WorldWideScience

Sample records for acid receptor trafficking

  1. Adenosine-to-inosine RNA editing affects trafficking of the gamma-aminobutyric acid type A (GABA(A)) receptor.

    Daniel, Chammiran; Wahlstedt, Helene; Ohlson, Johan; Björk, Petra; Ohman, Marie

    2011-01-21

    Recoding by adenosine-to-inosine RNA editing plays an important role in diversifying proteins involved in neurotransmission. We have previously shown that the Gabra-3 transcript, coding for the α3 subunit of the GABA(A) receptor is edited in mouse, causing an isoleucine to methionine (I/M) change. Here we show that this editing event is evolutionarily conserved from human to chicken. Analyzing recombinant GABA(A) receptor subunits expressed in HEK293 cells, our results suggest that editing at the I/M site in α3 has functional consequences on receptor expression. We demonstrate that I/M editing reduces the cell surface and the total number of α3 subunits. The reduction in cell surface levels is independent of the subunit combination as it is observed for α3 in combination with either the β2 or the β3 subunit. Further, an amino acid substitution at the corresponding I/M site in the α1 subunit has a similar effect on cell surface presentation, indicating the importance of this site for receptor trafficking. We show that the I/M editing during brain development is inversely related to the α3 protein abundance. Our results suggest that editing controls trafficking of α3-containing receptors and may therefore facilitate the switch of subunit compositions during development as well as the subcellular distribution of α subunits in the adult brain. PMID:21030585

  2. Adenosine-to-Inosine RNA Editing Affects Trafficking of the γ-Aminobutyric Acid Type A (GABAA) Receptor*

    Daniel, Chammiran; Wahlstedt, Helene; Ohlson, Johan; Björk, Petra; Öhman, Marie

    2011-01-01

    Recoding by adenosine-to-inosine RNA editing plays an important role in diversifying proteins involved in neurotransmission. We have previously shown that the Gabra-3 transcript, coding for the α3 subunit of the GABAA receptor is edited in mouse, causing an isoleucine to methionine (I/M) change. Here we show that this editing event is evolutionarily conserved from human to chicken. Analyzing recombinant GABAA receptor subunits expressed in HEK293 cells, our results suggest that editing at the I/M site in α3 has functional consequences on receptor expression. We demonstrate that I/M editing reduces the cell surface and the total number of α3 subunits. The reduction in cell surface levels is independent of the subunit combination as it is observed for α3 in combination with either the β2 or the β3 subunit. Further, an amino acid substitution at the corresponding I/M site in the α1 subunit has a similar effect on cell surface presentation, indicating the importance of this site for receptor trafficking. We show that the I/M editing during brain development is inversely related to the α3 protein abundance. Our results suggest that editing controls trafficking of α3-containing receptors and may therefore facilitate the switch of subunit compositions during development as well as the subcellular distribution of α subunits in the adult brain. PMID:21030585

  3. DISC1 Protein Regulates γ-Aminobutyric Acid, Type A (GABAA) Receptor Trafficking and Inhibitory Synaptic Transmission in Cortical Neurons.

    Wei, Jing; Graziane, Nicholas M; Gu, Zhenglin; Yan, Zhen

    2015-11-13

    Association studies have suggested that Disrupted-in-Schizophrenia 1 (DISC1) confers a genetic risk at the level of endophenotypes that underlies many major mental disorders. Despite the progress in understanding the significance of DISC1 at neural development, the mechanisms underlying DISC1 regulation of synaptic functions remain elusive. Because alterations in the cortical GABA system have been strongly linked to the pathophysiology of schizophrenia, one potential target of DISC1 that is critically involved in the regulation of cognition and emotion is the GABAA receptor (GABAAR). We found that cellular knockdown of DISC1 significantly reduced GABAAR-mediated synaptic and whole-cell current, whereas overexpression of wild-type DISC1, but not the C-terminal-truncated DISC1 (a schizophrenia-related mutant), significantly increased GABAAR currents in pyramidal neurons of the prefrontal cortex. These effects were accompanied by DISC1-induced changes in surface GABAAR expression. Moreover, the regulation of GABAARs by DISC1 knockdown or overexpression depends on the microtubule motor protein kinesin 1 (KIF5). Our results suggest that DISC1 exerts an important effect on GABAergic inhibitory transmission by regulating KIF5/microtubule-based GABAAR trafficking in the cortex. The knowledge gained from this study would shed light on how DISC1 and the GABA system are linked mechanistically and how their interactions are critical for maintaining a normal mental state. PMID:26424793

  4. Ligand-directed trafficking of receptor stimulus.

    Chilmonczyk, Zdzisław; Bojarski, Andrzej J; Sylte, Ingebrigt

    2014-12-01

    GPCRs are seven transmembrane-spanning receptors that convey specific extracellular stimuli to intracellular signalling. They represent the largest family of cell surface proteins that are therapeutically targeted. According to the traditional two-state model of receptor theory, GPCRs were considered as operating in equilibrium between two functional conformations, an active (R*) and inactive (R) state. Thus, it was assumed that a GPCR can exist either in an "off" or "on" conformation causing either no activation or equal activation of all its signalling pathways. Over the past several years it has become evident that this model is too simple and that GPCR signalling is far more complex. Different studies have presented a multistate model of receptor activation in which ligand-specific receptor conformations are able to differentiate between distinct signalling partners. Recent data show that beside G proteins numerous other proteins, such as β-arrestins and kinases, may interact with GPCRs and activate intracellular signalling pathways. GPCR activation may therefore involve receptor desensitization, coupling to multiple G proteins, Gα or Gβγ signalling, and pathway activation that is independent of G proteins. This latter effect leads to agonist "functional selectivity" (also called ligand-directed receptor trafficking, stimulus trafficking, biased agonism, biased signalling), and agonist intervention with functional selectivity may improve the therapy. Many commercially available drugs with beneficial efficacy also show various undesirable side effects. Further studies of biased signalling might facilitate our understanding of the side effects of current drugs and take us to new avenues to efficiently design pathway-specific medications. PMID:25443729

  5. Interfering with interferon receptor sorting and trafficking: impact on signaling.

    Claudinon, Julie; Monier, Marie-Noëlle; Lamaze, Christophe

    2007-01-01

    Interferons (IFNs) and their receptors (IFN-Rs) play fundamental roles in a multitude of biological functions. Many articles and reviews emphasize that the JAK/STAT machinery is obligatory for relay of the information transmitted by IFNs after binding to their cognate receptors at the plasma membrane. In contrast, very few studies have addressed the endocytosis and the intracellular trafficking of IFN-Rs, the immediate step following IFN binding. However, recent findings have shed light on the importance of IFN-R sorting and trafficking in the control of IFN signaling. Thus, IFN-Rs can be included in the growing family of signaling receptors for which regulation of biological activity critically involves endocytosis and trafficking. PMID:17493737

  6. Ubiquitin-dependent trafficking and turnover of ionotropic glutamate receptors

    Marisa S Goo

    2015-10-01

    Full Text Available Changes in synaptic strength underlie the basis of learning and memory and are controlled, in part, by the insertion or removal of AMPA-type glutamate receptors at the postsynaptic membrane of excitatory synapses. Once internalized, these receptors may be recycled back to the plasma membrane by subunit-specific interactions with other proteins or by post-translational modifications such as phosphorylation. Alternatively, these receptors may be targeted for destruction by multiple degradation pathways in the cell. Ubiquitination, another post-translational modification, has recently emerged as a key signal that regulates the recycling and trafficking of glutamate receptors. In this review, we will discuss recent findings on the role of ubiquitination in the trafficking and turnover of ionotropic glutamate receptors and plasticity of excitatory synapses.

  7. The trafficking and targeting of P2X receptors

    Ruth Dorothy Murrell-Lagnado

    2013-11-01

    Full Text Available The functional expression of P2X receptors at the plasma membrane is dependent on their trafficking along secretory and endocytic pathways. There are seven P2X receptor subunits, and these differ in their subcellular distributions because they have very different trafficking properties. Some are retained within the endoplasmic reticulum (ER, while others are predominantly at the cell surface or within endosomes and lysosomes. Changes in recruitment of receptors to and from the plasma membrane provides a way of rapidly up- or down-regulating the cellular response to ATP. An additional layer of regulation is the targeting of these receptors within the membranes of each compartment, which affects their stability, function and the nature of the effector proteins with which they form signaling complexes. The trafficking and targeting of P2X receptors is regulated by their interactions with other proteins and with lipids and we can expect this to vary in a cell-type specific manner, giving rise to differences in receptor activity and function.

  8. Membrane Trafficking of Death Receptors: Implications on Signalling

    Wulf Schneider-Brachert

    2013-07-01

    Full Text Available Death receptors were initially recognised as potent inducers of apoptotic cell death and soon ambitious attempts were made to exploit selective ignition of controlled cellular suicide as therapeutic strategy in malignant diseases. However, the complexity of death receptor signalling has increased substantially during recent years. Beyond activation of the apoptotic cascade, involvement in a variety of cellular processes including inflammation, proliferation and immune response was recognised. Mechanistically, these findings raised the question how multipurpose receptors can ensure selective activation of a particular pathway. A growing body of evidence points to an elegant spatiotemporal regulation of composition and assembly of the receptor-associated signalling complex. Upon ligand binding, receptor recruitment in specialized membrane compartments, formation of receptor-ligand clusters and internalisation processes constitute key regulatory elements. In this review, we will summarise the current concepts of death receptor trafficking and its implications on receptor-associated signalling events.

  9. Rapid glutamate receptor 2 trafficking during retinal degeneration

    Lin Yanhua

    2012-02-01

    Full Text Available Abstract Background Retinal degenerations, such as age-related macular degeneration (AMD and retinitis pigmentosa (RP, are characterized by photoreceptor loss and anomalous remodeling of the surviving retina that corrupts visual processing and poses a barrier to late-stage therapeutic interventions in particular. However, the molecular events associated with retinal remodeling remain largely unknown. Given our prior evidence of ionotropic glutamate receptor (iGluR reprogramming in retinal degenerations, we hypothesized that the edited glutamate receptor 2 (GluR2 subunit and its trafficking may be modulated in retinal degenerations. Results Adult albino Balb/C mice were exposed to intense light for 24 h to induce light-induced retinal degeneration (LIRD. We found that prior to the onset of photoreceptor loss, protein levels of GluR2 and related trafficking proteins, including glutamate receptor-interacting protein 1 (GRIP1 and postsynaptic density protein 95 (PSD-95, were rapidly increased. LIRD triggered neuritogenesis in photoreceptor survival regions, where GluR2 and its trafficking proteins were expressed in the anomalous dendrites. Immunoprecipitation analysis showed interaction between KIF3A and GRIP1 as well as PSD-95, suggesting that KIF3A may mediate transport of GluR2 and its trafficking proteins to the novel dendrites. However, in areas of photoreceptor loss, GluR2 along with its trafficking proteins nearly vanished in retracted retinal neurites. Conclusions All together, LIRD rapidly triggers GluR2 plasticity, which is a potential mechanism behind functionally phenotypic revisions of retinal neurons and neuritogenesis during retinal degenerations.

  10. PACSIN1 regulates the dynamics of AMPA receptor trafficking.

    Widagdo, Jocelyn; Fang, Huaqiang; Jang, Se Eun; Anggono, Victor

    2016-01-01

    Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons. PMID:27488904

  11. PACSIN1 regulates the dynamics of AMPA receptor trafficking

    Widagdo, Jocelyn; Fang, Huaqiang; Jang, Se Eun; Anggono, Victor

    2016-01-01

    Dynamic trafficking of AMPA receptors (AMPARs) into and out of synapses plays an important role in synaptic plasticity. We previously reported that the protein kinase C and casein kinase II substrate in neurons (PACSIN) forms a complex with AMPARs through its interaction with the protein interacting with C-kinase 1 (PICK1) to regulate NMDA receptor (NMDAR)-induced AMPAR endocytosis and cerebellar long-term depression. However, the molecular mechanism by which PACSIN regulates the dynamics of AMPAR trafficking remains unclear. Using a pH-sensitive green fluorescent protein, pHluorin, tagged to the extracellular domain of the GluA2 subunit of AMPARs, we demonstrate dual roles for PACSIN1 in controlling the internalization and recycling of GluA2 after NMDAR activation. Structure and function analysis reveals a requirement for the PACSIN1 F-BAR and SH3 domains in controlling these NMDAR-dependent processes. Interestingly, the variable region, which binds to PICK1, is not essential for NMDAR-dependent GluA2 internalization and is required only for the correct recycling of AMPARs. These results indicate that PACSIN is a versatile membrane deformation protein that links the endocytic and recycling machineries essential for dynamic AMPAR trafficking in neurons. PMID:27488904

  12. AMPA receptor trafficking in inflammation-induced dorsal horn central sensitization

    Yuan-Xiang Tao

    2012-01-01

    Activity-dependent postsynaptic receptor trafficking is critical for long-term synaptic plasticity in the brain,but it is unclear whether this mechanism actually mediates the spinal cord dorsal horn central sensitization (a specific form of synaptic plasticity) that is associated with persistent pain.Recent studies have shown that peripheral inflammation drives changes in α-amino-3-hydroxy-5-methy1-4-isoxazolepropionic acid receptor (AMPAR) subunit trafficking in the dorsal horn and that such changes contribute to the hypersensitivity that underlies persistent pain.Here,we review current evidence to illustrate how spinal cord AMPARs participate in the dorsal horn central sensitization associated with persistent pain.Understanding these mechanisms may allow the development of novel therapeutic strategies for treating persistent pain.

  13. Monitoring endosomal trafficking of the G protein-coupled receptor somatostatin receptor 3

    Tower-Gilchrist, Cristy; Styers, Melanie L.; Yoder, Bradley K.; Berbari, Nicolas F.; Sztul, Elizabeth

    2016-01-01

    Endocytic trafficking of G protein-coupled receptors (GPCRs) regulates the number of cell surface receptors available for activation by agonists and serves as one mechanism that controls the intensity and duration of signaling. Deregulation of GPCR-mediated signaling pathways results in a multitude of diseases, and thus extensive efforts have been directed toward understand the pathways and molecular events that regulate endocytic trafficking of these receptors. The general paradigms associated with internalization and recycling, as well as many of the key regulators involved in endosomal trafficking of GPCRs have been identified. This knowledge provides goalposts to facilitate the analysis of endosomal pathways traversed by previously uncharacterized GPCRs. Some of the most informative markers associated with GPCR transit are the Rab members of the Ras-related family of small GTPases. Individual Rabs show high selectivity for distinct endosomal compartments, and thus co-localization of a GPCR with a particular Rab informs on the internalization pathway traversed by the receptor. Progress in our knowledge of endosomal trafficking of GPCRs has been achieved through advances in our ability to tag GPCRs and Rabs with fluorescent proteins and perform live cell imaging of multiple fluorophores, allowing real-time observation of receptor trafficking between subcellular compartments in a cell culture model. PMID:24359959

  14. Actin-dependent mechanisms in AMPA receptor trafficking

    Jonathan G Hanley

    2014-11-01

    Full Text Available The precise regulation of AMPA receptor (AMPAR number and subtype at the synapse is crucial for the regulation of excitatory neurotransmission, synaptic plasticity and the consequent formation of appropriate neural circuits during learning and memory. AMPAR trafficking involves the dynamic processes of exocytosis, endocytosis and endosomal recycling, all of which involve the actin cytoskeleton. The actin cytoskeleton is highly dynamic and highly regulated by an abundance of actin-binding proteins and upstream signalling pathways that modulate actin polymerization and depolymerisation. Actin dynamics generate forces that manipulate membranes in the process of vesicle biogenesis, and also for propelling vesicles through the cytoplasm to reach their destination. In addition, trafficking mechanisms exploit more stable aspects of the actin cytoskeleton by using actin-based motor proteins to traffic vesicular cargo along actin filaments. Numerous studies have shown that actin dynamics are critical for AMPAR localization and function. The identification of actin-binding proteins that physically interact with AMPAR subunits, and research into their mode of action is starting to shed light on the mechanisms involved. Such proteins either regulate actin dynamics to modulate mechanical forces exerted on AMPAR-containing membranes, or associate with actin filaments to target or transport AMPAR-containing vesicles to specific subcellular regions. In addition, actin-regulatory proteins that do not physically interact with AMPARs may influence AMPAR trafficking by regulating the local actin environment in the dendritic spine.

  15. Amyloid-β-Induced Dysregulation of AMPA Receptor Trafficking

    Sumasri Guntupalli

    2016-01-01

    Full Text Available Evidence from neuropathological, genetic, animal model, and biochemical studies has indicated that the accumulation of amyloid-beta (Aβ is associated with, and probably induces, profound neuronal changes in brain regions critical for memory and cognition in the development of Alzheimer’s disease (AD. There is considerable evidence that synapses are particularly vulnerable to AD, establishing synaptic dysfunction as one of the earliest events in pathogenesis, prior to neuronal loss. It is clear that excessive Aβ levels can disrupt excitatory synaptic transmission and plasticity, mainly due to dysregulation of the AMPA and NMDA glutamate receptors in the brain. Importantly, AMPA receptors are the principal glutamate receptors that mediate fast excitatory neurotransmission. This is essential for synaptic plasticity, a cellular correlate of learning and memory, which are the cognitive functions that are most disrupted in AD. Here we review recent advances in the field and provide insights into the molecular mechanisms that underlie Aβ-induced dysfunction of AMPA receptor trafficking. This review focuses primarily on NMDA receptor- and metabotropic glutamate receptor-mediated signaling. In particular, we highlight several mechanisms that underlie synaptic long-term depression as common signaling pathways that are hijacked by the neurotoxic effects of Aβ.

  16. Retromer-Mediated Trafficking of Transmembrane Receptors and Transporters

    Stine C. Klinger

    2015-07-01

    Full Text Available Transport between the endoplasmatic reticulum, the Golgi-network, the endo-lysosomal system and the cell surface can be categorized as anterograde or retrograde, describing traffic that goes forward or backward, respectively. Traffic going from the plasma membrane to endosomes and lysosomes or the trans-Golgi network (TGN constitutes the major retrograde transport routes. Several transmembrane proteins undergo retrograde transport as part of a recycling mechanism that contributes to reutilization and maintenance of a steady-state protein localization. In addition, some receptors are hijacked by exotoxins and used for entry and intracellular transport. The physiological relevance of retrograde transport cannot be overstated. Retrograde trafficking of the amyloid precursor protein determines the distribution between organelles, and hence the possibility of cleavage by γ-secretase. Right balancing of the pathways is critical for protection against Alzheimer’s disease. During embryonic development, retrograde transport of Wntless to the TGN is essential for the following release of Wnt from the plasma membrane. Furthermore, overexpression of Wntless has been linked to oncogenesis. Here, we review relevant aspects of the retrograde trafficking of mammalian transmembrane receptors and transporters, with focus on the retromer-mediated transport between endosomes and the TGN.

  17. Retromer-Mediated Trafficking of Transmembrane Receptors and Transporters.

    Klinger, Stine C; Siupka, Piotr; Nielsen, Morten S

    2015-01-01

    Transport between the endoplasmatic reticulum, the Golgi-network, the endo-lysosomal system and the cell surface can be categorized as anterograde or retrograde, describing traffic that goes forward or backward, respectively. Traffic going from the plasma membrane to endosomes and lysosomes or the trans-Golgi network (TGN) constitutes the major retrograde transport routes. Several transmembrane proteins undergo retrograde transport as part of a recycling mechanism that contributes to reutilization and maintenance of a steady-state protein localization. In addition, some receptors are hijacked by exotoxins and used for entry and intracellular transport. The physiological relevance of retrograde transport cannot be overstated. Retrograde trafficking of the amyloid precursor protein determines the distribution between organelles, and hence the possibility of cleavage by γ-secretase. Right balancing of the pathways is critical for protection against Alzheimer's disease. During embryonic development, retrograde transport of Wntless to the TGN is essential for the following release of Wnt from the plasma membrane. Furthermore, overexpression of Wntless has been linked to oncogenesis. Here, we review relevant aspects of the retrograde trafficking of mammalian transmembrane receptors and transporters, with focus on the retromer-mediated transport between endosomes and the TGN. PMID:26154780

  18. PKCgamma-induced trafficking of AMPA receptors in embryonic zebrafish depends on NSF and PICK1.

    Patten, Shunmoogum A; Ali, Declan W

    2009-04-21

    The trafficking of AMPA receptors (Rs) to and from synaptic membranes is a key component underlying synaptic plasticity mechanisms such as long-term potentiation (LTP) and long-term depression (LTD), and is likely important for synaptic development in embryonic organisms. However, some of the key biochemical components required for receptor trafficking in embryos are still unknown. Here, we report that in embryonic zebrafish, the activation of PKCgamma by phorbol 12-myristate 13-acetate, strongly potentiates the amplitude of AMPAR-mediated miniature excitatory postsynaptic currents (AMPA-mEPSCs) via a N-ethylmaleimide-sensitive fusion (NSF) and protein interacting with C-kinase-1 (PICK1)-dependent process. We found that the mEPSC potentiation is DAG- and Ca(2+)-dependent, and occurs on application of active PKCgamma. Peptides that prevent the association of NSF and PICK1 with the GluR2 subunit, and the actin-polymerization blocker, latrunculin B, prevented the increase in mEPSC amplitude. Also, application of tetanus toxin (TeTx), which cleaves SNARE proteins, also blocked the increase in mEPSC amplitude. Last, application of a 5 mM K(+) medium led to an enhancement in mEPSC amplitude that was prevented by addition of the PKCgamma and NSF-blocking peptides, and the NMDA receptor blocker, 2-amino-5-phosphonovaleric acid (APV). Thus, activation of PKCgamma is necessary for the activity-dependent trafficking of AMPARs in embryonic zebrafish. This process is NMDA and SNARE-dependent and requires AMPARs to associate with both NSF and PICK1. The present data further our understanding of AMPAR trafficking, and have important implications for synaptic development and synaptic plasticity. PMID:19366675

  19. Polarized trafficking of the sorting receptor SorLA in neurons and MDCK cells.

    Klinger, Stine C; Højland, Anne; Jain, Shweta; Kjolby, Mads; Madsen, Peder; Svendsen, Anna Dorst; Olivecrona, Gunilla; Bonifacino, Juan S; Nielsen, Morten S

    2016-07-01

    The sorting receptor SorLA is highly expressed in neurons and is also found in other polarized cells. The receptor has been reported to participate in the trafficking of several ligands, some of which are linked to human diseases, including the amyloid precursor protein, TrkB, and Lipoprotein Lipase (LpL). Despite this, only the trafficking in nonpolarized cells has been described so far. Due to the many differences between polarized and nonpolarized cells, we examined the localization and trafficking of SorLA in epithelial Madin-Darby canine kidney (MDCK) cells and rat hippocampal neurons. We show that SorLA is mainly found in sorting endosomes and on the basolateral surface of MDCK cells and in the somatodendritic domain of neurons. This polarized distribution of SorLA respectively depends on an acidic cluster and an extended version of this cluster and involves the cellular adaptor complex AP-1. Furthermore, we show that SorLA can mediate transcytosis across a tight cell layer. PMID:27192064

  20. Modulation of cell surface GABA B receptors by desensitization,trafficking and regulated degradation

    Dietmar; Benke; Khaled; Zemoura; Patrick; J; Maier

    2012-01-01

    Inhibitory neurotransmission ensures normal brain function by counteracting and integrating excitatory activity.-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammalian central nervous system,and mediates its effects via two classes of receptors:the GABA A and GABA B receptors.GABA A receptors are heteropentameric GABA-gated chloride channels and responsible for fast inhibitory neurotransmission.GABA B receptors are heterodimeric G protein coupled receptors (GPCR) that mediate slow and prolonged inhibitory transmission.The extent of inhibitory neurotransmission is determined by a variety of factors,such as the degree of transmitter release and changes in receptor activity by posttranslational modifications (e.g.,phosphorylation),as well as by the number of receptors present in the plasma membrane available for signal transduction.The level of GABA B receptors at the cell surface critically depends on the residence time at the cell surface and finally the rates of endocytosis and degradation.In this review we focus primarily on recent advances in the understanding of trafficking mechanisms that determine the expression level of GABA B receptors in the plasma membrane,and thereby signaling strength.

  1. Interdependent epidermal growth factor receptor signalling and trafficking.

    Jones, Sylwia; Rappoport, Joshua Z

    2014-06-01

    Epidermal growth factor (EGF) receptor (EGFR) signalling regulates diverse cellular functions, promoting cell proliferation, differentiation, migration, cell growth and survival. EGFR signalling is critical during embryogenesis, in particular in epithelial development, and disruption of the EGFR gene results in epithelial immaturity and perinatal death. EGFR signalling also functions during wound healing responses through accelerating wound re-epithelialisation, inducing cell migration, proliferation and angiogenesis. Upregulation of EGFR signalling is often observed in carcinomas and has been shown to promote uncontrolled cell proliferation and metastasis. Therefore aberrant EGFR signalling is a common target for anticancer therapies. Various reports indicate that EGFR signalling primarily occurs at the plasma membrane and EGFR degradation following endocytosis greatly attenuates signalling. Other studies argue that EGFR internalisation is essential for complete activation of downstream signalling cascades and that endosomes can serve as signalling platforms. The aim of this review is to discuss current understanding of intersection between EGFR signalling and trafficking. PMID:24681003

  2. Functional Consequences of Glucagon-like Peptide-1 Receptor Cross-talk and Trafficking

    Roed, Sarah Noerklit; Nøhr, Anne Cathrine; Wismann, Pernille;

    2015-01-01

    The signaling capacity of seven-transmembrane/G-protein-coupled receptors (7TM/GPCRs) can be regulated through ligand-mediated receptor trafficking. Classically, the recycling of internalized receptors is associated with resensitization, whereas receptor degradation terminates signaling. We have...... glucagon (GCGR) receptors. The interaction and cross-talk between coexpressed receptors is a wide phenomenon of the 7TM/GPCR superfamily. Numerous reports show functional consequences for signaling and trafficking of the involved receptors. On the basis of the high structural similarity and tissue...... coexpression, we here investigated the potential cross-talk between GLP-1R and GIPR or GCGR in both trafficking and signaling pathways. Using a real-time time-resolved FRET-based internalization assay, we show that GLP-1R, GIPR, and GCGR internalize with differential properties. Remarkably, upon coexpression...

  3. PKCγ-induced trafficking of AMPA receptors in embryonic zebrafish depends on NSF and PICK1

    Patten, Shunmoogum A.; Ali, Declan W

    2009-01-01

    The trafficking of AMPA receptors (Rs) to and from synaptic membranes is a key component underlying synaptic plasticity mechanisms such as long-term potentiation (LTP) and long-term depression (LTD), and is likely important for synaptic development in embryonic organisms. However, some of the key biochemical components required for receptor trafficking in embryos are still unknown. Here, we report that in embryonic zebrafish, the activation of PKCγ by phorbol 12-myristate 13-acetate, strongly...

