agents causing outbreaks of viral gastroenteritis. Outbreaks originating from contaminated drinking water and from recreational waters have been described. Due to a lack of cell culture systems, noroviruses are detected mostly by molecular methods. Molecular detection assays for viruses in water are often repressed by inhibitory factors present in the environment, like humic acids and heavy metals. To study the effect of environmental inhibitors on the performa...

  6. Real-time detection of noroviruses in surface water by use of a broadly reactive nucleic acid sequence-based amplification assay.

    Rutjes, Saskia A.; Berg, Harold H J L van den; Lodder, Willemijn J.; Roda Husman, Ana Maria de

    2006-01-01

    Noroviruses are the most common agents causing outbreaks of viral gastroenteritis. Outbreaks originating from contaminated drinking water and from recreational waters have been described. Due to a lack of cell culture systems, noroviruses are detected mostly by molecular methods. Molecular detection assays for viruses in water are often repressed by inhibitory factors present in the environment, like humic acids and heavy metals. To study the effect of environmental inhibitors on the performa...

  7. A method for amplification of unknown flanking sequences based on touchdown PCR and suppression-PCR.

    Gao, Song; He, Dan; Li, Guangquan; Zhang, Yanhua; Lv, Huiying; Wang, Li

    2016-09-15

    Thermal asymmetric staggered PCR is the most widely used technique to obtain the flanking sequences. However, it has some limitations, including a low rate of positivity, and complex operation. In this study, a improved method of it was made based on suppression-PCR and touchdown PCR. The PCR fragment obtained by the amplification was used directly for sequencing after gel purification. Using this improved method, the positive rate of amplified flanking sequences of the ATMT mutants reached 99%. In addition, the time from DNA extraction to flanking sequence analysis was shortened to 2 days with about 6 dollars each sample. PMID:27393656

  8. A universal DNA extraction and PCR amplification method for fungal rDNA sequence-based identification.

    Romanelli, A M; Fu, J; Herrera, M L; Wickes, B L

    2014-10-01

    Accurate identification of fungal pathogens using a sequence-based approach requires an extraction method that yields template DNA pure enough for polymerase chain reaction (PCR) or other types of amplification. Therefore, the objective of this study was to develop and standardise a rapid, inexpensive DNA extraction protocol applicable to the major fungal phyla, which would yield sufficient template DNA pure enough for PCR and sequencing. A total of 519 clinical and culture collection strains, comprised of both yeast and filamentous fungi, were prepared using our extraction method to determine its applicability for PCR, which targeted the ITS and D1/D2 regions in a single PCR amplicon. All templates were successfully amplified and found to yield the correct strain identification when sequenced. This protocol could be completed in approximately 30 min and utilised a combination of physical and chemical extraction methods but did not require organic solvents nor ethanol precipitation. The method reduces the number of tube manipulations and yielded suitable template DNA for PCR amplification from all phyla that were tested. PMID:24865530

  9. Detection of Aspergillus fumigatus in a Rat Model of Invasive Pulmonary Aspergillosis by Real-Time Nucleic Acid Sequence-Based Amplification▿

    Zhao, Yanan; Park, Steven; Warn, Peter; Shrief, Raghdaa; Harrison, Elizabeth; Perlin, David S.

    2010-01-01

    Rapid and sensitive detection of Aspergillus from clinical samples may facilitate the early diagnosis of invasive pulmonary aspergillosis (IPA). A real-time nucleic acid sequence-based amplification (NASBA) method was investigated by use of an inhalational rat model of IPA. Immunosuppressed male Sprague-Dawley rats were exposed to Aspergillus fumigatus spores for an hour in an aerosol chamber. Bronchoalveolar lavage (BAL) fluid, lung tissues, and whole blood were collected from five infected ...

  10. Detection of North American eastern and western equine encephalitis viruses by nucleic acid amplification assays.

    Lambert, Amy J; Martin, Denise A; Lanciotti, Robert S

    2003-01-01

    We have developed nucleic acid sequence-based amplification (NASBA), standard reverse transcription PCR (RT-PCR), and TaqMan nucleic acid amplification assays for the rapid detection of North American eastern equine encephalitis (EEE) and western equine encephalitis (WEE) viral RNAs from samples collected in the field and clinical samples. The sensitivities of these assays have been compared to that of virus isolation. While all three types of nucleic acid amplification assays provide rapid detection of viral RNAs comparable to the isolation of viruses in Vero cells, the TaqMan assays for North American EEE and WEE viral RNAs are the most sensitive. We have shown these assays to be specific for North American EEE and WEE viral RNAs by testing geographically and temporally distinct strains of EEE and WEE viruses along with a battery of related and unrelated arthropodborne viruses. In addition, all three types of nucleic acid amplification assays have been used to detect North American EEE and WEE viral RNAs from mosquito and vertebrate tissue samples. The sensitivity, specificity, and rapidity of nucleic acid amplification demonstrate the usefulness of NASBA, standard RT-PCR, and TaqMan assays, in both research and diagnostic settings, to detect North American EEE and WEE viral RNAs. PMID:12517876

  11. Repetitive sequence based polymerase chain reaction to differentiate close bacteria strains in acidic sites

    XIE Ming; YIN Hua-qun; LIU Yi; LIU Jie; LIU Xue-duan

    2008-01-01

    To study the diversity of bacteria strains newly isolated from several acid mine drainage(AMD) sites in China,repetitive sequence based polymerase chain reaction (rep-PCR),a well established technology for diversity analysis of closely related bacteria strains,was conducted on 30 strains of bacteria Leptospirillum ferriphilium,8 strains of bacteria Acidithiobacillus ferrooxidans,as well as the Acidithiobacillus ferrooxidans type strain ATCC (American Type Culture Collection) 23270.The results showed that,using ERIC and BOX primer sets,rep-PCR produced highly discriminatory banding patterns.Phylogenetic analysis based on ERIC-PCR banding types was made and the results indicated that rep-PCR could be used as a rapid and highly discriminatory screening technique in studying bacterial diversity,especially in differentiating bacteria within one species in AMD.

  12. Electrical and Electrochemical Monitoring of Nucleic Acid Amplification

    Goda, Tatsuro; Tabata, Miyuki; Miyahara, Yuji

    2015-01-01

    Nucleic acid amplification is a gold standard technique for analyzing a tiny amount of nucleotides in molecular biology, clinical diagnostics, food safety, and environmental testing. Electrical and electrochemical monitoring of the amplification process draws attention over conventional optical methods because of the amenability toward point-of-care applications as there is a growing demand for nucleic acid sensing in situations outside the laboratory. A number of electrical and electrochemic...

  13. Participation of deoxyribonucleic acid polymerase alpha in amplification of ribosomal deoxyribonucleic acid in Xenopus laevis.

    Zimmermann, W.; Weissbach, A

    1981-01-01

    Aphidicolin, a known inhibitor of eucaryotic deoxyribonucleic acid (DNA) polymerase alpha, efficiently inhibited amplification of ribosomal DNA during oogenesis in Xenopus laevis. DNA polymerase alpha, but not DNA polymerase gamma, as isolated from ovaries, was sensitive to aphidicolin. DNA polymerase beta was not detectable in Xenopus ovary extracts. Therefore, DNA polymerase alpha plays a major role in ribosomal ribonucleic acid gene amplification.

  14. Integrated Microfluidic Nucleic Acid Isolation, Isothermal Amplification, and Amplicon Quantification

    Mauk, Michael G.; Changchun Liu; Jinzhao Song; Bau, Haim H

    2015-01-01

    Microfluidic components and systems for rapid (<60 min), low-cost, convenient, field-deployable sequence-specific nucleic acid-based amplification tests (NAATs) are described. A microfluidic point-of-care (POC) diagnostics test to quantify HIV viral load from blood samples serves as a representative and instructive example to discuss the technical issues and capabilities of “lab on a chip” NAAT devices. A portable, miniaturized POC NAAT with performance comparable to conventional PCR (poly...

  15. The structural analysis of protein sequences based on the quasi-amino acids code

    Proteomics is the study of proteins and their interactions in a cell. With the successful completion of the Human Genome Project, it comes the postgenome era when the proteomics technology is emerging. This paper studies protein molecule from the algebraic point of view. The algebraic system (Σ, +, *) is introduced, where Σ is the set of 64 codons. According to the characteristics of (Σ, +, *), a novel quasi-amino acids code classification method is introduced and the corresponding algebraic operation table over the set ZU of the 16 kinds of quasi-amino acids is established. The internal relation is revealed about quasi-amino acids. The results show that there exist some very close correlations between the properties of the quasi-amino acids and the codon. All these correlation relationships may play an important part in establishing the logic relationship between codons and the quasi-amino acids during the course of life origination. According to Ma F et al (2003 J. Anhui Agricultural University 30 439), the corresponding relation and the excellent properties about amino acids code are very difficult to observe. The present paper shows that (ZU, ⊕, ) is a field. Furthermore, the operational results display that the codon tga has different property from other stop codons. In fact, in the mitochondrion from human and ox genomic codon, tga is just tryptophane, is not the stop codon like in other genetic code, it is the case of the Chen W C et al (2002 Acta Biophysica Sinica 18(1) 87). The present theory avoids some inexplicable events of the 20 kinds of amino acids code, in other words it solves the problem of 'the 64 codon assignments of mRNA to amino acids is probably completely wrong' proposed by Yang (2006 Progress in Modern Biomedicine 6 3). (cross-disciplinary physics and related areas of science and technology)

  16. The structural analysis of protein sequences based on the quasi-amino acids code

    Zhu Ping; Tang Xu-Qing; Xu Zhen-Yuan

    2009-01-01

    Proteomics is the study of proteins and their interactions in a cell. With the successful completion of the Human Genome Project, it comes the postgenome era when the proteomics technology is emerging. This paper studies protein molecule from the algebraic point of view. The algebraic system (∑, +, *) is introduced, where ∑ is the set of 64 codons. According to the characteristics of (∑,+, *), a novel quasi-amino acids code classification method is introduced and the corresponding algebraic operation table over the set ZU of the 16 kinds of quasi-amino acids is established. The internal relation is revealed about quasi-amino acids. The results show that there exist some very close correlations between the properties of the quasi-amino acids and the codon. All these correlation relationships may play an important part in establishing the logic relationship between codons and the quasi-amino acids during the course of life origination. According to Ma F et al (2003 J. Anhui Agricultural University 30 439), the corresponding relation and the excellent properties about amino acids code are very difficult to observe. The present paper shows that (ZU, +, ×) is a field. Furthermore, the operational results display that the codon tga has different property from other stop codons. In fact, in the mitochondrion from human and ox genomic codon, tga is just tryptophane, is not the stop codon like in other genetic code, it is the case of the Chen W C et al (2002 Acta Biophysica Sinica 18(1) 87). The present theory avoids some inexplicable events of the 20 kinds of amino acids code, in other words it solves the problem of 'the 64 codon assignments of mRNA to amino acids is probably completely wrong' proposed by Yang (2006 Progress in Modern Biomedicine 6 3).

  17. Polyethersulfone improves isothermal nucleic acid amplification compared to current paper-based diagnostics.

    Linnes, J C; Rodriguez, N M; Liu, L; Klapperich, C M

    2016-04-01

    Devices based on rapid, paper-based, isothermal nucleic acid amplification techniques have recently emerged with the potential to fill a growing need for highly sensitive point-of-care diagnostics throughout the world. As this field develops, such devices will require optimized materials that promote amplification and sample preparation. Herein, we systematically investigated isothermal nucleic acid amplification in materials currently used in rapid diagnostics (cellulose paper, glass fiber, and nitrocellulose) and two additional porous membranes with upstream sample preparation capabilities (polyethersulfone and polycarbonate). We compared amplification efficiency from four separate DNA and RNA targets (Bordetella pertussis, Chlamydia trachomatis, Neisseria gonorrhoeae, and Influenza A H1N1) within these materials using two different isothermal amplification schemes, helicase dependent amplification (tHDA) and loop-mediated isothermal amplification (LAMP), and traditional PCR. We found that the current paper-based diagnostic membranes inhibited nucleic acid amplification when compared to membrane-free controls; however, polyethersulfone allowed for efficient amplification in both LAMP and tHDA reactions. Further, observing the performance of traditional PCR amplification within these membranes was not predicative of their effects on in situ LAMP and tHDA. Polyethersulfone is a new material for paper-based nucleic acid amplification, yet provides an optimal support for rapid molecular diagnostics for point-of-care applications. PMID:26906904

  18. Highly Selective and Sensitive Electrochemiluminescence Biosensor for p53 DNA Sequence Based on Nicking Endonuclease Assisted Target Recycling and Hyperbranched Rolling Circle Amplification.

    Yang, Linlin; Tao, Yingzhou; Yue, Guiyin; Li, Ruibao; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Yang, Huang-Hao

    2016-05-17

    An ultrasensitive and specific electrochemiluminescence (ECL) biosensor has been designed for the p53 DNA sequence, which is based on cascade signal amplification of nicking endonuclease assisted target recycling and hyperbranched rolling circle amplification (HRCA). First of all, biotin modified hairpin capture DNA (HP) probe was immobilized on the surface of streptavidin magnespheres paramagnetic particles (PMPs). Target DNA hybridized with the loop portion of the HP probe, therefore unfolding HP to form a double-stranded DNA (dsDNA) containing the specific nicking site of the nicking endonuclease. Then, the nicking endonuclease recognized the specific nicking site and cleaved the HP into two pieces, liberating target DNA and the complementary sequence piece for the padlock probe. The intact target DNA would initiate the next cycle of hybridization and cleavage, thereby releasing multiple complementary sequences for the padlock probes. The liberated complementary sequences hybridized with the padlock probes, subsequently inducing the HRCA reaction and generating numerous dsDNA segments. Herein, Ru(phen)3(2+) was embedded into dsDNA and worked as ECL signal reporter. The reaction products were eventually pretreated by dialysis tube with the cutoff membrane to remove the residual Ru(phen)3(2+) in the solution for the following ECL measurements. Using this cascade amplification strategy, an ultrasensitive p53 DNA sequence detection method was developed with a wide linear range from 0.05 to 100 fM and a low detection limit of 0.02 fM. Moreover, this cascade amplified ECL biosensor had specific recognition capacity for noncomplementary and single- and double-base mismatched DNA. The proposed ECL biosensor might have a great potential in biomedical research and clinic analysis. PMID:27086663

  19. Integrated Microfluidic Nucleic Acid Isolation, Isothermal Amplification, and Amplicon Quantification

    Michael G. Mauk

    2015-10-01

    Full Text Available Microfluidic components and systems for rapid (<60 min, low-cost, convenient, field-deployable sequence-specific nucleic acid-based amplification tests (NAATs are described. A microfluidic point-of-care (POC diagnostics test to quantify HIV viral load from blood samples serves as a representative and instructive example to discuss the technical issues and capabilities of “lab on a chip” NAAT devices. A portable, miniaturized POC NAAT with performance comparable to conventional PCR (polymerase-chain reaction-based tests in clinical laboratories can be realized with a disposable, palm-sized, plastic microfluidic chip in which: (1 nucleic acids (NAs are extracted from relatively large (~mL volume sample lysates using an embedded porous silica glass fiber or cellulose binding phase (“membrane” to capture sample NAs in a flow-through, filtration mode; (2 NAs captured on the membrane are isothermally (~65 °C amplified; (3 amplicon production is monitored by real-time fluorescence detection, such as with a smartphone CCD camera serving as a low-cost detector; and (4 paraffin-encapsulated, lyophilized reagents for temperature-activated release are pre-stored in the chip. Limits of Detection (LOD better than 103 virons/sample can be achieved. A modified chip with conduits hosting a diffusion-mode amplification process provides a simple visual indicator to readily quantify sample NA template. In addition, a companion microfluidic device for extracting plasma from whole blood without a centrifuge, generating cell-free plasma for chip-based molecular diagnostics, is described. Extensions to a myriad of related applications including, for example, food testing, cancer screening, and insect genotyping are briefly surveyed.

  20. Detection and identification of human Plasmodium species with real-time quantitative nucleic acid sequence-based amplification

    P.F. Mens; G.J. Schoone; P.A. Kager; H.D.F.H. Schallig

    2006-01-01

    Background: Decisions concerning malaria treatment depend on species identification causing disease. Microscopy is most frequently used, but at low parasitaemia (< 20 parasites/mu l) the technique becomes less sensitive and time consuming. Rapid diagnostic tests based on Plasmodium antigen detection

  1. Sensitivity and Specificity of Nucleic Acid Sequence-Based Amplification Method (NASBA) for Diagnosis of Cutaneous Leishmaniasis

    Niazi, A.; Koohsar, F.; F.Ghaffarifar; Ziaei - Hezarjaribi, H. (PhD); Mesgarian, F. (MSc; Jorjani, O. (PhD)

    2014-01-01

    Background and Objective: Employing advanced diagnostics for molecular identification of the Lishmania parasite is has a more sensitivity and specificity in comparison to the microscopic methods. RT- PCR is also introduced as one of the best known techniques for diagnosis of this parasite; however, the method is not widely used due to its expensive equipments and the time requested.the application of NASBA method is shown high efficient for diagnosis of live parasite. The aim of this study is...

  2. Isothermal amplification detection of nucleic acids by a double-nicked beacon.

    Shi, Chao; Zhou, Meiling; Pan, Mei; Zhong, Guilin; Ma, Cuiping

    2016-03-01

    Isothermal and rapid amplification detection of nucleic acids is an important technology in environmental monitoring, foodborne pathogen detection, and point-of-care clinical diagnostics. Here we have developed a novel method of isothermal signal amplification for single-stranded DNA (ssDNA) detection. The ssDNA target could be used as an initiator, coupled with a double-nicked molecular beacon, to originate amplification cycles, achieving cascade signal amplification. In addition, the method showed good specificity and strong anti-jamming capability. Overall, it is a one-pot and isothermal strand displacement amplification method without the requirement of a stepwise procedure, which greatly simplifies the experimental procedure and decreases the probability of contamination of samples. With its advantages, the method would be very useful to detect nucleic acids in point-of-care or field use. PMID:26706801

  3. Novel bioluminescent quantitative detection of nucleic acid amplification in real-time.

    Olga A Gandelman

    Full Text Available BACKGROUND: The real-time monitoring of polynucleotide amplification is at the core of most molecular assays. This conventionally relies on fluorescent detection of the amplicon produced, requiring complex and costly hardware, often restricting it to specialised laboratories. PRINCIPAL FINDINGS: Here we report the first real-time, closed-tube luminescent reporter system for nucleic acid amplification technologies (NAATs enabling the progress of amplification to be continuously monitored using simple light measuring equipment. The Bioluminescent Assay in Real-Time (BART continuously reports through bioluminescent output the exponential increase of inorganic pyrophosphate (PPi produced during the isothermal amplification of a specific nucleic acid target. BART relies on the coupled conversion of inorganic pyrophosphate (PPi produced stoichiometrically during nucleic acid synthesis to ATP by the enzyme ATP sulfurylase, and can therefore be coupled to a wide range of isothermal NAATs. During nucleic acid amplification, enzymatic conversion of PPi released during DNA synthesis into ATP is continuously monitored through the bioluminescence generated by thermostable firefly luciferase. The assay shows a unique kinetic signature for nucleic acid amplifications with a readily identifiable light output peak, whose timing is proportional to the concentration of original target nucleic acid. This allows qualitative and quantitative analysis of specific targets, and readily differentiates between negative and positive samples. Since quantitation in BART is based on determination of time-to-peak rather than absolute intensity of light emission, complex or highly sensitive light detectors are not required. CONCLUSIONS: The combined chemistries of the BART reporter and amplification require only a constant temperature maintained by a heating block and are shown to be robust in the analysis of clinical samples. Since monitoring the BART reaction requires only a

  4. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification

    Pascal Craw

    2015-09-01

    Full Text Available Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings.

  5. A Simple, Low-Cost Platform for Real-Time Isothermal Nucleic Acid Amplification.

    Craw, Pascal; Mackay, Ruth E; Naveenathayalan, Angel; Hudson, Chris; Branavan, Manoharanehru; Sadiq, S Tariq; Balachandran, Wamadeva

    2015-01-01

    Advances in microfluidics and the introduction of isothermal nucleic acid amplification assays have resulted in a range of solutions for nucleic acid amplification tests suited for point of care and field use. However, miniaturisation of instrumentation for such assays has not seen such rapid advances and fluorescence based assays still depend on complex, bulky and expensive optics such as fluorescence microscopes, photomultiplier tubes and sensitive lens assemblies. In this work we demonstrate a robust, low cost platform for isothermal nucleic acid amplification on a microfluidic device. Using easily obtainable materials and commercial off-the-shelf components, we show real time fluorescence detection using a low cost photodiode and operational amplifier without need for lenses. Temperature regulation on the device is achieved using a heater fabricated with standard printed circuit board fabrication methods. These facile construction methods allow fabrications at a cost compatible with widespread deployment to resource poor settings. PMID:26389913

  6. A Single-Tube Nucleic Acid Extraction, Amplification, and Detection Method Using Aluminum Oxide

    Dames, Shale; Bromley, L. Kathryn; Herrmann, Mark; Elgort, Marc; Erali, Maria; Smith, Roger; Voelkerding, Karl V.

    2006-01-01

    A disposable 0.2-ml polymerase chain reaction (PCR) tube modified with an aluminum oxide membrane (AOM) has been developed for the extraction, amplification, and detection of nucleic acids. To assess the dynamic range of AOM tubes for real-time PCR, quantified herpes simplex virus (HSV) DNA was used to compare AOM tubes to standard PCR tubes. AOM PCR tubes used for amplification and detection of quantified HSV-1 displayed a crossing threshold (CT) shift 0.1 cycles greater than PCR tube contro...

  7. Locked nucleic acid inhibits amplification of contaminating DNA in real-time PCR

    Hummelshoj, Lone; Ryder, Lars P; Madsen, Hans O;

    2005-01-01

    both PCR and real-time PCR, the addition of LNA showed blocking of the amplification of genomic XBP1 but not cDNA XBP1. To test the effect of melting temperature (Tm) on the LNA, we investigated the number of LNA nucleotides that could be replaced with DNA nucleotides and still retain the blocking......Locked nucleic acid (LNA) is a modified DNA with increased binding affinityfor complementary DNA sequences. Our strategy was to use this property of LNA to inhibit undesired PCR amplification (e.g.,from contaminating genomic DNA) in a cDNA-based assay. By placing a short complementary LNA sequence...... activity. More than three DNA nucleotides reduced the LNA inhibition ability. The sequence specificity of the LNA was tested by investigating the number of LNA nucleotide mismatches permitted. The introduction of one mismatch maintained the inhibition of genomic amplification whereas two mismatches reduced...

  8. Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends

    Zhang, Chunsun; Xing, Da

    2007-01-01

    The possibility of performing fast and small-volume nucleic acid amplification and analysis on a single chip has attracted great interest. Devices based on this idea, referred to as micro total analysis, microfluidic analysis, or simply ‘Lab on a chip’ systems, have witnessed steady advances over the last several years. Here, we summarize recent research on chip substrates, surface treatments, PCR reaction volume and speed, architecture, approaches to eliminating cross-contamination and contr...

  9. Isothermal cycling and cascade signal amplification strategy for ultrasensitive colorimetric detection of nucleic acids

    We have designed a novel isothermal cascade signal-amplification strategy for ultrasensitive colorimetric determination of nucleic acids. It is based on double-cycling amplification with formation of DNAzyme via a polymerase-induced strand-displacement reaction and nicking endonuclease-assisted recycling. The assay makes use of a hairpin DNA, a short primer, KF-polymerase, and nicking endonuclease. The presence of a target DNA triggers the strand-displacement and polymerization reaction with the formation of numerous DNAzyme molecules. Upon addition of H2O2 to the resulting mixture, the H2O2 reacts with 2,2′-azino-bis (3-ethylbenzothiozoline)-6-sulfonate to form a colored product in the aid of DNAzyme, which is quantified by photometry at 415 nm. Under optimal conditions, the assay allows target DNA to be determined at concentration as low as 0.6 aM. (author)

  10. Onium salts as radiation-sensitive acid generators for resists with chemical amplification (review)

    The necessity of mastering alternative lithographic processes for development and production of 64 and 256 Mbit dynamic random-access memory units has been substantiated. It is shown that conventional positive photoresists based on diazonaphthoquinone and novalac resins do not meet the requirements of modern microlithography. The concept of chemical amplification offered a means for developing adequate topological structures with sizes of resist components of 0.35 μm or less. Onium salts are universal and efficient acid generators for resists with chemical amplification. Studies in the field of photo- and radiochemistry of onium salts have been summarized and correlated. It has been shown that the quantum yield and distribution of photolysis products are governed to a major extent by geminal and bulk recombination. Specific features of photolysis and radiolysis of onium salts in a polymer matrix are considered

  11. Nuclemeter: A Reaction-Diffusion Column for Quantifying Nucleic Acids Undergoing Enzymatic Amplification

    Bau, Haim; Liu, Changchun; Killawala, Chitvan; Sadik, Mohamed; Mauk, Michael

    2014-11-01

    Real-time amplification and quantification of specific nucleic acid sequences plays a major role in many medical and biotechnological applications. In the case of infectious diseases, quantification of the pathogen-load in patient specimens is critical to assessing disease progression, effectiveness of drug therapy, and emergence of drug-resistance. Typically, nucleic acid quantification requires sophisticated and expensive instruments, such as real-time PCR machines, which are not appropriate for on-site use and for low resource settings. We describe a simple, low-cost, reactiondiffusion based method for end-point quantification of target nucleic acids undergoing enzymatic amplification. The number of target molecules is inferred from the position of the reaction-diffusion front, analogous to reading temperature in a mercury thermometer. We model the process with the Fisher Kolmogoroff Petrovskii Piscounoff (FKPP) Equation and compare theoretical predictions with experimental observations. The proposed method is suitable for nucleic acid quantification at the point of care, compatible with multiplexing and high-throughput processing, and can function instrument-free. C.L. was supported by NIH/NIAID K25AI099160; M.S. was supported by the Pennsylvania Ben Franklin Technology Development Authority; C.K. and H.B. were funded, in part, by NIH/NIAID 1R41AI104418-01A1.

  12. Nuclemeter: a reaction-diffusion based method for quantifying nucleic acids undergoing enzymatic amplification.

    Liu, Changchun; Sadik, Mohamed M; Mauk, Michael G; Edelstein, Paul H; Bushman, Frederic D; Gross, Robert; Bau, Haim H

    2014-01-01

    Real-time amplification and quantification of specific nucleic acid sequences plays a major role in medical and biotechnological applications. In the case of infectious diseases, such as HIV, quantification of the pathogen-load in patient specimens is critical to assess disease progression and effectiveness of drug therapy. Typically, nucleic acid quantification requires expensive instruments, such as real-time PCR machines, which are not appropriate for on-site use and for low-resource settings. This paper describes a simple, low-cost, reaction-diffusion based method for end-point quantification of target nucleic acids undergoing enzymatic amplification. The number of target molecules is inferred from the position of the reaction-diffusion front, analogous to reading temperature in a mercury thermometer. The method was tested for HIV viral load monitoring and performed on par with conventional benchtop methods. The proposed method is suitable for nucleic acid quantification at point of care, compatible with multiplexing and high-throughput processing, and can function instrument-free. PMID:25477046

  13. Effect of basic additives on sensitivity and diffusion of acid in chemical amplification resists

    Asakawa, Koji; Ushirogouchi, Tohru; Nakase, Makoto

    1995-06-01

    The effect of amine additives in chemical amplification resists is discussed. Phenolic amines such as 4-aminophenol and 2-(4-aminophenyl)-2-(4-hydroxyphenyl) propane were investigated as model compounds from the viewpoint of sensitivity, diffusion and resolution. Equal molar amounts of acid and amine deactivated at the very beginning of post-exposure bake, and could not participate in decomposing the inhibitor as a catalyst. Only the acid which survived from the deactivation diffuses in the resist, decomposing the inhibitors from the middle to late stage of PEB. The basic additives reduce the diffusion range of the acid, especially for long-range diffusion, resulting in higher contrast at the interfaces between the exposed and unexposed areas. In addition, the amine concentration required is found to be less than the concentration which causes the resist sensitivity to start decreasing.

  14. Improved sensitivity of nucleic acid amplification for rapid diagnosis of tuberculous meningitis

    Johansen, Isik Somuncu; Lundgren, Bettina; Tabak, Fehmi; Petrini, Björn; Hosoglu, Salih; Saltoglu, Nese; Thomsen, Vibeke Østergaard

    2004-01-01

    Early diagnosis of tuberculous meningitis (TBM) is essential for a positive outcome; but present microbiological diagnostic techniques are insensitive, slow, or laborious. We evaluated the standard BDProbeTec ET strand displacement amplification method (the standard ProbeTec method) for the...... diagnosis was attained by culture. Thirteen specimens from 12 patients were culture positive for M. tuberculosis complex organisms; three specimens (23%) were microscopy positive for acid-fast bacilli. Among the culture-positive specimens, the standard ProbeTec method was positive for 8 (61.5%) and the...... modified assay was positive for 10 (76.9%). The overall specificity by both procedures was 98.8% compared to the results of culture. After discrepancy analysis, conducted by reviewing the patients' previous laboratory data, the specificity increased to 100%. If the cutoff value for respiratory specimens...

  15. Culture confirmation of gonococcal infection by recall of subjects found to be positive by nucleic acid amplification tests in general practice

    Møller, Jens Kjølseth

    2010-01-01

    To evaluate a routine notification of general practitioners to recall nucleic acid amplification test (NAAT)-positive subjects for culture of Neisseria gonorrhoeae to confirm gonococcal infection in the community.......To evaluate a routine notification of general practitioners to recall nucleic acid amplification test (NAAT)-positive subjects for culture of Neisseria gonorrhoeae to confirm gonococcal infection in the community....

  16. Validation of Internal Controls for Extraction and Amplification of Nucleic Acids from Enteric Viruses in Water Samples ▿ †

    Hata, Akihiko; Katayama, Hiroyuki; Kitajima, Masaaki; Visvanathan, Chettiyappan; Nol, Chea; Furumai, Hiroaki

    2011-01-01

    Inhibitors that reduce viral nucleic acid extraction efficiency and interfere with cDNA synthesis and/or polymerase activity affect the molecular detection of viruses in aquatic environments. To overcome these significant problems, we developed a methodology for assessing nucleic acid yields and DNA amplification efficiencies for environmental water samples. This involved adding particles of adenovirus type 5 and murine norovirus and newly developed primer-sharing controls, which are amplifie...

  17. Reliability of nucleic acid amplification for detection of Mycobacterium tuberculosis: an international collaborative quality control study among 30 laboratories.

    Noordhoek, G T; van Embden, J D; Kolk, A H

    1996-01-01

    Nucleic acid amplification to detect Mycobacterium tuberculosis in clinical specimens is increasingly used as a laboratory tool for the diagnosis of tuberculosis. However, the specificity and sensitivity of these tests may be questioned, and no standardized reagents for quality control assessment are available. To estimate the performance of amplification tests for routine diagnosis, we initiated an interlaboratory study involving 30 laboratories in 18 countries. We prepared blinded panels of 20 sputum samples containing no, 100, or 1,000 mycobacterial cells. Each laboratory was asked to detect M. tuberculosis by their routine method of nucleic acid amplification. Only five laboratories correctly identified the presence or absence of mycobacterial DNA in all 20 samples. Seven laboratories detected mycobacterial DNA in all positive samples, and 13 laboratories correctly reported the absence of DNA in the negative samples. Lack of specificity was more of a problem than lack of sensitivity. Reliability was not found to be associated with the use of any particular method. Reliable detection of M. tuberculosis in clinical samples by nucleic acid amplification techniques is possible, but many laboratories do not use adequate quality controls. This study underlines the need for good laboratory practice and reference reagents to monitor the performance of the whole assay, including pretreatment of clinical samples. PMID:8880513

  18. Automated nucleic acid amplification testing in blood banks: An additional layer of blood safety

    Pragati Chigurupati

    2015-01-01

    Full Text Available Context: A total of 30 million blood components are transfused each year in India. Blood safety thus becomes a top priority, especially with a population of around 1.23 billion and a high prevalence rate of human immunodeficiency virus (HIV, hepatitis B virus (HBV and hepatitis C virus (HCV in general population. Nucleic acid amplification testing (NAT in blood donor screening has been implemented in many developed countries to reduce the risk of transfusion-transmitted viral infections (TTIs. NAT takes care of the dynamics of window period of viruses and offers the safest blood pack for donation. Aims: The aim of this study is to show the value of NAT in blood screening. Settings and Design: Dhanavantari Blood Bank, Rajahmundry, Andhra Pradesh, India. Subjects and Methods: Over a period of 1 year from January 2012 to December 2012, a total number of 15,000 blood donor samples were subjected to tests for HIV, HBV, and HCV by enzyme-linked immunosorbent assay (ELISA method and 8000 ELISA nonreactive samples were subjected for NAT using multiplex polymerase chain reaction technology. Results: Of the 15,000 donors tested, 525 were seroreactive. In 8000 ELISA negative blood samples subjected to NAT, 4 donor samples were reactive for HBV. The NAT yield was 1 in 2000. Conclusions: NAT could detect HIV, HBV, and HCV cases in blood donor samples those were undetected by serological tests. NAT could interdict 2500 infectious donations among our approximate 5 million annual blood donations.

  19. Molecular Investigation of Lymph Nodes in Colon Cancer Patients Using One-Step Nucleic Acid Amplification (OSNA)

    Güller, Ulrich; Zettl, Andreas; Worni, Mathias; Langer, Igor; Cabalzar-Wondberg, Daniela; Viehl, Carsten T; Demartines, Nicolas; Zuber, Markus

    2012-01-01

    BACKGROUND A new diagnostic system, called one-step nucleic acid amplification (OSNA), has recently been designed to detect cytokeratin 19 mRNA as a surrogate for lymph node metastases. The objective of this prospective investigation was to compare the performance of OSNA with both standard hematoxylin and eosin (H&E) analysis and intensive histopathology in the detection of colon cancer lymph node metastases. METHODS In total, 313 lymph nodes from 22 consecutive patients with stage I, II, an...

  20. Nuclease-resistant double-stranded DNA controls or standards for hepatitis B virus nucleic acid amplification assays

    Zhan Sien

    2009-12-01

    Full Text Available Abstract Background Identical blood samples tested using different kits can give markedly different hepatitis B virus (HBV DNA levels, which can cause difficulty in the interpretation of viral load. A universal double-stranded DNA control or standard that can be used in all commercial HBV DNA nucleic acid amplification assay kits is urgently needed. By aligning all HBV genotypes (A-H, we found that the surface antigen gene and precore-core gene regions of HBV are the most conserved regions among the different HBV genotypes. We constructed a chimeric fragment by overlapping extension polymerase chain reaction and obtained a 1,349-bp HBVC+S fragment. We then packaged the fragment into lambda phages using a traditional lambda phage cloning procedure. Results The obtained armored DNA was resistant to DNase I digestion and was stable, noninfectious to humans, and could be easily extracted using commercial kits. More importantly, the armored DNA may be used with all HBV DNA nucleic acid amplification assay kits. Conclusions The lambda phage packaging system can be used as an excellent expression platform for armored DNA. The obtained armored DNA possessed all characteristics of an excellent positive control or standard. In addition, this armored DNA is likely to be appropriate for all commercial HBV DNA nucleic acid amplification detection kits. Thus, the constructed armored DNA can probably be used as a universal positive control or standard in HBV DNA assays.

  1. Rapid and Sensitive Isothermal Detection of Nucleic-acid Sequence by Multiple Cross Displacement Amplification

    Yi Wang; Yan Wang; Ai-Jing Ma; Dong-Xun Li; Li-Juan Luo; Dong-Xin Liu; Dong Jin; Kai Liu; Chang-Yun Ye

    2015-01-01

    We have devised a novel amplification strategy based on isothermal strand-displacement polymerization reaction, which was termed multiple cross displacement amplification (MCDA). The approach employed a set of ten specially designed primers spanning ten distinct regions of target sequence and was preceded at a constant temperature (61–65 °C). At the assay temperature, the double-stranded DNAs were at dynamic reaction environment of primer-template hybrid, thus the high concentration of primer...

  2. Tissue donation and virus safety: more nucleic acid amplification testing is needed.

    Pruss, A; Caspari, G; Krüger, D H; Blümel, J; Nübling, C M; Gürtler, L; Gerlich, W H

    2010-10-01

    In tissue and organ transplantation, it is of great importance to avoid the transmission of blood-borne viruses to the recipient. While serologic testing for anti-human immunodeficiency virus (HIV)-1 and -2, anti-hepatitis C virus (HCV), hepatitis B surface antigen (HBsAg), anti-hepatitis B core antigen (HBc), and Treponema pallidum infection is mandatory, there is until now in most countries no explicit demand for nucleic acid amplification testing (NAT) to detect HIV, hepatitis B virus (HBV), and HCV infection. After a review of reports in the literature on viral transmission events, tissue-specific issues, and manufacturing and inactivation procedures, we evaluated the significance of HIV, HCV, and HBV detection using NAT  in  donors of various types of tissues and compared our results with the experiences of blood banking organizations. There is a significant risk of HIV, HCV, and HBV transmission by musculoskeletal tissues because of their high blood content and the high donor-recipient ratio. If no effective virus inactivation procedure for musculoskeletal tissue is applied, donors should be screened using NAT  for  HIV, HCV, and HBV. Serologically screened cardiovascular tissue carries a very low risk of HIV, HCV, or HBV transmission. Nevertheless, because effective virus inactivation is impossible (retention of tissue morphology) and the donor-recipient ratio may be as high as 1:10, we concluded that NAT  should be performed for HIV, HCV, and HBV as an additional safety measure. Although cornea allografts carry the lowest risk of transmitting HIV, HCV, and HBV  owing to corneal physiology, morphology, and the epidemiology of corneal diseases, NAT  for  HCV should still be performed. If the NAT  screening of a donor for HIV, HCV, and HBV is negative, quarantine storage of the donor tissue seems dispensable. In view of numerous synergistic effects with transfusion medicine, it would be advantageous for tissue banks to cooperate with blood

  3. A fully integrated paperfluidic molecular diagnostic chip for the extraction, amplification, and detection of nucleic acids from clinical samples.

    Rodriguez, Natalia M; Wong, Winnie S; Liu, Lena; Dewar, Rajan; Klapperich, Catherine M

    2016-02-21

    Paper diagnostics have successfully been employed to detect the presence of antigens or small molecules in clinical samples through immunoassays; however, the detection of many disease targets relies on the much higher sensitivity and specificity achieved via nucleic acid amplification tests (NAAT). The steps involved in NAAT have recently begun to be explored in paper matrices, and our group, among others, has reported on paper-based extraction, amplification, and detection of DNA and RNA targets. Here, we integrate these paper-based NAAT steps into a single paperfluidic chip in a modular, foldable system that allows for fully integrated fluidic handling from sample to result. We showcase the functionality of the chip by combining nucleic acid isolation, isothermal amplification, and lateral flow detection of human papillomavirus (HPV) 16 DNA directly from crude cervical specimens in less than 1 hour for rapid, early detection of cervical cancer. The chip is made entirely of paper and adhesive sheets, making it low-cost, portable, and disposable, and offering the potential for a point-of-care molecular diagnostic platform even in remote and resource-limited settings. PMID:26785636

  4. Visual detection of Ebola virus using reverse transcription loop-mediated isothermal amplification combined with nucleic acid strip detection.

    Xu, Changping; Wang, Hualei; Jin, Hongli; Feng, Na; Zheng, Xuexing; Cao, Zengguo; Li, Ling; Wang, Jianzhong; Yan, Feihu; Wang, Lina; Chi, Hang; Gai, Weiwei; Wang, Chong; Zhao, Yongkun; Feng, Yan; Wang, Tiecheng; Gao, Yuwei; Lu, Yiyu; Yang, Songtao; Xia, Xianzhu

    2016-05-01

    Ebola virus (species Zaire ebolavirus) (EBOV) is highly virulent in humans. The largest recorded outbreak of Ebola hemorrhagic fever in West Africa to date was caused by EBOV. Therefore, it is necessary to develop a detection method for this virus that can be easily distributed and implemented. In the current study, we developed a visual assay that can detect EBOV-associated nucleic acids. This assay combines reverse transcription loop-mediated isothermal amplification and nucleic acid strip detection (RT-LAMP-NAD). Nucleic acid amplification can be achieved in a one-step process at a constant temperature (58 °C, 35 min), and the amplified products can be visualized within 2-5 min using a nucleic acid strip detection device. The assay is capable of detecting 30 copies of artificial EBOV glycoprotein (GP) RNA and RNA encoding EBOV GP from 10(2) TCID50 recombinant viral particles per ml with high specificity. Overall, the RT-LAMP-NAD method is simple and has high sensitivity and specificity; therefore, it is especially suitable for the rapid detection of EBOV in African regions. PMID:26831931

  5. Nucleic acid amplification technology screening for hepatitis C virus and human immunodeficiency virus for blood donations

    To investigate the performance of the commercial Roche COBAS AmpliScreen assay, and demonstrate whether the COBAS AmpliScreen human immunodeficiency virus-1 (HIV-1) test, v1.5, and COBAS AmpliScreen hepatitis C virus (HCV) v 2.0 for screening for HIV-1 and HCV RNA in the donated blood units from which plasma mini pools were collected, by nucleic acid amplification technology (NAT), could detect the positive pools and reduce the risk of transmission of infections for those routinely tested by serological assays. The study was performed on 3288 plasma samples collected from blood donors in a period of 13 months, from August 2004 to August 2005, at Al-Hada Armed Forces Hospital, Molecular Pathology Laboratory, Taif, Kingdom of Saudi Arabia. The samples were tested by the reverse transcriptase polymerase chain reaction (RT-PCR) after RNA extraction (this represents the major method in NAT assays), in parallel with the routine serological testing to detect qualitatively for HIV-1 and HCV. The NAT assays that include an automated COBAS AmpliPrep system for RNA extraction and COBAS Amplicor Analyzer using AmpliScreen kits for RT-PCR assays, and the routine serological screening assays for the detection of the HIV-1 and HCV RNA in the plasma samples from the blood donors have shown to be a reliable combination that would meet our requirements. The collected data further confirms the results from the serological assays and enables us to decrease the residual risk of transmission to a minimum with the finding of no seronegative window period donation. The results demonstrate that out of 3288 samples, the percentages of RT-PCR (NAT) negative blood donations that were also confirmed as seronegative were 99% for HCV, and 99.1% for HIV-1. The modified combined systems (automated COBAS AmpliPrep system for RNA extraction and COBAS Amplicor Analyzer using AmpliScreen kits for RT-PCR assays) for NAT screening assays has allowed the release of all blood donations supplied in the

  6. Comparison of Two Amplification Technologies for Detection and Quantitation of Human Immunodeficiency Virus Type 1 RNA in the Female Genital Tract

    Bremer, James; Nowicki, Marek; Beckner, Suzanne; Brambilla, Donald; Cronin, Mike; Herman, Steven; Kovacs, Andrea; Reichelderfer, Patricia

    2000-01-01

    Human immunodeficiency virus type 1 (HIV-1) RNA levels in female genital tract and peripheral blood samples were compared using two commercial amplification technologies: the Roche AMPLICOR HIV-1 MONITOR test and either the Organon Teknika nucleic acid sequence-based amplification (NASBA-QT) assay or the NucliSens assay. Estimates of HIV-1 RNA copy number were derived from internal kit standards and analyzed unadjusted and adjusted to a common set of external standards. We found a discordance...

  7. Improved sensitivity of nucleic acid amplification for rapid diagnosis of tuberculous meningitis

    Johansen, Isik Somuncu; Lundgren, Bettina; Tabak, Fehmi; Petrini, Björn; Hosoglu, Salih; Saltoglu, Nese; Thomsen, Vibeke Østergaard

    2004-01-01

    Early diagnosis of tuberculous meningitis (TBM) is essential for a positive outcome; but present microbiological diagnostic techniques are insensitive, slow, or laborious. We evaluated the standard BDProbeTec ET strand displacement amplification method (the standard ProbeTec method) for the detec...

  8. Two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites.

    Liu, Qing; Nam, Jeonghun; Kim, Sangho; Lim, Chwee Teck; Park, Mi Kyoung; Shin, Yong

    2016-08-15

    Rapid, early, and accurate diagnosis of malaria is essential for effective disease management and surveillance, and can reduce morbidity and mortality associated with the disease. Although significant advances have been achieved for the diagnosis of malaria, these technologies are still far from ideal, being time consuming, complex and poorly sensitive as well as requiring separate assays for sample processing and detection. Therefore, the development of a fast and sensitive method that can integrate sample processing with detection of malarial infection is desirable. Here, we report a two-stage sample-to-answer system based on nucleic acid amplification approach for detection of malaria parasites. It combines the Dimethyl adipimidate (DMA)/Thin film Sample processing (DTS) technique as a first stage and the Mach-Zehnder Interferometer-Isothermal solid-phase DNA Amplification (MZI-IDA) sensing technique as a second stage. The system can extract DNA from malarial parasites using DTS technique in a closed system, not only reducing sample loss and contamination, but also facilitating the multiplexed malarial DNA detection using the fast and accurate MZI-IDA technique. Here, we demonstrated that this system can deliver results within 60min (including sample processing, amplification and detection) with high sensitivity (malaria in low-resource settings. PMID:27031184

  9. Label-free electrochemical nucleic acid biosensing by tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme amplification.

    Liu, Shufeng; Gong, Hongwei; Wang, Yanqun; Wang, Li

    2016-03-15

    Owing to the intrinsic importance of nucleic acid as bio-targets, the achievement of its simple and sensitive detection with high confidence is very essential for biological studies and diagnostic purposes. Herein, a label-free, isothermal, and ultrasensitive electrochemical detection of target DNA was developed by using a tandem polymerization and cleavage-mediated cascade target recycling and DNAzyme releasing amplification strategy. Upon sensing of the nucleic acid analyte for the assembled hairpin-like probe DNA on the electrode, the DNA polymerase guided the target recycling and simultaneously triggered the lambda exonuclease cleavage, accompanied by the cascade recycling of the released new complementary strand and the amplified liberation of the G-rich sequence of the HRP-mimicking DNAzyme. The electrocatalytic reduction of H2O2 by the generated hemin/G-quadruplex DNAzyme was used for the signal readout and further amplification toward target response. Such tandem functional operation by DNA polymerase, lambda exonuclease and DNAzyme endows the developed biosensor with a high sensitivity and also a high confidence. A low detection limit of 5 fM with an excellent selectivity toward target DNA could be achieved. It also exhibits the distinct advantages of simplicity in probe design and biosensor fabrication, and label-free electrochemical detection, thus may offer a promising avenue for the applications in disease diagnosis and clinical biomedicine. PMID:26513289

  10. Point-of-care multiplexed assays of nucleic acids using microcapillary-based loop-mediated isothermal amplification.

    Zhang, Yi; Zhang, Lu; Sun, Jiashu; Liu, Yulei; Ma, Xingjie; Cui, Shangjin; Ma, Liying; Xi, Jianzhong Jeff; Jiang, Xingyu

    2014-07-15

    This report demonstrates a straightforward, robust, multiplexed and point-of-care microcapillary-based loop-mediated isothermal amplification (cLAMP) for assaying nucleic acids. This assay integrates capillaries (glass or plastic) to introduce and house sample/reagents, segments of water droplets to prevent contamination, pocket warmers to provide heat, and a hand-held flashlight for a visual readout of the fluorescent signal. The cLAMP system allows the simultaneous detection of two RNA targets of human immunodeficiency virus (HIV) from multiple plasma samples, and achieves a high sensitivity of two copies of standard plasmid. As few nucleic acid detection methods can be wholly independent of external power supply and equipment, our cLAMP holds great promise for point-of-care applications in resource-poor settings. PMID:24937125

  11. Chip-based device for parallel sorting, amplification, detection, and identification of nucleic acid subsequences

    Beer, Neil Reginald; Colston, Jr, Billy W.

    2016-08-09

    An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.

  12. Reliability of nucleic acid amplification methods for detection of Chlamydia trachomatis in urine: results of the first international collaborative quality control study among 96 laboratories

    R.P.A.J. Verkooyen (Roel); G.T. Noordhoek; P.E. Klapper; J. Reid; J. Schirm; G.M. Cleator; M. Ieven; G. Hoddevik

    2003-01-01

    textabstractThe first European Quality Control Concerted Action study was organized to assess the ability of laboratories to detect Chlamydia trachomatis in a panel of urine samples by nucleic acid amplification tests (NATs). The panel consisted of lyophilized urine samples, includ

  13. Detection of Staphylococcus epidermidis by a Quartz Crystal Microbalance Nucleic Acid Biosensor Array Using Au Nanoparticle Signal Amplification

    Weiling Fu

    2008-10-01

    Full Text Available Staphylococcus epidermidis is a critical pathogen of nosocomial blood infections, resulting in significant morbidity and mortality. A piezoelectric quartz crystal microbalance (QCM nucleic acid biosensor array using Au nanoparticle signal amplification was developed to rapidly detect S. epidermidis in clinical samples. The synthesized thiolated probes specific targeting S. epidermidis 16S rRNA gene were immobilized on the surface of QCM nucleic acid biosensor arrays. Hybridization was induced by exposing the immobilized probes to the PCR amplified fragments of S. epidermidis, resulting in a mass change and a consequent frequency shift of the QCM biosensor. To further enhance frequency shift results from above described hybridizations, streptavidin coated Au nanoparticles were conjugated to the PCR amplified fragments. The results showed that the lowest detection limit of current QCM system was 1.3×103 CFU/mL. A linear correlation was found when the concentration of S. epidermidis varied from 1.3×103 to 1.3×107 CFU/mL. In addition, 55 clinical samples were detected with both current QCM biosensor system and conventional clinical microbiological method, and the sensitivity and specificity of current QCM biosensor system were 97.14% and 100%, respectively. In conclusion, the current QCM system is a rapid, low-cost and sensitive method that can be used to identify infection of S. epidermidis in clinical samples.

  14. 4-(Dimethylamino)butyric acid labeling for electrochemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification.

    Yin, Xue-Bo; Qi, Bin; Sun, Xuping; Yang, Xiurong; Wang, Erkang

    2005-06-01

    4-(Dimethylamino)butyric acid (DMBA) labeling combined with gold nanoparticle amplification for electrochemiluminescence (ECL) determination of a biological substance (bovine serum albumin (BSA) and immunoglobulin G (IgG) as models) was presented. After DMBA, an analogue of tripropylamine, was tagged on the (anti)analytes, an ECL signal related to the content of the analytes was generated when the analyte tagged with DMBA was in contact with tris(2,2'-bipyridine)ruthenium (Ru(bpy)(3)2+) solution and a potential was applied. To improve the adsorption capacity, a gold nanoparticle layer was first combined into the surface of the 2-mm-diameter gold electrode. For the determination of BSA, avidin was covalently conjugated to a self-assembled monolayer of 3-mercaptopropanoic acid on the gold nanoparticle layer. Biotinylated BSA-DMBA was then immobilized on the gold nanoparticle layer of the gold electrode via the avidin-biotin reaction. IgG was tested via a typical sandwich-type immobilization method. ECL signals were generated from the electrodes immobilized with BSA or IgG by immersing them in a 1 mmol L-1 Ru(bpy)(3)2+ solution and scanning from 0.5 to 1.3 V versus Ag/AgCl. With gold nanoparticle amplification, the ECL peak intensity was proportional to the concentration over the range 1-80 and 5-100 microg/mL for BSA and IgG consuming 50 microL of sample, respectively. A 10- and 6-fold sensitivity enhancement was obtained for BSA and IgG over their direct immobilization on an electrode using DMBA labeling. The relative standard deviations of five replicate determinations of 10 microg/mL BSA and 20 microg/mL IgG were 8.4 and 10.2%, respectively. High biocompatibility and low cost were the main advantages of the present DMBA labeling technique over the traditional Ru(bpy)(3)2+ labeling. PMID:15924384

  15. An ultrasensitive electrochemical immunosensor platform with double signal amplification for indole-3-acetic acid determinations in plant seeds.

    Yin, Huanshun; Xu, Zhenning; Zhou, Yunlei; Wang, Mo; Ai, Shiyun

    2013-03-21

    A label-free electrochemical immunosensor for ultra-sensitive detection of indole-3-acetic acid (IAA), a very important phytohormone, has been developed in this work. The detection strategy was mainly based on 4-aminophenylboronic acid, magnetic nanoparticles functionalized with horseradish peroxidase-conjugated goat anti-rat immunoglobulin G (HRP-IgG-Fe(3)O(4)) and rat monoclonal antibody against IAA-modified gold nanoparticles (anti-IAA-AuNPs). HRP-IgG-AuNPs was covalently assembled on the electrode surface through the specific chemical reaction between boronic acid and the vicinal diol in HRP-IgG. Then, anti-IAA-AuNPs was further assembled on the electrode via the interaction between IgG and antibody. Through the dual amplification of HRP-IgG-Fe(3)O(4) and anti-IAA-AuNPs, the trapping capacity of the immunosensor for IAA was significantly enhanced based on the promotion of the immunoreaction between antibody and antigen, which resulted in a large decrease of the electrochemical response of the redox probe, Fe(CN)(6)(3-), and an increase in sensitivity. The developed electrochemical immunosensor exhibited a wide linear range from 0.02 to 500 ng mL(-1) with a low detection limit of 0.018 ng mL(-1) (S/N = 3). Moreover, the proposed immunosensor showed acceptable selectivity, reproducibility, accuracy and stability. The IAA extracted from various seeds was successfully detected using the developed immunosensor. This assay method might provide an alternative strategy for the detection of various phytohormones. PMID:23377501

  16. Nucleic acid amplification tests (NAATs for gonorrhoea diagnosis in women: Experience of a tertiary care hospital in north India

    Seema Sood

    2014-01-01

    Full Text Available Background & objectives: Gonorrhoea is among the most frequent of the estimated bacterial sexually transmitted infections (STIs and has significant health implications in women. The use of nucleic acid amplification tests (NAATs has been shown to provide enhanced diagnosis of gonorrhoea in female patients. However, it is recommended that an on-going assessment of the test assays should be performed to check for any probable sequence variation occurring in the targeted region. In this study, an in-house PCR targeting opa-gene of Neisseria gonorrhoeae was used in conjunction with 16S ribosomal PCR to determine the presence of gonorrhoea in female patients attending the tertiary care hospitals. Methods: Endocervical samples collected from 250 female patients with complaints of vaginal or cervical discharge or pain in lower abdomen were tested using opa and 16S ribosomal assay. The samples were also processed by conventional methods. Results: Of the 250 female patients included in the study, only one was positive by conventional methods (microscopy and culture whereas 17 patients were found to be positive based on PCR results. Interpretation & conclusions: The clinical sensitivity of conventional methods for the detection of N. gonorrhoeae in female patients was low. The gonococcal detection rates increased when molecular method was used giving 16 additional positives. Studies should be done to find out other gene targets that may be used in the screening assays to detect the presence of gonorrhoea.

  17. Prospective evaluation of the Alere i Influenza A&B nucleic acid amplification versus Xpert Flu/RSV.

    Nguyen Van, J C; Caméléna, F; Dahoun, M; Pilmis, B; Mizrahi, A; Lourtet, J; Behillil, S; Enouf, V; Le Monnier, A

    2016-05-01

    The rapid and accurate detection of influenza virus in respiratory specimens is required for optimal management of patients with acute respiratory infections. Because of the variability of the symptoms and the numerous other causes of influenza-like illness, the diagnosis of influenza cannot be made on the basis of clinical criteria alone. Thus, rapid influenza diagnostic tests have been developed such as the Alere i Influenza A&B isothermal nucleic acid assay. We prospectively evaluated the performance of the Alere i Influenza A&B assay in comparison with our routine Xpert Flu/RSV assay. Positive samples were subtyped according to the protocol from the National Influenza Center (Paris, France). A total of 96 respiratory nasal swab samples were analyzed: with both methods, 38 were positive and 56 were negative. Samples were prospectively collected from January 20 to April 8, 2015, from patient (86 adult and 10 pediatric patients) presenting with an influenza-like illness through the French influenza season. In comparison with the Xpert Flu/RSV assay, the overall sensitivity and specificity of the Alere i Influenza A&B assay were 95% and 100%, respectively. Our results indicate that the Alere i Influenza A&B assay has a good overall analytical performance and a high degree of concordance with the PCR-based Xpert Flu/RSV assay. The Alere i Influenza A&B isothermal nucleic acid amplification test is a powerful tool for influenza detection due to its high sensitivity and specificity as well as its ability to generate results within 15min. PMID:26899154

  18. Nucleic acid-amplification testing for hepatitis B in cornea donors.

    Fornés, Maria Gema; Jiménez, Maria Angustias; Eisman, Marcela; Gómez Villagrán, Jose Luis; Villalba, Rafael

    2016-06-01

    Careful donor selection and implementation of tests of appropriate sensitivity and specificity are of paramount importance for minimizing the risk of transmitting infectious diseases from donors to corneal allograft recipients. Reported cases of viral transmission with corneal grafts are very unusual. Nevertheless potential virus transmission through the engraftment cannot be ruled out. According to European Guideline 2006/17/EC, screening for antibodies for Hepatitis B core antigen (anti HBc) is mandatory, and when this test is positive, some criteria must be established before using corneas. Despite the continuous progress in screening tests, donors carrying an occult hepatitis B infection (OBI) can cause transplant-transmitted hepatitis B. To date, Nucleic Acid Testing (NAT) is not an obligatory assay in corneal tissue setting neither in our country nor in the rest of European countries. Herein, we report three cornea donors that were rejected with the diagnosis of OBI through the testing of sensitive NAT and the serological profile of Hepatitis B virus. The aim of this report is to emphasize the need to include NAT in new reviews of EU Tissues and Cells Directives in order to increase level of security in tissue donation as well as not to reject a high number of donors with isolated profile of anti HBc in geographical areas with high prevalence of Hepatitis B, that could be rejected without a true criterion of Hepatitis B infection. PMID:26685699

  19. Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure

    Wharam, Susan D.; Marsh, Peter; Lloyd, John S.; Ray, Trevor D.; Mock, Graham A.; Assenberg, René; McPhee, Julie E.; Brown, Philip; Weston, Anthony; Cardy, Donald L. N.

    2001-01-01

    The formation of DNA three-way junction (3WJ) structures has been utilised to develop a novel isothermal nucleic acid amplification assay (SMART) for the detection of specific DNA or RNA targets. The assay consists of two oligonucleotide probes that hybridise to a specific target sequence and, only then, to each other forming a 3WJ structure. One probe (template for the RNA signal) contains a non-functional single-stranded T7 RNA polymerase promoter sequence. This ...

  20. Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification

    Silahtaroglu, Asli; Nolting, Dorrit; Andersen, Lars Dyrskjøt; Berezikov, Eugene; Møller, Morten; Tommerup, Niels; Kauppinen, Markus Sakari

    2007-01-01

    RNAs in frozen tissue sections using fluorescence in situ hybridization (FISH). The method combines the unique miRNA recognition properties of locked nucleic acid (LNA)-modified oligonucleotide probes with FISH using the tyramide signal amplification (TSA) technology. Although both approaches have...... protocol can be completed within approximately 6 h and allows miRNA detection in a wide variety of animal tissue cryosections as well as in human tumor biopsies at high cellular resolution....

  1. Detection of Chlamydia trachomatis by Nucleic Acid Amplification Testing: Our Evaluation Suggests that CDC-Recommended Approaches for Confirmatory Testing Are Ill-Advised

    Schachter, Julius; Chow, Joan M.; Howard, Holly; Bolan, Gail; Moncada, Jeanne

    2006-01-01

    We evaluated three CDC-suggested approaches for confirming positive nucleic acid amplification tests (NAATs) for Chlamydia trachomatis: (i) repeat the original test on the original specimen, (ii) retest the original specimen with a different test, and (iii) perform a different test on a duplicate specimen. For approach 1, specimens (genital swabs or first-catch urine [FCU]) initially positive by the Abbott LCx Probe System Chlamydia trachomatis Assay (LCx; Abbott Laboratories), the APTIMA Com...

  2. Reliability of Nucleic Acid Amplification Methods for Detection of Chlamydia trachomatis in Urine: Results of the First International Collaborative Quality Control Study among 96 Laboratories

    Verkooyen, Roel; Noordhoek, G T; Klapper, P.E.; Reid, J.; Schirm, J.; Cleator, G. M.; Ieven, M.; Hoddevik, G.

    2003-01-01

    textabstractThe first European Quality Control Concerted Action study was organized to assess the ability of laboratories to detect Chlamydia trachomatis in a panel of urine samples by nucleic acid amplification tests (NATs). The panel consisted of lyophilized urine samples, including three negative, two strongly positive, and five weakly positive samples. Ninety-six laboratories in 22 countries participated with a total of 102 data sets. Of 204 strongly positive samples 199 (97.5%) were corr...

  3. Clinical utility of a nested nucleic acid amplification format in comparison to viral culture for the diagnosis of mucosal herpes simplex infection in a genitourinary medicine setting

    Wyatt Dorothy E; McCaughey Conall; O'Neill Hugh J; Coyle Peter V; McBride Michael O

    2001-01-01

    Abstract Background Nested nucleic acid amplification tests are often thought too sensitive or prone to generatingfalse positive results for routine use. The current study investigated the specificity and clinicalutility of a routine multiplex nested assay for mucosal herpetic infections. Methods Ninety patients, categorised into those clinically diagnosed to (a) have and (b) not haveherpetic infection, were enrolled. Swabs from oral and ano-genital sites were assayed by thenested assay and c...

  4. A touchdown nucleic acid amplification protocol as an alternative to culture backup for immunofluorescence in the routine diagnosis of acute viral respiratory tract infections

    Feeney Susan A; Mitchell Suzanne J; Mitchell Frederick; De Ornellas Dennis; McCaughey Conall; O'Neill Hugh J; Ong Grace M; Coyle Peter V; Wyatt Dorothy E; Forde Marian; Stockton Joanne

    2004-01-01

    Abstract Background Immunofluorescence and virus culture are the main methods used to diagnose acute respiratory virus infections. Diagnosing these infections using nucleic acid amplification presents technical challenges, one of which is facilitating the different optimal annealing temperatures needed for each virus. To overcome this problem we developed a diagnostic molecular strip which combined a generic nested touchdown protocol with in-house primer master-mixes that could recognise 12 c...

  5. Ultrasensitive electrochemical detection of nucleic acid by coupling an autonomous cascade target replication and enzyme/gold nanoparticle-based post-amplification.

    Liu, Shufeng; Wei, Wenji; Wang, Yanqun; Fang, Li; Wang, Li; Li, Feng

    2016-06-15

    Owing to the intrinsic importance of nucleic acid as bio-targets, the development of isothermal and ultrasensitive electrochemical DNA biosensor is very essential for biological studies and medical diagnostics. Herein, the autonomous cascade DNA replication strategy was effectively married with the enzyme/gold nanoparticle-based post-amplification strategy to promote the detection performance toward target DNA. A hairpin DNA probe (HP) is designed that consists of an overhang at 3'-end as the recognition unit for target DNA, a recognition site for nicking endonuclease, and an alkane spacer to terminate polymerization reaction. The autonomous DNA replication-scission-displacement reaction operated by the nicking endonuclease/KF polymerase induced the autocatalytic opening of HP, which was then specifically bound by the enzyme/gold nanoparticles for further dual-signal amplification toward target-related sensing events. A low detection limit of 0.065fM with an excellent selectivity toward target DNA could be achieved. The proposed biosensor could be also easily regenerated for target detection. The developed biosensor creates an opportunity for the effective coupling of the target replication with post-amplification strategies and thus opens a promising avenue for the detection of nucleic acid with low abundance in bioanalysis and clinical biomedicine. PMID:26849348

  6. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5′ end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5′ end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5′ end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism. PMID:27242766

  7. Comparative genomics beyond sequence-based alignments

    Þórarinsson, Elfar; Yao, Zizhen; Wiklund, Eric D.;

    2008-01-01

    Recent computational scans for non-coding RNAs (ncRNAs) in multiple organisms have relied on existing multiple sequence alignments. However, as sequence similarity drops, a key signal of RNA structure--frequent compensating base changes--is increasingly likely to cause sequence-based alignment me...

  8. Comparison of Nucleic Acid Amplification, Serology, and Microbiologic Culture for Diagnosis of Rhodococcus equi Pneumonia in Foals

    Sellon, Debra C.; Besser, Thomas E.; Vivrette, Sally L.; McConnico, Rebecca S.

    2001-01-01

    Recently, a technique was described for amplification of Rhodococcus equi-specific chromosomal and vapA DNA from blood and tracheal wash fluids. It was hypothesized that this technique would be more sensitive than standard culture techniques or serology for diagnosis of R. equi pneumonia in foals. Tracheal wash fluid, nasal swabs, whole blood samples, and serum samples from 56 foals with pneumonia were analyzed. Final clinical diagnosis was determined by the attending clinician on the basis o...

  9. A simple, inexpensive device for nucleic acid amplification without electricity-toward instrument-free molecular diagnostics in low-resource settings.

    Paul LaBarre

    Full Text Available BACKGROUND: Molecular assays targeted to nucleic acid (NA markers are becoming increasingly important to medical diagnostics. However, these are typically confined to wealthy, developed countries; or, to the national reference laboratories of developing-world countries. There are many infectious diseases that are endemic in low-resource settings (LRS where the lack of simple, instrument-free, NA diagnostic tests is a critical barrier to timely treatment. One of the primary barriers to the practicality and availability of NA assays in LRS has been the complexity and power requirements of polymerase chain reaction (PCR instrumentation (another is sample preparation. METHODOLOGY/PRINCIPAL FINDINGS: In this article, we investigate the hypothesis that an electricity-free heater based on exothermic chemical reactions and engineered phase change materials can successfully incubate isothermal NA amplification assays. We assess the heater's equivalence to commercially available PCR instruments through the characterization of the temperature profiles produced, and a minimal method comparison. Versions of the prototype for several different isothermal techniques are presented. CONCLUSIONS/SIGNIFICANCE: We demonstrate that an electricity-free heater based on exothermic chemical reactions and engineered phase change materials can successfully incubate isothermal NA amplification assays, and that the results of those assays are not significantly different from ones incubated in parallel in commercially available PCR instruments. These results clearly suggest the potential of the non-instrumented nucleic acid amplification (NINA heater for molecular diagnostics in LRS. When combined with other innovations in development that eliminate power requirements for sample preparation, cold reagent storage, and readout, the NINA heater will comprise part of a kit that should enable electricity-free NA testing for many important analytes.

  10. Comparison of nucleic acid hybridization and nucleic acid amplification using conserved sequences from the 5' noncoding region for detection of bovine viral diarrhea virus.

    Ridpath, J F; Bolin, S R; Katz, J

    1993-01-01

    Primers and probes derived from conserved sequences located in the 5' noncoding region of pestiviruses were evaluated for detection of bovine viral diarrhea virus. With these reagents, hybridization and polymerase chain reaction tests detected 62 of 90 and 90 of 90 bovine viral diarrhea virus isolates, respectively. A quick lysis method for preparing RNA for use in polymerase chain reaction amplification also was evaluated.

  11. SIMPLIFIED DIAGNOSIS OF MALARIA INFECTION: GFM/PCR/ELISA A SIMPLIFIED NUCLEIC ACID AMPLIFICATION TECHNIQUE BY PCR/ELISA

    Ricardo Luiz Dantas MACHADO

    1998-09-01

    Full Text Available We report an adaptation of a technique for the blood sample collection (GFM as well as for the extraction and amplification of Plasmodium DNA for the diagnosis of malaria infection by the PCR/ELISA. The method of blood sample collection requires less expertise and saves both time and money, thus reducing the cost by more than half. The material is also suitable for genetic analysis in either fresh or stored specimens prepared by this method.Relatamos a adaptação de uma técnica para coleta de amostras (MFV e outra para extração, amplificação de DNA de parasitas da malária para diagnóstico por PCR/ELISA. O método de coleta de amostras requer menos habilidade e economisa tempo e dinheiro, assim reduzindo a mais da metade o custo. O material é também adequado para análise genética em especimens frescos ou estocados, preparados por este método.

  12. Comparison of an rRNA‐based and DNA‐based nucleic acid amplification test for the detection of Chlamydia trachomatis in trachoma

    Yang, Jon L; Schachter, Julius; Moncada, Jeanne; Habte, Dereje; Zerihun, Mulat; House, Jenafir I; Zhou, Zhaoxia; Hong, Kevin C; Maxey, Kathryn; Gaynor, Bruce D; Lietman, Thomas M

    2007-01-01

    Background/Aim The World Health Organisation (WHO) hopes to achieve global elimination of trachoma, still the leading cause of preventable blindness worldwide, in part through mass antibiotic treatment. DNA‐based nucleic acid amplification tests (NAATs) are currently used to evaluate the success of treatment programmes by measuring the prevalence of C trachomatis infection. Some believe that newer ribosomal RNA (rRNA)‐based tests may be much more sensitive since bacterial rRNA is present in amounts up to 10 000 times that of genomic DNA. Others believe that rRNA‐based tests are instead less sensitive but more specific, due to the presence of dead or subviable organisms that the test may not detect. This study compares an rRNA‐based test to a DNA‐based test for the detection of ocular C trachomatis infection in children living in trachoma‐endemic villages. Methods An rRNA‐based amplification test and DNA‐based polymerase chain reaction (PCR) were performed on swab specimens taken from the right upper tarsal conjunctiva of 56 children aged 0–10 years living in two villages in Amhara, Ethiopia. Results The rRNA‐based test detected ocular C trachomatis infection in 35 (63%) subjects compared with 22 (39%) detected by PCR (McNemar's test, p = 0.0002). The rRNA‐based test gave positive results for all subjects that were positive by PCR, and also detected infection in 13 (23%) additional subjects. Conclusion The rRNA‐based test appears to have significantly greater sensitivity than PCR for the detection of ocular chlamydial infection in children in trachoma‐endemic villages. Using the rRNA‐based test, we may be able to detect infection that was previously missed with PCR. Past studies using DNA‐based tests to assess prevalence of infectious trachoma following antibiotic treatment may have underestimated the true prevalence of infection. PMID:17050583

  13. A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid.

    Yang, Wen; Tian, Jianniao; Ma, Yefei; Wang, Lijun; Zhao, Yanchun; Zhao, Shulin

    2015-11-01

    A number of specific nucleic acids are closely related with many serious diseases, in the current research, a platform taking advantage of exonuclease III (Exo III) to realize double recycling amplification and label-free fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) for detecting of nucleic acid had been developed. In this method, a molecular beacon (MB) with 3'-protruding termini and a single-stranded cytosine-rich (C-rich) probe were designed that coexist stably with Exo III. Once the target DNA appeared, portion of the MB could hybridize with target DNA and was digested by Exo III, which allowed the release of target DNA and a residual sequence. Subsequently, the residual sequence could trigger the Exo III to digest C-rich probe, and the DNA-AgNCs was not able to be synthesized because of the C-rich probe was destroyed; finally the fluorescent of solution was quenched. This assay enables to monitor human hemochromatosis gene (as a model) with high sensitivity, the detection limit is as low as 120 pM compared with other fluorescence DNA-AgNCs methods, this assay also exhibits superior specificity even against single base mismatch. The strategy is applied to detect human hemochromatosis gene in real human serum samples successfully. PMID:26572843

  14. Isothermal DNA amplification in vitro: the helicase-dependent amplification system.

    Jeong, Yong-Joo; Park, Kkothanahreum; Kim, Dong-Eun

    2009-10-01

    Since the development of polymerase chain reaction, amplification of nucleic acids has emerged as an elemental tool for molecular biology, genomics, and biotechnology. Amplification methods often use temperature cycling to exponentially amplify nucleic acids; however, isothermal amplification methods have also been developed, which do not require heating the double-stranded nucleic acid to dissociate the synthesized products from templates. Among the several methods used for isothermal DNA amplification, the helicase-dependent amplification (HDA) is discussed in this review with an emphasis on the reconstituted DNA replication system. Since DNA helicase can unwind the double-stranded DNA without the need for heating, the HDA system provides a very useful tool to amplify DNA in vitro under isothermal conditions with a simplified reaction scheme. This review describes components and detailed aspects of current HDA systems using Escherichia coli UvrD helicase and T7 bacteriophage gp4 helicase with consideration of the processivity and efficiency of DNA amplification. PMID:19629390

  15. Selective Adsorption and Chiral Amplification of Amino Acids in Vermiculite Clay -Implications for the origin of biochirality

    Fraser, Donald G; Jakschitz, Thomas; Rode, Bernd M

    2010-01-01

    Smectite clays are hydrated layer silicates that, like micas, occur naturally in abundance. Importantly, they have readily modifiable interlayer spaces that provide excellent sites for nanochemistry. Vermiculite is one such smectite clay and in the presence of small chain-length alkyl-NH3Cl ions, forms sensitive, 1-D ordered model clay systems with expandable nano-pore inter-layer regions. These inter-layers readily adsorb organic molecules. N-propyl NH3Cl vermiculite clay gels were used to determine the adsorption of alanine, lysine and histidine by chiral HPLC. The results show that during reaction with fresh vermiculite interlayers, significant chiral enrichment of either L- and D-enantiomers occurs depending on the amino acid. Chiral enrichment of the supernatant solutions is up to about 1% per pass. In contrast, addition to clay interlayers already reacted with amino acid solutions resulted in little or no change in D/L ratio during the time of the experiment. Adsorption of small amounts of amphiphilic o...

  16. Towards a “Sample-In, Answer-Out” Point-of-Care Platform for Nucleic Acid Extraction and Amplification: Using an HPV E6/E7 mRNA Model System

    Anja Gulliksen

    2012-01-01

    Full Text Available The paper presents the development of a “proof-of-principle” hands-free and self-contained diagnostic platform for detection of human papillomavirus (HPV E6/E7 mRNA in clinical specimens. The automated platform performs chip-based sample preconcentration, nucleic acid extraction, amplification, and real-time fluorescent detection with minimal user interfacing. It consists of two modular prototypes, one for sample preparation and one for amplification and detection; however, a common interface is available to facilitate later integration into one single module. Nucleic acid extracts (n=28 from cervical cytology specimens extracted on the sample preparation chip were tested using the PreTect HPV-Proofer and achieved an overall detection rate for HPV across all dilutions of 50%–85.7%. A subset of 6 clinical samples extracted on the sample preparation chip module was chosen for complete validation on the NASBA chip module. For 4 of the samples, a 100% amplification for HPV 16 or 33 was obtained at the 1 : 10 dilution for microfluidic channels that filled correctly. The modules of a “sample-in, answer-out” diagnostic platform have been demonstrated from clinical sample input through sample preparation, amplification and final detection.

  17. Evaluation of three enzyme immunoassays and a nucleic acid amplification test for the diagnosis of Clostridium difficile-associated diarrhea at a university hospital in Brazil

    Rodrigo Otávio Silveira Silva

    2014-07-01

    Full Text Available Introduction Despite the known importance of Clostridium difficile as a nosocomial pathogen, few studies regarding Clostridium difficile infection (CDI in Brazil have been conducted. To date, the diagnostic tests that are available on the Brazilian market for the diagnosis of CDI have not been evaluated. The aim of this study was to compare the performances of four commercial methods for the diagnosis of CDI in patients from a university hospital in Brazil. Methods Three enzyme immunoassays (EIAs and one nucleic acid amplification test (NAAT were evaluated against a cytotoxicity assay (CTA and toxigenic culture (TC. Stool samples from 92 patients with suspected CDI were used in this study. Results Twenty-five (27.2% of 92 samples were positive according to the CTA, and 23 (25% were positive according to the TC. All EIAs and the NAAT test demonstrated sensitivities between 59 and 68% and specificities greater than 91%. Conclusions All four methods exhibited low sensitivities for the diagnosis of CDI, which could lead to a large number of false-negative results, an increased risk of cross-infection to other patients, and overtreatment with empirical antibiotics.

  18. Will my protein crystallize? A sequence-based predictor.

    Smialowski, Pawel; Schmidt, Thorsten; Cox, Jürgen; Kirschner, Andreas; Frishman, Dmitrij

    2006-02-01

    We propose a machine-learning approach to sequence-based prediction of protein crystallizability in which we exploit subtle differences between proteins whose structures were solved by X-ray analysis [or by both X-ray and nuclear magnetic resonance (NMR) spectroscopy] and those proteins whose structures were solved by NMR spectroscopy alone. Because the NMR technique is usually applied on relatively small proteins, sequence length distributions of the X-ray and NMR datasets were adjusted to avoid predictions biased by protein size. As feature space for classification, we used frequencies of mono-, di-, and tripeptides represented by the original 20-letter amino acid alphabet as well as by several reduced alphabets in which amino acids were grouped by their physicochemical and structural properties. The classification algorithm was constructed as a two-layered structure in which the output of primary support vector machine classifiers operating on peptide frequencies was combined by a second-level Naive Bayes classifier. Due to the application of metamethods for cost sensitivity, our method is able to handle real datasets with unbalanced class representation. An overall prediction accuracy of 67% [65% on the positive (crystallizable) and 69% on the negative (noncrystallizable) class] was achieved in a 10-fold cross-validation experiment, indicating that the proposed algorithm may be a valuable tool for more efficient target selection in structural genomics. A Web server for protein crystallizability prediction called SECRET is available at http://webclu.bio.wzw.tum.de:8080/secret. PMID:16315316

  19. Influenza A virus drift variants reduced the detection sensitivity of a commercial multiplex nucleic acid amplification assay in the season 2014/15.

    Huzly, Daniela; Korn, Klaus; Bierbaum, Sibylle; Eberle, Björn; Falcone, Valeria; Knöll, Antje; Steininger, Philipp; Panning, Marcus

    2016-09-01

    The influenza season 2014/15 was dominated by drift variants of influenza A(H3N2), which resulted in a reduced vaccine effectiveness. It was not clear if the performance of commercial nucleic-acid-based amplification (NAT) assays for the detection of influenza was affected. The purpose of this study was to perform a real-life evaluation of two commercial NAT assays. During January-April 2015, we tested a total of 665 samples from patients with influenza-like illness using the Fast Track Diagnostics Respiratory pathogens 21, a commercial multiplex kit, (cohorts 1 and 2, n = 563 patients) and the Xpert Flu/RSV XC assay (cohort 3, n = 102 patients), a single-use cartridge system. An in-house influenza real-time RT-PCR (cohort 1) and the RealStar Influenza RT-PCR 1.0 Kit (cohort 2 and 3) served as reference tests. Compared to the reference assay, an overall agreement of 95.9 % (cohort 1), 95 % (cohort 2), and 98 % (cohort 3) was achieved. A total of 24 false-negative results were observed using the Fast Track Diagnostics Respiratory pathogens 21 kit. No false-negative results occurred using the Xpert Flu/RSV XC assay. The Fast Track Diagnostics Respiratory pathogens 21 kit and the Xpert Flu/RSV XC assay had sensitivities of 90.7 % and 100 % and specificities of 100 % and 94.1 %, respectively, compared to the RealStar 1.0 kit. Upon modification of the Fast Track Diagnostics Respiratory pathogens 21 kit, the sensitivity increased to 97.3 %. Influenza virus strains circulating during the 2014/15 season reduced the detection sensitivity of a commercial NAT assay, and continuous monitoring of test performance is therefore necessary. PMID:27316440

  20. Evaluation of a viral microarray based on simultaneous extraction and amplification of viral nucleotide acid for detecting human herpesviruses and enteroviruses.

    Yi Liu

    Full Text Available In this study, a viral microarray based assay was developed to detect the human herpesviruses and enteroviruses associated with central nervous system infections, including herpes simplex virus type 1, type 2 (HSV1 and HSV2, Epstein-Barr virus (EBV, cytomegalovirus (CMV, enterovirus 71 (EV71, coxsackievirus A 16 (CA16 and B 5(CB5. The DNA polymerase gene of human herpesviruses and 5'-untranslated region of enteroviruses were selected as the targets to design primers and probes. Human herpesviruses DNA and enteroviruses RNA were extracted simultaneously by using a guanidinium thiocyanate acid buffer, and were subsequently amplified through a biotinylated asymmetry multiplex RT-PCR with the specific primer of enteroviruses. In total, 90 blood samples and 49 cerebrospinal fluids samples with suspected systemic or neurological virus infections were investigated. Out of 139 samples, 66 were identified as positive. The specificities of this multiplex RT-PCR microarray assay were over 96% but the sensitivities were various from 100% for HSV1, HSV2, EV71 and CB5, 95.83% for CMV, 80% for EBV to 71.43% for CA16 in comparison with reference standards of TaqMan qPCR/qRT-PCR. The high Kappa values (>0.90 from HSV1, HSV2, CMV, EV71 and CB5 were obtained, indicating almost perfect agreement in term of the 5 viruses detection. But lower Kappa values for EBV (0.63 and CA16 (0.74 displayed a moderate to substantial agreement. This study provides an innovation of simultaneous extraction, amplification, hybridization and detection of DNA viruses and RNA viruses with simplicity and specificity, and demonstrates a potential clinical utility for a variety of viruses' detection.

  1. Cost analysis of a nucleic acid amplification test in the diagnosis of pulmonary tuberculosis at an urban hospital with a high prevalence of TB/HIV.

    Max W Adelman

    Full Text Available INTRODUCTION: The Centers for Disease Control and Prevention has recommended using a nucleic acid amplification test (NAAT for diagnosing pulmonary tuberculosis (TB but there is a lack of data on NAAT cost-effectiveness. METHODS: We conducted a prospective cohort study that included all patients with an AFB smear-positive respiratory specimen at Grady Memorial Hospital in Atlanta, GA, USA between January 2002 and June 2008. We determined the sensitivity, specificity, and positive and negative predictive value of a commercially available and FDA-approved NAAT (amplified MTD, Gen-Probe compared to the gold standard of culture. A cost analysis was performed and included costs related to laboratory tests, hospital charges, anti-TB medications, and contact investigations. Average cost per patient was calculated under two conditions: (1 using a NAAT on all AFB smear-postive respiratory specimens and (2 not using a NAAT. One-way sensitivity analyses were conducted to determine sensitivity of cost difference to reasonable ranges of model inputs. RESULTS: During a 6 1/2 year study period, there were 1,009 patients with an AFB smear-positive respiratory specimen at our public urban hospital. We found the NAAT to be highly sensitive (99.6% and specific (99.1% on AFB smear-positive specimens compared to culture. Overall, the positive predictive value (PPV of an AFB smear-positive respiratory specimen for culture-confirmed TB was 27%. The PPV of an AFB smear-positive respiratory specimen for culture-confirmed TB was significantly higher for HIV-uninfected persons compared to those who were HIV-seropositive (152/271 [56%] vs. 85/445 [19%]; RR = 2.94, 95% CI 2.36-3.65, p<0.001. The cost savings of using the NAAT was $2,003 per AFB smear-positive case. CONCLUSIONS: Routine use of the NAAT on AFB smear-positive respiratory specimens was highly cost-saving in our setting at a U.S. urban public hospital with a high prevalence of TB and HIV because of the low

  2. Towards Engineered Processes for Sequencing-Based Analysis of Single Circulating Tumor Cells.

    Adalsteinsson, Viktor A; Love, J Christopher

    2014-05-01

    Sequencing-based analysis of single circulating tumor cells (CTCs) has the potential to revolutionize our understanding of metastatic cancer and improve clinical care. Technologies exist to enrich, identify, recover, and sequence single cells, but to enable systematic routine analysis of single CTCs from a range of cancer patients, there is a need to establish processes that efficiently integrate these specific operations. Such engineered processes should address challenges associated with the yield and viability of enriched CTCs, the robust identification of candidate single CTCs with minimal degradation of DNA, the bias in whole-genome amplification, and the efficient handling of candidate single CTCs or their amplified DNA products. Advances in methods for single-cell analysis and nanoscale technologies suggest opportunities to overcome these challenges, and could create integrated platforms that perform several of the unit operations together. Ultimately, technologies should be selected or adapted for optimal performance and compatibility in an integrated process. PMID:24839591

  3. Molecular staging of lymph node-negative colon carcinomas by one-step nucleic acid amplification (OSNA) results in upstaging of a quarter of patients in a prospective, European, multicentre study

    Croner, R.S.; Geppert, C-I; Bader, F G; Nitsche, U.; Späth, C; Rosenberg, R.; Zettl, A.; Matias-Guiu, X; Tarragona, J; Güller, U.; Stürzl, M; Zuber, M

    2014-01-01

    Background: Current histopathological staging procedures in colon carcinomas depend on midline division of the lymph nodes with one section of haematoxylin & eosin (H&E) staining only. By this method, tumour deposits outside this transection line may be missed and could lead to understaging of a high-risk group of stage UICC II cases, which recurs in ∼20% of cases. A new diagnostic semiautomated system, one-step nucleic acid amplification (OSNA), detects cytokeratin (CK) 19 mRNA in lymph node...

  4. Amplification for the Adolescent.

    Wilber, Laura Ann

    1978-01-01

    Explored are various means of amplification for aurally handicapped adolescents, including behind-the-ear hearing aids, "custom ear" (or in-the-ear) hearing aids, as well as aural rehabilitation. (BD)

  5. Early amplification options.

    Gabbard, Sandra Abbott; Schryer, Jennifer

    2003-01-01

    Children with permanent hearing loss have been remediated with hearing amplification devices for decades. The influx of young infants identified with hearing loss through successful newborn hearing screening programs has established a need for amplification resources for infants within the first six months of life. For the approximately two of every 1000 infants born who are identified with bilateral hearing loss [Mehl and Thomson, 1998, Pediatrics 101, p. e4], the use of amplification is commonly the first step in treating the sequella of their loss. The use of hearing aids, combined with early intervention, has been shown to significantly improve the speech and language skills of young children with hearing loss [Yoshinaga-Itano, 2000, Seminars in Hearing 21, p. 309]. Speech and language delays have contributed to compromised academic performance of school aged children with hearing loss [Johnson et al., 1997, Educational Audiology Handbook, Singular Publishing, San Diego]. Most hard-of-hearing and deaf children use hearing aids and other assistive listening devices every day throughout their lifetime and the life expectancy of a hearing aid is only five to eight years. The current challenge for pediatric audiologists is selecting and evaluating the available amplification to provide the best options for children and their families. Amplification technology has seen an explosion in growth the past few years and the options continue to expand rapidly. This article examines currently available amplification technology and reviews the selection criteria that may be used for infants and young children. Issues such as style, type, amplification features, signal processing strategies, and verification and validation tools are also discussed. PMID:14648816

  6. Study of the population dynamics of a mixed bacterial culture able to degrade cyanuric acid in a packed bed reactor, using RAPD (Random amplification of polymorphic DNA) technique

    Cyanuric acid is a biodegradation byproduct of triazinic compounds. Because of its low carbon to nitrogen ratio, a complementary carbon source is usually needed for its complete biodegradation. In this work, glucose was used as extra carbon source. Cyanuric hydrolase is the first enzyme in cyanuric acid (CA) catabolism, and is produced by a wide number of microorganisms. (Author)

  7. Quantum Feedback Amplification

    Yamamoto, Naoki

    2016-04-01

    Quantum amplification is essential for various quantum technologies such as communication and weak-signal detection. However, its practical use is still limited due to inevitable device fragility that brings about distortion in the output signal or state. This paper presents a general theory that solves this critical issue. The key idea is simple and easy to implement: just a passive feedback of the amplifier's auxiliary mode, which is usually thrown away. In fact, this scheme makes the controlled amplifier significantly robust, and furthermore it realizes the minimum-noise amplification even under realistic imperfections. Hence, the presented theory enables the quantum amplification to be implemented at a practical level. Also, a nondegenerate parametric amplifier subjected to a special detuning is proposed to show that, additionally, it has a broadband nature.

  8. Label-free and ratiometric detection of nuclei acids based on graphene quantum dots utilizing cascade amplification by nicking endonuclease and catalytic G-quadruplex DNAzyme.

    Wang, Guang-Li; Fang, Xin; Wu, Xiu-Ming; Hu, Xue-Lian; Li, Zai-Jun

    2016-07-15

    Herein, we report a ratiometric fluorescence assay based on graphene quantum dots (GQDs) for the ultrasensitive DNA detection by coupling the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for cascade signal amplifications. With o-phenylenediamine acted as the substrate of G-quadruplex/hemin DNAzyme, whose oxidization product (that is, 2,3-diaminophenazine, DAP) quenched the fluorescence intensity of GQDs (at 460nm) obviously, accompanied with the emergence of a new emission of DAP (at 564nm). The ratiometric signal variations at the emission wavelengths of 564 and 460nm (I564/I460) were utilized for label-free, sensitive, and selective detection of target DNA. Utilizing the nicking endonuclease assisted target recycling and the G-quadruplex/hemin DNAzyme biocatalysis for amplified cascade generation of DAP, the proposed bioassay exhibited high sensitivity toward target DNA with a detection limit of 30fM. The method also had additional advantages such as facile preparation and easy operation. PMID:26950646

  9. On soliton amplification

    Leibovich, S.; Randall, J. D.

    1979-01-01

    The paper considers a modified Korteweg-de Vries equation that permits wave amplification or damping. A 'terminal similarity' solution is identified for large times in amplified systems. Numerical results are given which confirm that the terminal similarity solution is a valid local approximation for mu t sufficiently large and positive, even though the approximation is not uniformly valid in space.

  10. Amplification-Free Detection of Circulating microRNA Biomarkers from Body Fluids Based on Fluorogenic Oligonucleotide-Templated Reaction between Engineered Peptide Nucleic Acid Probes: Application to Prostate Cancer Diagnosis.

    Metcalf, Gavin A D; Shibakawa, Akifumi; Patel, Hinesh; Sita-Lumsden, Ailsa; Zivi, Andrea; Rama, Nona; Bevan, Charlotte L; Ladame, Sylvain

    2016-08-16

    Highly abundant in cells, microRNAs (or miRs) play a key role as regulators of gene expression. A proportion of them are also detectable in biofluids making them ideal noninvasive biomarkers for pathologies in which miR levels are aberrantly expressed, such as cancer. Peptide nucleic acids (PNAs) are engineered uncharged oligonucleotide analogues capable of hybridizing to complementary nucleic acids with high affinity and high specificity. Herein, novel PNA-based fluorogenic biosensors have been designed and synthesized that target miR biomarkers for prostate cancer (PCa). The sensing strategy is based on oligonucleotide-templated reactions where the only miR of interest serves as a matrix to catalyze an otherwise highly unfavorable fluorogenic reaction. Validated in vitro using synthetic RNAs, these newly developed biosensors were then shown to detect endogenous concentrations of miR in human blood samples without the need for any amplification step and with minimal sample processing. This low-cost, quantitative, and versatile sensing technology has been technically validated using gold-standard RT-qPCR. Compared to RT-qPCR however, this enzyme-free, isothermal blood test is amenable to incorporation into low-cost portable devices and could therefore be suitable for widespread public screening. PMID:27498854

  11. Evaluation of Three Automated Nucleic Acid Amplification Systems for Detection of Chlamydia trachomatis and Neisseria gonorrhoeae in First-Void Urine Specimens▿

    Levett, P N; Brandt, K.; Olenius, K.; Brown, C.; Montgomery, K.; Horsman, G. B.

    2008-01-01

    A total of 500 first-void urine specimens were tested for the presence of Chlamydia trachomatis and Neisseria gonorrhoeae nucleic acids using ProbeTec ET reagents on a Viper platform (BD Diagnostics, Mississauga, Ontario, Canada), Aptima Combo 2 reagents on a Tigris platform (Gen-Probe, Inc., San Diego, CA), and Abbott RealTime CT/NG reagents on an m2000 platform (Abbott Molecular Diagnostics, Des Plaines, IL). The performance of the three assays for detection of N. gonorrhoeae was comparable...

  12. Amplification of an MFS Transporter Encoding Gene penT Significantly Stimulates Penicillin Production and Enhances the Sensitivity of Penicillium chrysogenum to Phenylacetic Acid

    Jing Yang; Xinxin Xu; Gang Liu

    2012-01-01

    Penicillin is historically important as the first discovered drug against bacterial infections in human.Although the penicillin biosynthetic pathway and regulatory mechanism have been well studied in Penicillium chrysogenum,the compartnentation and molecular transport of penicillin or its precursors are still poorly understood.In search of the genomic database,more than 830 open reading frames (ORFs) were found to encode transmembrane proteins of P.chrysogenum.In order to investigate their roles on penicillin production,one of them (penT) was selected and cloned.The deduced protein of penT belongs to the major facilitator superfamily (MFS) and contains 12transmembrane spanning domains (TMS).During fermentation,the transcription of penT was greatly induced by penicillin precursors phenylacetic acid (PAA) and phenoxyacetic acid (POA).Knock-down of penT resulted in significant decrease of penicillin production,while over-expression of penT under the promoter of trpC enhanced the penicillin production.Introduction of an additional penT in the wild-type strain of P.chrysogenum doubled the penicillin production and enhanced the sensitivity of P.chrysogenum to the penicillin precursors PAA or POA.These results indicate that penT stimulates penicillin production probably through enhancing the translocation of penicillin precursors across fungal cellular membrane.

  13. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-05-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease. PMID:27284221

  14. Loop-Mediated Amplification Accelerated by Stem Primers

    Laurence Tisi; Guy Kiddle; Olga Gandelman; Rebecca Jackson

    2011-01-01

    Isothermal nucleic acid amplifications (iNAATs) have become an important alternative to PCR for in vitro molecular diagnostics in all fields. Amongst iNAATs Loop-mediated amplification (LAMP) has gained much attention over the last decade because of the simplicity of hardware requirements. LAMP demonstrates performance equivalent to that of PCR, but its application has been limited by the challenging primer design. The design of six primers in LAMP requires a selection of eight priming sites ...

  15. Rapid Diagnosis of Human Herpesvirus 6 Infection by a Novel DNA Amplification Method, Loop-Mediated Isothermal Amplification

    Ihira, Masaru; Yoshikawa, Tetsushi; Enomoto, Yoshihiko; Akimoto, Shiho; Ohashi, Masahiro; Suga, Sadao; Nishimura, Naoko; Ozaki, Takao; Nishiyama, Yukihiro; Notomi, Tsugunori; Ohta, Yoshinori; Asano, Yoshizo

    2004-01-01

    A novel nucleic acid amplification method, termed loop-mediated isothermal amplification (LAMP), which amplifies DNA with high specificity, efficiency, and rapidity under isothermal conditions, may be a valuable tool for the rapid detection of infectious agents. LAMP was developed for human herpesvirus 6 (HHV-6), and its reliability was evaluated in this study. Although LAMP products were detected in HHV-6 B and HHV-6 A DNA, they were not detected in HHV-7 and human cytomegalovirus DNA. The s...

  16. Implications of HLA sequence-based typing in transplantation

    Shankarkumar U

    2008-01-01

    Full Text Available Serology-based conventional microlymphocytotoxicity HLA typing method, which has been regarded as the gold standard in organ and hematopoietic stem cell transplantation, has been replaced now by DNA-based typing. Many laboratories all over the world have already switched over to molecular methods. Microlymphocytotoxicity-based tissue typing was done using commercial sera, while the molecular typing by genomic DNA based. DNA quality and its quantity obtained using various DNA extraction protocols was found to be an important factor in the molecular method of tissue typing in transplant outcome. Many polymerase chain reaction-based molecular techniques have been adopted with far reaching clinical outcome. The sequence-based typing (SBT has been the ultimate technique, which has been of the highest reliability in defining the HLA alleles. The nonavailability of specific HLA antisera from native populations, large number of blank alleles yet to be defined and comparable low resolution of HLA alleles in SSP or SSOP technique, suggests that highly refined DNA-based methods like SBT should be used as an adjunct to HLA serology and/or low/intermediate/high resolution HLA typing in order to achieve a better transplant outcome.

  17. Development of Sequence-Based Microsatellite Marker for Phalaenopsis Orchid

    FATIMAH

    2011-06-01

    Full Text Available Phalaenopsis is one of the most interesting genera of orchids due to the members are often used as parents to produce hybrids. The establishment and development of highly reliable and discriminatory methods for identifying species and cultivars has become increasingly more important to plant breeders and members of the nursery industry. The aim of this research was to develop sequence-based microsatellite (eSSR markers for the Phalaenopsis orchid designed from the sequence of GenBank NCBI. Seventeen primers were designed and thirteen primers pairs could amplify the DNA giving the expected PCR product with polymorphism. A total of 51 alleles, with an average of 3 alleles per locus and polymorphism information content (PIC values at 0.674, were detected at the 16 SSR loci. Therefore, these markers could be used for identification of the Phalaenopsis orchid used in this study. Genetic similarity and principle coordinate analysis identified five major groups of Phalaenopsis sp. the first group consisted of P. amabilis, P. fuscata, P. javanica, and P. zebrine. The second group consisted of P. amabilis, P. amboinensis, P. bellina, P. floresens, and P. mannii. The third group consisted of P. bellina, P. cornucervi, P. cornucervi, P. violaceae sumatra, P. modesta. The forth group consisted of P. cornucervi and P. lueddemanniana, and the fifth group was P. amboinensis.

  18. Evidence of high-elevation amplification versus Arctic amplification

    Wang, Qixiang; Fan, Xiaohui; Wang, Mengben

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961-2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification but also a latitudinal amplification. The warming for the high-elevation stations is linearly proportional to the temperature lapse rates along altitudinal and latitudinal gradients, as a result of the functional shape of Stefan-Boltzmann law in both vertical and latitudinal directions. In contrast, neither altitudinal amplification nor latitudinal amplification is found within the Arctic region despite its greater warming than lower latitudes. Further analysis shows that the Arctic amplification is an integrated part of the latitudinal amplification trend for the low-elevation stations (≤500 m above sea level) across the entire low- to high-latitude Northern Hemisphere, also a result of the mathematical shape of Stefan-Boltzmann law but only in latitudinal direction.

  19. Efficient audio power amplification - challenges

    Andersen, Michael A.E.

    2005-07-01

    For more than a decade efficient audio power amplification has evolved and today switch-mode audio power amplification in various forms are the state-of-the-art. The technical steps that lead to this evolution are described and in addition many of the challenges still to be faced and where extensive research and development are needed is covered. (au)

  20. Gene amplification during myogenic differentiation

    Fischer, Ulrike; Ludwig, Nicole; Raslan, Abdulrahman; Meier, Carola; Meese, Eckart

    2016-01-01

    Gene amplifications are mostly an attribute of tumor cells and drug resistant cells. Recently, we provided evidence for gene amplifications during differentiation of human and mouse neural progenitor cells. Here, we report gene amplifications in differentiating mouse myoblasts (C2C12 cells) covering a period of 7 days including pre-fusion, fusion and post-fusion stages. After differentiation induction we found an increase in copy numbers of CDK4 gene at day 3, of NUP133 at days 4 and 7, and of MYO18B at day 4. The amplification process was accompanied by gamma-H2AX foci that are indicative of double stand breaks. Amplifications during the differentiating process were also found in primary human myoblasts with the gene CDK4 and NUP133 amplified both in human and mouse myoblasts. Amplifications of NUP133 and CDK4 were also identified in vivo on mouse transversal cryosections at stage E11.5. In the course of myoblast differentiation, we found amplifications in cytoplasm indicative of removal of amplified sequences from the nucleus. The data provide further evidence that amplification is a fundamental mechanism contributing to the differentiation process in mammalians. PMID:26760505

  1. Efficient Audio Power Amplification - Challenges

    Andersen, Michael Andreas E.

    2005-01-01

    For more than a decade efficient audio power amplification has evolved and today switch-mode audio power amplification in various forms are the state-of-the-art. The technical steps that lead to this evolution are described and in addition many of the challenges still to be faced and where...

  2. Evidence of high-elevation amplification versus Arctic amplification

    Qixiang Wang; Xiaohui Fan; Mengben Wang

    2016-01-01

    Elevation-dependent warming in high-elevation regions and Arctic amplification are of tremendous interest to many scientists who are engaged in studies in climate change. Here, using annual mean temperatures from 2781 global stations for the 1961–2010 period, we find that the warming for the world’s high-elevation stations (>500 m above sea level) is clearly stronger than their low-elevation counterparts; and the high-elevation amplification consists of not only an altitudinal amplification b...

  3. An integrated disposable device for DNA extraction and helicase dependent amplification

    Mahalanabis, Madhumita; Do, Jaephil; ALMuayad, Hussam; Zhang, Jane Y.; Klapperich, Catherine M.

    2010-01-01

    Here we report the demonstration of an integrated microfluidic chip that performs helicase dependent amplification (HDA) on samples containing live bacteria. Combined chip-based sample preparation and isothermal amplification are attractive for world health applications, since the need for instrumentation to control flow rate and temperature changes are reduced or eliminated. Bacteria lysis, nucleic acid extraction, and DNA amplification with a fluorescent reporter are incorporated into a dis...

  4. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications

    Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylat...

  5. Next generation Chirped Pulse Amplification

    Nees, J.; Biswal, S.; Mourou, G. [Univ. Michigan, Center for Ultrafast Optical Science, Ann Arbor, MI (United States); Nishimura, Akihiko; Takuma, Hiroshi

    1998-03-01

    The limiting factors of Chirped Pulse Amplification (CPA) are discussed and experimental results of CPA in Yb:glass regenerative amplifier are given. Scaling of Yb:glass to the petawatt level is briefly discussed. (author)

  6. Combined use of real-time PCR and nested sequence-based typing in survey of human Legionella infection.

    Qin, T; Zhou, H; Ren, H; Shi, W; Jin, H; Jiang, X; Xu, Y; Zhou, M; Li, J; Wang, J; Shao, Z; Xu, X

    2016-07-01

    Legionnaires' disease (LD) is a globally distributed systemic infectious disease. The burden of LD in many regions is still unclear, especially in Asian countries including China. A survey of Legionella infection using real-time PCR and nested sequence-based typing (SBT) was performed in two hospitals in Shanghai, China. A total of 265 bronchoalveolar lavage fluid (BALF) specimens were collected from hospital A between January 2012 and December 2013, and 359 sputum specimens were collected from hospital B throughout 2012. A total of 71 specimens were positive for Legionella according to real-time PCR focusing on the 5S rRNA gene. Seventy of these specimens were identified as Legionella pneumophila as a result of real-time PCR amplification of the dotA gene. Results of nested SBT revealed high genetic polymorphism in these L. pneumophila and ST1 was the predominant sequence type. These data revealed that the burden of LD in China is much greater than that recognized previously, and real-time PCR may be a suitable monitoring technology for LD in large sample surveys in regions lacking the economic and technical resources to perform other methods, such as urinary antigen tests and culture methods. PMID:26790498

  7. Comparison of sequence-based and structure-based phylogenetic trees of homologous proteins: Inferences on protein evolution

    S Balaji; N Srinivasan

    2007-01-01

    Several studies based on the known three-dimensional (3-D) structures of proteins show that two homologous proteins with insignificant sequence similarity could adopt a common fold and may perform same or similar biochemical functions. Hence, it is appropriate to use similarities in 3-D structure of proteins rather than the amino acid sequence similarities in modelling evolution of distantly related proteins. Here we present an assessment of using 3-D structures in modelling evolution of homologous proteins. Using a dataset of 108 protein domain families of known structures with at least 10 members per family we present a comparison of extent of structural and sequence dissimilarities among pairs of proteins which are inputs into the construction of phylogenetic trees. We find that correlation between the structure-based dissimilarity measures and the sequence-based dissimilarity measures is usually good if the sequence similarity among the homologues is about 30% or more. For protein families with low sequence similarity among the members, the correlation coefficient between the sequence-based and the structure-based dissimilarities are poor. In these cases the structure-based dendrogram clusters proteins with most similar biochemical functional properties better than the sequence-similarity based dendrogram. In multi-domain protein families and disulphide-rich protein families the correlation coefficient for the match of sequence-based and structure-based dissimilarity (SDM) measures can be poor though the sequence identity could be higher than 30%. Hence it is suggested that protein evolution is best modelled using 3-D structures if the sequence similarities (SSM) of the homologues are very low.

  8. Feedback Amplification of Neutrophil Function.

    Németh, Tamás; Mócsai, Attila

    2016-06-01

    As the first line of innate immune defense, neutrophils need to mount a rapid and robust antimicrobial response. Recent studies implicate various positive feedback amplification processes in achieving that goal. Feedback amplification ensures effective migration of neutrophils in shallow chemotactic gradients, multiple waves of neutrophil recruitment to the site of inflammation, and the augmentation of various effector functions of the cells. We review here such positive feedback loops including intracellular and autocrine processes, paracrine effects mediated by lipid (LTB4), chemokine, and cytokine mediators, and bidirectional interactions with the complement system and with other immune and non-immune cells. These amplification mechanisms are not only involved in antimicrobial immunity but also contribute to neutrophil-mediated tissue damage under pathological conditions. PMID:27157638

  9. Sequencing-Based Genotyping of Mixed Human Papillomavirus Infections by Use of RipSeq Software

    Tardif, Keith D.; Simmon, Keith E.; Kommedal, Øyvind; Pyne, Michael T.; Schlaberg, Robert

    2013-01-01

    Sequencing-based pathogen identification directly from clinical specimens requires time-consuming interpretation, especially with mixed chromatograms when multiple microorganisms are detected. We assessed RipSeq Mixed software for human papillomavirus (HPV) genotyping by comparison to the linear array HPV genotyping assay. RipSeq Mixed provided rapid, sequencing-based HPV typing for single-type infections and coinfections with 2 types.

  10. SPARSE: quadratic time simultaneous alignment and folding of RNAs without sequence-based heuristics

    Will, Sebastian; Otto, Christina; Miladi, Milad; Möhl, Mathias; Backofen, Rolf

    2015-01-01

    Motivation: RNA-Seq experiments have revealed a multitude of novel ncRNAs. The gold standard for their analysis based on simultaneous alignment and folding suffers from extreme time complexity of O ( n 6 ) . Subsequently, numerous faster ‘Sankoff-style’ approaches have been suggested. Commonly, the performance of such methods relies on sequence-based heuristics that restrict the search space to optimal or near-optimal sequence alignments; however, the accuracy of sequence-based methods breaks...

  11. Method for chemical amplification based on fluid partitioning in an immiscible liquid

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2015-06-02

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  12. Chemical amplification of magnetic field effects relevant to avian magnetoreception

    Kattnig, Daniel R.; Evans, Emrys W.; Déjean, Victoire; Dodson, Charlotte A.; Wallace, Mark I.; MacKenzie, Stuart R.; Timmel, Christiane R.; Hore, P. J.

    2016-04-01

    Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, kBT, at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin-tryptophan and flavin-ascorbic acid photocycles and the closely related intramolecular flavin-tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor.

  13. Clostridium difficile Testing Algorithms Using Glutamate Dehydrogenase Antigen and C. difficile Toxin Enzyme Immunoassays with C. difficile Nucleic Acid Amplification Testing Increase Diagnostic Yield in a Tertiary Pediatric Population

    Ota, Kaede V.; McGowan, Karin L.

    2012-01-01

    We evaluated the performance of the rapid C. diff Quik Chek Complete's glutamate dehydrogenase antigen (GDH) and toxin A/B (CDT) tests in two algorithmic approaches for a tertiary pediatric population: algorithm 1 entailed initial testing with GDH/CDT followed by loop-mediated isothermal amplification (LAMP), and algorithm 2 entailed GDH/CDT followed by cytotoxicity neutralization assay (CCNA) for adjudication of discrepant GDH-positive/CDT-negative results. A true positive (TP) was defined a...

  14. Genome position and gene amplification

    Jirsová, Pavla; Snijders, A.M.; Kwek, S.; Roydasgupta, R.; Fridlyand, J.; Tokuyasu, T.; Pinkel, D.; Albertson, D. G.

    2007-01-01

    Roč. 8, č. 6 (2007), r120. ISSN 1474-760X Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : gene amplification * array comparative genomic hybridization * oncogene Subject RIV: BO - Biophysics Impact factor: 6.589, year: 2007

  15. Strand Invasion Based Amplification (SIBA®: a novel isothermal DNA amplification technology demonstrating high specificity and sensitivity for a single molecule of target analyte.

    Mark J Hoser

    Full Text Available Isothermal nucleic acid amplification technologies offer significant advantages over polymerase chain reaction (PCR in that they do not require thermal cycling or sophisticated laboratory equipment. However, non-target-dependent amplification has limited the sensitivity of isothermal technologies and complex probes are usually required to distinguish between non-specific and target-dependent amplification. Here, we report a novel isothermal nucleic acid amplification technology, Strand Invasion Based Amplification (SIBA. SIBA technology is resistant to non-specific amplification, is able to detect a single molecule of target analyte, and does not require target-specific probes. The technology relies on the recombinase-dependent insertion of an invasion oligonucleotide (IO into the double-stranded target nucleic acid. The duplex regions peripheral to the IO insertion site dissociate, thereby enabling target-specific primers to bind. A polymerase then extends the primers onto the target nucleic acid leading to exponential amplification of the target. The primers are not substrates for the recombinase and are, therefore unable to extend the target template in the absence of the IO. The inclusion of 2'-O-methyl RNA to the IO ensures that it is not extendible and that it does not take part in the extension of the target template. These characteristics ensure that the technology is resistant to non-specific amplification since primer dimers or mis-priming are unable to exponentially amplify. Consequently, SIBA is highly specific and able to distinguish closely-related species with single molecule sensitivity in the absence of complex probes or sophisticated laboratory equipment. Here, we describe this technology in detail and demonstrate its use for the detection of Salmonella.

  16. Double regenerative amplification of picosecond pulses

    Bai, Zhen-ao; Chen, Li-yuan; Bai, Zhen-xu; Chen, Meng; Li, Gang

    2012-04-01

    An double Nd:YAG regenerative amplification picosecond pulse laser is demonstrated under the semiconductor saturable absorption mirror(SESAM) mode-locking technology and regenerative amplification technology, using BBO crystal as PC electro-optic crystal. The laser obtained is 20.71ps pulse width at 10 KHz repetition rate, and the energy power is up to 4W which is much larger than the system without pre-amplification. This result will lay a foundation for the following amplification.

  17. Comprehensive human genome amplification using multiple displacement amplification

    Dean, Frank B.; Hosono, Seiyu; Fang, Linhua; Wu, Xiaohong; Faruqi, A. Fawad; Bray-Ward, Patricia; Zhenyu SUN; Zong, Qiuling; Du, Yuefen; Du, Jing; Driscoll, Mark; Song, Wanmin; Kingsmore, Stephen F.; Egholm, Michael; Lasken, Roger S.

    2002-01-01

    Fundamental to most genetic analysis is availability of genomic DNA of adequate quality and quantity. Because DNA yield from human samples is frequently limiting, much effort has been invested in developing methods for whole genome amplification (WGA) by random or degenerate oligonucleotide-primed PCR. However, existing WGA methods like degenerate oligonucleotide-primed PCR suffer from incomplete coverage and inadequate average DNA size. We describe a method, termed multi...

  18. Reproducible analysis of sequencing-based RNA structure probing data with user-friendly tools

    Kielpinski, Lukasz Jan; Sidiropoulos, Nikos; Vinther, Jeppe

    2015-01-01

    time also made analysis of the data challenging for scientists without formal training in computational biology. Here, we discuss different strategies for data analysis of massive parallel sequencing-based structure-probing data. To facilitate reproducible and standardized analysis of this type of data...

  19. Magnetism Teaching Sequences Based on an Inductive Approach for First-Year Thai University Science Students

    Narjaikaew, Pattawan; Emarat, Narumon; Arayathanitkul, Kwan; Cowie, Bronwen

    2010-01-01

    The study investigated the impact on student motivation and understanding of magnetism of teaching sequences based on an inductive approach. The study was conducted in large lecture classes. A pre- and post-Conceptual Survey of Electricity and Magnetism was conducted with just fewer than 700 Thai undergraduate science students, before and after…

  20. Low Cost Extraction and Isothermal Amplification of DNA for Infectious Diarrhea Diagnosis

    Huang, Shichu; Do, Jaephil; Mahalanabis, Madhumita; Fan, Andy; Zhao, Lei; Jepeal, Lisa; Singh, Satish K.; Klapperich, Catherine M.

    2013-01-01

    In order to counter the common perception that molecular diagnostics are too complicated to work in low resource settings, we have performed a difficult sample preparation and DNA amplification protocol using instrumentation designed to be operated without wall or battery power. In this work we have combined a nearly electricity-free nucleic acid extraction process with an electricity-free isothermal amplification assay to detect the presence of Clostridium difficile (C. difficile) DNA in the...

  1. Loop-mediated isothermal amplification for detection of porcine circovirus type 2

    Zhou Shun; Han Si; Shi Jianli; Wu Jiaqiang; Yuan Xiaoyuan; Cong Xiaoyan; Xu Shaojian; Wu Xiaoyan; Li Jun; Wang Jinbao

    2011-01-01

    Abstract Background Porcine circovirus type 2 (PCV2) is the primary causative agent of the emerging swine disease known as postweaning multisystemic wasting syndrome (PMWS). Nowadays, polymerase chain reaction (PCR) is still the most widespread technique in pathogen detection. Loop-mediated isothermal amplification (LAMP), a novel nucleic acid amplification method developed in 2000, will possibly replace PCR in the field of detection. To establish a LAMP method for rapid detection of PCV2, tw...

  2. Simple system for isothermal DNA amplification coupled to lateral flow detection.

    Kristina Roskos

    Full Text Available Infectious disease diagnosis in point-of-care settings can be greatly improved through integrated, automated nucleic acid testing devices. We have developed an early prototype for a low-cost system which executes isothermal DNA amplification coupled to nucleic acid lateral flow (NALF detection in a mesofluidic cartridge attached to a portable instrument. Fluid handling inside the cartridge is facilitated through one-way passive valves, flexible pouches, and electrolysis-driven pumps, which promotes a compact and inexpensive instrument design. The closed-system disposable prevents workspace amplicon contamination. The cartridge design is based on standard scalable manufacturing techniques such as injection molding. Nucleic acid amplification occurs in a two-layer pouch that enables efficient heat transfer. We have demonstrated as proof of principle the amplification and detection of Mycobacterium tuberculosis (M.tb genomic DNA in the cartridge, using either Loop Mediated Amplification (LAMP or the Exponential Amplification Reaction (EXPAR, both coupled to NALF detection. We envision that a refined version of this cartridge, including upstream sample preparation coupled to amplification and detection, will enable fully-automated sample-in to answer-out infectious disease diagnosis in primary care settings of low-resource countries with high disease burden.

  3. Ultrasmall volume molecular isothermal amplification in microfluidic chip with advanced surface processing

    In this paper, we developed a metal micro-fluidic chip with advanced surface processing for ultra-small volume molecular isothermal amplification. This method takes advantages of the nucleic acid amplification with good stability and consistency, high sensitivity about 31 genomic DNA copies and bacteria specific gene identification. Based on the advanced surface processing, the bioreaction assays of nucleic acid amplification was dropped about 392nl in volume. A high numerical aperture confocal optical detection system was advanced to sensitively monitor the DNA amplification with low noise and high power collecting fluorescence near to the optical diffraction limit. A speedy nucleic acid isothermal amplification was performed in the ultra-small volume microfluidic chip, where the time at the inflexions of second derivative to DNA exponential amplified curves was brought forward and the sensitivity was improved about 65 folds to that of in current 25μl Ep-tube amplified reaction, which indicates a promising clinic molecular diagnostics in the droplet amplification.

  4. Heralded amplification of photonic qubits.

    Bruno, Natalia; Pini, Vittorio; Martin, Anthony; Verma, Varun B; Nam, Sae Woo; Mirin, Richard; Lita, Adriana; Marsili, Francesco; Korzh, Boris; Bussières, Félix; Sangouard, Nicolas; Zbinden, Hugo; Gisin, Nicolas; Thew, Rob

    2016-01-11

    We demonstrate postselection free heralded qubit amplification for Time-Bin qubits and single photon states in an all-fibre, telecom-wavelength, scheme that highlights the simplicity, stability and potential for fully integrated photonic solutions. Exploiting high-efficiency superconducting detectors, the gain, fidelity and the performance of the amplifier are studied as a function of loss. We also demonstrate the first heralded single photon amplifier with independent sources. This provides a significant advance towards demonstrating device-independent quantum key distribution as well as fundamental tests of quantum mechanics over extended distances. PMID:26832244

  5. Resonant primordial gravitational waves amplification

    Chunshan Lin

    2016-01-01

    Full Text Available We propose a mechanism to evade the Lyth bound in models of inflation. We minimally extend the conventional single-field inflation model in general relativity (GR to a theory with non-vanishing graviton mass in the very early universe. The modification primarily affects the tensor perturbation, while the scalar and vector perturbations are the same as the ones in GR with a single scalar field at least at the level of linear perturbation theory. During the reheating stage, the graviton mass oscillates coherently and leads to resonant amplification of the primordial tensor perturbation. After reheating the graviton mass vanishes and we recover GR.

  6. Telomerase Repeated Amplification Protocol (TRAP)

    Mender, Ilgen; Shay, Jerry W.

    2016-01-01

    Telomeres are found at the end of eukaryotic linear chromosomes, and proteins that bind to telomeres protect DNA from being recognized as double-strand breaks thus preventing end-to-end fusions (Griffith et al., 1999). However, due to the end replication problem and other factors such as oxidative damage, the limited life span of cultured cells (Hayflick limit) results in progressive shortening of these protective structures (Hayflick and Moorhead, 1961; Olovnikov, 1973). The ribonucleoprotein enzyme complex telomerase-consisting of a protein catalytic component hTERT and a functional RNA component hTR or hTERC- counteracts telomere shortening by adding telomeric repeats to the end of chromosomes in ~90% of primary human tumors and in some transiently proliferating stem-like cells (Shay and Wright, 1996; Shay and Wright, 2001). This results in continuous proliferation of cells which is a hallmark of cancer. Therefore, telomere biology has a central role in aging, cancer progression/metastasis as well as targeted cancer therapies. There are commonly used methods in telomere biology such as Telomere Restriction Fragment (TRF) (Mender and Shay, 2015b), Telomere Repeat Amplification Protocol (TRAP) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this detailed protocol we describe Telomere Repeat Amplification Protocol (TRAP). The TRAP assay is a popular method to determine telomerase activity in mammalian cells and tissue samples (Kim et al., 1994). The TRAP assay includes three steps: extension, amplification, and detection of telomerase products. In the extension step, telomeric repeats are added to the telomerase substrate (which is actually a non telomeric oligonucleotide, TS) by telomerase. In the amplification step, the extension products are amplified by the polymerase chain reaction (PCR) using specific primers (TS upstream primer and ACX downstream primer) and in the detection step, the presence or absence of telomerase is

  7. Dynamics and Control of DNA Sequence Amplification

    Marimuthu, Karthikeyan

    2014-01-01

    DNA amplification is the process of replication of a specified DNA sequence \\emph{in vitro} through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction (PCR) as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal tempe...