  4. Multiple Routes for Glutamate Receptor Trafficking: Surface Diffusion and Membrane Traffic Cooperate to Bring Receptors to Synapses

    Cognet, Laurent; Lounis, Brahim; Choquet, Daniel

    2006-01-01

    Trafficking of glutamate receptors into and out of synapses is critically involved in the plasticity of excitatory synaptic transmission. Endocytosis and exocytosis of receptors have initially been thought to account alone for this trafficking. However, membrane proteins also traffic through surface lateral diffusion in the plasma membrane. We describe developments in electrophysiological and optical approaches that have allowed for the real time measurement of glutamate receptor surface trafficking in live neurons. These include (i) specific imaging of surface receptors using a pH sensitive fluorescent protein, (ii) design of a photoactivable drug to inactivate locally surface receptors and monitor electrophysiologically their recovery, and (iii)application of single molecule fluorescence microscopy to directly track the movement of individual surface receptors with nanometer resolution inside and outside synapses. Altogether, these approaches have demonstrated that glutamate receptors diffuse at high rates ...

  5. Polarized Trafficking of the Sorting Receptor SorLA in Neurons and MDCK Cells

    Klinger, Stine C; Højland, Anne; Jain, Shweta;

    2016-01-01

    The sorting receptor SorLA is highly expressed in neurons and is also found in other polarized cells. The receptor has been reported to participate in the trafficking of several ligands, some of which are linked to human diseases, including the amyloid precursor protein, TrkB and lipoprotein lipase...... (LpL). Despite this, only the trafficking in non-polarized cells has been described so far. Due to the many differences between polarized and non-polarized cells, we examined the localization and trafficking of SorLA in epithelial Madin-Darby canine kidney (MDCK) cells and rat hippocampal neurons. We...

  6. Real-time trafficking and signaling of the glucagon-like peptide-1 receptor

    Roed, Sarah Noerklit; Wismann, Pernille; Underwood, Christina Rye;

    2014-01-01

    . A fundamental mechanism controlling the signaling capacity of GPCRs is the post-endocytic trafficking of receptors between recycling and degradative fates. Here, we combined microscopy with novel real-time assays to monitor both receptor trafficking and signaling in living cells. We find that the...... human GLP-1R internalizes rapidly and with similar kinetics in response to equipotent concentrations of GLP-1 and the stable GLP-1 analogues exendin-4 and liraglutide. Receptor internalization was confirmed in mouse pancreatic islets. GLP-1R is shown to be a recycling receptor with faster recycling...

  7. Mutations of Vasopressin Receptor 2 Including Novel L312S Have Differential Effects on Trafficking.

    Tiulpakov, Anatoly; White, Carl W; Abhayawardana, Rekhati S; See, Heng B; Chan, Audrey S; Seeber, Ruth M; Heng, Julian I; Dedov, Ivan; Pavlos, Nathan J; Pfleger, Kevin D G

    2016-08-01

    Nephrogenic syndrome of inappropriate antidiuresis (NSIAD) is a genetic disease first described in 2 unrelated male infants with severe symptomatic hyponatremia. Despite undetectable arginine vasopressin levels, patients have inappropriately concentrated urine resulting in hyponatremia, hypoosmolality, and natriuresis. Here, we describe and functionally characterize a novel vasopressin type 2 receptor (V2R) gain-of-function mutation. An L312S substitution in the seventh transmembrane domain was identified in a boy presenting with water-induced hyponatremic seizures at the age of 5.8 years. We show that, compared with wild-type V2R, the L312S mutation results in the constitutive production of cAMP, indicative of the gain-of-function NSIAD profile. Interestingly, like the previously described F229V and I130N NSIAD-causing mutants, this appears to both occur in the absence of notable constitutive β-arrestin2 recruitment and can be reduced by the inverse agonist Tolvaptan. In addition, to understand the effect of various V2R substitutions on the full receptor "life-cycle," we have used and further developed a bioluminescence resonance energy transfer intracellular localization assay using multiple localization markers validated with confocal microscopy. This allowed us to characterize differences in the constitutive and ligand-induced localization and trafficking profiles of the novel L312S mutation as well as for previously described V2R gain-of-function mutants (NSIAD; R137C and R137L), loss-of-function mutants (nephrogenic diabetes insipidus; R137H, R181C, and M311V), and a putative silent V266A V2R polymorphism. In doing so, we describe differences in trafficking between unique V2R substitutions, even at the same amino acid position, therefore highlighting the value of full and thorough characterization of receptor function beyond simple signaling pathway analysis. PMID:27355191

  8. The Role of Rab Proteins in Neuronal Cells and in the Trafficking of Neurotrophin Receptors

    Cecilia Bucci

    2014-10-01

    Full Text Available Neurotrophins are a family of proteins that are important for neuronal development, neuronal survival and neuronal functions. Neurotrophins exert their role by binding to their receptors, the Trk family of receptor tyrosine kinases (TrkA, TrkB, and TrkC and p75NTR, a member of the tumor necrosis factor (TNF receptor superfamily. Binding of neurotrophins to receptors triggers a complex series of signal transduction events, which are able to induce neuronal differentiation but are also responsible for neuronal maintenance and neuronal functions. Rab proteins are small GTPases localized to the cytosolic surface of specific intracellular compartments and are involved in controlling vesicular transport. Rab proteins, acting as master regulators of the membrane trafficking network, play a central role in both trafficking and signaling pathways of neurotrophin receptors. Axonal transport represents the Achilles' heel of neurons, due to the long-range distance that molecules, organelles and, in particular, neurotrophin-receptor complexes have to cover. Indeed, alterations of axonal transport and, specifically, of axonal trafficking of neurotrophin receptors are responsible for several human neurodegenerative diseases, such as Huntington’s disease, Alzheimer’s disease, amyotrophic lateral sclerosis and some forms of Charcot-Marie-Tooth disease. In this review, we will discuss the link between Rab proteins and neurotrophin receptor trafficking and their influence on downstream signaling pathways.

  9. Differential Regulation of Kainate Receptor Trafficking by Phosphorylation of Distinct Sites on GluR6*

    Nasu-Nishimura, Yukiko; Jaffe, Howard; Isaac, John T R; Roche, Katherine W.

    2009-01-01

    Kainate receptors are widely expressed in the brain, and are present at pre- and postsynaptic sites where they play a prominent role in synaptic plasticity and the regulation of network activity. Within individual neurons, kainate receptors of different subunit compositions are targeted to various locations where they serve distinct functional roles. Despite this complex targeting, relatively little is known about the molecular mechanisms regulating kainate receptor subunit trafficking. Here ...

  10. Mechanisms Governing the Activation and Trafficking of Yeast G Protein-coupled Receptors

    Stefan, Christopher J.; Overton, Mark C.; Blumer, Kendall J.

    1998-01-01

    We have addressed the mechanisms governing the activation and trafficking of G protein-coupled receptors (GPCRs) by analyzing constitutively active mating pheromone receptors (Ste2p and Ste3p) of the yeast Saccharomyces cerevisiae. Substitution of the highly conserved proline residue in transmembrane segment VI of these receptors causes constitutive signaling. This proline residue may facilitate folding of GPCRs into native, inactive conformations, and/or mediate a...

  11. Oligomerization of opioid receptors with β2-adrenergic receptors: A role in trafficking and mitogen-activated protein kinase activation

    Jordan, B. A.; Trapaidze, N.; Gomes, I; Nivarthi, R.; Devi, L.A.

    2000-01-01

    G-protein-coupled receptors (GPCRs) have recently joined the list of cell surface receptors that dimerize. Dimerization has been shown to alter the ligand-binding, signaling, and trafficking properties of these receptors. Recent studies have shown that GPCRs heterodimerize with closely related members, resulting in the modulation of their function. In this study, we have attempted to determine whether members of GPCR superfamilies that couple to different families of G...

  12. The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking

    Francavilla, Chiara; Cattaneo, Paola; Berezin, Vladimir;

    2009-01-01

    effectors. Furthermore, NCAM, but not FGF-2, promotes cell migration, and this response depends on FGFR1 recycling and sustained Src activation. Our results implicate NCAM as a nonconventional ligand for FGFR1 that exerts a peculiar control on the intracellular trafficking of the receptor, resulting in a...

  13. G Proteins and their regulators in EGF receptor trafficking and mitochondrial functions

    Tang, Tingdong

    2009-01-01

    Mechanisms involving heterotrimeric G proteins in the regulation of membrane trafficking are not well understood. Here, we reported G\\[alpha\\]s overexpression promotes ligand-dependent degradation of EGFR and G\\[alpha\\]s knockdown delays receptor degradation through interaction with RGS-PX1 and Hrs on early endosomes. These observations provide mechanistic insights into the function of G\\[alpha\\]s, RGS-PX1 and Hrs in endocytic sorting. To further understand RGS-PX1's role in EGFR trafficking ...

  14. The role of the prostaglandin D2 receptor, DP, in eosinophil trafficking

    Schratl, Petra; Royer, Julia F; Kostenis, Evi;

    2007-01-01

    DP has remained unclear. We report in this study that, in addition to CRTH2, the DP receptor plays an important role in eosinophil trafficking. First, we investigated the release of eosinophils from bone marrow using the in situ perfused guinea pig hind limb preparation. PGD2 induced the rapid...... eosinophils in human bone marrow specimens expressed DP and CRTH2 receptors at similar levels. Eosinophils isolated from human peripheral blood likewise expressed DP receptor protein but at lower levels than CRTH2. In agreement with this, the chemotaxis of human peripheral blood eosinophils was inhibited both...

  15. Sushi domains confer distinct trafficking profiles on GABAB receptors

    Hannan, S; Wilkins, M. E.; Smart, T G

    2012-01-01

    GABA(B) receptors mediate slow inhibitory neurotransmission in the brain and feature during excitatory synaptic plasticity, as well as various neurological conditions. These receptors are obligate heterodimers composed of GABA(B)R1 and R2 subunits. The two predominant R1 isoforms differ by the presence of two complement control protein modules or Sushi domains (SDs) in the N terminus of R1a. By using live imaging, with an α-bungarotoxin-binding site (BBS) and fluorophore-linked bungarotoxin, ...

  16. Failure of bone morphogenetic protein receptor trafficking in pulmonary arterial hypertension: potential for rescue.

    Sobolewski, Anastasia; Rudarakanchana, Nung; Upton, Paul D; Yang, Jun; Crilley, Trina K; Trembath, Richard C; Morrell, Nicholas W

    2008-10-15

    Heterozygous germline mutations in the gene encoding the bone morphogenetic protein type II receptor cause familial pulmonary arterial hypertension (PAH). We previously demonstrated that the substitution of cysteine residues in the ligand-binding domain of this receptor prevents receptor trafficking to the cell membrane. Here we demonstrate the potential for chemical chaperones to rescue cell-surface expression of mutant BMPR-II and restore function. HeLa cells were transiently transfected with BMPR-II wild type or mutant (C118W) receptor constructs. Immunolocalization studies confirmed the retention of the cysteine mutant receptor mainly in the endoplasmic reticulum. Co-immunoprecipitation studies of Myc-tagged BMPR-II confirmed that the cysteine-substituted ligand-binding domain mutation, C118W, is able to associate with BMP type I receptors. Furthermore, following treatment with a panel of chemical chaperones (thapsigargin, glycerol or sodium 4-phenylbutyrate), we demonstrated a marked increase in cell-surface expression of mutant C118W BMPR-II by FACS analysis and confocal microscopy. These agents also enhanced the trafficking of wild-type BMPR-II, though to a lesser extent. Increased cell-surface expression of mutant C118W BMPR-II was associated with enhanced Smad1/5 phosphorylation in response to BMPs. These findings demonstrate the potential for rescue of mutant BMPR-II function from the endoplasmic reticulum. For the C118W mutation in the ligand-binding domain of BMPR-II, cell-surface rescue leads to at least partial restoration of BMP signalling. We conclude that enhancement of cell-surface trafficking of mutant and wild-type BMPR-II may have therapeutic potential in familial PAH. PMID:18647753

  17. Drug Trafficking into Macrophages via the Endocytotic Receptor CD163

    Graversen, Jonas Heilskov; Moestrup, Søren Kragh

    2015-01-01

    cytotoxic or phenotype-modulating drugs in the treatment of inflammatory and cancerous diseases. Such targeting of macrophages has been tried using the natural propensity of macrophages to non-specifically phagocytose circulating foreign particulate material. In addition, the specific targeting of...... macrophage-expressed receptors has been used in order to obtain a selective uptake in macrophages and reduce adverse effects of off-target delivery of drugs. CD163 is a highly expressed macrophage-specific endocytic receptor that has been studied for intracellular delivery of small molecule drugs to...... macrophages using targeted liposomes or antibody drug conjugates. This review will focus on the biology of CD163 and its potential role as a target for selective macrophage targeting compared with other macrophage targeting approaches....

  18. Rapid glutamate receptor 2 trafficking during retinal degeneration

    Lin Yanhua; Jones Bryan W; Liu Aihua; Vazquéz-Chona Félix R; Lauritzen J Scott; Ferrell W Drew; Marc Robert E

    2012-01-01

    Abstract Background Retinal degenerations, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP), are characterized by photoreceptor loss and anomalous remodeling of the surviving retina that corrupts visual processing and poses a barrier to late-stage therapeutic interventions in particular. However, the molecular events associated with retinal remodeling remain largely unknown. Given our prior evidence of ionotropic glutamate receptor (iGluR) reprogramming in retinal ...

  19. Drug Trafficking into Macrophages via the Endocytotic Receptor CD163

    Jonas Heilskov Graversen

    2015-06-01

    Full Text Available In inflammatory diseases, macrophages are a main producer of a range of cytokines regulating the inflammatory state. This also includes inflammation induced by tumor growth, which recruits so-called tumor-associated macrophages supporting tumor growth. Macrophages are therefore relevant targets for cytotoxic or phenotype-modulating drugs in the treatment of inflammatory and cancerous diseases. Such targeting of macrophages has been tried using the natural propensity of macrophages to non-specifically phagocytose circulating foreign particulate material. In addition, the specific targeting of macrophage-expressed receptors has been used in order to obtain a selective uptake in macrophages and reduce adverse effects of off-target delivery of drugs. CD163 is a highly expressed macrophage-specific endocytic receptor that has been studied for intracellular delivery of small molecule drugs to macrophages using targeted liposomes or antibody drug conjugates. This review will focus on the biology of CD163 and its potential role as a target for selective macrophage targeting compared with other macrophage targeting approaches.

  20. Drug Trafficking into Macrophages via the Endocytotic Receptor CD163.

    Graversen, Jonas Heilskov; Moestrup, Søren Kragh

    2015-01-01

    In inflammatory diseases, macrophages are a main producer of a range of cytokines regulating the inflammatory state. This also includes inflammation induced by tumor growth, which recruits so-called tumor-associated macrophages supporting tumor growth. Macrophages are therefore relevant targets for cytotoxic or phenotype-modulating drugs in the treatment of inflammatory and cancerous diseases. Such targeting of macrophages has been tried using the natural propensity of macrophages to non-specifically phagocytose circulating foreign particulate material. In addition, the specific targeting of macrophage-expressed receptors has been used in order to obtain a selective uptake in macrophages and reduce adverse effects of off-target delivery of drugs. CD163 is a highly expressed macrophage-specific endocytic receptor that has been studied for intracellular delivery of small molecule drugs to macrophages using targeted liposomes or antibody drug conjugates. This review will focus on the biology of CD163 and its potential role as a target for selective macrophage targeting compared with other macrophage targeting approaches. PMID:26111002

  1. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging.

    Henley, Jeremy M; Wilkinson, Kevin A

    2013-03-01

    Even in healthy individuals there is an inexorable agerelated decline in cognitive function. This is due, in large part, to reduced synaptic plasticity caused by changes in the molecular composition of the postsynaptic membrane. AMPA receptors (AMPARs) are glutamate-gated cation channels that mediate the overwhelming majority of fast excitatory transmission in the brain. Changes in AMPAR number and/or function are a core feature of synaptic plasticity and age-related cognitive decline, AMPARs are highly dynamic proteins that are subject to highly controlled trafficking, recycling, and/or degradation and replacement. This active regulation of AMPAR synthesis, targeting, synaptic dwell time, and degradation is fundamentally important for memory formation and storage. Further, aberrant AMPAR trafficking and consequent detrimental changes in synapses are strongly implicated in many brain diseases, which represent a vast social and economic burden. The purpose of this article is to provide an overview of the molecular and cellular AMPA receptor trafficking events that control synaptic responsiveness and plasticity, and highlight what is known currently known about how these processes change with age and disease. PMID:23576886

  2. Regulation of Epidermal Growth Factor Receptor Trafficking by Lysine Deacetylase HDAC6

    Lissanu Deribe, Yonathan; Wild, Philipp; Chandrashaker, Akhila;

    2009-01-01

    Binding of epidermal growth factor (EGF) to its receptor leads to receptor dimerization, assembly of protein complexes, and activation of signaling networks that control key cellular responses. Despite their fundamental role in cell biology, little is known about protein complexes associated with...... the EGF receptor (EGFR) before growth factor stimulation. We used a modified membrane yeast two-hybrid system together with bioinformatics to identify 87 candidate proteins interacting with the ligand-unoccupied EGFR. Among them was histone deacetylase 6 (HDAC6), a cytoplasmic lysine deacetylase......, which we found negatively regulated EGFR endocytosis and degradation by controlling the acetylation status of alpha-tubulin and, subsequently, receptor trafficking along microtubules. A negative feedback loop consisting of EGFR-mediated phosphorylation of HDAC6 Tyr(570) resulted in reduced deacetylase...

  3. Hormonal regulation of AMPA receptor trafficking and memory formation

    Harmen J Krugers

    2009-10-01

    Full Text Available Humans and rodents retain memories for stressful events very well. The facilitated retention of these memories is normally very useful. However, in susceptible individuals a variety of pathological conditions may develop in which memories related to stressful events remain inappropriately present, such as in post-traumatic stress disorder. The memory enhancing effects of stress are mediated by hormones, such as norepinephrine and glucocorticoids which are released during stressful experiences. Here we review recently identified molecular mechanisms that underlie the effects of stress hormones on synaptic efficacy and learning and memory. We discuss AMPA receptors as major target for stress hormones and describe a model in which norepinephrine and glucocorticoids are able to strengthen and prolong different phases of stressful memories.

  4. Membrane turnover and receptor trafficking in regenerating axons.

    Hausott, Barbara; Klimaschewski, Lars

    2016-02-01

    Peripheral axonal regeneration requires surface-expanding membrane addition. The continuous incorporation of new membranes into the axolemma allows the pushing force of elongating microtubules to drive axonal growth cones forwards. Hence, a constant supply of membranes and cytoskeletal building blocks is required, often for many weeks. In human peripheral nerves, axonal tips may be more than 1 m away from the neuronal cell body. Therefore, in the initial phase of regeneration, membranes are derived from pre-existing vesicles or synthesised locally. Only later stages of axonal regeneration are supported by membranes and proteins synthesised in neuronal cell bodies, considering that the fastest anterograde transport mechanisms deliver cargo at 20 cm/day. Whereas endocytosis and exocytosis of membrane vesicles are balanced in intact axons, membrane incorporation exceeds membrane retrieval during regeneration to compensate for the loss of membranes distal to the lesion site. Physiological membrane turnover rates will not be established before the completion of target reinnervation. In this review, the current knowledge on membrane traffic in axonal outgrowth is summarised, with a focus on endosomal vesicles as the providers of membranes and carriers of growth factor receptors required for initiating signalling pathways to promote the elongation and branching of regenerating axons in lesioned peripheral nerves. PMID:26222895

  5. Excitatory amino acid receptor antagonists

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B;

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation...

  6. In silico investigation of ADAM12 effect on TGF-β receptors trafficking

    LeMeur Nolwenn

    2009-09-01

    Full Text Available Abstract Background The transforming growth factor beta is known to have pleiotropic effects, including differentiation, proliferation and apoptosis. However the underlying mechanisms remain poorly understood. The regulation and effect of TGF-β signaling is complex and highly depends on specific protein context. In liver, we have recently showed that the disintegrin and metalloproteinase ADAM12 interacts with TGF-β receptors and modulates their trafficking among membranes, a crucial point in TGF-β signaling and development of fibrosis. The present study aims to better understand how ADAM12 impacts on TGF-β receptors trafficking and TGF-β signaling. Findings We extracted qualitative biological observations from experimental data and defined a family of models producing a behavior compatible with the presence of ADAM12. We computationally explored the properties of this family of models which allowed us to make novel predictions. We predict that ADAM12 increases TGF-β receptors internalization rate between the cell surface and the endosomal membrane. It also appears that ADAM12 modifies TGF-β signaling shape favoring a permanent response by removing the transient component observed under physiological conditions. Conclusion In this work, confronting differential models with qualitative biological observations, we obtained predictions giving new insights into the role of ADAM12 in TGF-β signaling and hepatic fibrosis process.

  7. Vacuolar Sorting Receptor-Mediated Trafficking of Soluble Vacuolar Proteins in Plant Cells

    Hyangju Kang

    2014-08-01

    Full Text Available Vacuoles are one of the most prominent organelles in plant cells, and they play various important roles, such as degradation of waste materials, storage of ions and metabolites, and maintaining turgor. During the past two decades, numerous advances have been made in understanding how proteins are specifically delivered to the vacuole. One of the most crucial steps in this process is specific sorting of soluble vacuolar proteins. Vacuolar sorting receptors (VSRs, which are type I membrane proteins, are involved in the sorting and packaging of soluble vacuolar proteins into transport vesicles with the help of various accessory proteins. To date, large amounts of data have led to the development of two different models describing VSR-mediated vacuolar trafficking that are radically different in multiple ways, particularly regarding the location of cargo binding to, and release from, the VSR and the types of carriers utilized. In this review, we summarize current literature aimed at elucidating VSR-mediated vacuolar trafficking and compare the two models with respect to the sorting signals of vacuolar proteins, as well as the molecular machinery involved in VSR-mediated vacuolar trafficking and its action mechanisms.

  8. The ubiquitin ligase RPM-1 and the p38 MAPK PMK-3 regulate AMPA receptor trafficking.

    Eun Chan Park

    Full Text Available Ubiquitination occurs at synapses, yet its role remains unclear. Previous studies demonstrated that the RPM-1 ubiquitin ligase organizes presynaptic boutons at neuromuscular junctions in C. elegans motorneurons. Here we find that RPM-1 has a novel postsynaptic role in interneurons, where it regulates the trafficking of the AMPA-type glutamate receptor GLR-1 from synapses into endosomes. Mutations in rpm-1 cause the aberrant accumulation of GLR-1 in neurites. Moreover, rpm-1 mutations enhance the endosomal accumulation of GLR-1 observed in mutants for lin-10, a Mint2 ortholog that promotes GLR-1 recycling from Syntaxin-13 containing endosomes. As in motorneurons, RPM-1 negatively regulates the pmk-3/p38 MAPK pathway in interneurons by repressing the protein levels of the MAPKKK DLK-1. This regulation of PMK-3 signaling is critical for RPM-1 function with respect to GLR-1 trafficking, as pmk-3 mutations suppress both lin-10 and rpm-1 mutations. Positive or negative changes in endocytosis mimic the effects of rpm-1 or pmk-3 mutations, respectively, on GLR-1 trafficking. Specifically, RAB-5(GDP, an inactive mutant of RAB-5 that reduces endocytosis, mimics the effect of pmk-3 mutations when introduced into wild-type animals, and occludes the effect of pmk-3 mutations when introduced into pmk-3 mutants. By contrast, RAB-5(GTP, which increases endocytosis, suppresses the effect of pmk-3 mutations, mimics the effect of rpm-1 mutations, and occludes the effect of rpm-1 mutations. Our findings indicate a novel specialized role for RPM-1 and PMK-3/p38 MAPK in regulating the endosomal trafficking of AMPARs at central synapses.

  9. UEV-1 is an ubiquitin-conjugating enzyme variant that regulates glutamate receptor trafficking in C. elegans neurons.

    Lawrence B Kramer

    Full Text Available The regulation of AMPA-type glutamate receptor (AMPAR membrane trafficking is a key mechanism by which neurons regulate synaptic strength and plasticity. AMPAR trafficking is modulated through a combination of receptor phosphorylation, ubiquitination, endocytosis, and recycling, yet the factors that mediate these processes are just beginning to be uncovered. Here we identify the ubiquitin-conjugating enzyme variant UEV-1 as a regulator of AMPAR trafficking in vivo. We identified mutations in uev-1 in a genetic screen for mutants with altered trafficking of the AMPAR subunit GLR-1 in C. elegans interneurons. Loss of uev-1 activity results in the accumulation of GLR-1 in elongated accretions in neuron cell bodies and along the ventral cord neurites. Mutants also have a corresponding behavioral defect--a decrease in spontaneous reversals in locomotion--consistent with diminished GLR-1 function. The localization of other synaptic proteins in uev-1-mutant interneurons appears normal, indicating that the GLR-1 trafficking defects are not due to gross deficiencies in synapse formation or overall protein trafficking. We provide evidence that GLR-1 accumulates at RAB-10-containing endosomes in uev-1 mutants, and that receptors arrive at these endosomes independent of clathrin-mediated endocytosis. UEV-1 homologs in other species bind to the ubiquitin-conjugating enzyme Ubc13 to create K63-linked polyubiquitin chains on substrate proteins. We find that whereas UEV-1 can interact with C. elegans UBC-13, global levels of K63-linked ubiquitination throughout nematodes appear to be unaffected in uev-1 mutants, even though UEV-1 is broadly expressed in most tissues. Nevertheless, ubc-13 mutants are similar in phenotype to uev-1 mutants, suggesting that the two proteins do work together to regulate GLR-1 trafficking. Our results suggest that UEV-1 could regulate a small subset of K63-linked ubiquitination events in nematodes, at least one of which is critical

  10. Fscn1 is required for the trafficking of TGF-β family type I receptors during endoderm formation

    Liu, Zhaoting; Ning, Guozhu; Xu, Ranran; Cao, Yu; Meng, Anming; Wang, Qiang

    2016-01-01

    Microtubules function in TGF-β signalling by facilitating the cytoplasmic trafficking of internalized receptors and the nucleocytoplasmic shuttling of Smads. However, nothing is known about whether actin filaments are required for these processes. Here we report that zebrafish actin-bundling protein fscn1a is highly expressed in mesendodermal precursors and its expression is directly regulated by the TGF-β superfamily member Nodal. Knockdown or knockout of fscn1a leads to a reduction of Nodal signal transduction and endoderm formation in zebrafish embryos. Fscn1 specifically interacts with TGF-β family type I receptors, and its depletion disrupts the association between receptors and actin filaments and sequesters the internalized receptors into clathrin-coated vesicles. Therefore, Fscn1 acts as a molecular linker between TGF-β family type I receptors and the actin filaments to promote the trafficking of internalized receptors from clathrin-coated vesicles to early endosomes during zebrafish endoderm formation. PMID:27545838

  11. IRAS Modulates Opioid Tolerance and Dependence by Regulating μ Opioid Receptor Trafficking.

    Li, Fei; Ma, Hao; Wu, Ning; Li, Jin

    2016-09-01

    Imidazoline receptor antisera-selected (IRAS) protein, the mouse homologue named Nischarin, was found to target to early endosomes with properties of sorting nexins in vitro. Recently, we generated IRAS knockout mice and found IRAS deficiency exacerbated the analgesic tolerance and physical dependence caused by opioids, suggesting that IRAS plays a role in regulating μ opioid receptor (MOR) functions. In the present study, we found that IRAS interacts with MOR and regulates MOR trafficking in vitro. In the CHO or HEK293 cells co-expressing MOR and IRAS, IRAS, through its PX domain, interacted with MOR. The interaction facilitated the recycling of internalized MOR and prevented MOR downregulation induced by DAMGO, the MOR agonist. Functionally, IRAS accelerated MOR resensitization and attenuated DAMGO-induced MOR desensitization, which is believed as one of mechanisms mediating opioid tolerance and dependence. Taken together, we propose that IRAS is a new MOR interacting protein and regulates agonist-induced trafficking of MOR via sorting internalized MOR to the recycling pathway, which may be a molecular mechanism underlying IRAS modulating opioid tolerance and dependence. PMID:26363797

  12. Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells.