  8. Modelling and Managing SSD Write-amplification

    Dayan, Niv; Bouganim, Luc; Bonnet, Philippe

    2015-01-01

    How stable is the performance of your flash-based Solid State Drives (SSDs)? This question is central for database designers and administrators, cloud service providers, and SSD constructors. The answer depends on write-amplification, i.e., garbage collection overhead. More specifically, the answer depends on how write-amplification evolves in time. How then can one model and manage write-amplification, especially when application workloads change? This is the focus of this paper. Managing wr...

  9. Dynamics and control of DNA sequence amplification

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions

  10. Dynamics and control of DNA sequence amplification

    Marimuthu, Karthikeyan [Department of Chemical Engineering and Center for Advanced Process Decision-Making, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Chakrabarti, Raj, E-mail: raj@pmc-group.com, E-mail: rajc@andrew.cmu.edu [Department of Chemical Engineering and Center for Advanced Process Decision-Making, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States); Division of Fundamental Research, PMC Advanced Technology, Mount Laurel, New Jersey 08054 (United States)

    2014-10-28

    DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.

  11. Risk Perception and Social Amplification

    This paper seeks to consider social amplification as it applies to risk perception. Perceptions of the magnitude of a risk are conditioned by issues such as the degree of uncertainty in probability and consequences, the nature of the consequences and the relative weightings placed on probability and consequences. Risk perceptions are also influenced by factors such as confidence in the operator of an industrial process, trust in the regulator and the perceived fairness of regulatory decision-making. Different people may hold different views about these issues and there may also be difficulties in communication. The paper identifies and discusses self-reinforcing mechanisms, which will be labelled 'lock-in' here. They appear to apply in many situations where social amplification is observed. Historically, the term 'lock-in' has been applied mainly in the technological context but, in this paper, four types of lock-in are identified, namely scientific/technological, economic, social and institutional lock-in. One type of lock-in tends to lead to the next and all are buttressed by people's general acceptance of the familiar, fear of the unknown and resistance to change. The regulator seeks to make decisions which achieve the common good rather than supporting or perpetuating any set of vested interests. In this regard the locked-in positions of stakeholders, whether organisations, interest groups, or individual members of the public, are obstacles and challenges. Existing methods of consultation are unsatisfactory in terms of achieving a proper and productive level of dialogue with stakeholders

  12. Clostridium difficile testing algorithms using glutamate dehydrogenase antigen and C. difficile toxin enzyme immunoassays with C. difficile nucleic acid amplification testing increase diagnostic yield in a tertiary pediatric population.

    Ota, Kaede V; McGowan, Karin L

    2012-04-01

    We evaluated the performance of the rapid C. diff Quik Chek Complete's glutamate dehydrogenase antigen (GDH) and toxin A/B (CDT) tests in two algorithmic approaches for a tertiary pediatric population: algorithm 1 entailed initial testing with GDH/CDT followed by loop-mediated isothermal amplification (LAMP), and algorithm 2 entailed GDH/CDT followed by cytotoxicity neutralization assay (CCNA) for adjudication of discrepant GDH-positive/CDT-negative results. A true positive (TP) was defined as positivity by CCNA or positivity by LAMP plus another test (GDH, CDT, or the Premier C. difficile toxin A and B enzyme immunoassay [P-EIA]). A total of 141 specimens from 141 patients yielded 27 TPs and 19% prevalence. Sensitivity, specificity, positive predictive value, and negative predictive value were 56%, 100%, 100%, and 90% for P-EIA and 81%, 100%, 100%, and 96% for both algorithm 1 and algorithm 2. In summary, GDH-based algorithms detected C. difficile infections with superior sensitivity compared to P-EIA. The algorithms allowed immediate reporting of half of all TPs, but LAMP or CCNA was required to confirm the presence or absence of toxigenic C. difficile in GDH-positive/CDT-negative specimens. PMID:22259201

  13. State of the art and challenges in sequence based T-cell epitope prediction

    Lundegaard, Claus; Hoof, Ilka; Lund, Ole;

    2010-01-01

    field has evolved significantly. Methods have now been developed that produce highly accurate binding predictions for many alleles and integrate both proteasomal cleavage and transport events. Moreover have so-called pan-specific methods been developed, which allow for prediction of peptide binding to......Sequence based T-cell epitope predictions have improved immensely in the last decade. From predictions of peptide binding to major histocompatibility complex molecules with moderate accuracy, limited allele coverage, and no good estimates of the other events in the antigen-processing pathway, the...... MHC alleles characterized by limited or no peptide binding data. Most of the developed methods are publicly available, and have proven to be very useful as a shortcut in epitope discovery. Here, we will go through some of the history of sequence-based predictions of helper as well as cytotoxic T cell...

  14. Approaches towards molecular amplification for sensing.

    Goggins, Sean; Frost, Christopher G

    2016-06-01

    Diagnostic assays that rely on molecular interactions have come a long way; from initial reversible detection systems towards irreversible reaction indicator-based methods. More recently, the emergence of innovative molecular amplification methodologies has revolutionised sensing, allowing diagnostic assays to achieve ultra-low limits of detection. There have been a significant number of molecular amplification approaches developed over recent years to accommodate the wide variety of analytes that require sensitive detection. To celebrate this achievement, this comprehensive critical review has been compiled to give a broad overview of the many different approaches used to attain amplification in sensing with an aim to inspire the next generation of diagnostic assays looking to achieve the ultimate detection limit. This review has been created with the focus on how each conceptually unique molecular amplification methodology achieves amplification, not just its sensitivity, while highlighting any key processes. Excluded are any references that were not found to contain an obvious molecular amplifier or amplification component, or that did not use an appropriate signal readout that could be incorporated into a sensing application. Additionally, methodologies where amplification is achieved through advances in instrumentation are also excluded. Depending upon the type of approach employed, amplification strategies are divided into four categories: target, label, signal or receptor amplification. More recent, more complex protocols combine a number of approaches and are therefore categorised by which amplification component described within was considered as the biggest advancement. The advantages and disadvantages of each methodology are discussed along with any limits of detection, if stated in the original article. Any subsequent use of the methodology within sensing or any other application is also mentioned to draw attention to its practicality. The importance of

  15. Evaluation of Repetitive Element Sequence-Based PCR as a Molecular Typing Method for Clostridium difficile

    Spigaglia, Patrizia; Mastrantonio, Paola

    2003-01-01

    Repetitive element sequence-based PCR (rep-PCR) is a typing method that enables the generation of DNA fingerprinting that discriminates bacterial strains. In this study, we evaluated the applicability of rep-PCR in typing Clostridium difficile clinical isolates. The results obtained by rep-PCR were compared with those obtained by pulsed-field gel electrophoresis (PFGE) and PCR ribotyping. A high correspondence between pattern differentiations produced by rep-PCR and PFGE was observed, whereas...

  16. AbCD: arbitrary coverage design for sequencing-based genetic studies

    Kang, Jian; Huang, Kuan-Chieh; Xu, Zheng; Wang, Yunfei; Abecasis, Gonçalo R.; Li, Yun

    2013-01-01

    Summary: Recent advances in sequencing technologies have revolutionized genetic studies. Although high-coverage sequencing can uncover most variants present in the sequenced sample, low-coverage sequencing is appealing for its cost effectiveness. Here, we present AbCD (arbitrary coverage design) to aid the design of sequencing-based studies. AbCD is a user-friendly interface providing pre-estimated effective sample sizes, specific to each minor allele frequency category, for designs with arbi...

  17. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods

    Francisco Alexandre P; Vaz Ctia; Monteiro Pedro T; Melo-Cristino José; Ramirez Mário; Carrio Joo A

    2012-01-01

    Abstract Background With the decrease of DNA sequencing costs, sequence-based typing methods are rapidly becoming the gold standard for epidemiological surveillance. These methods provide reproducible and comparable results needed for a global scale bacterial population analysis, while retaining their usefulness for local epidemiological surveys. Online databases that collect the generated allelic profiles and associated epidemiological data are available but this wealth of data remains under...

  18. Tsunami Amplification due to Focusing

    Moore, C. W.; Kanoglu, U.; Titov, V. V.; Aydin, B.; Spillane, M. C.; Synolakis, C. E.

    2012-12-01

    Tsunami runup measurements over the periphery of the Pacific Ocean after the devastating Great Japan tsunami of 11 March 2011 showed considerable variation in far-field and near-field impact. This variation of tsunami impact have been attributed to either directivity of the source or by local topographic effects. Directivity arguments alone, however, cannot explain the complexity of the radiated patterns in oceans with trenches and seamounts. Berry (2007, Proc. R. Soc. Lond. A 463, 3055-3071) discovered how such underwater features may concentrate tsunamis into cusped caustics and thus cause large local amplifications at specific focal points. Here, we examine focusing and local amplification, not by considering the effects of underwater diffractive lenses, but by considering the details of the dipole nature of the initial profile, and propose that certain regions of coastline are more at-risk, not simply because of directivity but because typical tsunami deformations create focal regions where abnormal tsunami wave height can be registered (Marchuk and Titov, 1989, Proc. IUGG/IOC International Tsunami Symposium, Novosibirsk, USSR). In this work, we present a new general analytical solution of the linear shallow-water wave equation for the propagation of a finite-crest-length source over a constant depth without any restriction on the initial profile. Unlike the analytical solution of Carrier and Yeh (2005, Comp. Mod. Eng. & Sci. 10(2), 113-121) which was restricted to initial conditions with Gaussian profiles and involved approximation, our solution is not only exact, but also general and allows the use of realistic initial waveform such as N-waves as defined by Tadepalli and Synolakis (1994, Proc. R. Soc. Lond. A 445, 99-112). We then verify our analytical solution for several typical wave profiles, both with the NOAA tsunami forecast model MOST (Titov and Synolakis, 1998, J. Waterw. Port Coast. Ocean Eng. 124(4), 157-171) which is validated and verified through

  19. By-Product Formation in Repetitive PCR Amplification of DNA Libraries during SELEX

    Tolle, Fabian; Wilke, Julian; Wengel, Jesper;

    2014-01-01

    The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recogniz......The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target......-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments...... improving the success rate of aptamer selection....

  20. Mechanisms of metal-induced centrosome amplification.

    Holmes, Amie L; Wise, John Pierce

    2010-12-01

    Exposure to toxic and carcinogenic metals is widespread; however, their mechanisms of action remain largely unknown. One potential mechanism for metal-induced carcinogenicity and toxicity is centrosome amplification. Here we review the mechanisms for metal-induced centrosome amplification, including arsenic, chromium, mercury and nano-titanium dioxide. PMID:21118148

  1. Mechanisms of Metal-Induced Centrosome Amplification

    Holmes, Amie L.; Wise, John Pierce

    2010-01-01

    Exposure to toxic and carcinogenic metals is widespread; however, their mechanisms of action remain largely unknown. One potential mechanism for metal-induced carcinogenicity and toxicity is centrosome amplification. Here, we review the mechanisms for metal-induced centrosome amplification, including arsenic, chromium, mercury and nano-titanium dioxide.

  2. Risk Perception and Social Amplification

    Smith, R.E. [Environment Agency (United Kingdom)

    2001-07-01

    This paper seeks to consider social amplification as it applies to risk perception. Perceptions of the magnitude of a risk are conditioned by issues such as the degree of uncertainty in probability and consequences, the nature of the consequences and the relative weightings placed on probability and consequences. Risk perceptions are also influenced by factors such as confidence in the operator of an industrial process, trust in the regulator and the perceived fairness of regulatory decision-making. Different people may hold different views about these issues and there may also be difficulties in communication. The paper identifies and discusses self-reinforcing mechanisms, which will be labelled 'lock-in' here. They appear to apply in many situations where social amplification is observed. Historically, the term 'lock-in' has been applied mainly in the technological context but, in this paper, four types of lock-in are identified, namely scientific/technological, economic, social and institutional lock-in. One type of lock-in tends to lead to the next and all are buttressed by people's general acceptance of the familiar, fear of the unknown and resistance to change. The regulator seeks to make decisions which achieve the common good rather than supporting or perpetuating any set of vested interests. In this regard the locked-in positions of stakeholders, whether organisations, interest groups, or individual members of the public, are obstacles and challenges. Existing methods of consultation are unsatisfactory in terms of achieving a proper and productive level of dialogue with stakeholders.

  3. An integrated lateral flow assay for effective DNA amplification and detection at the point of care.

    Choi, Jane Ru; Hu, Jie; Gong, Yan; Feng, Shangsheng; Wan Abas, Wan Abu Bakar; Pingguan-Murphy, Belinda; Xu, Feng

    2016-05-10

    Lateral flow assays (LFAs) have been extensively explored in nucleic acid testing (NAT) for medical diagnostics, food safety analysis and environmental monitoring. However, the amount of target nucleic acid in a raw sample is usually too low to be directly detected by LFAs, necessitating the process of amplification. Even though cost-effective paper-based amplification techniques have been introduced, they have always been separately performed from LFAs, hence increasing the risk of reagent loss and cross-contaminations. To date, integrating paper-based nucleic acid amplification into colorimetric LFA in a simple, portable and cost-effective manner has not been introduced. Herein, we developed an integrated LFA with the aid of a specially designed handheld battery-powered system for effective amplification and detection of targets in resource-poor settings. Interestingly, using the integrated paper-based loop-mediated isothermal amplification (LAMP)-LFA, we successfully performed highly sensitive and specific target detection, achieving a detection limit of as low as 3 × 10(3) copies of target DNA, which is comparable to the conventional tube-based LAMP-LFA in an unintegrated format. The device may serve in conjunction with a simple paper-based sample preparation to create a fully integrated paper-based sample-to-answer diagnostic device for point-of-care testing (POCT) in the near future. PMID:27010033

  4. A Novel Low Temperature PCR Assured High-Fidelity DNA Amplification

    Shaoxia Zhou

    2013-06-01

    Full Text Available As previously reported, a novel low temperature (LoTemp polymerase chain reaction (PCR catalyzed by a moderately heat-resistant (MHR DNA polymerase with a chemical-assisted denaturation temperature set at 85 °C instead of the conventional 94–96 °C can achieve high-fidelity DNA amplification of a target DNA, even after up to 120 PCR thermal cycles. Furthermore, such accurate amplification is not achievable with conventional PCR. Now, using a well-recognized L1 gene segment of the human papillomavirus (HPV type 52 (HPV-52 as the template for experiments, we demonstrate that the LoTemp high-fidelity DNA amplification is attributed to an unusually high processivity and stability of the MHR DNA polymerase whose high fidelity in template-directed DNA synthesis is independent of non-existent 3'–5' exonuclease activity. Further studies and understanding of the characteristics of the LoTemp PCR technology may facilitate implementation of DNA sequencing-based diagnostics at the point of care in community hospital laboratories.

  5. Next Generation Sequencing-Based Analysis of Repetitive DNA in the Model Dioceous Plant Silene latifolia

    Macas, Jiří; Kejnovský, Eduard; Neumann, Pavel; Novák, Petr; Koblížková, Andrea; Vyskot, Boris

    2011-01-01

    Roč. 6, č. 11 (2011), e27335. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) OC10037; GA MŠk(CZ) LC06004; GA MŠk(CZ) LH11058; GA ČR(CZ) GAP501/10/0102; GA ČR(CZ) GAP305/10/0930 Institutional research plan: CEZ:AV0Z50510513; CEZ:AV0Z50040702 Keywords : Plant genome * Sequencing-Based Analyses * Repetitive DNA * Silene latifolia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.092, year: 2011

  6. Quantum Amplitude Amplification and Estimation

    Brassard, G; Mosca, M; Tapp, A; Brassard, Gilles; Hoyer, Peter; Mosca, Michele; Tapp, Alain

    2000-01-01

    Consider a Boolean function $\\chi: X \\to \\{0,1\\}$ that partitions set $X$ between its good and bad elements, where $x$ is good if $\\chi(x)=1$ and bad otherwise. Consider also a quantum algorithm $\\mathcal A$ such that $A \\ket{0} = \\sum_{x\\in X} \\alpha_x \\ket{x}$ is a quantum superposition of the elements of $X$, and let $a$ denote the probability that a good element is produced if $A \\ket{0}$ is measured. If we repeat the process of running $A$, measuring the output, and using $\\chi$ to check the validity of the result, we shall expect to repeat $1/a$ times on the average before a solution is found. *Amplitude amplification* is a process that allows to find a good $x$ after an expected number of applications of $A$ and its inverse which is proportional to $1/\\sqrt{a}$, assuming algorithm $A$ makes no measurements. This is a generalization of Grover's searching algorithm in which $A$ was restricted to producing an equal superposition of all members of $X$ and we had a promise that a single $x$ existed such tha...

  7. Study design requirements for RNA sequencing-based breast cancer diagnostics.

    Mer, Arvind Singh; Klevebring, Daniel; Grönberg, Henrik; Rantalainen, Mattias

    2016-01-01

    Sequencing-based molecular characterization of tumors provides information required for individualized cancer treatment. There are well-defined molecular subtypes of breast cancer that provide improved prognostication compared to routine biomarkers. However, molecular subtyping is not yet implemented in routine breast cancer care. Clinical translation is dependent on subtype prediction models providing high sensitivity and specificity. In this study we evaluate sample size and RNA-sequencing read requirements for breast cancer subtyping to facilitate rational design of translational studies. We applied subsampling to ascertain the effect of training sample size and the number of RNA sequencing reads on classification accuracy of molecular subtype and routine biomarker prediction models (unsupervised and supervised). Subtype classification accuracy improved with increasing sample size up to N = 750 (accuracy = 0.93), although with a modest improvement beyond N = 350 (accuracy = 0.92). Prediction of routine biomarkers achieved accuracy of 0.94 (ER) and 0.92 (Her2) at N = 200. Subtype classification improved with RNA-sequencing library size up to 5 million reads. Development of molecular subtyping models for cancer diagnostics requires well-designed studies. Sample size and the number of RNA sequencing reads directly influence accuracy of molecular subtyping. Results in this study provide key information for rational design of translational studies aiming to bring sequencing-based diagnostics to the clinic. PMID:26830453

  8. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods

    Francisco Alexandre P

    2012-05-01

    Full Text Available Abstract Background With the decrease of DNA sequencing costs, sequence-based typing methods are rapidly becoming the gold standard for epidemiological surveillance. These methods provide reproducible and comparable results needed for a global scale bacterial population analysis, while retaining their usefulness for local epidemiological surveys. Online databases that collect the generated allelic profiles and associated epidemiological data are available but this wealth of data remains underused and are frequently poorly annotated since no user-friendly tool exists to analyze and explore it. Results PHYLOViZ is platform independent Java software that allows the integrated analysis of sequence-based typing methods, including SNP data generated from whole genome sequence approaches, and associated epidemiological data. goeBURST and its Minimum Spanning Tree expansion are used for visualizing the possible evolutionary relationships between isolates. The results can be displayed as an annotated graph overlaying the query results of any other epidemiological data available. Conclusions PHYLOViZ is a user-friendly software that allows the combined analysis of multiple data sources for microbial epidemiological and population studies. It is freely available at http://www.phyloviz.net.

  9. Sequence-based prediction of protein-peptide binding sites using support vector machine.

    Taherzadeh, Ghazaleh; Yang, Yuedong; Zhang, Tuo; Liew, Alan Wee-Chung; Zhou, Yaoqi

    2016-05-15

    Protein-peptide interactions are essential for all cellular processes including DNA repair, replication, gene-expression, and metabolism. As most protein-peptide interactions are uncharacterized, it is cost effective to investigate them computationally as the first step. All existing approaches for predicting protein-peptide binding sites, however, are based on protein structures despite the fact that the structures for most proteins are not yet solved. This article proposes the first machine-learning method called SPRINT to make Sequence-based prediction of Protein-peptide Residue-level Interactions. SPRINT yields a robust and consistent performance for 10-fold cross validations and independent test. The most important feature is evolution-generated sequence profiles. For the test set (1056 binding and non-binding residues), it yields a Matthews' Correlation Coefficient of 0.326 with a sensitivity of 64% and a specificity of 68%. This sequence-based technique shows comparable or more accurate than structure-based methods for peptide-binding site prediction. SPRINT is available as an online server at: http://sparks-lab.org/. © 2016 Wiley Periodicals, Inc. PMID:26833816

  10. Can Anomalous Amplification be Attained without Postselection?

    Martínez-Rincón, Julián; Liu, Wei-Tao; Viza, Gerardo I.; Howell, John C.

    2016-03-01

    We present a parameter estimation technique based on performing joint measurements of a weak interaction away from the weak-value-amplification approximation. Two detectors are used to collect full statistics of the correlations between two weakly entangled degrees of freedom. Without discarding of data, the protocol resembles the anomalous amplification of an imaginary-weak-value-like response. The amplification is induced in the difference signal of both detectors allowing robustness to different sources of technical noise, and offering in addition the advantages of balanced signals for precision metrology. All of the Fisher information about the parameter of interest is collected. A tunable phase controls the strength of the amplification response. We experimentally demonstrate the proposed technique by measuring polarization rotations in a linearly polarized laser pulse. We show that in the presence of technical noise the effective sensitivity and precision of a split detector is increased when compared to a conventional continuous-wave balanced detection technique.

  11. Privacy amplification for quantum key distribution

    This paper examines classical privacy amplification using a universal family of hash functions. In quantum key distribution, the adversary's measurement can wait until the choice of hash functions is announced, and so the adversary's information may depend on the choice. Therefore the existing result on classical privacy amplification, which assumes the independence of the choice from the other random variables, is not applicable to this case. This paper provides a security proof of privacy amplification which is valid even when the adversary's information may depend on the choice of hash functions. The compression rate of the proposed privacy amplification can be taken to be the same as that of the existing one with an exponentially small loss in secrecy of a final key. (fast track communication)

  12. Rolling circle amplification of metazoan mitochondrialgenomes

    Simison, W. Brian; Lindberg, D.R.; Boore, J.L.

    2005-07-31

    Here we report the successful use of rolling circle amplification (RCA) for the amplification of complete metazoan mt genomes to make a product that is amenable to high-throughput genome sequencing techniques. The benefits of RCA over PCR are many and with further development and refinement of RCA, the sequencing of organellar genomics will require far less time and effort than current long PCR approaches.

  13. Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations

    Lees Jonathan G; Janes Robert W

    2008-01-01

    Abstract Background A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction method...

  14. Critical assessment of sequence-based protein-protein interaction prediction methods that do not require homologous protein sequences

    Park Yungki

    2009-01-01

    Abstract Background Protein-protein interactions underlie many important biological processes. Computational prediction methods can nicely complement experimental approaches for identifying protein-protein interactions. Recently, a unique category of sequence-based prediction methods has been put forward - unique in the sense that it does not require homologous protein sequences. This enables it to be universally applicable to all protein sequences unlike many of previous sequence-based predi...

  15. Onshore seismic amplifications due to bathymetric features

    Rodríguez-Castellanos, A.; Carbajal-Romero, M.; Flores-Guzmán, N.; Olivera-Villaseñor, E.; Kryvko, A.

    2016-08-01

    We perform numerical calculations for onshore seismic amplifications, taking into consideration the effect of bathymetric features on the propagation of seismic movements. To this end, the boundary element method is applied. Boundary elements are employed to irradiate waves and, consequently, force densities can be obtained for each boundary element. From this assumption, Huygens’ principle is applied, and since the diffracted waves are built at the boundary from which they are radiated, this idea is equivalent to Somigliana’s representation theorem. The application of boundary conditions leads to a linear system being obtained (Fredholm integral equations). Several numerical models are analyzed, with the first one being used to verify the proposed formulation, and the others being used to estimate onshore seismic amplifications due to the presence of bathymetric features. The results obtained show that compressional waves (P-waves) generate onshore seismic amplifications that can vary from 1.2 to 5.2 times the amplitude of the incident wave. On the other hand, the shear waves (S-waves) can cause seismic amplifications of up to 4.0 times the incident wave. Furthermore, an important result is that in most cases the highest seismic amplifications from an offshore earthquake are located on the shoreline and not offshore, despite the seafloor configuration. Moreover, the influence of the incident angle of seismic waves on the seismic amplifications is highlighted.

  16. Amplification uncertainty relation for probabilistic amplifiers

    Namiki, Ryo

    2015-09-01

    Traditionally, quantum amplification limit refers to the property of inevitable noise addition on canonical variables when the field amplitude of an unknown state is linearly transformed through a quantum channel. Recent theoretical studies have determined amplification limits for cases of probabilistic quantum channels or general quantum operations by specifying a set of input states or a state ensemble. However, it remains open how much excess noise on canonical variables is unavoidable and whether there exists a fundamental trade-off relation between the canonical pair in a general amplification process. In this paper we present an uncertainty-product form of amplification limits for general quantum operations by assuming an input ensemble of Gaussian-distributed coherent states. It can be derived as a straightforward consequence of canonical uncertainty relations and retrieves basic properties of the traditional amplification limit. In addition, our amplification limit turns out to give a physical limitation on probabilistic reduction of an Einstein-Podolsky-Rosen uncertainty. In this regard, we find a condition that probabilistic amplifiers can be regarded as local filtering operations to distill entanglement. This condition establishes a clear benchmark to verify an advantage of non-Gaussian operations beyond Gaussian operations with a feasible input set of coherent states and standard homodyne measurements.

  17. Heat induces gene amplification in cancer cells

    Highlights: ► This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. ► Hyperthermia induces DNA double strand breaks. ► DNA double strand breaks are considered to be required for the initiation of gene amplification. ► The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 °C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) γH2AX immunostaining to detect γH2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 °C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 °C for 30 min induces DNA double strand breaks in HCT116 cells as shown by γH2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and telomere functions are denatured. To our knowledge, this is the first study to provide direct evidence of hyperthermia induced gene amplification.

  18. Heat induces gene amplification in cancer cells

    Yan, Bin, E-mail: yanbin@mercyhealth.com [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Mercy Cancer Center, Mercy Medical Center-North Iowa, Mason City, IA 50401 (United States); Ouyang, Ruoyun [Department of Respiratory Medicine, The Second Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410011 (China); Huang, Chenghui [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Department of Oncology, The Third Xiangya Hospital, Xinagya School of Medicine, Central South University, Changsha 410013 (China); Liu, Franklin [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Neill, Daniel [Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS 39213 (United States); Li, Chuanyuan [Dermatology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, Mark [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer This study discovered that heat exposure (hyperthermia) results in gene amplification in cancer cells. Black-Right-Pointing-Pointer Hyperthermia induces DNA double strand breaks. Black-Right-Pointing-Pointer DNA double strand breaks are considered to be required for the initiation of gene amplification. Black-Right-Pointing-Pointer The underlying mechanism of heat-induced gene amplification is generation of DNA double strand breaks. -- Abstract: Background: Hyperthermia plays an important role in cancer therapy. However, as with radiation, it can cause DNA damage and therefore genetic instability. We studied whether hyperthermia can induce gene amplification in cancer cells and explored potential underlying molecular mechanisms. Materials and methods: (1) Hyperthermia: HCT116 colon cancer cells received water-submerged heating treatment at 42 or 44 Degree-Sign C for 30 min; (2) gene amplification assay using N-(phosphoacetyl)-L-aspartate (PALA) selection of cabamyl-P-synthetase, aspartate transcarbarmylase, dihydro-orotase (cad) gene amplified cells; (3) southern blotting for confirmation of increased cad gene copies in PALA-resistant cells; (4) {gamma}H2AX immunostaining to detect {gamma}H2AX foci as an indication for DNA double strand breaks. Results: (1) Heat exposure at 42 or 44 Degree-Sign C for 30 min induces gene amplification. The frequency of cad gene amplification increased by 2.8 and 6.5 folds respectively; (2) heat exposure at both 42 and 44 Degree-Sign C for 30 min induces DNA double strand breaks in HCT116 cells as shown by {gamma}H2AX immunostaining. Conclusion: This study shows that heat exposure can induce gene amplification in cancer cells, likely through the generation of DNA double strand breaks, which are believed to be required for the initiation of gene amplification. This process may be promoted by heat when cellular proteins that are responsible for checkpoints, DNA replication, DNA repair and

  19. Fast interactive segmentation algorithm of image sequences based on relative fuzzy connectedness

    Tian Chunna; Gao Xinbo

    2005-01-01

    A fast interactive segmentation algorithm of image-sequences based on relative fuzzy connectedness is presented. In comparison with the original algorithm, the proposed one, with the same accuracy, accelerates the segmentation speed by three times for single image. Meanwhile, this fast segmentation algorithm is extended from single object to multiple objects and from single-image to image-sequences. Thus the segmentation of multiple objects from complex background and batch segmentation of image-sequences can be achieved. In addition, a post-processing scheme is incorporated in this algorithm, which extracts smooth edge with one-pixel-width for each segmented object. The experimental results illustrate that the proposed algorithm can obtain the object regions of interest from medical image or image-sequences as well as man-made images quickly and reliably with only a little interaction.

  20. Molecular typing of Acinetobacter baumannii by automated repetitive-sequence-based PCR

    Giuseppe Russello

    2011-03-01

    Full Text Available Acinetobacter baumannii has been increasingly reported as a significant causative organism of various nosocomial infections. Here we describe three different outbreaks of multidrug resistant A. baumannii started in the Intensitive Care Unit and then involving other wards of San Carlo Borromeo hospital in Milan, Italy. In order to characterize the clinical strains isolates, molecular typing using semi-automated repetitive-sequence-based PCR (rep-PCR was performed.Among the sixty-one strains analyzed, three main cluster (C1, C2, C3 were detected: C1 included six indistinguishable strains, C2 five and C3 thirty. No correlation was observed between chemosensitivity and ribotyping pattern and an high rate of carbapenems resistance was founded.

  1. Study on multiple-hops performance of MOOC sequences-based optical labels for OPS networks

    Zhang, Chongfu; Qiu, Kun; Ma, Chunli

    2009-11-01

    In this paper, we utilize a new study method that is under independent case of multiple optical orthogonal codes to derive the probability function of MOOCS-OPS networks, discuss the performance characteristics for a variety of parameters, and compare some characteristics of the system employed by single optical orthogonal code or multiple optical orthogonal codes sequences-based optical labels. The performance of the system is also calculated, and our results verify that the method is effective. Additionally it is found that performance of MOOCS-OPS networks would, negatively, be worsened, compared with single optical orthogonal code-based optical label for optical packet switching (SOOC-OPS); however, MOOCS-OPS networks can greatly enlarge the scalability of optical packet switching networks.

  2. Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations.

    Truong, Hoa T; Ramos, A Marcos; Yalcin, Feyruz; de Ruiter, Marjo; van der Poel, Hein J A; Huvenaars, Koen H J; Hogers, René C J; van Enckevort, Leonora J G; Janssen, Antoine; van Orsouw, Nathalie J; van Eijk, Michiel J T

    2012-01-01

    Conventional marker-based genotyping platforms are widely available, but not without their limitations. In this context, we developed Sequence-Based Genotyping (SBG), a technology for simultaneous marker discovery and co-dominant scoring, using next-generation sequencing. SBG offers users several advantages including a generic sample preparation method, a highly robust genome complexity reduction strategy to facilitate de novo marker discovery across entire genomes, and a uniform bioinformatics workflow strategy to achieve genotyping goals tailored to individual species, regardless of the availability of a reference sequence. The most distinguishing features of this technology are the ability to genotype any population structure, regardless whether parental data is included, and the ability to co-dominantly score SNP markers segregating in populations. To demonstrate the capabilities of SBG, we performed marker discovery and genotyping in Arabidopsis thaliana and lettuce, two plant species of diverse genetic complexity and backgrounds. Initially we obtained 1,409 SNPs for arabidopsis, and 5,583 SNPs for lettuce. Further filtering of the SNP dataset produced over 1,000 high quality SNP markers for each species. We obtained a genotyping rate of 201.2 genotypes/SNP and 58.3 genotypes/SNP for arabidopsis (n = 222 samples) and lettuce (n = 87 samples), respectively. Linkage mapping using these SNPs resulted in stable map configurations. We have therefore shown that the SBG approach presented provides users with the utmost flexibility in garnering high quality markers that can be directly used for genotyping and downstream applications. Until advances and costs will allow for routine whole-genome sequencing of populations, we expect that sequence-based genotyping technologies such as SBG will be essential for genotyping of model and non-model genomes alike. PMID:22662172

  3. Structural protein descriptors in 1-dimension and their sequence-based predictions.

    Kurgan, Lukasz; Disfani, Fatemeh Miri

    2011-09-01

    The last few decades observed an increasing interest in development and application of 1-dimensional (1D) descriptors of protein structure. These descriptors project 3D structural features onto 1D strings of residue-wise structural assignments. They cover a wide-range of structural aspects including conformation of the backbone, burying depth/solvent exposure and flexibility of residues, and inter-chain residue-residue contacts. We perform first-of-its-kind comprehensive comparative review of the existing 1D structural descriptors. We define, review and categorize ten structural descriptors and we also describe, summarize and contrast over eighty computational models that are used to predict these descriptors from the protein sequences. We show that the majority of the recent sequence-based predictors utilize machine learning models, with the most popular being neural networks, support vector machines, hidden Markov models, and support vector and linear regressions. These methods provide high-throughput predictions and most of them are accessible to a non-expert user via web servers and/or stand-alone software packages. We empirically evaluate several recent sequence-based predictors of secondary structure, disorder, and solvent accessibility descriptors using a benchmark set based on CASP8 targets. Our analysis shows that the secondary structure can be predicted with over 80% accuracy and segment overlap (SOV), disorder with over 0.9 AUC, 0.6 Matthews Correlation Coefficient (MCC), and 75% SOV, and relative solvent accessibility with PCC of 0.7 and MCC of 0.6 (0.86 when homology is used). We demonstrate that the secondary structure predicted from sequence without the use of homology modeling is as good as the structure extracted from the 3D folds predicted by top-performing template-based methods. PMID:21787299

  4. Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform

    Yuyin Long; Cuisong Zhou; Congmin Wang; Honglian Cai; Cuiyun Yin; Qiufang Yang; Dan Xiao

    2016-01-01

    Methodologies to detect disease biomarkers at ultralow concentrations can potentially improve the standard of living. A facile and label-free multi-amplification strategy is proposed for the ultrasensitive visual detection of HIV DNA biomarkers in real physiological media. This multi-amplification strategy not only exhibits a signficantly low detection limit down to 4.8 pM but also provides a label-free, cost-effective and facile technique for visualizing a few molecules of nucleic acid analy...

  5. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification.

    David S Boyle

    Full Text Available Improved access to effective tests for diagnosing tuberculosis (TB has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC DNA in <20 minutes at 39 °C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110 and 20 fg (IS1081were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9 and 86.1% (95%CI: 78.1, 94.1 respectively (n = 71. Specificities were 100% and 88.6% (95% CI: 80.8, 96.1 respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2 and 70.8% (95%CI: 62.9, 78.7 were obtained (n = 90. Specificities were 95.4 (95% CI: 92.3,98.1 and 88% (95% CI: 83.6, 92.4 respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB

  6. ESTIMATION OF AMPLIFICATION FACTOR IN EARTHQUAKE ENGINEERING

    Nazarov Yuriy Pavlovich

    2015-03-01

    Full Text Available The authors are the developers of Odyssey Software (Eurosoft Co. for the analysis of seismological data and computing of seismic loads and their parameters. While communicating with the users of the software, the authors have revealed some uncertainty about both understanding of the term "amplification factor (AF" and calculation of the amplification factor using various methods. In this article, a simple example shows that the determination of the amplification factor as the ratio of the acceleration’s spectrum to the maximal acceleration is derived from the classical definition of AF in the form of the ratio of maximal dynamic displacement to the displacement by the action of static load. Deterministic and probabilistic ap-proaches for the calculating of the AF were discussed. There was an example of AFs calculation and their envelopes for translational and rotational components of seismic impact by using Odyssey Software.

  7. On Arbitrary Phases in Quantum Amplitude Amplification

    Hoyer, P

    2000-01-01

    We consider the use of arbitrary phases in quantum amplitude amplification which is a generalization of quantum searching. We prove that the phase condition in amplitude amplification is given by $\\tan(\\phi/2)=\\tan(\\phi/2)(1-2a)$, where $\\phi$ and $\\phi$ are the phases used and where $a$ is the success probability of the given algorithm. Thus the choice of phases depends nontrivially and nonlinearly on the success probability. Utilizing this condition, we give methods for constructing quantum algorithms that succeed with certainty and for implementing arbitrary rotations. We also conclude that phase errors of order up to $\\frac{1}{\\sqrt{a}}$ can be tolerated in amplitude amplification.

  8. Polymerase chain reaction amplification of a GC rich region by adding 1,2 propanediol

    Zeinab Mousavian

    2014-01-01

    Full Text Available Background : Apolipoprotein E (ApoE is one of the most important carriers of lipids in mammalians. The gene for this lipoprotein (ApoE is located on chromosome 19 which is related with the pathogenesis of some nervous system disease. ApoE gene is identified as a high guanine-cytosine (GC content fragment. Detection and amplification of these templates are extensively laborious and baffling. The aim of this study was to find a practical and feasible method for the amplification of the number of GC rich genes such as ApoE. Materials and Methods: We experimented with simple polymerase chain reaction (PCR, nested PCR and PCR with 1-2 propanediol, dimethylsulfoxide (DMSO, and ethyleneglicol as additive substances to enhance the amplification ApoE gene and used the 40 samples of the human whole blood were collected in test tubes with a pre-treatment of ethylene diaminetetraacetic acid. Results: According to our observations, presence of 1-2 propanediol, DMSO, and ethyleneglicol as additive substances resulted to enhanced amplification of ApoE gene. Addition of 1-2 propanediol showed the best results, caused optimization and revealed more specific and sharp bands. Conclusion: According to our findings 1-2 propanediol are the best organic reagent for improving the amplification of ApoE gene. Optimization procedure for each GC rich sequence is recommended to be performed separately in order to identify which of the additive agent is more efficient and applicable for a particular target.

  9. Method Of Signal Amplification In Multi-Chromophore Luminescence Sensors

    Levitsky, Igor A. (Fall River, MA); Krivoshlykov, Sergei G. (Shrewsbury, MA)

    2004-02-03

    A fluorescence-based method for highly sensitive and selective detection of analyte molecules is proposed. The method employs the energy transfer between two or more fluorescent chromophores in a carefully selected polymer matrix. In one preferred embodiment, signal amplification has been achieved in the fluorescent sensing of dimethyl methylphosphonate (DMMP) using two dyes, 3-aminofluoranthene (AM) and Nile Red (NR), in a hydrogen bond acidic polymer matrix. The selected polymer matrix quenches the fluorescence of both dyes and shifts dye emission and absorption spectra relative to more inert matrices. Upon DMMP sorption, the AM fluorescence shifts to the red at the same time the NR absorption shifts to the blue, resulting in better band overlap and increased energy transfer between chromophores. In another preferred embodiment, the sensitive material is incorporated into an optical fiber system enabling efficient excitation of the dye and collecting the fluorescent signal form the sensitive material on the remote end of the system. The proposed method can be applied to multichromophore luminescence sensor systems incorporating N-chromophores leading to N-fold signal amplification and improved selectivity. The method can be used in all applications where highly sensitive detection of basic gases, such as dimethyl methylphosphonate (DMMP), Sarin, Soman and other chemical warfare agents having basic properties, is required, including environmental monitoring, chemical industry and medicine.

  10. Loop-Mediated Amplification Accelerated by Stem Primers

    Laurence Tisi

    2011-12-01

    Full Text Available Isothermal nucleic acid amplifications (iNAATs have become an important alternative to PCR for in vitro molecular diagnostics in all fields. Amongst iNAATs Loop-mediated amplification (LAMP has gained much attention over the last decade because of the simplicity of hardware requirements. LAMP demonstrates performance equivalent to that of PCR, but its application has been limited by the challenging primer design. The design of six primers in LAMP requires a selection of eight priming sites with significant restrictions imposed on their respective positioning and orientation. In order to relieve primer design constraints we propose an alternative approach which uses Stem primers instead of Loop primers and demonstrate the application of STEM-LAMP in assaying for Clostridium difficile, Listeria monocytogenes and HIV. Stem primers used in LAMP in combination with loop-generating and displacement primers gave significant benefits in speed and sensitivity, similar to those offered by Loop primers, while offering additional options of forward and reverse orientations, multiplexing, use in conjunction with Loop primers or even omission of one or two displacement primers, where necessary. Stem primers represent a valuable alternative to Loop primers and an additional tool for IVD assay development by offering more choices for primer design at the same time increasing assay speed, sensitivity, and reproducibility.

  11. Loop-mediated amplification accelerated by stem primers.

    Gandelman, Olga; Jackson, Rebecca; Kiddle, Guy; Tisi, Laurence

    2011-01-01

    Isothermal nucleic acid amplifications (iNAATs) have become an important alternative to PCR for in vitro molecular diagnostics in all fields. Amongst iNAATs Loop-mediated amplification (LAMP) has gained much attention over the last decade because of the simplicity of hardware requirements. LAMP demonstrates performance equivalent to that of PCR, but its application has been limited by the challenging primer design. The design of six primers in LAMP requires a selection of eight priming sites with significant restrictions imposed on their respective positioning and orientation. In order to relieve primer design constraints we propose an alternative approach which uses Stem primers instead of Loop primers and demonstrate the application of STEM-LAMP in assaying for Clostridium difficile, Listeria monocytogenes and HIV. Stem primers used in LAMP in combination with loop-generating and displacement primers gave significant benefits in speed and sensitivity, similar to those offered by Loop primers, while offering additional options of forward and reverse orientations, multiplexing, use in conjunction with Loop primers or even omission of one or two displacement primers, where necessary. Stem primers represent a valuable alternative to Loop primers and an additional tool for IVD assay development by offering more choices for primer design at the same time increasing assay speed, sensitivity, and reproducibility. PMID:22272122

  12. DNA Extraction and Amplification from Contemporary Polynesian Bark-Cloth

    Moncada, Ximena; Payacán, Claudia; Arriaza, Francisco; Lobos, Sergio; Seelenfreund, Daniela; Seelenfreund, Andrea

    2013-01-01

    Background Paper mulberry has been used for thousands of years in Asia and Oceania for making paper and bark-cloth, respectively. Museums around the world hold valuable collections of Polynesian bark-cloth. Genetic analysis of the plant fibers from which the textiles were made may answer a number of questions of interest related to provenance, authenticity or species used in the manufacture of these textiles. Recovery of nucleic acids from paper mulberry bark-cloth has not been reported before. Methodology We describe a simple method for the extraction of PCR-amplifiable DNA from small samples of contemporary Polynesian bark-cloth (tapa) using two types of nuclear markers. We report the amplification of about 300 bp sequences of the ITS1 region and of a microsatellite marker. Conclusions Sufficient DNA was retrieved from all bark-cloth samples to permit successful PCR amplification. This method shows a means of obtaining useful genetic information from modern bark-cloth samples and opens perspectives for the analyses of small fragments derived from ethnographic materials. PMID:23437166

  13. Application of Sequence-based Methods in Human MicrobialEcology

    Weng, Li; Rubin, Edward M.; Bristow, James

    2005-08-29

    Ecologists studying microbial life in the environment have recognized the enormous complexity of microbial diversity for many years, and the development of a variety of culture-independent methods, many of them coupled with high-throughput DNA sequencing, has allowed this diversity to be explored in ever greater detail. Despite the widespread application of these new techniques to the characterization of uncultivated microbes and microbial communities in the environment, their application to human health and disease has lagged behind. Because DNA based-techniques for defining uncultured microbes allow not only cataloging of microbial diversity, but also insight into microbial functions, investigators are beginning to apply these tools to the microbial communities that abound on and within us, in what has aptly been called the second Human Genome Project. In this review we discuss the sequence-based methods for microbial analysis that are currently available and their application to identify novel human pathogens, improve diagnosis of known infectious diseases, and to advance understanding of our relationship with microbial communities that normally reside in and on the human body.

  14. Archaeorhizomyces borealis sp. nov. and a sequence-based classification of related soil fungal species.

    Menkis, Audrius; Urbina, Hector; James, Timothy Y; Rosling, Anna

    2014-12-01

    The class Archaeorhizomycetes (Taphrinomycotina, Ascomycota) was introduced to accommodate an ancient lineage of soil-inhabiting fungi found in association with plant roots. Based on environmental sequencing data Archaeorhizomycetes may comprise a significant proportion of the total fungal community in soils. Yet the only species described and cultivated in this class is Archaeorhizomyces finlayi. In this paper, we describe a second species from a pure culture, Archaeorhizomyces borealis NS99-600(T) (=CBS138755(ExT)) based on morphological, physiological, and multi-locus molecular characterization. Archaeorhizomyces borealis was isolated from a root tip of a Pinus sylvestris seedling grown in a forest nursery in Lithuania. Analysis of Archaeorhizomycete species from environmental samples shows that it has a Eurasian distribution and is the most commonly observed species. Archaeorhizomyces borealis shows slow growth in culture and forms yellowish creamy colonies, characteristics that distinguish A. borealis from its closest relative A. finlayi. Here we also propose a sequence-based taxonomic classification of Archaeorhizomycetes and predict that approximately 500 species in this class remain to be isolated and described. PMID:25457942

  15. Prediction of peptide drift time in ion mobility mass spectrometry from sequence-based features

    Wang, Bing

    2013-05-09

    Background: Ion mobility-mass spectrometry (IMMS), an analytical technique which combines the features of ion mobility spectrometry (IMS) and mass spectrometry (MS), can rapidly separates ions on a millisecond time-scale. IMMS becomes a powerful tool to analyzing complex mixtures, especially for the analysis of peptides in proteomics. The high-throughput nature of this technique provides a challenge for the identification of peptides in complex biological samples. As an important parameter, peptide drift time can be used for enhancing downstream data analysis in IMMS-based proteomics.Results: In this paper, a model is presented based on least square support vectors regression (LS-SVR) method to predict peptide ion drift time in IMMS from the sequence-based features of peptide. Four descriptors were extracted from peptide sequence to represent peptide ions by a 34-component vector. The parameters of LS-SVR were selected by a grid searching strategy, and a 10-fold cross-validation approach was employed for the model training and testing. Our proposed method was tested on three datasets with different charge states. The high prediction performance achieve demonstrate the effectiveness and efficiency of the prediction model.Conclusions: Our proposed LS-SVR model can predict peptide drift time from sequence information in relative high prediction accuracy by a test on a dataset of 595 peptides. This work can enhance the confidence of protein identification by combining with current protein searching techniques. 2013 Wang et al.; licensee BioMed Central Ltd.

  16. Improved Bevirimat resistance prediction by combination of structural and sequence-based classifiers

    Dybowski J Nikolaj

    2011-11-01

    Full Text Available Abstract Background Maturation inhibitors such as Bevirimat are a new class of antiretroviral drugs that hamper the cleavage of HIV-1 proteins into their functional active forms. They bind to these preproteins and inhibit their cleavage by the HIV-1 protease, resulting in non-functional virus particles. Nevertheless, there exist mutations in this region leading to resistance against Bevirimat. Highly specific and accurate tools to predict resistance to maturation inhibitors can help to identify patients, who might benefit from the usage of these new drugs. Results We tested several methods to improve Bevirimat resistance prediction in HIV-1. It turned out that combining structural and sequence-based information in classifier ensembles led to accurate and reliable predictions. Moreover, we were able to identify the most crucial regions for Bevirimat resistance computationally, which are in line with experimental results from other studies. Conclusions Our analysis demonstrated the use of machine learning techniques to predict HIV-1 resistance against maturation inhibitors such as Bevirimat. New maturation inhibitors are already under development and might enlarge the arsenal of antiretroviral drugs in the future. Thus, accurate prediction tools are very useful to enable a personalized therapy.

  17. GIPS: A Software Guide to Sequencing-Based Direct Gene Cloning in Forward Genetics Studies.

    Hu, Han; Wang, Weitao; Zhu, Zhongxu; Zhu, Jianhua; Tan, Deyong; Zhou, Zhipeng; Mao, Chuanzao; Chen, Xin

    2016-04-01

    The Gene Identification via Phenotype Sequencing (GIPS) software considers a range of experimental and analysis choices in sequencing-based forward genetics studies within an integrated probabilistic framework, which enables direct gene cloning from the sequencing of several unrelated mutants of the same phenotype without the need to create segregation populations. GIPS estimates four measurements to help optimize an analysis procedure as follows: (1) the chance of reporting the true phenotype-associated gene; (2) the expected number of random genes that may be reported; (3) the significance of each candidate gene's association with the phenotype; and (4) the significance of violating the Mendelian assumption if no gene is reported or if all candidate genes have failed validation. The usage of GIPS is illustrated with the identification of a rice (Oryza sativa) gene that epistatically suppresses the phenotype of the phosphate2 mutant from sequencing three unrelated ethyl methanesulfonate mutants. GIPS is available at https://github.com/synergy-zju/gips/wiki with the user manual and an analysis example. PMID:26842621

  18. Histoimmunogenetics Markup Language 1.0: Reporting next generation sequencing-based HLA and KIR genotyping.

    Milius, Robert P; Heuer, Michael; Valiga, Daniel; Doroschak, Kathryn J; Kennedy, Caleb J; Bolon, Yung-Tsi; Schneider, Joel; Pollack, Jane; Kim, Hwa Ran; Cereb, Nezih; Hollenbach, Jill A; Mack, Steven J; Maiers, Martin

    2015-12-01

    We present an electronic format for exchanging data for HLA and KIR genotyping with extensions for next-generation sequencing (NGS). This format addresses NGS data exchange by refining the Histoimmunogenetics Markup Language (HML) to conform to the proposed Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING) reporting guidelines (miring.immunogenomics.org). Our refinements of HML include two major additions. First, NGS is supported by new XML structures to capture additional NGS data and metadata required to produce a genotyping result, including analysis-dependent (dynamic) and method-dependent (static) components. A full genotype, consensus sequence, and the surrounding metadata are included directly, while the raw sequence reads and platform documentation are externally referenced. Second, genotype ambiguity is fully represented by integrating Genotype List Strings, which use a hierarchical set of delimiters to represent allele and genotype ambiguity in a complete and accurate fashion. HML also continues to enable the transmission of legacy methods (e.g. site-specific oligonucleotide, sequence-specific priming, and Sequence Based Typing (SBT)), adding features such as allowing multiple group-specific sequencing primers, and fully leveraging techniques that combine multiple methods to obtain a single result, such as SBT integrated with NGS. PMID:26319908

  19. Optical Pattern Recognition With Self-Amplification

    Liu, Hua-Kuang

    1994-01-01

    In optical pattern recognition system with self-amplification, no reference beam used in addressing mode. Polarization of laser beam and orientation of photorefractive crystal chosen to maximize photorefractive effect. Intensity of recognition signal is orders of magnitude greater than other optical correlators. Apparatus regarded as real-time or quasi-real-time optical pattern recognizer with memory and reprogrammability.

  20. Social amplification of risk: a conceptual framework

    One of the most perplexing problems in risk analysis is why some relatively minor risks or risk events, as assessed by technical experts, often elicit strong public concerns and result in substantial impacts upon society and economy. This article sets forth a conceptual framework that seeks to link systematically the technical assessment of risk with psychological, sociological, and cultural perspectives of risk perception and risk-related behavior. The main thesis is that hazards interact with psychological, social, institutional, and cultural processes in ways that may amplify or attenuate public responses to the risk or risk event. A structural description of the social amplification of risk is now possible. Amplification occurs at two stages: in the transfer of information about the risk, and in the response mechanisms of society. Signals about risk are processed by individual and social amplification stations, including the scientist who communicates the risk assessment, the news media, cultural groups, interpersonal networks, and others. Key steps of amplifications can be identified at each stage. The amplified risk leads to behavioral responses, which, in turn, result in secondary impacts. Models are presented that portray the elements and linkages in the proposed conceptual framework

  1. Desert Amplification in a Warming Climate.

    Zhou, Liming

    2016-01-01

    Here I analyze the observed and projected surface temperature anomalies over land between 50°S-50°N for the period 1950-2099 by large-scale ecoregion and find strongest warming consistently and persistently seen over driest ecoregions such as the Sahara desert and the Arabian Peninsula during various 30-year periods, pointing to desert amplification in a warming climate. This amplification enhances linearly with the global mean greenhouse gases(GHGs) radiative forcing and is attributable primarily to a stronger GHGs-enhanced downward longwave radiation forcing reaching the surface over drier ecoregions as a consequence of a warmer and thus moister atmosphere in response to increasing GHGs. These results indicate that desert amplification may represent a fundamental pattern of global warming associated with water vapor feedbacks over land in low- and mid- latitudes where surface warming rates depend inversely on ecosystem dryness. It is likely that desert amplification might involve two types of water vapor feedbacks that maximize respectively in the tropical upper troposphere and near the surface over deserts, with both being very dry and thus extremely sensitive to changes of water vapor. PMID:27538725

  2. Rapid microfluidic thermal cycler for nucleic acid amplification

    Beer, Neil Reginald; Vafai, Kambiz

    2015-10-27

    A system for thermal cycling a material to be thermal cycled including a microfluidic heat exchanger; a porous medium in the microfluidic heat exchanger; a microfluidic thermal cycling chamber containing the material to be thermal cycled, the microfluidic thermal cycling chamber operatively connected to the microfluidic heat exchanger; a working fluid at first temperature; a first system for transmitting the working fluid at first temperature to the microfluidic heat exchanger; a working fluid at a second temperature, a second system for transmitting the working fluid at second temperature to the microfluidic heat exchanger; a pump for flowing the working fluid at the first temperature from the first system to the microfluidic heat exchanger and through the porous medium; and flowing the working fluid at the second temperature from the second system to the heat exchanger and through the porous medium.

  3. Electromagnetic waves amplification in a coaxial triode with virtual cathode

    Grigoryev, V.P.; Antoshkin, M.Y.; Koval, T.V.; Kuryakov, A.M. [Tomsk Politechnical Univ. (Russian Federation)

    1995-11-01

    The present paper presents the results of analytical and numerical investigations on the amplification of microwaves in the vircator triode of coaxial making. The range of a parameters of the greatest amplification was define for TH and TE-modes.

  4. Squeezed states and quantum-mechanical parametric amplification

    The relation of a previous paper on the parametric amplification of a quantum oscillator to squeezed states is described. In particular, we show that in general the amplification factor is also the ''squeezing factor'' of the final state. 8 refs

  5. A new evolutionary theory deduced mathematically from entropy amplification

    2000-01-01

    A new evolutionary theory which is able to unite the present evolutionary debates is deduced mathematically from the principle of entropy amplification.It suggests that the extensive evolution is driven by the amplification of entropy,or microscopic diversity,and the biological evolution is driven by the amplification of biodiversity.Forming high hierarchies is the most important way for the amplification and brings out spontaneously three kinds of selection.This theory has some positive cultural meanings.

  6. Relief of amplification inhibition in PCR with bovine serum albumin or T4 gene 32 protein.

    Kreader, C A

    1996-01-01

    The benefits of adding bovine serum albumin (BSA) or T4 gene 32 protein (gp32) to PCR were evaluated with reaction mixtures containing substances that inhibit amplification. Whereas 10- to 1,000-fold more FeCl3, hemin, fulvic acids, humic acids, tannic acids, or extracts from feces, freshwater, or marine water were accommodated in PCR when either 400 ng of BSA per microl or 150 ng of gp32 per microl was included in the reactions, neither BSA nor gp32 relieved interference significantly when m...

  7. Plasmonic Terahertz Amplification in Graphene-Based Asymmetric Hyperbolic Metamaterial

    Igor Nefedov

    2015-05-01

    Full Text Available We propose and theoretically explore terahertz amplification, based on stimulated generation of plasmons in graphene asymmetric hyperbolic metamaterials (AHMM, strongly coupled to terahertz radiation. In contrast to the terahertz amplification in resonant nanocavities, AHMM provides a wide-band THz amplification without any reflection in optically thin graphene multilayers.

  8. Post-Fragmentation Whole Genome Amplification-Based Method

    Benardini, James; LaDuc, Myron T.; Langmore, John

    2011-01-01

    This innovation is derived from a proprietary amplification scheme that is based upon random fragmentation of the genome into a series of short, overlapping templates. The resulting shorter DNA strands (DNA fragments with defined 3 and 5 termini. Specific primers to these termini are then used to isothermally amplify this library into potentially unlimited quantities that can be used immediately for multiple downstream applications including gel eletrophoresis, quantitative polymerase chain reaction (QPCR), comparative genomic hybridization microarray, SNP analysis, and sequencing. The standard reaction can be performed with minimal hands-on time, and can produce amplified DNA in as little as three hours. Post-fragmentation whole genome amplification-based technology provides a robust and accurate method of amplifying femtogram levels of starting material into microgram yields with no detectable allele bias. The amplified DNA also facilitates the preservation of samples (spacecraft samples) by amplifying scarce amounts of template DNA into microgram concentrations in just a few hours. Based on further optimization of this technology, this could be a feasible technology to use in sample preservation for potential future sample return missions. The research and technology development described here can be pivotal in dealing with backward/forward biological contamination from planetary missions. Such efforts rely heavily on an increasing understanding of the burden and diversity of microorganisms present on spacecraft surfaces throughout assembly and testing. The development and implementation of these technologies could significantly improve the comprehensiveness and resolving power of spacecraft-associated microbial population censuses, and are important to the continued evolution and advancement of planetary protection capabilities. Current molecular procedures for assaying spacecraft-associated microbial burden and diversity have inherent sample loss issues at

  9. HLA polymorphisms in Cabo Verde and Guiné-Bissau inferred from sequence-based typing.

    Spínola, Hélder; Bruges-Armas, Jácome; Middleton, Derek; Brehm, António

    2005-10-01

    Human leukocyte antigen (HLA)-A, -B, and -DRB1 polymorphisms were examined in the Cabo Verde and Guiné-Bissau populations. The data were obtained at high-resolution level, using sequence-based typing. The most frequent alleles in each locus was: A*020101 (16.7% in Guiné-Bissau and 13.5% in Cabo Verde), B*350101 (14.4% in Guiné-Bissau and 13.2% in Cabo Verde), DRB1*1304 (19.6% in Guiné-Bissau), and DRB1*1101 (10.1% in Cabo Verde). The predominant three loci haplotype in Guiné-Bissau was A*2301-B*1503-DRB1*1101 (4.6%) and in Cabo Verde was A*3002-B*350101-DRB1*1001 (2.8%), exclusive to northwestern islands (5.6%) and absent in Guiné-Bissau. The present study corroborates historic sources and other genetic studies that say Cabo Verde were populated not only by Africans but also by Europeans. Haplotypes and dendrogram analysis shows a Caucasian genetic influence in today's gene pool of Cabo Verdeans. Haplotypes and allele frequencies present a differential distribution between southeastern and northwestern Cabo Verde islands, which could be the result of different genetic influences, founder effect, or bottlenecks. Dendrograms and principal coordinates analysis show that Guineans are more similar to North Africans than other HLA-studied sub-Saharans, probably from ancient and recent genetic contacts with other peoples, namely East Africans. PMID:16386651

  10. Advances in nucleic acid-based detection methods.

    Wolcott, M J

    1992-01-01

    Laboratory techniques based on nucleic acid methods have increased in popularity over the last decade with clinical microbiologists and other laboratory scientists who are concerned with the diagnosis of infectious agents. This increase in popularity is a result primarily of advances made in nucleic acid amplification and detection techniques. Polymerase chain reaction, the original nucleic acid amplification technique, changed the way many people viewed and used nucleic acid techniques in cl...