    Singh, Bhuminder; Coffey, Robert J

    2014-01-01

    A largely unilamellar epithelial layer lines body cavities and organ ducts such as the digestive tract and kidney tubules. This polarized epithelium is composed of biochemically and functionally separate apical and basolateral surfaces. The epidermal growth factor receptor (EGFR) signaling pathway is a critical regulator of epithelial homeostasis and is perturbed in a number of epithelial disorders. It is underappreciated that in vivo EGFR signaling is most often initiated by cell-surface delivery and processing of one of seven transmembrane ligands, resulting in release of the soluble form that binds EGFR. In polarized epithelial cells, EGFR is restricted largely to the basolateral surface, and apical or basolateral ligand delivery therefore has important biological consequences. In vitro approaches have been used to study the biosynthesis, cell-surface delivery, proteolytic processing, and release of soluble EGFR ligands in polarized epithelial cells. We review these results, discuss their relevance to normal physiology, and demonstrate the pathophysiological consequences of aberrant trafficking. These studies have uncovered a rich diversity of apico-basolateral trafficking mechanisms among the EGFR ligands, provided insights into the pathogenesis of an inherited magnesium-wasting disorder of the kidney (isolated renal hypomagnesemia), and identified a new mode of EGFR ligand signaling via exosomes. PMID:24215440

  13. [Interactions between dopamine receptor and NMDA/type A γ-aminobutyric acid receptors].

    Chen, Hui-Ying; Wei, Ting-Jia; Weng, Jing-Jin; Qin, Jiang-Yuan; Huang, Xi; Su, Ji-Ping

    2016-04-25

    Type A γ-aminobutyric acid receptors (GABAAR) and N-methyl-D-aspartate receptors (NMDAR) are the major inhibitory and excitatory receptors in the central nervous system, respectively. Co-expression of the receptors in the synapse may lead to functional influence between receptors, namely receptor interaction. The interactions between GABAAR and NMDAR can be either positive or negative. However, the mechanisms of interaction between the two receptors remain poorly understood, and potential mechanisms include (1) through a second messenger; (2) by receptors trafficking; (3) by direct interaction; (4) by a third receptor-mediation. Dopamine is the most abundant catecholamine neurotransmitter in the brain, and its receptors, dopamine receptors (DR) can activate multiple signaling pathways. Earlier studies on the interaction between DR and GABAAR/NMDAR have shown some underlying mechanisms, suggesting that DR could mediate the interaction between GABAAR and NMDAR. This paper summarized some recent progresses in the studies of the interaction between DR and NMDAR/GABAAR, providing a further understanding on the interaction between NMDAR and GABAAR mediated by DR. PMID:27108906

  14. Dendritic Assembly of Heteromeric γ-Aminobutyric Acid Type B Receptor Subunits in Hippocampal NeuronsS⃞

    Ramírez, Omar A.; Vidal, René L.; Tello, Judith A.; Vargas, Karina J.; Kindler, Stefan; Härtel, Steffen; Couve, Andrés

    2009-01-01

    Understanding the mechanisms that control synaptic efficacy through the availability of neurotransmitter receptors depends on uncovering their specific intracellular trafficking routes. γ-Aminobutyric acid type B (GABAB) receptors (GABABRs) are obligatory heteromers present at dendritic excitatory and inhibitory postsynaptic sites. It is unknown whether synthesis and assembly of GABABRs occur in the somatic endoplasmic reticulum (ER) followed by vesicular transport to ...

  15. Monitoring G protein-coupled receptor and β-arrestin trafficking in live cells using enhanced bystander BRET.

    Namkung, Yoon; Le Gouill, Christian; Lukashova, Viktoria; Kobayashi, Hiroyuki; Hogue, Mireille; Khoury, Etienne; Song, Mideum; Bouvier, Michel; Laporte, Stéphane A

    2016-01-01

    Endocytosis and intracellular trafficking of receptors are pivotal to maintain physiological functions and drug action; however, robust quantitative approaches are lacking to study such processes in live cells. Here we present new bioluminescence resonance energy transfer (BRET) sensors to quantitatively monitor G protein-coupled receptors (GPCRs) and β-arrestin trafficking. These sensors are based on bystander BRET and use the naturally interacting chromophores luciferase (RLuc) and green fluorescent protein (rGFP) from Renilla. The versatility and robustness of this approach are exemplified by anchoring rGFP at the plasma membrane or in endosomes to generate high dynamic spectrometric BRET signals on ligand-promoted recruitment or sequestration of RLuc-tagged proteins to, or from, specific cell compartments, as well as sensitive subcellular BRET imaging for protein translocation visualization. These sensors are scalable to high-throughput formats and allow quantitative pharmacological studies of GPCR trafficking in real time, in live cells, revealing ligand-dependent biased trafficking of receptor/β-arrestin complexes. PMID:27397672

  16. Yeast Vps55p, a functional homolog of human obesity receptor gene-related protein, is involved in late endosome to vacuole trafficking.

    Belgareh-Touzé, Naïma; Avaro, Sandrine; Rouillé, Yves; Hoflack, Bernard; Haguenauer-Tsapis, Rosine

    2002-05-01

    The Saccharomyces cerevisiae VPS55 (YJR044c) gene encodes a small protein of 140 amino acids with four potential transmembrane domains. VPS55 belongs to a family of genes of unknown function, including the human gene encoding the obesity receptor gene-related protein (OB-RGRP). Yeast cells with a disrupted VPS55 present normal vacuolar morphology, but exhibit an abnormal secretion of the Golgi form of the soluble vacuolar carboxypeptidase Y. However, trafficking of the membrane-bound vacuolar alkaline phosphatase remains normal. The endocytosis of uracil permease, used as an endocytic marker, is normal in vps55Delta cells, but its degradation is delayed and this marker transiently accumulates in late endosomal compartments. We also found that Vps55p is mainly localized in the late endosomes. Collectively, these results indicate that Vps55p is involved in late endosome to vacuole trafficking. Finally, we show that human OB-RGRP displays the same distribution as Vps55p and corrects the phenotypic defects of the vps55Delta strain. Therefore, the function of Vps55p has been conserved throughout evolution. This study highlights the importance of the multispanning Vps55p and OB-RGRP in membrane trafficking to the vacuole/lysosome of eukaryotic cells. PMID:12006663

  17. Association of nonsense mutation in GABRG2 with abnormal trafficking of GABAA receptors in severe epilepsy.

    Ishii, Atsushi; Kanaumi, Takeshi; Sohda, Miwa; Misumi, Yoshio; Zhang, Bo; Kakinuma, Naoto; Haga, Yoshiko; Watanabe, Kazuyoshi; Takeda, Sen; Okada, Motohiro; Ueno, Shinya; Kaneko, Sunao; Takashima, Sachio; Hirose, Shinichi

    2014-03-01

    Mutations in GABRG2, which encodes the γ2 subunit of GABAA receptors, can cause both genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. Most GABRG2 truncating mutations associated with Dravet syndrome result in premature termination codons (PTCs) and are stably translated into mutant proteins with potential dominant-negative effects. This study involved search for mutations in candidate genes for Dravet syndrome, namely SCN1A, 2A, 1B, 2B, GABRA1, B2, and G2. A heterozygous nonsense mutation (c.118C>T, p.Q40X) in GABRG2 was identified in dizygotic twin girls with Dravet syndrome and their apparently healthy father. Electrophysiological studies with the reconstituted GABAA receptors in HEK cells showed reduced GABA-induced currents when mutated γ2 DNA was cotransfected with wild-type α1 and β2 subunits. In this case, immunohistochemistry using antibodies to the α1 and γ2 subunits of GABAA receptor showed granular staining in the soma. In addition, microinjection of mutated γ2 subunit cDNA into HEK cells severely inhibited intracellular trafficking of GABAA receptor subunits α1 and β2, and retention of these proteins in the endoplasmic reticulum. The mutated γ2 subunit-expressing neurons also showed impaired axonal transport of the α1 and β2 subunits. Our findings suggested that different phenotypes of epilepsy, e.g., GEFS+ and Dravet syndrome (which share similar abnormalities in causative genes) are likely due to impaired axonal transport associated with the dominant-negative effects of GABRG2. PMID:24480790

  18. Cellular Recognition and Trafficking of Amorphous Silica Nanoparticles by Macrophage Scavenger Receptor A

    Orr, Galya; Chrisler, William B.; Cassens, Kaylyn J.; Tan, Ruimin; Tarasevich, Barbara J.; Markillie, Lye Meng; Zangar, Richard C.; Thrall, Brian D.

    2011-09-01

    The internalization of engineered nanoparticles (ENPs) into cells is known to involve active transport mechanisms, yet the precise biological molecules involved are poorly understood. We demonstrate that the uptake of amorphous silica ENPs (92 nm) by macrophage cells is strongly inhibited by silencing expression of scavenger receptor A (SR-A). In addition, ENP uptake is augmented by introducing SR-A expression into human cells that are normally non-phagocytic. Confocal fluorescent microscopy analyses show that the majority of single or small clusters of silica ENPs co-localize intracellularly with SR-A and are internalized through a pathway characteristic of clathrin-dependent endocytosis. In contrast, larger silica NP agglomerates (>500 nm) are poorly co-localized with the receptor, suggesting independent trafficking or internalization pathways are involved. SR-A silencing also caused decreased cellular secretion of pro-inflammatory cytokines in response to silica ENPs. As SR-A is expressed in macrophages throughout the reticulo-endothelial system, this pathway is likely an important determinant of the biodistribution of, and cellular response to ENPs.

  19. Cytosolic PLA2(alpha) activation in Purkinje neurons and its role in AMPA-receptor trafficking.

    Mashimo, Masato; Hirabayashi, Tetsuya; Murayama, Toshihiko; Shimizu, Takao

    2008-09-15

    Cytosolic phospholipase A(2)alpha (cPLA(2)alpha) selectively releases arachidonic acid from membrane phospholipids and has been proposed to be involved in the induction of long-term depression (LTD), a form of synaptic plasticity in the cerebellum. This enzyme requires two events for its full activation: Ca(2+)-dependent translocation from the cytosol to organelle membranes in order to access phospholipids as substrates, and phosphorylation by several kinases. However, the subcellular distribution and activation of cPLA(2)alpha in Purkinje cells and the role of arachidonic acid in cerebellar LTD have not been fully elucidated. In cultured Purkinje cells, stimulation of AMPA receptors, but not metabotropic glutamate receptors, triggered translocation of cPLA(2)alpha to the somatic and dendritic Golgi compartments. This translocation required Ca(2+) influx through P-type Ca(2+) channels. AMPA plus PMA, a chemical method for inducing LTD, released arachidonic acid via phosphorylation of cPLA(2)alpha. AMPA plus PMA induced a decrease in surface GluR2 for more than 2 hours. Interestingly, this reduction was occluded by a cPLA(2)alpha-specific inhibitor. Furthermore, PMA plus arachidonic acid caused the prolonged internalization of GluR2 without activating AMPA receptors. These results suggest that cPLA(2)alpha regulates the persistent decrease in the expression of AMPA receptors, underscoring the role of cPLA(2)alpha in cerebellar LTD. PMID:18713832

  20. One-way membrane trafficking of SOS in receptor-triggered Ras activation.

    Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T

    2016-09-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis. PMID:27501536

  1. Human Trafficking

    ... TRAFFICKING (English) Listen HUMAN TRAFFICKING (English) Published: August 2, 2012 Topics: Public ... organizations that protect and serve trafficking victims. National Human Trafficking Resource Center at 1.888.373.7888 ...

  2. Diversion of phagosome trafficking by pathogenic Rhodococcus equi depends on mycolic acid chain length.

    Sydor, Tobias; von Bargen, Kristine; Hsu, Fong-Fu; Huth, Gitta; Holst, Otto; Wohlmann, Jens; Becken, Ulrike; Dykstra, Tobias; Söhl, Kristina; Lindner, Buko; Prescott, John F; Schaible, Ulrich E; Utermöhlen, Olaf; Haas, Albert

    2013-03-01

    Rhodococcus equi is a close relative of Mycobacterium spp. and a facultative intracellular pathogen which arrests phagosome maturation in macrophages before the late endocytic stage. We have screened a transposon mutant library of R. equi for mutants with decreased capability to prevent phagolysosome formation. This screen yielded a mutant in the gene for β-ketoacyl-(acyl carrier protein)-synthase A (KasA), a key enzyme of the long-chain mycolic acid synthesizing FAS-II system. The longest kasA mutant mycolic acid chains were 10 carbon units shorter than those of wild-type bacteria. Coating of non-pathogenic E. coli with purified wild-type trehalose dimycolate reduced phagolysosome formation substantially which was not the case with shorter kasA mutant-derived trehalose dimycolate. The mutant was moderately attenuated in macrophages and in a mouse infection model, but was fully cytotoxic.Whereas loss of KasA is lethal in mycobacteria, R. equi kasA mutant multiplication in broth was normal proving that long-chain mycolic acid compounds are not necessarily required for cellular integrity and viability of the bacteria that typically produce them. This study demonstrates a central role of mycolic acid chain length in diversion of trafficking by R. equi. PMID:23078612

  3. Internalization, Intracellular Trafficking, Biodistribution of Monoclonal Antibody 806: A Novel Anti-Epidermal Growth Factor Receptor Antibody

    Rushika M. Perera

    2007-12-01

    Full Text Available Overexpression of the epidermal growth factor receptor (EGFR in epithelial tumors is associated with poor prognosis and is the target for a number of cancer therapeutics. Monoclonal antibody (mAb 806 is a novel anti-EGFR antibody with significant therapeutic efficacy in tumor models when used as a single agent, displays synergistic antitumor activity in combination with other EGFR therapeutics. Unlike other EGFR antibodies, mAb 806 is selective for tumor cells and does not bind to normal tissue, making it an ideal candidate for generation of radioisotope or toxin conjugates. Ideally, antibodies suited to these therapeutic applications must bind to and actively internalize their cognate receptor. We investigated the intracellular trafficking of fluorescently tagged mAb 806 in live cells and analyzed its biodistribution in a tumor xenograffed nude mouse model. Following binding to EGFR, mAb 806 was internalized through dynamin-dependent, clathrin-mediated endocytosis. Internalized mAb 806 localized to early endosomes and subsequently trafficked to and accumulation in lysosomal compartments. Furthermore, biodistribution analysis in nude mice showed specific uptake and retention of radiolabeled mAb 806 to human tumor xenografts. These results highlight the potential use of mAb 806 for generation of conjugates suitable for diagnostic and therapeutic use in patients with EGFR-positive malignancies.

  4. Three Basic Residues of Intracellular Loop 3 of the Beta-1 Adrenergic Receptor Are Required for Golgin-160-Dependent Trafficking

    Catherine E. Gilbert

    2014-02-01

    Full Text Available Golgin-160 is a member of the golgin family of proteins, which have been implicated in the maintenance of Golgi structure and in vesicle tethering. Golgin-160 is atypical; it promotes post-Golgi trafficking of specific cargo proteins, including the β-1 adrenergic receptor (β1AR, a G protein-coupled receptor. Here we show that golgin-160 binds directly to the third intracellular loop of β1AR and that this binding depends on three basic residues in this loop. Mutation of the basic residues does not affect trafficking of β1AR from the endoplasmic reticulum through the Golgi complex, but results in reduced steady-state levels at the plasma membrane. We hypothesize that golgin-160 promotes incorporation of β1AR into specific transport carriers at the trans-Golgi network to ensure efficient delivery to the cell surface. These results add to our understanding of the biogenesis of β1AR, and suggest a novel point of regulation for its delivery to the plasma membrane.

  5. Yeast Ste2 receptors as tools for study of mammalian protein kinases and adaptors involved in receptor trafficking

    2006-01-01

    Background Mammalian receptors that couple to effectors via heterotrimeric G proteins (e.g., beta 2-adrenergic receptors) and receptors with intrinsic tyrosine kinase activity (e.g., insulin and IGF-I receptors) constitute the proximal points of two dominant cell signaling pathways. Receptors coupled to G proteins can be substrates for tyrosine kinases, integrating signals from both pathways. Yeast cells, in contrast, display G protein-coupled receptors (e.g., alpha-factor pheromone receptor ...

  6. siRNA screen of ES cell-derived motor neurons identifies novel regulators of tetanus toxin and neurotrophin receptor trafficking

    Marco Terenzio

    2014-05-01

    Full Text Available Neurons rely on the long-range transport of several signalling molecules such as neurotrophins and their receptors, which are required for neuronal development, function and survival. However, the nature of the machinery controlling the trafficking of signalling endosomes containing activated neurotrophin receptors has not yet been completely elucidated. We aimed to identify new players involved in the dynamics of neurotrophin signalling endosomes using a high-throughput unbiased siRNA screening approach to quantify the intracellular accumulation of two fluorescently tagged reporters: the binding fragment of tetanus neurotoxin (HCT, and an antibody directed against the neurotrophin receptor p75NTR. This screen performed in motor neurons differentiated from mouse embryonic stem (ES cells identified a number of candidate genes encoding molecular motors and motor adaptor proteins involved in regulating the intracellular trafficking of these probes. Bicaudal D homolog 1 (BICD1, a molecular motor adaptor with pleiotropic roles in intracellular trafficking, was selected for further analyses, which revealed that BICD1 regulates the intracellular trafficking of HCT and neurotrophin receptors and likely plays an important role in nervous system development and function.

  7. Subtype selective kainic acid receptor agonists

    Bunch, Lennart; Krogsgaard-Larsen, Povl

    2009-01-01

    (S)-Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system, activating the plethora of glutamate receptors (GluRs). In broad lines, the GluRs are divided into two major classes: the ionotropic Glu receptors (iGluRs) and the metabotropic Glu receptors ....... In total, over 100 compounds are described by means of chemical structure and available pharmacological data. With this perspective review, it is our intention to ignite and stimulate inspiration for future design and synthesis of novel subtype selective KA receptor agonists....

  8. Endocytic Trafficking towards the Vacuole Plays a Key Role in the Auxin Receptor SCFTIR-Independent Mechanism of Lateral Root Formation in A.thaliana

    Patricio Pérez-Henríquez; Natasha V.Raikhel; Lorena Norambuena

    2012-01-01

    Plants' developmental plasticity plays a pivotal role in responding to environmental conditions.One of the most plastic plant organs is the root system.Different environmental stimuli such as nutrients and water deficiency may induce lateral root formation to compensate for a low level of water and/or nutrients.It has been shown that the hormone auxin tunes lateral root development and components for its signaling pathway have been identified.Using chemical biology,we discovered an Arabidopsis thaliana lateral root formation mechanism that is independent of the auxin receptor SCFTIR.The bioactive compound Sortin2 increased lateral root occurrence by acting upstream from the morphological marker of lateral root primordium formation,the mitotic activity.The compound did not display auxin activity.At the cellular level,Sortin2 accelerated endosomal trafficking,resulting in increased trafficking of plasma membrane recycling proteins to the vacuole.Sortin2 affected Late endosome/PVC/MVB trafficking and morphology.Combining Sortin2 with well-known drugs showed that endocytic trafficking of Late E/PVC/MVB towards the vacuole is pivotal for Sortin2induced SCFTIR-independent lateral root initiation.Our results revealed a distinctive role for endosomal trafficking in the promotion of lateral root formation via a process that does not rely on the auxin receptor complex SCFTIR.

  9. Endolysosomal trafficking of viral G protein-coupled receptor functions in innate immunity and control of viral oncogenesis.

    Dong, Xiaonan; Cheng, Adam; Zou, Zhongju; Yang, Yih-Sheng; Sumpter, Rhea M; Huang, Chou-Long; Bhagat, Govind; Virgin, Herbert W; Lira, Sergio A; Levine, Beth

    2016-03-15

    The ubiquitin-proteasome system degrades viral oncoproteins and other microbial virulence factors; however, the role of endolysosomal degradation pathways in these processes is unclear. Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma, and a constitutively active viral G protein-coupled receptor (vGPCR) contributes to the pathogenesis of KSHV-induced tumors. We report that a recently discovered autophagy-related protein, Beclin 2, interacts with KSHV GPCR, facilitates its endolysosomal degradation, and inhibits vGPCR-driven oncogenic signaling. Furthermore, monoallelic loss of Becn2 in mice accelerates the progression of vGPCR-induced lesions that resemble human Kaposi's sarcoma. Taken together, these findings indicate that Beclin 2 is a host antiviral molecule that protects against the pathogenic effects of KSHV GPCR by facilitating its endolysosomal degradation. More broadly, our data suggest a role for host endolysosomal trafficking pathways in regulating viral pathogenesis and oncogenic signaling. PMID:26929373

  10. Complex Pharmacology of Free Fatty Acid Receptors

    Milligan, Graeme; Shimpukade, Bharat; Ulven, Trond;

    2016-01-01

    G protein-coupled receptors (GPCRs) are historically the most successful family of drug targets. In recent times it has become clear that the pharmacology of these receptors is far more complex than previously imagined. Understanding of the pharmacological regulation of GPCRs now extends beyond...... pharmacology have shaped understanding of the complex pharmacology of receptors that recognize and are activated by nonesterified or "free" fatty acids (FFAs). The FFA family of receptors is a recently deorphanized set of GPCRs, the members of which are now receiving substantial interest as novel targets for...... the treatment of metabolic and inflammatory diseases. Further understanding of the complex pharmacology of these receptors will be critical to unlocking their ultimate therapeutic potential....

  11. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles

    Singh Jagbir; Michel Deborah; Chitanda Jackson M; Verrall Ronald E; Badea Ildiko

    2012-01-01

    Abstract Background Gene transfer using non-viral vectors offers a non-immunogenic and safe method of gene delivery. Cellular uptake and intracellular trafficking of the nanoparticles can impact on the transfection efficiency of these vectors. Therefore, understanding the physicochemical properties that may influence the cellular uptake and the intracellular trafficking can aid the design of more efficient non-viral gene delivery systems. Recently, we developed novel amino acid-substituted ge...

  12. Pathogenic mechanism of an autism-associated neuroligin mutation involves altered AMPA-receptor trafficking.

    Chanda, S; Aoto, J; Lee, S-J; Wernig, M; Südhof, T C

    2016-02-01

    Neuroligins are postsynaptic cell-adhesion molecules that bind to presynaptic neurexins. Although the general synaptic role of neuroligins is undisputed, their specific functions at a synapse remain unclear, even controversial. Moreover, many neuroligin gene mutations were associated with autism, but the pathophysiological relevance of these mutations is often unknown, and their mechanisms of action uninvestigated. Here, we examine the synaptic effects of an autism-associated neuroligin-4 substitution (called R704C), which mutates a cytoplasmic arginine residue that is conserved in all neuroligins. We show that the R704C mutation, when introduced into neuroligin-3, enhances the interaction between neuroligin-3 and AMPA receptors, increases AMPA-receptor internalization and decreases postsynaptic AMPA-receptor levels. When introduced into neuroligin-4, conversely, the R704C mutation unexpectedly elevated AMPA-receptor-mediated synaptic responses. These results suggest a general functional link between neuroligins and AMPA receptors, indicate that both neuroligin-3 and -4 act at excitatory synapses but perform surprisingly distinct functions, and demonstrate that the R704C mutation significantly impairs the normal function of neuroligin-4, thereby validating its pathogenicity. PMID:25778475

  13. CHILD TRAFFICKING

    Pallavi Chincholkar

    2016-01-01

    Human trafficking is the third biggest beneficial industry on the planet. Child trafficking unlike many other issues is found in both developed and developing nations. NGOs evaluate that 12,000 - 50,000 ladies and kids are trafficked into the nation every year from neighboring states for the sex exchange.

  14. Importance of constitutive activity and arrestin-independent mechanisms for intracellular trafficking of the ghrelin receptor

    Holliday, Nicholas D; Holst, Birgitte; Rodionova, Elena A;

    2007-01-01

    . Furthermore the interaction between phosphorylated receptors and beta-arrestin adaptor proteins has been examined. Replacement of the FLAG-tagged GhrelinR C tail with the equivalent GPR39 domain (GhR-39 chimera) preserved G(q) signaling. However in contrast to the GhrelinR, GhR-39 receptors exhibited no basal...... and substantially decreased agonist-induced internalization in transiently transfected HEK293 cells. Internalized GhrelinR and GhR-39 were predominantly localized to recycling compartments, identified with transferrin and the monomeric G proteins Rab5 and Rab11. Both the inverse agonist [d-Arg(1), d...... embryonic fibroblasts. In contrast, agonist-stimulated GhrelinRs recruited the clathrin adaptor green fluorescent protein-tagged beta-arrestin2 to endosomes, coincident with increased receptor phosphorylation. Thus, GhrelinR internalization to recycling compartments depends on C-terminal motifs and...

  15. New hyperekplexia mutations provide insight into glycine receptor assembly, trafficking, and activation mechanisms

    Bode, Anna; Wood, Sian-Elin; Mullins, Jonathan G L;

    2013-01-01

    hyperekplexia. Most hyperekplexia cases are caused by mutations in the α1 subunit of the human glycine receptor (hGlyR) gene (GLRA1). Here we analyzed 68 new unrelated hyperekplexia probands for GLRA1 mutations and identified 19 mutations, of which 9 were novel. Electrophysiological analysis demonstrated that...