  11. Diffusive shock acceleration and magnetic field amplification

    Schure, K M; Drury, L O'C; Bykov, A M

    2012-01-01

    Diffusive shock acceleration is the theory of particle acceleration through multiple shock crossings. In order for this process to proceed at a rate that can be reconciled with observations of high-energy electrons in the vicinity of the shock, and for cosmic rays protons to be accelerated to energies up to observed galactic values, significant magnetic field amplification is required. In this review we will discuss various theories on how magnetic field amplification can proceed in the presence of a cosmic ray population. On both short and long scales, cosmic ray streaming can induce instabilities that act to amplify the magnetic field. Developments in this area that have occurred over the past decade are the main focus of this paper.

  12. Parametric amplification in low density plasma sheath

    Nonlinear sheath capacitance properties in low density plasma, whose propose is to produce the parametric amplification on the RF signal in the high frequency band (H.F.) are used. The experiment has been carried out in the Mirror Linear Device LISA of the Universidade Federal Fluminense, where a helium plasma was produced by the radiofrequency source built at UFF with a power which can be varied from 10 watts to 100 watts. The experimental results obtained show that it is practicable the construction of the parametric amplifier with high gain of the selectively, which is very good in the amplification of the weak signals, where the gain factor and the relation between signal versus noise are fundamental. (Author)

  13. Weak-value amplification: state of play

    Knee George C.

    2016-01-01

    Full Text Available Weak values arise in quantum theory when the result of a weak measurement is conditioned on a subsequent strong measurement. The majority of the trials are discarded, leaving only very few successful events. Intriguingly those can display a substantial signal amplification. This raises the question of whether weak values carry potential to improve the performance of quantum sensors, and indeed a number of impressive experimental results suggested this may be the case. By contrast, recent theoretical studies have found the opposite: using weak-values to obtain an amplification generally worsens metrological performance. This survey summarises the implications of those studies, which call for a reappraisal of weak values’ utility and for further work to reconcile theory and experiment.

  14. Fidelity of DNA polymerases in DNA amplification.

    Keohavong, P; Thilly, W G

    1989-01-01

    Denaturing gradient gel electrophoresis (DGGE) was used to separate and isolate the products of DNA amplification by polymerase chain reaction (PCR). The strategy permitted direct enumeration and identification of point mutations created by T4, modified T7, Klenow fragment of polymerase I, and Thermus aquaticus (Taq) DNA polymerases. Incorrectly synthesized sequences were separated from the wild type by DGGE as mutant/wild-type heteroduplexes and the heteroduplex fraction was used to calculat...

  15. Introduction to Quantum Noise, Measurement and Amplification

    Clerk, A. A.; Devoret, M. H.; Girvin, S. M.; Marquardt, F.; Schoelkopf, R. J.

    2008-01-01

    The topic of quantum noise has become extremely timely due to the rise of quantum information physics and the resulting interchange of ideas between the condensed matter and AMO/quantum optics communities. This review gives a pedagogical introduction to the physics of quantum noise and its connections to quantum measurement and quantum amplification. After introducing quantum noise spectra and methods for their detection, we describe the basics of weak continuous measurements. Particular atte...

  16. Colossal magnetoelectric effect induced by parametric amplification

    Wang, Yi; Onuta, Tiberiu-Dan; Long, Christian J.; Geng, Yunlong; Takeuchi, Ichiro

    2015-11-01

    We describe the use of parametric amplification to substantially increase the magnetoelectric (ME) coefficient of multiferroic cantilevers. Parametric amplification has been widely used in sensors and actuators based on optical, electronic, and mechanical resonators to increase transducer gain. In our system, a microfabricated mechanical cantilever with a magnetostrictive layer is driven at its fundamental resonance frequency by an AC magnetic field. The resulting actuation of the cantilever at the resonance frequency is detected by measuring the voltage across a piezoelectric layer in the same cantilever. Concurrently, the spring constant of the cantilever is modulated at twice the resonance frequency by applying an AC voltage across the piezoelectric layer. The spring constant modulation results in parametric amplification of the motion of the cantilever, yielding a gain in the ME coefficient. Using this method, the ME coefficient was amplified from 33 V/(cm Oe) to 2.0 MV/(cm Oe), an increase of over 4 orders of magnitude. This boost in the ME coefficient directly resulted in an enhancement of the magnetic field sensitivity of the device from 6.0 nT /√{Hz } to 1.0 nT /√{Hz } . The enhancement in the ME coefficient and magnetic field sensitivity demonstrated here may be beneficial for a variety actuators and sensors based on resonant multiferroic devices.

  17. Single genome amplification and direct amplicon sequencing of Plasmodium spp. DNA from ape fecal specimens

    Liu, Weimin; Li, Yingying; Peeters, Martine; Rayner, Julian; Sharp, Paul; Shaw, George; Hahn, Beatrice

    2010-01-01

    Conventional PCR followed by molecular cloning and sequencing of amplified products is commonly used to test clinical specimens for target sequences of interest, such as viral, bacterial or parasite nucleic acids. However, this approach has serious limitations when used to analyze mixtures of genetically divergent templates1–9. This is because Taq polymerase is prone to switch templates during the amplification process, thereby generating recombinants that do not exist in vivo4. When amplicon...

  18. Single genome amplification and direct amplicon sequencing of Plasmodium spp. DNA from ape fecal specimens

    sprotocols

    2015-01-01

    Conventional PCR followed by molecular cloning and sequencing of amplified products is commonly used to test clinical specimens for target sequences of interest, such as viral, bacterial or parasite nucleic acids. However, this approach has serious limitations when used to analyze mixtures of genetically divergent templates (1-9). This is because Taq polymerase is prone to switch templates during the amplification process, thereby generating recombinants that do not exist in vivo (4). When am...

  19. Sequencing-based variant detection in the polyploid crop oilseed rape

    2013-01-01

    Background The detection and exploitation of genetic variation underpins crop improvement. However, the polyploid nature of the genomes of many of our most important crops represents a barrier, particularly for the analysis of variation within genes. To overcome this, we aimed to develop methodologies based on amplicon sequencing that involve the incorporation of barcoded amplification tags (BATs) into PCR products. Results A protocol was developed to tag PCR products with 5’ 6-base oligonucleotide barcode extensions before pooling for sequencing library production using standard Illumina adapters. A computational method was developed for the de-convolution of products and the robust detection and scoring of sequence variants. Using this methodology, amplicons targeted to gene sequences were screened across a B. napus mapping population and the resulting allele scoring strings for 24 markers linkage mapped to the expected regions of the genome. Furthermore, using one-dimensional 8-fold pooling, 4608 lines of a B. napus mutation population were screened for induced mutations in a locus-specific amplicon (an orthologue of GL2.b) and mixed product of three co-amplified loci (orthologues of FAD2), identifying 10 and 41 mutants respectively. Conclusions The utilisation of barcode tags to de-convolute pooled PCR products in multiplexed, variation screening via Illumina sequencing provides a cost effective method for SNP genotyping and mutation detection and, potentially, markers for causative changes, even in polyploid species. Combining this approach with existing Illumina multiplexing workflows allows the analysis of thousands of lines cheaply and efficiently in a single sequencing run with minimal library production costs. PMID:23915099

  20. A Sweet Spot for Molecular Diagnostics: Coupling Isothermal Amplification and Strand Exchange Circuits to Glucometers

    Du, Yan; Hughes, Randall A.; Bhadra, Sanchita; Jiang, Yu Sherry; Ellington, Andrew D.; Li, Bingling

    2015-06-01

    Strand exchange nucleic acid circuitry can be used to transduce isothermal nucleic acid amplification products into signals that can be readable on an off-the-shelf glucometer. Loop-mediated isothermal amplification (LAMP) is limited by the accumulation of non-specific products, but nucleic acid circuitry can be used to probe and distinguish specific amplicons. By combining this high temperature isothermal amplification method with a thermostable invertase, we can directly transduce Middle-East respiratory syndrome coronavirus and Zaire Ebolavirus templates into glucose signals, with a sensitivity as low as 20-100 copies/μl, equating to atto-molar (or low zepto-mole). Virus from cell lysates and synthetic templates could be readily amplified and detected even in sputum or saliva. An OR gate that coordinately triggered on viral amplicons further guaranteed fail-safe virus detection. The method describes has potential for accelerating point-of-care applications, in that biological samples could be applied to a transducer that would then directly interface with an off-the-shelf, approved medical device.

  1. Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform.

    Long, Yuyin; Zhou, Cuisong; Wang, Congmin; Cai, Honglian; Yin, Cuiyun; Yang, Qiufang; Xiao, Dan

    2016-01-01

    Methodologies to detect disease biomarkers at ultralow concentrations can potentially improve the standard of living. A facile and label-free multi-amplification strategy is proposed for the ultrasensitive visual detection of HIV DNA biomarkers in real physiological media. This multi-amplification strategy not only exhibits a signficantly low detection limit down to 4.8 pM but also provides a label-free, cost-effective and facile technique for visualizing a few molecules of nucleic acid analyte with the naked eye. Importantly, the biosensor is capable of discriminating single-based mismatch lower than 5.0 nM in human serum samples. Moreover, the visual sensing platform exhibits excellent specificity, acceptable reusability and a long-term stability. All these advantages could be attributed to the nanofibrous sensing platform that 1) has a high surface-area-to-volume provided by electrospun nanofibrous membrane, and 2) combines glucose oxidase (GOx) biocatalysis, DNAzyme-catalyzed colorimetric reaction and catalytic hairpin assembly (CHA) recycling amplification together. This multi-amplification nanoplatform promises label-free and visual single-based mismatch DNA monitoring with high sensitivity and specificity, suggesting wide applications that range from virus detection to genetic disease diagnosis. PMID:27032385

  2. Ultrasensitive DNA detection based on two-step quantitative amplification on magnetic nanoparticles

    Jin, Mingliang; Liu, Xia; van den Berg, Albert; Zhou, Guofu; Shui, Lingling

    2016-08-01

    Sensitive detection of a specific deoxyribo nucleic acid (DNA) sequence is important for biomedical applications. In this report, a two-step amplification strategy is developed based on magnetic nanoparticles (MNPs) to achieve ultrasensitive DNA fluorescence detection. The first level amplification is obtained from multiple binding sites on MNPs to achieve thousands of probe DNA molecules on one nanoparticle surface. The second level amplification is gained by enzymatic reaction to achieve fluorescence signal enhancement. MNPs functionalized by probe DNA (DNAp) are bound to target DNA (t-DNA) molecules with a ratio of 1:1 on a substrate with capture DNA (DNAc). After the MNPs with DNAp are released from the substrate, alkaline phosphatase (AP) is labelled to MNPs via hybridization reaction between DNAp on MNPs and detection DNAs (DNAd) with AP. The AP on MNPs catalyses non-fluorescent 4-methylumbelliferyl phosphate (4-MUP) to fluorescent 4-methylumbelliferone (4-MU) with high intensity. Finally, fluorescence intensity of the 4-MU is detected by a conventional fluorescence spectrophotometer. With this two-step amplification strategy, the limit of detection (LOD) of 2.8 × 10‑18 mol l‑1 for t-DNA has been achieved.

  3. All Three Rows of Outer Hair Cells Are Required for Cochlear Amplification

    Michio Murakoshi

    2015-01-01

    Full Text Available In the mammalian auditory system, the three rows of outer hair cells (OHCs located in the cochlea are thought to increase the displacement amplitude of the organ of Corti. This cochlear amplification is thought to contribute to the high sensitivity, wide dynamic range, and sharp frequency selectivity of the hearing system. Recent studies have shown that traumatic stimuli, such as noise exposure and ototoxic acid, cause functional loss of OHCs in one, two, or all three rows. However, the degree of decrease in cochlear amplification caused by such functional losses remains unclear. In the present study, a finite element model of a cross section of the gerbil cochlea was constructed. Then, to determine effects of the functional losses of OHCs on the cochlear amplification, changes in the displacement amplitude of the basilar membrane (BM due to the functional losses of OHCs were calculated. Results showed that the displacement amplitude of the BM decreases significantly when a single row of OHCs lost its function, suggesting that all three rows of OHCs are required for cochlear amplification.

  4. On the role of temperature feedbacks for Arctic amplification

    Pithan, Felix; Mauritsen, Thorsten

    2013-04-01

    The amplification of global climate changes at the poles is a well-known feature of the climate system mentioned already by Arrhenius (1896). It has been linked to the surface-albedo feedback, changes in atmospheric and oceanic heat convergence, water vapour and cloud feedbacks and the albedo effect of black carbon on snow (Serreze and Barry, 2011). We here focus on the role of temperature feedbacks, which have received rather little attention in recent debates. The basic temperature feedback is the Planck feedback or the increase in the Earth's blackbody radiation due to a uniform temperature increase. Since the blackbody radiation scales with the fourth power of temperature, stronger warming is necessary in cold regions to balance a globally uniform radiative forcing. The second temperature feedback is caused by changes in the vertical atmospheric temperature structure: In the Tropics, deep convection leads to warming aloft being larger than at the surface, which causes a greater increase in outgoing longwave radiation compared a vertically uniform forcing and thus constitutes a negative feedback mechanism. In the Arctic, where warming is amplified at the surface, the lapse-rate feedback is positive (Wetherald and Manabe, 1975). We use CMIP5 model output and radiative Kernels to investigate the zonal distribution of temperature feedbacks. Arrhenius, S. (1896). On the influence of carbonic acid in the air upon the temperature of the ground Philos. Mag. J. Sci., 5, pp. 237-276 Serreze, M.C. and Barry, R.G. (2011) . Processes and impacts of Arctic amplification: A research synthesis, Global and Planetary Change, 77(1-2), pp. 85-96 Wetherald, R. and Manabe, S. (1975). The effects of changing the solar constant on the climate of a general circulation model. J. Atmos. Sci., 23 pp 2044-2059

  5. Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection.

    Ahmed Abd El Wahed

    Full Text Available Over 2.5 billion people are exposed to the risk of contracting dengue fever (DF. Early diagnosis of DF helps to diminish its burden on public health. Real-time reverse transcription polymerase amplification assays (RT-PCR are the standard method for molecular detection of the dengue virus (DENV. Real-time RT-PCR analysis is not suitable for on-site screening since mobile devices are large, expensive, and complex. In this study, two RT-recombinase polymerase amplification (RT-RPA assays were developed to detect DENV1-4.Using two quantitative RNA molecular standards, the analytical sensitivity of a RT-RPA targeting the 3´non-translated region of DENV1-4 was found to range from 14 (DENV4 to 241 (DENV1-3 RNA molecules detected. The assay was specific and did not cross detect other Flaviviruses. The RT-RPA assay was tested in a mobile laboratory combining magnetic-bead based total nucleic acid extraction and a portable detection device in Kedougou (Senegal and in Bangkok (Thailand. In Kedougou, the RT-RPA was operated at an ambient temperature of 38 °C with auxiliary electricity tapped from a motor vehicle and yielded a clinical sensitivity and specificity of 98% (n=31 and 100% (n=23, respectively. While in the field trial in Bangkok, the clinical sensitivity and specificity were 72% (n=90 and 100%(n=41, respectively.During the first 5 days of infection, the developed DENV1-4 RT-RPA assays constitute a suitable accurate and rapid assay for DENV diagnosis. Moreover, the use of a portable fluorescence-reading device broadens its application potential to the point-of-care for outbreak investigations.

  6. Social amplification of risk: An empirical study

    The social amplification of risk is a theoretical framework that addresses an important deficiency of formal risk assessment methods and procedures. Typically assessments of risk from technological mishaps have been based upon the expected number of people who could be killed or injured or the amount of property that might be damaged. The diverse and consequential impacts that followed in the aftermath of the Three Mile Island accident make it clear that risk assessments that exclude the role of public perceptions of risk will greatly underestimate the potential costs of certain types of hazards. The accident at Three Mile Island produced no direct fatalities and few, if any, expected deaths due to cancer, yet few other accidents in history have had such costly societal impacts. The experience of amplified impacts argues for the development of a broadened theoretical and methodological perspective capable of integrating technical assessment of risk with public perceptions. This report presents the results to date in an ongoing research effort to better understand the complex processes by which adverse events produce impacts. In particular this research attempts to construct a framework that can account for those events that have produced, or are capable of producing, greater societal impacts than would be forecast by traditional risk assessment methods. This study demonstrates that the social amplification of risk involves interactions between sophisticated technological hazards, public and private institutions, and subtle individual and public perceptions and behaviors. These factors, and the variables underlying the intricate processes of social amplification that occur in modern society, are not fully defined and clarified in this report. 19 refs., 9 figs., 10 tabs

  7. Amplification Effects and Unconventional Monetary Policies

    Cécile BASTIDON GILLES

    2012-02-01

    Full Text Available Global financial crises trigger off amplification effects, which allow relatively small shocks to propagate through the whole financial system. For this reason, the range of Central banks policies is now widening beyond conventional monetary policies and lending of last resort. The aim of this paper is to establish a rule for this practice. The model is based on the formalization of funding conditions in various types of markets. We conduct a comprehensive analysis of the “unconventional monetary policies”, and especially quantify government bonds purchases by the Central bank.

  8. Parametric Amplification of Gravitational Fluctuations during Reheating

    Cosmological perturbations can undergo amplification by parametric resonance during preheating even on scales larger than the Hubble radius, without violating causality. A unified description of gravitational and matter fluctuations is crucial to determine the strength of the instability. To extract specific signatures of the oscillating inflaton field during reheating, it is essential to focus on a variable describing metric fluctuations which is constant in the standard analyses of inflation. For a massive inflaton without self-coupling, we find no additional growth of superhorizon modes during reheating beyond the usual predictions. For a massless self-coupled inflaton, there is a sub-Hubble scale resonance. copyright 1999 The American Physical Society

  9. Gas amplification properties of GEM foils

    In the framework of the detector concept International Linear Detector for the future accelerator project International Linear Collider, in which electrons and positrons at c. m. energies of 500 GeV are brought to collision, a time projection chamber shall be applied as central track detector. By the application of such a chamber as track detector a three-dimensional reconstruction of the track points is possible. If a particle passes the gas volume within the chamber it ionizises single gas atoms and the arising electrons move after the amplification in the GEM arrangement to the anode, so that a two-dimensional projection of the particle track is possible. The third dimension is calculated from the drift time of the electrons. The advances of this readout system consist therein that a better position resolution than by a multiwire proportional chamber is reached and the back-drifting ions can be strongly suppressed. Aim of this thesis are studies for a GEM module, which shall be used in a large TPC prototype. Concerning different requirements it is valid to compare different GEMs in order to can meet an optimal choice. In a small prototype present at DESY measurements for the acquisition of GEM-describing parameters were performed. The taking into operation of the test TPC was part of this thesis. Tracks were generated by a radioactive source, by means of which the gas amplification was determined. With the measurement arrangement gas-amplifier foils of different kind were compared in view of their amplification properties and their energy resolution power and systematically studied. Five different GEM performances were studied in the test TPC. These foils differ in their geometrical classification parameters, the fabrication process, or the materials. The GEMs produced at CERN possess in comparison with GEMs of the Japanese firm SciEnergy and a GEM of the US-American firm Tech-Etch the best amplification and resolution properties. Furthermore a new GEM framing

  10. Intramolecular derivatization of 2'-amino-pyrimidine modified RNA with functional groups that is compatible with re-amplification.

    Kujau, M J; Wölfl, S

    1998-01-01

    To expand the scope of nucleic acid aptamers as a tool for precise molecular recognition, functional groups that are not naturally present in nucleic acid molecules are desired. For in vitro selection these new functional groups must be compatible with the selection process. The present method allows the introduction of succinimide activated side chains at internal amino groups of 2'-amino-pyrimidine-RNA in a combinatorial fashion that is compatible with enzymatic re-amplification.

  11. Amplification of fluorescence using collinear picosecond optical parametric amplification at degeneracy

    Zhang Jing; Zhang Qiu-Lin; Jiang Man; Zhang Dong-Xiang; Feng Bao-Hua; Zhang Jing-Yuan

    2012-01-01

    We demonstrate the output characteristic of broadband parametric amplification of incoherent light pulses in a 355-nm pumped degenerate picosecond optical parametric amplification with either saturated or unsaturated amplification.The optical parametric amplifier is seeded by the fluorescence generated in a solution of pyridine-1 dye in ethanol.With the saturated amplification,we can obtain high energy incoherent light pulses,whose full widtth at half maximum bandwidth varies from 16 nm to 53 nm for the different phase matching angles near degeneracy.Moreover,the unsaturated bandwidth of the amplified pulses fits well to the calculated result at degeneracy.Selecting s-polarized fluorescence with a Glan-Taylor prism,the maximum bandwidth of the amplified fluorescence is found to be 59 nm for a purely s-polarized seed.The maximum output energy is 0.67 mJ for the optical parametric amplifier.By using an optical filter and compressor,the generated high energy incoherent light has great potential as the incoherent pump,signal or idler wave of a parametric down-conversion process,so that a wave with a high degree of coherence can be generated from an incoherent pump light.

  12. Asymmetric parametric amplification in nonlinear left-handed transmission lines

    Powell, David A.; Ilya V. Shadrivov; Yuri S. Kivshar

    2008-01-01

    We study parametric amplification in nonlinear left-handed transmission lines, which serve as model systems for nonlinear negative index metamaterials. We experimentally demonstrate amplification of a weak pump signal in three regimes: with the signal in the left-handed band, with the signal in the stop band, and with the signal at a defect frequency. In particular, we demonstrate the amplification of the incident wave by up to 15dB in the left-handed regime.

  13. Multiplex allele-specific target amplification based on PCR suppression

    Broude, Natalia E.; Zhang, Lingang; Woodward, Karen; Englert, David; Cantor, Charles R.

    2001-01-01

    We have developed a strategy for multiplex PCR based on PCR suppression. PCR suppression allows DNA target amplification with only one sequence-specific primer per target and a second primer that is common for all targets. Therefore, an n-plex PCR would require only n + 1 primers. We have demonstrated uniform, efficient amplification of targeted sequences in 14-plex PCR. The high specificity of suppression PCR also provides multiplexed amplification with allele specifi...

  14. Loss of KLF14 triggers centrosome amplification and tumorigenesis

    Fan, Guangjian; Sun, Lianhui; Shan, Peipei; Zhang, Xianying; Huan, Jinliang; Li, Dali; Wang, Tingting; Wei, Tingting; Zhang, Xiaohong; Gu, Xiaoyang; Yao, Liangfang; Xuan, Yang; Hou, Zhaoyuan; Cui, Yongping; Cao, Liu

    2015-01-01

    Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinical...

  15. An Improved Analytical Expression for Write Amplification in NAND Flash

    Xiang, Luojie; Kurkoski, Brian

    2011-01-01

    Agarwal et al. gave an closed-form expression for write amplification in NAND flash memory by finding the probability of a page being valid over the whole flash memory. This paper gives an improved analytic expression for write amplification in NAND flash memory by finding the probability of a page being invalid over the block selected for garbage collection. The improved expression uses Lambert W function. Through asymptotic analysis, write amplification is shown to depend on overprovisionin...

  16. Quantum noise in parametric amplification under phase-mismatched conditions

    Inoue, K.

    2016-05-01

    This paper studies quantum noise in parametric amplification under phase-mismatched conditions. The equations of motion of the quantum-mechanical field operators, which include phase mismatch under unsaturated conditions are first derived from the Heisenberg equation. Next, the noise figure is evaluated using the solutions of the derived equations. The results indicate that phase mismatch scarcely affects noise property in phase-insensitive amplification while it has a notable effect in case of phase-sensitive amplification.

  17. Comparison of sensor structures for the signal amplification of surface plasmon resonance immunoassay using enzyme precipitation

    Yang, Chih-Tsung; Thierry, Benjamin

    2015-12-01

    Surface plasmon resonance (SPR) biosensing has been successfully applied for the label-free detection of a broad range of bioanalytes ranging from bacteria, cell, exosome, protein and nucleic acids. When it comes to the detection of small molecules or analytes found at low concentration, amplification schemes are desirable to enhance binding signals and in turn increase sensitivity. A number of SPR signal amplification schemes have been developed and validated; however, little effort has been devoted to understanding the effect of the SPR sensor structures on the amplification of binding signals and therefore on the overall sensing performance. The physical phenomenon of long-range SPR (LRSPR) relies on the propagation of coupled surface plasmonic waves on the opposite sides of a nanoscale-thick noble metal film suspended between two dielectrics with similar refractive indices. Importantly, as compared with commonly used conventional SPR (cSPR), LRSPR is not only characterized by a longer penetration depth of the plasmonic waves in the analyzed medium but also by a greater sensitivity to bulk refractive index changes. In this work, an immunoassay signal amplification platform based on horseradish peroxidase (HRP) catalyzed precipitation was utilized to investigate the sensing performance with regards to cSPR and LRSPR. The enzymatic precipitation of 3, 3'-diaminobenzidine tetrahydrochloride (DAB)/H2O2 was used to amplify SPR signals. The structure-function relationship of cSPR and LRSPR sensors is presented for both standard refractometric measurements and the enzymatic precipitation scheme. Experimental data shows that despite its inherent higher sensitivity to bulk refractive index changes and higher figure of merit, LRSPR was characterized by a lower angular sensitivity in the model enzymatic amplification scheme used here.

  18. Host suppression and bioinformatics for sequence-based characterization of unknown pathogens.

    Branda, Steven S.; Lane, Todd W.; Misra, Milind; Meagher, Robert J.; Patel, Kamlesh D.; Kaiser, Julia N.

    2009-11-01

    Bioweapons and emerging infectious diseases pose formidable and growing threats to our national security. Rapid advances in biotechnology and the increasing efficiency of global transportation networks virtually guarantee that the United States will face potentially devastating infectious disease outbreaks caused by novel ('unknown') pathogens either intentionally or accidentally introduced into the population. Unfortunately, our nation's biodefense and public health infrastructure is primarily designed to handle previously characterized ('known') pathogens. While modern DNA assays can identify known pathogens quickly, identifying unknown pathogens currently depends upon slow, classical microbiological methods of isolation and culture that can take weeks to produce actionable information. In many scenarios that delay would be costly, in terms of casualties and economic damage; indeed, it can mean the difference between a manageable public health incident and a full-blown epidemic. To close this gap in our nation's biodefense capability, we will develop, validate, and optimize a system to extract nucleic acids from unknown pathogens present in clinical samples drawn from infected patients. This system will extract nucleic acids from a clinical sample, amplify pathogen and specific host response nucleic acid sequences. These sequences will then be suitable for ultra-high-throughput sequencing (UHTS) carried out by a third party. The data generated from UHTS will then be processed through a new data assimilation and Bioinformatic analysis pipeline that will allow us to characterize an unknown pathogen in hours to days instead of weeks to months. Our methods will require no a priori knowledge of the pathogen, and no isolation or culturing; therefore it will circumvent many of the major roadblocks confronting a clinical microbiologist or virologist when presented with an unknown or engineered pathogen.

  19. Cofactory: Sequence-based prediction of cofactor specificity of Rossmann folds

    Geertz-Hansen, Henrik Marcus; Blom, Nikolaj; Feist, Adam; Brunak, Søren; Petersen, Thomas Nordahl

    2014-01-01

    cofactor specificity using only primary amino acid sequence information. The algorithm identifies potential cofactor binding Rossinann folds and predicts the specificity for the cofactors FAD(H2), NAD(H), and NADP(H) The Rossmann fold sequence search is carried out using hidden Markov models whereas...... artificial neural networks are used for specificity prediction. Training was carried out using experimental data from protein cofactor structure complexes. The overall performance was benchmarked against an independent evaluation set obtaining Matthews correlation coefficients of 0.94, 0.79, and 0.65 for FAD...

  20. Improved PCR Amplification of Broad Spectrum GC DNA Templates

    Guido, Nicholas; Starostina, Elena; Leake, Devin; Saaem, Ishtiaq

    2016-01-01

    Many applications in molecular biology can benefit from improved PCR amplification of DNA segments containing a wide range of GC content. Conventional PCR amplification of DNA sequences with regions of GC less than 30%, or higher than 70%, is complex due to secondary structures that block the DNA polymerase as well as mispriming and mis-annealing of the DNA. This complexity will often generate incomplete or nonspecific products that hamper downstream applications. In this study, we address multiplexed PCR amplification of DNA segments containing a wide range of GC content. In order to mitigate amplification complications due to high or low GC regions, we tested a combination of different PCR cycling conditions and chemical additives. To assess the fate of specific oligonucleotide (oligo) species with varying GC content in a multiplexed PCR, we developed a novel method of sequence analysis. Here we show that subcycling during the amplification process significantly improved amplification of short template pools (~200 bp), particularly when the template contained a low percent of GC. Furthermore, the combination of subcycling and 7-deaza-dGTP achieved efficient amplification of short templates ranging from 10–90% GC composition. Moreover, we found that 7-deaza-dGTP improved the amplification of longer products (~1000 bp). These methods provide an updated approach for PCR amplification of DNA segments containing a broad range of GC content. PMID:27271574

  1. Brillouin amplification and processing of the Rayleigh scattered signal.

    Mermelstein, David; Shacham, Eliashiv; Biton, Moran; Sternklar, Shmuel

    2015-07-15

    Brillouin amplification of Rayleigh scattering is demonstrated using two different configurations. In the first technique, the Rayleigh scattering and amplification occurs simultaneously in the same fiber. In the second technique, the amplification takes place in a second fiber. The differences between the two techniques are delineated. Using the second technique, we demonstrate single-sideband off-resonant Brillouin amplification of the Rayleigh signal. This technique is shown to enhance the SNR of a signal that is due to vibration-induced strain on the fiber. PMID:26176464

  2. Giant amplification of modes in parity-time symmetric waveguides

    The combination of the interference with the amplification of modes in a waveguide with gain and losses can result in a giant amplification of the propagating beam, which propagates without distortion of its average amplitude. An increase of the gain-loss gradient by only a few times results in a magnification of the beam by a several orders of magnitude. -- Highlights: ► We report giant beam amplification in parity-time symmetric optical waveguides. ► The amplification is due to interference of gain-guided modes. ► Flexible control both by parameters of the waveguide and of the input beam.

  3. Optimization of noncollinear optical parametric amplification

    Schimpf, D. N.; Rothardt, J.; Limpert, J.; Tünnermann, A.

    2007-02-01

    Noncollinearly phase-matched optical parametric amplifiers (NOPAs) - pumped with the green light of a frequency doubled Yb-doped fiber-amplifier system 1, 2 - permit convenient generation of ultrashort pulses in the visible (VIS) and near infrared (NIR) 3. The broad bandwidth of the parametric gain via the noncollinear pump configuration allows amplification of few-cycle optical pulses when seeded with a spectrally flat, re-compressible signal. The short pulses tunable over a wide region in the visible permit transcend of frontiers in physics and lifescience. For instance, the resulting high temporal resolution is of significance for many spectroscopic techniques. Furthermore, the high magnitudes of the peak-powers of the produced pulses allow research in high-field physics. To understand the demands of noncollinear optical parametric amplification using a fiber pump source, it is important to investigate this configuration in detail 4. An analysis provides not only insight into the parametric process but also determines an optimal choice of experimental parameters for the objective. Here, the intention is to design a configuration which yields the shortest possible temporal pulse. As a consequence of this analysis, the experimental setup could be optimized. A number of aspects of optical parametric amplifier performance have been treated analytically and computationally 5, but these do not fully cover the situation under consideration here.

  4. Induction of gene amplification in Plasmodium falciparum

    Rogers, P.L.

    1985-01-01

    Human erythrocytic in vitro cultures of Honduras I strain of the malaria parasite Plasmodium falciparum have been stressed stepwise with increasing concentrations of methotrexate (MTX), a folate antagonist. This selection has produced a strain that is 450 times more resistant to the drug than the original culture. Uptake of sublethal doses of radiolabeled MTX by infected red blood cells was 6-36 times greater in the resistant cultures than in the nonresistant controls. DNA isolated from all of the parasites was probed by hybridization with /sup 35/S-labeled DNA derived from a clone of the yeast thymidylate synthetase (TS) gene. This showed 50 to 100 times more increased hybridization of the TS probe to the DNA from the resistant parasites is direct evidence of gene amplification because DHFR and TS are actually one and the same bifunctional enzyme in P. falciparum. Hence, the evidence presented indicates that induced resistance of the malaria parasite to MTX in this case is due to overproduction of DHFR resulting from amplification of the DHFR-TS gene.

  5. Space Optical Communications Using Laser Beam Amplification

    Agrawal, Govind

    2015-01-01

    The Space Optical Communications Using Laser Beam Amplification (SOCLBA) project will provide a capability to amplify a laser beam that is received in a modulating retro-reflector (MRR) located in a satellite in low Earth orbit. It will also improve the pointing procedure between Earth and spacecraft terminals. The technology uses laser arrays to strengthen the reflected laser beam from the spacecraft. The results of first year's work (2014) show amplification factors of 60 times the power of the signal beam. MMRs are mirrors that reflect light beams back to the source. In space optical communications, a high-powered laser interrogator beam is directed from the ground to a satellite. Within the satellite, the beam is redirected back to ground using the MMR. In the MMR, the beam passes through modulators, which encode a data signal onto the returning beam. MMRs can be used in small spacecraft for optical communications. The SOCLBA project is significant to NASA and small spacecraft due to its application to CubeSats for optical data transmission to ground stations, as well as possible application to spacecraft for optical data transmission.

  6. Induction of gene amplification in Plasmodium falciparum

    Human erythrocytic in vitro cultures of Honduras I strain of the malaria parasite Plasmodium falciparum have been stressed stepwise with increasing concentrations of methotrexate (MTX), a folate antagonist. This selection has produced a strain that is 450 times more resistant to the drug than the original culture. Uptake of sublethal doses of radiolabeled MTX by infected red blood cells was 6-36 times greater in the resistant cultures than in the nonresistant controls. DNA isolated from all of the parasites was probed by hybridization with 35S-labeled DNA derived from a clone of the yeast thymidylate synthetase (TS) gene. This showed 50 to 100 times more increased hybridization of the TS probe to the DNA from the resistant parasites is direct evidence of gene amplification because DHFR and TS are actually one and the same bifunctional enzyme in P. falciparum. Hence, the evidence presented indicates that induced resistance of the malaria parasite to MTX in this case is due to overproduction of DHFR resulting from amplification of the DHFR-TS gene

  7. Seismic Wave Amplification in 3D Alluvial Basins: 3D/1D Amplification Ratios from Fast Multipole BEM Simulations

    Fajardo, Kristel C Meza; Chaillat, Stéphanie; Lenti, Luca

    2016-01-01

    In this work, we study seismic wave amplification in alluvial basins having 3D standard geometries through the Fast Multipole Boundary Element Method in the frequency domain. We investigate how much 3D amplification differs from the 1D (horizontal layering) case. Considering incident fields of plane harmonic waves, we examine the relationships between the amplification level and the most relevant physical parameters of the problem (impedance contrast, 3D aspect ratio, vertical and oblique incidence of plane waves). The FMBEM results show that the most important parameters for wave amplification are the impedance contrast and the so-called equivalent shape ratio. Using these two parameters, we derive simple rules to compute the fundamental frequency for various 3D basin shapes and the corresponding 3D/1D amplification factor for 5% damping. Effects on amplification due to 3D basin asymmetry are also studied and incorporated in the derived rules.

  8. Optofluidic analysis system for amplification-free, direct detection of Ebola infection

    Cai, H.; Parks, J. W.; Wall, T. A.; Stott, M. A.; Stambaugh, A.; Alfson, K.; Griffiths, A.; Mathies, R. A.; Carrion, R.; Patterson, J. L.; Hawkins, A. R.; Schmidt, H.

    2015-09-01

    The massive outbreak of highly lethal Ebola hemorrhagic fever in West Africa illustrates the urgent need for diagnostic instruments that can identify and quantify infections rapidly, accurately, and with low complexity. Here, we report on-chip sample preparation, amplification-free detection and quantification of Ebola virus on clinical samples using hybrid optofluidic integration. Sample preparation and target preconcentration are implemented on a PDMS-based microfluidic chip (automaton), followed by single nucleic acid fluorescence detection in liquid-core optical waveguides on a silicon chip in under ten minutes. We demonstrate excellent specificity, a limit of detection of 0.2 pfu/mL and a dynamic range of thirteen orders of magnitude, far outperforming other amplification-free methods. This chip-scale approach and reduced complexity compared to gold standard RT-PCR methods is ideal for portable instruments that can provide immediate diagnosis and continued monitoring of infectious diseases at the point-of-care.

  9. Amplification of Chirality through Self-Replication of Micellar Aggregates in Water

    Bukhryakov, Konstantin V.

    2015-03-17

    We describe a system in which the self-replication of micellar aggregates results in a spontaneous amplification of chirality in the reaction products. In this system, amphiphiles are synthesized from two "clickable" fragments: a water-soluble "head" and a hydrophobic "tail". Under biphasic conditions, the reaction is autocatalytic, as aggregates facilitate the transfer of hydrophobic molecules to the aqueous phase. When chiral, partially enantioenriched surfactant heads are used, a strong nonlinear induction of chirality in the reaction products is observed. Preseeding the reaction mixture with an amphiphile of one chirality results in the amplification of this product and therefore information transfer between generations of self-replicating aggregates. Because our amphiphiles are capable of catalysis, information transfer, and self-assembly into bounded structures, they present a plausible model for prenucleic acid "lipid world" entities. © 2015 American Chemical Society.

  10. HLA-B27 detection – comparison of genetic sequence-based method and flow cytometry assay

    Skalska, Urszula; Kozakiewicz, Anna; Maśliński, Włodzimierz; Jurkowska, Monika

    2015-01-01

    Objectives The presence of human leukocyte antigen B27 (HLA-B27) is strongly associated with ankylosing spondylitis. HLA-B27 testing is routinely applied in the diagnosis of this disease. The aim of the present study was to compare two methods of HLA-B27 detection – a genetic sequence-based method and a flow cytometry assay. Material and methods Peripheral blood was obtained from 300 individuals with suspected spondyloarthropathy. Expression of HLA-B27 on the T cell surface was analysed by fl...

  11. Development and evaluation of probe based real time loop mediated isothermal amplification for Salmonella: A new tool for DNA quantification.

    Mashooq, Mohmad; Kumar, Deepak; Niranjan, Ankush Kiran; Agarwal, Rajesh Kumar; Rathore, Rajesh

    2016-07-01

    A one step, single tube, accelerated probe based real time loop mediated isothermal amplification (RT LAMP) assay was developed for detecting the invasion gene (InvA) of Salmonella. The probe based RT LAMP is a novel method of gene amplification that amplifies nucleic acid with high specificity and rapidity under isothermal conditions with a set of six primers. The whole procedure is very simple and rapid, and amplification can be obtained in 20min. Detection of gene amplification was accomplished by amplification curve, turbidity and addition of DNA binding dye at the end of the reaction results in colour difference and can be visualized under normal day light and in UV. The sensitivity of developed assay was found 10 fold higher than taqman based qPCR. The specificity of the RT LAMP assay was validated by the absence of any cross reaction with other members of enterobacteriaceae family and other gram negative bacteria. These results indicate that the probe based RT LAMP assay is extremely rapid, cost effective, highly specific and sensitivity and has potential usefulness for rapid Salmonella surveillance. PMID:27130353

  12. Solid-state Raman image amplification

    Calmes, Lonnie Kirkland

    Amplification of low-light-level optical images is important for extending the range of lidar systems that image and detect objects in the atmosphere and underwater. The use of range-gating to produce images of particular range bins is also important in minimizing the image degradation due to light that is scattered backward from aerosols, smoke, or water along the imaging path. For practical lidar systems that must be operated within sight of unprotected observers, eye safety is of the utmost importance. This dissertation describes a new type of eye-safe, range-gated lidar sensing element based on Solid-state Raman Image Amplification (SSRIA) in a solid- state optical crystal. SSRIA can amplify low-level images in the eye-safe infrared at 1.556 μm with gains up to 106 with the addition of only quantum- limited noise. The high gains from SSRIA can compensate for low quantum efficiency detectors and can reduce the need for detector cooling. The range-gate of SSRIA is controlled by the pulsewidth of the pump laser and can be as short as 30-100 cm, using pump pulses of 2-6.7 nsec FWHM. A rate equation theoretical model is derived to help in the design of short pulsed Raman lasers. A theoretical model for the quantum noise properties of SSRIA is presented. SSRIA results in higher SNR images throughout a broad range of incident light levels, in contrast to the increasing noise factor with reduced gain in image intensified CCD's. A theoretical framework for the optical resolution of SSRIA is presented and it is shown that SSRIA can produce higher resolution than ICCD's. SSRIA is also superior in rejecting unwanted sunlight background, further increasing image SNR. Lastly, SSRIA can be combined with optical pre-filtering to perform optical image processing functions such as high-pass filtering and automatic target detection/recognition. The application of this technology to underwater imaging, called Marine Raman Image Amplification (MARIA) is also discussed. MARIA

  13. Broadening and Amplification of an Infrared Femtosecond Pulse for Optical Parametric Chirped-Pulse Amplification

    WANG He-Lin; YANG Ai-Jun; LENG Yu-Xin

    2011-01-01

    A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA).The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically.By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity,the pre-stretching pulse from an (O)ffner stretcher is further broadened to above 200ps,which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system.The bandwidth of the amplified pulse is 1.5 nm,and an output energy of 2mJ is achieved at a repetition rate of 10 Hz.Optical parametric chirped pulse amplification (OPCPA)[1-4] has attracted a great deal of attention as the most promising technique for generating ultrashort ultrahigh-peak-power laser pulses because of its very broad gain bandwidth,negligible thermal load on the nonlinear crystal,and extremely high singlepass gain as compared to amplifiers based on laser gain media.For efficient amplification and high fidelity of dispersion compensation in OPCPA,a femtosecond seed pulse is first stretched to several tens of picoseconds with a bulk grating stretcher or a fiber stretcher.%A high-average-power diode-pumped narrowband regenerative chirped pulse amplifier is developed using the thin-rod Nd:YAG laser architecture for optical parametric chirped-pulse amplification (OPCPA). The effect of the etalons on the amplified pulse in the regenerative cavity is studied experimentally and theoretically. By inserting glass etalons of thickness 1 mm and 5 mm into the regenerative cavity, the pre-stretching pulse from an (O)finer stretcher is further broadened to above 200 ps, which matches the amplification windows of the signal pulses in OPCPA and is suitable for use as a pump source in the OPCPA system. The bandwidth of the amplified pulse is 1.5 nm, and an

  14. Beyond the diffraction limit via optical amplification

    Kellerer, Aglae N

    2016-01-01

    In a previous article we suggested a method to overcome the diffraction limit behind a telescope. We refer to theory and recent numerical simulations, and test whether it is indeed possible to use photon amplification to enhance the angular resolution of a telescope or a microscope beyond the diffraction limit. An essential addition is the proposal to select events with above-average ratio of stimulated to spontaneous photons. We find that the diffraction limit of a telescope is surpassed by a factor ten for an amplifier gain of 200, if the analysis is restricted to a tenth of the incoming astronomical photons. A gain of 70 is sufficient with a hundredth of the photons.

  15. Amplification sans bruit d'images optiques

    Gigan, S.; Delaubert, V.; Lopez, L.; Treps, N.; Maitre, A.; Fabre, C.

    2004-11-01

    Nous utilisons un Oscillateur Paramétrique Optique (OPO) pompé sous le seuil dans le but d'amplifier une image multimode transverse sans dégradation du rapport signal à bruit. Le dispositif expérimental met en œuvre un OPO de type II triplement résonant et semi-confocal pour le faisceau amplifié. L'existence d'effets quantiques lors de l'amplification multimode dans un tel dispositif a été montrée expérimentalement. Plus généralement, ceci nous a amené à étudier les propriétés quantiques transverses des faisceaux lumineux amplifiés. Une telle étude peut trouver des applications non seulement en imagerie, mais également dans le traitement quantique de l'information.

  16. Social and political amplification of technological hazards

    Using an industrial explosion in Henderson, Nevada, as a case study, this paper examines three main issues: the efficacy of a technological hazard event in amplifying otherwise latent issues, the extent to which the hazard event can serve as a focusing event for substantive local and state policy initiatives, and the effect of fragmentation of political authority in managing technological hazards. The findings indicate that the explosion amplified several public safety issues and galvanized the public into pressing for major policy initiatives. However, notwithstanding the amplification of several otherwise latent issues, and the flurry of activities by the state and local governments, the hazard event did not seem to be an effective focusing event or trigger mechanism for substantive state and local policy initiatives. In addition, the study provides evidence of the need for a stronger nexus between political authority, land-use planning and technological hazard management

  17. Entanglement amplification via local weak measurements

    We propose a measurement-based method to produce a maximally-entangled state from a partially-entangled pure state. Our goal can be thought of as entanglement distillation from a single copy of a partially-entangled state. The present approach involves local two-outcome weak measurements. We show that the application of these local weak measurements leads to a probabilistic amplification of entanglement. In addition, we examine how the probability to find the maximally-entangled state is related to the entanglement of the input state. We also study the application of our method to a mixed initial state. We show that the protocol is successful if the separable part of the mixed initial state fulfils certain conditions. (paper)

  18. Chirped pulse amplification: Present and future

    Short pulses with ultrahigh peak powers have been generated in Nd: glass and Alexandrite using the Chirped Pulse Amplification (CPA) technique. This technique has been successful in producing picosecond terawatt pulses with a table-top laser system. In the near future, CPA will be applied to large laser systems such as NOVA to produce petawatt pulses (1 kJ in a 1 ps pulse) with focused intensities exceeding 10/sup /plus/21/ W/cm2. These pulses will be associated with electric fields in excess of 100 e/a/sub o/2 and blackbody energy densities equivalent to 3 /times/ 1010 J/cm3. This petawatt source will have important applications in x-ray laser research and will lead to fundamentally new experiments in atomic, nuclear, solid-state, plasma, and high-energy density physics. A review of present and future designs are discussed. 17 refs., 5 figs

  19. Integrated Amplification Microarrays for Infectious Disease Diagnostics

    Darrell P. Chandler

    2012-11-01

    Full Text Available This overview describes microarray-based tests that combine solution-phase amplification chemistry and microarray hybridization within a single microfluidic chamber. The integrated biochemical approach improves microarray workflow for diagnostic applications by reducing the number of steps and minimizing the potential for sample or amplicon cross-contamination. Examples described herein illustrate a basic, integrated approach for DNA and RNA genomes, and a simple consumable architecture for incorporating wash steps while retaining an entirely closed system. It is anticipated that integrated microarray biochemistry will provide an opportunity to significantly reduce the complexity and cost of microarray consumables, equipment, and workflow, which in turn will enable a broader spectrum of users to exploit the intrinsic multiplexing power of microarrays for infectious disease diagnostics.

  20. Explanatory Model for Sound Amplification in a Stethoscope

    Eshach, H.; Volfson, A.

    2015-01-01

    In the present paper we suggest an original physical explanatory model that explains the mechanism of the sound amplification process in a stethoscope. We discuss the amplification of a single pulse, a continuous wave of certain frequency, and finally we address the resonant frequencies. It is our belief that this model may provide students with…

  1. Parametric Amplification of Vacuum Fluctuations in a Spinor Condensate

    Klempt, C.; Topic, O.; Gebreyesus, G.;

    2010-01-01

    Parametric amplification of vacuum fluctuations is crucial in modern quantum optics, enabling the creation of squeezing and entanglement. We demonstrate the parametric amplification of vacuum fluctuations for matter waves using a spinor F=2 87Rb condensate. Interatomic interactions lead to correl...

  2. Short-Pulse Amplification by Strongly-Coupled Brillouin Scattering

    Edwards, Matthew R; Mikhailova, Julia M; Fisch, Nathaniel J

    2016-01-01

    We examine the feasibility of strongly-coupled stimulated Brillouin scattering as a mechanism for the plasma-based amplification of sub-picosecond pulses. In particular, we use fluid theory and particle-in-cell simulations to compare the relative advantages of Raman and Brillouin amplification over a broad range of achievable parameters.

  3. The Quantum Theory of Optical Parametric Amplification

    Hussain, N. A.

    Available from UMI in association with The British Library. Requires signed TDF. The aim of this thesis is to investigate the effect of parametric amplification on various forms of light. In particular we shall consider number and coherent states, but many of the calculations hold for those states whose operators satisfy the properties, = = ==0 e.g. chaotic light. The first chapter lays down the fundamental preliminaries necessary for our calculations and reviews linear amplifier theory. We consider the phase sensitive and insensitive forms of amplifiers modelling the former on the degenerate parametric amplifier and the latter on the non-degenerate and inverted population amplifiers. Chapter 2 deals with balanced homodyne detection of a narrow band coherent state before and after degenerate parametric amplification. In chapter 3 we consider a continuous mode number state produced by atomic emission and parametrically amplified using the formalism of Collett and Gardiner. We give general results for the output flux intensity and also consider the simpler case where the atomic decay rate is much smaller than the parametric cavity decay rate. Also we consider the degree of second order coherence using this simplified theory. Chapters 4 and 5 consider the double amplifier interferometer, using single and continuous mode theories, and enable us to determine the form of amplifier which produces the best visibility and hence lowest noise figures. The travelling-wave parametric amplifier is discussed in chapter 6 and is contrasted with the cavity parametric amplifier discussed in chapters 1 and 2. Finally we consider the much contemplated idea of using amplifiers to boost signals in fibre optic transmission lines using our model of the parametric amplifier and examining the degradation of the signal-to-noise ratio. We consider both coherent and squeezed inputs and our results hold for both cavity and travelling -wave amplifiers.

  4. Molecular Characterization of Buffalo Haptoglobin: Sequence Based Structural Comparison Indicates Convergent Evolution Between Ruminants and Human.

    Niranjan, S K; Goyal, S; Dubey, P K; Vohra, V; Singh, S; Kathiravan, P; Kataria, R S

    2016-01-01

    Haptoglobin (Hp) protein has high affinity for hemoglobin (Hb) binding during intravascular hemolysis and scavenges the hemoglobin induced free radicals. Earlier reports indicate about uniqueness of Hp molecule in human and cattle, but in other animals, it is not much studied. In this paper, we characterized buffalo Hp molecule and determined its molecular structure, evolutionary importance, and tissue expression. Comparative analysis and predicted domain structure indicated that the buffalo Hp has an internal duplicated region in α-chain only similar to an alternate Hp2 allele in human. This duplicated part encoded for an extra complement control protein CCP domain. Phylogenetic analysis revealed that buffalo and other ruminants were found to group together separated from all other non-ruminants, including human. The key amino acid residues involved in Hp and Hb as well as Hp and macrophage scavenger receptor, CD163 interactions in buffalo, depicted a significant variation in comparison to other non-ruminant species. Constitutive expression of Hp was also confirmed across all the vital tissues of buffalo, for the first time. Results revealed that buffalo Hp is both structurally and functionally conserved, having internal duplication in α-chain similar to human Hp2 and other ruminant species, which might have evolved separately as a convergent evolutionary process. Furthermore, the presence of extra Hp CCP domain possibly in all ruminants may have an effect during dimerization of molecule in these species. PMID:26646629

  5. The Teaching of Biochemistry: An Innovative Course Sequence Based on the Logic of Chemistry

    Jakubowski, Henry V.; Owen, Whyte G.

    1998-06-01

    An innovative course sequence for the teaching of biochemistry is offered, which more truly reflects the common philosophy found in biochemistry texts: that the foundation of biological phenomena can best be understood through the logic of chemistry. Topic order is chosen to develop an emerging understanding that is based on chemical principles. Preeminent biological questions serve as a framework for the course. Lipid and lipid-aggregate structures are introduced first, since it is more logical to discuss the intermolecular association of simple amphiphiles to form micelle and bilayer formations than to discuss the complexities of protein structure/folding. Protein, nucleic acid, and carbohydrate structures are studied next. Binding, a noncovalent process and the simplest expression of macromolecular function, follows. The physical (noncovalent) transport of solute molecules across a biological membrane is studied next, followed by the chemical transformation of substrates by enzymes. These are logical extensions of the expression of molecular function, first involving a simpler (physical transport) and second, a more complex (covalent transformation) process. The final sequence involves energy and signal transduction. This unique course sequence emerges naturally when chemical logic is used as an organizing paradigm for structuring a biochemistry course. Traditional order, which seems to reflect historic trends in research, or even an order derived from the central dogma of biology can not provide this logical framework.

  6. Study on high gain broadband optical parametric chirped pulse amplification

    Optical parametric chirped pulse amplification has apparent advantages over the current schemes for high energy ultrashort pulse amplification. High gain in a single pass amplification, small B-integral, low heat deposition, high contrast ratio and, especially the extremely broad gain bandwidth with large-size crystals available bring people new hope for over multi-PW level at which the existing Nd:glass systems suffered difficulties. In this paper we present simulation and experimental studies for a high gain optical parametric chirped pulse amplification system which may be used as a preamplifier to replace the current complicated regenerative system or multi-pass Ti:sapphire amplifiers. Investigations on the amplification bandwidth and gain with BBO are performed. Analysis and discussions are also given. (author)

  7. 21 CFR 866.3225 - Enterovirus nucleic acid assay.

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enterovirus nucleic acid assay. 866.3225 Section... nucleic acid assay. (a) Identification. An enterovirus nucleic acid assay is a device that consists of... Special Controls Guidance Document: Nucleic Acid Amplification Assay for the Detection of Enterovirus...

  8. Combining sequence-based prediction methods and circular dichroism and infrared spectroscopic data to improve protein secondary structure determinations

    Lees Jonathan G

    2008-01-01

    Full Text Available Abstract Background A number of sequence-based methods exist for protein secondary structure prediction. Protein secondary structures can also be determined experimentally from circular dichroism, and infrared spectroscopic data using empirical analysis methods. It has been proposed that comparable accuracy can be obtained from sequence-based predictions as from these biophysical measurements. Here we have examined the secondary structure determination accuracies of sequence prediction methods with the empirically determined values from the spectroscopic data on datasets of proteins for which both crystal structures and spectroscopic data are available. Results In this study we show that the sequence prediction methods have accuracies nearly comparable to those of spectroscopic methods. However, we also demonstrate that combining the spectroscopic and sequences techniques produces significant overall improvements in secondary structure determinations. In addition, combining the extra information content available from synchrotron radiation circular dichroism data with sequence methods also shows improvements. Conclusion Combining sequence prediction with experimentally determined spectroscopic methods for protein secondary structure content significantly enhances the accuracy of the overall results obtained.

  9. Sequence-based Association Analysis Reveals an MGST1 eQTL with Pleiotropic Effects on Bovine Milk Composition

    Littlejohn, Mathew D.; Tiplady, Kathryn; Fink, Tania A.; Lehnert, Klaus; Lopdell, Thomas; Johnson, Thomas; Couldrey, Christine; Keehan, Mike; Sherlock, Richard G.; Harland, Chad; Scott, Andrew; Snell, Russell G.; Davis, Stephen R.; Spelman, Richard J.

    2016-01-01

    The mammary gland is a prolific lipogenic organ, synthesising copious amounts of triglycerides for secretion into milk. The fat content of milk varies widely both between and within species, and recent independent genome-wide association studies have highlighted a milk fat percentage quantitative trait locus (QTL) of large effect on bovine chromosome 5. Although both EPS8 and MGST1 have been proposed to underlie these signals, the causative status of these genes has not been functionally confirmed. To investigate this QTL in detail, we report genome sequence-based imputation and association mapping in a population of 64,244 taurine cattle. This analysis reveals a cluster of 17 non-coding variants spanning MGST1 that are highly associated with milk fat percentage, and a range of other milk composition traits. Further, we exploit a high-depth mammary RNA sequence dataset to conduct expression QTL (eQTL) mapping in 375 lactating cows, revealing a strong MGST1 eQTL underpinning these effects. These data demonstrate the utility of DNA and RNA sequence-based association mapping, and implicate MGST1, a gene with no obvious mechanistic relationship to milk composition regulation, as causally involved in these processes. PMID:27146958

  10. Sequence-based Association Analysis Reveals an MGST1 eQTL with Pleiotropic Effects on Bovine Milk Composition.

    Littlejohn, Mathew D; Tiplady, Kathryn; Fink, Tania A; Lehnert, Klaus; Lopdell, Thomas; Johnson, Thomas; Couldrey, Christine; Keehan, Mike; Sherlock, Richard G; Harland, Chad; Scott, Andrew; Snell, Russell G; Davis, Stephen R; Spelman, Richard J

    2016-01-01

    The mammary gland is a prolific lipogenic organ, synthesising copious amounts of triglycerides for secretion into milk. The fat content of milk varies widely both between and within species, and recent independent genome-wide association studies have highlighted a milk fat percentage quantitative trait locus (QTL) of large effect on bovine chromosome 5. Although both EPS8 and MGST1 have been proposed to underlie these signals, the causative status of these genes has not been functionally confirmed. To investigate this QTL in detail, we report genome sequence-based imputation and association mapping in a population of 64,244 taurine cattle. This analysis reveals a cluster of 17 non-coding variants spanning MGST1 that are highly associated with milk fat percentage, and a range of other milk composition traits. Further, we exploit a high-depth mammary RNA sequence dataset to conduct expression QTL (eQTL) mapping in 375 lactating cows, revealing a strong MGST1 eQTL underpinning these effects. These data demonstrate the utility of DNA and RNA sequence-based association mapping, and implicate MGST1, a gene with no obvious mechanistic relationship to milk composition regulation, as causally involved in these processes. PMID:27146958

  11. A conversational system for the computer analysis of nucleic acid sequences.

    Sege, R; Söll, D.; Ruddle, F H; Queen, C

    1981-01-01

    We present a conversational system for the computer analysis of nucleic acid and protein sequences based on the well-known Queen and Korn program (1). The system can be used by persons with only minimal knowledge of computers.

  12. Clinical application of somatosensory amplification in psychosomatic medicine

    Nakao Mutsuhiro

    2007-10-01

    Full Text Available Abstract Many patients with somatoform disorders are frequently encountered in psychosomatic clinics as well as in primary care clinics. To assess such patients objectively, the concept of somatosensory amplification may be useful. Somatosensory amplification refers to the tendency to experience a somatic sensation as intense, noxious, and disturbing. It may have a role in a variety of medical conditions characterized by somatic symptoms that are disproportionate to demonstrable organ pathology. It may also explain some of the variability in somatic symptomatology found among different patients with the same serious medical disorder. It has been assessed with a self-report questionnaire, the Somatosensory Amplification Scale. This instrument was developed in a clinical setting in the U.S., and the reliability and validity of the Japanese and Turkish versions have been confirmed as well. Many studies have attempted to clarify the specific role of somatosensory amplification as a pathogenic mechanism in somatization. It has been reported that somatosensory amplification does not correlate with heightened sensitivity to bodily sensations and that emotional reactivity exerts its influence on somatization via a negatively biased reporting style. According to our recent electroencephalographic study, somatosensory amplification appears to reflect some aspects of long-latency cognitive processing rather than short-latency interoceptive sensitivity. The concept of somatosensory amplification can be useful as an indicator of somatization in the therapy of a broad range of disorders, from impaired self-awareness to various psychiatric disorders. It also provides useful information for choosing appropriate pharmacological or psychological therapy. While somatosensory amplification has a role in the presentation of somatic symptoms, it is closely associated with other factors, namely, anxiety, depression, and alexithymia that may also influence the same

  13. An investigation of PCR inhibition using Plexor(®) -based quantitative PCR and short tandem repeat amplification.

    Thompson, Robyn E; Duncan, George; McCord, Bruce R

    2014-11-01

    A common problem in forensic DNA typing is PCR inhibition resulting in allele dropout and peak imbalance. In this paper, we have utilized the Plexor(®) real-time PCR quantification kit to evaluate PCR inhibition. This is performed by adding increasing concentrations of various inhibitors and evaluating changes in melt curves and PCR amplification efficiencies. Inhibitors examined included calcium, humic acid, collagen, phenol, tannic acid, hematin, melanin, urea, bile salts, EDTA, and guanidinium thiocyanate. Results were plotted and modeled using mathematical simulations. In general, we found that PCR inhibitors that bind DNA affect melt curves and CT takeoff points while those that affect the Taq polymerase tend to affect the slope of the amplification curve. Mixed mode effects were also visible. Quantitative PCR results were then compared with subsequent STR amplification using the PowerPlex(®) 16 HS System. The overall results demonstrate that real-time PCR can be an effective method to evaluate PCR inhibition and predict its effects on subsequent STR amplifications. PMID:25182468

  14. CLUSS: Clustering of protein sequences based on a new similarity measure

    Brzezinski Ryszard

    2007-08-01

    Full Text Available Abstract Background The rapid burgeoning of available protein data makes the use of clustering within families of proteins increasingly important. The challenge is to identify subfamilies of evolutionarily related sequences. This identification reveals phylogenetic relationships, which provide prior knowledge to help researchers understand biological phenomena. A good evolutionary model is essential to achieve a clustering that reflects the biological reality, and an accurate estimate of protein sequence similarity is crucial to the building of such a model. Most existing algorithms estimate this similarity using techniques that are not necessarily biologically plausible, especially for hard-to-align sequences such as proteins with different domain structures, which cause many difficulties for the alignment-dependent algorithms. In this paper, we propose a novel similarity measure based on matching amino acid subsequences. This measure, named SMS for Substitution Matching Similarity, is especially designed for application to non-aligned protein sequences. It allows us to develop a new alignment-free algorithm, named CLUSS, for clustering protein families. To the best of our knowledge, this is the first alignment-free algorithm for clustering protein sequences. Unlike other clustering algorithms, CLUSS is effective on both alignable and non-alignable protein families. In the rest of the paper, we use the term "phylogenetic" in the sense of "relatedness of biological functions". Results To show the effectiveness of CLUSS, we performed an extensive clustering on COG database. To demonstrate its ability to deal with hard-to-align sequences, we tested it on the GH2 family. In addition, we carried out experimental comparisons of CLUSS with a variety of mainstream algorithms. These comparisons were made on hard-to-align and easy-to-align protein sequences. The results of these experiments show the superiority of CLUSS in yielding clusters of proteins

  15. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays.

    Wang, Cong; Li, Rong; Quan, Sheng; Shen, Ping; Zhang, Dabing; Shi, Jianxin; Yang, Litao

    2015-06-01

    Isothermal DNA/RNA amplification techniques are the primary methodology for developing on-spot rapid nucleic acid amplification assays, and the loop-mediated isothermal amplification (LAMP) technique has been developed and applied in the detection of foodborne pathogens, plant/animal viruses, and genetically modified (GM) food/feed contents. In this study, one set of LAMP assays targeting on eight frequently used universal elements, marker genes, and exogenous target genes, such as CaMV35S promoter, FMV35S promoter, NOS, bar, cry1Ac, CP4 epsps, pat, and NptII, were developed for visual screening of GM contents in plant-derived food samples with high efficiency and accuracy. For these eight LAMP assays, their specificity was evaluated by testing commercial GM plant events and their limits of detection were also determined, which are 10 haploid genome equivalents (HGE) for FMV35S promoter, cry1Ac, and pat assays, as well as five HGE for CaMV35S promoter, bar, NOS terminator, CP4 epsps, and NptII assays. The screening applicability of these LAMP assays was further validated successfully using practical canola, soybean, and maize samples. The results suggested that the established visual LAMP assays are applicable and cost-effective for GM screening in plant-derived food samples. PMID:25822163

  16. Loop-mediated isothermal amplification for detection of porcine circovirus type 2

    Zhou Shun

    2011-11-01

    Full Text Available Abstract Background Porcine circovirus type 2 (PCV2 is the primary causative agent of the emerging swine disease known as postweaning multisystemic wasting syndrome (PMWS. Nowadays, polymerase chain reaction (PCR is still the most widespread technique in pathogen detection. Loop-mediated isothermal amplification (LAMP, a novel nucleic acid amplification method developed in 2000, will possibly replace PCR in the field of detection. To establish a LAMP method for rapid detection of PCV2, two pairs of primers were designed specially from the open reading frame 2 (ORF2 sequences of PCV2. A LAMP method for rapid detection of PCV2 was established. To compare with PCR, sensitivity and specificity of LAMP were evaluated using the optimized reaction system. The LAMP products could be determined by agarose gel electrophoresis or adding SYBR Green I dye. Results The amplification of LAMP could be obtained at 63°C for 60 min. The detection limit was nearly 1 copy of DNA plasmid, more sensitive than PCR. There was no cross-reaction with porcine circovirus type 1 (PCV1, porcine pseudorabies virus (PRV and porcine parvovirus (PPV under the same conditions. Conclusions LAMP is an useful rapid detection method with high sensitivity and specificity for PCV2.

  17. Mechanism of Gene Amplification via Yeast Autonomously Replicating Sequences

    Shelly Sehgal

    2015-01-01

    Full Text Available The present investigation was aimed at understanding the molecular mechanism of gene amplification. Interplay of fragile sites in promoting gene amplification was also elucidated. The amplification promoting sequences were chosen from the Saccharomyces cerevisiae ARS, 5S rRNA regions of Plantago ovata and P. lagopus, proposed sites of replication pausing at Ste20 gene locus of S. cerevisiae, and the bend DNA sequences within fragile site FRA11A in humans. The gene amplification assays showed that plasmid bearing APS from yeast and human beings led to enhanced protein concentration as compared to the wild type. Both the in silico and in vitro analyses were pointed out at the strong bending potential of these APS. In addition, high mitotic stability and presence of TTTT repeats and SAR amongst these sequences encourage gene amplification. Phylogenetic analysis of S. cerevisiae ARS was also conducted. The combinatorial power of different aspects of APS analyzed in the present investigation was harnessed to reach a consensus about the factors which stimulate gene expression, in presence of these sequences. It was concluded that the mechanism of gene amplification was that AT rich tracts present in fragile sites of yeast serve as binding sites for MAR/SAR and DNA unwinding elements. The DNA protein interactions necessary for ORC activation are facilitated by DNA bending. These specific bindings at ORC promote repeated rounds of DNA replication leading to gene amplification.

  18. Mechanism of gene amplification via yeast autonomously replicating sequences.

    Sehgal, Shelly; Kaul, Sanjana; Dhar, M K

    2015-01-01

    The present investigation was aimed at understanding the molecular mechanism of gene amplification. Interplay of fragile sites in promoting gene amplification was also elucidated. The amplification promoting sequences were chosen from the Saccharomyces cerevisiae ARS, 5S rRNA regions of Plantago ovata and P. lagopus, proposed sites of replication pausing at Ste20 gene locus of S. cerevisiae, and the bend DNA sequences within fragile site FRA11A in humans. The gene amplification assays showed that plasmid bearing APS from yeast and human beings led to enhanced protein concentration as compared to the wild type. Both the in silico and in vitro analyses were pointed out at the strong bending potential of these APS. In addition, high mitotic stability and presence of TTTT repeats and SAR amongst these sequences encourage gene amplification. Phylogenetic analysis of S. cerevisiae ARS was also conducted. The combinatorial power of different aspects of APS analyzed in the present investigation was harnessed to reach a consensus about the factors which stimulate gene expression, in presence of these sequences. It was concluded that the mechanism of gene amplification was that AT rich tracts present in fragile sites of yeast serve as binding sites for MAR/SAR and DNA unwinding elements. The DNA protein interactions necessary for ORC activation are facilitated by DNA bending. These specific bindings at ORC promote repeated rounds of DNA replication leading to gene amplification. PMID:25685838

  19. Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control

    Cary, Robert E.

    2015-12-08

    Highly simplified lateral flow chromatographic nucleic acid sample preparation methods, devices, and integrated systems are provided for the efficient concentration of trace samples and the removal of nucleic acid amplification inhibitors. Methods for capturing and reducing inhibitors of nucleic acid amplification reactions, such as humic acid, using polyvinylpyrrolidone treated elements of the lateral flow device are also provided. Further provided are passive fluid control methods and systems for use in lateral flow assays.

  20. A mechanism of gene amplification driven by small DNA fragments.

    Kuntal Mukherjee

    Full Text Available DNA amplification is a molecular process that increases the copy number of a chromosomal tract and often causes elevated expression of the amplified gene(s. Although gene amplification is frequently observed in cancer and other degenerative disorders, the molecular mechanisms involved in the process of DNA copy number increase remain largely unknown. We hypothesized that small DNA fragments could be the trigger of DNA amplification events. Following our findings that small fragments of DNA in the form of DNA oligonucleotides can be highly recombinogenic, we have developed a system in the yeast Saccharomyces cerevisiae to capture events of chromosomal DNA amplification initiated by small DNA fragments. Here we demonstrate that small DNAs can amplify a chromosomal region, generating either tandem duplications or acentric extrachromosomal DNA circles. Small fragment-driven DNA amplification (SFDA occurs with a frequency that increases with the length of homology between the small DNAs and the target chromosomal regions. SFDA events are triggered even by small single-stranded molecules with as little as 20-nt homology with the genomic target. A double-strand break (DSB external to the chromosomal amplicon region stimulates the amplification event up to a factor of 20 and favors formation of extrachromosomal circles. SFDA is dependent on Rad52 and Rad59, partially dependent on Rad1, Rad10, and Pol32, and independent of Rad51, suggesting a single-strand annealing mechanism. Our results reveal a novel molecular model for gene amplification, in which small DNA fragments drive DNA amplification and define the boundaries of the amplicon region. As DNA fragments are frequently found both inside cells and in the extracellular environment, such as the serum of patients with cancer or other degenerative disorders, we propose that SFDA may be a common mechanism for DNA amplification in cancer cells, as well as a more general cause of DNA copy number variation

  1. A mechanism of gene amplification driven by small DNA fragments.

    Mukherjee, Kuntal; Storici, Francesca

    2012-01-01

    DNA amplification is a molecular process that increases the copy number of a chromosomal tract and often causes elevated expression of the amplified gene(s). Although gene amplification is frequently observed in cancer and other degenerative disorders, the molecular mechanisms involved in the process of DNA copy number increase remain largely unknown. We hypothesized that small DNA fragments could be the trigger of DNA amplification events. Following our findings that small fragments of DNA in the form of DNA oligonucleotides can be highly recombinogenic, we have developed a system in the yeast Saccharomyces cerevisiae to capture events of chromosomal DNA amplification initiated by small DNA fragments. Here we demonstrate that small DNAs can amplify a chromosomal region, generating either tandem duplications or acentric extrachromosomal DNA circles. Small fragment-driven DNA amplification (SFDA) occurs with a frequency that increases with the length of homology between the small DNAs and the target chromosomal regions. SFDA events are triggered even by small single-stranded molecules with as little as 20-nt homology with the genomic target. A double-strand break (DSB) external to the chromosomal amplicon region stimulates the amplification event up to a factor of 20 and favors formation of extrachromosomal circles. SFDA is dependent on Rad52 and Rad59, partially dependent on Rad1, Rad10, and Pol32, and independent of Rad51, suggesting a single-strand annealing mechanism. Our results reveal a novel molecular model for gene amplification, in which small DNA fragments drive DNA amplification and define the boundaries of the amplicon region. As DNA fragments are frequently found both inside cells and in the extracellular environment, such as the serum of patients with cancer or other degenerative disorders, we propose that SFDA may be a common mechanism for DNA amplification in cancer cells, as well as a more general cause of DNA copy number variation in nature. PMID

  2. Low cost extraction and isothermal amplification of DNA for infectious diarrhea diagnosis.

    Shichu Huang

    Full Text Available In order to counter the common perception that molecular diagnostics are too complicated to work in low resource settings, we have performed a difficult sample preparation and DNA amplification protocol using instrumentation designed to be operated without wall or battery power. In this work we have combined a nearly electricity-free nucleic acid extraction process with an electricity-free isothermal amplification assay to detect the presence of Clostridium difficile (C. difficile DNA in the stool of infected patients. We used helicase-dependent isothermal amplification (HDA to amplify the DNA in a low-cost, thermoplastic reaction chip heated with a pair of commercially available toe warmers, while using a simple Styrofoam insulator. DNA was extracted from known positive and negative stool samples. The DNA extraction protocol utilized an air pressure driven solid phase extraction device run using a standard bicycle pump. The simple heater setup required no electricity or battery and was capable of maintaining the temperature at 65°C±2°C for 55 min, suitable for repeatable HDA amplification. Experiments were performed to explore the adaptability of the system for use in a range of ambient conditions. When compared to a traditional centrifuge extraction protocol and a laboratory thermocycler, this disposable, no power platform achieved approximately the same lower limit of detection (1.25×10(-2 pg of C. difficile DNA while requiring much less raw material and a fraction of the lab infrastructure and cost. This proof of concept study could greatly impact the accessibility of molecular assays for applications in global health.

  3. Low cost extraction and isothermal amplification of DNA for infectious diarrhea diagnosis.

    Huang, Shichu; Do, Jaephil; Mahalanabis, Madhumita; Fan, Andy; Zhao, Lei; Jepeal, Lisa; Singh, Satish K; Klapperich, Catherine M

    2013-01-01

    In order to counter the common perception that molecular diagnostics are too complicated to work in low resource settings, we have performed a difficult sample preparation and DNA amplification protocol using instrumentation designed to be operated without wall or battery power. In this work we have combined a nearly electricity-free nucleic acid extraction process with an electricity-free isothermal amplification assay to detect the presence of Clostridium difficile (C. difficile) DNA in the stool of infected patients. We used helicase-dependent isothermal amplification (HDA) to amplify the DNA in a low-cost, thermoplastic reaction chip heated with a pair of commercially available toe warmers, while using a simple Styrofoam insulator. DNA was extracted from known positive and negative stool samples. The DNA extraction protocol utilized an air pressure driven solid phase extraction device run using a standard bicycle pump. The simple heater setup required no electricity or battery and was capable of maintaining the temperature at 65°C±2°C for 55 min, suitable for repeatable HDA amplification. Experiments were performed to explore the adaptability of the system for use in a range of ambient conditions. When compared to a traditional centrifuge extraction protocol and a laboratory thermocycler, this disposable, no power platform achieved approximately the same lower limit of detection (1.25×10(-2) pg of C. difficile DNA) while requiring much less raw material and a fraction of the lab infrastructure and cost. This proof of concept study could greatly impact the accessibility of molecular assays for applications in global health. PMID:23555883

  4. In vitro amplification of ovine prions from scrapie-infected sheep from Great Britain reveals distinct patterns of propagation

    Thorne Leigh

    2012-11-01

    Full Text Available Abstract Background Protein misfolding cyclic amplification (PMCA is a method that facilitates the detection of prions from many sources of transmissible spongiform encephalopathy (TSE. Sheep scrapie represents a unique diversity of prion disease agents in a range of susceptible PRNP genotypes. In this study PMCA was assessed on a range of Great Britain (GB sheep scrapie isolates to determine the applicability to veterinary diagnosis of ovine TSE. Results PrPSc amplification by protein misfolding cyclic amplification (PMCA was assessed as a diagnostic tool for field cases of scrapie. The technique was initially applied to thirty-seven isolates of scrapie from diverse geographical locations around GB, and involved sheep of various breeds and PRNP genotypes. All samples were amplified in either VRQ and/or ARQ PrPC substrate. For PrPSc from sheep with at least one VRQ allele, all samples amplified efficiently in VRQ PrPC but only PrPSc from ARH/VRQ sheep amplified in both substrates. PrPSc from ARQ/ARQ sheep displayed two amplification patterns, one that amplified in both substrates and one that only amplified in ARQ PrPC. These amplification patterns were consistent for a further 14/15 flock/farm mates of these sheep. Furthermore experimental scrapie strains SSBP1, Dawson, CH1641 and MRI were analysed. SSBP1 and Dawson (from VRQ/VRQ sheep amplified in VRQ but not ARQ substrate. MRI scrapie (from ARQ/ARQ sheep nor CH1641 did not amplify in ARQ or VRQ substrate; these strains required an enhanced PMCA method incorporating polyadenylic acid (poly(A to achieve amplification. Conclusions PrPsc from 52 classical scrapie GB field isolates amplified in VRQ or ARQ or both substrates and supports the use of PMCA as a rapid assay for the detection of a wide range of ovine classical scrapie infections involving multiple PRNP genotypes and scrapie strains.

  5. Complementary weak-value amplification with concatenated postselections

    Viza, Gerardo I; Liu, Wei-Tao; Howell, John C

    2016-01-01

    We measure a transverse momentum kick in a Sagnac interferometer using weak-value amplification with two postselections. The first postselection is controlled by a polarization dependent phase mismatch between both paths of a Sagnac interferometer and the second postselection is controlled by a polarizer at the exit port. By monitoring the darkport of the interferometer, we study the complementary amplification of the concatenated postselections, where the polarization extinction ratio is greater than the contrast of the spatial interference. In this case, we find an improvement in the amplification of the signal of interest by introducing a second postselection to the system.

  6. Amplification and chromosomal dispersion of human endogenous retroviral sequences

    Endogenous retroviral sequences have undergone amplification events involving both viral and flanking cellular sequences. The authors cloned members of an amplified family of full-length endogenous retroviral sequences. Genomic blotting, employing a flanking cellular DNA probe derived from a member of this family, revealed a similar array of reactive bands in both humans and chimpanzees, indicating that an amplification event involving retroviral and associated cellular DNA sequences occurred before the evolutionary separation of these two primates. Southern analyses of restricted somatic cell hybrid DNA preparations suggested that endogenous retroviral segments are widely dispersed in the human genome and that amplification and dispersion events may be linked

  7. Amplification of Spin Waves by Thermal Spin-Transfer Torque

    Padrón-Hernández, E.; Azevedo, A.; Rezende, S. M.

    2011-11-01

    We observe amplification of spin-wave packets propagating along a film of single-crystal yttrium iron garnet subject to a transverse temperature gradient. The spin waves are excited and detected with standard techniques used in magnetostatic microwave delay lines in the 1-2 GHz frequency range. The amplification is attributed to the action of a thermal spin-transfer torque acting on the magnetization that opposes the relaxation and which is created by spin currents generated through the spin-Seebeck effect. The experimental data are interpreted with a spin-wave model that gives an amplification gain in very good agreement with the data.

  8. Amplification and chromosomal dispersion of human endogenous retroviral sequences

    Steele, P.E.; Martin, M.A.; Rabson, A.B.; Bryan, T.; O' Brien, S.J.

    1986-09-01

    Endogenous retroviral sequences have undergone amplification events involving both viral and flanking cellular sequences. The authors cloned members of an amplified family of full-length endogenous retroviral sequences. Genomic blotting, employing a flanking cellular DNA probe derived from a member of this family, revealed a similar array of reactive bands in both humans and chimpanzees, indicating that an amplification event involving retroviral and associated cellular DNA sequences occurred before the evolutionary separation of these two primates. Southern analyses of restricted somatic cell hybrid DNA preparations suggested that endogenous retroviral segments are widely dispersed in the human genome and that amplification and dispersion events may be linked.

  9. Preparation of DNA-containing extract for PCR amplification

    Dunbar, John M.; Kuske, Cheryl R.

    2006-07-11

    Environmental samples typically include impurities that interfere with PCR amplification and DNA quantitation. Samples of soil, river water, and aerosol were taken from the environment and added to an aqueous buffer (with or without detergent). Cells from the sample are lysed, releasing their DNA into the buffer. After removing insoluble cell components, the remaining soluble DNA-containing extract is treated with N-phenacylthiazolium bromide, which causes rapid precipitation of impurities. Centrifugation provides a supernatant that can be used or diluted for PCR amplification of DNA, or further purified. The method may provide a DNA-containing extract sufficiently pure for PCR amplification within 5–10 minutes.

  10. PCR amplification on microarrays of gel immobilized oligonucleotides

    Strizhkov, Boris; Tillib, Sergei; Mikhailovich, Vladimir; Mirzabekov, Andrei

    2003-11-04

    The invention relates two general methods for performing PCR amplification, combined with the detection and analysis of the PCR products on a microchip. In the first method, the amplification occurs both outside and within a plurality of gel pads on a microchip, with at least one oligonucleotide primer immobilized in a gel pad. In the second method, PCR amplification also takes place within gel pads on a microchip, but the pads are surrounded by a hydrophobic liquid such as that which separates the individual gel pads into environments which resemble micro-miniaturized test tubes.

  11. Raman amplification in the coherent wave-breaking regime.

    Farmer, J P; Pukhov, A

    2015-12-01

    In regimes far beyond the wave-breaking threshold of Raman amplification, we show that significant amplification can occur after the onset of wave breaking, before phase mixing destroys the coherent coupling between pump, probe, and plasma wave. Amplification in this regime is therefore a transient effect, with the higher-efficiency "coherent wave-breaking" (CWB) regime accessed by using a short, intense probe. Parameter scans illustrate the marked difference in behavior between below wave breaking, in which the energy-transfer efficiency is high but total energy transfer is low, wave breaking, in which efficiency is low, and CWB, in which moderate efficiencies allow the highest total energy transfer. PMID:26764840

  12. Optimization of dynamic economic dispatch with valve-point effect using chaotic sequence based differential evolution algorithms

    A chaotic sequence based differential evolution (DE) approach for solving the dynamic economic dispatch problem (DEDP) with valve-point effect is presented in this paper. The proposed method combines the DE algorithm with the local search technique to improve the performance of the algorithm. DE is the main optimizer, while an approximated model for local search is applied to fine tune in the solution of the DE run. To accelerate convergence of DE, a series of constraints handling rules are adopted. An initial population obtained by using chaotic sequence exerts optimal performance of the proposed algorithm. The combined algorithm is validated for two test systems consisting of 10 and 13 thermal units whose incremental fuel cost function takes into account the valve-point loading effects. The proposed combined method outperforms other algorithms reported in literatures for DEDP considering valve-point effects.

  13. Thermal amplification of field-correlation harvesting

    Brown, Eric G

    2013-01-01

    We study the harvesting of quantum and classical correlations from a hot scalar field in a periodic cavity by a pair of spatially separated oscillator-detectors. Specifically, we utilize non-perturbative and exact (non-numerical) techniques to solve for the evolution of the detectors-field system and then we examine how the entanglement, Gaussian quantum discord, and mutual information obtained by the detectors change with the temperature of the field. While (as expected) the harvested entanglement rapidly decays to zero as temperature is increased, we find remarkably that both the mutual information and the discord can actually be increased by multiple orders of magnitude via increasing the temperature. We go on to explain this phenomenon by taking advantage of the translational invariance of the field and use this to make accurate predictions of the behavior of thermal amplification; by this we also introduce a new perspective on field-correlation harvesting that we feel is worthy of consideration in its ow...

  14. Local Runup Amplification By Resonant Wave Interactions

    Stefanakis, Themistoklis; Dutykh, Denys

    2011-01-01

    Until now the analysis of long wave runup on a plane beach has been focused on finding its maximum value, failing to capture the existence of resonant regimes. One-dimensional numerical simulations in the framework of the Nonlinear Shallow Water Equations (NSWE) are used to investigate the Boundary Value Problem (BVP) for plane and non-trivial beaches. Monochromatic waves, as well as virtual wave-gage recordings from real tsunami simulations, are used as forcing conditions to the BVP. Resonant phenomena between the incident wavelength and the beach slope are found to occur, which result in enhanced runup of non-leading waves. The evolution of energy reveals the existence of a quasi-periodic state for the case of sinusoidal waves, the energy level of which, as well as the time required to reach that state, depend on the incident wavelength for a given beach slope. Dispersion is found to slightly reduce the value of maximum runup, but not to change the overall picture. Runup amplification occurs for both leadin...

  15. AGAPE Andromeda Gravitational Amplification Pixel Experiment

    Ansari, R; Baillon, Paul; Bouquet, A; Coupinot, G; Coutures, C; Ghesquière, C; Giraud-Héraud, Yannick; Gondolo, P; Hecquet, J; Kaplan, J; Le Du, Y; Melchior, A L; Moniez, M; Picat, J P; Soucail, G

    1999-01-01

    The aim of the AGAPE (Andromeda Gravitational Amplification Pixel Experiment), experiment which has been first proposed in June 1992 is to examine the distribution of massive astrophysical compact halo objects ((MACHO's) which possibly are in the galactic haloes and which could account for the missing dark matter. Those objects have a mass which is a fraction of solar mass and could be detected by gravitational microlensing: the light of a star is amplified when a MACHO is crossing its line of sight from the earth. This technique has been proposed by Paczy\\'nski in 1986. The AGAPE collaboration applies this technique in an original way by using, as target stars, the stars of another galaxy without resolving them. The recent progresses in photometry with CCD allow now to see tiny variations of the surface brightness of a galaxy like M~31. Those tiny variations can be the result of a single microlensing event on the background stars contributing to the surface brightness. The AGAPE collaboration has now cumulat...

  16. Thermodynamic analysis of quantum light amplification

    Tannor, D J

    2006-01-01

    Thermodynamics of a three-level maser was studied in the pioneering work of Scovil and Schulz-DuBois [Phys. Rev. Lett. 2, 262 (1959)]. In this work we consider the same three-level model, but treat both the matter and light quantum mechanically. Specifically, we analyze an extended (three-level) dissipative Jaynes-Cummings model (ED-JCM) within the framework of a quantum heat engine, using novel formulas for heat flux and power in bipartite systems introduced in our previous work [E. Boukobza and D. J. Tannor, PRA (in press)]. Amplification of the selected cavity mode occurs even in this simple model, as seen by a positive steady state power. However, initial field coherence is lost, as seen by the decaying off-diagonal field density matrix elements, and by the Husimi-Kano Q function. We show that after an initial transient time the field's entropy rises linearly during the operation of the engine, which we attribute to the dissipative nature of the evolution and not to matter-field entanglement. We show that...

  17. Small Sample Whole-Genome Amplification

    Hara, C A; Nguyen, C P; Wheeler, E K; Sorensen, K J; Arroyo, E S; Vrankovich, G P; Christian, A T

    2005-09-20

    Many challenges arise when trying to amplify and analyze human samples collected in the field due to limitations in sample quantity, and contamination of the starting material. Tests such as DNA fingerprinting and mitochondrial typing require a certain sample size and are carried out in large volume reactions; in cases where insufficient sample is present whole genome amplification (WGA) can be used. WGA allows very small quantities of DNA to be amplified in a way that enables subsequent DNA-based tests to be performed. A limiting step to WGA is sample preparation. To minimize the necessary sample size, we have developed two modifications of WGA: the first allows for an increase in amplified product from small, nanoscale, purified samples with the use of carrier DNA while the second is a single-step method for cleaning and amplifying samples all in one column. Conventional DNA cleanup involves binding the DNA to silica, washing away impurities, and then releasing the DNA for subsequent testing. We have eliminated losses associated with incomplete sample release, thereby decreasing the required amount of starting template for DNA testing. Both techniques address the limitations of sample size by providing ample copies of genomic samples. Carrier DNA, included in our WGA reactions, can be used when amplifying samples with the standard purification method, or can be used in conjunction with our single-step DNA purification technique to potentially further decrease the amount of starting sample necessary for future forensic DNA-based assays.

  18. Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones.

    Rodriguez-Manzano, Jesus; Karymov, Mikhail A; Begolo, Stefano; Selck, David A; Zhukov, Dmitriy V; Jue, Erik; Ismagilov, Rustem F

    2016-03-22

    Digital single-molecule technologies are expanding diagnostic capabilities, enabling the ultrasensitive quantification of targets, such as viral load in HIV and hepatitis C infections, by directly counting single molecules. Replacing fluorescent readout with a robust visual readout that can be captured by any unmodified cell phone camera will facilitate the global distribution of diagnostic tests, including in limited-resource settings where the need is greatest. This paper describes a methodology for developing a visual readout system for digital single-molecule amplification of RNA and DNA by (i) selecting colorimetric amplification-indicator dyes that are compatible with the spectral sensitivity of standard mobile phones, and (ii) identifying an optimal ratiometric image-process for a selected dye to achieve a readout that is robust to lighting conditions and camera hardware and provides unambiguous quantitative results, even for colorblind users. We also include an analysis of the limitations of this methodology, and provide a microfluidic approach that can be applied to expand dynamic range and improve reaction performance, allowing ultrasensitive, quantitative measurements at volumes as low as 5 nL. We validate this methodology using SlipChip-based digital single-molecule isothermal amplification with λDNA as a model and hepatitis C viral RNA as a clinically relevant target. The innovative combination of isothermal amplification chemistry in the presence of a judiciously chosen indicator dye and ratiometric image processing with SlipChip technology allowed the sequence-specific visual readout of single nucleic acid molecules in nanoliter volumes with an unmodified cell phone camera. When paired with devices that integrate sample preparation and nucleic acid amplification, this hardware-agnostic approach will increase the affordability and the distribution of quantitative diagnostic and environmental tests. PMID:26900709

  19. Targeting helicase-dependent amplification products with an electrochemical genosensor for reliable and sensitive screening of genetically modified organisms.

    Moura-Melo, Suely; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Dos Santos Junior, J Ribeiro; da Silva Fonseca, Rosana A; Lobo-Castañón, Maria Jesús

    2015-08-18

    Cultivation of genetically modified organisms (GMOs) and their use in food and feed is constantly expanding; thus, the question of informing consumers about their presence in food has proven of significant interest. The development of sensitive, rapid, robust, and reliable methods for the detection of GMOs is crucial for proper food labeling. In response, we have experimentally characterized the helicase-dependent isothermal amplification (HDA) and sequence-specific detection of a transgene from the Cauliflower Mosaic Virus 35S Promoter (CaMV35S), inserted into most transgenic plants. HDA is one of the simplest approaches for DNA amplification, emulating the bacterial replication machinery, and resembling PCR but under isothermal conditions. However, it usually suffers from a lack of selectivity, which is due to the accumulation of spurious amplification products. To improve the selectivity of HDA, which makes the detection of amplification products more reliable, we have developed an electrochemical platform targeting the central sequence of HDA copies of the transgene. A binary monolayer architecture is built onto a thin gold film where, upon the formation of perfect nucleic acid duplexes with the amplification products, these are enzyme-labeled and electrochemically transduced. The resulting combined system increases genosensor detectability up to 10(6)-fold, allowing Yes/No detection of GMOs with a limit of detection of ∼30 copies of the CaMV35S genomic DNA. A set of general utility rules in the design of genosensors for detection of HDA amplicons, which may assist in the development of point-of-care tests, is also included. The method provides a versatile tool for detecting nucleic acids with extremely low abundance not only for food safety control but also in the diagnostics and environmental control areas. PMID:26198403

  20. Structural Determinants of the Capacity of Heparin to Inhibit the Formation of the Human Amplification C3 Convertase

    Kazatchkine, Michel D.; Fearon, Douglas T.; Metcalfe, Dean D.; Rosenberg, Robert D.; Austen, K. Frank

    1981-01-01

    The ability of heparin glycosaminoglycan to prevent formation of the properdin-stabilized amplification C3 convertase is independent of antithrombin binding activity and requires substitution of the amino sugar and a degree of oxygen (O)-sulfation which could be on the uronic acid or the amino sugar. Preparations of heparin glycosaminoglycan isolated by different techniques from different species (rat, human, and porcine) exhibited an equivalent capacity to inhibit generation of the amplifica...

  1. Ultrabroadband noncollinear optical parametric amplification with LBO crystal.

    Zhao, Baozhen; Jiang, Yongliang; Sueda, Keiich; Miyanaga, Noriaki; Kobayashi, Takayoshi

    2008-11-10

    Ultrabroadband visible noncollinear optical parametric amplification (NOPA) was achieved in an LBO crystal, with a continuum seed pulse generated from a sapphire plate. The spectral bandwidth of the amplified visible pulse was about 200 nm, which can support sub-5 fs pulse amplification. An amplified output of 0.21 microJ with an average gain of about 210 was achieved. This provides, to the best of our knowledge, the first-time demonstration of such broadband amplification with a biaxial nonlinear optical crystal. Both the simulation and experimental results indicate that the LBO has a great potential as nonlinear medium in power amplifier for TW to PW noncollinear optical parametric chirped pulse amplification (NOPCPA) systems. PMID:19581976

  2. Real burst traffic amplification in optically gain clamped amplifier

    Ennser, Karin; Taccheo, Stefano; Careglio, Davide; Solé Pareta, Josep; Aracil Rico, Javier

    2008-01-01

    Optical burst amplification in a gain-stabilized amplifier is theoretically investigated using real burst traffic data. The results show that excellent performance are obtained for WDM transmission with negligible interplay due to burst arrival statistics.

  3. Methods for microbial DNA extraction from soil for PCR amplification

    Yeates C; Gillings, MR; Davison AD; Altavilla N; Veal DA

    1998-01-01

    Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1). DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol pr...

  4. Pulse Distortion in Saturated Fiber Optical Parametric Chirped Pulse Amplification

    Lali-Dastjerdi, Zohreh; Da Ros, Francesco; Rottwitt, Karsten;

    2012-01-01

    Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation.......Fiber optical parametric chirped pulse amplification is experimentally compared for different chirped pulses in the picosecond regime. The amplified chirped pulses show distortion appearing as pedestals after recompression when the amplifier is operated in saturation....

  5. Controllable Amplification of Entanglement for Two Qutrits under Decoherence

    ZHENG Qiang; XIE Xiao-Yao; ZHI Qi-Jun; REN Zhong-Zhou

    2011-01-01

    Entanglement dynamics of a two-qutrit Heisenberg spin chain with the external magnetic fields and DM interaction under the intrinsic decoherence is investigated. Depending on whether there is inhomogeneous magnetic field,the entanglement amplification, i.e. the phenomenon that the finally stable entanglement is bigger than that of the initial one, is found for one kind of initial states. The reasons for the controllable entanglement amplification are discussed.

  6. Measurement-Based Noiseless Linear Amplification for Quantum Communication

    Chrzanowski, Helen M.; Walk, Nathan; Assad, Syed M.; Janousek, Jiri; Hosseini, Sara; Ralph, Timothy C.; Symul, Thomas; Lam, Ping Koy

    2014-01-01

    Entanglement distillation is an indispensable ingredient in extended quantum communication networks. Distillation protocols are necessarily non-deterministic and require advanced experimental techniques such as noiseless amplification. Recently it was shown that the benefits of noiseless amplification could be extracted by performing a post-selective filtering of the measurement record to improve the performance of quantum key distribution. We apply this protocol to entanglement degraded by t...

  7. On the amplification of acoustic phonons in carbon nanotube

    Dompreh, K. A.; Mensah, N. G.; Sakyi-Arthur, D.; Mensah, S. Y.

    2016-01-01

    We present a theoretical study of acoustic phonons amplification in Carbon Nanotubes (CNT). The phenomenon is via Cerenkov emission (CE) of acoustic phonons using intraband transitions proposed by Mensah et. al.,~\\cite{1} in Semiconductor Superlattices (SSL) and confirmed in ~\\cite{2}. From this, an asymmetric graph of $\\Gamma^{CNT}$ on $\\frac{V_d}{V_s}$ and $\\Omega\\tau$ were obtained where amplification ($\\Gamma_{amp}^{CNT}$) $>>$ absorption ($\\Gamma_{abs}^{CNT}$). The ratio, $\\frac{\\vert \\G...

  8. Aerosol Lidar for the Relative Backscatter Amplification Measurements

    Razenkov, Igor A.; Banakh, Victor A.; Nadeev, Alexander I.

    2016-06-01

    Backscatter amplification presents only in a turbulent atmosphere, when the laser beam is propagates twice through the same inhomogeneities. We proposed technical solution to detect backscatter amplification. An aerosol micro pulse lidar with a beam expansion via receiving telescope was built to study this effect. Our system allows simultaneous detection of two returns from the same scattering volume: exactly on the axis of the laser beam and off the axis.

  9. Radioactive wastes and the social amplification of risk

    Roger E. Kasperson; Emel, Jacque; Goble, Robert; Hohenemser, Christoph; Kasperson, Jeanne X.; Renn, Ortwin

    1987-01-01

    A significant problem in radioactive waste facility siting is that apparent small risks or minor risks events produce substantial public concern and social impacts. The reasons for this difference in public health and societal impacts is not well understood. This paper explores the issues involved in the social amplification of risk, using the risk associated with site characterization as the example. Noteworthy as sources of amplification are the infomation flow associated with risks and ris...

  10. Fingerprinting Internet DNS Amplification DDoS Activities

    Fachkha, Claude; Bou-Harb, Elias; Debbabi, Mourad

    2013-01-01

    This work proposes a novel approach to infer and characterize Internet-scale DNS amplification DDoS attacks by leveraging the darknet space. Complementary to the pioneer work on inferring Distributed Denial of Service (DDoS) activities using darknet, this work shows that we can extract DDoS activities without relying on backscattered analysis. The aim of this work is to extract cyber security intelligence related to DNS Amplification DDoS activities such as detection period, attack duration, ...

  11. Thermodynamic analysis of quantum light amplification

    Boukobza, E.; Tannor, D. J.

    2006-12-01

    Thermodynamics of a three-level maser was studied in the pioneering work of Scovil and Schulz-DuBois [Phys. Rev. Lett. 2, 262 (1959)]. In this work we consider the same three-level model, but treat both the matter and the light quantum mechanically. Specifically, we analyze an extended (three-level) dissipative (ED) Jaynes-Cummings model (JCM) within the framework of a quantum heat engine, using formulas for heat flux and power in bipartite systems introduced in our previous work [E. Boukobza and D. J. Tannor Phys. Rev. A 74, 063823 (2006)] Amplification of the selected cavity mode occurs even in this simple model, as seen by a positive steady state power. However, initial field coherence is lost, as seen by the decaying off-diagonal field density matrix elements, and by the Husimi-Kano Q function. We show that after an initial transient time the field’s entropy rises linearly during the operation of the engine, which we attribute to the dissipative nature of the evolution and not to matter-field entanglement. We show that the second law of thermodynamics is satisfied in two formulations (Clausius, Carnot) and that the efficiency of the ED JCM heat engine agrees with that defined intuitively by Scovil and Schulz-DuBois. Finally, we compare the steady state heat flux and power of the fully quantum model with the semiclassical counterpart of the ED JCM, and derive the engine efficiency formula of Scovil and Schulz-DuBois analytically from fundamental thermodynamic fluxes.

  12. Thermodynamic analysis of quantum light amplification

    Thermodynamics of a three-level maser was studied in the pioneering work of Scovil and Schulz-DuBois [Phys. Rev. Lett. 2, 262 (1959)]. In this work we consider the same three-level model, but treat both the matter and the light quantum mechanically. Specifically, we analyze an extended (three-level) dissipative (ED) Jaynes-Cummings model (JCM) within the framework of a quantum heat engine, using formulas for heat flux and power in bipartite systems introduced in our previous work [E. Boukobza and D. J. Tannor Phys. Rev. A 74, 063823 (2006)] Amplification of the selected cavity mode occurs even in this simple model, as seen by a positive steady state power. However, initial field coherence is lost, as seen by the decaying off-diagonal field density matrix elements, and by the Husimi-Kano Q function. We show that after an initial transient time the field's entropy rises linearly during the operation of the engine, which we attribute to the dissipative nature of the evolution and not to matter-field entanglement. We show that the second law of thermodynamics is satisfied in two formulations (Clausius, Carnot) and that the efficiency of the ED JCM heat engine agrees with that defined intuitively by Scovil and Schulz-DuBois. Finally, we compare the steady state heat flux and power of the fully quantum model with the semiclassical counterpart of the ED JCM, and derive the engine efficiency formula of Scovil and Schulz-DuBois analytically from fundamental thermodynamic fluxes

  13. Magnetic Field Amplification and Blazar Flares

    Chen Xuhui

    2013-12-01

    Full Text Available Recent multiwavelength observations of PKS 0208-512 by SMARTS, Fermi, and Swift revealed that γ-ray and optical light curves of this flat spectrum radio quasars are highly correlated, but with an exception of one large optical flare having no corresponding gamma-ray activity or even detection. On the other hand, recent advances in SNRs observations and plasma simulations both reveal that magnetic field downstream of astrophysical shocks can be largely amplified beyond simple shock compression. These amplifications, along with their associated particle acceleration, might contribute to blazar flares, including the peculiar flare of PKS 0208-512. Using our time dependent multizone blazar emission code, we evaluate several scenarios that may represent such phenomena. This code combines Monte Carlo method that tracks the radiative processes including inverse Compton scattering, and Fokker-Planck equation that follows the cooling and acceleration of particles. It is a comprehensive time dependent code that fully takes into account the light travel time effects. In this study, both the changes of the magnetic field and acceleration efficiency are explored as the cause of blazar flares. Under these assumption, synchrotron self-Compton and external Compton scenarios produce distinct features that favor the external Compton scenario. The optical flares with/without gamma-ray counterparts can be explained by different allocations of energy between the magnetization and particle acceleration, which in turn can be affected by the relative orientation between the magnetic field and the shock flow. We compare the details of the observations and simulation, and highlight what implications this study has on our understanding of relativistic jets.

  14. Targeting MET Amplification as a New Oncogenic Driver

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy

  15. Problems encountered when defining Arctic amplification as a ratio.

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-01-01

    In climate change science the term 'Arctic amplification' has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the 'Ratio of Means' and 'Mean Ratio' approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases. PMID:27461918

  16. Targeting MET Amplification as a New Oncogenic Driver

    Kawakami, Hisato [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Okamoto, Isamu, E-mail: okamotoi@kokyu.med.kyushu-u.ac.jp [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Center for Clinical and Translational Research, Kyushu University Hospital, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582 (Japan); Okamoto, Wataru [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Division of Transrlational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577 (Japan); Tanizaki, Junko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, HIM223, 450 Brookline Avenue, Boston, MA 02215 (United States); Nakagawa, Kazuhiko [Department of Medical Oncology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan); Nishio, Kazuto [Department of Genome Biology, Kinki University Faculty of Medicine, 377-2 Ohno-higashi, Osaka-Sayama, Osaka 589-8511 (Japan)

    2014-07-22

    Certain genetically defined cancers are dependent on a single overactive oncogene for their proliferation and survival, a phenomenon known as “oncogene addiction”. A new generation of drugs that selectively target such “driver oncogenes” manifests a clinical efficacy greater than that of conventional chemotherapy in appropriate genetically defined patients. MET is a proto-oncogene that encodes a receptor tyrosine kinase, and aberrant activation of MET signaling occurs in a subset of advanced cancers as result of various genetic alterations including gene amplification, polysomy, and gene mutation. Our preclinical studies have shown that inhibition of MET signaling either with the small-molecule MET inhibitor crizotinib or by RNA interference targeted to MET mRNA resulted in marked antitumor effects in cancer cell lines with MET amplification both in vitro and in vivo. Furthermore, patients with non-small cell lung cancer or gastric cancer positive for MET amplification have shown a pronounced clinical response to crizotinib. Accumulating preclinical and clinical evidence thus suggests that MET amplification is an “oncogenic driver” and therefore a valid target for treatment. However, the prevalence of MET amplification has not been fully determined, possibly in part because of the difficulty in evaluating gene amplification. In this review, we provide a rationale for targeting this genetic alteration in cancer therapy.

  17. Gold nanoparticle-based lateral flow biosensor for rapid visual detection of Leishmania-specific DNA amplification products.

    Toubanaki, Dimitra K; Athanasiou, Evita; Karagouni, Evdokia

    2016-08-01

    Leishmaniasis is a disease, caused by Leishmania parasites, which infect humans and animals, posing a major social and economic burden worldwide. The need for accurate and sensitive disease diagnosis led to the widespread adoption of PCR amplification. Detection of the amplification products (i.e. gel electrophoresis) require time-consuming protocols performed by trained personnel, with high cost. Aim of the present study was the simplification of PCR product detection, using a nucleic acid lateral flow, combined with functionalized gold nanoparticles. Amplification reactions targeting kinetoplastid DNA of Leishmania spp were performed on canine blood samples and a positive signal was formed as a red test zone. The visual detection was completed in 20min. Extensive optimization enabled the detection of 100fmol of target DNA. Clinical samples of infected dog blood were analyzed with high specificity. Overall, the proposed lateral flow biosensor can be considered an appealing alternative platform for Leishmania-specific amplification products detection with low cost and attractive simplicity. PMID:27255490

  18. Scope and Limitations of the Nicking Enzyme Amplification Reaction for the Synthesis of Base-Modified Oligonucleotides and Primers for PCR

    Ménová, Petra; Raindlová, Veronika; Hocek, Michal

    2013-01-01

    Roč. 24, č. 6 (2013), s. 1081-1093. ISSN 1043-1802 R&D Projects: GA ČR GA203/09/0317 Institutional support: RVO:61388963 Keywords : isothermal DNA amplification * cross-coupling reactions * nucleoside triphosphates * polymerase incorporation * functionalized DNA * nucleic-acids Subject RIV: CC - Organic Chemistry Impact factor: 4.821, year: 2013

  19. Direct ultrasensitive electrochemical biosensing of pathogenic DNA using homogeneous target-initiated transcription amplification

    Yan, Yurong; Ding, Shijia; Zhao, Dan; Yuan, Rui; Zhang, Yuhong; Cheng, Wei

    2016-01-01

    Sensitive and specific methodologies for detection of pathogenic gene at the point-of-care are still urgent demands in rapid diagnosis of infectious diseases. This work develops a simple and pragmatic electrochemical biosensing strategy for ultrasensitive and specific detection of pathogenic nucleic acids directly by integrating homogeneous target-initiated transcription amplification (HTITA) with interfacial sensing process in single analysis system. The homogeneous recognition and specific binding of target DNA with the designed hairpin probe triggered circular primer extension reaction to form DNA double-strands which contained T7 RNA polymerase promoter and served as templates for in vitro transcription amplification. The HTITA protocol resulted in numerous single-stranded RNA products which could synchronously hybridized with the detection probes and immobilized capture probes for enzyme-amplified electrochemical detection on the biosensor surface. The proposed electrochemical biosensing strategy showed very high sensitivity and selectivity for target DNA with a dynamic response range from 1 fM to 100 pM. Using salmonella as a model, the established strategy was successfully applied to directly detect invA gene from genomic DNA extract. This proposed strategy presented a simple, pragmatic platform toward ultrasensitive nucleic acids detection and would become a versatile and powerful tool for point-of-care pathogen identification.

  20. Amplification of thermostable lipase genes fragment from thermogenic phase of domestic waste composting process

    Nurhasanah, Nurbaiti, Santi; Madayanti, Fida; Akhmaloka

    2015-09-01

    Lipases are lipolytic enzymes, catalyze the hydrolysis of fatty acid ester bonds of triglycerides to produce free fatty acids and glycerol. The enzyme is widely used in various fields of biotechnological industry. Hence, lipases with unique properties (e.g.thermostable lipase) are still being explored by variation methods. One of the strategy is by using metagenomic approach to amplify the gene directly from environmental sample. This research was focused on amplification of lipase gene fragment directly from the thermogenic phase of domestic waste composting in aerated trenches. We used domestic waste compost from waste treatment at SABUGA, ITB for the sample. Total chromosomal DNA were directly extracted from several stages at thermogenic phase of compost. The DNA was then directly used as a template for amplification of thermostable lipase gene fragments using a set of internal primers namely Flip-1a and Rlip-1a that has been affixed with a GC clamp in reverse primer. The results showed that the primers amplified the gene from four stages of thermogenic phase with the size of lipase gene fragment of approximately 570 base pairs (bp). These results were further used for Denaturing Gradient Gel Electrophoresis (DGGE) analysis to determine diversity of thermostable lipase gene fragments.

  1. ASAP: Amplification, sequencing & annotation of plastomes

    Folta Kevin M

    2005-12-01

    Full Text Available Abstract Background Availability of DNA sequence information is vital for pursuing structural, functional and comparative genomics studies in plastids. Traditionally, the first step in mining the valuable information within a chloroplast genome requires sequencing a chloroplast plasmid library or BAC clones. These activities involve complicated preparatory procedures like chloroplast DNA isolation or identification of the appropriate BAC clones to be sequenced. Rolling circle amplification (RCA is being used currently to amplify the chloroplast genome from purified chloroplast DNA and the resulting products are sheared and cloned prior to sequencing. Herein we present a universal high-throughput, rapid PCR-based technique to amplify, sequence and assemble plastid genome sequence from diverse species in a short time and at reasonable cost from total plant DNA, using the large inverted repeat region from strawberry and peach as proof of concept. The method exploits the highly conserved coding regions or intergenic regions of plastid genes. Using an informatics approach, chloroplast DNA sequence information from 5 available eudicot plastomes was aligned to identify the most conserved regions. Cognate primer pairs were then designed to generate ~1 – 1.2 kb overlapping amplicons from the inverted repeat region in 14 diverse genera. Results 100% coverage of the inverted repeat region was obtained from Arabidopsis, tobacco, orange, strawberry, peach, lettuce, tomato and Amaranthus. Over 80% coverage was obtained from distant species, including Ginkgo, loblolly pine and Equisetum. Sequence from the inverted repeat region of strawberry and peach plastome was obtained, annotated and analyzed. Additionally, a polymorphic region identified from gel electrophoresis was sequenced from tomato and Amaranthus. Sequence analysis revealed large deletions in these species relative to tobacco plastome thus exhibiting the utility of this method for structural and

  2. Development of an F57 Sequence-Based Real-Time PCR Assay for Detection of Mycobacterium avium subsp. paratuberculosis in Milk

    Tasara, T; Stephan, R.

    2005-01-01

    A light cycler-based real-time PCR (LC-PCR) assay that amplifies the F57 sequence of Mycobacterium avium subsp. paratuberculosis was developed. This assay also includes an internal amplification control template to monitor the amplification conditions in each reaction. The targeted F57 sequence element is unique for M.avium subsp. paratuberculosis and is not known to exist in any other bacterial species. The assay specificity was demonstrated by evaluation of 10 known M. avium subsp. paratube...

  3. Somatic amplifications and deletions in genome of papillary thyroid carcinomas.

    Passon, Nadia; Bregant, Elisa; Sponziello, Marialuisa; Dima, Maria; Rosignolo, Francesca; Durante, Cosimo; Celano, Marilena; Russo, Diego; Filetti, Sebastiano; Damante, Giuseppe

    2015-11-01

    Somatic gene copy number variation contributes to tumor progression. Using comparative genomic hybridization (CGH) array, the presence of genomic imbalances was evaluated in a series of 27 papillary thyroid carcinomas (PTCs). To detect only somatic imbalances, for each sample, the reference DNA was from normal thyroid tissue of the same patient. The presence of the BRAF V600E mutation was also evaluated. Both amplifications and deletions showed an uneven distribution along the entire PTC cohort; amplifications were more frequent than deletions (mean values of 17.5 and 7.2, respectively). Number of aberration events was not even among samples, the majority of them occurring only in a small fraction of PTCs. Most frequent amplifications were detected at regions 2q35, 4q26, and 4q34.1, containing FN1, PDE5A, and GALNTL6 genes, respectively. Most frequent deletions occurred at regions 6q25.2, containing OPMR1 and IPCEF1 genes and 7q14.2, containing AOAH and ELMO1 genes. Amplification of FN1 and PDE5A genomic regions was confirmed by quantitative PCR. Frequency of amplifications and deletions was in relationship with clinical features and BRAF mutation status of tumor. In fact, according to the American Joint Committee on Cancer stage and American Thyroid Association (ATA) risk classification, amplifications are more frequent in higher risk samples, while deletions tend to prevail in the lower risk tumors. Analysis of single aberrations according to the ATA risk grouping shows that amplifications containing PDE5A, GALNTL6, DHRS3, and DOCK9 genes are significantly more frequent in the intermediate/high risk group than in the low risk group. Thus, our data would indicate that analysis of somatic genome aberrations by CGH array can be useful to identify additional prognostic variables. PMID:25863487

  4. Imaging of cranial nerves with three-dimensional high resolution diffusion-weighted MR sequence based on SSFP technique

    Objective: To depict the normal anatomy of cranial nerves in detail and define the exact relationships between cranial nerves and adjacent structures with three-dimensional high resolution diffusion-weighted MR sequence based on SSFP technique (3D DW-SSFP). Methods: 3D DW- SSFP sequence was performed and axial images were obtained in 12 healthy volunteers Post-processing techniques were used to generate images of cranial nerves, and the images acquired were compared with anatomical sections and diagrams of textbook. Results: In all subjects, 3D DW-SSFP sequence could produce homogeneous images and high contrast between the cranial nerves and other solid structures. The intracranial portions of all cranial nerves except olfactory nerve were identified; the extracranial portions of nerve Ⅱ-Ⅻ were identified in all subjects bilaterally. Conclusion: The 3D DW-SSFP sequence can characterize the normal MR appearance of cranial nerves and its branches and the ability to define the nerves may provide greater sensitivity and specificity in detecting abnormalities of craniofacial structure. (authors)

  5. Sequence-based Methods in Human Microbial Ecology: A The 2nd HumanGenome Comes of Age

    Weng, Li; Rubin, Edward M.; Bristow, James

    2005-06-01

    Ecologists studying microbial life in the environment have recognized the enormous complexity of microbial diversity for more than a decade (Whitman et al. 1998). The development of a variety of culture-independent methods, many of them coupled with high-throughput DNA sequencing, has allowed this diversity to be explored in ever greater detail (Handelsman 2004; Harris et al. 2004; Hugenholtz et al. 1998; Moreira and Lopez-Garcia 2002; Rappe and Giovannoni 2003). Despite the widespread application of these new techniques to the characterization of uncultivated microbes and microbial communities in the environment, their application to human health and disease has lagged behind. Because these techniques now allow not only cataloging of microbial diversity, but also insight into microbial functions, it is time for clinical microbiologists to apply these tools to the microbial communities that abound on and within us, in what has been aptly called ''the second Human Genome Project'' (Relman and Falkow 2001). In this review we will discuss the sequence-based methods for microbial analysis that are currently available and their application to identify novel human pathogens, improve diagnosis and treatment of known infectious diseases, and finally to advance understanding of our relationship with microbial communities that normally reside in and on the human body.

  6. The Recipe for Protein Sequence-Based Function Prediction and Its Implementation in the ANNOTATOR Software Environment.

    Eisenhaber, Birgit; Kuchibhatla, Durga; Sherman, Westley; Sirota, Fernanda L; Berezovsky, Igor N; Wong, Wing-Cheong; Eisenhaber, Frank

    2016-01-01

    As biomolecular sequencing is becoming the main technique in life sciences, functional interpretation of sequences in terms of biomolecular mechanisms with in silico approaches is getting increasingly significant. Function prediction tools are most powerful for protein-coding sequences; yet, the concepts and technologies used for this purpose are not well reflected in bioinformatics textbooks. Notably, protein sequences typically consist of globular domains and non-globular segments. The two types of regions require cardinally different approaches for function prediction. Whereas the former are classic targets for homology-inspired function transfer based on remnant, yet statistically significant sequence similarity to other, characterized sequences, the latter type of regions are characterized by compositional bias or simple, repetitive patterns and require lexical analysis and/or empirical sequence pattern-function correlations. The recipe for function prediction recommends first to find all types of non-globular segments and, then, to subject the remaining query sequence to sequence similarity searches. We provide an updated description of the ANNOTATOR software environment as an advanced example of a software platform that facilitates protein sequence-based function prediction. PMID:27115649

  7. Interaction between hippocampus and cerebellum Crus I in sequence-based but not place-based navigation

    Iglói, Kinga; Doeller, Christian F.; Paradis, Anne-Lise; Benchenane, Karim; Berthoz, Alain; Burgess, Neil; Rondi-Reig, Laure

    2016-01-01

    To examine the cerebellar contribution to human spatial navigation we used fMRI and virtual reality. Our findings show that the sensory-motor requirements of navigation induce activity in cerebellar lobules and cortical areas known to be involved in the motor loop and vestibular processing. By contrast, cognitive aspects of navigation mainly induce activity in a different cerebellar lobule (VIIA Crus I). Our results demonstrate a functional link between cerebellum and hippocampus in humans and identify specific functional circuits linking lobule VIIA Crus I of the cerebellum to medial parietal, medial prefrontal and hippocampal cortices in non motor aspects of navigation. They further suggest that Crus I belongs to two non-motor loops, involved in different strategies: place-based navigation is supported by coherent activity between left cerebellar lobule VIIA Crus I and medial parietal cortex along with right hippocampus activity, while sequence-based navigation is supported by coherent activity between right lobule VIIA Crus I, medial prefrontal cortex and left hippocampus. These results highlight the prominent role of the human cerebellum in both motor and cognitive aspects of navigation, and specify the cortico-cerebellar circuits by which it acts depending on the requirements of the task. PMID:24947462

  8. Light-triggered chemical amplification to accelerate degradation and release from polymeric particles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5cc06143a Click here for additional data file.

    Olejniczak, Jason; Nguyen Huu, Viet Anh; Lux, Jacques; Grossman, Madeleine; He, Sha

    2015-01-01

    We describe a means of chemical amplification to accelerate triggered degradation of a polymer and particles composed thereof. We designed a light-degradable copolymer containing carboxylic acids masked by photolabile groups and ketals. Photolysis allows the unmasked acidic groups in the polymer backbone to accelerate ketal hydrolysis even at neutral pH. PMID:26445896

  9. Optical Parametric Amplification for High Peak and Average Power

    Jovanovic, I

    2001-11-26

    Optical parametric amplification is an established broadband amplification technology based on a second-order nonlinear process of difference-frequency generation (DFG). When used in chirped pulse amplification (CPA), the technology has been termed optical parametric chirped pulse amplification (OPCPA). OPCPA holds a potential for producing unprecedented levels of peak and average power in optical pulses through its scalable ultrashort pulse amplification capability and the absence of quantum defect, respectively. The theory of three-wave parametric interactions is presented, followed by a description of the numerical model developed for nanosecond pulses. Spectral, temperature and angular characteristics of OPCPA are calculated, with an estimate of pulse contrast. An OPCPA system centered at 1054 nm, based on a commercial tabletop Q-switched pump laser, was developed as the front end for a large Nd-glass petawatt-class short-pulse laser. The system does not utilize electro-optic modulators or multi-pass amplification. The obtained overall 6% efficiency is the highest to date in OPCPA that uses a tabletop commercial pump laser. The first compression of pulses amplified in highly nondegenerate OPCPA is reported, with the obtained pulse width of 60 fs. This represents the shortest pulse to date produced in OPCPA. Optical parametric amplification in {beta}-barium borate was combined with laser amplification in Ti:sapphire to produce the first hybrid CPA system, with an overall conversion efficiency of 15%. Hybrid CPA combines the benefits of high gain in OPCPA with high conversion efficiency in Ti:sapphire to allow significant simplification of future tabletop multi-terawatt sources. Preliminary modeling of average power limits in OPCPA and pump laser design are presented, and an approach based on cascaded DFG is proposed to increase the average power beyond the single-crystal limit. Angular and beam quality effects in optical parametric amplification are modeled

  10. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities

    Saba, M.; Ciuti, C.; Bloch, J.; Thierry-Mieg, V.; André, R.; Dang, Le Si; Kundermann, S.; Mura, A.; Bongiovanni, G.; Staehli, J. L.; Deveaud, B.