  16. Functional Proteomics Defines the Molecular Switch Underlying FGF Receptor Trafficking and Cellular Outputs

    Francavilla, Chiara; Rigbolt, Kristoffer T.G.; Emdal, Kristina B;

    2013-01-01

    The stimulation of fibroblast growth factor receptors (FGFRs) with distinct FGF ligands generates specific cellular responses. However, the mechanisms underlying this paradigm have remained elusive. Here, we show that FGF-7 stimulation leads to FGFR2b degradation and, ultimately, cell proliferati...

  17. Analysis of GPCR Localization and Trafficking

    Hislop, James N.; von Zastrow, Mark

    2016-01-01

    Localization and trafficking of G protein-coupled receptors (GPCRs) is increasingly recognized to play a fundamental role in receptor-mediated signaling and its regulation. Individual receptors, including closely homologous subtypes with otherwise similar functional properties, can differ considerably in their membrane trafficking properties. In this chapter, we describe several approaches for experimentally assessing the subcellular localization and trafficking of selected GPCRs. Firstly, we describe a flexible method for receptor localization using fluorescence microscopy. We then describe two complementary approaches, using fluorescence flow cytometry and surface biotinylation, for examining receptor internalization and trafficking in the endocytic pathway. PMID:21607873

  18. Interactions of methoxyacetic acid with androgen receptor

    Endocrine disruptive compounds (EDC) alter hormone-stimulated, nuclear receptor-dependent physiological and developmental processes by a variety of mechanisms. One recently identified mode of endocrine disruption is through hormone sensitization, where the EDC modulates intracellular signaling pathways that control nuclear receptor function, thereby regulating receptor transcriptional activity indirectly. Methoxyacetic acid (MAA), the primary, active metabolite of the industrial solvent ethylene glycol monomethyl ether and a testicular toxicant, belongs to this EDC class. Modulation of nuclear receptor activity by MAA could contribute to the testicular toxicity associated with MAA exposure. In the present study, we evaluated the impact of MAA on the transcriptional activity of several nuclear receptors including the androgen receptor (AR), which plays a pivotal role in the development and maturation of spermatocytes. AR transcriptional activity is shown to be increased by MAA through a tyrosine kinase signaling pathway that involves PI3-kinase. In a combinatorial setting with AR antagonists, MAA potentiated the AR response without significantly altering the EC50 for androgen responsiveness, partially alleviating the antagonistic effect of the anti-androgens. Finally, MAA treatment of TM3 mouse testicular Leydig cells markedly increased the expression of Cyp17a1 and Shbg while suppressing Igfbp3 expression by ∼ 90%. Deregulation of these genes may alter androgen synthesis and action in a manner that contributes to MAA-induced testicular toxicity.

  19. Trafficking of α1B-adrenergic receptor mediated by inverse agonist in living cells

    MingXU; Ying-huaGUAN; NingXU; Zhang-yiLIANG; Shu-yiWang; YaoSONG; Chi-deHAN; Xin-shengZHAO; You-yiZHANG

    2005-01-01

    AIM The project is aimed at understanding the action of inverse agonist at single molecule level and capturing the real time picture of molecular behavior of α1B-adrenergic receptor (AR) mediated by inverse agonist in living cells by single molecule detection (SMD). METHODS The location and distribution of α1B-AR was detected by laser confocal and whole cell 3H-prazosin binding assay. Dynamic imaging of BODIPY-FL-labeled prazosin (Praz), specific antagonist of (1-AR, was observed in α1B-AR stably expressed human embryonic kidney 293 (HEK293) living cells. The detection of real-time dynamic behaviors of AR was achieved by using fluorescence-labeled AR and its ligand combined with SMD techniques. RESULTS α1B-AR was predominantly distributed on the cell surface and 8.2% of the total receptors were located in cytosol.

  20. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging

    Henley JM; Wilkinson KA

    2013-01-01

    Even in healthy individuals there is an inexorable agerelated decline in cognitive function. This is due, in large part, to reduced synaptic plasticity caused by changes in the molecular composition of the postsynaptic membrane. AMPA receptors (AMPARs) are glutamate-gated cation channels that mediate the overwhelming majority of fast excitatory transmission in the brain. Changes in AMPAR number and/or function are a core feature of synaptic plasticity and age-related cognitive decline, AMPARs...

  1. Poliovirus trafficking toward central nervous system via human poliovirus receptor-dependent and -independent pathway.

    Seii eOHKA

    2012-04-01

    Full Text Available In humans, paralytic poliomyelitis results from the invasion of the central nervous system by circulating poliovirus (PV via the blood-brain barrier (BBB. After the virus enters the central nervous system (CNS, it replicates in neurons, especially in motor neurons (MNs, inducing the cell death that causes paralytic poliomyelitis. Along with this route of dissemination, neural pathway has been reported in humans, monkeys, and PV-sensitive human PV receptor (hPVR/CD155-transgenic (Tg mice. We demonstrated that a fast retrograde axonal transport process is required for PV dissemination through the sciatic nerve of hPVR-Tg mice and that intramuscularly inoculated PV causes paralysis in a hPVR-dependent manner. We also showed that hPVR-independent axonal transport of PV exists in hPVR-Tg and non-Tg mice, indicating that several different pathways for PV axonal transport exist in these mice. Circulating PV after intravenous inoculation in mice cross the BBB at a high rate in a hPVR-independent manner. Recently, we identified transferrin receptor 1 (TfR1 of mouse brain capillary endothelial cells as a binding protein to PV, implicating that TfR1 is a possible receptor for PV to permeate the BBB.

  2. Morphine-induced trafficking of a mu-opioid receptor interacting protein in rat locus coeruleus neurons

    Jaremko, Kellie M.; Thompson, Nicholas L.; Reyes, Beverly A. S.; Jin, Jay; Ebersole, Brittany; Jenney, Christopher B.; Grigson, Patricia S.; Levenson, Robert; Berrettini, Wade H.; Van Bockstaele, Elisabeth J.

    2014-01-01

    Opiate addiction is a devastating health problem, with approximately 2 million people currently addicted to heroin or non-medical prescription opiates in the United States alone. In neurons, adaptations in cell signaling cascades develop following opioid actions at the mu opioid receptor (MOR). A novel putative target for intervention involves interacting proteins that may regulate trafficking of MOR. Morphine has been shown to induce a re-distribution of a MOR-interacting protein Wntless (WLS, a transport molecule necessary for secretion of neurotrophic Wnt proteins), from cytoplasmic to membrane compartments in rat striatal neurons. Given its opiate-sensitivity and its well-characterized molecular and cellular adaptations to morphine exposure, we investigated the anatomical distribution of WLS and MOR in the rat locus coeruleus (LC)-norepinephrine (NE) system. Dual immunofluorescence microscopy was used to test the hypothesis that WLS is localized to noradrenergic neurons of the LC and that WLS and MOR co-exist in common LC somatodendritic processes, providing an anatomical substrate for their putative interactions. We also hypothesized that morphine would influence WLS distribution in the LC. Rats received saline, morphine or the opiate agonist [D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO), and tissue sections through the LC were processed for immunogold-silver detection of WLS and MOR. Statistical analysis showed a significant re-distribution of WLS to the plasma membrane following morphine treatment in addition to an increase in the proximity of gold-silver labels for MOR and WLS. Following DAMGO treatment, MOR and WLS were predominantly localized within the cytoplasmic compartment when compared to morphine and control. In a separate cohort of rats, brains were obtained from saline-treated or heroin self-administering male rats for pulldown co-immunoprecipitation studies. Results showed an increased association of WLS and MOR following heroin exposure. As

  3. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling.

    Cruse, Glenn; Beaven, Michael A; Music, Stephen C; Bradding, Peter; Gilfillan, Alasdair M; Metcalfe, Dean D

    2015-05-01

    MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1-enriched microdomains. Silencing of MS4A4 in human mast cells altered ligand-induced KIT endocytosis pathways and reduced receptor recycling to the cell surface, thus promoting KIT signaling in the endosomes while reducing that in the plasma membrane, as exemplified by Akt and PLCγ1 phosphorylation, respectively. The altered endocytic trafficking of KIT also resulted in an increase in SCF-induced mast cell proliferation and migration, which may reflect altered signaling in these cells. Our data reveal a novel function for MS4A family proteins in regulating trafficking and signaling, which could have implications in both proliferative and immunological diseases. PMID:25717186

  4. Evolution of retinoic acid receptors and retinoic acid signaling.

    Gutierrez-Mazariegos, Juliana; Schubert, Michael; Laudet, Vincent

    2014-01-01

    Retinoic acid (RA) is a vitamin A-derived morphogen controlling important developmental processes in vertebrates, and more generally in chordates, including axial patterning and tissue formation and differentiation. In the embryo, endogenous RA levels are controlled by RA synthesizing and degrading enzymes and the RA signal is transduced by two retinoid receptors: the retinoic acid receptor (RAR) and the retinoid X receptor (RXR). Both RAR and RXR are members of the nuclear receptor superfamily of ligand-activated transcription factors and mainly act as heterodimers to activate the transcription of target genes in the presence of their ligand, all-trans RA. This signaling pathway was long thought to be a chordate innovation, however, recent findings of gene homologs involved in RA signaling in the genomes of a wide variety of non-chordate animals, including ambulacrarians (sea urchins and acorn worms) and lophotrochozoans (annelids and mollusks), challenged this traditional view and suggested that the RA signaling pathway might have a more ancient evolutionary origin than previously thought. In this chapter, we discuss the evolutionary history of the RA signaling pathway, and more particularly of the RARs, which might have experienced independent gene losses and duplications in different animal lineages. In sum, the available data reveal novel insights into the origin of the RA signaling pathway as well as into the evolutionary history of the RARs. PMID:24962881

  5. Protease-Activated Receptor 4 Variant p.Tyr157Cys Reduces Platelet Functional Responses and Alters Receptor Trafficking

    Norman, Jane E; Cunningham, Margaret R; Jones, Matthew L.; Walker, Mary E; Westbury, Sarah K; Sessions, Richard B.; Mundell, Stuart J.; Mumford, Andrew D.

    2016-01-01

    OBJECTIVE: Protease-activated receptor 4 (PAR4) is a key regulator of platelet reactivity and is encoded by F2RL3, which has abundant rare missense variants. We aimed to provide proof of principle that rare F2LR3 variants potentially affect platelet reactivity and responsiveness to PAR1 antagonist drugs and to explore underlying molecular mechanisms.APPROACH AND RESULTS: We identified 6 rare F2RL3 missense variants in 236 cardiac patients, of which the variant causing a tyrosine 157 to cystei...

  6. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.

    Göttlicher, M; Widmark, E; Q. Li; Gustafsson, J.A.

    1992-01-01

    Peroxisome proliferators such as clofibric acid, nafenopin, and WY-14,643 have been shown to activate PPAR (peroxisome proliferator-activated receptor), a member of the steroid nuclear receptor superfamily. We have cloned the cDNA from the rat that is homologous to that from the mouse [Issemann, I. & Green, S. (1990) Nature (London) 347, 645-650], which encodes a 97% similar protein with a particularly well-conserved putative ligand-binding domain. To search for physiologically occurring acti...

  7. Human Trafficking

    Wilson, David McKay

    2011-01-01

    The shadowy, criminal nature of human trafficking makes evaluating its nature and scope difficult. The U.S. State Department and anti-trafficking groups estimate that worldwide some 27 million people are caught in a form of forced servitude today. Public awareness of modern-day slavery is gaining momentum thanks to new abolitionist efforts. Among…

  8. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling

    Cruse, Glenn; Beaven, Michael A.; Music, Stephen C.; Bradding, Peter; Gilfillan, Alasdair M.; Dean D. Metcalfe

    2015-01-01

    MS4A family members differentially regulate the cell cycle, and aberrant, or loss of, expression of MS4A family proteins has been observed in colon and lung cancer. However, the precise functions of MS4A family proteins and their mechanistic interactions remain unsolved. Here we report that MS4A4 facilitates trafficking of the receptor tyrosine kinase KIT through endocytic recycling rather than degradation pathways by a mechanism that involves recruitment of KIT to caveolin-1–enriched microdo...

  9. Fatty acid binding receptors in intestinal physiology and pathophysiology

    Kaemmerer, Elke; Plum, Patrick; Klaus, Christina; Weiskirchen, Ralf; Liedtke, Christian; Adolf, Maximilian; Schippers, Angela; Wagner, Norbert; Reinartz, Andrea; Gassler, Nikolaus

    2010-01-01

    Free fatty acids are essential dietary components and recognized as important molecules in the maintenance of cellular homeostasis. In the last decade, the molecular pathways for free fatty acid sensing in the gastrointestinal tract have been further elucidated by molecular identification and functional characterization of fatty acid binding receptors. These sensing molecules belong to the family of G protein-coupled receptors. In the intestine, four important receptors have been described so...

  10. Human Trafficking

    ... women and children, are exploited for purposes of prostitution and pornography. However, trafficking also takes place in ... service industry jobs overseas, but be forced into prostitution once they arrive at their destination. Coercion can ...

  11. Involvement of β3A Subunit of Adaptor Protein-3 in Intracellular Trafficking of Receptor-like Protein Tyrosine Phosphatase PCP-2

    Hui DONG; Hong YUAN; Weirong JIN; Yan SHEN; Xiaojing XU; Hongyang WANG

    2007-01-01

    PCP-2 is a human receptor-like protein tyrosine phosphatase and a member of the MAM domain family cloned in human pancreatic adenocarcinoma cells. Previous studies showed that PCP-2 directly interacted with β-catenin through the juxtamembrane domain, dephosphorylated β-catenin and played an important role in the regulation of cell adhesion. Recent study showed that PCP-2 was also involved in the repression of β-catenin-induced transcriptional activity. Here we describe the interactions of PCP-2 with the β3A subunit of adaptor protein (AP)-3 and sorting nexin (SNX) 3. These protein complexes were detected using the yeast two-hybrid assay with the juxtamembrane and membrane-proximal catalytic domain of PCP-2 as "bait". Both AP-3 and SNX3 are molecules involved in intracellular trafficking of membrane receptors. The association between the β3A subunit of AP-3 and PCP-2 was further confirmed in mammalian cells. Our results suggested a possible mechanism of intracellular trafficking of PCP-2 mediated by AP-3 and SNX3 which might participate in the regulation of PCP-2 functions.

  12. Loss of cation-independent mannose 6-phosphate receptor expression promotes the accumulation of lysobisphosphatidic acid in multilamellar bodies.

    Reaves, B J; Row, P E; Bright, N A; Luzio, J P; Davidson, H W

    2000-11-01

    A number of recent studies have highlighted the importance of lipid domains within endocytic organelles in the sorting and movement of integral membrane proteins. In particular, considerable attention has become focussed upon the role of the unusual phospholipid lysobisphosphatidic acid (LBPA). This lipid appears to be directly involved in the trafficking of cholesterol and glycosphingolipids, and accumulates in a number of lysosomal storage disorders. Antibody-mediated disruption of LBPA function also leads to mis-sorting of cation-independent mannose 6-phosphate receptors. We now report that the converse is also true, and that spontaneous loss of cation-independent mannose 6-phosphate receptors from a rat fibroblast cell line led to the formation of aberrant late endocytic structures enriched in LBPA. Accumulation of LBPA was directly dependent upon the loss of the receptors, and could be reversed by expression of bovine cation-independent mannose 6-phosphate receptors in the mutant cell line. Ultrastructural analysis indicated that the abnormal organelles were electron-dense, had a multi-lamellar structure, accumulated endocytosed probes, and were distinct from dense-core lysosomes present within the same cells. The late endocytic structures present at steady state within any particular cell likely reflect the balance of membrane traffic through the endocytic pathway of that cell, and the rate of maturation of individual endocytic organelles. Moreover, there is considerable evidence which suggests that cargo receptors also play a direct mechanistic role in membrane trafficking events. Therefore, loss of such a protein may disturb the overall equilibrium of the pathway, and hence cause the accumulation of aberrant organelles. We propose that this mechanism underlies the phenotype of the mutant cell line, and that the formation of inclusion bodies in many lysosomal storage diseases is also due to an imbalance in membrane trafficking within the endocytic pathway

  13. Regulation of Monocarboxylic Acid Transporter 1 Trafficking by the Canonical Wnt/β-Catenin Pathway in Rat Brain Endothelial Cells Requires Cross-talk with Notch Signaling.

    Liu, Zejian; Sneve, Mary; Haroldson, Thomas A; Smith, Jeffrey P; Drewes, Lester R

    2016-04-01

    The transport of monocarboxylate fuels such as lactate, pyruvate, and ketone bodies across brain endothelial cells is mediated by monocarboxylic acid transporter 1 (MCT1). Although the canonical Wnt/β-catenin pathway is required for rodent blood-brain barrier development and for the expression of associated nutrient transporters, the role of this pathway in the regulation of brain endothelial MCT1 is unknown. Here we report expression of nine members of the frizzled receptor family by the RBE4 rat brain endothelial cell line. Furthermore, activation of the canonical Wnt/β-catenin pathway in RBE4 cells via nuclear β-catenin signaling with LiCl does not alter brain endothelialMct1mRNA but increases the amount of MCT1 transporter protein. Plasma membrane biotinylation studies and confocal microscopic examination of mCherry-tagged MCT1 indicate that increased transporter results from reduced MCT1 trafficking from the plasma membrane via the endosomal/lysosomal pathway and is facilitated by decreased MCT1 ubiquitination following LiCl treatment. Inhibition of the Notch pathway by the γ-secretase inhibitorN-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycinet-butyl ester negated the up-regulation of MCT1 by LiCl, demonstrating a cross-talk between the canonical Wnt/β-catenin and Notch pathways. Our results are important because they show, for the first time, the regulation of MCT1 in cerebrovascular endothelial cells by the multifunctional canonical Wnt/β-catenin and Notch signaling pathways. PMID:26872974

  14. Pharmacology of bile acid receptors: Evolution of bile acids from simple detergents to complex signaling molecules.

    Copple, Bryan L; Li, Tiangang

    2016-02-01

    For many years, bile acids were thought to only function as detergents which solubilize fats and facilitate the uptake of fat-soluble vitamins in the intestine. Many early observations; however, demonstrated that bile acids regulate more complex processes, such as bile acids synthesis and immune cell function through activation of signal transduction pathways. These studies were the first to suggest that receptors may exist for bile acids. Ultimately, seminal studies by many investigators led to the discovery of several bile acid-activated receptors including the farnesoid X receptor, the vitamin D receptor, the pregnane X receptor, TGR5, α5 β1 integrin, and sphingosine-1-phosphate receptor 2. Several of these receptors are expressed outside of the gastrointestinal system, indicating that bile acids may have diverse functions throughout the body. Characterization of the functions of these receptors over the last two decades has identified many important roles for these receptors in regulation of bile acid synthesis, transport, and detoxification; regulation of glucose utilization; regulation of fatty acid synthesis and oxidation; regulation of immune cell function; regulation of energy expenditure; and regulation of neural processes such as gastric motility. Through these many functions, bile acids regulate many aspects of digestion ranging from uptake of essential vitamins to proper utilization of nutrients. Accordingly, within a short time period, bile acids moved beyond simple detergents and into the realm of complex signaling molecules. Because of the important processes that bile acids regulate through activation of receptors, drugs that target these receptors are under development for the treatment of several diseases, including cholestatic liver disease and metabolic syndrome. In this review, we will describe the various bile acid receptors, the signal transduction pathways activated by these receptors, and briefly discuss the physiological processes that

  15. Ionotropic excitatory amino acid receptor ligands. Synthesis and pharmacology of a new amino acid AMPA antagonist

    Madsen, U; Sløk, F A; Stensbøl, T B;

    2000-01-01

    We have previously described the potent and selective (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor agonist, (RS)-2-amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA), and the AMPA receptor antagonist (RS)-2-amino-3-[3-(carboxymethoxy)-5-methyl-4...... excitatory amino acid (EAA) receptors using receptor binding and electrophysiological techniques, and for activity at metabotropic EAA receptors using second messenger assays. Compounds 1 and 4 were essentially inactive. (RS)-2-Amino-3-[3-(2-carboxyethyl)-5-methyl-4-isoxazolyl]propionic acid (ACMP, 2), on......-isoxazolyl]propionic acid (AMOA). Using these AMPA receptor ligands as leads, a series of compounds have been developed as tools for further elucidation of the structural requirements for activation and blockade of AMPA receptors. The synthesized compounds have been tested for activity at ionotropic...

  16. OXIDATIVE STRESS TRIGGERS CA2+-DEPENDENT LYSOSOME TRAFFICKING AND ACTIVATION OF ACID SPHINGOMYELINASE

    Li, Xiang; Gulbins, Erich; Zhang, Yang

    2012-01-01

    Recent studies demonstrate that rapid translocation of the acid sphingomyelinase (ASM), a lysosomal hydrolase, to the outer leaflet of the cell membrane and concomitant release of ceramide constitute a common cellular signaling cascade to various stimuli including CD95 ligation, UV-irradiation, bacterial and viral infections. Reactive oxygen species (ROS) were shown to play a crucial role in regulating this signaling cascade at least for some bacterial infections and UV-irradiation. However, ...

  17. N-methyl-D-aspartic acid receptor agonists

    Madsen, U; Frydenvang, Karla Andrea; Ebert, B;

    1996-01-01

    (R,S)-2-Amino-2-(3-hydroxy-5-methyl-4-isoxazolyl)acetic acid [(R,S)-AMAA, 4] is a potent and selective agonist at the N-methyl-D-aspartic acid (NMDA) subtype of excitatory amino acid receptors. Using the Ugi "four-component condensation" method, the two diastereomers (2R)- and (2S)-2-[3-(benzylox...

  18. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking.

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N; Grossfeld, Paul D; Manabe, Toshiya; Akiyama, Tetsu

    2016-01-01

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients. PMID:26979507

  19. Novel retinoic acid receptor ligands in Xenopus embryos.

    Blumberg, B; Bolado, J; Derguini, F; Craig, A G; Moreno, T A; Chakravarti, D; Heyman, R A; Buck, J.; Evans, R M

    1996-01-01

    Retinoids are a large family of natural and synthetic compounds related to vitamin A that have pleiotropic effects on body physiology, reproduction, immunity, and embryonic development. The diverse activities of retinoids are primarily mediated by two families of nuclear retinoic acid receptors, the RARs and RXRs. Retinoic acids are thought to be the only natural ligands for these receptors and are widely assumed to be the active principle of vitamin A. However, during an unbiased, bioactivit...

  20. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    Melton, Elaina M. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Center for Cardiovascular Sciences, Albany Medical College, Albany, NY (United States); Cerny, Ronald L. [Department of Chemistry, University of Nebraska, Lincoln, NE (United States); DiRusso, Concetta C. [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States); Black, Paul N., E-mail: pblack2@unl.edu [Department of Biochemistry, University of Nebraska, Lincoln, NE (United States)

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  1. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  2. Mouse Strain Impacts Fatty Acid Uptake and Trafficking in Liver, Heart, and Brain: A Comparison of C57BL/6 and Swiss Webster Mice.

    Seeger, D R; Murphy, E J

    2016-05-01

    C57BL/6 and Swiss Webster mice are used to study lipid metabolism, although differences in fatty acid uptake between these strains have not been reported. Using a steady state kinetic model, [1-(14)C]16:0, [1-(14)C]20:4n-6, or [1-(14)C]22:6n-3 was infused into awake, adult male mice and uptake into liver, heart, and brain determined. The integrated area of [1-(14)C]20:4n-6 in plasma was significantly increased in C57BL/6 mice, but [1-(14)C]16:0 and [1-(14)C]22:6n-3 were not different between groups. In heart, uptake of [1-(14)C]20:4n-6 was increased 1.7-fold in C57BL/6 mice. However, trafficking of [1-(14)C]22:6n-3 into the organic fraction of heart was significantly decreased 33 % in C57BL/6 mice. Although there were limited differences in fatty acid tracer trafficking in liver or brain, [1-(14)C]16:0 incorporation into liver neutral lipids was decreased 18 % in C57BL/6 mice. In heart, the amount of [1-(14)C]16:0 and [1-(14)C]22:6n-3 incorporated into total phospholipids were decreased 45 and 49 %, respectively, in C57BL/6 mice. This was accounted for by a 53 and 37 % decrease in [1-(14)C]16:0 and 44 and 52 % decrease in [1-(14)C]22:6n-3 entering ethanolamine glycerophospholipids and choline glycerophospholipids, respectively. In contrast, there was a significant increase in [1-(14)C]20:4n-6 esterification into all heart phospholipids of C57BL/6 mice. Although changes in uptake were limited to heart, several significant differences were found in fatty acid trafficking into heart, liver, and brain phospholipids. In summary, our data demonstrates differences in tissue fatty acid uptake and trafficking between mouse strains is an important consideration when carrying out fatty acid metabolic studies. PMID:26797754

  3. Promiscuous Seven Transmembrane Receptors Sensing L-α-amino Acids

    Smajilovic, Sanela; Wellendorph, Petrine; Bräuner-Osborne, Hans

    2014-01-01

    A number of nutrient sensing seven trans-membrane (7TM) receptors have been identified and characterized over the past few years. While the sensing mechanisms to carbohydrates and free fatty acids are well understood, the molecular basis of amino acid sensing has recently come to the limelight. T...

  4. Plectin regulates the signaling and trafficking of the HIV-1 co-receptor CXCR4 and plays a role in HIV-1 infection

    The CXC chemokine CXCL12 and its cognate receptor CXCR4 play an important role in inflammation, human immunodeficiency virus (HIV) infection and cancer metastasis. The signal transduction and intracellular trafficking of CXCR4 are involved in these functions, but the underlying mechanisms remain incompletely understood. In the present study, we demonstrated that the CXCR4 formed a complex with the cytolinker protein plectin in a ligand-dependent manner in HEK293 cells stably expressing CXCR4. The glutathione-S-transferase (GST)-CXCR4 C-terminal fusion proteins co-precipitated with the full-length and the N-terminal fragments of plectin isoform 1 but not with the N-terminal deletion mutants of plectin isoform 1, thereby suggesting an interaction between the N-terminus of plectin and the C-terminus of CXCR4. This interaction was confirmed by confocal microscopic reconstructions showing co-distribution of these two proteins in the internal vesicles after ligand-induced internalization of CXCR4 in HEK293 cells stably expressing CXCR4. Knockdown of plectin with RNA interference (RNAi) significantly inhibited ligand-dependent CXCR4 internalization and attenuated CXCR4-mediated intracellular calcium mobilization and activation of extracellular signal regulated kinase 1/2 (ERK1/2). CXCL12-induced chemotaxis of HEK293 cells stably expressing CXCR4 and of Jurkat T cells was inhibited by the plectin RNAi. Moreover, CXCR4 tropic HIV-1 infection in MAGI (HeLa-CD4-LTR-Gal) cells was inhibited by the RNAi of plectin. Thus, plectin appears to interact with CXCR4 and plays an important role in CXCR4 signaling and trafficking and HIV-1 infection

  5. Excitatory synapses are stronger in the hippocampus of Rett syndrome mice due to altered synaptic trafficking of AMPA-type glutamate receptors.