    2001-12-01

    Cavity polaritons, the elementary optical excitations of semiconductor microcavities, may be understood as a superposition of excitons and cavity photons. Owing to their composite nature, these bosonic particles have a distinct optical response, at the same time very fast and highly nonlinear. Very efficient light amplification due to polariton-polariton parametric scattering has recently been reported in semiconductor microcavities at liquid-helium temperatures. Here we demonstrate polariton parametric amplification up to 120K in GaAlAs-based microcavities and up to 220K in CdTe-based microcavities. We show that the cut-off temperature for the amplification is ultimately determined by the binding energy of the exciton. A 5-µm-thick planar microcavity can amplify a weak light pulse more than 5,000 times. The effective gain coefficient of an equivalent homogeneous medium would be 107cm-1. The subpicosecond duration and high efficiency of the amplification could be exploited for high-repetition all-optical microscopic switches and amplifiers. 105 polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature.

  11. Problems encountered when defining Arctic amplification as a ratio

    Hind, Alistair; Zhang, Qiong; Brattström, Gudrun

    2016-07-01

    In climate change science the term ‘Arctic amplification’ has become synonymous with an estimation of the ratio of a change in Arctic temperatures compared with a broader reference change under the same period, usually in global temperatures. Here, it is shown that this definition of Arctic amplification comes with a suite of difficulties related to the statistical properties of the ratio estimator itself. Most problematic is the complexity of categorizing uncertainty in Arctic amplification when the global, or reference, change in temperature is close to 0 over a period of interest, in which case it may be impossible to set bounds on this uncertainty. An important conceptual distinction is made between the ‘Ratio of Means’ and ‘Mean Ratio’ approaches to defining a ratio estimate of Arctic amplification, as they do not only possess different uncertainty properties regarding the amplification factor, but are also demonstrated to ask different scientific questions. Uncertainty in the estimated range of the Arctic amplification factor using the latest global climate models and climate forcing scenarios is expanded upon and shown to be greater than previously demonstrated for future climate projections, particularly using forcing scenarios with lower concentrations of greenhouse gases.

  12. Adaptive base-isolation of civil structures using variable amplification

    Kenneth K. Walsh; Makola M. Abdullah

    2006-01-01

    Semi-active dampers are used in base-isolation to reduce the seismic response of civil engineering structures.In the present study, a new semi-active damping system using variable amplification will be investigated for adaptive baseisolation. It uses a novel variable amplification device (VAD) connected in series with a passive damper. The VAD is capable of producing multiple amplification factors, each corresponding to a different amplification state. Forces from the damper are amplified to the structure according to the current amplification state, which is selected via a semi-active control algorithm specifically tailored to the system's unique damping characteristics. To demonstrate the effectiveness of the VAD-damper system for adaptive base-isolation, numerical simulations are conducted for three and seven-story base-isolated buildings subject to both far and near-field ground motions. The results indicate that the system can achieve significant reductions in response compared to the base-isolated buildings with no damper. The proposed system is also found to perform well compared to a typical semi-active damper.

  13. Modeling Loss Amplification After Devastating Disasters

    Boissonnade, A. C.; Muir Wood, R.

    2008-05-01

    With the catastrophic events that occurred in 2004 and 2005 came the realization that Catastrophic (Cat) loss models were not properly modeling insured losses and their associated uncertainty. One reason was that major catastrophes were generally characterized by losses caused by the primary initiating events. Such approaches are not adequate when losses can result from the compounded impacts of scenarios of secondary cascading events (physical, economic, social and political) that can have much larger impacts than those due to the primary events themselves. Situations where more and more cascading events can occur will result in different outcomes, some leading to extreme loss events, generally referred as Super Cats. These situations occurred in December 2004 with the Sumatra earthquake and tsunami and in August 2005 with hurricane Katrina and resulting New Orleans flooding. A review of historical events shows that these events are not exceptions. Modeling such scenarios adds new levels of complexity and different perspectives in the understanding of characterizing and assessing impacts of catastrophic events. Modeling economic consequences of extreme events can be improved by developing scenarios of cascades of secondary events triggered by the primary event(s). The likelihood of each scenario should be modeled, along with the hazards of primary and secondary events and resulting losses with their impacts to the different stakeholders. In addition, it is also important to model the impacts of the hazards on the infrastructure and the resulting disruption to the residents and the local economy because these can result in additional losses. This paper describes current work with the goals of better modeling the full economic impacts from catastrophic events, and of a more comprehensive treatment of uncertainty. We will present approaches for modeling loss amplification that account for all the ways in which the cost incurred for a certain level of damage due to a

  14. Radioactive wastes and the social amplification of risk

    A significant problem in radioactive waste facility siting is that apparent small risks or minor risks events produce substantial public concern and social impacts. The reasons for this difference in public health and societal impacts is not well understood. This paper explores the issues involved in the social amplification of risk, using the risk associated with site characterization as the example. Noteworthy as sources of amplification are the information flow associated with risks and risk events including the large volume of information, the extent of dispute, and misinformation and rumor. Such information passes through the mass media and interpersonal networks. The major mechanisms involved in risk amplifications are discussed and their likely impacts on society described

  15. Discovery of a photoresponse amplification mechanism in compensated PN junctions

    We report the experimental evidence of uncovering a photoresponse amplification mechanism in heavily doped, partially compensated silicon p-n junctions under very low bias voltage. We show that the observed photocurrent gain occurs at a bias that is more than an order of magnitude below the threshold voltage for conventional impact ionization. Moreover, contrary to the case of avalanche detectors and p-i-n diodes, the amplified photoresponse is enhanced rather than suppressed with increasing temperature. These distinctive characteristics lead us to hypothesize that the inelastic scattering between energetic electrons (holes) and the ionized impurities in the depletion and charge neutral regions of the p-n junction in a cyclic manner plays a significant role in the amplification process. Such an internal signal amplification mechanism, which occurs at much lower bias than impact ionization and favors room temperature over cryogenic temperature, makes it promising for practical device applications

  16. Amplification of spin waves by the spin Seebeck effect

    Padrón-Hernández, E.; Azevedo, A.; Rezende, S. M.

    2012-04-01

    We observe amplification of spin-wave packets propagating along a film of single-crystal yttrium iron garnet (YIG) subject to a transverse temperature gradient. The spin waves are excited and detected with standard techniques used to study volume or surface magnetostatic waves in the 1-2 GHz frequency range. Amplification gains larger than 20 are observed in a YIG film heated by a current of 20 mA in a Pt layer in a simple YIG/Pt bilayer. The amplification is attributed to the action of a spin-transfer thermal torque acting on the magnetization that opposes the relaxation and which is created by spin currents generated through the spin Seebeck effect. The experimental data are interpreted with a spin-wave model.

  17. HLA-A Gene Polymorphism Defined by High-Resolution Sequence Based Typing in 161 Northern Chinese Han People

    Chunxia Yan; Haiyan Sun; Xiuqing Zhang; Jian Wang; Huanming Yang; Shengbin Li; Ruilin Wang; Jingxiang Li; Yajun Deng; Dongying Wu; Hongbo Zhang; Hongxing Zhang; Lidong Wang; Chunrong Zhang

    2003-01-01

    Human leukocyte antigen (HLA) system is the most polymorphic region known in the human genome. In the present study, we analyzed for the first time the HLA-A gene polymorphisms defined by the high-resolution typing methods--sequence-based typing (SBT) in 161 Northern Chinese Han people. A total of 74 different HLA-A gene types and 36 alleles were detected. The most frequent alleles were A*110101 (GF=0.2360), A*24020101 (GF=0.1646), and A*020101 (GF=0.1553); followed by A*3303 (GF=0.1180), A*3001 (GF=0.0590),and A*310102 (GF=0.0404). The frequencies of following alleles, A*0203, A*0205,A*0206, A*0207, A*030101, A*2423, A*2601, A*3201, and A*3301, are all higher than 0.0093. The homozygous alleles include A*020101, A*110101, A*24020101 and A*310102. Heterozygosity (H), polymorphism information content (PIC), discrimination power (DP) and probability of paternity exclusion (PPE) of HLA-A in the samples were calculated and their values were 0.8705, 0.8491, 0.6014, and 0.9475, respectively. These results by SBT analysis of HLA-A polymorphism in Northern Chinese Han population, especially the allele subtypes character, will be of great interest for clinical transplantation, disease-associated study and forensic identification. Implementation of high-resolution typing methods allows a significantly wider spectrum of HLA variation including rare alleles. This spectrum will further be extensively utilized in many fields.

  18. Methods for microbial DNA extraction from soil for PCR amplification.

    Yeates, C; Gillings, M R; Davison, A D; Altavilla, N; Veal, D A

    1998-05-14

    Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1). DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol precipitation. This method was compared to other DNA extraction methods with regard to DNA purity and size. PMID:12734590

  19. Raman amplification in the broken-wave regime

    Farmer, John P

    2015-01-01

    In regimes far beyond the wavebreaking theshold of Raman amplification, we show that significant amplifcation can occur after the onset of wavebreaking, before phase mixing destroys the coupling between pump and probe. The amplification efficiency in this regime is therefore strongly dependent on the energy-transfer rate when wavebreaking occurs, and is, as such, sensitive to both the probe amplitude and profile. In order to access the higher-efficiency broken-wave regime, a short, intense probe is required. Parameter scans show the marked difference in behaviour compared to below wavebreaking, where longer, more energetic pulses lead to improved efficiencies.

  20. Methods for microbial DNA extraction from soil for PCR amplification

    Yeates C

    1998-01-01

    Full Text Available Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1. DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol precipitation. This method was compared to other DNA extraction methods with regard to DNA purity and size.

  1. Symmetry between absorption and amplification in disordered media

    We address the issue of whether amplification, like absorption, suppresses wave transmission at large gain, as has been claimed in previous studies of wave propagation in active random media. A closer examination reveals that the paradoxical symmetry between absorption and amplification is an artifact of unphysical solutions from the time-independent wave equation. Solutions from the time-dependent equation demonstrate clearly that when gain is above the threshold, the amplitude of both the transmitted and the reflected wave actually increases with time, apparently without bound. The implications of the current finding is discussed. copyright 1999 The American Physical Society

  2. Influence of environmental noise on the weak value amplification

    Zhu, Xuannmin; Zhang, Yu-Xiang

    2016-08-01

    Quantum systems are always disturbed by environmental noise. We have investigated the influence of the environmental noise on the amplification in weak measurements. Three typical quantum noise processes are discussed in this article. The maximum expectation values of the observables of the measuring device decrease sharply with the strength of the depolarizing and phase damping channels, while the amplification effect of weak measurement is immune to the amplitude damping noise. To obtain significantly amplified signals, we must ensure that the preselection quantum systems are kept away from the depolarizing and phase damping processes.

  3. Amplification of Short Pulse High Power UV Laser

    2001-01-01

    At recent year, with the development of CPA and other amplification technology, laser intensity achieves great increase and laser power can be high to PW(105) now, this ultrashort pulse lasers offer scientists a route to investigate laser-matter interaction in an absolute new regime.So far the researches on ultrashort pulse laser-matter interaction concentrated on infrared regime, yet ultraviolet laser has the advantage in intense field physics and ICF researches for its short wavelength and less nonlinear effects. KrF excimer is the best medium in UV ultrashort pulse amplification for its small saturation energy and high contrast ratio accessible.

  4. Ultra-broad bandwidth parametric amplification at degeneracy.

    Limpert, J; Aguergaray, C; Montant, S; Manek-Hönninger, I; Petit, S; Descamps, D; Cormier, E; Salin, F

    2005-09-19

    We report on a novel approach of ultra-broad bandwidth parametric amplification around degeneracy. A bandwidth of up to 400 nm centered around 800 nm is amplified in a BBO crystal by using chirped pump pulses with a bandwitdth as broad as 10 nm. A supercontinuum signal is generated in a microstructured fiber, having to first order a quadratic chirp, which is necessary to ensure temporal overlap of the interacting waves over this broad bandwidth. Furthermore, we discuss the potential of this approach for an octave-spanning parametric amplification. PMID:19498762

  5. Influence of environmental noise on the weak value amplification

    Zhu, Xuannmin; Zhang, Yu-Xiang

    2016-05-01

    Quantum systems are always disturbed by environmental noise. We have investigated the influence of the environmental noise on the amplification in weak measurements. Three typical quantum noise processes are discussed in this article. The maximum expectation values of the observables of the measuring device decrease sharply with the strength of the depolarizing and phase damping channels, while the amplification effect of weak measurement is immune to the amplitude damping noise. To obtain significantly amplified signals, we must ensure that the preselection quantum systems are kept away from the depolarizing and phase damping processes.

  6. Femtosecond pulse amplification in cladding-pumped fibers

    Minelly, J. D.; Galvanauskas, A.; Fermann, M. E.; Harter, D.; Caplen, J.E.; Chen, Z.J.; Payne, D. N.

    1995-01-01

    Femtosecond pulse amplification in a cladding-pumped fiber amplifier is demonstrated for the first time to our knowledge. Using a cladding-pumped erbium-doped fiber power amplifier and a passively mode-locked fiber seed oscillator in conjunction with an all-fiber chirped-pulse amplification system, we obtain 380-fs near-bandwidth-limited pulses with an average power of 260 mW. The pulse repetition rate is varied between 5 and 50 MHz, and pulse energies as high as 20 nJ are generated.

  7. Divided-pulse amplification to the joule level.

    Webb, Benjamin; Azim, Ahmad; Bodnar, Nathan; Chini, Michael; Shah, Lawrence; Richardson, Martin

    2016-07-01

    Divided-pulse amplification (DPA) has proven to be a valuable tool in scaling the peak power of diode-pumped ytterbium-doped amplifiers to beyond the single-pulse threshold for parasitic nonlinear effects. DPA enables the amplification of picosecond pulses in solid-state amplifiers with limited bandwidth beyond the single-pulse damage threshold. In this Letter, we demonstrate DPA of picosecond pulses in a flashlamp-pumped Nd:YAG amplifier for the first time, to the best of our knowledge, yielding a combined pulse energy of 167 mJ. PMID:27367113

  8. 三个新HLA等位基因A*24:224,A*24:225和A*24:257的测序鉴定%Identification of 3 novel HLA-A alleles A * 24: 224, A * 24 : 225 and A * 24: 257 by sequence-based typing

    朱传福; 张红卫; 张毅; 聂向民

    2015-01-01

    目的 鉴定3个在中国汉族人群中发现的人类白细胞抗原(human leukocyte antigen,HLA)A位点新等位基因A* 24:224、A* 24:225和A* 24:257.方法 应用双链直接测序分型技术进行中华骨髓库志愿者常规HLA分型,对其中HLA-A位点无完全匹配结果者,采用等位基因特异性扩增测序分型方法进行新等位基因序列鉴定.结果 3例先证者在HLA-A位点分别有一个未知的新碱基序列,3个新序列均与HLA-A* 24:02:01:01最为相近,但在第2外显子分别出现了1或2个的碱基取代,并导致相应的密码子及其编码的氨基酸的改变.结论 3个新碱基序列均确认为HLA-A新等位基因,分别于2012年11月和2013年11月被世界卫生组织HLA因子命名委员会正式命名为HLA-A* 24:224、HLA-A*24:225和HLA-A* 24:257.%Objective To verify 3 novel HLA-A alleles A * 24:224,A * 24:225 and A * 24:257 identified in Chinese Han individuals.Methods No full matched results were obtained at HLA-A locus in HLA typing for China Marrow Donor Program (CMDP) using bi-allelic Sequence-Based Typing (SBT).The novel HLA alleles were identified with allele-specific amplification SBT.Results All of the three probands had a novel nucleotide sequence at HLA-A locus.All of the 3 new sequences are most close to HLA-A* 24:02:01:01 except for 1 or 2 nucleotide substitution in exon 2,which resulted in different changes in corresponding codons and encoded amino acids.Conclusion Three novel HLA-A alleles were confirmed and officially named as HLA-A * 24:224,HLA-A * 24:225 and HLA-A * 24:257 under the GenBank accession numbers JQ899198,JQ924283 and HG003642 by the WHO Nomenclature Committee for Factors of the HLA System in November 2012 and November 2013,respectively.

  9. Highly efficient amplification of chronic wasting disease agent by protein misfolding cyclic amplification with beads (PMCAb.

    Chad J Johnson

    Full Text Available Protein misfolding cyclic amplification (PMCA has emerged as an important technique for detecting low levels of pathogenic prion protein in biological samples. The method exploits the ability of the pathogenic prion protein to convert the normal prion protein to a proteinase K-resistant conformation. Inclusion of Teflon® beads in the PMCA reaction (PMCAb has been previously shown to increase the sensitivity and robustness of detection for the 263 K and SSLOW strains of hamster-adapted prions. Here, we demonstrate that PMCAb with saponin dramatically increases the sensitivity of detection for chronic wasting disease (CWD agent without compromising the specificity of the assay (i.e., no false positive results. Addition of Teflon® beads increased the robustness of the PMCA reaction, resulting in a decrease in the variability of PMCA results. Three rounds of serial PMCAb allowed detection of CWD agent from a 6.7 × 10(-13 dilution of 10% brain homogenate (1.3 fg of source brain. Titration of the same brain homogenate in transgenic mice expressing cervid prion protein (Tg(CerPrP1536(+/- mice allowed detection of CWD agent from the 10(-6 dilution of 10% brain homogenate. PMCAb is, thus, more sensitive than bioassay in transgenic mice by a factor exceeding 10(5. Additionally, we are able to amplify CWD agent from brain tissue and lymph nodes of CWD-positive white-tailed deer having Prnp alleles associated with reduced disease susceptibility.

  10. Electrochemical biosensor for detection of DNA hydroxymethylation based on glycosylation and alkaline phosphatase catalytic signal amplification

    Highlights: • DNA Hydroxymethylation was detected by electrochemical method. • 5-Hydroxymethylation cytosine in target DNA was chemically modified with glucose group. • Alkaline phosphatase catalytic signal amplification strategy was used. • The developed method also showed excellent reproducibility and stability. - Abstract: DNA hydroxymethylation (5-hydroxymethylcytosine, 5hmC) is a kind of new epigenetic modification, which plays key roles in nuclear reprogramming, regulates the gene activity, and initiates the DNA demethylation in mammals. For further understanding the functions of 5hmC and the correlation with tumour, it is essential to develop sensitive and selective methods for detecting and sequencing 5hmC. Herein, a kind of electrochemical biosensor was fabricated for 5hmC detection based on the glycosylation modification of 5hmC and enzymatic signal amplification. Under the catalytic effect of T4 β-glucosyltransferase, the 5hmC in target DNA was chemically modified with glucose. Then with the bridge connection of 1,4-phenyldiboronic acid, alkaline phosphatase was further captured on the electrode surface to catalyze the hydrolysis of p-nitrophenyl phosphate disodium salt to produce p-nitrophenol. Based on the relationship between the electrochemical oxidation signal of p-nitrophenol and the concentration of target DNA, the 5hmC level can be detected with high sensitivity and selectivity. The developed method also showed excellent reproducibility and stability

  11. Functional continuity: did field-induced oriented aperiodic constraints at Life's origin aid its sequence-based evolution?

    Mitra-Delmotte, G.; Mitra, A. N.

    2014-04-01

    A non-biological analog undergoing Darwinian-like evolution could have enhanced the probability of many crucial independent bottom-up emergent steps, engendered within its premises, and smoothen the inanimate-animate transition. Now, the higher-level environment-mutable DNA sequences influence the lower-level pattern of oriented templates (enzymes, lipid membranes, RNA) in the organized cell matrix and hence their associated substrate-dynamics; note how templates are akin to local fields, kinetically constraining reactant orientations. Since the lowerlevel is likely the more primitive of the two (rather than Cairns-Smith's "readily available" rigid clay crystal sequence-based replicators as a memory-like basis for slowly mutating predecessor-patterns enroute to complex RNA-based Darwinian evolution), a gradual thermodynamic-to-kinetic transition in an isotropic medium, is proposed as driven by some order-parameter --via "available" field-responsive dipolar colloid networks, as apart from bio-organics, mineral colloids also can display liquid crystal (LC) phases (see [1]). An access to solid-like orientational order in a fluid matrix suggests how aperiodic patterns can be influenced and sustained (a la homeostasis) via external inhomogeneous fields (e.g. magnetic rocks); this renders these cooperative networks with potential as confining host-media, whose environment-sensitivity can not only influence their sterically-coupled guest-substrates but also their network properties (the latter can enable 'functions' like spontaneous transport under non-equilibrium suggesting a natural basis for their selection by the environment). In turn LC systems could have been preceded by even simpler anisotropic fluid hosts, viz., external field-induced mineral magnetic nanoparticle (MNP) aggregates. Indeed, the capacity of an MNP to couple its magnetic and rotational d.o.f.s suggests how an environment-sensitive field-influenced network of interacting dipolar colloids close to

  12. Subtyping of Streptococcus uberis by DNA amplification fingerprinting.

    Jayarao, B. M.; Bassam, B J; Caetano-Anollés, G; Gresshoff, P M; Oliver, S P

    1992-01-01

    Total DNA of Streptococcus uberis from cows with mastitis was analyzed by DNA amplification fingerprinting (DAF) and compared with restriction endonuclease fingerprinting (REF). DAF grouped 22 strains into 15 distinct patterns, while REF grouped them into 12 patterns. These results suggest that DAF is a useful technique for subtyping strains of S. uberis.

  13. Soft x-ray amplification in an ablative capillary discharge

    Soft x-ray amplification in CVI 18.2 nm line is observed in an ablative UHMW-PE capillary discharge. The gain coefficient is measured to be 1.9 cm-1. The electron density is about 2 x 1019 cm-3. This indicates that capillary discharge pumping device can be a source for a compact soft x-ray laser. (author)

  14. Direct Extraction and Amplification of DNA from Soil.

    Trevors, Jack T.; Leung, K.

    1998-01-01

    Presents an exercise that describes the direct extraction and purification of DNA from a small soil sample. Also discusses the subsequent amplification of a 343-bp Tn7 transposate A gene fragment (tnsA) from a strain of Pseudomonas aureofaciens 3732RNL11. Contains 21 references. (DDR)

  15. Resonant amplification of quantum fluctuations in a spinor gas

    Topic, O.; Scherer, M.; Gebreyesus, G.;

    2010-01-01

    Bose-Einstein condensates of atoms with non-zero spin are known to constitute an ideal system to investigate fundamental properties of magnetic superfluids. More recently it was realized that they also provide the fascinating opportunity to investigate the macroscopic amplification of quantum and...

  16. Reversible Gating of Plasmonic Coupling for Optical Signal Amplification.

    Khoury, Christopher G; Fales, Andrew M; Vo-Dinh, Tuan

    2016-07-20

    Amplification of optical signals is useful for a wide variety of applications, ranging from data signal transmission to chemical sensing and biomedical diagnostics. One such application in chemical sensing is surface-enhanced Raman scattering (SERS), an important technique for increasing the Raman signal using the plasmonic effect of enhanced electromagnetic fields associated with metallic nanostructures. One of the most important limitations of SERS-based amplification is the difficulty to reproducibly control the SERS signal. Here, we describe the design and implementation of a unique hybrid system capable of producing reversible gating of plasmonic coupling for Raman signal amplification. The hybrid system is composed of two subsystems: (1) colloidal magneto-plasmonic nanoparticles for SERS enhancement and (2) a micromagnet substrate with an externally applied magnetic field to modulate the colloidal nanoparticles. For this proof of concept demonstration, the nanoparticles were labeled with a Raman-active dye, and it was shown that the detected SERS signal could be reproducibly modulated by controlling the externally applied magnetic field. The developed system provides a simple, robust, inexpensive, and reusable device for SERS signal modulation. These properties will open up new possibilities for optical signal amplification and gating as well for high-throughput, reproducible SERS detection. PMID:27347606

  17. Four-quadrant flyback converter for direct audio power amplification

    Ljusev, Petar; Andersen, Michael Andreas E.

    2005-01-01

    This paper presents a bidirectional, four-quadrant flyback converter for use in direct audio power amplification. When compared to the standard Class-D switching audio power amplifier with a separate power supply, the proposed four-quadrant flyback converter provides simple solution with better...

  18. Loss of KLF14 triggers centrosome amplification and tumorigenesis.

    Fan, Guangjian; Sun, Lianhui; Shan, Peipei; Zhang, Xianying; Huan, Jinliang; Zhang, Xiaohong; Li, Dali; Wang, Tingting; Wei, Tingting; Zhang, Xiaohong; Gu, Xiaoyang; Yao, Liangfang; Xuan, Yang; Hou, Zhaoyuan; Cui, Yongping; Cao, Liu; Li, Xiaotao; Zhang, Shengping; Wang, Chuangui

    2015-01-01

    Centrosome amplification is frequent in cancer, but the underlying mechanisms remain unclear. Here we report that disruption of the Kruppel-like factor 14 (KLF14) gene in mice causes centrosome amplification, aneuploidy and spontaneous tumorigenesis. Molecularly, KLF14 functions as a transcriptional repressor of Plk4, a polo-like kinase whose overexpression induces centrosome overduplication. Transient knockdown of KLF14 is sufficient to induce Plk4-directed centrosome amplification. Clinically, KLF14 transcription is significantly downregulated, whereas Plk4 transcription is upregulated in multiple types of cancers, and there exists an inverse correlation between KLF14 and Plk4 protein expression in human breast and colon cancers. Moreover, KLF14 depletion promotes AOM/DSS-induced colon tumorigenesis. Our findings reveal that KLF14 reduction serves as a mechanism leading to centrosome amplification and tumorigenesis. On the other hand, forced expression of KLF14 leads to mitotic catastrophe. Collectively, our findings identify KLF14 as a tumour suppressor and highlight its potential as biomarker and therapeutic target for cancer. PMID:26439168

  19. Transient amplification limits noise suppression in biochemical networks

    Dixon, John; Lindemann, Anika; McCoy, Jonathan H.

    2016-01-01

    Cell physiology is orchestrated, on a molecular level, through complex networks of biochemical reactions. The propagation of random fluctuations through these networks can significantly impact cell behavior, raising challenging questions about how network design shapes the cell's ability to suppress or exploit these fluctuations. Here, drawing on insights from statistical physics, fluid dynamics, and systems biology, we explore how transient amplification phenomena arising from network connectivity naturally limit a biochemical system's ability to suppress small fluctuations around steady-state behaviors. We find that even a simple system consisting of two variables linked by a single interaction is capable of amplifying small fluctuations orders of magnitude beyond the levels predicted by linear stability theory. We also find that adding additional interactions can promote further amplification, even when these interactions implement classic design strategies known to suppress fluctuations. These results establish that transient amplification is an essential factor determining baseline noise levels in stable intracellular networks. Significantly, our analysis is not bound to specific systems or interaction mechanisms: we find that noise amplification is an emergent phenomenon found near steady states in any network containing sufficiently strong interactions, regardless of its form or function.

  20. Development of an electronic system for signals amplification

    This paper presents the obtained results with a spectrometer for electromagnetic radiation whose detector, a Si PIN type diode, was directly coupled to a signal amplification system developed in this project for scientific initiation. The linearity conditions and the gain operational limits, constituted of two stages of amplification based on the employment of devices from AMTEK A225 and A206, were determined using a precision pulse generator. The obtained results shown that the developed system is stable and linear in the gain range of 50-150. The spectrometric response of the electronic system coupled to the Siemens SFH-00206 type diode, were studied in view of the register of the 59.5 keV gamma ray spectra proceeding from 241Am as function of the reversal polarization voltage. The influence pf the voltage and the electronic contribution in the energy resolution of the registered spectra under room temperature (22 degree Celsius) had also investigated considering the more adequate value of the coupling capacitance of the amplification system diode. Up to the present. the best energy resolution (FWHM = 4.85 keV) of the 59.5 keV line was obtained for the condition of the detector polarization at 16 V. This result proves that the signal amplification system developed coupled to the SFH00206 diode, besides the low cost, excellent operational condition for the detection and spectrometry or low energy electromagnetic radiation

  1. Utilization of non-linear converters for audio amplification

    Iversen, Niels Elkjær; Birch, Thomas; Knott, Arnold

    2012-01-01

    . The introduction of non-linear converters for audio amplification defeats this limitation. A Cuk converter, designed to deliver an AC peak output voltage twice the supply voltage, is presented in this paper. A 3V prototype has been developed to prove the concept. The prototype shows that it is...

  2. Bacteriophage Amplification-Coupled Detection and Identification of Bacterial Pathogens

    Cox, Christopher R.; Voorhees, Kent J.

    Current methods of species-specific bacterial detection and identification are complex, time-consuming, and often require expensive specialized equipment and highly trained personnel. Numerous biochemical and genotypic identification methods have been applied to bacterial characterization, but all rely on tedious microbiological culturing practices and/or costly sequencing protocols which render them impractical for deployment as rapid, cost-effective point-of-care or field detection and identification methods. With a view towards addressing these shortcomings, we have exploited the evolutionarily conserved interactions between a bacteriophage (phage) and its bacterial host to develop species-specific detection methods. Phage amplification-coupled matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) was utilized to rapidly detect phage propagation resulting from species-specific in vitro bacterial infection. This novel signal amplification method allowed for bacterial detection and identification in as little as 2 h, and when combined with disulfide bond reduction methods developed in our laboratory to enhance MALDI-TOF-MS resolution, was observed to lower the limit of detection by several orders of magnitude over conventional spectroscopy and phage typing methods. Phage amplification has been combined with lateral flow immunochromatography (LFI) to develop rapid, easy-to-operate, portable, species-specific point-of-care (POC) detection devices. Prototype LFI detectors have been developed and characterized for Yersinia pestis and Bacillus anthracis, the etiologic agents of plague and anthrax, respectively. Comparable sensitivity and rapidity was observed when phage amplification was adapted to a species-specific handheld LFI detector, thus allowing for rapid, simple, POC bacterial detection and identification while eliminating the need for bacterial culturing or DNA isolation and amplification techniques.

  3. New perspectives on microbial community distortion after whole-genome amplification

    Whole-genome amplification (WGA) has become an important tool to explore the genomic information of microorganisms in an environmental sample with limited biomass, however potential selective biases during the amplification processes are poorly understood. Here, we describe the e...

  4. Multiplex isothermal solid-phase recombinase polymerase amplification for the specific and fast DNA-based detection of three bacterial pathogens

    We report on the development of an on-chip RPA (recombinase polymerase amplification) with simultaneous multiplex isothermal amplification and detection on a solid surface. The isothermal RPA was applied to amplify specific target sequences from the pathogens Neisseria gonorrhoeae, Salmonella enterica and methicillin-resistant Staphylococcus aureus (MRSA) using genomic DNA. Additionally, a positive plasmid control was established as an internal control. The four targets were amplified simultaneously in a quadruplex reaction. The amplicon is labeled during on-chip RPA by reverse oligonucleotide primers coupled to a fluorophore. Both amplification and spatially resolved signal generation take place on immobilized forward primers bount to expoxy-silanized glass surfaces in a pump-driven hybridization chamber. The combination of microarray technology and sensitive isothermal nucleic acid amplification at 38 °C allows for a multiparameter analysis on a rather small area. The on-chip RPA was characterized in terms of reaction time, sensitivity and inhibitory conditions. A successful enzymatic reaction is completed in <20 min and results in detection limits of 10 colony-forming units for methicillin-resistant Staphylococcus aureus and Salmonella enterica and 100 colony-forming units for Neisseria gonorrhoeae. The results show this method to be useful with respect to point-of-care testing and to enable simplified and miniaturized nucleic acid-based diagnostics. (author)

  5. Nucleic acid detection system and method for detecting influenza

    Cai, Hong; Song, Jian

    2015-03-17

    The invention provides a rapid, sensitive and specific nucleic acid detection system which utilizes isothermal nucleic acid amplification in combination with a lateral flow chromatographic device, or DNA dipstick, for DNA-hybridization detection. The system of the invention requires no complex instrumentation or electronic hardware, and provides a low cost nucleic acid detection system suitable for highly sensitive pathogen detection. Hybridization to single-stranded DNA amplification products using the system of the invention provides a sensitive and specific means by which assays can be multiplexed for the detection of multiple target sequences.

  6. Digital Droplet Multiple Displacement Amplification (ddMDA) for Whole Genome Sequencing of Limited DNA Samples

    Minsoung Rhee; Yooli K Light; Meagher, Robert J.; Anup K. Singh

    2016-01-01

    Multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template D...

  7. Amplification of cylindrically polarized laser beams in single crystal fiber amplifiers

    Piehler, Stefan; Délen, Xavier; Rumpel, Martin; Didierjean, Julien; Aubry, Nicolas; Graf, Thomas; Balembois, François; Georges, Patrick; Abdou Ahmed, Marwan

    2013-01-01

    Yb:YAG single crystal fiber (SCF) amplifiers have recently drawn much attention in the field of amplification of ultra-short pulses. In this paper, we report on the use of SCF amplifiers for the amplification of cylindrically polarized laser beams, as such beams offer promising properties for numerous applications. While the amplification of cylindrically polarized beams is challenging with other amplifier designs due to thermally induced depolarization, we demonstrate the amplification of 32...

  8. Distribution of Sequence-Based Types of Legionella pneumophila Serogroup 1 Strains Isolated from Cooling Towers, Hot Springs, and Potable Water Systems in China

    Qin, Tian; Zhou, Haijian; Ren, Hongyu; GUAN, HONG; Li, Machao; Zhu, Bingqing; Shao, Zhujun

    2014-01-01

    Legionella pneumophila serogroup 1 causes Legionnaires' disease. Water systems contaminated with Legionella are the implicated sources of Legionnaires' disease. This study analyzed L. pneumophila serogroup 1 strains in China using sequence-based typing. Strains were isolated from cooling towers (n = 96), hot springs (n = 42), and potable water systems (n = 26). Isolates from cooling towers, hot springs, and potable water systems were divided into 25 sequence types (STs; index of discriminatio...

  9. Protein disulfide topology determination through the fusion of mass spectrometric analysis and sequence-based prediction using Dempster-Shafer theory

    Singh Rahul; Murad William

    2013-01-01

    Abstract Background Disulfide bonds constitute one of the most important cross-linkages in proteins and significantly influence protein structure and function. At the state-of-the-art, various methodological frameworks have been proposed for identification of disulfide bonds. These include among others, mass spectrometry-based methods, sequence-based predictive approaches, as well as techniques like crystallography and NMR. Each of these frameworks has its advantages and disadvantages in term...

  10. Molecular Identification of Veterinary Yeast Isolates by Use of Sequence-Based Analysis of the D1/D2 Region of the Large Ribosomal Subunit▿

    Garner, Cherilyn D.; Starr, Jennifer K.; McDonough, Patrick L.; Altier, Craig

    2010-01-01

    Conventional methods of yeast identification are often time-consuming and difficult; however, recent studies of sequence-based identification methods have shown promise. Additionally, little is known about the diversity of yeasts identified from various animal species in veterinary diagnostic laboratories. Therefore, in this study, we examined three methods of identification by using 109 yeast samples isolated during a 1-year period from veterinary clinical samples. Comparison of the three me...

  11. Comparison of an Automated Repetitive-Sequence-Based PCR Microbial Typing System with Pulsed-Field Gel Electrophoresis for Molecular Typing of Vancomycin-Resistant Enterococcus faecium▿ †

    Chuang, Yu-Chung; Wang, Jann-Tay; CHEN, MEI-LING; Chen, Yee-Chun

    2010-01-01

    Vancomycin-resistant Enterococcus faecium (VRE) has become an important health care-associated pathogen because of its rapid spread, limited therapeutic options, and possible transfer of vancomycin resistance to more-virulent pathogens. In this study, we compared the ability to detect clonal relationships among VRE isolates by an automated repetitive-sequence-based PCR (Rep-PCR) system (DiversiLab system) to pulsed-field gel electrophoresis (PFGE), the reference method for molecular typing of...

  12. Loop-mediated isothermal amplification assay for the detection of Ehrlichia canis DNA in blood samples from dogs

    SA Faggion

    2013-01-01

    Full Text Available The rickettsial bacterium Ehrlichia canis is the etiological agent of canine monocytic ehrlichiosis, one of the most important canine tick-borne diseases in the world. In this study, a loop-mediated isothermal amplification (LAMP assay was developed for detection of E. canis DNA using LAMP primers targeting the groESL operon. Reactions were performed at 60°C for 60 min and the results were visualized by gel electrophoresis. Successful amplification was obtained using plasmid DNA containing a fragment of the groESL operon and DNA extracted from blood samples that tested positive for E. canis by real-time PCR. The specificity of amplification was confirmed by EcoRI restriction of internal sites in the LAMP primers and no cross-reactivity with blood samples positive for Babesia spp., another common tick-borne pathogen, was observed. The high cost of nucleic acid tests (NAT is one of the disadvantages for their large-scale use as routine diagnostic tests. The E. canis LAMP assay developed here is an interesting alternative to PCR since it does not require a thermocycler, thus reducing costs for the veterinary clinical laboratory.

  13. Development of a loop-mediated isothermal amplification assay for rapid detection of Yersinia enterocolitica via targeting a conserved locus

    Reza Ranjbar

    2015-11-01

    Full Text Available Background and Objectives: Loop-mediated isothermal amplification is a novel nucleic acid amplification assay providing as a simple diagnostic tool for rapid identification of microbial diseases in developing countries. In this study, a LAMP assay was established for Yersinia enterocolitica, a leading cause of acute enterocolitis in young children.Materials and Methods: LAMP assay was established with four primers targeting a specific locus for the detection of Y. enterocolitica. The assay was conducted at 65°C in thermo block for 90min. The sensitivity of LAMP was evaluated in com- parison to conventional PCR using pTZ57R containing the target locus. Finally, specificity was assessed using DNA from common enteropathogenic bacteria.Results: Results showed that the sensitivity of LAMP assay was 44-copy number, which was 10-fold higher than that ofPCR. No cross-reactivity was observed when testing against other enteropathogenic pathogens.Conclusion: This study showed that LAMP assay is an alternative molecular diagnostic tool for infections with Y. enteroco- litica. In addition, this method may be useful in diagnosis at field or in laboratories without PCR machine.Keywords: Yersinia enterocolitica; Loop-mediated isothermal amplification (LAMP, specific locus 

  14. Ultrasensitive electrochemical DNAzyme sensor for lead ion based on cleavage-induced template-independent polymerization and alkaline phosphatase amplification.

    Liu, Shufeng; Wei, Wenji; Sun, Xinya; Wang, Li

    2016-09-15

    In this article, a simple, highly sensitive and selective electrochemical DNAzyme sensor for Pb(2+) was developed on the basis of a 8-17 DNAzyme cleavage-induced template-independent polymerization and alkaline phosphatase amplification strategy. The hairpin-like substrate strand (HP DNA) of 8-17 DNAzyme was firstly immobilized onto the electrode. In the presence of Pb(2+) and the catalytic strand of 8-17 DNAzyme, the HP DNA could be cleaved to expose the free 3'-OH terminal, which could be then utilized for the cascade operation by terminal deoxynucleotidyl transferase (TdTase) for the base extension to incorporate biotinylated dUTP (dUTP-biotin). The further conjugated streptavidin-labeled alkaline phosphatase (SA-ALP) then catalyzed conversion of electrochemically inactive 1-naphthyl phosphate (1-NP) for the generation of electrochemical response signal. The currently fabricated Pb(2+) sensor effectively combines triply cascade amplification effects including cyclic Pb(2+)-dependent DNAzyme cleavage, TdTase-mediated base extension and enzymatic catalysis of ALP. An impressive detection limit of 0.043nM toward Pb(2+) with an excellent selectivity could be ultimately obtained, which was superior than most of the electrochemical methods. Thus, the developed amplification strategy opens a promising avenue for the detection of metal ions and may extend for the detection of other nucleic acid-related analytes. PMID:27093488

  15. Amplification of target-specific, ligation-dependent circular probe.

    Zhang, D Y; Brandwein, M; Hsuih, T C; Li, H

    1998-05-12

    We describe a novel polymerase chain reaction (PCR)-based gene amplification method utilizing a circularizable oligodeoxyribonucleotide probe (C-probe). The C-probe contains two target complementary regions located at each terminus and an interposed generic PCR primer binding region. The hybridization of C-probe to a target brings two termini in direct apposition as the complementary regions of C-probe wind around the target to form a double helix. Subsequent ligation of the two termini results in a covalently linked C-probe that becomes 'locked on to' the target. The circular nature of the C-probe allows for the generation of a multimeric single-stranded DNA (ssDNA) via extension of the antisense primer by Taq DNA polymerase along the C-probe and displacement of downstream strand, analogous to 'rolling circle' replication of bacteriophage in vivo. This multimeric ssDNA then serves as a template for multiple sense primers to hybridize, extend, and displace downstream DNA, generating a large ramified (branching) DNA complex. Subsequent thermocycling denatures the dsDNA and initiates the next round of primer extension and ramification. This model results in significantly improved amplification kinetics (super-exponential) as compared to conventional PCR. Our results show that the C-probe was 1000 times more sensitive than the corresponding linear hemiprobes for detecting Epstein-Barr virus early RNA. The C-probe not only increases the power of amplification but also offers a means for decontaminating carryover amplicons. As the ligated C-probes possess no free termini, they are resistant to exonuclease digestion, whereas contaminated linear amplicons are susceptible to digestion. Treatment of the ligation reaction mixture with exonuclease prior to amplification eliminated the amplicon contaminant, which could also have been co-amplified with the same PCR primers; only the ligated C-probes were amplified. The combined advantages of the C-probe and thermocycling have a

  16. Multiple displacement amplification as an adjunct to PCR-based detection of Staphylococcus aureus in synovial fluid

    Johnson Sandra

    2010-10-01

    Full Text Available Abstract Background Detection of bacterial nucleic acids in synovial fluid following total joint arthroplasty with suspected infection can be difficult; among other technical challenges, inhibitors in the specimens require extensive sample preparation and can diminish assay sensitivity even using polymerase chain reaction (PCR-based methods. To address this problem a simple protocol for prior use of multiple displacement amplification (MDA as an adjunct to PCR was established and tested on both purified S. aureus DNA as well as on clinical samples known to contain S. aureus nucleic acids. Findings A single round of MDA on purified nucleic acids resulted in a > 300 thousand-fold increase in template DNA on subsequent quantitative PCR (qPCR analysis. MDA use on clinical samples resulted in at least a 100-fold increase in sensitivity on subsequent qPCR and required no sample preparation other than a simple alkali/heat lysis step. Mixed samples of S. aureus DNA with a 103 - 104-fold excess of human genomic DNA still allowed for MDA amplification of the minor bacterial component to the threshold of detectability. Conclusion MDA is a promising technique that may serve to significantly enhance the sensitivity of molecular assays in cases of suspected joint infection while simultaneously reducing the specimen handling required.

  17. Effect of heavy ion beams to centrosome amplification in mammalian cells

    Centrosome is an organelle that regulates proper cell division. Centrosome aberration such as centrosome amplification causes chromosome instability. Ionizing radiation is a inducer of effective centrosome amplification. In the previous report, we showed that γ-ray induced centrosome amplification in a dose dependent manner. In this study, we investigated that whether High linear energy transfer (LET) irradiation induce more effective centrosome amplification than low LET irradiation. As expected, high LET irradiation effectively induced centrosome amplification in human U2OS and mouse NIH3T3 cells. (author)

  18. Divided-pulse nonlinear amplification and simultaneous compression

    We report on a fiber laser system delivering 122 fs pulse duration and 600 mW average power at 1560 nm by the interplay between divided pulse amplification and nonlinear pulse compression. A small-core double-clad erbium-doped fiber with anomalous dispersion carries out the pulse amplification and simultaneously compresses the laser pulses such that a separate compressor is no longer necessary. A numeric simulation reveals the existence of an optimum fiber length for producing transform-limited pulses. Furthermore, frequency doubling to 780 nm with 240 mW average power and 98 fs pulse duration is achieved by using a periodically poled lithium niobate crystal at room temperature

  19. Phase Sensitive Amplification using Parametric Processes in Optical Fibers

    Kang, Ning

    Phase sensitive amplification using the parametric processes in fiber has the potential of delivering high gain and broadband operation with ultralow noise. It is able to regenerate both amplitude and phase modulated signals, simultaneously, with the appropriate design. This thesis concerns......, in specific, the design and optimization of such phase sensitive amplifiers (PSAs). For phase sensitive amplification in highly nonlinear fibers, optima points of operation have been identified for both the standard and the novel high stimulated Brillouin scattering (SBS) threshold highly nonlinear fiber....... Further, phase sensitive parametric processes in a nano-engineered silicon waveguide have been measured experimentally for the first time. Numerical optimizations show that with reduced waveguide propagation loss and reduced carrier life time, larger signal phase sensitive extinction ratio is achievable...

  20. Optical parametric chirped pulse amplification based on photonic crystal fibre

    Wang He-Lin; Yang Ai-Jun; Leng Yu-Xin; Wang Cheng; Xu Zhi-Zhan; Hou Lan-Tian

    2011-01-01

    A compact two-stage optical parametric chirped pulse amplifier based on photonic crystal fibre is demonstrated.A 1064-nm soliton pulse is obtained in a home-made photonic crystal fibre(PCF)with femtosecond pulse pumping and then amplified to 2 mJ in an Nd:YAG regenerative amplifier.After the amplified pulses pass through the LBO crystal,the 532-nm double-frequency light with an energy of 0.8 mJ and a duration of over 100 ps at 10-Hz repetition rate is generated as a pump source in the following two-stage optical parametric amplification(OPA).The 850-am chirped signal light gain from the stretcher is 1.5×104in the first-stage OPA while it is 120 in the second-stage OPA.The total signal gain of optical parametric chirped pulse amplification(OPCPA)can reach 1.8×106.

  1. Resonant Amplification of Turbulence by the Blast Wawes

    Zankovich, A M

    2016-01-01

    We discuss an idea whether spherical blast waves can amplify by a non-local resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with amplification the greater, the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- ($l \\sim 1$), meso- ($l \\sim 20$) and microscopic ($l > 200$) scales. Since the resonance width is ...

  2. Narrow band amplification of light carrying orbital angular momentum.

    Borba, G C; Barreiro, S; Pruvost, L; Felinto, D; Tabosa, J W R

    2016-05-01

    We report on the amplification of an optical vortex beam carrying orbital angular momentum via induced narrow Raman gain in an ensemble of cold cesium atoms. A 20% single-pass Raman gain of a weak vortex signal field is observed with a spectral width of order of 1 MHz, much smaller than the natural width, demonstrating that the amplification process preserves the phase structure of the vortex beam. The gain is observed in the degenerated two-level system associated with the hyperfine transition 6S1/2(F = 3) ↔ 6P3/2(F' = 2) of cesium. Our experimental observations are explained with a simple theoretical model based on a three-level Λ system interacting coherently with the weak Laguerre-Gauss field and a strong coupling field, including an incoherent pumping rate between the two degenerate ground-states. PMID:27137618

  3. Retrieval and Amplification of DNA from Unstained Histopathological Sections

    DonnaC.MONTAGUE; BeverlyD.LYN-COOK; 等

    1993-01-01

    Testing of compounds for carcinogenic potential in vivo involves various experimental designs.A few of these techniques are directed to demonstrate the genotoxicity and mutagenicity of the compound by histopathology.These changes shown by histochemical means include monoclonal antibody directed cellular markers.Development of the polymerase chain reaction technique(PCR)for amplification of DNA has facilitated the investigation of molecular events related to the formation of malignant neoplasms.We describe here a method for screening tissues for mutations of the H-ras gene using monoclonal antibodies directed toward normal and mutant p21 proteins.Formalin-fixed,paraffinembedded tissue sections are used to subsequently confirm the gene mutation by PCR amplification of the H-ras gene.The results indicated a successful application of this technique to demonstrate the presence of p21 oncoprotein in the tissues tested.

  4. Quantum Privacy Amplification for a Sequence of Single Qubits

    DENG Fu-Guo; LONG Gui-Lu

    2006-01-01

    We present a scheme for quantum privacy amplification (QPA) for a sequence of single qubits. The QPA procedure uses a unitary operation with two controlled-not gates and a Hadamard gate. Every two qubits are performed with the unitary gate operation, and a measurement is made on one photon and the other one is retained.The retained qubit carries the state information of the discarded one. In this way, the information leakage is reduced.The procedure can be performed repeatedly so that the information leakage is reduced to any arbitrarily low level. With this QPA scheme, the quantum secure direct communication with single qubits can be implemented with arbitrarily high security. We also exploit this scheme to do privacy amplification on the single qubits in quantum information sharing for long-distance communication with quantum repeaters.

  5. Electromagnetic biaxial microscanner with mechanical amplification at resonance.

    Cho, Ah Ran; Han, Aleum; Ju, Suna; Jeong, Haesoo; Park, Jae-Hyoung; Kim, Inhoi; Bu, Jong-Uk; Ji, Chang-Hyeon

    2015-06-29

    We present the design, fabrication, and measurement results of an electromagnetic biaxial microscanner with mechanical amplification mechanism. A gimbaled scanner with two distinct single-crystal silicon layer thicknesses and integrated copper coils has been fabricated with combination of surface and bulk micromachining processes. A magnet assembly consisting of an array of permanent magnets and a pole piece has been placed under the substrate to provide high strength lateral magnetic field oriented 45° to two perpendicular scanning axes. Micromirror has been supported by additional gimbal to implement a mechanical amplification. A 1.2mm-diameter mirror with aluminum reflective surface has been actuated at 60Hz for vertical scan and at 21kHz for horizontal scan. Maximum scan angle of 36.12° at 21.19kHz and 17.62° at 60Hz have been obtained for horizontal and vertical scans, respectively. PMID:26191691

  6. Broadband terahertz amplification in a heterogeneous quantum cascade laser.

    Bachmann, Dominic; Leder, Norbert; Rösch, Markus; Scalari, Giacomo; Beck, Mattias; Arthaber, Holger; Faist, Jérôme; Unterrainer, Karl; Darmo, Juraj

    2015-02-01

    We demonstrate a broadband terahertz amplifier based on ultrafast gain switching in a quantum cascade laser. A heterogeneous active region is processed into a coupled cavity metal-metal waveguide device and provides broadband terahertz gain that allows achieving an amplification bandwidth of more than 500 GHz. The temporal and spectral evolution of a terahertz seed pulse, which is generated in an integrated emitter section, is presented and an amplification factor of 21 dB is reached. Furthermore, the quantum cascade amplifier emission spectrum of the emerging sub-nanosecond terahertz pulse train is measured by time-domain spectroscopy and reveals discrete modes between 2.14 and 2.68 THz. PMID:25836170

  7. Pulse Amplification in Dispersion-Decreasing Fibers with Symbolic Computation

    The pulse amplification in the dispersion-decreasing fiber (DDF) is investigated via symbolic computation to solve the variable-coefficient higher-order nonlinear Schroedinger equation with the effects of third-order dispersion, self-steepening, and stimulated Raman scattering. The analytic one-soliton solution of this model is obtained with a set of parametric conditions. Based on this solution, the fundamental soliton is shown to be amplified in the DDF. The comparison of the amplitude of pulses for different dispersion profiles of the DDF is also performed through the graphical analysis. The results of this paper would be of certain value to the study of signal amplification and pulse compression. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  8. Whole genome amplification - Review of applications and advances

    Hawkins, Trevor L.; Detter, J.C.; Richardson, Paul

    2001-11-15

    The concept of Whole Genome Amplification is something that has arisen in the past few years as modifications to the polymerase chain reaction (PCR) have been adapted to replicate regions of genomes which are of biological interest. The applications here are many--forensics, embryonic disease diagnosis, bio terrorism genome detection, ''imoralization'' of clinical samples, microbial diversity, and genotyping. The key question is if DNA can be replicated a genome at a time without bias or non random distribution of the target. Several papers published in the last year and currently in preparation may lead to the conclusion that whole genome amplification may indeed be possible and therefore open up a new avenue to molecular biology.

  9. Spin noise amplification and giant noise in optical microcavity

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification of broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing

  10. Assessing Linearity of the Parasite Varroa destructor DNA Amplification

    ODAGIU Antonia

    2009-12-01

    Full Text Available The importance of honeybee products make of disease prevention and control in honeybees one of the mainconcerns of beekeepers in the world. The PCR – RT reaction represents an alternative for amplification performed inorder to realize the Varroa destructor O. genotypization, very important stage in haoneybee resistance to parasitedescription and also in management of the treatments. The linearity data is a very important parameter and very usefulin determination of the amplification of the parasite DNA and success of the genotypization process. The amplificationefficiency was very satisfactory, fact revealed by the value of the regression line y = - 2.3103 * 26.552 together withcoefficient of determination equal (r2 = 0.9691, meaning that more than 96% of the reaction efficiency may beexplained by the process liniarity. The implementation of the RT-PCR method was successful and it represents apremise for validation process evolution.

  11. Narrow band amplification of light carrying orbital angular momentum

    Borba, G C; Pruvost, L; Felinto, D; Tabosa, J W R

    2016-01-01

    We report on the amplification of an optical vortex beam carrying orbital angular momentum via induced narrow Raman gain in an ensemble of cold cesium atoms. A 20\\% single-pass Raman gain of a weak vortex signal field is observed with a spectral width of order of 1 MHz, much smaller than the natural width, demonstrating that the amplification process preserves the phase structure of the vortex beam. The gain is observed in the degenerated two-level system associated with the hyperfine transition $6S_{1/2}(F=3)\\leftrightarrow 6P_{3/2}(F^{\\prime}=2)$ of cesium. Our experimental observations are explained with a simple theoretical model based on a three-level $\\Lambda$ system interacting coherently with the weak Laguerre-Gauss field and a strong coupling field, including an incoherent pumping rate between the two degenerate ground-states.

  12. Amplification, Decoherence, and the Acquisition of Information by Spin Environments

    Zwolak, Michael; Riedel, C. Jess; Zurek, Wojciech H.

    2016-05-01

    Quantum Darwinism recognizes the role of the environment as a communication channel: Decoherence can selectively amplify information about the pointer states of a system of interest (preventing access to complementary information about their superpositions) and can make records of this information accessible to many observers. This redundancy explains the emergence of objective, classical reality in our quantum Universe. Here, we demonstrate that the amplification of information in realistic spin environments can be quantified by the quantum Chernoff information, which characterizes the distinguishability of partial records in individual environment subsystems. We show that, except for a set of initial states of measure zero, the environment always acquires redundant information. Moreover, the Chernoff information captures the rich behavior of amplification in both finite and infinite spin environments, from quadratic growth of the redundancy to oscillatory behavior. These results will considerably simplify experimental testing of quantum Darwinism, e.g., using nitrogen vacancies in diamond.

  13. Signal amplification in a qubit-resonator system

    We study the dynamics of a qubit-resonator system, when the resonator is driven by two signals. The interaction of the qubit with the high-amplitude driving we consider in terms of the qubit dressed states. Interaction of the dressed qubit with the second probing signal can essentially change the amplitude of this signal. We calculate the transmission amplitude of the probe signal through the resonator as a function of the qubit energy and the driving frequency detuning. The regions of increase and attenuation of the transmitted signal are calculated and demonstrated graphically. We present the influence of the signal parameters on the value of the amplification, and discuss the values of the qubit-resonator system parameters for an optimal amplification and attenuation of the weak probe signal.

  14. Spin noise amplification and giant noise in optical microcavity

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S. [Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Kavokin, A. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Lagoudakis, P. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-06-14

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification of broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing.

  15. Hyper dispersion pulse compressor for chirped pulse amplification systems

    Barty, Christopher P. J.

    2011-11-29

    A grating pulse compressor configuration is introduced for increasing the optical dispersion for a given footprint and to make practical the application for chirped pulse amplification (CPA) to quasi-narrow bandwidth materials, such as Nd:YAG. The grating configurations often use cascaded pairs of gratings to increase angular dispersion an order of magnitude or more. Increased angular dispersion allows for decreased grating separation and a smaller compressor footprint.

  16. Swing amplification and global modes reciprocity in models with cusps

    Polyachenko, Evgeny

    2016-01-01

    Using 3D N-body simulations we analyse an onset of the bar in cuspy models, and argue that role of swing amplification is twofold. Amplified shot noise due to disc discreteness hampers bar formation, while induced resonance perturbations allow bar amplitude to overcome shots. A bar pattern speed and a growth rate obtained in N-body simulations agree well with global mode analysis.

  17. A new beam deflection angle amplification technique for mirage detection

    Yarai, A.; Fukunaga, Y; Sakamoto, K; Nakanishi, T.

    1994-01-01

    A new technique has been developed for amplification of the photothermal beam deflection angle for mirage detection. This technique, based on a very simple operating principle, uses a cylindrical reflection mirror. The use of a new amplifier provided a signal-to-noise ratio approximately 10 times that obtained without the amplifier for equipment of the same size. By using the new amplifier, a mirage signal was obtained when a transistor array processed on a silicon wafer was measured.

  18. Rapid Diagnosis of Extrapulmonary Tuberculosis by Ligase Chain Reaction Amplification

    Gamboa, Fredy; Dominguez, José; Padilla, Eduardo; Manterola, José M.; Gazapo, Elena; Lonca, Joan; Matas, Lurdes; Hernandez, Agueda; Cardona, Pere Joan; Ausina, Vicente

    1998-01-01

    A rapid amplification-based test for the diagnosis of extrapulmonary tuberculosis, the LCx Mycobacterium tuberculosis Assay from Abbott Laboratories, was evaluated. Results from the LCx M. tuberculosis Assay were compared with those from culture and the final clinical diagnosis for each patient. A total of 526 nonrespiratory specimens from 492 patients were tested. The specimens included urine; feces; lymph node exudates; pleural, cerebrospinal, articular, and ascitic fluids; tissue biopsies;...

  19. Optical Amplification and Photosensitivity in Sol-Gel Based Waveguides

    Selvarajan, A; T. Srinivas

    2001-01-01

    The sol-gel process has emerged as an effective route for the fabrication of optical waveguides and guided wave devices and circuits. In particular, it is possible to incorporate active dopants like neodymium, erbium, and cesium for integrated optical active devices and circuits. In this paper, a review of recent research on active devices and circuits based on sol-gel process is made. Specific studies undertaken in our laboratory on optical amplification and photosensitivity characteristi...