    Li, Wei; Xu, Xin; Pozzo-Miller, Lucas

    2016-03-15

    Deficits in long-term potentiation (LTP) at central excitatory synapses are thought to contribute to cognitive impairments in neurodevelopmental disorders associated with intellectual disability and autism. Using the methyl-CpG-binding protein 2 (Mecp2) knockout (KO) mouse model of Rett syndrome, we show that naïve excitatory synapses onto hippocampal pyramidal neurons of symptomatic mice have all of the hallmarks of potentiated synapses. Stronger Mecp2 KO synapses failed to undergo LTP after either theta-burst afferent stimulation or pairing afferent stimulation with postsynaptic depolarization. On the other hand, basal synaptic strength and LTP were not affected in slices from younger presymptomatic Mecp2 KO mice. Furthermore, spine synapses in pyramidal neurons from symptomatic Mecp2 KO are larger and do not grow in size or incorporate GluA1 subunits after electrical or chemical LTP. Our data suggest that LTP is occluded in Mecp2 KO mice by already potentiated synapses. The higher surface levels of GluA1-containing receptors are consistent with altered expression levels of proteins involved in AMPA receptor trafficking, suggesting previously unidentified targets for therapeutic intervention for Rett syndrome and other MECP2-related disorders. PMID:26929363

  6. Bile acid derivatives as ligands of the farnesoid x receptor: molecular determinants for bile acid binding and receptor modulation.

    Gioiello, Antimo; Cerra, Bruno; Mostarda, Serena; Guercini, Chiara; Pellicciari, Roberto; Macchiarulo, Antonio

    2014-01-01

    Bile acids are a peculiar class of steroidal compounds that never cease to amaze. From being simple detergents with a primary role in aiding the absorption of fats and fat-soluble vitamins, bile acids are now widely considered as crucial hormones endowed with genomic and non-genomic functions that are mediated by their interaction with several proteins including the nuclear receptor Farnesoid X Receptor (FXR). Taking advantages of the peculiar properties of bile acids in interacting with the FXR receptor, several biliary derivatives have been synthesized and tested as FXR ligands. The availability of these compounds has contributed to characterize the receptor from a structural, patho-physiological and therapeutic standpoint. Among these, obeticholic acid is a first-in-class FXR agonist that is demonstrating hepatoprotective effects upon FXR activation in patients with liver diseases such as primary biliary cirrhosis and nonalcoholic steatohepatitis. This review provides an historical overview of the rationale behind the discovery of obeticholic acid and chemical tools generated to depict the molecular features and bio-pharmacological relevance of the FXR receptor, as well as to summarize structure-activity relationships of bile acid-based FXR ligands so far reported. PMID:25388535

  7. Multiple roles of the extracellular vestibule amino acid residues in the function of the rat P2X4 receptor.

    Milos B Rokic

    Full Text Available The binding of ATP to trimeric P2X receptors (P2XR causes an enlargement of the receptor extracellular vestibule, leading to opening of the cation-selective transmembrane pore, but specific roles of vestibule amino acid residues in receptor activation have not been evaluated systematically. In this study, alanine or cysteine scanning mutagenesis of V47-V61 and F324-N338 sequences of rat P2X4R revealed that V49, Y54, Q55, F324, and G325 mutants were poorly responsive to ATP and trafficking was only affected by the V49 mutation. The Y54F and Y54W mutations, but not the Y54L mutation, rescued receptor function, suggesting that an aromatic residue is important at this position. Furthermore, the Y54A and Y54C receptor function was partially rescued by ivermectin, a positive allosteric modulator of P2X4R, suggesting a rightward shift in the potency of ATP to activate P2X4R. The Q55T, Q55N, Q55E, and Q55K mutations resulted in non-responsive receptors and only the Q55E mutant was ivermectin-sensitive. The F324L, F324Y, and F324W mutations also rescued receptor function partially or completely, ivermectin action on channel gating was preserved in all mutants, and changes in ATP responsiveness correlated with the hydrophobicity and side chain volume of the substituent. The G325P mutant had a normal response to ATP, suggesting that G325 is a flexible hinge. A topological analysis revealed that the G325 and F324 residues disrupt a β-sheet upon ATP binding. These results indicate multiple roles of the extracellular vestibule amino acid residues in the P2X4R function: the V49 residue is important for receptor trafficking to plasma membrane, the Y54 and Q55 residues play a critical role in channel gating and the F324 and G325 residues are critical for vestibule widening.

  8. Peripheral prostaglandin E2 prolongs the sensitization of nociceptive dorsal root ganglion neurons possibly by facilitating the synthesis and anterograde axonal trafficking of EP4 receptors.

    St-Jacques, Bruno; Ma, Weiya

    2014-11-01

    Prostaglandin E2 (PGE2), a well-known pain mediator enriched in inflamed tissues, plays a pivotal role in the genesis of chronic pain conditions such as inflammatory and neuropathic pain. PGE2-prolonged sensitization of nociceptive dorsal root ganglion (DRG) neurons (nociceptors) may contribute to the transition from acute to chronic pain. However, the underlying cellular mechanisms are poorly understood. In this study, we tested the hypothesis that facilitating synthesis and anterograde axonal trafficking of EP receptors contribute to PGE2-prolonged nociceptor sensitization. Intraplantar (i.pl.) injection of a stabilized PGE2 analog, 16,16 dimethyl PGE2 (dmPGE2), in a dose- and time-dependent manner, not only elicited primary tactile allodynia which lasted for 1d, but also prolonged tactile allodynia evoked by a subsequent i.pl. injection of dmPGE2 from 1d to 4d. Moreover, the duration of tactile allodynia was progressively prolonged following multiple sequential i.pl. injections of dmPGE2. Co-injection of the selective EP1 or EP4 receptor antagonist, the inhibitors of cAMP, PKA, PKC, PKCε or PLC as well as an interleukin-6 (IL-6) neutralizing antiserum differentially blocked primary tactile allodynia elicited by the 1st dmPGE2 and the prolonged tactile allodynia evoked by the 2nd dmPGE2, suggesting the involvement of these signaling events in dmPGE2-induced nociceptor activation and sensitization. Co-injection of a selective COX2 inhibitor or two EP4 antagonists prevented or shortened inflammagen-prolonged nociceptor sensitization. I.pl. injection of dmPGE2 or carrageenan time-dependently increased EP4 levels in L4-6 DRG neurons and peripheral nerves. EP4 was expressed in almost half of IB4-binding nociceptors of L4-6 DRG. Taken together, our data suggest that stimulating the synthesis and anterograde axonal trafficking to increase EP4 availability at the axonal terminals of nociceptors is likely a novel mechanism underlying PGE2-prolonged nociceptor

  9. Direct Channeling of Retinoic Acid between Cellular Retinoic Acid-Binding Protein II and Retinoic Acid Receptor Sensitizes Mammary Carcinoma Cells to Retinoic Acid-Induced Growth Arrest

    Budhu, Anuradha S.; Noy, Noa

    2002-01-01

    Cellular retinoic acid-binding protein II (CRABP-II) is an intracellular lipid-binding protein that associates with retinoic acid with a subnanomolar affinity. We previously showed that CRABP-II enhances the transcriptional activity of the nuclear receptor with which it shares a common ligand, namely, the retinoic acid receptor (RAR), and we suggested that it may act by delivering retinoic acid to this receptor. Here, the mechanisms underlying the effects of CRABP-II on the transcriptional ac...

  10. Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis

    Peggy P. Ho; Steinman, Lawrence

    2016-01-01

    Bile acids bind to the nuclear hormone receptor, farnesoid X receptor (FXR). This bile acid–FXR interaction regulates bile acid synthesis, transport, and cholesterol metabolism. Recently, drugs targeting FXR activation have been reported to treat both liver and intestinal inflammatory diseases in both animal models and human clinical trials. Experimental autoimmune encephalomyelitis (EAE) is an inflammatory demyelinating disease of the central nervous system and serves as an animal model for ...

  11. Fission yeast arrestin-related trafficking adaptor, Arn1/Any1, is ubiquitinated by Pub1 E3 ligase and regulates endocytosis of Cat1 amino acid transporter

    Akio Nakashima

    2014-05-01

    Full Text Available The Tsc1–Tsc2 complex homologous to human tuberous sclerosis complex proteins governs amino acid uptake by regulating the expression and intracellular distribution of amino acid transporters in Schizosaccharomyces pombe. Here, we performed a genetic screening for molecules that are involved in amino acid uptake and found Arn1 (also known as Any1. Arn1 is homologous to ART1, an arrestin-related trafficking adaptor (ART in Saccharomyces cerevisiae, and contains a conserved arrestin motif, a ubiquitination site, and two PY motifs. Overexpression of arn1+ confers canavanine resistance on cells, whereas its disruption causes hypersensitivity to canavanine. We also show that Arn1 regulates endocytosis of the Cat1 amino acid transporter. Furthermore, deletion of arn1+ suppresses a defect of amino acid uptake and the aberrant Cat1 localization in tsc2Δ. Arn1 interacts with and is ubiquitinated by the Pub1 ubiquitin ligase, which is necessary to regulate Cat1 endocytosis. Cat1 undergoes ubiquitinations on lysine residues within the N-terminus, which are mediated, in part, by Arn1 to determine Cat1 localization. Correctively, Arn1 is an ART in S. pombe and contributes to amino acid uptake through regulating Cat1 endocytosis in which Tsc2 is involved.

  12. Deletion of the NMDA-NR1 receptor subunit gene in the mouse nucleus accumbens attenuates apomorphine-induced dopamine D1 receptor trafficking and acoustic startle behavior

    Glass, Michael J.; Robinson, Danielle C.; Waters, Elizabeth; Pickel, Virginia M.

    2013-01-01

    The nucleus accumbens (Acb) contains subpopulations of neurons defined by their receptor content and potential involvement in sensorimotor gating and other behaviors that are dysfunctional in schizophrenia. In Acb neurons, the NMDA NR1 (NR1) subunit is co-expressed not only with the dopamine D1 receptor (D1R), but also with the μ-opioid receptor (μ-OR), which mediates certain behaviors that are adversely impacted by schizophrenia. The NMDA-NR1 subunit has been suggested to play a role in the ...

  13. Retinoic Acid-mediated Nuclear Receptor Activation and Hepatocyte Proliferation

    Bushue, Nathan; Wan, Yu-Jui Yvonne

    2016-01-01

    Due to their well-known differentiation and apoptosis-inducing abilities, retinoic acid (RA) and its analogs have strong anti-cancer efficacy in human cancers. However, in vivo RA is a liver mitogen. While speculation has persisted that RA-mediated signaling is likely involved in hepatocyte proliferation during liver regeneration, direct evidence is still required. Findings in support of this proposition include observations that a release of retinyl palmitate (the precursor of RA) occurs in liver stellate cells following liver injury. Nevertheless, the biological action of this released vitamin A is virtually unknown. More likely is that the released vitamin A is converted to RA, the biological form, and then bound to a specific receptor (retinoid x receptor; RXRα), which is most abundantly expressed in the liver. Considering the mitogenic effects of RA, the RA-activated RXRα would likely then influence hepatocyte proliferation and liver tissue repair. At present, the mechanism by which RA stimulates hepatocyte proliferation is largely unknown. This review summarizes the activation of nuclear receptors (peroxisome proliferator activated receptor-α, pregnane x receptor, constitutive androstane receptor, and farnesoid x receptor) in an RXRα dependent manner to induce hepatocyte proliferation, providing a link between RA and its proliferative role.

  14. RalA employs GRK2 and β-arrestins for the filamin A-mediated regulation of trafficking and signaling of dopamine D2 and D3 receptor.

    Zheng, Mei; Zhang, Xiaohan; Sun, NingNing; Min, Chengchun; Zhang, Xiaowei; Kim, Kyeong-Man

    2016-08-01

    Filamin A (FLNA) is known to act as platform for the signaling and intracellular trafficking of various GPCRs including dopamine D2 and D3 receptors (D2R, D3R). To understand molecular mechanisms involved in the FLNA-mediated regulation of D2R and D3R, comparative studies were conducted on the signaling and intracellular trafficking of the D2R and D3R in FLNA-knockdown cells, with a specific focus on the roles of the proteins that interact with FLNA and the D2R and D3R. Lowering the level of cellular FLNA caused an elevation in RalA activity and resulted in selective interference with the normal intracellular trafficking and signaling of the D2R and D3R, through GRK2 and β-arrestins, respectively. Knockdown of FLNA or coexpression of active RalA interfered with the recycling of the internalized D2R and resulted in the development of receptor tolerance. Active RalA was found to interact with GRK2 to sequester it from D2R. Knockdown of FLNA or coexpression of active RalA prevented D3R from coupling with G protein. The selective involvement of GRK2- and β-arrestins in the RalA-mediated cellular processes of the D2R and D3R was achieved via their different modes of interactions with the receptor and their distinct functional roles in receptor regulation. Our results show that FLNA is a multi-functional protein that acts as a platform on which D2R and D3R can interact with various proteins, through which selective regulation of these receptors occurs in combination with GRK2 and β-arrestins. PMID:27188791

  15. Molecular pharmacology of homologues of ibotenic acid at cloned metabotropic glutamic acid receptors

    Bräuner-Osborne, Hans; Nielsen, B; Krogsgaard-Larsen, P

    We have studied the effects of the enantiomers of 2-amino-3-(3-hydroxyisoxazol-5-yl)propionic acid (homoibotenic acid, HIBO) and analogues substituted with a methyl, bromo or butyl group in the four position of the ring at cloned metabotropic glutamate (mGlu) receptors expressed in Chinese hamste...

  16. Bile acid nuclear receptor FXR and digestive system diseases

    Lili Ding

    2015-03-01

    Full Text Available Bile acids (BAs are not only digestive surfactants but also important cell signaling molecules, which stimulate several signaling pathways to regulate some important biological processes. The bile-acid-activated nuclear receptor, farnesoid X receptor (FXR, plays a pivotal role in regulating bile acid, lipid and glucose homeostasis as well as in regulating the inflammatory responses, barrier function and prevention of bacterial translocation in the intestinal tract. As expected, FXR is involved in the pathophysiology of a wide range of diseases of gastrointestinal tract, including inflammatory bowel disease, colorectal cancer and type 2 diabetes. In this review, we discuss current knowledge of the roles of FXR in physiology of the digestive system and the related diseases. Better understanding of the roles of FXR in digestive system will accelerate the development of FXR ligands/modulators for the treatment of digestive system diseases.

  17. Retinoic acid receptor alpha is associated with tamoxifen resistance in breast cancer

    Johansson, Henrik J; Sanchez, Betzabe C.; Mundt, Filip; Forshed, Jenny; Kovacs, Aniko; Panizza, Elena; Hultin-Rosenberg, Lina; Lundgren, Bo; Martens, Ulf; Máthé, Gyöngyvér; Yakhini, Zohar; Helou, Khalil; Krawiec, Kamilla; Kanter, Lena; Hjerpe, Anders

    2013-01-01

    About one-third of oestrogen receptor alpha-positive breast cancer patients treated with tamoxifen relapse. Here we identify the nuclear receptor retinoic acid receptor alpha as a marker of tamoxifen resistance. Using quantitative mass spectrometry-based proteomics, we show that retinoic acid receptor alpha protein networks and levels differ in a tamoxifen-sensitive (MCF7) and a tamoxifen-resistant (LCC2) cell line. High intratumoural retinoic acid receptor alpha protein levels also correlate...

  18. Soman- or kainic acid-induced convulsions decrease muscarinic receptors but not benzodiazepine receptors

    [3H]Quinuclidinyl benzilate (QNB) binding to muscarinic receptors decreased in the rat forebrain after convulsions induced by a single dose of either soman, a potent inhibitor of acetylcholinesterase, or kainic acid, an excitotoxin. A Rosenthal plot revealed that the receptors decreased in number rather than affinity. When the soman-induced convulsions were blocked, the decrease in muscarinic receptors at 3 days was less extensive than when convulsions occurred and at 10 days they approached control levels in most of the brain areas. The most prominent decrements in QNB binding were in the piriform cortex where the decline in QNB binding is probably related to the extensive convulsion-associated neuropathology. The decrements in QNB binding after convulsions suggest that the convulsive state leads to a down-regulation of muscarinic receptors in some brain areas. In contrast to the decrease in QNB binding after convulsions, [3H]flunitrazepam binding to benzodiazepine receptors did not change even in the piriform cortex where the loss in muscarinic receptors was most prominent. Thus, it appears that those neuronal processes that bear muscarinic receptors are more vulnerable to convulsion-induced change than those with benzodiazepine receptors

  19. Activity of L-alpha-amino acids at the promiscuous goldfish odorant receptor 5.24

    Christiansen, Bolette; Wellendorph, Petrine; Bräuner-Osborne, Hans

    The goldfish odorant receptor 5.24 is a member of family C of G protein-coupled receptors and is closely related to the human receptor GPRC6A. Receptor 5.24 has previously been shown to have binding affinity for L-alpha-amino acids, especially the basic amino acids arginine and lysine. Here we re...

  20. The Arabidopsis Vacuolar Sorting Receptor1 Is Required for Osmotic Stress-Induced Abscisic Acid Biosynthesis

    Wang, Zhen-Yu

    2014-11-21

    Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.

  1. Adrenergic receptors and gastric acid secretion in dogs. The influence of beta 2-receptors

    Gottrup, F; Hovendal, C; Bech, K; Andersen, D

    1984-01-01

    The action of adrenergic subtypes of receptors in gastric acid secretion is still uncertain. The purpose of this study was to establish the influence of beta 2-adrenoceptors in the regulation of gastric secretion in conscious gastric fistula dogs. A dose-related inhibitory effect of beta 2...

  2. Molecular basis for amino acid sensing by family C G-protein-coupled receptors

    Wellendorph, Petrine; Bräuner-Osborne, Hans

    2009-01-01

    -alpha;-amino acid receptor G-protein-coupled receptor family C, group 6, subtype A (GPRC6A) and seven orphan receptors. Aside from the orphan receptors, the family C GPCRs are dimeric receptors characterized by a large extracellular Venus flytrap domain which bind the endogenous agonists. Except from the GABA(B1...

  3. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1

    Morland, Cecilie; Lauritzen, Knut Huso; Puchades, Maja;

    2015-01-01

    We have proposed that lactate is a “volume transmitter” in the brain and underpinned this by showing that the lactate receptor, G-protein-coupled receptor 81 (GPR81, also known as HCA1 or HCAR1), which promotes lipid storage in adipocytes, is also active in the mammalian brain. This includes the ...

  4. In silico discovery of novel Retinoic Acid Receptor agonist structures

    Samuels Herbert H

    2001-06-01

    Full Text Available Abstract Background Several Retinoic Acid Receptors (RAR agonists have therapeutic activity against a variety of cancer types; however, unacceptable toxicity profiles have hindered the development of drugs. RAR agonists presenting novel structural and chemical features could therefore open new avenues for the discovery of leads against breast, lung and prostate cancer or leukemia. Results We have analysed the induced fit of the active site residues upon binding of a known ligand. The derived binding site models were used to dock over 150,000 molecules in silico (or virtually to the structure of the receptor with the Internal Coordinates Mechanics (ICM program. Thirty ligand candidates were tested in vitro. Conclusions Two novel agonists resulting from the predicted receptor model were active at 50 nM. One of them displays novel structural features which may translate into the development of new ligands for cancer therapy.

  5. Disease-causing Mutation in PKR2 Receptor Reveals a Critical Role of Positive Charges in the Second Intracellular Loop for G-protein Coupling and Receptor Trafficking*

    Peng, Zhen; Tang, Yong; Luo, Hunjin; Jiang, Fang; Yang, Jiannan; Sun, Lin; Li, Jia-Da

    2011-01-01

    Prokineticins are a pair of signal factors involved in many physiological processes by binding to two closely related G-protein-coupled receptors, PKR1 and PKR2. Recently, mutations in prokineticin 2 (PK2) and PKR2 are found to be associated with Kallmann syndrome and/or idiopathic hypogonadotropic hypogonadism, disorders characterized by delayed puberty and infertility. However, little is known how PKRs interact and activate G-proteins to elicit signal transduction. In the present study, we ...

  6. In silico discovery of novel Retinoic Acid Receptor agonist structures

    Samuels Herbert H; Schapira Matthieu; Raaka Bruce M; Abagyan Ruben

    2001-01-01

    Abstract Background Several Retinoic Acid Receptors (RAR) agonists have therapeutic activity against a variety of cancer types; however, unacceptable toxicity profiles have hindered the development of drugs. RAR agonists presenting novel structural and chemical features could therefore open new avenues for the discovery of leads against breast, lung and prostate cancer or leukemia. Results We have analysed the induced fit of the active site residues upon binding of a known ligand. The derived...

  7. Identification of COUP-TFII Orphan Nuclear Receptor as a Retinoic Acid-Activated Receptor

    Kruse, Schoen W; Suino-Powell, Kelly; Zhou, X Edward; Kretschman, Jennifer E; Reynolds, Ross; Vonrhein, Clemens; Xu, Yong; Wang, Liliang; Tsai, Sophia Y; Tsai, Ming-Jer; Xu, H Eric [Baylor; (Van Andel); (Globel Phasing); (Grand Valley)

    2010-01-12

    The chicken ovalbumin upstream promoter-transcription factors (COUP-TFI and II) make up the most conserved subfamily of nuclear receptors that play key roles in angiogenesis, neuronal development, organogenesis, cell fate determination, and metabolic homeostasis. Although the biological functions of COUP-TFs have been studied extensively, little is known of their structural features or aspects of ligand regulation. Here we report the ligand-free 1.48 {angstrom} crystal structure of the human COUP-TFII ligand-binding domain. The structure reveals an autorepressed conformation of the receptor, where helix {alpha}10 is bent into the ligand-binding pocket and the activation function-2 helix is folded into the cofactor binding site, thus preventing the recruitment of coactivators. In contrast, in multiple cell lines, COUP-TFII exhibits constitutive transcriptional activity, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, and ligand binding, substantially reduce the COUP-TFII transcriptional activity. Importantly, retinoid acids are able to promote COUP-TFII to recruit coactivators and activate a COUP-TF reporter construct. Although the concentration needed is higher than the physiological levels of retinoic acids, these findings demonstrate that COUP-TFII is a ligand-regulated nuclear receptor, in which ligands activate the receptor by releasing it from the autorepressed conformation.

  8. Trafficking in Greece

    Lymouris, Nikolaos

    2007-01-01

    Trafficking in human beings has taken on great proportions worldwide over the last twenty years. “Traditional” slave trade and slavery have evolved into a “modern” business, especially under the forms of compulsory labour and sexual exploitation. It is estimated that trafficking in human beings constitutes the third largest “criminal business” after illicit trafficking of narcotics and arms.

  9. Selective potentiation of alpha 1 glycine receptors by ginkgolic acid

    Galyna Maleeva

    2015-10-01

    Full Text Available Glycine receptors (GlyRs belong to the superfamily of pentameric cys-loop receptor-operated channels and are involved in numerous physiological functions, including movement, vision and pain. In search for compounds performing subunit-specific modulation of GlyRs we studied action of ginkgolic acid, an abundant Ginkgo biloba product. Using patch-clamp recordings, we analysed the effects of ginkgolic acid in concentrations from 30nM to 25µM on α1- α3 and α1/β configurations of GlyR and on GABAARs expressed in cultured CHO-K1 cells and mouse neuroblastoma (N2a cells. Ginkgolic acid caused an increase in the amplitude of currents mediated by homomeric α1 and heteromeric α1/β GlyRs and provoked a left-shift of the concentration-dependent curves for glycine. Even at high concentrations (10-25 µM ginkgolic acid was not able to augment ionic currents mediated by α2 and α3 GlyRs, or by GABAAR consisting of α1/β2/γ2 subunits. Mutation of three residues (T59A/A261G/A303S in the α2 GlyR subunit to the corresponding ones from the α1 converted the action of ginkgolic acid to potentiation with a distinct decrease in EC50 for glycine, suggesting an important role for these residues in modulation by ginkgolic acid. Our results suggest that ginkgolic acid is a novel selective enhancer of α1 GlyRs

  10. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles

    2012-01-01

    Background Gene transfer using non-viral vectors offers a non-immunogenic and safe method of gene delivery. Cellular uptake and intracellular trafficking of the nanoparticles can impact on the transfection efficiency of these vectors. Therefore, understanding the physicochemical properties that may influence the cellular uptake and the intracellular trafficking can aid the design of more efficient non-viral gene delivery systems. Recently, we developed novel amino acid-substituted gemini surfactants that showed higher transfection efficiency than their parent compound. In this study, we evaluated the mechanism of cellular uptake of the plasmid/gemini surfactant/helper lipid nanoparticles and their effect on the transfection efficiency. Results Nanoparticles were incubated with Sf 1 Ep cells in the presence of different endocytic inhibitors and gene expression (interferon-γ) was measured using ELISA. Clathrin-mediated and caveolae-mediated uptake were found to be equally contributing to cellular internalization of both P/12-7NH-12/L (parent gemini surfactant) and P/12-7NGK-12/L (amino acid-substituted gemini surfactant) nanoparticles. The plasmid and the helper lipid were fluorescently tagged to track the nanoparticles inside the cells, using confocal laser scanning microscopy. Transmission electron microscopy images showed that the P/12-7NGK-12/L particles were cylindrical while the P/12-7NH-12/L particles were spherical which may influence the cellular uptake behaviour of these particles. Dye exclusion assay and pH-titration of the nanoparticles suggested that high buffering capacity, pH-dependent increase in particle size and balanced DNA binding properties may be contributing to a more efficient endosomal escape of P/12-7NGK-12/L compared to the P/12-7NH-12/L nanoparticles, leading to higher gene expression. Conclusion Amino-acid substitution in the spacer of gemini surfactant did not alter the cellular uptake pathway, showing similar pattern to the

  11. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles

    Singh Jagbir

    2012-02-01

    Full Text Available Abstract Background Gene transfer using non-viral vectors offers a non-immunogenic and safe method of gene delivery. Cellular uptake and intracellular trafficking of the nanoparticles can impact on the transfection efficiency of these vectors. Therefore, understanding the physicochemical properties that may influence the cellular uptake and the intracellular trafficking can aid the design of more efficient non-viral gene delivery systems. Recently, we developed novel amino acid-substituted gemini surfactants that showed higher transfection efficiency than their parent compound. In this study, we evaluated the mechanism of cellular uptake of the plasmid/gemini surfactant/helper lipid nanoparticles and their effect on the transfection efficiency. Results Nanoparticles were incubated with Sf 1 Ep cells in the presence of different endocytic inhibitors and gene expression (interferon-γ was measured using ELISA. Clathrin-mediated and caveolae-mediated uptake were found to be equally contributing to cellular internalization of both P/12-7NH-12/L (parent gemini surfactant and P/12-7NGK-12/L (amino acid-substituted gemini surfactant nanoparticles. The plasmid and the helper lipid were fluorescently tagged to track the nanoparticles inside the cells, using confocal laser scanning microscopy. Transmission electron microscopy images showed that the P/12-7NGK-12/L particles were cylindrical while the P/12-7NH-12/L particles were spherical which may influence the cellular uptake behaviour of these particles. Dye exclusion assay and pH-titration of the nanoparticles suggested that high buffering capacity, pH-dependent increase in particle size and balanced DNA binding properties may be contributing to a more efficient endosomal escape of P/12-7NGK-12/L compared to the P/12-7NH-12/L nanoparticles, leading to higher gene expression. Conclusion Amino-acid substitution in the spacer of gemini surfactant did not alter the cellular uptake pathway, showing similar

  12. Thyroid hormone receptor can modulate retinoic acid-mediated axis formation in frog embryogenesis.

    Banker, D E; Eisenman, R N

    1993-01-01

    Thyroid hormone receptor acts as a hormone-dependent transcriptional transactivator and as a transcriptional repressor in the absence of thyroid hormone. Specifically, thyroid hormone receptor can repress retinoic acid-induced gene expression through interactions with retinoic acid receptor. (Retinoic acid is a potent teratogen in the frog Xenopus laevis, acting at early embryonic stages to interfere with the formation of anterior structures. Endogenous retinoic acid is thought to act in norm...

  13. Hyaluronic acid induces activation of the κ-opioid receptor.

    Barbara Zavan

    Full Text Available INTRODUCTION: Nociceptive pain is one of the most common types of pain that originates from an injury involving nociceptors. Approximately 60% of the knee joint innervations are classified as nociceptive. The specific biological mechanism underlying the regulation of nociceptors is relevant for the treatment of symptoms affecting the knee joint. Intra-articular administration of exogenous hyaluronic acid (HA in patients with osteoarthritis (OA appears to be particularly effective in reducing pain and improving patient function. METHODS: We performed an in vitro study conducted in CHO cells that expressed a panel of opioid receptors and in primary rat dorsal root ganglion (DRG neurons to determine if HA induces the activation of opioid peptide receptors (OPr using both aequorin and the fluorescent dye Fura-2/AM. RESULTS: Selective agonists and antagonists for each OPr expressed on CHO cells were used to test the efficacy of our in vitro model followed by stimulation with HA. The results showed that HA induces stimulatory effects on the κ receptor (KOP. These effects of HA were also confirmed in rat DRG neurons, which express endogenously the OPr. CONCLUSIONS: HA activates the KOP receptor in a concentration dependent manner, with a pEC(50 value of 7.57.

  14. Receptor for protons: First observations on Acid Sensing Ion Channels.

    Krishtal, Oleg

    2015-07-01

    The history of ASICs began in 1980 with unexpected observation. The concept of highly selective Na(+) current gated by specific receptors for protons was not easily accepted. It took 16 years to get these receptor/channels cloned and start a new stage in their investigation. "The receptor for protons" became ASIC comprising under this name a family of receptor/channels ubiquitous for mammalian nervous system, both peripheral and central. The role of ASICs as putative nociceptors was suggested almost immediately after their discovery. This role subsequently was proven in many forms of pain-related phenomena. Many other functions of ASICs have been also found or primed for speculations both in physiology and in disease. Despite the width of field and strength of efforts, numerous basic questions are to be answered before we understand how the local changes in pH in the nervous tissue transform into electric and messenger signaling via ASICs as transducers. This article is part of the Special Issue entitled 'Acid-Sensing Ion Channels in the Nervous System'. PMID:25582296

  15. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein–Coupled Bile Acid Receptors

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E; Glass, Leslie L; Schoonjans, Kristina; Holst, Jens J.; Gribble, Fiona M.; Reimann, Frank

    2015-01-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein–coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1–secreting L-cells from t...

  16. RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA

    Sirois, Cherilyn M.; Jin, Tengchuan; Miller, Allison L.; Bertheloot, Damien; Nakamura, Hirotaka; Horvath, Gabor L.; Mian, Abubakar; Jiang, Jiansheng; Schrum, Jacob; Bossaller, Lukas; Pelka, Karin; Garbi, Natalio; Brewah, Yambasu; Tian, Jane; Chang, ChewShun

    2013-01-01

    Recognition of DNA and RNA molecules derived from pathogens or self-antigen is one way the mammalian immune system senses infection and tissue damage. Activation of immune signaling receptors by nucleic acids is controlled by limiting the access of DNA and RNA to intracellular receptors, but the mechanisms by which endosome-resident receptors encounter nucleic acids from the extracellular space are largely undefined. In this study, we show that the receptor for advanced glycation end-products...

  17. Concomitant action of structural elements and receptor phosphorylation determines arrestin-3 interaction with the free fatty acid receptor FFA4

    Butcher, Adrian J; Hudson, Brian D; Shimpukade, Bharat; Alvarez-Curto, Elisa; Prihandoko, Rudi; Ulven, Trond; Milligan, Graeme; Tobin, Andrew B

    2014-01-01

    In addition to being nutrients, free fatty acids act as signaling molecules by activating a family of G protein-coupled receptors. Among these is FFA4, previously called GPR120, which responds to medium and long chain fatty acids, including health-promoting ω-3 fatty acids, which have been...

  18. Interaction of the C-terminal acidic domain of the insulin receptor with histone modulates the receptor kinase activity.

    Baron, V; Kaliman, P; Alengrin, F; Van Obberghen, E

    1995-04-01

    In this study, we investigated the role of the insulin receptor domain 1270-1280, an acid-rich sequence located in the receptor C-terminus. Antipeptide IgG raised against this sequence were obtained and used to analyze their effect on receptor function. Antipeptide IgG inhibited receptor autophosphorylation at Tyr1146, Tyr1150 and Tyr1151. These sites are known to be key modulators of the receptor activity. Autophosphorylation at other sites may also have been inhibited. The antipeptide antibody decreased the receptor kinase activity measured with poly(Glu80Tyr20) and a synthetic peptide corresponding to the proreceptor sequence 1142-1158. We provide evidence that the effect of the antibody on substrate phosphorylation may result from the control of the phosphorylation level of the receptor. Concerning the action of the antipeptide IgG on the receptor kinase activity, histone did not behave similarly to poly(Glu80Tyr20). The antibody recognizing sequence 1270-1280 competed with histone for an overlapping binding site. Histone also modulated insulin receptor autophosphorylation, supporting the idea that interference with domain 1270-1280 alters the receptor kinase. Our data suggest that the acidic region including residues 1270-1280 of the insulin receptor C-terminus is involved in the following events: (a) receptor binding with histone, an exogenous substrate of the receptor kinase, and (b) the regulation of receptor autophosphorylation and kinase activity. Based on these observations, we would like to propose that this insulin receptor domain could interact with cellular proteins modulating the receptor kinase. PMID:7744039

  19. Expression and localization of the omega-3 fatty acid receptor GPR120 in human term placenta

    Lager, Susanne; Ramirez, Vanessa I.; Gaccioli, Francesca; Jansson, Thomas; Powell, Theresa L.

    2014-01-01

    Fatty acids can function as signaling molecules, acting through receptors in the cytosol or on the cell surface. G-Protein Receptor (GPR)120 is a membrane-bound receptor mediating anti-inflammatory and insulin-sensitizing effects of the omega-3 fatty acid docohexaenoic acid (DHA). GPR120 dysfunction is associated with obesity in humans. Cellular localization of GPR120 and the influence of maternal obesity on GPR120 protein expression in the placenta are unknown. Herein we demonstrate that GPR...

  20. RXR alpha, a promiscuous partner of retinoic acid and thyroid hormone receptors.

    Bugge, T H; Pohl, J.; Lonnoy, O; Stunnenberg, H G

    1992-01-01

    Retinoic acid receptor (RAR), thyroid hormone receptor (T3R) and vitamin D3 receptor (VD3R) differ from steroid hormone receptors in that they bind and transactivate through responsive elements organized as direct rather than inverted repeats. We now show that recombinant RAR and T3R are monomers in solution and cannot form stable homodimeric complexes on their responsive elements. Stable binding of the receptors to their responsive elements requires heterodimerization with a nuclear factor. ...

  1. Retinoic acid receptors: from molecular mechanisms to cancer therapy.

    di Masi, Alessandra; Leboffe, Loris; De Marinis, Elisabetta; Pagano, Francesca; Cicconi, Laura; Rochette-Egly, Cécile; Lo-Coco, Francesco; Ascenzi, Paolo; Nervi, Clara

    2015-02-01

    Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported. PMID:25543955

  2. Biological roles and therapeutic potential of hydroxy-carboxylic acid receptors

    Kashan eAhmed

    2011-10-01

    Full Text Available In the recent past, deorphanization studies have described intermediates of energy metabolism to activate G protein-coupled receptors (GPCRs and to thereby regulate metabolic functions. GPR81, GPR109A and GPR109B, formerly known as the nicotinic acid receptor family, are encoded by clustered genes and share a high degree of sequence homology. Recently, hydroxy-carboxylic acids were identified as endogenous ligands of GPR81, GPR109A and GPR109B, and therefore these receptors have been placed into a novel receptor family of hydroxy-carboxylic acid (HCA receptors. The HCA1 receptor (GPR81 is activated by the glycolytic metabolite 2-hydroxy-propionic acid (lactate, the HCA2 receptor is activated by the ketone body 3-hydroxy-butyric acid and the HCA3 receptor (GPR109B is a receptor for the β-oxidation intermediate 3-hydroxy-octanoic acid. While HCA1 and HCA2 receptors are present in most mammalian species, the HCA3 receptor is exclusively found in humans and higher primates. HCA receptors are expressed in adipose tissue and mediate anti-lipolytic effects in adipocytes through Gi-type G-protein-dependent inhibition of adenylyl cyclase. HCA2 and HCA3 inhibit lipolysis during conditions of increased β-oxidation such as prolonged fasting, whereas HCA1 mediates the anti-lipolytic effects of insulin in the fed state. As HCA2 is a receptor for the established anti-dyslipidemic drug nicotinic acid, HCA1 and HCA3 also represent promising drug targets and several synthetic ligands for HCA receptors have been developed. In this article, we will summarize the deorphanization and pharmacological characterization of HCA receptors. Moreover, we will discuss recent progress in elucidating the physiological and pathophysiological role to further evaluate the therapeutic potential of the HCA receptor family for the treatment of metabolic disease.

  3. Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein-Coupled Receptor 120

    Prihandoko, Rudi; Alvarez-Curto, Elisa; Hudson, Brian D; Butcher, Adrian J; Ulven, Trond; Miller, Ashley M; Tobin, Andrew B; Milligan, Graeme

    2016-01-01

    phosphoacceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation. Rather, an inhibitor of Gq/11proteins completely prevented receptor signaling to ERK1/2. By contrast, the recruitment of......It is established that long-chain free fatty acids includingω-3 fatty acids mediate an array of biologic responses through members of the free fatty acid (FFA) receptor family, which includes FFA4. However, the signaling mechanisms and modes of regulation of this receptor class remain unclear. Here...... arrestin 3, receptor internalization, and activation of Akt were regulated by mFFA4 phosphorylation. The analysis of mFFA4 phosphorylation-dependent signaling was extended further by selective mutations of the phosphoacceptor sites. Mutations within cluster 2 did not affect agonist activation of Akt but...

  4. Molecular nuclear imaging for targeting and trafficking

    Progress of molecular biology, genetic engineering, and polymer chemistry provide various tools to target molecules and cells in vivo. In this paper, recent achievements in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune, and stem cells using molecular nuclear imaging techniques are introduced

  5. Bile Acid-Activated Receptors, Intestinal Microbiota, and the Treatment of Metabolic Disorders.

    Fiorucci, Stefano; Distrutti, Eleonora

    2015-11-01

    The composition of the bile acid pool is a function of the microbial metabolism of bile acids in the intestine. Perturbations of the microbiota shape the bile acid pool and modulate the activity of bile acid-activated receptors (BARs) even beyond the gastrointestinal tract, triggering various metabolic axes and altering host metabolism. Bile acids, in turn, can also regulate the composition of the gut microbiome at the highest taxonomic levels. Primary bile acids from the host are preferential ligands for the farnesoid X receptor (FXR), while secondary bile acids from the microbiota are ligands for G-protein-coupled bile acid receptor 1 (GPBAR1). In this review, we examine the role of bile acid signaling in the regulation of intestinal microbiota and how changes in bile acid composition affect human metabolism. Bile acids may offer novel therapeutic modalities in inflammation, obesity, and diabetes. PMID:26481828

  6. Acid-Sensing Ion Channel 2a (ASIC2a) Promotes Surface Trafficking of ASIC2b via Heteromeric Assembly.

    Kweon, Hae-Jin; Kim, Dong-Il; Bae, Yeonju; Park, Jae-Yong; Suh, Byung-Chang

    2016-01-01

    Acid-sensing ion channels (ASICs) are proton-activated cation channels that play important roles as typical proton sensors during pathophysiological conditions and normal synaptic activities. Among the ASIC subunits, ASIC2a and ASIC2b are alternative splicing products from the same gene, ACCN1. It has been shown that ASIC2 isoforms have differential subcellular distribution: ASIC2a targets the cell surface by itself, while ASIC2b resides in the ER. However, the underlying mechanism for this differential subcellular localization remained to be further elucidated. By constructing ASIC2 chimeras, we found that the first transmembrane (TM1) domain and the proximal post-TM1 domain (17 amino acids) of ASIC2a are critical for membrane targeting of the proteins. We also observed that replacement of corresponding residues in ASIC2b by those of ASIC2a conferred proton-sensitivity as well as surface expression to ASIC2b. We finally confirmed that ASIC2b is delivered to the cell surface from the ER by forming heteromers with ASIC2a, and that the N-terminal region of ASIC2a is additionally required for the ASIC2a-dependent membrane targeting of ASIC2b. Together, our study supports an important role of ASIC2a in membrane targeting of ASIC2b. PMID:27477936

  7. Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis.

    Ho, Peggy P; Steinman, Lawrence

    2016-02-01

    Bile acids are ligands for the nuclear hormone receptor, farnesoid X receptor (FXR). The bile acid-FXR interaction regulates bile acid synthesis, transport, and cholesterol metabolism. Recently, bile acid-FXR regulation has been reported to play an integral role in both hepatic and intestinal inflammation, and in atherosclerosis. In this study, we found that FXR knockout mice had more disease severity in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Obeticholic acid (6α-ethyl-chenodeoxycholic acid, 6-ECDCA), a synthetic FXR agonist, is an orally available drug that is currently in clinical trials for the treatment of inflammatory diseases such as alcoholic hepatitis, nonalcoholic steatohepatitis, and primary biliary cirrhosis. When we treated mice exhibiting established EAE with 6-ECDCA, or the natural FXR ligand chenodeoxycholic acid (CDCA), clinical disease was ameliorated by (i) suppressing lymphocyte activation and proinflammatory cytokine production; (ii) reducing CD4(+) T cells and CD19(+) B cell populations and their expression of negative checkpoint regulators programmed cell death protein 1 (PD1), programmed death-ligand 1 (PD-L1), and B and T lymphocyte attenuator (BTLA); (iii) increasing CD8(+) T cells and PD1, PDl-1, and BTLA expression; and (iv) reducing VLA-4 expression in both the T- and B-cell populations. Moreover, adoptive transfer of 6-ECDCA- or CDCA-treated donor cells failed to transfer disease in naive recipients. Thus, we show that FXR functions as a negative regulator in neuroinflammation and we highlight that FXR agonists represent a potential previously unidentified therapy for MS. PMID:26811456

  8. Smuggled or trafficked?

    Jacqueline Bhabha

    2006-05-01

    Full Text Available The UN Convention Against Transnational Organized Crime (TNC and its two Protocols on Trafficking and Smuggling, adopted in 2000, seek to distinguish between trafficking and smuggling. In reality these distinctions are often blurred. A more nuanced approach is needed to ensure protection for all those at risk.

  9. Stargazin regulates AMPA receptors trafficking-a new target for pain control%Stargazin调节使君子酸受体亚基转运和突触靶向——疼痛治疗的新靶点

    郭瑞娟; 王云; 吴安石; 岳云

    2012-01-01

    Background α-amino-3-hydroxy-5 -methy-4-isoxazole propionate (AMPA)receptor mediates the most excitatory synaptic transmission in the central nervous system,and is involved in the pain signal transmission.As a member of trans-membrane AMPA receptor regulated protein family,Stargazin serves as a critical protein involved in the trafficking and synaptic targeting ofAMPA receptors and plays an important role in the AMPA receptor-mediated pain. Objective In this review,we will bring together the evidence that Stargazin controls the AMPA receptor subunits trafficking,synaptic insertion and regulates pain signal transmission.Content Stargazin is responsible for the AMPA receptor subunits trafficking into cellular membrane.The interaction between Stargazin and postsynaptic density-95 (PSD-95) controls the synaptic insertion of AMPA receptor subunits.The phosphrylation of Stargazin affects the interaction with PSD-95.Therefore,Stargazin may be implicated in pain transmission via regulating AMPA receptor function. Trend Downregulation of Stargazin expression or disrupting the postsynaptic interaction between stargazin and PSD-95 may be a new approach for pain control and deserves further investigation.%背景 使君子酸(α-amino-3 -hydroxy-5 -methy-4-isoxazole propionate,AMPA)受体是中介中枢神经系统兴奋性突触传递的主要受体,参与疼痛信号传递.Stargazin蛋白是一种AMPA受体调节蛋白,在AMPA受体中介的疼痛信号传递中扮演重要角色.目的 对Stargazin蛋白调节AMPA受体亚基在胞浆胞膜中的转运作用及与疼痛的关系作用进行回顾与总结.内容 Stargazin蛋白可调节AMPA受体不同亚基在胞浆胞膜转运,并通过与突触后膜致密蛋白-95 (postsynaptic density-95,PSD-95)的相互作用,促进AMPA受体亚基突触靶向;Stargazin还通过C末端自身磷酸化修饰改变与PSD-95蛋白相互作用的强度,控制AMPA受体的突触靶向.Stargazin通过调节AMPA受

  10. Regulation of vitamin D receptor expression by retinoic acid receptor alpha in acute myeloid leukemia cells.

    Marchwicka, Aleksandra; Cebrat, Małgorzata; Łaszkiewicz, Agnieszka; Śnieżewski, Łukasz; Brown, Geoffrey; Marcinkowska, Ewa

    2016-05-01

    Acute myeloid leukemia (AML) is the predominant acute leukemia among adults, characterized by an accumulation of malignant immature myeloid precursors. A very promising way to treat AML is differentiation therapy using either all-trans-retinoic acid (ATRA) or 1,25-dihydroxyvitamin D3 (1,25D), or the use of both these differentiation-inducing agents. However, the effect of combination treatment varies in different AML cell lines, and this is due to ATRA either down- or up-regulating transcription of vitamin D receptor (VDR) in the cells examined. The mechanism of transcriptional regulation of VDR in response to ATRA has not been fully elucidated. Here, we show that the retinoic acid receptor α (RARα) is responsible for regulating VDR transcription in AML cells. We have shown that a VDR transcriptional variant, originating in exon 1a, is regulated by RARα agonists in AML cells. Moreover, in cells with a high basal level of RARα protein, the VDR gene is transcriptionally repressed as long as RARα agonist is absent. In these cells down-regulation of the level of RARα leads to increased expression of VDR. We consider that our findings provide a mechanistic background to explain the different outcomes from treating AML cell lines with a combination of ATRA and 1,25D. PMID:26969398

  11. 1,2,3-triazolyl amino acids as AMPA receptor ligands

    Stanley, Nathan J.; Pedersen, Daniel Sejer; Nielsen, Birgitte;

    2010-01-01

    The central nervous system glutamate receptors are an important target for drug discovery. Herein we report initial investigations into the synthesis and glutamate receptor activity of 1,2,3-triazolyl amino acids. Two compounds were found to be selective AMPA receptor ligands, which warrant further...

  12. Tetrazolyl isoxazole amino acids as ionotropic glutamate receptor antagonists: synthesis, modelling and molecular pharmacology

    Frølund, Bente; Greenwood, Jeremy R; Holm, Mai Marie;

    2005-01-01

    and 1b were pharmacologically characterized in receptor binding assays, and electrophysiologically on homomeric AMPA receptors (GluR1-4), homomeric (GluR5 and GluR6) and heteromeric (GluR6/KA2) kainic acid receptors, using two-electrode voltage-clamped Xenopus laevis oocytes expressing these receptors...... kainic acid receptor subtypes (GluR5 and GluR6/KA2), showing sevenfold preference for GluR6/KA2 (Kb=19 microM). Unlike the iGluR antagonist (S)-2-amino-3-[5-tert-butyl-3-(phosphonomethoxy)-4-isoxazolyl]propionic acid [(S)-ATPO], the corresponding tetrazolyl analogue, 1b, lacks kainic acid receptor...

  13. SIGNALLING THROUGH RETINOIC ACID RECEPTORS IN CARDIAC DEVELOPMENT: DOING THE RIGHT THINGS AT THE RIGHT TIMES

    Xavier-Neto, José; Costa, Ângela M. Sousa; Figueira, Ana Carolina M.; Caiaffa, Carlo Donato; do Amaral, Fabio Neves; Peres, Lara Maldanis Cerqueira; da Silva, Bárbara Santos Pires; Santos, Luana Nunes; Moise, Alexander R.; Castillo, Hozana Andrade

    2014-01-01

    Retinoic acid (RA) is a terpenoid that is synthesized from Vitamin A/retinol (ROL) and binds to the nuclear receptors retinoic acid receptor (RAR)/retinoid X receptor (RXR) to control multiple developmental processes in vertebrates. The available clinic and experimental data provide uncontested evidence for the pleiotropic roles of RA signalling in development of multiple embryonic structures and organs such eyes, central nervous system, gonads, lungs and heart. The development of any of thes...

  14. G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling

    Anjum Riaz; Ying Huang; Staffan Johansson

    2016-01-01

    A hallmark of G-protein-coupled receptors (GPCRs) is their ability to recognize and respond to chemically diverse ligands. Lysophospholipids constitute a relatively recent addition to these ligands and carry out their biological functions by activating G-proteins coupled to a large family of cell-surface receptors. This review aims to highlight salient features of cell signaling by one class of these receptors, known as lysophosphatidic acid (LPA) receptors, in the context of phosphatidylinos...

  15. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A2 (PLA2)/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca2+-mobilization and enhanced bradykinin-promoted Ca2+-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPARγ agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs

  16. Direct activation of GABAA receptors by substances in the organic acid fraction of Japanese sake.

    Izu, Hanae; Shigemori, Kensuke; Eguchi, Masaya; Kawane, Shuhei; Fujii, Shouko; Kitamura, Yuji; Aoshima, Hitoshi; Yamada, Yasue

    2017-01-01

    We investigated the effect of substances present in Japanese sake on the response of ionotropic γ-aminobutyric acid (GABA)A receptors expressed in Xenopus oocytes. Sake was fractionated by ion-exchange chromatography. The fraction containing organic acids (OA fraction) showed agonist activities on the GABAA receptor. OA fractions from sake were analyzed by capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS). Of the 64 compounds identified, 13 compounds showed GABAA receptor agonist activities. Especially, l-lactic acid showed high agonist activity and its EC50 value was 37μM. Intraperitoneal injections of l-lactic acid, gluconic acid, and pyruvic acid (10, 10, and 5mg/kg BW, respectively), which showed agonistic activity on the GABAA receptor, led to significant anxiolytic effects during an elevated plus-maze test in mice. PMID:27507485

  17. Neofunctionalization in vertebrates: the example of retinoic acid receptors.

    Hector Escriva

    2006-07-01

    Full Text Available Understanding the role of gene duplications in establishing vertebrate innovations is one of the main challenges of Evo-Devo (evolution of development studies. Data on evolutionary changes in gene expression (i.e., evolution of transcription factor-cis-regulatory elements relationships tell only part of the story; protein function, best studied by biochemical and functional assays, can also change. In this study, we have investigated how gene duplication has affected both the expression and the ligand-binding specificity of retinoic acid receptors (RARs, which play a major role in chordate embryonic development. Mammals have three paralogous RAR genes--RAR alpha, beta, and gamma--which resulted from genome duplications at the origin of vertebrates. By using pharmacological ligands selective for specific paralogues, we have studied the ligand-binding capacities of RARs from diverse chordates species. We have found that RAR beta-like binding selectivity is a synapomorphy of all chordate RARs, including a reconstructed synthetic RAR representing the receptor present in the ancestor of chordates. Moreover, comparison of expression patterns of the cephalochordate amphioxus and the vertebrates suggests that, of all the RARs, RAR beta expression has remained most similar to that of the ancestral RAR. On the basis of these results together, we suggest that while RAR beta kept the ancestral RAR role, RAR alpha and RAR gamma diverged both in ligand-binding capacity and in expression patterns. We thus suggest that neofunctionalization occurred at both the expression and the functional levels to shape RAR roles during development in vertebrates.

  18. Human trafficking and regulating prostitution

    Lee, Samuel; Persson, Petra

    2013-01-01

    We study sex trafficking in a marriage market model of prostitution. When traffickers can coerce women to sell sex, trafficked prostitutes constitute a non-zero share of supply in any unregulated market for sex. We ask if regulation can eradicate trafficking and restore the equilibrium that would arise in an unregulated market without traffickers. While all existing approaches – criminalization of prostitutes (“the traditional model”), licensed prostitution (“the Dutch model”), and criminaliz...

  19. Synthesis and pharmacology of 3-isoxazolol amino acids as selective antagonists at group I metabotropic glutamic acid receptors

    Madsen, U; Bräuner-Osborne, H; Frydenvang, Karla Andrea; Hvene, L; Johansen, T N; Nielsen, B; Sánchez, C; Stensbøl, T B; Bischoff, F; Krogsgaard-Larsen, P

    2001-01-01

    Using ibotenic acid (2) as a lead, two series of 3-isoxazolol amino acid ligands for (S)-glutamic acid (Glu, 1) receptors have been developed. Whereas analogues of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid [AMPA, (RS)-3] interact selectively with ionotropic Glu receptors (i......GluRs), the few analogues of (RS)-2-amino-3-(3-hydroxy-5-isoxazolyl)propionic acid [HIBO, (RS)-4] so far known typically interact with iGluRs as well as metabotropic Glu receptors (mGluRs). We here report the synthesis and pharmacology of a series of 4-substituted analogues of HIBO. The hexyl analogue 9 was...