  20. Whole genome amplification of DNA for genotyping pharmacogenetics candidate genes.

    Santosh ePhilips

    2012-03-01

    Full Text Available Whole genome amplification (WGA technologies can be used to amplify genomic DNA when only small amounts of DNA are available. The Multiple Displacement Amplification Phi polymerase based amplification has been shown to accurately amplify DNA for a variety of genotyping assays; however, it has not been tested for genotyping many of the clinically relevant genes important for pharmacogenetic studies, such as the cytochrome P450 genes, that are typically difficult to genotype due to multiple pseudogenes, copy number variations, and high similarity to other related genes. We evaluated whole genome amplified samples for Taqman™ genotyping of SNPs in a variety of pharmacogenetic genes. In 24 DNA samples from the Coriell human diversity panel, the call rates and concordance between amplified (~200-fold amplification and unamplified samples was 100% for two SNPs in CYP2D6 and one in ESR1. In samples from a breast cancer clinical trial (Trial 1, we compared the genotyping results in samples before and after WGA for four SNPs in CYP2D6, one SNP in CYP2C19, one SNP in CYP19A1, two SNPs in ESR1, and two SNPs in ESR2. The concordance rates were all >97%. Finally, we compared the allele frequencies of 143 SNPs determined in Trial 1 (whole genome amplified DNA to the allele frequencies determined in unamplified DNA samples from a separate trial (Trial 2 that enrolled a similar population. The call rates and allele frequencies between the two trials were 98% and 99.7%, respectively. We conclude that the whole genome amplified DNA is suitable for Taqman™ genotyping for a wide variety of pharmacogenetically relevant SNPs.

  1. Mismatch characteristics of optical parametric chirped pulse amplification

    Novák, Ondřej; Turčičová, Hana; Divoký, Martin; Huynh, Jaroslav; Straka, Petr

    2014-01-01

    Roč. 11, č. 2 (2014), 1-7. ISSN 1612-2011 R&D Projects: GA ČR GA202/06/0814; GA MŠk(CZ) LC528 Institutional support: RVO:68378271 Keywords : phase matching * phase mismatch * beam mismatch * broadband amplification * parametric amplifiers * OPCPA * iodine laser Subject RIV: BH - Optics , Masers, Laser s Impact factor: 2.458, year: 2014

  2. MYC Amplification in Angiosarcoma Arising from an Arteriovenous Graft Site

    Kristen M. Paral

    2015-01-01

    Full Text Available Angiosarcoma arising in association with an arteriovenous graft (AVG or fistula is a unique clinicopathologic scenario that appears to be gaining recognition in the literature. Among reported cases, none has described high-level MYC gene amplification, a genetic aberration that is increasingly unifying the various clinicopathologic subdivisions of angiosarcoma. We therefore report the MYC gene status in a case of angiosarcoma arising at an AVG site.

  3. Risk Types and Risk Amplification of Online Finance

    Gujun Yan

    2013-01-01

    Online finance not only has the same risks as the traditional financial sector, but also brings new types of risks and the amplification effect of the financial risks. In the circumstances of online finance, risk correlation between countries is increasing due to worldwide mutual penetration of financial businesses and customers. Facing the risk test of the Internet finance, risk control and management must be strengthened in order to achieve its sustainable developments.

  4. Uncertainty of site amplification derived from ground response analysis

    Afshari, K; Stewart, JP

    2015-01-01

    Site-specific geotechnical ground response analyses (GRAs) are typically performed to evaluate stress and strain demands within soil profiles and/or to improve the estimation of site response relative to generic site terms from empirical prediction equations. Implementation of GRA results in probabilistic seismic hazard analysis (PSHA) requires knowledge of the mean and standard deviation of site amplification from GRA. We provide expressions for evaluating within-event standard deviations of...

  5. Selective inhibition of DNA amplification in nonadhering Mycoplasma pneumoniae cultures

    Zigangirova, N.A.; Solov`eva, S.V.; Rakovskaya, I.V. [Gamaleya Scientific Research Institute of Epidemiology and Microbiology, Moscow (Russian Federation)] [and others

    1995-08-01

    Inhibition of amplification of various genome regions of Mycoplasma pneumoniae was observed in the polymerase chain reaction, and was dependent on cultivation conditions. A protein stably associated with DNA is responsible for the inhibitory effect. It is assumed that when the protein selectively associates with separate DNA regions, it can inhibit genes encoding pathogenicity factors, thus promoting mycoplasma transformation into persistent variants. 16 refs., 2 figs.

  6. Risk communication and the social amplification of risk

    Renn, Ortwin

    1991-01-01

    Risk communication is a novel concept in the scientific pursuit to understand and analyze risk related decisions and behavior in modem society. But the new term has only changed the focus of attention from a static description of what risk means for different communities to a dynamic analysis on how these communities exchange information about risk and adjust their behavior.The concept of social amplification of risk provides a framework for the analysis of communication as well as other soci...

  7. Three-dimensional topographic amplification of seismic motion: Engineering Applications

    Assimaki, D.; Mohammadi, K.

    2012-12-01

    Topography effects are associated with the presence of strong topographic relief; documented observations during strong seismic events have shown that structures on the tops of hills, ridges, and canyons had suffered greater damage than similar structures at the hill bases or on level ground. While there is qualitative agreement between theory and observations on topography effects, there is clear quantitative discrepancy: numerical predictions of crest-to-base amplification factors rarely exceed the value of 2, while amplification values observed in the field are as high as 10. We here investigate the focusing and scattering of seismic waves in 3D features by means of a systematic parametric study of the seismic response of idealized geometries on the surface of homogeneous elastic half space using finite differences, to quantify the role of geometry, material properties and ground motion characteristics in the predicted ground surface response. We specifically focus on pyramid (convex) geometries and elastic homogeneous material behavior, and use Ricker wavelets as vertical and oblique incident pulses on ground surface. Results are compared to analytical solutions and thereafter extended to account for soil layering, nonlinear response and broadband incident motion characteristics. We then develop geometry, material and ground motion dependent dimensionless amplification factors that can multiply flat ground surface response spectra and account for topography effects as part of engineering design code provisions.omparison of the scattered wavefield complexity emanating at the vertex and toe of a 45deg single slope upon incidence of a vertical, a forward and a backward oblique wave.

  8. Diagnosis of brugian filariasis by loop-mediated isothermal amplification.

    Poole, Catherine B; Tanner, Nathan A; Zhang, Yinhua; Evans, Thomas C; Carlow, Clotilde K S

    2012-01-01

    In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis. PMID:23272258

  9. Field and current amplification in the SSPX spheromak

    Results are presented from experiments relating to magnetic field generation and current amplification in the SSPX spheromak. The SSPX spheromak plasma is driven by DC coaxial helicity injection using a 2MJ capacitor bank. Peak toroidal plasma currents of up to 0.7MA and peak edge poloidal fields of 0.3T are produced; lower current discharges can be sustained up to 3.5msec. When edge magnetic fluctuations are reduced below 1% by driving the plasma near threshold, it is possible to produce plasmas with Te > 150eV, e>∼4% and core χe∼30m2/s. Helicity balance for these plasmas suggests that sheath dissipation can be significant, pointing to the importance of maximizing the voltage on the coaxial injector. For most operational modes we find a stiff relationship between peak spheromak field and injector current, and little correlation with plasma temperature, which suggests that other processes than ohmic dissipation may limit field amplification. However, slowing spheromak buildup by limiting the initial current pulse increases the ratio of toroidal current to injected current and points to new operating regimes with more favorable current amplification. (author)

  10. Diagnosis of brugian filariasis by loop-mediated isothermal amplification.

    Catherine B Poole

    Full Text Available In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.

  11. Raman amplification in plasma: thermal effects and damping

    Farmer, J. P.; Ersfeld, B.; Raj, G.; Jaroszynski, D. A.

    2009-05-01

    The role of thermal effects on Raman amplification are investigated. The direct effects of damping on the process are found to be limited, leading only to a decrease from the peak output intensity predicted by cold plasma models. However, the shift in plasma resonance due to the Bohm-Gross shift can have a much larger influence, changing the required detuning between pump and probe and introducing an effective chirp through heating of the plasma by the pump pulse. This "thermal chirp" can both reduce the efficiency of the interaction and alter the evolution of the amplified probe, avoiding the increase in length observed in the linear regime without significant pump depletion. The influence of this chirp can be reduced by using a smaller ratio of laser frequency to plasma frequency, which simultaneously increases the growth rate of the probe and decreases the shift in plasma resonance. As such, thermal effects only serve to suppress the amplification of noise at low growth rates. The use of a chirped pump pulse can be used to suppress noise for higher growth rates, and has a smaller impact on the peak output intensity for seeded amplification. For the parameter ranges considered, Landau damping was found to be negligible, as Landau damping rates are typically small, and the low collisionality of the plasma causes the process to saturate quickly.

  12. Generation of recombinant pestiviruses using a full genome amplification strategy

    Rasmussen, Thomas Bruun; Reimann, Ilona; Uttenthal, Åse; Depner, Klaus; Schirrmeyer, Horst; Beer, Martin

    pestiviruses. Methods Pestivirus genomes were amplified from either total RNA preparations using long RT-PCR or from infectious cDNA clones using long PCR. Viral RNA was extracted from cell cultures inoculated with pestivirus (e.g. BDV “Gifhorn” or BVDV “CP7”) using a combined Trizol/RNeasy protocol. Total RNA......-length RT-PCR amplicon demonstrating that long RT-PCR can be used for direct generation of an infectious pestivirus. The strategy is not limited to amplification of BDV “Gifhorn”, but can be further utilized for amplification of a diverse selection of pestivirus strains and for the generation of modified...... was reverse transcribed to cDNA at 50C for 90 minutes using SuperScript III reverse transcriptase (Invitrogen). Full-length PCR amplification was performed using primers specific for the extreme 5’- and 3’-ends of the viral genomes. A T7 promoter was incorporated in the 5’-primers for direct in vitro...

  13. Device-independent randomness amplification with a single device

    Expansion and amplification of weak randomness with untrusted quantum devices has recently become a very fruitful topic of research. Here we contribute with a procedure for amplifying a single weak random source using tri-partite GHZ-type entangled states. If the quality of the source reaches a fixed threshold R=log2⁡(10), perfect random bits can be produced. This technique can be used to extract randomness from sources that can't be extracted neither classically, nor by existing procedures developed for Santha–Vazirani sources. Our protocol works with a single fault-free device decomposable into three non-communicating parts, that is repeatedly reused throughout the amplification process. - Highlights: • We propose a protocol for device independent randomness amplification. • Our protocol repeatedly re-uses a single device decomposable into three parts. • Weak random sources with min-entropy rate greater than 1/4 log2⁡(10) can be amplified. • Security against all-quantum adversaries is achieved

  14. Amplification of seismic ground motion in the Tunis basin: Numerical BEM simulations vs experimental evidences

    Kham, Marc; Bouden-Romdhane, Nejla

    2013-01-01

    This paper aims at the analysis of seismic wave amplification in a deep alluvial basin in the city of Tunis in Tunisia. This sedimentary basin is 3000m wide and 350m deep. Since the seismic hazard is significant in this area, the depth of the basin and the strong impedance ratio raise the need for an accurate estimation of seismic motion amplification. Various experimental investigations were performed in previous studies to characterize site effects. The Boundary Element Method is considered herein to assess the parameter sensitivity of the amplification process and analyse the prevailing phenomena. The various frequencies of maximum amplification are correctly estimated by the BEM simulations. The maximum amplification level observed in the field is also well retrieved by the numerical simulations but, due to the sensitivity of the location of maximum amplification in space, the overall maximum amplification has to be considered. The influence of the wave-field incidence and material damping is also discuss...

  15. Loop-mediated isothermal amplification as a good tool to study changing Leptosphaeria populations in oilseed rape plants and air samples

    Małgorzata Jędryczka; Adam Burzyński; Andrzej Brachaczek; Wojciech Langwiński; Peiling Song; Joanna Kaczmarek

    2014-01-01

    LAMP is an innovative, simple, rapid, specific and cost-effective nucleic acid amplification method. Due to the use of a special enzyme – GspSSD polymerase, the reaction takes a short time and can be performed at isothermal conditions. The sensitivity and specificity of LAMP technique is significantly higher, than standard PCR techniques, as two or three specific primer pairs are used. The technique is regarded as a useful tool for the detection and identification of plant pathogens. In this ...

  16. Primer-mediated enzymatic amplification of cytomegalovirus (CMV) DNA. Application to the early diagnosis of CMV infection in marrow transplant recipients.

    Cassol, S A; Poon, M.C.; Pal, R.; Naylor, M J; Culver-James, J; Bowen, T.J.; Russell, J A; Krawetz, S A; Pon, R T; Hoar, D I

    1989-01-01

    A nucleic acid amplification procedure, the polymerase chain reaction (PCR), has been used to establish a diagnostic assay for the identification of cytomegalovirus (CMV) immediate-early sequences in clinical specimens. Preliminary testing against virus-infected cell cultures indicated that the PCR assay was highly CMV-specific, recognizing both wild-type and laboratory strains of CMV. There was no cross-reactivity with human DNA or with DNA from other herpes viruses. The sensitivity of the a...

  17. Strategy for complete NMR assignment of disordered proteins with highly repetitive sequences based on resolution-enhanced 5D experiments

    A strategy for complete backbone and side-chain resonance assignment of disordered proteins with highly repetitive sequence is presented. The protocol is based on three resolution-enhanced NMR experiments: 5D HN(CA)CONH provides sequential connectivity, 5D HabCabCONH is utilized to identify amino acid types, and 5D HC(CC-TOCSY)CONH is used to assign the side-chain resonances. The improved resolution was achieved by a combination of high dimensionality and long evolution times, allowed by non-uniform sampling in the indirect dimensions. Random distribution of the data points and Sparse Multidimensional Fourier Transform processing were used. Successful application of the assignment procedure to a particularly difficult protein, δ subunit of RNA polymerase from Bacillus subtilis, is shown to prove the efficiency of the strategy. The studied protein contains a disordered C-terminal region of 81 amino acids with a highly repetitive sequence. While the conventional assignment methods completely failed due to a very small differences in chemical shifts, the presented strategy provided a complete backbone and side-chain assignment.

  18. Rapid Amplification of Plasmid and Phage DNA Using Phi29 DNA Polymerase and Multiply-Primed Rolling Circle Amplification

    Dean, Frank B.; Nelson, John R.; Giesler, Theresa L.; Lasken, Roger S.

    2001-01-01

    We describe a simple method of using rolling circle amplification to amplify vector DNA such as M13 or plasmid DNA from single colonies or plaques. Using random primers and φ29 DNA polymerase, circular DNA templates can be amplified 10,000-fold in a few hours. This procedure removes the need for lengthy growth periods and traditional DNA isolation methods. Reaction products can be used directly for DNA sequencing after phosphatase treatment to inactivate unincorporated nucleotides. Amplified ...

  19. Novel Methodology for Rapid Detection of KRAS Mutation Using PNA-LNA Mediated Loop-Mediated Isothermal Amplification.

    Itonaga, Masahiro; Matsuzaki, Ibu; Warigaya, Kenji; Tamura, Takaaki; Shimizu, Yuki; Fujimoto, Masakazu; Kojima, Fumiyoshi; Ichinose, Masao; Murata, Shin-Ichi

    2016-01-01

    Detecting point mutation of human cancer cells quickly and accurately is gaining in importance for pathological diagnosis and choice of therapeutic approach. In the present study, we present novel methodology, peptide nucleic acid-locked nucleic acid mediated loop-mediated isothermal amplification (PNA-LNA mediated LAMP), for rapid detection of KRAS mutation using advantages of both artificial DNA and LAMP. PNA-LNA mediated LAMP reactions occurred under isothermal temperature conditions of with 4 primary primers set for the target regions on the KRAS gene, clamping PNA probe that was complimentary to the wild type sequence and LNA primers complementary to the mutated sequences. PNA-LNA mediated LAMP was applied for cDNA from 4 kinds of pancreatic carcinoma cell lines with or without KRAS point mutation. The amplified DNA products were verified by naked-eye as well as a real-time PCR equipment. By PNA-LNA mediated LAMP, amplification of wild type KRAS DNA was blocked by clamping PNA probe, whereas, mutant type KRAS DNA was significantly amplified within 50 min. Mutant alleles could be detected in samples which diluted until 0.1% of mutant-to-wild type ratio. On the other hand, mutant alleles could be reproducibly with a mutant-to-wild type ratio of 30% by direct sequencing and of 1% by PNA-clamping PCR. The limit of detection (LOD) of PNA-LNA mediated LAMP was much lower than the other conventional methods. Competition of LNA clamping primers complementary to two different subtypes (G12D and G12V) of mutant KRAS gene indicated different amplification time depend on subtypes of mutant cDNA. PNA-LNA mediated LAMP is a simple, rapid, specific and sensitive methodology for the detection of KRAS mutation. PMID:26999437

  20. Novel Methodology for Rapid Detection of KRAS Mutation Using PNA-LNA Mediated Loop-Mediated Isothermal Amplification.

    Masahiro Itonaga

    Full Text Available Detecting point mutation of human cancer cells quickly and accurately is gaining in importance for pathological diagnosis and choice of therapeutic approach. In the present study, we present novel methodology, peptide nucleic acid-locked nucleic acid mediated loop-mediated isothermal amplification (PNA-LNA mediated LAMP, for rapid detection of KRAS mutation using advantages of both artificial DNA and LAMP. PNA-LNA mediated LAMP reactions occurred under isothermal temperature conditions of with 4 primary primers set for the target regions on the KRAS gene, clamping PNA probe that was complimentary to the wild type sequence and LNA primers complementary to the mutated sequences. PNA-LNA mediated LAMP was applied for cDNA from 4 kinds of pancreatic carcinoma cell lines with or without KRAS point mutation. The amplified DNA products were verified by naked-eye as well as a real-time PCR equipment. By PNA-LNA mediated LAMP, amplification of wild type KRAS DNA was blocked by clamping PNA probe, whereas, mutant type KRAS DNA was significantly amplified within 50 min. Mutant alleles could be detected in samples which diluted until 0.1% of mutant-to-wild type ratio. On the other hand, mutant alleles could be reproducibly with a mutant-to-wild type ratio of 30% by direct sequencing and of 1% by PNA-clamping PCR. The limit of detection (LOD of PNA-LNA mediated LAMP was much lower than the other conventional methods. Competition of LNA clamping primers complementary to two different subtypes (G12D and G12V of mutant KRAS gene indicated different amplification time depend on subtypes of mutant cDNA. PNA-LNA mediated LAMP is a simple, rapid, specific and sensitive methodology for the detection of KRAS mutation.

  1. Next-generation sequencing-based transcriptome analysis of L-lysine-producing Corynebacterium glutamicum ATCC 21300 strain.

    Kim, Hong-Il; Nam, Jae-Young; Cho, Jae-Yong; Lee, Chang-Soo; Park, Young-Jin

    2013-12-01

    In the present study, 151 genes showed a significant change in their expression levels in Corynebacterium glutamicum ATCC 21300 compared with those of C. glutamicum ATCC 13032. Of these 151 genes, 56 genes (2%) were up-regulated and 95 genes (3%) were down-regulated. RNA sequencing analysis also revealed that 11 genes, involved in the L-lysine biosynthetic pathway of C. glutamicum, were up- or down-regulated compared with those of C. glutamicum ATCC 13032. Of the 151 genes, 10 genes were identified to have mutations including SNP (9 genes) and InDel (1 gene). This information will be useful for genome breeding of C. glutamicum to develop an industrial amino acid-producing strain with minimal mutation. PMID:24385368

  2. Development of a loop-mediated isothermal amplification method for rapid detection of pigeon circovirus.

    Tsai, Shinn Shyong; Chang, Yeng Ling; Huang, Yen Li; Liu, Hung Jen; Ke, Guan Ming; Chiou, Chwei Jang; Hsieh, Yao Ching; Chang, Tsung Chou; Cheng, Li Ting; Chuang, Kuo Pin

    2014-05-01

    There are no effective antiviral treatments for pigeon circovirus (PiCV); thus, rapid diagnosis is critical for effective control of the disease caused by this virus. The recent development of a novel LAMP technique that amplifies nucleic acids rapidly with high specificity and sensitivity under isothermal conditions has overcome some of the deficiencies of nucleic-acid-based diagnostic tests. We established a LAMP method for rapid detection of PiCV using two pairs of primers that were designed from PiCV and compared its sensitivity and specificity with that of PCR. Amplification by LAMP was optimal at 63 °C for 60 min. The detection limit was nearly 0.5 pg of PiCV DNA, making it ten times more sensitive than PCR. There was no cross-reaction with porcine circovirus type 2 (PCV2), pigeon Trichomonas gallinae, or pigeon herpesvirus (PHV) under the same conditions. The assay also successfully detected the pathogen DNA in the tissues of infected pigeons. This is the first report indicating that LAMP is a valuable, rapid method of detecting PiCV with high sensitivity and specificity. PMID:24193953

  3. PredSL: A Tool for the N-terminal Sequence-based Prediction of Protein Subcellular Localization

    Evangelia I. Petsalaki; Pantelis G. Bagos; Zoi I. Litou; Stavros J. Hamodrakas

    2006-01-01

    The ability to predict the subcellular localization of a protein from its sequence is of great importance, as it provides information about the protein's function.We present a computational tool, PredSL, which utilizes neural networks, Markov chains, profile hidden Markov models, and scoring matrices for the prediction of the subcellular localization of proteins in eukaryotic cells from the N-terminal amino acid sequence. It aims to classify proteins into five groups: chloroplast,thylakoid, mitochondrion, secretory pathway, and "other". When tested in a fivefold cross-validation procedure, PredSL demonstrates 86.7% and 87.1% overall accuracy for the plant and non-plant datasets, respectively. Compared with TargetP, which is the most widely used method to date, and LumenP, the results of PredSL are comparable in most cases. When tested on the experimentally verified proteins of the Saccharomyces cerevisiae genome, PredSL performs comparably if not better than any available algorithm for the same task. Furthermore, PredSL is the only method capable for the prediction of these subcellular localizations that is available as a stand-alone application through the URL:http://bioinformatics.biol.uoa.gr/PredSL/.

  4. Identification of family determining residues in Jumonji-C lysine demethylases: A sequence-based, family wide classification.

    Slama, Patrick

    2016-03-01

    Histone post-translational modifications play a critical role in the regulation of gene expression. Methylation of lysines at N-terminal tails of histones has been shown to be involved in such regulation. While this modification was long considered to be irreversible, two different classes of enzymes capable of carrying out the demethylation of histone lysines were recently identified: the oxidases, such as LSD1, and the oxygenases (JmjC-containing). Here, a family-wide analysis of the second of these classes is proposed, with over 300 proteins studied at the sequence level. We show that a correlated evolution analysis yields some position/residue pairs which are critical at comparing JmjC sequences and enables the classification of JmjC domains into five families. A few positions appear more frequently among conditions, such as positions 23 (directly C-terminal to the second iron ligand), 24, 252 and 253 (directly N-terminal to a conserved Asn). Implications of family conditions are studied in detail on PHF2, revealing the meaningfulness of the sequence-derived conditions at the structural level. These results should help obtain insights on the diversity of JmjC-containing proteins solely by considering some of the amino acids present in their JmjC domain. PMID:26757344

  5. MET overexpression and gene amplification in NSCLC: a clinical perspective

    Landi L

    2013-06-01

    Full Text Available Lorenza Landi, Gabriele Minuti, Armida D'Incecco, Jessica Salvini, Federico CappuzzoMedical Oncology Department, Istituto Toscano Tumori, Ospedale Civile, Livorno, ItalyAbstract: The transmembrane tyrosine kinase mesenchymal-epidermal transition (MET receptor and its ligand, hepatocyte growth factor, also known as scatter factor, have recently been identified as novel promising targets in several human malignancies, including non-small cell lung cancer (NSCLC. Amplification, mutation, or overexpression of the MET gene can result in aberrant activation of the MET axis, leading to migration, invasion, proliferation, metastasis, and neoangiogenesis of cancer cells, suggesting that interfering with the MET/hepatocyte growth factor pathway could represent a potential antitumor strategy. While the role of MET mutations in NSCLC is not as yet fully understood, retrospective studies have shown that an increased MET gene copy number is a negative prognostic factor. In NSCLC, amplification of the MET gene is a relatively rare event, occurring in approximately 4% of patients not previously exposed to systemic therapies and in up to 20% of patients with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. In preclinical models, the presence of MET amplification is a predictor of high sensitivity to anti-MET compounds, and several agents have entered in clinical trials for patients having advanced disease, with promising results. The aim of the present review is to summarize available data on the role of MET in NSCLC and to describe therapeutic strategies under investigation.Keywords: mesenchymal-epidermal transition, hepatocyte growth factor, epidermal growth factor receptor, non-small cell lung cancer

  6. Sisyphus cooling and amplification by a superconducting qubit

    Recently superconducting qubits have been shown to act as artificial two-level atoms, demonstrating many different quantum effects known in quantum optics. Coupling such qubits to resonators is quite natural extension of this analogy. Similar to laser cooling of the atomic motion we demonstrate here Sisyphus cooling of a low frequency LC oscillator coupled to a near-resonantly driven flux qubit. The analogy to the quantum optics is obvious: the LC oscillator plays the role of the mechanical degree of freedom of an atom, while the qubit mimics the electronic, laser driven, transition. We also demonstrate the counterpart of the Sisyphus cooling, namely, Sisyphus amplification

  7. High power amplification of a tailored-pulse fiber laser

    Saby, Julien; Sangla, Damien; Caplette, Stéphane; Boula-Picard, Reynald; Drolet, Mathieu; Reid, Benoit; Salin, François

    2013-02-01

    We demonstrate the amplification of a 1064nm pulse-programmable fiber laser with Large Pitch Rod-Type Fibers of various Mode field diameters from 50 to 70 μm. We have developed a high power fiber amplifier at 1064nm delivering up to 100W/1mJ at 15ns pulses and 30W/300μJ at 2ns with linearly polarized and diffraction limited output beam (M²LBO crystals leading to 50W at 532nm and 25W at 355nm with a diffraction limited output. Similar experiments performed at 1032nm are also reported.

  8. Genomic Amplifications Cause False Positives in CRISPR Screens.

    Sheel, Ankur; Xue, Wen

    2016-08-01

    In CRISPR-based screens for essential genes, Munoz and colleagues and Aguirre and colleagues show that gene-independent targeting of genomic amplifications in human cancer cell lines reduces proliferation or survival. The correlation between CRISPR target site copy number and lethality demonstrates the need for scrutiny and complementary approaches to rule out off-target effects and false positives in CRISPR screens. Cancer Discov; 6(8); 824-6. ©2016 AACR.See related article by Munoz et al., p. 900See related article by Aguirre et al., p. 914. PMID:27485003

  9. Simultaneous amplification and attenuation in isotropic chiral materials

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2016-05-01

    The electromagnetic field phasors in an isotropic chiral material (ICM) are superpositions of two Beltrami fields of different handedness. Application of the Bruggeman homogenization formalism to two-component composite materials delivers ICMs wherein Beltrami fields of one handedness attenuate whereas Beltrami fields of the other handedness amplify. One component material is a dissipative ICM, the other an active dielectric material. The range of the volume fraction of the active component material for which simultaneous amplification and attenuation is exhibited decreases—but does not vanish—as the ICM component becomes more dissipative and as its chirality parameter reduces in magnitude.

  10. The efficiency of Raman amplification in the wavebreaking regime

    We compare previous analytic predictions, Vlasov-Maxwell simulations, and particle-in-cell results with a new set of comprehensive one and two dimensional particle-in-cell simulations in an effort to clarify apparent discrepancies between the predictions of different models for the efficiency of Raman amplification in the wavebreaking regime. We find reasonable agreement between our particle-in-cell simulations and previous results from Vlasov-Maxwell simulations and analytic work, suggesting a monotonic decrease in conversion efficiency for increased pump intensities past the wavebreaking threshold

  11. Parametric amplification of a chirped pulse in an optical fiber

    The OPCPA (Optical Parametric Chirped Pulse Amplification) technique is used in the field of powerful lasers for it enables us to get ultra-short pulses with a reduced optical noise. We have shown that we can replace the massive optical non-linear crystals used in this technique by optical silicon fibers. First, we have made a basic demonstration at the wavelength of 1.55 μm in which a picosecond-long pulse has been amplified by 25 decibels without undergoing any spectral changes. The use of micro-structured optical fibers has allowed us to adapt this method to the wavelength of power laser lines. (A.C.)

  12. New sequence-based data on the relative DNA contents of chromosomes in the normal male and female human diploid genomes for radiation molecular cytogenetics

    Repin Mikhail V

    2009-06-01

    Full Text Available Abstract Background The objective of this work is to obtain the correct relative DNA contents of chromosomes in the normal male and female human diploid genomes for the use at FISH analysis of radiation-induced chromosome aberrations. Results The relative DNA contents of chromosomes in the male and female human diploid genomes have been calculated from the publicly available international Human Genome Project data. New sequence-based data on the relative DNA contents of human chromosomes were compared with the data recommended by the International Atomic Energy Agency in 2001. The differences in the values of the relative DNA contents of chromosomes obtained by using different approaches for 15 human chromosomes, mainly for large chromosomes, were below 2%. For the chromosomes 13, 17, 20 and 22 the differences were above 5%. Conclusion New sequence-based data on the relative DNA contents of chromosomes in the normal male and female human diploid genomes were obtained. This approach, based on the genome sequence, can be recommended for the use in radiation molecular cytogenetics.

  13. Identification of pets and raccoons as sources of bacterial contamination of urban storm sewers using a sequence-based bacterial source tracking method.

    Ram, Jeffrey L; Thompson, Brooke; Turner, Carrie; Nechvatal, Jordan M; Sheehan, Harry; Bobrin, Janis

    2007-08-01

    In urbanized areas, contaminated storm sewers can feed high bacterial levels into free-flowing streams and rivers. Although illicit connections sometimes cause contamination, urban wildlife and free-roaming domesticated or feral pets may be another source. After eliminating illicit connections as sources of high levels of Escherichia coli in two storm sewers tributary to the Huron River in southeast Michigan, the roles of urban wildlife, pets, humans, and birds were investigated using a sequence-based bacterial source tracking technology. After enumeration, E. coli were isolated from water samples collected during spring to fall, 2005. Sequences in the gene beta-glucuronidase of each isolate were compared to sequences of reference strains from humans, raccoons, pets (cats and dogs), and birds. The highest percentage source for six of ten events was pets (ANOVA, p=0.005). Among isolates attributed to pets, strains from cats occurred more frequently on seven of nine events in which pets had a non-zero probability. High raccoon percentages (up to 60%) occurred in late summer and fall, and varied significantly more than in the spring (F-test), possibly reflecting urban raccoon den-site mobility. The sequence-based bacterial source tracking method suggests that feces from pets and raccoons are important contributors to urban storm sewers. PMID:17540431

  14. Control of Brillouin short-pulse seed amplification by chirping the pump pulse

    Lehmann, G.; Spatschek, K. H. [Institut für Theoretische Physik, Heinrich-Heine-Universität Düsseldorf, D–40225 Düsseldorf (Germany)

    2015-04-15

    Seed amplification via Brillouin backscattering of a long pump pulse is considered. Similar to Raman amplification, several obstructive effects may occur during short-pulse Brillouin amplification. One is the spontaneous Raman backscattering of the pump before interacting with the seed. Preforming the plasma and/or chirping the pump will reduce unwanted pump backscattering. Optimized regions for low-loss pump propagation were proposed already in conjunction with Raman seed amplification. Hence, the influence of the chirp of the pump during Brillouin interaction with the seed becomes important and will be considered here. Both, the linear as well as the nonlinear evolution phases of the seed caused by Brillouin amplification under the action of a chirped pump are investigated. The amplification rate as well as the seed profiles are presented as function of the chirping rate. Also the dependence of superradiant scaling rates on the chirp parameter is discussed.

  15. Full Genome Sequence-Based Comparative Study of Wild-Type and Vaccine Strains of Infectious Laryngotracheitis Virus from Italy.

    Alessandra Piccirillo

    Full Text Available Infectious laryngotracheitis (ILT is an acute and highly contagious respiratory disease of chickens caused by an alphaherpesvirus, infectious laryngotracheitis virus (ILTV. Recently, full genome sequences of wild-type and vaccine strains have been determined worldwide, but none was from Europe. The aim of this study was to determine and analyse the complete genome sequences of five ILTV strains. Sequences were also compared to reveal the similarity of strains across time and to discriminate between wild-type and vaccine strains. Genomes of three ILTV field isolates from outbreaks occurred in Italy in 1980, 2007 and 2011, and two commercial chicken embryo origin (CEO vaccines were sequenced using the 454 Life Sciences technology. The comparison with the Serva genome showed that 35 open reading frames (ORFs differed across the five genomes. Overall, 54 single nucleotide polymorphisms (SNPs and 27 amino acid differences in 19 ORFs and two insertions in the UL52 and ORFC genes were identified. Similarity among the field strains and between the field and the vaccine strains ranged from 99.96% to 99.99%. Phylogenetic analysis revealed a close relationship among them, as well. This study generated data on genomic variation among Italian ILTV strains revealing that, even though the genetic variability of the genome is well conserved across time and between wild-type and vaccine strains, some mutations may help in differentiating among them and may be involved in ILTV virulence/attenuation. The results of this study can contribute to the understanding of the molecular bases of ILTV pathogenicity and provide genetic markers to differentiate between wild-type and vaccine strains.

  16. Full Genome Sequence-Based Comparative Study of Wild-Type and Vaccine Strains of Infectious Laryngotracheitis Virus from Italy.

    Piccirillo, Alessandra; Lavezzo, Enrico; Niero, Giulia; Moreno, Ana; Massi, Paola; Franchin, Elisa; Toppo, Stefano; Salata, Cristiano; Palù, Giorgio

    2016-01-01

    Infectious laryngotracheitis (ILT) is an acute and highly contagious respiratory disease of chickens caused by an alphaherpesvirus, infectious laryngotracheitis virus (ILTV). Recently, full genome sequences of wild-type and vaccine strains have been determined worldwide, but none was from Europe. The aim of this study was to determine and analyse the complete genome sequences of five ILTV strains. Sequences were also compared to reveal the similarity of strains across time and to discriminate between wild-type and vaccine strains. Genomes of three ILTV field isolates from outbreaks occurred in Italy in 1980, 2007 and 2011, and two commercial chicken embryo origin (CEO) vaccines were sequenced using the 454 Life Sciences technology. The comparison with the Serva genome showed that 35 open reading frames (ORFs) differed across the five genomes. Overall, 54 single nucleotide polymorphisms (SNPs) and 27 amino acid differences in 19 ORFs and two insertions in the UL52 and ORFC genes were identified. Similarity among the field strains and between the field and the vaccine strains ranged from 99.96% to 99.99%. Phylogenetic analysis revealed a close relationship among them, as well. This study generated data on genomic variation among Italian ILTV strains revealing that, even though the genetic variability of the genome is well conserved across time and between wild-type and vaccine strains, some mutations may help in differentiating among them and may be involved in ILTV virulence/attenuation. The results of this study can contribute to the understanding of the molecular bases of ILTV pathogenicity and provide genetic markers to differentiate between wild-type and vaccine strains. PMID:26890525

  17. Fiber-Optical Parametric Amplification of Sub-Picosecond Pulses for High-Speed Optical Communications

    Lali-Dastjerdi, Zohreh; Cristofori, Valentina; Rottwitt, Karsten;

    2015-01-01

    This article reviews recent results of amplification of short optical pulses using fiber-optical parametric amplifiers. This includes chirped-pulse amplification of 400 fs pulses, error-free amplification of a 640-Gbit/s optical time-division multiplexed signal with less than a 1-dB power penalty......, and all-optical phase-preserving amplitude regeneration of a 640-Gbit/s return-to-zero differential phase-shift keying optical time-division multiplexed signal....

  18. A robust method for the amplification of RNA in the sense orientation

    Quackenbush John; Marko Nicholas F; Frank Bryan; Lee Norman H

    2005-01-01

    Abstract Background Small quantities of RNA (1–4 μg total RNA) available from biological samples frequently require a single round of amplification prior to analysis, but current amplification strategies have limitations that may restrict their usefulness in downstream genomic applications. The Eberwine amplification method has been extensively validated but is limited by its ability to produce only antisense RNA. Alternatives lack extensive validation and are often confounded by problems wit...

  19. STUDY OF SOIL AMPLIFICATION BASED ON MICROTREMOR AND SEISMIC RECORDS IN LIMA PERU

    Calderon, Diana; Sekiguchi, Toru; Nakai, Shoichi; Aguilar, Zenon; Lazares, Fernando

    The dynamic characteristics of the ground in Lima, capital of Peru, specifically the amplification are investigated. By using the small and large microtremor array measurements we estimated the soil velocity profiles with depths to the bedrock in many cases. These profiles were used to estimate the amplification factors. Important results are the large amplification factors at EMO, VSV, CAL and CMA (La Molina, Villa El Salvador, El Callao and Bellavista district, respectively).

  20. Parametric amplification of matter waves in dipolar spinor Bose-Einstein condensates

    Deuretzbacher, F.; Gebreyesus, G.; Topic, O.;

    2010-01-01

    Spin-changing collisions may lead under proper conditions to the parametric amplification of matter waves in spinor Bose-Einstein condensates. Magnetic dipole-dipole interactions, although typically very weak in alkali-metal atoms, are shown to play a very relevant role in the amplification process......-field gradients, hence, must be carefully controlled in future experiments, in order to observe clearly the effects of the dipolar interactions in the amplification dynamics....

  1. Amplification of realistic Schrödinger-cat-state-like states by homodyne heralding

    Laghaout, Amine; Neergaard-Nielsen, Jonas S.; Rigas, Ioannes;

    2013-01-01

    We present a scheme for the amplification of Schrödinger cat states that collapses two smaller states onto their constructive interference via a homodyne projection. We analyze the performance of the amplification in terms of fidelity and success rate when the input consists of either exact coher...... coherent state superpositions or of photon-subtracted squeezed vacua. The impact of imprecise homodyne detection and of impure squeezing is quantified. We also assess the scalability of iterated amplifications....

  2. Recovery of community genomes to assess subsurface metabolic potential: exploiting the capacity of next generation sequencing-based metagenomics

    Wrighton, K. C.; Thomas, B.; Miller, C. S.; Sharon, I.; Wilkins, M. J.; VerBerkmoes, N. C.; Handley, K. M.; Lipton, M. S.; Hettich, R. L.; Williams, K. H.; Long, P. E.; Banfield, J. F.

    2011-12-01

    , the capacity to oxidize complex organic carbon, as well as lack of membrane bound electron transport chains and an incomplete citric acid cycle. We propose that these organisms grow cryptically on residual biomass from previous biostimulation experiments and thus demonstrate that resource utilization and turnover in the aquifer can be decoupled from existing acetate amendment and external terminal electron accepting processes. In addition to the first recovery of multiple genomes from these novel candidate divisions, our community genomic approach uncovered viral diversity not yet observed at the site, with the reconstruction of six phage genomes and the presence of CRISPR loci detected in bacterial genomes from diverse lineages. These findings have implications for predictive ecosystem modeling, highlighting the importance of integrating the response, adaptation, as well as biological and geochemical feedback mechanisms existing within complex subsurface communities to long term organic carbon amendment.

  3. CDK4 amplification predicts recurrence of well-differentiated liposarcoma of the abdomen.

    Sanghoon Lee

    Full Text Available The absence of CDK4 amplification in liposarcomas is associated with favorable prognosis. We aimed to identify the factors associated with tumor recurrence in patients with well-differentiated (WD and dedifferentiated (DD liposarcomas.From 2000 to 2010, surgical resections for 101 WD and DD liposarcomas were performed. Cases in which complete surgical resections with curative intent were carried out were selected. MDM2 and CDK4 gene amplification were analyzed by quantitative real-time polymerase chain reaction (Q-PCR.There were 31 WD and 17 DD liposarcomas. Locoregional recurrence was observed in 11 WD and 3 DD liposarcomas. WD liposarcomas showed better patient survival compared to DD liposarcomas (P<0.05. Q-PCR analysis of the liposarcomas revealed the presence of CDK4 amplification in 44 cases (91.7% and MDM2 amplification in 46 cases (95.8%. WD liposarcomas with recurrence after surgical resection had significantly higher levels of CDK4 amplification compared to those without recurrence (P = 0.041. High level of CDK4 amplification (cases with CDK4 amplification higher than the median 7.54 was associated with poor recurrence-free survival compared to low CDK4 amplification in both univariate (P = 0.012 and multivariate analyses (P = 0.020.Level of CDK4 amplification determined by Q-PCR was associated with the recurrence of WD liposarcomas after surgical resection.

  4. Light amplification and scattering by clusters made of small active particles: the local perturbation approach

    Prosentsov, V V

    2013-01-01

    The light amplification by finite active media is used extensively in modern optics applications. In this paper the light amplification and scattering by cluster of small particles is studied analytically and numerically with the help of the local perturbation method and phenomenological laser theory. It is shown that light amplification is possible even for one small particle, and that the amplification is more profound when the light frequency nears the frequency of the cluster's morphological resonance. Theoretical discussions are supplemented by numerical results for scattering by clusters which particles positioned at ordered and at slightly disordered positions.

  5. Chaotic amplification of neutrino chemical potentials by neutrino oscillations in big bang nucleosynthesis

    We investigate in detail the parameter space of active-sterile neutrino oscillations that amplifies neutrino chemical potentials at the epoch of big bang nucleosynthesis. We calculate the magnitude of the amplification and show evidence of chaos in the amplification process. We also discuss the implications of the neutrino chemical potential amplification in big bang nucleosynthesis. It is shown that with a ∼1 eV νe, the amplification of its chemical potential by active-sterile neutrino oscillations can lower the effective number of neutrino species at big bang nucleosynthesis to significantly below three. copyright 1996 The American Physical Society

  6. Amplification of cylindrically polarized laser beams in single crystal fiber amplifiers.

    Piehler, Stefan; Délen, Xavier; Rumpel, Martin; Didierjean, Julien; Aubry, Nicolas; Graf, Thomas; Balembois, Francois; Georges, Patrick; Ahmed, Marwan Abdou

    2013-05-01

    Yb:YAG single crystal fiber (SCF) amplifiers have recently drawn much attention in the field of amplification of ultra-short pulses. In this paper, we report on the use of SCF amplifiers for the amplification of cylindrically polarized laser beams, as such beams offer promising properties for numerous applications. While the amplification of cylindrically polarized beams is challenging with other amplifier designs due to thermally induced depolarization, we demonstrate the amplification of 32 W cylindrically polarized beams to an output power of 100 W. A measured degree of radial polarization after the SCF of about 95% indicates an excellent conservation of polarization. PMID:23669994

  7. Improved purification and PCR amplification of DNA from environmental samples.

    Arbeli, Ziv; Fuentes, Cilia L

    2007-07-01

    Purification and PCR amplification procedures for DNA extracted from environmental samples (soil, compost, and river sediment) were improved by introducing three modifications: precipitation of DNA with 5% polyethylene glycol 8000 (PEG) and 0.6 M NaCl; filtration with a Sepharose 4B-polyvinylpolypyrrolidone (PVPP) spin column; and addition of skim milk (0.3% w/v) to the PCR reaction solution. Humic substances' concentration after precipitation with 5% PEG was 2.57-, 5.3-, and 78.9-fold lower than precipitation with 7.5% PEG, 10% PEG, and isopropanol, respectively. After PEG precipitation, Sepharose, PVPP and the combined (Sepharose-PVPP) column removed 92.3%, 89.5%, and 98%, respectively, of the remaining humic materials. Each of the above-mentioned modifications improved PCR amplification of the 16S rRNA gene. DNA extracted by the proposed protocol is cleaner than DNA extracted by a commercial kit. Nevertheless, the improvement of DNA purification did not improve the detection limit of atrazine degradation gene atzA. PMID:17521406

  8. Social amplification of risk in the Internet environment.

    Chung, Ik Jae

    2011-12-01

    This article analyzes the dynamic process of risk amplification in the Internet environment with special emphasis on public concern for environmental risks from a high-speed railway tunnel construction project in South Korea. Environmental organizations and activists serving as social stations collected information about the project and its ecological impact, and communicated this with the general public, social groups, and institutions. The Internet provides social stations and the public with an efficient means for interactive communication and an open space for active information sharing and public participation. For example, while the website of an organization such as an environmental activist group can initially trigger local interest, the Internet allows this information to be disseminated to a much wider audience in a manner unavailable to the traditional media. Interaction among social stations demonstrates an amplifying process of public attention to the risk. Analyses of the volume of readers' comments to online newspaper articles and public opinions posted on message board of public and nonprofit organizations show the ripple effects of the amplification process as measured along temporal, geographical, and sectoral dimensions. Public attention is also influenced by the symbolic connotations of risk information. Interpretations of risk in religious, political, or legal terms intensify public concern for the environmental risk. PMID:21539590

  9. Radiopolymerization of β(-)pinene: A case of chiral amplification

    β(-)Pinene was treated with γ radiation at three dose levels: 150, 300 and 600 kGy. The expected effect of radiation at these high doses was the partial racemization of the substrate as already observed in the case of other terpene monomers. Unexpectedly β(-)pinene underwent a radiopolymerization reaction into a solid resin and into a dimer. The structure of the products was studied by FT-IR spectroscopy also in comparison to a reference β(-)pinene resin prepared by cationic polymerization. A highly ordered structure was found in the case of the radiopolymer in comparison to the resin from cationic polymerization. Polarimetric measurements have shown astonishing enhancement in the optical activity of the radiopolymer and radiodimer in comparison to the starting optical activity of the β(-)pinene monomer. The results have been discussed in terms of amplification of chirality caused by γ radiation and the implications of this fact on the mechanism of chiral amplification on prebiotic molecules

  10. Development and Application of Surface Plasmon Polaritons on Optical Amplification

    Tong Zhang

    2014-01-01

    Full Text Available Propagation of surface plasmon polaritons (SPPs along the interface between a metal and a dielectric has attracted significant attention due to its unique optical properties, which has inspired a plethora of fascinating applications in photonics and optoelectronics. However, SPPs suffer from large attenuation because of the ohmic losses in the metal layer. It has become the main bottom-neck problem for the development of high performance plasmonic devices. This limitation can be overcome by providing the material adjacent to the metal with optical gain. In this paper, a review of gain compensation to SPPs is presented. We focus on the spontaneous radiation amplification and simulated radiation amplification. The ohmic loss of metal was greatly improved by introducing optical gain. Then we introduce several gain mediums of dye doped, quantum dots, erbium ion, and semiconductor to compensate optical loss of SPPs. Using gain medium mentioned above can compensate losses and achieve many potential applications, for example, laser, amplifier, and LRSPP discussed.

  11. Radiopolymerization of {beta}(-)pinene: A case of chiral amplification

    Cataldo, Franco [Soc. Lupi Chemical Research, Via Casilina 1626/A, 00133 Rome (Italy)]. E-mail: cdcata@flashnet.it; Keheyan, Yeghis [CNR, Istituto per lo studio dei Materiali Nanostrutturati, Department of Chemistry, University ' La Sapienza' , P.le Aldo Moro 1, Rome (Italy)

    2006-05-15

    {beta}(-)Pinene was treated with {gamma} radiation at three dose levels: 150, 300 and 600 kGy. The expected effect of radiation at these high doses was the partial racemization of the substrate as already observed in the case of other terpene monomers. Unexpectedly {beta}(-)pinene underwent a radiopolymerization reaction into a solid resin and into a dimer. The structure of the products was studied by FT-IR spectroscopy also in comparison to a reference {beta}(-)pinene resin prepared by cationic polymerization. A highly ordered structure was found in the case of the radiopolymer in comparison to the resin from cationic polymerization. Polarimetric measurements have shown astonishing enhancement in the optical activity of the radiopolymer and radiodimer in comparison to the starting optical activity of the {beta}(-)pinene monomer. The results have been discussed in terms of amplification of chirality caused by {gamma} radiation and the implications of this fact on the mechanism of chiral amplification on prebiotic molecules.

  12. The national protocol for paediatric amplification in Australia.

    King, Alison M

    2010-01-01

    This document describes the national protocol for the selection, fitting, verification, and evaluation of amplification for hearing-impaired children in Australia. It also outlines the approach to management of children who have auditory neuropathy spectrum disorder, children who have mild and unilateral hearing loss, and children who require cochlear implantation. Audiological management of all Australian citizens and permanent residents under twenty-one years of age who have a hearing loss is carried out by the national hearing service provider, Australian Hearing. It is funded by the Australian Government's Hearing Services Program to provide fully subsidised hearing aids, frequency modulated (FM) systems and ongoing audiological management. All hearing aids for children are multi-channel devices that offer wide dynamic range compression, directional microphone technology and feedback cancellation as well as access to multiple listening programs, telecoil and audio-input facilities. Hearing aid gain, frequency response and maximum power output are derived according to the NAL-NL1 prescription procedure and verified using real ear measurements. Amplification benefit is evaluated using a range of speech perception tests and functional assessment questionnaires. PMID:19919326

  13. RESONANT AMPLIFICATION OF TURBULENCE BY THE BLAST WAVES

    We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of a blast-wave-turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification coefficients of up to 20, with increasing amplification the larger the length. There also exist resonant harmonics for which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the range of macro- (l ∼ 1), meso- (l ∼ 20), and microscopic (l > 200) scales. Since the resonance width is narrow (typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales (l ≈ 15) of ripples in the shell's surface of SNR 0509-67.5

  14. Advanced unrepeatered systems using novel Raman amplification schemes

    Chang, Do-il; Pelouch, Wayne; Burtsev, Sergey; Perrier, Philippe; Fevrier, Herve

    2015-01-01

    Unrepeatered transmission systems provide a cost-effective solution to transmit high capacity channels in submarine networks to communicate between coastal population centers or in terrestrial networks to connect remote areas where service access is difficult. The main goal of unrepeatered systems has traditionally been to achieve the longest reach, however, increasing traffic demands now require unrepeatered systems to support both longer reach and higher transport capacity. As a result, transmission rate of unrepeatered systems has quickly moved from 10 Gb/s to 40 Gb/s or 100 Gb/s. This paper reviews the key basic technologies, with a specific focus on Raman amplification, required for long-reach, high-capacity unrepeatered optical transmission systems. We will discuss novel Raman amplification schemes, enhanced remote optically pumped amplifiers (ROPA), ultra-low loss / large effective area fibers, and coherent transmission with advanced modulation format and high FEC coding gain. We will also report recent experimental demonstrations that show how these technologies have been combined to achieve industry's leading capacity and reach transmission.

  15. Generalized modulational instability in multimode fibers: wideband multimode parametric amplification

    Guasoni, M

    2015-01-01

    In this paper intermodal modulational instability (IM-MI) is analyzed in a multimode fiber where several spatial and polarization modes propagate. The coupled nonlinear Schr\\"{o}dinger equations describing the modal evolution in the fiber are linearized and reduced to an eigenvalue problem. As a result, the amplification of each mode can be described by means of the eigenvalues and eigenvectors of a matrix that stores the information about the dispersion properties of the modes and the modal power distribution of the pump. Some useful analytical formulas are also provided that estimate the modal amplification as function of the system parameters. Finally, the impact of third-order dispersion and of absorbtion losses is evaluated, which reveals some surprising phenomena into the IM-MI dynamics. These outcomes generalize previous studies on bimodal-MI, related to the interaction between 2 spatial or polarization modes, to the most general case of $N>2$ interacting modes. Moreover, they pave the way towards the ...

  16. Identification of human chromosome 9 specific genes using exon amplification.

    Church, D M; Banks, L T; Rogers, A C; Graw, S L; Housman, D E; Gusella, J F; Buckler, A J

    1993-11-01

    We have recently developed a method, exon amplification, that is designed for isolation of exon sequences from genomic DNA. To assess the efficacy of this method we have analyzed cosmid genomic clones derived from human chromosome 9, and have cloned several products from this analysis. Approximately 63% of cosmids produced at least one product derived from functioning splice sites within the target genomic fragment, and in many cases multiple products were isolated. In addition, an easily identifiable class of false positives was produced from 56% of cosmids analyzed; these are readily eliminated from subsequent study. Sequence analysis and database searches revealed that the majority (87%) of the putative exon clones were unique, the remainder being derived from repetitive sequences. Analysis of sequence conservation by Southern blotting in addition to cDNA screening experiments suggested that most, if not all, of these unique sequences represent true exons. The results of these studies indicate that exon amplification is a rapid and reliable approach for isolation of exon sequences from mammalian genomic DNA. PMID:7506603

  17. Chip-based sequencing nucleic acids

    Beer, Neil Reginald

    2014-08-26

    A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.

  18. GMO detection using a bioluminescent real time reporter (BART of loop mediated isothermal amplification (LAMP suitable for field use

    Kiddle Guy

    2012-04-01

    Full Text Available Abstract Background There is an increasing need for quantitative technologies suitable for molecular detection in a variety of settings for applications including food traceability and monitoring of genetically modified (GM crops and their products through the food processing chain. Conventional molecular diagnostics utilising real-time polymerase chain reaction (RT-PCR and fluorescence-based determination of amplification require temperature cycling and relatively complex optics. In contrast, isothermal amplification coupled to a bioluminescent output produced in real-time (BART occurs at a constant temperature and only requires a simple light detection and integration device. Results Loop mediated isothermal amplification (LAMP shows robustness to sample-derived inhibitors. Here we show the applicability of coupled LAMP and BART reactions (LAMP-BART for determination of genetically modified (GM maize target DNA at low levels of contamination (0.1-5.0% GM using certified reference material, and compare this to RT-PCR. Results show that conventional DNA extraction methods developed for PCR may not be optimal for LAMP-BART quantification. Additionally, we demonstrate that LAMP is more tolerant to plant sample-derived inhibitors, and show this can be exploited to develop rapid extraction techniques suitable for simple field-based qualitative tests for GM status determination. We also assess the effect of total DNA assay load on LAMP-BART quantitation. Conclusions LAMP-BART is an effective and sensitive technique for GM detection with significant potential for quantification even at low levels of contamination and in samples derived from crops such as maize with a large genome size. The resilience of LAMP-BART to acidic polysaccharides makes it well suited to rapid sample preparation techniques and hence to both high throughput laboratory settings and to portable GM detection applications. The impact of the plant sample matrix and genome loading

  19. Trigeminal ganglion neurons of mice show intracellular chloride accumulation and chloride-dependent amplification of capsaicin-induced responses.

    Nicole Schöbel

    Full Text Available Intracellular Cl(- concentrations ([Cl(-](i of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG and olfactory sensory neurons (OSNs, Cl(- is accumulated by the Na(+-K(+-2Cl(- cotransporter 1 (NKCC1, resulting in a [Cl(-](i above electrochemical equilibrium and a depolarizing Cl(- efflux upon Cl(- channel opening. Here, we investigate the [Cl(-](i and function of Cl(- in primary sensory neurons of trigeminal ganglia (TG of wild type (WT and NKCC1(-/- mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl(-](i of WT TG neurons indicated active NKCC1-dependent Cl(- accumulation. Gamma-aminobutyric acid (GABA(A receptor activation induced a reduction of [Cl(-](i as well as Ca(2+ transients in a corresponding fraction of TG neurons. Ca(2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca(2+ channels (VGCCs. Ca(2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1 were diminished in NKCC1(-/- TG neurons, but elevated under conditions of a lowered [Cl(-](o suggesting a Cl(--dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS, we found expression of different Ca(2+-activated Cl(- channels (CaCCs in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca(2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1(-/- mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca(2+-activated Cl(--dependent signal amplification mechanism in TG neurons that requires intracellular Cl(- accumulation by NKCC1 and the activation of CaCCs.

  20. Clinical characteristics and outcome of patients with neuroblastoma presenting genomic amplification of loci other than MYCN.

    Anne Guimier

    Full Text Available BACKGROUND: Somatically acquired genomic alterations with MYCN amplification (MNA are key features of neuroblastoma (NB, the most common extra-cranial malignant tumour of childhood. Little is known about the frequency, clinical characteristics and outcome of NBs harbouring genomic amplification(s distinct from MYCN. METHODS: Genomic profiles of 1100 NBs from French centres studied by array-CGH were re-examined specifically to identify regional amplifications. Patients were included if amplifications distinct from the MYCN locus were seen. A subset of NBs treated at Institut Curie and harbouring MNA as determined by array-CGH without other amplification was also studied. Clinical and histology data were retrospectively collected. RESULTS: In total, 56 patients were included and categorised into 3 groups. Group 1 (n = 8 presented regional amplification(s without MNA. Locus 12q13-14 was a recurrent amplified region (4/8 cases. This group was heterogeneous in terms of INSS stages, primary localisations and histology, with atypical clinical features. Group 2 (n = 26 had MNA as well as other regional amplifications. These patients shared clinical features of those of a group of NBs MYCN amplified (Group 3, n = 22. Overall survival for group 1 was better than that of groups 2 and 3 (5 year OS: 87.5%±11% vs 34.9%±7%, log-rank p<0.05. CONCLUSION: NBs harbouring regional amplification(s without MNA are rare and seem to show atypical features in clinical presentation and genomic profile. Further high resolution genetic explorations are justified in this heterogeneous group, especially when considering these alterations as predictive markers for targeted therapy.

  1. System for portable nucleic acid testing in low resource settings

    Lu, Hsiang-Wei; Roskos, Kristina; Hickerson, Anna I.; Carey, Thomas; Niemz, Angelika

    2013-03-01

    Our overall goal is to enable timely diagnosis of infectious diseases through nucleic acid testing at the point-of-care and in low resource settings, via a compact system that integrates nucleic acid sample preparation, isothermal DNA amplification, and nucleic acid lateral flow (NALF) detection. We herein present an interim milestone, the design of the amplification and detection subsystem, and the characterization of thermal and fluidic control and assay execution within this system. Using an earlier prototype of the amplification and detection unit, comprised of a disposable cartridge containing flexible pouches, passive valves, and electrolysis-driven pumps, in conjunction with a small heater, we have demonstrated successful execution of an established and clinically validated isothermal loop-mediated amplification (LAMP) reaction targeting Mycobacterium tuberculosis (M.tb) DNA, coupled to NALF detection. The refined design presented herein incorporates miniaturized and integrated electrolytic pumps, novel passive valves, overall design changes to facilitate integration with an upstream sample preparation unit, and a refined instrument design that automates pumping, heating, and timing. Nucleic acid amplification occurs in a two-layer pouch that facilitates fluid handling and appropriate thermal control. The disposable cartridge is manufactured using low-cost and scalable techniques and forms a closed system to prevent workplace contamination by amplicons. In a parallel effort, we are developing a sample preparation unit based on similar design principles, which performs mechanical lysis of mycobacteria and DNA extraction from liquefied and disinfected sputum. Our next step is to combine sample preparation, amplification, and detection in a final integrated cartridge and device, to enable fully automated sample-in to answer-out diagnosis of active tuberculosis in primary care facilities of low-resource and high-burden countries.

  2. Utility of a next-generation sequencing-based gene panel investigation in German patients with genetically unclassified limb-girdle muscular dystrophy.

    Kuhn, Marius; Gläser, Dieter; Joshi, Pushpa Raj; Zierz, Stephan; Wenninger, Stephan; Schoser, Benedikt; Deschauer, Marcus

    2016-04-01

    Limb-girdle muscular dystrophies (LGMDs) are genetically heterogeneous and the diagnostic work-up including conventional genetic testing using Sanger sequencing remains complex and often unsatisfactory. We performed targeted sequencing of 23 LGMD-related genes and 15 genes in which alterations result in a similar phenotype in 58 patients with genetically unclassified LGMDs. A genetic diagnosis was possible in 19 of 58 patients (33 %). LGMD2A was the most common form, followed by LGMD2L and LGMD2I. In two patients, pathogenic mutations were identified in genes that are not classified as LGMD genes (glycogen branching enzyme and valosin-containing protein). Thus, a focused next-generation sequencing-based gene panel is a rather satisfactory tool for the diagnosis in unclassified LGMDs. PMID:26886200

  3. Social Amplification of Risk and Crisis Communication Planing - Case Study

    Stanciugelu, I.; Frunzaru, V.; Armas, I.; Duntzer, A.; Stan, S.

    2012-04-01

    Risk management has become a dominant concern of public policy and the ability of government to anticipate the strength and focus of public concerns remains weak. The Social Amplification of Risk Framework (SARF) was designed to assist in this endeavor. It aims to facilitate a greater understanding of the social processes that can mediate between a hazard event and its consequences. SARF identifies categories of mediator/moderator that intervene between risk event and its consequences and suggests a causal and temporal sequence in which they act. Information flows first through various sources and then channels, triggering social stations of amplification, initiating individual station of amplification and precipitating behavioral reactions. The International Risk Governance Council Framework is an interdisciplinary and multilevel approach, linking risk management and risk assessment sphere through communication. This study aims to identify categories of mediator/moderator that intervene between the risk event and its consequences, using a survey on earthquake risk perception addressing population of Bucharest city. Romania has a unique seismic profile in Europe, being the country with the biggest surface affected in case of a serious earthquake. Considering the development of the urban area that took place in the last two decades and the growing number of inhabitants, Bucharest is the largest city in Romania and is exposed to extensive damages in case of an earthquake. The sociological survey has been conducted in December 2009 on a representative sample of the Bucharest population aged 18 and over (N=1376) using one stage sampling design. We used a stratified sample method shearing the investigated populations in six layers according to the six sectors of Bucharest. The respondents were selected using random digit dialling method (RDD) and the questionnaires were administered by research staff with computer assisted telephone interviewing method (CATI). The

  4. Silicon detectors with internal amplification based on functionally integrated structures

    Full text: A new coordinate-sensitive semiconductor silicon detector capable both to determine particle coordinates and detect single-charged relativistic particles and x-rays is considered. It is proposed to improve the functional integration of VLSI circuit element base and achieve a high internal amplification directly inside the detector chip. To resolve these problems, we use functionally integrated active pixels made on the basis of a hybrid of p-i-n diode and bipolar transistor manufactured with using a specific technology. Bipolar coordinate-sensitive detectors could provide the information access time less than 5 ns, coordinate accuracy better than 5050 mm2, sensitivity higher than that of p-i-n diodes by a factor of 100 or more. Single pixels are joined into a 1010 mm2 matrix. n-Si wafers with a specific resistance r ≥ 5 kOhmcm and carrier lifetime t = 2500 ms have been used as a basis. The ion-implantation and following annealing are used to create active areas. To make the shallow-junction emitter, arsenic ions were implanted into polysilicon (Si) with a (1-2)1016 cm-2 dose and then were diffused in substrate; the p--base area was formed with the boron implantation; p+ region was created with inserting boron ions into the substrate. For gettering, phosphorus ions were implanted into the wafer back side. The detectors manufactured are characterized by dark currents of few nano amperes and breakdown voltage of ∼ 250 V. Features of detectors have been studied with using particle sources (238Pu, 239Pu, and 226Ra). All the structures have demonstrated an internal amplification. For example, some structure shows a 0.57-V spectral maximum produced by 239Pu (5.105 MeV) at 20-V power supply voltage, i.e. an amplification factor of 250 is achieved; half-amplitude maximum width is 16%. Output signal amplitudes and resolution depend on magnitude of applied external voltage. (author)

  5. An assessment on DNA microarray and sequence-based methods for the characterization of methicillin-susceptible Staphylococcus aureus from Nigeria

    Adebayo Osagie Shittu

    2015-10-01

    Full Text Available Staphylococcus aureus is an important human pathogen causing nosocomial and community-acquired infections worldwide. In the characterization of this opportunistic pathogen, DNA microarray hybridization technique is used as an alternative to sequence based genotyping to obtain a comprehensive assessment on the virulence, resistance determinants, and population structure. The objective of this study was to characterize a defined collection of S. aureus isolates from Nigeria using the microarray technique, and to assess the extent that it correlates with sequence-based genotyping methods. The clonal diversity and genomic content of 52 methicillin-susceptible Staphylococcus aureus (MSSA were investigated by spa typing, MLST and DNA microarray hybridization. More than half (55.8% of these isolates were associated with clonal complexes typically associated with methicillin-resistant S. aureus (MRSA clones i.e. CC1, CC5, CC8, CC30 and CC45. Certain genes linked with virulence (hlgA and clfA and adherence (ebpS, fnbA, sspA, sspB and sspP were detected in all isolates. A number of genes or gene clusters were associated with distinct clonal types. The enterotoxin gene cluster (egc was linked with CC5, CC25, CC30, CC45 and CC121, enterotoxin H gene (seh with CC1, exfoliative toxin D gene (etd with CC25 and CC80, and the epidermal cell differentiation inhibitor B gene (edinB with CC25, CC80 and CC152. The excellent agreement between data from DNA microarray and MLST in the delineation of Nigerian MSSA isolates indicates that the microarray technique is a useful tool to provide information on antibiotic resistance, clonal diversity and virulence factors associated with infection and disease.

  6. Sequence based polymorphic (SBP marker technology for targeted genomic regions: its application in generating a molecular map of the Arabidopsis thaliana genome

    Sahu Binod B

    2012-01-01

    Full Text Available Abstract Background Molecular markers facilitate both genotype identification, essential for modern animal and plant breeding, and the isolation of genes based on their map positions. Advancements in sequencing technology have made possible the identification of single nucleotide polymorphisms (SNPs for any genomic regions. Here a sequence based polymorphic (SBP marker technology for generating molecular markers for targeted genomic regions in Arabidopsis is described. Results A ~3X genome coverage sequence of the Arabidopsis thaliana ecotype, Niederzenz (Nd-0 was obtained by applying Illumina's sequencing by synthesis (Solexa technology. Comparison of the Nd-0 genome sequence with the assembled Columbia-0 (Col-0 genome sequence identified putative single nucleotide polymorphisms (SNPs throughout the entire genome. Multiple 75 base pair Nd-0 sequence reads containing SNPs and originating from individual genomic DNA molecules were the basis for developing co-dominant SBP markers. SNPs containing Col-0 sequences, supported by transcript sequences or sequences from multiple BAC clones, were compared to the respective Nd-0 sequences to identify possible restriction endonuclease enzyme site variations. Small amplicons, PCR amplified from both ecotypes, were digested with suitable restriction enzymes and resolved on a gel to reveal the sequence based polymorphisms. By applying this technology, 21 SBP markers for the marker poor regions of the Arabidopsis map representing polymorphisms between Col-0 and Nd-0 ecotypes were generated. Conclusions The SBP marker technology described here allowed the development of molecular markers for targeted genomic regions of Arabidopsis. It should facilitate isolation of co-dominant molecular markers for targeted genomic regions of any animal or plant species, whose genomic sequences have been assembled. This technology will particularly facilitate the development of high density molecular marker maps, essential for

  7. Multicenter evaluation of the Quidel Lyra Direct C. difficile nucleic acid amplification assay.

    Beck, Eric T; Buchan, Blake W; Riebe, Katherine M; Alkins, Brenda R; Pancholi, Preeti; Granato, Paul A; Ledeboer, Nathan A

    2014-06-01

    Clostridium difficile is a Gram-positive bacterium commonly found in health care and long-term-care facilities and is the most common cause of antibiotic-associated diarrhea. Rapid detection of this bacterium can assist physicians in implementing contact precautions and appropriate antibiotic therapy in a timely manner. The purpose of this study was to compare the clinical performance of the Quidel Lyra Direct C. difficile assay (Lyra assay) (Quidel, San Diego, CA) to that of a direct cell culture cytotoxicity neutralization assay (CCNA) and enhanced toxigenic culture. This study was performed at three geographically diverse laboratories within the United States using residual stool specimens submitted for routine C. difficile testing. Residual samples were tested using the Lyra assay on three real-time PCR platforms, and results were compared to those for direct CCNA and enhanced toxigenic culture. The test results for all platforms were consistent across all three test sites. The sensitivity and specificity of the Lyra assay on the SmartCycler II, ABI 7500 Fast DX, and ABI QuantStudio DX instruments compared to CCNA were 90.0% and 93.3%, 95.0% and 94.2%, and 93.8% and 95.0%, respectively. Compared to enhanced toxigenic culture, the sensitivity and specificity of the Lyra assay on the SmartCycler II, ABI 7500, and QuantStudio instruments were 82.1% and 96.9%, 89.3% and 98.8%, and 85.7% and 99.0%, respectively. Overall, the Lyra assay is easy to use and versatile and compares well to C. difficile culture methods. PMID:24671790

  8. External Quality Assessment Program for Chlamydia trachomatis Diagnostic Testing by Nucleic Acid Amplification Assays

    Land, Sally; Tabrizi, Sepehr; Gust, Anthony; Johnson, Elizabeth; Garland, Susan; Dax, Elizabeth M.

    2002-01-01

    We report the results from 57 Australian diagnostic laboratories testing two external quality assessment panels using either the Roche Amplicor Chlamydia trachomatis test (R-PCR) or the Abbott LCx Chlamydia trachomatis assay (A-ligase chain reaction [LCR]). Panel samples were either normal urine spiked with Chlamydia trachomatis antigen or clinical urine specimens. There was no significant difference between laboratories or between assays in detection of C. trachomatis-positive clinical sampl...

  9. Self-Amplification of Solid Friction in Interleaved Assemblies

    Alarcón, Héctor; Salez, Thomas; Poulard, Christophe; Bloch, Jean-Francis; Raphaël, Élie; Dalnoki-Veress, Kari; Restagno, Frédéric

    2016-01-01

    It is nearly impossible to separate two interleaved phone books when held by their spines. A full understanding of this astonishing demonstration of solid friction in complex assemblies remains elusive. In this Letter, we report on experiments with controlled booklets and show that the force required increases sharply with the number of sheets. A model captures the effect of the number of sheets, their thickness, and the overlapping distance. Furthermore, the data collapse onto a self-similar master curve with one dimensionless amplification parameter. In addition to solving a long-standing familiar enigma, this model system provides a framework with which one can accurately measure friction forces and coefficients at low loads, and that has relevance to complex assemblies from the macro- to the nanoscale.

  10. "Social Laser": Action Amplification by Stimulated Emission of Social Energy

    Khrennikov, Andrei

    2015-01-01

    The problem of the "explanation" of recent social explosions, especially in the Middle East, but also in Southern Europe and the USA, have been debated actively in the social and political literature. We can mention the contributions of P. Mason, F. Fukuyama, E. Schmidt and J. Cohen, I. Krastev to this debate. We point out that the diversity of opinions and conclusions is really amazing. At the moment, there is no consistent and commonly acceptable theory of these phenomena. We present a model of social explosions based on a novel approach for the description of social processes, namely, the quantum-like approach. Here quantum theory is treated simply as an operational formalism - without any direct relation to physics. We explore the quantum-like laser model to describe the possibility of Action Amplification by Stimulated Emission of Social Energy (ASE).

  11. Two-qubit parametric amplifier: large amplification of weak signals

    Savel'ev, S; Rakhmanov, A L; Omelyanchouk, A N; Washington, Z; Nori, Franco

    2012-01-01

    Using numerical simulations, we show that two coupled qubits can amplify a weak signal about hundredfold. This can be achieved if the two qubits are biased simultaneously by this weak signal and a strong pump signal, both of which having frequencies close to the inter-level transitions in the system. The weak signal strongly affects the spectrum generated by the strong pumping drive by producing and controlling mixed harmonics with amplitudes of the order of the main harmonic of the strong drive. We show that the amplification is robust with respect to noise, with an intensity of the order of the weak signal. When deviating from the optimal regime (corresponding to strong qubit coupling and a weak-signal frequency equal to the inter-level transition frequency) the proposed amplifier becomes less efficient, but it can still considerably enhance a weak signal (by several tens). We therefore propose to use coupled qubits as a combined parametric amplifier and frequency shifter.

  12. Cascaded Parametric Amplification for Highly Efficient Terahertz Generation

    Ravi, Koustuban; Cirmi, Giovanni; Reichert, Fabian; Schimpf, Damian N; Muecke, Oliver D; Kaertner, Franz X

    2016-01-01

    A highly efficient, practical approach to high-energy terahertz (THz) generation based on spectrally cascaded optical parametric amplification (THz-COPA) is introduced. The THz wave initially generated by difference frequency generation between a strong narrowband optical pump and optical seed (0.1-10% of pump energy) kick-starts a repeated or cascaded energy down-conversion of pump photons. This helps to greatly surpass the quantum-defect efficiency and results in exponential growth of THz energy over crystal length. In cryogenically cooled periodically poled lithium niobate, energy conversion efficiencies >8% for 100 ps pulses are predicted. The calculations account for cascading effects, absorption, dispersion and laser-induced damage. Due to the coupled nonlinear interaction of multiple triplets of waves, THz-COPA exhibits physics distinct from conventional three-wave mixing parametric amplifiers. This in turn governs optimal phase-matching conditions, evolution of optical spectra as well as limitations o...

  13. Vortical field amplification and particle acceleration at rippled shocks

    Fraschetti, F

    2013-01-01

    Supernova Remnants (SNRs) shocks are believed to accelerate charged particles and to generate strong turbulence in the post-shock flow. From high-energy observations in the past decade, a magnetic field at SNR shocks largely exceeding the shock-compressed interstellar field has been inferred. We outline how such a field amplification results from a small-scale dynamo process downstream of the shock, providing an explicit expression for the turbulence back-reaction to the fluid whirling. The spatial scale of the $X-$ray rims and the short time-variability can be obtained by using reasonable parameters for the interstellar turbulence. We show that such a vortical field saturation is faster than the acceleration time of the synchrotron emitting energetic electrons.

  14. Generation and amplification of nanosecond pulses by iodine lasers

    Zuev, V.S.; Katulin, V.A.; Nosach, V.Y.; Petrov, A.L.

    1982-12-01

    Results are reported of experimental investigations of high-power photodissociation iodine laser pumped by lamps and by radiation from high-current electric discharges. The basic parameters of the working medium, the parameters of both lamp-pumped and discharge-pumped lasers, and methods of shaping of a short pulse with diffraction directivity of the radiation are investigated. The possibility of effective amplification of a short pulse by an iodine amplifier pumped with an open high-current discharge is demonstrated. An iodine laser generating a pulse of duration 1 nsec, divergence 10/sup -4/ rad, and energy 100 J at a contrast 10/sup 8/ and 300 J at a contrast 10/sup 2/-10/sup 3/ is described.

  15. SERS Amplification from Self-Organized Arrays of Plasmonic Nanocrescents.

    Giordano, Maria Caterina; Foti, Antonino; Messina, Elena; Gucciardi, Pietro Giuseppe; Comoretto, Davide; Buatier de Mongeot, Francesco

    2016-03-01

    We report on the surface-enhanced Raman scattering (SERS) efficiency of self-organized arrays of Au nanocrescents confined on monolayers of polystyrene nanospheres. A dichroic SERS emission in the visible spectrum is observed due to the selective excitation of a localized surface plasmon (LSP) resonance along the "short axis" of the Au nanocrescents. Under these conditions SERS signal amplifications in the range of 10(3) have been observed with respect to a flat reference Au film. The far field and near field plasmonic response of Au nanocrescent arrays have been investigated as a function of the metal dose deposited onto the polymeric spheres. In this way, we show the possibility of simply tailoring the SERS emission by engineering the morphology of the plasmonic nanocrescents. We highlight the SERS activity of chains of satellite nanoclusters that decorate the border of each connected crescent and sustain isotropic high energy LSP resonances in the visible spectrum. PMID:26824254

  16. Diffusive shock acceleration with magnetic field amplification and Alfvenic drift

    Kang, Hyesung

    2012-01-01

    We explore how wave-particle interactions affect diffusive shock acceleration (DSA) at astrophysical shocks by performing time-dependent kinetic simulations, in which phenomenological models for magnetic field amplification (MFA), Alfvenic drift, thermal leakage injection, Bohm-like diffusion, and a free escape boundary are implemented. If the injection fraction of cosmic-ray (CR) particles is greater than 2x10^{-4}, for the shock parameters relevant for young supernova remnants, DSA is efficient enough to develop a significant shock precursor due to CR feedback, and magnetic field can be amplified up to a factor of 20 via CR streaming instability in the upstream region. If scattering centers drift with Alfven speed in the amplified magnetic field, the CR energy spectrum can be steepened significantly and the acceleration efficiency is reduced. Nonlinear DSA with self-consistent MFA and Alfvenic drift predicts that the postshock CR pressure saturates roughly at 10 % of the shock ram pressure for strong shocks...

  17. Information Masking and Amplification: The Source Coding Setting

    Courtade, Thomas

    2012-01-01

    The complementary problems of masking and amplifying channel state information in the Gel'fand-Pinsker channel have recently been solved by Merhav and Shamai, and Kim et al., respectively. In this paper, we study a related source coding problem. Specifically, we consider the two-encoder source coding setting where one source is to be amplified, while the other source is to be masked. In general, there is a tension between these two objectives which is characterized by the amplification-masking tradeoff. In this paper, we give a single-letter description of this tradeoff. We apply this result, together with a recent theorem by Courtade and Weissman on multiterminal source coding, to solve a fundamental entropy characterization problem.

  18. Microfluidic bead-based multienzyme-nanoparticle amplification for detection of circulating tumor cells in the blood using quantum dots labels.

    Zhang, He; Fu, Xin; Hu, Jiayi; Zhu, Zhenjun

    2013-05-24

    This study reports the development of a microfluidic bead-based nucleic acid sensor for sensitive detection of circulating tumor cells in blood samples using multienzyme-nanoparticle amplification and quantum dot labels. In this method, the microbeads functionalized with the capture probes and modified electron rich proteins were arrayed within a microfluidic channel as sensing elements, and the gold nanoparticles (AuNPs) functionalized with the horseradish peroxidases (HRP) and DNA probes were used as labels. Hence, two signal amplification approaches are integrated for enhancing the detection sensitivity of circulating tumor cells. First, the large surface area of Au nanoparticle carrier allows several binding events of HRP on each nanosphere. Second, enhanced mass transport capability inherent from microfluidics leads to higher capture efficiency of targets because continuous flow within micro-channel delivers fresh analyte solution to the reaction site which maintains a high concentration gradient differential to enhance mass transport. Based on the dual signal amplification strategy, the developed microfluidic bead-based nucleic acid sensor could discriminate as low as 5 fM (signal-to-noise (S/N)3) of synthesized carcinoembryonic antigen (CEA) gene fragments and showed a 1000-fold increase in detection limit compared to the off-chip test. In addition, using spiked colorectal cancer cell lines (HT29) in the blood as a model system, the detection limit of this chip-based approach was found to be as low as 1 HT29 in 1 mL blood sample. This microfluidic bead-based nucleic acid sensor is a promising platform for disease-related nucleic acid molecules at the lowest level at their earliest incidence. PMID:23663673

  19. The Media and Genetically Modified Foods : Evidence in Support of Social Amplification of Risk

    Frewer, L.J.; Miles, S.; Marsh, R.

    2002-01-01

    Empirical examinations of the "social amplification of risk" framework are rare, partly because of the difficulties in predicting when conditions likely to result in amplification effects will occur. This means that it is difficult to examine changes in risk perception that are contemporaneous with

  20. A robust method for the amplification of RNA in the sense orientation

    Quackenbush John

    2005-03-01

    Full Text Available Abstract Background Small quantities of RNA (1–4 μg total RNA available from biological samples frequently require a single round of amplification prior to analysis, but current amplification strategies have limitations that may restrict their usefulness in downstream genomic applications. The Eberwine amplification method has been extensively validated but is limited by its ability to produce only antisense RNA. Alternatives lack extensive validation and are often confounded by problems with bias or yield attributable to their greater biological and technical complexity. Results To overcome these limitations, we have developed a straightforward and robust protocol for amplification of RNA in the sense orientation. This protocol is based upon Eberwine's method but incorporates elements of more recent amplification techniques while avoiding their complexities. Our technique yields greater than 100-fold amplification, generates long transcript, and produces mRNA that is well suited for use with microarray applications. Microarrays performed with RNA amplified using this protocol demonstrate minimal amplification bias and high reproducibility. Conclusion The protocol we describe here is readily adaptable for the production of sense or antisense, labeled or unlabeled RNA from intact or partially-degraded prokaryotic or eukaryotic total RNA. The method outperforms several commercial RNA amplification kits and can be used in conjunction with a variety of microarray platforms, such as cDNA arrays, oligonucleotide arrays, and Affymetrix GeneChip™ arrays.

  1. Study and comparison on properties of optical parametric chirped pulse amplification of BBO, LBO and KDP

    This article theoretically studies phase matching, parametric bandwidth, gain property of optical parametric chirped pulse amplification of BBO, LBO and KDP. It compares properties of optical parametric chirped pulse amplification between BBO and LBO in detail. The results show that it is better to use BBO in Ti:sapphire system with 800 nm central wavelength and LBO with 1053 nm central wavelength

  2. The gas amplification factor in Kr + iso-pentane filled proportional counters

    Measurements of gas amplification in a proportional counters with Kr/iso-pentane mixture were performed at pressures ranging from 160 to 970 hPa. A new formula for gas amplification in a proportional counters was derived. A good agreement between the formula and experimental data was found over the range of variables studied. 16 refs., 4 figs., 1 tab. (author)

  3. Sound Field Amplification: Effects on Managerial Time in Small Group Speech Therapy

    Meeks, Jeffrey Craig

    2011-01-01

    This study addresses the use of speech amplification devices in speech therapy sessions. The major factor addressed is the impact that speech amplification has upon the managerial time of speech-language pathologists who provide therapy in small group sessions. This study measured the change in the amount of time speech-language pathologists spent…

  4. Plasma HER2 amplification in cell-free DNA during neoadjuvant chemotherapy in breast cancer

    Bechmann, Troels; Andersen, Rikke Fredslund; Pallisgaard, Niels;

    2013-01-01

    Measurement of human epidermal growth factor receptor 2 (HER2) gene amplification in cell-free DNA (cfDNA) is an evolving technique in breast cancer, enabling liquid biopsies and treatment monitoring. The present study investigated the dynamics of plasma HER2 gene copy number and amplification in...... cfDNA during neoadjuvant chemotherapy....

  5. Amplification and Suppression of Round-Off Error in Runge-Kutta Methods

    Prentice, J. S. C.

    2011-01-01

    A simple nonstiff linear initial-value problem is used to demonstrate the amplification of round-off error in the course of using a second-order Runge-Kutta method. This amplification is understood in terms of an appropriate expression for the global error. An implicit method is then used to show how the roundoff error may actually be suppressed.…

  6. Towards the use of protein A-tagged gold nanoparticles for signal amplification of electrochemical immunosensors in virus detection

    Tran, Quang Huy; Mai, Anh Tuan; Thuy Nguyen, Thanh; Chung Pham, Van; Hanh Nguyen, Thi Hong

    2012-06-01

    In this paper we represent a study on the potential use of protein A-tagged gold nanoparticles applied for signal amplification of electrochemical immunosensors. Gold nanoparticles (GNPs) were synthesized by the chemical reduction of tetrachloroauric (III) acid trihydrate using sodium ascorbate, and then tagged with protein A (PrA) via ultracentrifugation. UV-Vis spectroscopy and transmission electron microscopy were used to verify the characteristics of formed GNPs/PrA complex. The analyzed results indicate that GNPs were found spherically, homogeneously, and with an average diameter of about 10 nm. Immunoelectron microscopy was then used to investigate the bioactivity of the GNPs/PrA complex in solution by the effective binding of GNPs to viral particles. Scanning electron and fluorescence microscopies were also used to investigate the distribution and the bioactivity of the GNPs/PrA complex on the surface of the interdigitated sensor. Consequently, this study provided some assumptions of the potential application of protein A-tagged gold nanoparticles for signal amplification of electrochemical immunosensors in virus detection from clinical samples.

  7. Optimization of loop-mediated isothermal amplification (LAMP) assays for the detection of Leishmania DNA in human blood samples.

    Abbasi, Ibrahim; Kirstein, Oscar D; Hailu, Asrat; Warburg, Alon

    2016-10-01

    Visceral leishmaniasis (VL), one of the most important neglected tropical diseases, is caused by Leishmania donovani eukaryotic protozoan parasite of the genus Leishmania, the disease is prevalent mainly in the Indian sub-continent, East Africa and Brazil. VL can be diagnosed by PCR amplifying ITS1 and/or kDNA genes. The current study involved the optimization of Loop-mediated isothermal amplification (LAMP) for the detection of Leishmania DNA in human blood or tissue samples. Three LAMP systems were developed; in two of those the primers were designed based on shared regions of the ITS1 gene among different Leishmania species, while the primers for the third LAMP system were derived from a newly identified repeated region in the Leishmania genome. The LAMP tests were shown to be sufficiently sensitive to detect 0.1pg of DNA from most Leishmania species. The green nucleic acid stain SYTO16, was used here for the first time to allow real-time monitoring of LAMP amplification. The advantage of real time-LAMP using SYTO 16 over end-point LAMP product detection is discussed. The efficacy of the real time-LAMP tests for detecting Leishmania DNA in dried blood samples from volunteers living in endemic areas, was compared with that of qRT-kDNA PCR. PMID:27288706

  8. Robust and efficient direct multiplex amplification method for large-scale DNA detection of blood samples on FTA cards

    Deoxyribonucleic acid (DNA) damage arising from radiations widely occurred along with the development of nuclear weapons and clinically wide application of computed tomography (CT) scan and nuclear medicine. All ionizing radiations (X-rays, γ-rays, alpha particles, etc.) and ultraviolet (UV) radiation lead to the DNA damage. Polymerase chain reaction (PCR) is one of the most wildly used techniques for detecting DNA damage as the amplification stops at the site of the damage. Improvements to enhance the efficiency of PCR are always required and remain a great challenge. Here we establish a multiplex PCR assay system (MPAS) that is served as a robust and efficient method for direct detection of target DNA sequences in genomic DNA. The establishment of the system is performed by adding a combination of PCR enhancers to standard PCR buffer, The performance of MPAS was demonstrated by carrying out the direct PCR amplification on l.2 mm human blood punch using commercially available primer sets which include multiple primer pairs. The optimized PCR system resulted in high quality genotyping results without any inhibitory effect indicated and led to a full-profile success rate of 98.13%. Our studies demonstrate that the MPAS provides an efficient and robust method for obtaining sensitive, reliable and reproducible PCR results from human blood samples. (authors)

  9. Development of a loop-mediated isothermal amplification method to rapidly detect porcine circovirus genotypes 2a and 2b

    Qiu Xiaohuo

    2012-12-01

    Full Text Available Abstract Background Porcine circovirus type 2 (PCV2, is nowadays associated with a number of diseases known as porcine circovirus-associated diseases (PCVAD, especially postweaning multisystemic wasting syndrome (PMWS. The epidemiological investigation of PCV2 infection was usually conducted by PCR, nested PCR, PCR-RFLP, TaqMan-based assay and nucleotide sequencing. However, there is still no rapid, sensitive and practical method for detecting PCV2 genotypes. As a novel nucleic acid amplification method, the loop-mediated isothermal amplification method (LAMP has been used to detect a variety of pathogenic microorganisms. Results Herein, a LAMP method is developed to detect the genotypes of PCV2. The diagnostic sensitivity of LAMP is 1 copy/reaction for differentiating genotypes PCV2a and PCV2b. The reaction process was completed at 65°C for 1 hour in a water bath. Cross-reactivity assay shows that this method is specific for PCV2a and PCV2b and no reactive for PCV2c and other swine-origin viruses (i.e. CSFV, PRRSV, BVDV, TGEV and PEDV, etc. Identity between LAMP and nested PCR was 92.3% on 52 field clinical samples. Conclusions LAMP method provides a rapid, sensitive, reliable way to detect PCV2a and PCV2b, and a better means for the large scale investigation of PCV2a and PCV2b infection.

  10. Towards the use of protein A-tagged gold nanoparticles for signal amplification of electrochemical immunosensors in virus detection

    In this paper we represent a study on the potential use of protein A-tagged gold nanoparticles applied for signal amplification of electrochemical immunosensors. Gold nanoparticles (GNPs) were synthesized by the chemical reduction of tetrachloroauric (III) acid trihydrate using sodium ascorbate, and then tagged with protein A (PrA) via ultracentrifugation. UV-Vis spectroscopy and transmission electron microscopy were used to verify the characteristics of formed GNPs/PrA complex. The analyzed results indicate that GNPs were found spherically, homogeneously, and with an average diameter of about 10 nm. Immunoelectron microscopy was then used to investigate the bioactivity of the GNPs/PrA complex in solution by the effective binding of GNPs to viral particles. Scanning electron and fluorescence microscopies were also used to investigate the distribution and the bioactivity of the GNPs/PrA complex on the surface of the interdigitated sensor. Consequently, this study provided some assumptions of the potential application of protein A-tagged gold nanoparticles for signal amplification of electrochemical immunosensors in virus detection from clinical samples

  11. Topics in free radical-mediated DNA damage: purines and damage amplification - superoxic reactions - bleomycin, the incomplete radiomimetic

    Only a small percentage of the DNA damage set by ionizing radiation in the living cell manifests itself as lethal. It is now increasingly accepted that clustered lesions may constitute the kind of damage that the repair enzymes cannot adequately deal with. The question is raised as to whether damage amplification reactions (radical transfer reactions) may contribute to these clustered lesions, and examples of such damage amplification reactions are given. In one example a purine is involved. With 2'-deoxy adenosine and 2'-deoxy guanosine it is shown that these purine nucleosides undergo unexpected radical reactions. Evidence for the radical transfer from the purine to the sugar moiety is provided by the formation of the 5'-aldehydes. These products have been assayed with 2-thiobarbituric acid (TBA), a reagent commonly applied to the detection of malonaldehyde. TBA-reactive material has also been assayed in γ-irradiated DNA, about one-third of this is free malonaldehyde, while the major part of the TBA-reactive material remains bound to the DNA. In contrast, bleomycin-treated DNA yields practically no free malonaldehyde, and the major TBA-reactive products are identified as the thymine and adenine base propenals. (Author)

  12. Method for decoupling error correction from privacy amplification

    In a standard quantum key distribution (QKD) scheme such as BB84, two procedures, error correction and privacy amplification, are applied to extract a final secure key from a raw key generated from quantum transmission. To simplify the study of protocols, it is commonly assumed that the two procedures can be decoupled from each other. While such a decoupling assumption may be valid for individual attacks, it is actually unproven in the context of ultimate or unconditional security, which is the Holy Grail of quantum cryptography. In particular, this means that the application of standard efficient two-way error-correction protocols like Cascade is not proven to be unconditionally secure. Here, I provide the first proof of such a decoupling principle in the context of unconditional security. The method requires Alice and Bob to share some initial secret string and use it to encrypt their communications in the error correction stage using one-time-pad encryption. Consequently, I prove the unconditional security of the interactive Cascade protocol proposed by Brassard and Salvail for error correction and modified by one-time-pad encryption of the error syndrome, followed by the random matrix protocol for privacy amplification. This is an efficient protocol in terms of both computational power and key generation rate. My proof uses the entanglement purification approach to security proofs of QKD. The proof applies to all adaptive symmetric methods for error correction, which cover all existing methods proposed for BB84. In terms of the net key generation rate, the new method is as efficient as the standard Shor-Preskill proof

  13. Novel applications of locked nucleic acids.

    Veedu, Rakesh N; Vester, Birte; Wengel, Jesper

    2007-01-01

    Locked Nucleic Acid (LNA) nucleoside triphosphates were prepared and their substrate properties for different polymerases during primer extension and PCR experiments investigated. Phusion High Fidelity DNA polymerase and 9( degrees )Nm(TM) DNA polymerase readily accept LNA nucleoside 5'-triphosphates as substrates in primer extension assays. However, in PCR assays, However, in PCR assays, DNA 9oN(m) polymerase proved to be the best for amplification employing the LNA-A nucleotide. PMID:18029570

  14. Swing Amplification of Galactic Spiral Arms: Phase Synchronization of Stellar Epicycle Motion

    Michikoshi, Shugo

    2016-01-01

    We revisit the swing amplification model of galactic spiral arms proposed by Toomre (1981). We describe the derivation of the perturbation equation in detail and investigate the amplification process of stellar spirals. We find that the elementary process of the swing amplification is the phase synchronization of the stellar epicycle motion. Regardless of the initial epicycle phase, the epicycle phases of stars in a spiral are synchronized during the amplification. Based on the phase synchronization, we explain the dependence of the pitch angle of spirals on the epicycle frequency. We find the most amplified spiral mode and calculate its pitch angle, wavelengths, and amplification factor, which are consistent with those obtained by the more rigorous model based on the Boltzmann equation by Julian and Toomre (1966).

  15. Fast implementation of length-adaptive privacy amplification in quantum key distribution

    Post-processing is indispensable in quantum key distribution (QKD), which is aimed at sharing secret keys between two distant parties. It mainly consists of key reconciliation and privacy amplification, which is used for sharing the same keys and for distilling unconditional secret keys. In this paper, we focus on speeding up the privacy amplification process by choosing a simple multiplicative universal class of hash functions. By constructing an optimal multiplication algorithm based on four basic multiplication algorithms, we give a fast software implementation of length-adaptive privacy amplification. “Length-adaptive” indicates that the implementation of privacy amplification automatically adapts to different lengths of input blocks. When the lengths of the input blocks are 1 Mbit and 10 Mbit, the speed of privacy amplification can be as fast as 14.86 Mbps and 10.88 Mbps, respectively. Thus, it is practical for GHz or even higher repetition frequency QKD systems. (general)

  16. Linear-optical qubit amplification with spontaneous parametric down-conversion source

    Ou-Yang, Yang; Feng, Zhao-Feng; Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    A single photon is the basic building block in quantum communication. However, it is sensitive to photon loss. In this paper, we discuss a linear-optical amplification protocol for protecting a single photon with a practical spontaneous parametric down-conversion (SPDC) source. Our protocol revealed that in a practical experimental condition, the amplification using entanglement as an auxiliary is more powerful than the amplification using a single photon as an auxiliary, for the vacuum state in the SPDC source does not disturb the amplification and can be eliminated automatically. Moreover, the weak SPDC source will become another advantage to benefit the amplification, as the double-pair emission error can be decreased. Our protocol may be useful in future quantum cryptography, especially in the device-independent quantum key distribution.

  17. Quantification of Fewer than Ten Copies of a DNA Biomarker without Amplification or Labeling.

    Lee, Yoonhee; Kim, Youngkyu; Lee, Donggyu; Roy, Dhruvajyoti; Park, Joon Won

    2016-06-01

    Polymerase chain reaction (PCR) is a highly sensitive diagnosis technique for detection of nucleic acids and for monitoring residual disease; however, PCR can be unreliable for samples containing very few target molecules. Here, we describe a quantification method, using force-distance (FD) curve based atomic force microscopy (AFM) to detect a target DNA bound to small (1.4-1.9 μm diameter) probe DNA spots, allowing mapping of entire spots to nanometer resolution. Using a synthetic BCR-ABL fusion gene sequence target, we examined samples containing between one and 10 target copies. A high degree of correlation (r(2) = 0.994) between numbers of target copies and detected probe clusters was observed, and the approach could detect the BCR-ABL biomarker when only a single copy was present, although multiple screens were required. Our results clearly demonstrate that FD curve-based imaging is suitable for quantitative analysis of fewer than 10 copies of DNA biomarkers without amplification, modification, or labeling. PMID:27175474

  18. Fingerprinting of cell lines by directed amplification of minisatellite-region DNA (DAMD

    Silva L.M.

    2001-01-01

    Full Text Available The development of in vitro propagation of cells has been an extraordinary technical advance for several biological studies. The correct identification of the cell line used, however, is crucial, as a mistaken identity or the presence of another contaminating cell may lead to invalid and/or erroneous conclusions. We report here the application of a DNA fingerprinting procedure (directed amplification of minisatellite-region DNA, developed by Heath et al. [Nucleic Acids Research (1993 21: 5782-5785], to the characterization of cell lines. Genomic DNA of cells in culture was extracted and amplified by PCR in the presence of VNTR core sequences, and the amplicons were separated by agarose gel electrophoresis. After image capture with a digital camera, the banding profiles obtained were analyzed using a software (AnaGel specially developed for the storage and analysis of electrophoretic fingerprints. The fingerprints are useful for construction of a data base for identification of cell lines by comparison to reference profiles as well as comparison of similar lines from different sources and periodic follow-up of cells in culture.

  19. Development of double loop-mediated isothermal amplification to detect Listeria monocytogenes in food.

    Wu, Rina; Liu, Xiang; Guo, Bangcheng; Chen, Fusheng; Wang, Xiaohong

    2014-12-01

    In this study, a double loop-mediated isothermal amplification (dLAMP) based on two target genes hlyA and iap was developed for the rapid detection of Listeria monocytogenes in food. The results revealed that the detection time and temperature of our dLAMP assay for L. monocytogenes were 15 min and 63 °C respectively, with a sensitivity of 10 fg DNA of L. monocytogenes per tube. While normal LAMP (nLAMP) of hlyA or iap was 100 fg DNA of L. monocytogenes per tube for 45 min and 63 °C. Furthermore, mineral oil and GoldViewII nucleic acid stain were chosen as the basic materials to develop a simple visualized identification of the positive samples. A total of 450 food samples were tested for L. monocytogenes using the dLAMP protocol developed in this study. The results showed that the accuracy of the dLAMP and the "gold standard" culture-biotechnical method were 100 % identical, suggesting that the modified dLAMP assay would provide a potential for detection of L. monocytogenes in food products. PMID:25086581

  20. A novel electrochemical sensor for lead ion based on cascade DNA and quantum dots amplification

    A new enzyme-free and ultrasensitive electrochemical Pb2+ biosensor was developed. By coupling the DNA-assisted cascade of hybridization reaction with the quantum dots (QDs) for signal amplification, a detection limit as low as 6.1 pM can be obtained for Pb2+. In this study, the “8-17” DNAzyme was used for specific recognition of Pb2+. In the presence of Pb2+, the DNAzyme was activated and cleaved the substrate strand. And then, the hybridization between the linker probe and signal probe was initiated, which resulted in formation of a long cascade DNA structure as well as assemble of numerous QDs at last. By the use of magnetic beads, the free signal probe can be easily removed by external magnetic field. After acid lysis, a great amount of redox cations can be released from the QDs and eventually result in significantly amplified electrochemical signals. This method is highly sensitive, selective and simple without the participation of any protein based enzyme (nuclease), thereby holds great potential for real sample analysis

  1. A method for gene amplification and simultaneous deletion in Corynebacterium glutamicum genome without any genetic markers.

    Xu, Jianzhong; Xia, Xiuhua; Zhang, Junlan; Guo, Yanfeng; Qian, He; Zhang, Weiguo

    2014-03-01

    A method for the simultaneous replacement of a given gene by a target gene, leaving no genetic markers, has been developed. The method is based on insertional inactivation and double-crossover homologous recombination. With this method, the lysC(T311I), fbp and ddh genes were inserted into Corynebacterium glutamicum genome, and the pck, alaT and avtA genes were deleted. Mobilizable plasmids with lysC(T311I), fbp and ddh cassettes and two homologous arms on the ends of pck, alaT and avtA were constructed, and then transformed into C. glutamicum. The target-expression cassettes were inserted in the genome via the first homologous recombination, and the genetic markers were removed via the second recombination. The target-transformants were sequentially screened from kanamycin-resistance and sucrose-resistance plates. The enzyme activities of transformants were stably maintained for 30 generations under non-selective culture conditions, suggesting that the integrated cassettes in host were successfully expressed and maintained as stable chromosomal insertions in C. glutamicum. The target-transformants were used to optimize the l-lysine production, showing that the productions were strongly increased because the selected genes were closely linked to l-lysine production. In short, this method can be used to construct amino acid high-producing strains with unmarked gene amplification and simultaneous deletion in genome. PMID:24613758

  2. Amino acids

    Amino acids are organic compounds that combine to form proteins . Amino acids and proteins are the building blocks of life. When proteins are digested or broken down, amino acids are left. The human body uses amino acids ...

  3. Balanced-PCR amplification allows unbiased identification of genomic copy changes in minute cell and tissue samples

    Wang, Gang; Brennan, Cameron; Rook, Martha; Wolfe, Jia Liu; Leo, Christopher; Chin, Lynda; Pan, Hongjie; Liu, Wei-Hua; Price, Brendan; Makrigiorgos, G. Mike

    2004-01-01

    Analysis of genomic DNA derived from cells and fresh or fixed tissues often requires whole genome amplification prior to microarray screening. Technical hurdles to this process are the introduction of amplification bias and/or the inhibitory effects of formalin fixation on DNA amplification. Here we demonstrate a balanced-PCR procedure that allows unbiased amplification of genomic DNA from fresh or modestly degraded paraffin-embedded DNA samples. Following digestion and ligation of a target a...

  4. Procedures for DNA extraction and amplification from quills of crested porcupine (Hystrix cristata

    Domenico Fulgione

    2000-09-01

    Full Text Available Abstract Genetic analysis in mammalian populations are useful for any conservation management. This kind of analysis utilised tissue of specimens studied involving a damages to the populations, only recently many study are indicated alternative procedure based on scales, hairs or feathers. The porcupine (Histrix cristata is an elusive species with localised populations. In this work I propose one procedure of genetic analysis starting by DNA quill in order to help studies about this species, without damage the population examined. The quills are easy to find because the porcupine loss them constantly. Nucleic acids extraction was done utilising synthetic resin (chelex and then ipervariable region of mitochondrial DNA was amplified through PCR with specific primers. The advantages of this selective amplification is the selective increase of interest DNA in spite of possible organic contamination. At this point two different procedure could be utilised to characterise of population: restriction fragment analysis or sequence analysis.

  5. Multiplex Ligation-Dependent Probe Amplification Technique for Copy Number Analysis on Small Amounts of DNA Material

    Sørensen, Karina; Andersen, Paal; Larsen, Lars; Schwartz, Marianne; Schouten, Jan; Nygren, Anders

    2008-01-01

    The multiplex ligation-dependent probe amplification (MLPA) technique is a sensitive technique for relative quantification of up to 50 different nucleic acid sequences in a single reaction, and the technique is routinely used for copy number analysis in various syndromes and diseases. The aim of...... the study was to exploit the potential of MLPA when the DNA material is limited. The DNA concentration required in standard MLPA analysis is not attainable from dried blood spot samples (DBSS) often used in neonatal screening programs. A novel design of MLPA probes has been developed to permit for...... MLPA analysis on small amounts of DNA. Six patients with congenital adrenal hyperplasia (CAH) were used in this study. DNA was extracted from both whole blood and DBSS and subjected to MLPA analysis using normal and modified probes. Results were analyzed using GeneMarker and manual Excel analysis. A...

  6. A sensitive loop-mediated isothermal amplification (LAMP) method for detection of Renibacterium salmoninarum, causative agent of bacterial kidney disease in salmonids.

    Gahlawat, S K; Ellis, A E; Collet, B

    2009-06-01

    Loop-mediated isothermal amplification (LAMP) is a novel technique for nucleic acid amplification with high specificity, sensitivity and rapidity and does not require expensive equipment or reagents. In the present study, we developed and evaluated a LAMP method for the rapid detection of Renibacterium salmoninarum causing the bacterial kidney disease in salmonids. This method was more sensitive than quantitative real-time polymerase chain reaction (qPCR). Using DNA template extracted from cultured R. salmoninarum, the LAMP method gave an amplification signal from template diluted to 10(-8) while the limit of detection of qPCR was10(-7). The LAMP method was also highly specific and did not amplify DNA purified from five other Gram-positive and -negative bacterial fish pathogens. The method also worked well using extracts of macrophages infected with R. salmoninarum and kidney material from rainbow trout, which were positive for R. salmoninarum by qPCR and crude R. salmoninarum culture. There was some evidence for inhibitors of the LAMP reaction in the kidney samples, which was overcome by diluting the sample. PMID:19538642

  7. Digital Droplet Multiple Displacement Amplification (ddMDA for Whole Genome Sequencing of Limited DNA Samples.

    Minsoung Rhee

    Full Text Available Multiple displacement amplification (MDA is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet, ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology.

  8. Digital Droplet Multiple Displacement Amplification (ddMDA) for Whole Genome Sequencing of Limited DNA Samples

    Rhee, Minsoung; Light, Yooli K.; Meagher, Robert J.; Singh, Anup K.

    2016-01-01

    Multiple displacement amplification (MDA) is a widely used technique for amplification of DNA from samples containing limited amounts of DNA (e.g., uncultivable microbes or clinical samples) before whole genome sequencing. Despite its advantages of high yield and fidelity, it suffers from high amplification bias and non-specific amplification when amplifying sub-nanogram of template DNA. Here, we present a microfluidic digital droplet MDA (ddMDA) technique where partitioning of the template DNA into thousands of sub-nanoliter droplets, each containing a small number of DNA fragments, greatly reduces the competition among DNA fragments for primers and polymerase thereby greatly reducing amplification bias. Consequently, the ddMDA approach enabled a more uniform coverage of amplification over the entire length of the genome, with significantly lower bias and non-specific amplification than conventional MDA. For a sample containing 0.1 pg/μL of E. coli DNA (equivalent of ~3/1000 of an E. coli genome per droplet), ddMDA achieves a 65-fold increase in coverage in de novo assembly, and more than 20-fold increase in specificity (percentage of reads mapping to E. coli) compared to the conventional tube MDA. ddMDA offers a powerful method useful for many applications including medical diagnostics, forensics, and environmental microbiology. PMID:27144304

  9. The Study on Gene Amplification of EGFR in Bronchioloalveolar Carcinoma and Conventional Adenocarcinoma of the Lung

    Xin SONG

    2009-08-01

    Full Text Available Background and objective Patients with adenocarcinoma of the lung have disproportionately response to the epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI. The aim of this study is to analyze the difference of EGFR gene amplification in bronchioloalveolar carcinoma (BAC, adenocarcinma mixed subtype and conventional adenocarcinoma of the lung and provide some information to clinical therapies. Methods Lung cancer cases were collected and reviewed from the archives of the Department of Pathology, Chinese PLA General Hospital during the time period from 2004 to 2006. The definite diagnosis of BAC based on 2004 WHO classification of lung tumors was made by two pathologists. Fluorescence in situ hybridization (FISH was performed to detect EGFR gene amplification in pure BAC, adenocarcinma mixed subtype and conventional adenocarcinoma. Results Conventional adenocarcinoma had higher EGFR amplification compared with pure BAC and adenocarcinma mixed subtype (χ2=11.632, P<0.05. EGFR gene amplification was found in 45.45% of conventional adenocarcinoma, 14.81% in pure BACs, and 22.58% in adenocarcinma mixed subtype. EGFR gene amplification was observed as scattered signals in most cases. Conclusion EGFR gene amplification was seen more frequently in the invasive components than in BAC. EGFR gene amplification might be associated with the development of adenocarcinoma of the lung.

  10. Comparative study of sensitivity, linearity, and resistance to inhibition of digital and nondigital polymerase chain reaction and loop mediated isothermal amplification assays for quantification of human cytomegalovirus.

    Nixon, Gavin; Garson, Jeremy A; Grant, Paul; Nastouli, Eleni; Foy, Carole A; Huggett, Jim F

    2014-05-01

    Performing nucleic acid amplification techniques (NAATs) in digital format using limiting dilution provides potential advantages that have recently been demonstrated with digital polymerase chain reaction (dPCR). Key benefits that have been claimed are the ability to quantify nucleic acids without the need of an external calibrator and a greater resistance to inhibitors than real-time quantitative PCR (qPCR). In this study, we evaluated the performance of four NAATs, qPCR, dPCR, real-time quantitative loop mediated isothermal amplification (qLAMP), and digital LAMP (dLAMP), for the detection and quantification of human cytomegalovirus (hCMV). We used various DNA templates and inhibitors to compare the performance of these methods using a conventional real-time thermocycler platform (Bio-Rad CFX96) and a chip based digital platform (Fluidigm Biomark 12.765 Digital Array). dPCR performed well and demonstrated greater resistance to inhibitors than the other methods although this resistance did not apply equally to all inhibitors tested. dLAMP was found to be less sensitive than dPCR, but its quantitative performance was better than qLAMP, the latter being unable to quantify below 1000 copies. dLAMP was also more resistant to inhibitors than qLAMP. Unlike qPCR, both digital methods were able to quantify viral genomes without requiring a calibrator; however, neither can currently compete with the large reaction volumes, and thus the greater absolute sensitivity, of qPCR. With the introduction of digital instrumentation that will enable larger reaction volumes, digital amplification methods such as those evaluated in this study could potentially offer a robust alternative to qPCR for nucleic acid quantification. PMID:24684191

  11. Vorticity amplification near the stagnation point of landing gear wheels

    Feltham, G.; Ekmekci, A.

    2014-04-01

    The vicinity near the forward stagnation point of landing-gear wheels has been found to support a mechanism for oncoming streams of weak vorticity to collect, grow, and amplify into discrete large-scale vortical structures that then shed with a distinct periodicity. To the authors' knowledge, such a flow phenomenon has never been reported before for landing gear wheels, which are in essence finite (three-dimensional) cylinders. To gain further insight into this phenomenon, a detailed experimental study has been undertaken employing the hydrogen bubble visualization and Particle Image Velocimetry techniques. A very thin platinum wire, similar to those used in hydrogen bubble visualization applications, was placed upstream of the wheel model to produce two streams of weak vorticity (with opposite sign) that convected toward the model. As the vorticity streams enter the stagnation region of the wheels, significant flow deceleration and vorticity stretching act to collect, grow, and amplify the incoming vorticity streams into large-scale vortical structures. Experiments were performed at a fixed Reynolds number, with a value of 32 500 when defined based on the diameter of the wheel and a value of 21 based on the diameter of the vorticity-generating upstream wire. First, to establish a baseline, the natural flow field (without the presence of an upstream wire) was characterized, where experimentally determined values for the stagnation boundary-layer thickness and the velocity profile along the stagnation streamline were both found to agree with the values provided in the literature for two-dimensional cylinders. Subsequently, the dynamics of vorticity collection, growth, amplification, and shedding were studied. The size, stand-off distance and the shedding frequency of the vortical structures forming near the stagnation region were all found to strongly depend on the impingement location of the inbound vorticity on the wheel. A simple relationship between the non

  12. Amplified RNA degradation in T7-amplification methods results in biased microarray hybridizations

    Ivell Richard

    2003-11-01

    Full Text Available Abstract Background The amplification of RNA with the T7-System is a widely used technique for obtaining increased amounts of RNA starting from limited material. The amplified RNA (aRNA can subsequently be used for microarray hybridizations, warranting sufficient signal for image analysis. We describe here an amplification-time dependent degradation of aRNA in prolonged standard T7 amplification protocols, that results in lower average size aRNA and decreased yields. Results A time-dependent degradation of amplified RNA (aRNA could be observed when using the classical "Eberwine" T7-Amplification method. When the amplification was conducted for more than 4 hours, the resulting aRNA showed a significantly smaller size distribution on gel electrophoresis and a concomitant reduction of aRNA yield. The degradation of aRNA could be correlated to the presence of the T7 RNA Polymerase in the amplification cocktail. The aRNA degradation resulted in a strong bias in microarray hybridizations with a high coefficient of variation and a significant reduction of signals of certain transcripts, that seem to be susceptible to this RNA degrading activity. The time-dependent degradation of these transcripts was verified by a real-time PCR approach. Conclusions It is important to perform amplifications not longer than 4 hours as there is a characteristic 'quality vs. yield' situation for longer amplification times. When conducting microarray hybridizations it is important not to compare results obtained with aRNA from different amplification times.

  13. Marked heterogeneity of HER2/NEU gene amplification in endometrial serous carcinoma.

    Buza, Natalia; Hui, Pei

    2013-12-01

    Significant heterogeneity of HER2 protein expression has been recently observed in HER2 positive endometrial serous carcinomas. Tumor cells with HER2 overexpression and/or gene amplification in a heterogeneous tumor may represent a biologically more aggressive subclone that is clinically relevant to prognosis and potential targeted therapy. To correlate with HER2 protein heterogeneity, we investigated the heterogeneity of HER2/NEU gene amplification in endometrial serous carcinoma. A total of 17 endometrial serous carcinomas with heterogeneous HER2 protein expression were selected for the study, including nine cases with a 3+ and eight cases with a 2+ immunohistochemical score. Initial reflex HER2 FISH was available for seven of the eight 2+ cases, five of which showed HER2/NEU gene amplification. All 17 cases underwent repeat FISH targeting larger tumor tissue areas. Ten cases (72%) displayed striking heterogeneity of HER2/NEU gene copy number in the form of cluster amplification. Diffuse HER2 amplification was observed in four cases, no amplification was seen in three tumors. In cases with cluster amplification, HER2 protein overexpression by immunohistochemistry closely correlated at the cellular level with HER2/NEU gene amplification. In conclusion, the significant percentage of cases with heterogeneous HER2/NEU gene amplification indicates that the existing HER2 testing guidelines designed for breast cancer may not be applicable to endometrial serous carcinoma. Clinical testing on multiple different tumor samples or large tumor tissue sections is recommended for both immunohistochemistry and FISH assessment of HER2 status. Direct comparison with the HER2 immunostaining pattern may be helpful in detecting HER2 amplified areas in a heterogeneous tumor. PMID:24123408

  14. Invading stacking primer: A trigger for high-efficiency isothermal amplification reaction with superior selectivity for detecting microRNA variants.

    Liu, Weipeng; Zhu, Minjun; Liu, Hongxing; Wei, Jitao; Zhou, Xiaoming; Xing, Da

    2016-07-15

    Searching for a strategy to enhance the efficiency of nucleic acid amplification and achieve exquisite discrimination of nucleic acids at the single-base level for biological detection has become an exciting research direction in recent years. Here, we have developed a simple and universal primer design strategy which produces a fascinating effect on isothermal strand displacement amplification (iSDA). We refer to the resultant primer as "invading stacking primer (IS-Primer)" which is based on contiguous stacking hybridization and toehold-mediated exchange reaction and function by merely changing the hybridization location of the primer. Using the IS-Primer, the sensitivity in detecting the target miR-21 is improved approximately five fold compared with the traditional iSDA reaction. It was further demonstrated that the IS-Primer acts as an invading strand to initiate branch migration which can increase the efficiency of the untwisting of the hairpin probe. This effect is equivalent to reducing the free energy of the stem, and the technique shows superior selectivity for single-base mismatches. By demonstrating the enhanced effect of the IS-Primer in the iSDA reaction, this work may provide a potentially new avenue for developing more sensitive and selective nucleic acids assays. PMID:26985583

  15. DMSO对PCR扩增反应的影响%The Influence of PCR Amplification with DMSO

    徐葵; 邱志明; 汪晓英

    2001-01-01

    In Order to resolve the failure of PCR to amplif y 8-receptor, the influence of PCR amplification the different concentration of DMSO was observed. The result show that the centain concertation of DMSO can greatly enhance the specificity and efficiency of PCR amplification%为解决扩增δ-受体基因屡次失败的问题,观察了在 PCR体系加入不同浓度DMSO时对DNA扩增反应的影响.结果表明:一定浓度的DMSO可显著提高 PCR扩增的特异性和扩增效率.

  16. SOLITONS AND OPTICAL FIBERS: On the problem of ideal amplification of optical solitons

    Melo Melchor, G.; Agüero Granados, M.; Corro, G. H.

    2002-11-01

    The new possibilities of almost ideal amplification of optical solitons during the incoherent interaction of light pulses with a resonantly amplifying medium are considered. The mechanism of two-photon amplification of optical solitons with an optimal frequency-modulation law is proposed. It is shown that the entirely ideal amplification of solitons cannot be achieved because the law of phase modulation of radiation differs from a parabolic law. The possibility of using the phase cross modulation to produce the required initial phase of amplified solitons is studied.

  17. Dynamic Characteristics of a Hydraulic Amplification Mechanism for Large Displacement Actuators Systems

    Xavier Arouette

    2010-03-01

    Full Text Available We have developed a hydraulic displacement amplification mechanism (HDAM and studied its dynamic response when combined with a piezoelectric actuator. The HDAM consists of an incompressible fluid sealed in a microcavity by two largely deformable polydimethylsiloxane (PDMS membranes. The geometry with input and output surfaces having different cross-sectional areas creates amplification. By combining the HDAM with micro-actuators, we can amplify the input displacement generated by the actuators, which is useful for applications requiring large deformation, such as tactile displays. We achieved a mechanism offering up to 18-fold displacement amplification for static actuation and 12-fold for 55 Hz dynamic actuation.

  18. Amplification of surface acoustic waves by transverse electric current in piezoelectric semiconductors

    Gulyaev, Yuri V.

    1974-01-01

    It is shown that the principal characteristic feature of the surface acoustic waves in piezoelectrics—the presence of an alternating electric field transverse to the surface, which can be of the same order of magnitude as the longitudinal field—may not only give rise to the known transverse...... acoustoelectric effect but also lead to amplification of surface acoustic waves by electron drift perpendicular to the surface. For Love waves in a piezoelectric semiconductor film on a highly conducting substrate, the amplification coefficient is found and the conditions necessary for amplification...

  19. On the amplification effect of dipping and parallel soil medium to seismic wave

    To obtain the amplification spectra due to seismic source for the parallel and dipping layered media, the authors simulate the seismic waves as those emitted from transient SH line source, which is located in the half space overlaid with a single dipping layered medium. Then, from the obtained Fourier spectra, it shows that both the fundamental frequency and Fourier amplification ratio are different for parallel and dipping layered media with smaller amplification for dipping medium, and this phenomenon may be referred to as the concentration of energy in the dipping one. Hence, the reactor erected above sloping foundation must consider this effect

  20. Quantification of HER2 autoantibodies in the amplification phenomenon of HER2 in breast cancer

    Lauterlein, Jens-Jacob L; Petersen, Eva R B; Olsen, Dorte Aa; Østergaard, Birthe; Brandslund, Ivan

    2011-01-01

    Gene amplification of HER2 (human epidermal growth factor receptor 2) is a well-known phenomenon in various cancers. However, little is known about the mechanism of the gene amplification phenomenon itself. Autoantibodies to cellular receptors have been described in several cancer types. We...... hypothesised that autoantibodies against HER2 might have a stimulatory capacity and could be the cause of the HER2 gene amplification phenomenon. To investigate this, we developed a test for the detection of autoantibodies against HER2 in serum (S-HER2Ab)....