  20. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E.;

    2015-01-01

    -coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L......Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium......-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca2+. In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca2+ response to TDCA. Using small-volume Ussing...

  1. Acidic nanoparticles are trafficked to lysosomes and restore an acidic lysosomal pH and degradative function to compromised ARPE-19 cells.

    Gabriel C Baltazar

    Full Text Available Lysosomal enzymes function optimally in acidic environments, and elevation of lysosomal pH can impede their ability to degrade material delivered to lysosomes through autophagy or phagocytosis. We hypothesize that abnormal lysosomal pH is a key aspect in diseases of accumulation and that restoring lysosomal pH will improve cell function. The propensity of nanoparticles to end up in the lysosome makes them an ideal method of delivering drugs to lysosomes. This study asked whether acidic nanoparticles could traffic to lysosomes, lower lysosomal pH and enhance lysosomal degradation by the cultured human retinal pigmented epithelial cell line ARPE-19. Acidic nanoparticles composed of poly (DL-lactide-co-glycolide (PLGA 502 H, PLGA 503 H and poly (DL-lactide (PLA colocalized to lysosomes of ARPE-19 cells within 60 min. PLGA 503 H and PLA lowered lysosomal pH in cells compromised by the alkalinizing agent chloroquine when measured 1 hr. after treatment, with acidification still observed 12 days later. PLA enhanced binding of Bodipy-pepstatin-A to the active site of cathepsin D in compromised cells. PLA also reduced the cellular levels of opsin and the lipofuscin-like autofluorescence associated with photoreceptor outer segments. These observations suggest the acidification produced by the nanoparticles was functionally effective. In summary, acid nanoparticles lead to a rapid and sustained lowering of lysosomal pH and improved degradative activity.

  2. Characterization of DNA Binding and Retinoic Acid Binding Properties of Retinoic Acid Receptor

    Yang, Na; Schule, Roland; Mangelsdorf, David J.; Evans, Ronald M.

    1991-05-01

    High-level expression of the full-length human retinoic acid receptor (RAR) α and the DNA binding domain of the RAR in Escherichia coli was achieved by using a T7 RNA polymerase-directed expression system. After induction, full-length RAR protein was produced at an estimated level of 20% of the total bacterial proteins. Both intact RAR molecules and the DNA binding domain bind to the cognate DNA response element with high specificity in the absence of retinoic acid. However, this binding is enhanced to a great extent upon the addition of eukaryotic cell extracts. The factor responsible for this enhancement is heat-sensitive and forms a complex with RAR that binds to DNA and exhibits a distinct migration pattern in the gel-mobility-shift assay. The interaction site of the factor with RAR is localized in the 70-amino acid DNA binding region of RAR. The hormone binding ability of the RARα protein was assayed by a charcoal absorption assay and the RAR protein was found to bind to retinoic acid with a K_d of 2.1 x 10-10 M.

  3. Impact of Sorbic Acid on Germinant Receptor-Dependent and -Independent Germination Pathways in Bacillus cereus▿

    Melis,, Rosanna; Nierop Groot, M.N.; Abee, T.

    2011-01-01

    Amino acid- and inosine-induced germination of Bacillus cereus ATCC 14579 spores was reversibly inhibited in the presence of 3 mM undissociated sorbic acid. Exposure to high hydrostatic pressure, Ca-dipicolinic acid (DPA), and bryostatin, an activator of PrkC kinase, negated this inhibition, pointing to specific blockage of signal transduction in germinant receptor-mediated germination.

  4. Hrs recognizes a hydrophobic amino acid cluster in cytokine receptors during ubiquitin-independent endosomal sorting.

    Amano, Yuji; Yamashita, Yuki; Kojima, Katsuhiko; Yoshino, Kazuhisa; Tanaka, Nobuyuki; Sugamura, Kazuo; Takeshita, Toshikazu

    2011-04-29

    Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is a component of the ESCRT-0 protein complex that captures ubiquitylated cargo proteins and sorts them to the lysosomal pathway. Although Hrs acts as a key transporter for ubiquitin-dependent endosomal sorting, we previously reported that Hrs is also involved in ubiquitin-independent endosomal sorting of interleukin-2 receptor β (IL-2Rβ). Here, we show direct interactions between bacterially expressed Hrs and interleukin-4 receptor α (IL-4Rα), indicating that their binding is not required for ubiquitylation of the receptors, similar to the case for IL-2Rβ. Examinations of the Hrs binding regions of the receptors reveal that a hydrophobic amino acid cluster in both IL-2Rβ and IL-4Rα is essential for the binding. Whereas the wild-type receptors are delivered to LAMP1-positive late endosomes, mutant receptors lacking the hydrophobic amino acid cluster are sorted to lysobisphosphatidic acid-positive late endosomes rather than LAMP1-positive late endosomes. We also show that the degradation of these mutant receptors is attenuated. Accordingly, Hrs functions during ubiquitin-independent endosomal sorting of the receptors by recognizing the hydrophobic amino acid cluster. These findings suggest the existence of a group of cargo proteins that have this hydrophobic amino acid cluster as a ubiquitin-independent sorting signal. PMID:21362618

  5. Interaction between retinoid acid receptor-related orphan receptor alpha (RORA and neuropeptide S receptor 1 (NPSR1 in asthma.

    Nathalie Acevedo

    Full Text Available Retinoid acid receptor-related Orphan Receptor Alpha (RORA was recently identified as a susceptibility gene for asthma in a genome-wide association study. To investigate the impact of RORA on asthma susceptibility, we performed a genetic association study between RORA single nucleotide polymorphisms (SNPs in the vicinity of the asthma-associated SNP (rs11071559 and asthma-related traits. Because the regulatory region of a previously implicated asthma susceptibility gene, Neuropeptide S receptor 1 (NPSR1, has predicted elements for RORA binding, we hypothesized that RORA may interact biologically and genetically with NPSR1. 37 RORA SNPs and eight NPSR1 SNPs were genotyped in the Swedish birth cohort BAMSE (2033 children and the European cross-sectional PARSIFAL study (1120 children. Seven RORA SNPs confined into a 49 kb region were significantly associated with physician-diagnosed childhood asthma. The most significant association with rs7164773 (T/C was driven by the CC genotype in asthma cases (OR = 2.0, 95%CI 1.36-2.93, p = 0.0003 in BAMSE; and 1.61, 1.18-2.19, p = 0.002 in the combined BAMSE-PARSIFAL datasets, respectively, and strikingly, the risk effect was dependent on the Gln344Arg mutation in NPSR1. In cell models, stimulation of NPSR1 activated a pathway including RORA and other circadian clock genes. Over-expression of RORA decreased NPSR1 promoter activity further suggesting a regulatory loop between these genes. In addition, Rora mRNA expression was lower in the lung tissue of Npsr1 deficient mice compared to wildtype littermates during the early hours of the light period. We conclude that RORA SNPs are associated with childhood asthma and show epistasis with NPSR1, and the interaction between RORA and NPSR1 may be of biological relevance. Combinations of common susceptibility alleles and less common functional polymorphisms may modify the joint risk effects on asthma susceptibility.

  6. Interaction between retinoid acid receptor-related orphan receptor alpha (RORA) and neuropeptide S receptor 1 (NPSR1) in asthma.

    Acevedo, Nathalie; Sääf, Annika; Söderhäll, Cilla; Melén, Erik; Mandelin, Jami; Pietras, Christina Orsmark; Ezer, Sini; Karisola, Piia; Vendelin, Johanna; Gennäs, Gustav Boije af; Yli-Kauhaluoma, Jari; Alenius, Harri; von Mutius, Erika; Doekes, Gert; Braun-Fahrländer, Charlotte; Riedler, Josef; van Hage, Marianne; D'Amato, Mauro; Scheynius, Annika; Pershagen, Göran; Kere, Juha; Pulkkinen, Ville

    2013-01-01

    Retinoid acid receptor-related Orphan Receptor Alpha (RORA) was recently identified as a susceptibility gene for asthma in a genome-wide association study. To investigate the impact of RORA on asthma susceptibility, we performed a genetic association study between RORA single nucleotide polymorphisms (SNPs) in the vicinity of the asthma-associated SNP (rs11071559) and asthma-related traits. Because the regulatory region of a previously implicated asthma susceptibility gene, Neuropeptide S receptor 1 (NPSR1), has predicted elements for RORA binding, we hypothesized that RORA may interact biologically and genetically with NPSR1. 37 RORA SNPs and eight NPSR1 SNPs were genotyped in the Swedish birth cohort BAMSE (2033 children) and the European cross-sectional PARSIFAL study (1120 children). Seven RORA SNPs confined into a 49 kb region were significantly associated with physician-diagnosed childhood asthma. The most significant association with rs7164773 (T/C) was driven by the CC genotype in asthma cases (OR = 2.0, 95%CI 1.36-2.93, p = 0.0003 in BAMSE; and 1.61, 1.18-2.19, p = 0.002 in the combined BAMSE-PARSIFAL datasets, respectively), and strikingly, the risk effect was dependent on the Gln344Arg mutation in NPSR1. In cell models, stimulation of NPSR1 activated a pathway including RORA and other circadian clock genes. Over-expression of RORA decreased NPSR1 promoter activity further suggesting a regulatory loop between these genes. In addition, Rora mRNA expression was lower in the lung tissue of Npsr1 deficient mice compared to wildtype littermates during the early hours of the light period. We conclude that RORA SNPs are associated with childhood asthma and show epistasis with NPSR1, and the interaction between RORA and NPSR1 may be of biological relevance. Combinations of common susceptibility alleles and less common functional polymorphisms may modify the joint risk effects on asthma susceptibility. PMID:23565190

  7. Synaptic plasticity, AMPA-R trafficking, and Ras-MAPK signaling

    Yun GU; Ruth L STORNETTA

    2007-01-01

    Synaptic modification of transmission is a general phenomenon expressed at al-most every excitatory synapse in the mammalian brain. Over the last three decades,much has been discovered about the cellular, synaptic, molecular, and signalingmechanisms responsible for controlling synaptic transmission and plasticity. Here,we present a brief review of these mechanisms with emphasis on the currentunderstanding of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid recep-tor (AMPA-R) trafficking and Ras-mitogen-activated protein kinase (MAPK)signaling events involved in controlling synaptic transmission.

  8. Cell Signaling and Trafficking of Human Melanocortin Receptors in Real Time Using Two-photon Fluorescence and Confocal Laser Microscopy: Differentiation of Agonists and Antagonists

    Cai, Minying; Varga, Eva V.; Stankova, Magda; Mayorov, Alexander; Perry, Joseph W.; Yamamura, Henry I.; Trivedi, Dev; Victor J. Hruby

    2006-01-01

    Melanocortin hormones and neurotransmitters regulate a vast array of physiologic processes by interacting with five G-protein-coupled melanocortin receptor types. In the present study, we have systematically studied the regulation of individual human melanocortin receptor wild subtypes using a synthetic rhodamine-labeled human melanotropin agonist and antagonist, arrestins fused to green fluorescent protein in conjunction with two-photon fluorescence laser scanning microscopy and confocal mic...

  9. Agonists, antagonists and modulators of excitatory amino acid receptors in the guinea-pig myenteric plexus.

    Luzzi, S; Zilletti, L.; S.Franchi-Micheli; Gori, A M; Moroni, F

    1988-01-01

    1. The receptors for glutamic acid (L-Glu) present in the guinea-pig myenteric plexus-ileal longitudinal muscle preparation have been studied by measuring the muscle contraction induced by numerous putative endogenous agonists acting at these receptors. Furthermore, the actions of different concentrations of antagonists, glycine, Mg2+ and Ca2+ on the ileal contractions induced by L-Glu have been evaluated. 2. The EC50 values of the most common putative endogenous agonists of these receptors w...

  10. Triphenyl phosphate-induced developmental toxicity in zebrafish: Potential role of the retinoic acid receptor

    Isales, Gregory M.; Hipszer, Rachel A.; Tara D Raftery; Chen, Albert; Stapleton, Heather M.; Volz, David C.

    2015-01-01

    Using zebrafish as a model, we previously reported that developmental exposure to triphenyl phosphate (TPP) – a high-production volume organophosphate-based flame retardant – results in dioxin-like cardiac looping impairments that are independent of the aryl hydrocarbon receptor. Using a pharmacologic approach, the objective of this study was to investigate the potential role of retinoic acid receptor (RAR) – a nuclear receptor that regulates vertebrate heart morphogenesis – in mediating TPP-...

  11. Kynurenic acid amides as novel NR2B selective NMDA receptor antagonists.

    Borza, István; Kolok, Sándor; Galgóczy, Kornél; Gere, Anikó; Horváth, Csilla; Farkas, Sándor; Greiner, István; Domány, György

    2007-01-15

    A novel series of kynurenic acid amides, ring-enlarged derivatives of indole-2-carboxamides, was prepared and identified as in vivo active NR2B subtype selective NMDA receptor antagonists. The synthesis and SAR studies are discussed. PMID:17074483

  12. Role of retinoic acid receptors in squamous-cell carcinoma in human esophagus

    Bergheim, I.; Wolfgarten, E.; Bollschweiler, E.;

    2005-01-01

    BACKGROUND: Worldwide, cancer in the esophagus ranks among the 10 most common cancers. Alterations of retinoic acid receptors (e.g. RARalpha, beta, gamma, and RXRalpha, beta, gamma) expression is considered to play an important role in development of squamous-cell carcinoma (SCC), which is the most...... common esophageal cancer. Alcohol consumption and smoking, which can alter retinoic acid receptor levels, have been identified as key risk factors in the development of carcinoma in the aero-digestive tract. Therefore, the aim of the present study was to evaluate protein levels of retinoic acid receptors...... comparing protein levels of retinoic acid receptors between normal tissue of patients with SCC and controls, RARgamma protein levels were found to be significantly higher (approximately 2.7-fold) in normal esophageal tissue of SCC patients than in esophageal tissue obtained from controls. No differences...

  13. Data for amino acid alignment of Japanese stingray melanocortin receptors with other gnathostome melanocortin receptor sequences, and the ligand selectivity of Japanese stingray melanocortin receptors

    Akiyoshi Takahashi

    2016-06-01

    Full Text Available This article contains structure and pharmacological characteristics of melanocortin receptors (MCRs related to research published in “Characterization of melanocortin receptors from stingray Dasyatis akajei, a cartilaginous fish” (Takahashi et al., 2016 [1]. The amino acid sequences of the stingray, D. akajei, MC1R, MC2R, MC3R, MC4R, and MC5R were aligned with the corresponding melanocortin receptor sequences from the elephant shark, Callorhinchus milii, the dogfish, Squalus acanthias, the goldfish, Carassius auratus, and the mouse, Mus musculus. These alignments provide the basis for phylogenetic analysis of these gnathostome melanocortin receptor sequences. In addition, the Japanese stingray melanocortin receptors were separately expressed in Chinese Hamster Ovary cells, and stimulated with stingray ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH, and β-endorphin. The dose response curves reveal the order of ligand selectivity for each stingray MCR.

  14. Nicotinic acid receptor abnormalities in human skin cancer: implications for a role in epidermal differentiation.

    Yira Bermudez

    Full Text Available BACKGROUND: Chronic UV skin exposure leads to epidermal differentiation defects in humans that can be largely restored by pharmacological doses of nicotinic acid. Nicotinic acid has been identified as a ligand for the human G-protein-coupled receptors GPR109A and GPR109B that signal through G(i-mediated inhibition of adenylyl cyclase. We have examined the expression, cellular distribution, and functionality of GPR109A/B in human skin and skin derived epidermal cells. RESULTS: Nicotinic acid increases epidermal differentiation in photodamaged human skin as judged by the terminal differentiation markers caspase 14 and filaggrin. Both GPR109A and GPR109B genes are transcribed in human skin and in epidermal keratinocytes, but expression in dermal fibroblasts is below limits of detection. Receptor transcripts are greatly over-expressed in squamous cell cancers. Receptor protein in normal skin is prominent from the basal through granular layers of the epidermis, with cellular localization more dispersive in the basal layer but predominantly localized at the plasma membrane in more differentiated epidermal layers. In normal human primary and immortalized keratinocytes, nicotinic acid receptors show plasma membrane localization and functional G(i-mediated signaling. In contrast, in a squamous cell carcinoma derived cell line, receptor protein shows a more diffuse cellular localization and the receptors are nearly non-functional. CONCLUSIONS: The results of these studies justify future genetic and pharmacological intervention studies to define possible specific role(s of nicotinic acid receptors in human skin homeostasis.

  15. Interactions between Human Liver Fatty Acid Binding Protein and Peroxisome Proliferator Activated Receptor Selective Drugs

    Tony Velkov

    2013-01-01

    Fatty acid binding proteins (FABPs) act as intracellular shuttles for fatty acids as well as lipophilic xenobiotics to the nucleus, where these ligands are released to a group of nuclear receptors called the peroxisome proliferator activated receptors (PPARs). PPAR mediated gene activation is ultimately involved in maintenance of cellular homeostasis through the transcriptional regulation of metabolic enzymes and transporters that target the activating ligand. Here we show that liver- (L-) FA...

  16. Protein trafficking during plant innate immunity

    Wen-Ming Wang; Peng-Qiang Liu; Yong-Ju Xu; Shunyuan Xiao

    2016-01-01

    Plants have evolved a sophisticated immune system to fight against pathogenic microbes. Upon detection of pathogen invasion by immune receptors, the immune system is turned on, resulting in production of antimicrobial molecules including pathogenesis-related (PR) proteins. Conceivably, an efficient immune response depends on the capacity of the plant cell’s protein/membrane trafficking network to deploy the right defense-associated molecules in the right place at the right time. Recent research in this area shows that while the abundance of cell surface immune receptors is regulated by endocytosis, many intracellular immune receptors, when activated, are partitioned between the cytoplasm and the nucleus for induction of defense genes and activation of programmed cell death, respectively. Vesicle transport is an essential process for secretion of PR proteins to the apoplastic space and targeting of defense-related proteins to the plasma membrane or other endomembrane compartments. In this review, we discuss the various aspects of protein trafficking during plant immunity, with a focus on the immunity proteins on the move and the major compo-nents of the trafficking machineries engaged.

  17. Castor oil induces laxation and uterus contraction via ricinoleic acid activating prostaglandin EP3 receptors

    Tunaru, Sorin; Althoff, Till F.; Nüsing, Rolf M.; Diener, Martin; Offermanns, Stefan

    2012-01-01

    Castor oil is one of the oldest drugs. When given orally, it has a laxative effect and induces labor in pregnant females. The effects of castor oil are mediated by ricinoleic acid, a hydroxylated fatty acid released from castor oil by intestinal lipases. Despite the wide-spread use of castor oil in conventional and folk medicine, the molecular mechanism by which ricinoleic acid acts remains unknown. Here we show that the EP3 prostanoid receptor is specifically activated by ricinoleic acid and...

  18. Potentiation of gamma aminobutyric acid receptors (GABAAR by Ethanol: How are inhibitory receptors affected?

    Benjamin eFörstera

    2016-05-01

    Full Text Available In recent years there has been an increase in the understanding of ethanol actions on the type A -aminobutyric acid chloride channel (GABAAR, a member of the pentameric ligand gated ion channels (pLGICs. However, the mechanism by which ethanol potentiates the complex is still not fully understood and a number of publications have shown contradictory results. Thus many questions still remain unresolved requiring further studies for a better comprehension of this effect. The present review concentrates on the involvement of GABAAR in the acute actions of ethanol and specifically focuses on the immediate, direct or indirect, synaptic and extra-synaptic modulatory effects. To elaborate on the immediate, direct modulation of GABAAR by acute ethanol exposure, electrophysiological studies investigating the importance of different subunits, and data from receptor mutants will be examined. We will also discuss the nature of the putative binding sites for ethanol based on structural data obtained from other members of the pLGICs family. Finally, we will briefly highlight the glycine gated chloride channel (GlyR, another member of the pLGIC family, as a suitable target for the development of new pharmacological tools.

  19. Unnatural agrochemical ligands for engineered abscisic acid receptors.

    Rodriguez, Pedro L; Lozano-Juste, Jorge

    2015-06-01

    Existing agrochemicals can be endowed with new applications through protein engineering of plant receptors. A recent study shows an engineered PYR1 ABA receptor can be activated by mandipropamid. Plants engineered with such PYR1 variant are responsive to this agrochemical, which confers protection against drought through activation of ABA signaling. PMID:25891067

  20. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration.

    Huang, Wendong; Ma, Ke; Zhang, Jun; Qatanani, Mohammed; Cuvillier, James; Liu, Jun; Dong, Bingning; Huang, Xiongfei; Moore, David D

    2006-04-14

    Liver mass depends on one or more unidentified humoral signals that drive regeneration when liver functional capacity is diminished. Bile acids are important liver products, and their levels are tightly regulated. Here, we identify a role for nuclear receptor-dependent bile acid signaling in normal liver regeneration. Elevated bile acid levels accelerate regeneration, and decreased levels inhibit liver regrowth, as does the absence of the primary nuclear bile acid receptor FXR. We propose that FXR activation by increased bile acid flux is a signal of decreased functional capacity of the liver. FXR, and possibly other nuclear receptors, may promote homeostasis not only by regulating expression of appropriate metabolic target genes but also by driving homeotrophic liver growth. PMID:16614213

  1. Proteomic Characterization of Inhibitory Synapses Using a Novel pHluorin-tagged γ-Aminobutyric Acid Receptor, Type A (GABAA), α2 Subunit Knock-in Mouse.

    Nakamura, Yasuko; Morrow, Danielle H; Modgil, Amit; Huyghe, Deborah; Deeb, Tarek Z; Lumb, Michael J; Davies, Paul A; Moss, Stephen J

    2016-06-01

    The accumulation of γ-aminobutyric acid receptors (GABAARs) at the appropriate postsynaptic sites is critical for determining the efficacy of fast inhibitory neurotransmission. Although we know that the majority of synaptic GABAAR subtypes are assembled from α1-3, β, and γ2 subunits, our understanding of how neurons facilitate their targeting to and stabilization at inhibitory synapses is rudimentary. To address these issues, we have created knock-in mice in which the pH-sensitive green fluorescent protein (GFP) and the Myc epitope were introduced to the extracellular domain of the mature receptor α2 subunit (pHα2). Using immunoaffinity purification and mass spectroscopy, we identified a stable complex of 174 proteins that were associated with pHα2, including other GABAAR subunits, and previously identified receptor-associated proteins such as gephyrin and collybistin. 149 of these proteins were novel GABAAR binding partners and included G-protein-coupled receptors and ion channel subunits, proteins that regulate trafficking and degradation, regulators of protein phosphorylation, GTPases, and a number of proteins that regulate their activity. Notably, members of the postsynaptic density family of proteins that are critical components of excitatory synapses were not associated with GABAARs. Crucially, we demonstrated for a subset of these novel proteins (including cullin1, ephexin, potassium channel tetramerization domain containing protein 12, mitofusin2, metabotropic glutamate receptor 5, p21-activated kinase 7, and Ras-related protein 5A) bind directly to the intracellular domains of GABAARs, validating our proteomic analysis. Thus, our experiments illustrate the complexity of the GABAAR proteome and enhance our understanding of the mechanisms neurons use to construct inhibitory synapses. PMID:27044742

  2. The effect pathway of retinoic acid through regulation of retinoic acid receptor in gastric cancer cells

    Su Liu; Qiao Wu; Zheng-Ming Chen; Wen-Jin Su

    2001-01-01

    AIM To evaluate the role of RARa gene in mediating the growth inhibitory effect of ail-trans retinoic acid (ATRA)on gastric cancer cells.``METHODS The expression levels of retinoic acid receptors (RARs) in gastric cancer cells were detected by Northern blot. Transient transfection and chlorophenicol acetyl transferase (CAT) assay were used to show the transcriptional activity of β retinoic acid response element (βRARE) and AP-l activity. Cell growth inhibition was determined by MTT assay and anchorage-independent growth assay, respectively. Stable transfection was performed by the method of Lipofectamine, and the cells were screened by G418.``RESULTS ATRA could induce expression level of RARα in MGC80-3, BGCC8823 and SGC-7901 cells obviously,resulting in growth inhibition of these cell lines. After sense RARa gene was transfected into MKN-45 cells that expressed rather Iow level of RARα and could not be induced by ATRA, the cell growth was inhibited by ATRA markedly. In contrast, when antisense RARα gene was transfected into BGC-825 cells, a little inhibitory effect by ATRA was seen, compared with the parallel BGC-823cells. In transient transfection assay, ATRA effectively induced transcriptional activity of βRARE in MGC80-3,BGC.823, SGC-7902 and MKN/RARa cell lines, but not in MKN-45 and BGC/aRARa cell lines. Similar results were observed in measuring anti-AP-l activity by ATRA in these cancer cell lines.``CONCLUSION ATRA inhibits the growth of gastric cancer cells by up-regulating the level of RARa; RARa is the major mediator of ATRA action in gastric cancer cells; and adequate level of RAPa is required for ATRA effect on gastric cancer cells.``

  3. Expression of somatotropin receptor messenger ribonucleic acid in bovine tissues

    The somatotropin receptor mRNA is controlled by at least two different gene promoters that generate 2 two variants with different exon 1 sequences (1A and 1B). The location of 1A and 1B somatotropin receptor mRNA within cattle tissues and, hence, the tissue specificity of the 1A and 1B promoters are unknown. In addition, the cDNA sequence of the 1B somatotropin receptor has not been determined. Our objective, therefore, was to sequence a cDNA for the 1B somatotropin receptor and to analyze bovine tissues for expression of 1A and 1B somatotropin receptor mRNA. Twenty adult tissues and six fetal tissues were collected at slaughter from each of four cows and two fetuses. Messenger RNA was analyzed using ribonuclease protection assays. The adult liver expressed both 1A and 1B mRNA. All other adult tissues expressed 1B mRNA but not 1A mRNA. The greatest amount of 1B mRNA was detected in liver and adipose (abdominal and subcutaneous) tissues. Other tissues had approximately one-half to one-tenth of the amount of 1B mRNA in the liver or adipose tissue. Fetal tissues (including fetal liver) expressed 1B mRNA and not 1A mRNA. Based on cDNA sequencing, the protein encoded by the 1A and 1B mRNA was nearly identical. We concluded that 1A somatotropin receptor mRNA is specific to adult bovine liver. Other adult and fetal bovine tissues expressed 1B somatotropin receptor mRNA with a predicted protein sequence that was similar to the 1A somatotropin receptor

  4. Effects of Paclitaxel on EGFR Endocytic Trafficking Revealed Using Quantum Dot Tracking in Single Cells

    Li, Hui; Duan, Zhao-Wen; Xie, Ping; Liu, Yu-Ru; Wang, Wei-Chi; Dou, Shuo-Xing; Wang, Peng-Ye

    2012-01-01

    Paclitaxel (PTX), a chemotherapeutic drug, affects microtubule dynamics and influences endocytic trafficking. However, the mechanism and the dynamics of altered endocytic trafficking by paclitaxel treatment in single living cells still remain elusive. By labeling quantum dots (QDs) to the epidermal growth factor (EGF), we continuously tracked the endocytosis and post-endocytic trafficking of EGF receptors (EGFRs) in A549 cells for a long time interval. A single-cell analysis method was introd...

  5. REACTIVITY PROFILE OF LIGANDS OF MAMMALIAN RETINOIC ACID RECEPTORS: A PRELIMINARY COREPA ANALYSIS

    Retinoic acid and associated derivatives comprise a class of endogenous hormones that bind to and activate different families of retinoic acid receptors (RARs, RXRs), and control many aspects of vertebrate development. Identification of potential RAR and RXR ligands is of interes...

  6. Biostructural and pharmacological studies of bicyclic analogues of the 3-isoxazolol glutamate receptor agonist ibotenic acid

    Frydenvang, Karla Andrea; Pickering, Darryl S; Greenwood, Jeremy R;

    2010-01-01

    We describe an improved synthesis and detailed pharmacological characterization of the conformationally restricted analogue of the naturally occurring nonselective glutamate receptor agonist ibotenic acid (RS)-3-hydroxy-4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-7-carboxylic acid (7-HPCA, 5) at A...

  7. Herpes simplex virus infection is sensed by both Toll-like receptors and retinoic acid-inducible gene- like receptors, which synergize to induce type I interferon production

    Rasmussen, Simon Brandtoft; Jensen, Søren B; Nielsen, C;

    2009-01-01

    The innate antiviral response is initiated by pattern recognition receptors, which recognize viral pathogen-associated molecular patterns. Here we show that retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) in cooperation with Toll-like receptor (TLR) 9 is required for expression of type I...

  8. TRANSCRIPTIONAL REGULATION OF RETINOIC ACID RECEPTOR-BETA IN RETINOIC ACID-SENSITIVE AND ACID-RESISTANT P19-EMBRYOCARCINOMA CELLS

    KRUYT, FAE; VANDENBRINK, CE; DEFIZE, LHK; DONATH, MJ; KASTNER, P; KRUIJER, W; CHAMBON, P; VANDERSAAG, PT; Kruyt, Frank

    1991-01-01

    As in other embryocarcinoma (EC) cell lines retinoic acid (RA) rapidly induces expression of the nuclear retinoic acid receptor (RAR) beta in murine P19 EC cells, while RAR-alpha is expressed constitutively. In the RA-resistant P19 EC-derived RAC65 cells, however, there is no such induction and an a

  9. The Effect of Genetic Variation of the Retinoic Acid Receptor-Related Orphan Receptor C Gene on Fatness in Cattle

    Barendse, W.; Bunch, R. J.; Kijas, J. W.; M. B. Thomas

    2007-01-01

    Genotypes at the retinoic acid receptor-related orphan receptor C (RORC) gene were associated with fatness in 1750 cattle. Ten SNPs were genotyped in RORC and the adjacent gene leucine-rich repeat neuronal 6D (LRRN6D) to map the QTL, 7 of which are in a 4.2-kb sequence around the ligand-binding domain of the RORC gene. Of the 29 inferred haplotypes for these SNPs, 2 have a combined frequency of 54.6% while the top 5 haplotypes have a combined frequency of 85.3%. The average D′ value of linkag...

  10. Regulation of integrin trafficking, cell adhesion and cell migration by WASH and the Arp2/3 Complex

    Duleh, Steve N.; Welch, Matthew D.

    2012-01-01

    WASH is a nucleation-promoting factor for the Arp2/3 complex that is implicated in multiple endocytic trafficking pathways including receptor recycling, cargo degradation, and retromer-mediated receptor retrieval. We sought to examine whether WASH plays an important role in trafficking of specialized cargo molecules such as integrins, for which trafficking is highly regulated during cell migration. We observed that subdomains of early/sorting endosomes associated with dynamic WASH and filamen...

  11. Treatment of type 2 diabetes by free Fatty Acid receptor agonists

    Watterson, Kenneth R; Hudson, Brian D; Ulven, Trond;

    2014-01-01

    Dietary free fatty acids (FFAs), such as ω-3 fatty acids, regulate metabolic and anti-inflammatory processes, with many of these effects attributed to FFAs interacting with a family of G protein-coupled receptors. Selective synthetic ligands for free fatty acid receptors (FFA1-4) have consequently...... removed from clinical trials due to potential liver toxicity and determining if this is a target or a ligand-specific feature is now of major importance. Pre-clinical studies also show that FFA4 agonism increases insulin sensitivity, induces weight loss, and reduces inflammation and the metabolic and anti......-inflammatory effects of short chain fatty acids (SCFAs) are linked with FFA2 and FFA3 activation. In this review, we therefore show that FFA receptor agonism is a potential clinical target for T2D treatment and discuss ongoing drug development programs within industry and academia aimed at improving the safety and...

  12. Selective inhibition of the MCP-1-CCR2 ligand-receptor axis decreases systemic trafficking of macrophages in the presence of UHMWPE particles

    Gibon, Emmanuel; Ma, Ting; Ren, Pei-Gen; Fritton, Kate; Biswal, Sandip; Yao, Zhenyu; Smith, Lane; Goodman, Stuart B.

    2011-01-01

    The biological mechanisms leading to periprosthetic osteolysis involve both chemokines and the monocyte/macrophage cell lineage. Whether MCP-1 plays a major role in macrophage recruitment in the presence of wear particles is unknown. We tested two hypotheses: (1) that exogenous local delivery of MCP-1 induces systematic macrophage recruitment and (2) that blockade of the MCP-1 ligand-receptor axis decreases macrophage recruitment and osteolysis in the presence of UHMWPE particles. Six groups ...

  13. The relationship between the IL-1 receptor structure and its trafficking function%I型IL-1受体的结构与其转运功能相关的研究

    2001-01-01

    AIM:To analyze the relationship between structure and traffickingfunction of IL-1 receptor.METHODS: Wild type and mutant (W514A) IL-1 receptor cDNA containing mouse extracellular domain and human intracellular domain, IL-1 receptor cDNA only containing mouse extracellular domain, were inserted into pEGFP-N2 C-terminal protein fusion vector, respectively. All constructs were transfected respectively into human fibroblasts using calcium phosphate precipitation method. The location of expressing fusion protein at single cell level and translocation after binding with IL-1 were determined under confocal microscopy. RESULTS: The wild type IL-1 receptor located in cell membrane, extended processes and accumulated in areas suggestive of sites of focal adhesions. Further, the fusion proteins moved into cytoplasm and finally concentrate in nuclear after IL-1 stimulation. In contrast, mutant and extracellular domain IL-1 receptors did not translocate to sites of cell adhesion and were unaffected by IL-1 stimulation. CONCLUSION: Fibronectin can increase the expression of IL-1 receptor. The trafficking of IL-1 receptor is dependant on structurally intact, specific structure (tryptophan at 514) of C-terminal end of the cytoplasmic tail of the receptor is necessary.%目的:为进一步了解IL-1受体的结构与IL-1受体在细胞内表达后的转运的关系,以及该结构改变对IL-1受体功能的影响。方法:将重组型、突变型和仅含细胞外段的I型IL-1受体(IL-1RI)的质粒构建入含有绿色荧光蛋白的表达载体中,用磷酸钙沉淀法转染入成纤维细胞中,通过激光扫描共聚焦显微镜,观察其表达的融合蛋白在单个活细胞中的定位,以及与IL-1结合后的运动变化。结果:重组型IL-1RI的融合蛋白表达后主要位于细胞膜和细胞伸出的突起与细胞基质相接触的焦点附着斑处,加入IL-1后,逐渐从细胞膜上移至细胞质内,最后聚集

  14. Synthesis, binding affinity at glutamic acid receptors, neuroprotective effects, and molecular modeling investigation of novel dihydroisoxazole amino acids

    Conti, Paola; De Amici, Marco; Grazioso, Giovanni;

    2005-01-01

    The four stereoisomers of 5-(2-amino-2-carboxyethyl)-4,5-dihydroisoxazole-3-carboxylic acid(+)-4, (-)-4, (+)-5, and (-)-5 were prepared by stereoselective synthesis of two pairs of enantiomers, which were subsequently resolved by enzymatic procedures. These four stereoisomers and the four...... stereoisomers of the bicyclic analogue 5-amino-4,5,6,6a-tetrahydro-3aH-cyclopenta[d]isoxazole-3,5-dicarboxylic acid (+)-2, (-)-2, (+)-3, and (-)-3 were tested at ionotropic and metabotropic glutamate receptor subtypes. The most potent NMDA receptor antagonists [(+)-2, (-)-4, and (+)-5] showed a significant...... derivatives showed high antagonist potency with preference for the NR2A and NR2B subtypes, with derivative (-)-4 behaving as the most potent antagonist. The biological data are discussed on the basis of homology models reported in the literature for NMDA receptors and mGluRs....

  15. G-protein-coupled receptors for free fatty acids

    Milligan, Graeme; Ulven, Trond; Murdoch, Hannah; Hudson, Brian D

    It is becoming evident that nutrients and metabolic intermediates derived from such nutrients regulate cellular function by activating a number of cell-surface G-protein coupled receptors (GPCRs). Until now, members of the GPCR family have largely been considered as the molecular targets that...... communicate cellular signals initiated by hormones and neurotransmitters. Recently, based on tissue expression patterns of these receptors and the concept that they may elicit the production of a range of appetite- and hunger-regulating peptides, such nutrient sensing GPCRs are attracting considerable...... diseases, major challenges remain to exploit their potential for therapeutic purposes. Mostly, this is due to limited characterisation and validation of these receptors because of paucity of selective and high-potency/affinity pharmacological agents to define the detailed function and regulation of these...

  16. Modulatory effects of unsaturated fatty acids on the binding of glucocorticoids to rat liver glucocorticoid receptors.

    Vallette, G; Vanet, A; Sumida, C; Nunez, E A

    1991-09-01

    Binding of the synthetic glucocorticoid dexamethasone to the rat liver cytosol glucocorticoid receptor was inhibited by physiological concentrations of nonesterified fatty acids as a function of increasing dose, degree of unsaturation, and chain length of the fatty acid. Polyunsaturated fatty acids were the most potent inhibitors. Scatchard analysis and Line-weaver-Burk plots of the binding data revealed that both the association constants and number of binding sites decreased and that polyunsaturated fatty acids inhibition was of a mixed non-competitive type. The dissociation rate constant of [3H]dexamethasone from glucocorticoid receptors was increased by up to 10 times in the presence of docosahexaenoic acid, whereas a competitive inhibitor like the glucocorticoid antagonist RU 38486 had no effect. Moreover, sucrose density gradient analysis showed that docosahexaenoic acid inhibited the binding of [3H] dexamethasone to both the 8.8S and 4S forms. The results strongly suggest that unsaturated fatty acids are interacting at a site on the receptor different from the hormone binding site and the heat shock protein and that by binding to a second site unsaturated fatty acids greatly change the conformation of the hormone binding site to reduce its affinity for the hormone, either partially or completely depending on the concentration and the class of the fatty acid. PMID:1874175

  17. The Pharmacology and Function of Receptors for Short-Chain Fatty Acids.

    Bolognini, Daniele; Tobin, Andrew B; Milligan, Graeme; Moss, Catherine E

    2016-03-01

    Despite some blockbuster G protein-coupled receptor (GPCR) drugs, only a small fraction (∼ 15%) of the more than 390 nonodorant GPCRs have been successfully targeted by the pharmaceutical industry. One way that this issue might be addressed is via translation of recent deorphanization programs that have opened the prospect of extending the reach of new medicine design to novel receptor types with potential therapeutic value. Prominent among these receptors are those that respond to short-chain free fatty acids of carbon chain length 2-6. These receptors, FFA2 (GPR43) and FFA3 (GPR41), are each predominantly activated by the short-chain fatty acids acetate, propionate, and butyrate, ligands that originate largely as fermentation by-products of anaerobic bacteria in the gut. However, the presence of FFA2 and FFA3 on pancreatic β-cells, FFA3 on neurons, and FFA2 on leukocytes and adipocytes means that the biologic role of these receptors likely extends beyond the widely accepted role of regulating peptide hormone release from enteroendocrine cells in the gut. Here, we review the physiologic roles of FFA2 and FFA3, the recent development and use of receptor-selective pharmacological tool compounds and genetic models available to study these receptors, and present evidence of the potential therapeutic value of targeting this emerging receptor pair. PMID:26719580

  18. 9-cis-retinoic acid inhibits activation-driven T-cell apoptosis: implications for retinoid X receptor involvement in thymocyte development.

    Yang, Y.; Vacchio, M S; Ashwell, J D

    1993-01-01

    Retinoic acid is a morphogenetic signaling molecule derived from vitamin A and involved in vertebrate development. Two groups of receptors, retinoic acid receptors and retinoid X receptors (RXRs), have been identified. All-trans-retinoic acid is the high-affinity ligand for retinoic acid receptors, and 9-cis-retinoic acid additionally binds RXRs with high affinity. Here we report that although retinoic acid has little inhibitory effect on activation-induced T-cell proliferation, it specifical...

  19. Unbinding of Retinoic Acid from its Receptor Studied by Steered Molecular Dynamics

    Kosztin, D; Schulten, K; Kosztin, Dorina; Izrailev, Sergei; Schulten, Klaus

    1999-01-01

    Retinoic acid receptor (RAR) is a ligand-dependent transcription factor that regulates the expression of genes involved in cell growth, differentiation, and development. Binding of the retinoic acid hormone to RAR is accompanied by conformational changes in the protein which induce transactivation or transrepression of the target genes. In this paper we present a study of the hormone binding/unbinding process in order to clarify the role of some of the amino acid contacts and identify possible pathways of the all-trans retinoic acid binding/unbinding to/from human retinoic acid receptor (hRAR)-g. Three possible pathways were explored using steered molecular dynamics simulations. Unbinding was induced on a time scale of 1 ns by applying external forces to the hormone. The simulations suggest that the hormone may employ one pathway for binding and an alternative "back door" pathway for unbinding.

  20. Trafficking in human organs

    Stevković Ljiljana

    2009-01-01

    Full Text Available Trafficking in human organs is a contemporary international problem that engages the attention of media more so than researchers and representatives of medical and legislative institutions. The purpose of this paper is to point out the main characteristics of this segment of organized crime, and to try to underline its seriousness and the necessity of more active prevention and suppression. This paper is divided into four thematic parts. After the introduction and terminological determination, the author gives a brief analysis of regional dimensions of trafficking in human organs. In continuation, a brief turn over of international medical and legal regulation, with concluding consideration in the final part of the paper is given.

  1. Free fatty acid receptors: emerging targets for treatment of diabetes and its complications

    Vangaveti, Venkat; Shashidhar, Venkatesh; Jarrod, Ghassan; Bernhard T. Baune; Kennedy, R. Lee

    2010-01-01

    Fatty acids (FAs) are important as metabolic substrates and as structural components of biological membranes. However, they also function as signalling molecules. Recently, a series of G protein-coupled receptors (GPRs) for FAs has been described and characterized. These receptors have differing specificities for FAs of differing chain length and degree of saturation, for FA derivatives such as oleoylethanolamide, and for oxidized FAs. They are a critical component of the body's nutrient sens...

  2. Bile Acids Induce Cdx2 Expression Through the Farnesoid X Receptor in Gastric Epithelial Cells

    Xu, Yingji; Watanabe, Toshio; Tanigawa, Tetsuya; Machida, Hirohisa; Okazaki, Hirotoshi; Yamagami, Hirokazu; Watanabe, Kenji; Tominaga, Kazunari; Fujiwara, Yasuhiro; Oshitani, Nobuhide; Arakawa, Tetsuo

    2009-01-01

    Clinical and experimental studies showed that the reflux of bile into the stomach contributes to the induction of intestinal metaplasia of the stomach and gastric carcinogenesis. Caudal-type homeobox 2 (Cdx2) plays a key role in the exhibition of intestinal phenotypes by regulating the expression of intestine-specific genes such as goblet-specific gene mucin 2 (MUC2). We investigated the involvement of the farnesoid X receptor (FXR), a nuclear receptor for bile acids, in the chenodeoxycholic ...

  3. Identification of a Novel Non-retinoid Pan Inverse Agonist of the Retinoic Acid Receptors

    Busby, Scott A.; Kumar, Naresh; Kuruvilla, Dana S.; Istrate, Monica A.; Conkright, Juliana J.; Wang, Yongjun; Kamenecka, Theodore M.; Cameron, Michael D.; Roush, William R.; Burris, Thomas P.; Griffin, Patrick R.

    2011-01-01

    Retinoids are potent forms of vitamin A and are involved in a broad range of physiological processes and the pharmacological effects of retinoids are primarily mediated by the retinoic acid receptors (RARs) and the retinoid X receptors (RXRs). Several natural and synthetic RAR modulators have proven to be clinically useful for a number of therapeutic indications including cancer, psoriasis, and diabetes. Unfortunately, these agents lead to a number of significant side effects. Most synthetic ...

  4. Bile acid-induced arrhythmia is mediated by muscarinic M2 receptors in neonatal rat cardiomyocytes.

    Siti H Sheikh Abdul Kadir

    Full Text Available BACKGROUND: Intrahepatic cholestasis of pregnancy (ICP is a common disease affecting up to 5% of pregnancies and which can cause fetal arrhythmia and sudden intrauterine death. We previously demonstrated that bile acid taurocholate (TC, which is raised in the bloodstream of ICP, can acutely alter the rate and rhythm of contraction and induce abnormal calcium destabilization in cultured neonatal rat cardiomyocytes (NRCM. Apart from their hepatic functions bile acids are ubiquitous signalling molecules with diverse systemic effects mediated by either the nuclear receptor FXR or by a recently discovered G-protein coupled receptor TGR5. We aim to investigate the mechanism of bile-acid induced arrhythmogenic effects in an in-vitro model of the fetal heart. METHODS AND RESULTS: Levels of bile acid transporters and nuclear receptor FXR were studied by quantitative real time PCR, western blot and immunostaining, which showed low levels of expression. We did not observe functional involvement of the canonical receptors FXR and TGR5. Instead, we found that TC binds to the muscarinic M(2 receptor in NRCM and serves as a partial agonist of this receptor in terms of inhibitory effect on intracellular cAMP and negative chronotropic response. Pharmacological inhibition and siRNA-knockdown of the M(2 receptor completely abolished the negative effect of TC on contraction, calcium transient amplitude and synchronisation in NRCM clusters. CONCLUSION: We conclude that in NRCM the TC-induced arrhythmia is mediated by the partial agonism at the M(2 receptor. This mechanism might serve as a promising new therapeutic target for fetal arrhythmia.

  5. Comparison of sigma- and kappa-opiate receptor ligands as excitatory amino acid antagonists.

    Berry, S. C.; Dawkins, S. L.; Lodge, D.

    1984-01-01

    Using the technique of microelectrophoresis in pentobarbitone-anaesthetized cats and rats, the effects of benzomorphans, with known actions at sigma- and kappa- opioid receptors, were tested on responses of spinal neurones to amino acids and acetylcholine. The racemic mixture and both enantiomers of the sigma opiate receptor agonist, N-allylnormetazocine (SKF 10, 047), and the dissociative anaesthetic, ketamine, reduced or abolished excitation evoked by N-methyl-aspartate (NMA) with only smal...

  6. A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding.

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M; Castro, L Filipe C; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2014-11-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  7. International aspects of human trafficking – Especially trafficking with minors

    Ivanova, Elena

    2011-01-01

    Liberalization of understanding and relations, the liberation of sexuality from the constrains of primitivism and tradition, leads to rapid growth of prostitution as a socio-pathological phenomenon, which necessarily stimulate the emergence of crime - trafficking with human beings. Particularly worrying is the emergence of a new dimension of human trafficking - trafficking in minors. Children, in addition to women, in international documents, often receive the status of “spe...

  8. Lysosomal Trafficking Regulator (LYST).

    Ji, Xiaojie; Chang, Bo; Naggert, Jürgen K; Nishina, Patsy M

    2016-01-01

    Regulation of vesicle trafficking to lysosomes and lysosome-related organelles (LROs) as well as regulation of the size of these organelles are critical to maintain their functions. Disruption of the lysosomal trafficking regulator (LYST) results in Chediak-Higashi syndrome (CHS), a rare autosomal recessive disorder characterized by oculocutaneous albinism, prolonged bleeding, severe immunodeficiency, recurrent bacterial infection, neurologic dysfunction and hemophagocytic lympohistiocytosis (HLH). The classic diagnostic feature of the syndrome is enlarged LROs in all cell types, including lysosomes, melanosomes, cytolytic granules and platelet dense bodies. The most striking CHS ocular pathology observed is an enlargement of melanosomes in the retinal pigment epithelium (RPE), which leads to aberrant distribution of eye pigmentation, and results in photophobia and decreased visual acuity. Understanding the molecular function of LYST and identification of its interacting partners may provide therapeutic targets for CHS and other diseases associated with the regulation of LRO size and/or vesicle trafficking, such as asthma, urticaria and Leishmania amazonensis infections. PMID:26427484

  9. Chronic caffeine or theophylline exposure reduces gamma-aminobutyric acid/benzodiazepine receptor site interactions.

    Roca, D J; Schiller, G D; Farb, D H

    1988-05-01

    Methylxanthines, such as caffeine and theophylline, are adenosine receptor antagonists that exert dramatic effects upon the behavior of vertebrate animals by increasing attentiveness, anxiety, and convulsive activity. Benzodiazepines, such as flunitrazepam, generally exert behavioral effects that are opposite to those of methylxanthines. We report the finding that chronic exposure of embryonic brain neurons to caffeine or theophylline reduces the ability of gamma-aminobutyric acid (GABA) to potentiate the binding of [3H]flunitrazepam to the GABA/benzodiazepine receptor. This theophylline-induced "uncoupling" of GABA- and benzodiazepine-binding site allosteric interactions is blocked by chloroadenosine, an adenosine receptor agonist, indicating that the chronic effects of theophylline are mediated by a site that resembles an adenosine receptor. We speculate that adverse central nervous system effects of long-term exposure to methylxanthines such as in caffeine-containing beverages or theophylline-containing medications may be exerted by a cell-mediated modification of the GABAA receptor. PMID:2835648

  10. Disruption of retinoic acid receptor alpha reveals the growth promoter face of retinoic acid.

    Giulia Somenzi

    Full Text Available BACKGROUND: Retinoic acid (RA, the bioactive derivative of Vitamin A, by epigenetically controlling transcription through the RA-receptors (RARs, exerts a potent antiproliferative effect on human cells. However, a number of studies show that RA can also promote cell survival and growth. In the course of one of our studies we observed that disruption of RA-receptor alpha, RARalpha, abrogates the RA-mediated growth-inhibitory effects and unmasks the growth-promoting face of RA (Ren et al., Mol. Cell. Biol., 2005, 25:10591. The objective of this study was to investigate whether RA can differentially govern cell growth, in the presence and absence of RARalpha, through differential regulation of the "rheostat" comprising ceramide (CER, the sphingolipid with growth-inhibitory activity, and sphingosine-1-phosphate (S1P, the sphingolipid with prosurvival activity. METHODOLOGY/PRINCIPAL FINDINGS: We found that functional inhibition of endogenous RARalpha in breast cancer cells by using either RARalpha specific antagonists or a dominant negative RARalpha mutant hampers on one hand the RA-induced upregulation of neutral sphingomyelinase (nSMase-mediated CER synthesis, and on the other hand the RA-induced downregulation of sphingosine kinase 1, SK1, pivotal for S1P synthesis. In association with RA inability to regulate the sphingolipid rheostat, cells not only survive, but also grow more in response to RA both in vitro and in vivo. By combining genetic, pharmacological and biochemical approaches, we mechanistically demonstrated that RA-induced growth is, at least in part, due to non-RAR-mediated activation of the SK1-S1P signaling. CONCLUSIONS/SIGNIFICANCE: In the presence of functional RARalpha, RA inhibits cell growth by concertedly, and inversely, modulating the CER and S1P synthetic pathways. In the absence of a functional RARalpha, RA-in a non-RAR-mediated fashion-promotes cell growth by activating the prosurvival S1P signaling. These two distinct

  11. Combinations of physiologic estrogens with xenoestrogens alter calcium and kinase responses, prolactin release, and membrane estrogen receptor trafficking in rat pituitary cells

    Watson Cheryl S

    2010-10-01

    Full Text Available Abstract Background Xenoestrogens such as alkylphenols and the structurally related plastic byproduct bisphenol A have recently been shown to act potently via nongenomic signaling pathways and the membrane version of estrogen receptor-α. Though the responses to these compounds are typically measured individually, they usually contaminate organisms that already have endogenous estrogens present. Therefore, we used quantitative medium-throughput screening assays to measure the effects of physiologic estrogens in combination with these xenoestrogens. Methods We studied the effects of low concentrations of endogenous estrogens (estradiol, estriol, and estrone at 10 pM (representing pre-development levels, and 1 nM (representing higher cycle-dependent and pregnancy levels in combinations with the same levels of xenoestrogens in GH3/B6/F10 pituitary cells. These levels of xenoestrogens represent extremely low contamination levels. We monitored calcium entry into cells using Fura-2 fluorescence imaging of single cells. Prolactin release was measured by radio-immunoassay. Extracellular-regulated kinase (1 and 2 phospho-activations and the levels of three estrogen receptors in the cell membrane (ERα, ERβ, and GPER were measured using a quantitative plate immunoassay of fixed cells either permeabilized or nonpermeabilized (respectively. Results All xenoestrogens caused responses at these concentrations, and had disruptive effects on the actions of physiologic estrogens. Xenoestrogens reduced the % of cells that responded to estradiol via calcium channel opening. They also inhibited the activation (phosphorylation of extracellular-regulated kinases at some concentrations. They either inhibited or enhanced rapid prolactin release, depending upon concentration. These latter two dose-responses were nonmonotonic, a characteristic of nongenomic estrogenic responses. Conclusions Responses mediated by endogenous estrogens representing different life stages are

  12. N-Hydroxypyrazolyl glycine derivatives as selective N-methyl-D-aspartic acid receptor ligands

    Clausen, Rasmus Prætorius; Christensen, Caspar; Hansen, Kasper Bø;

    2008-01-01

    glycine (NHP5G) derivatives are selectively recognized by N-methyl- d-aspartic acid (NMDA) receptors and that the ( R)-enantiomers are preferred. Moreover, several of the compounds are able to discriminate between individual subtypes among the NMDA receptors, providing new pharmacological tools. For......A series of analogues based on N-hydroxypyrazole as a bioisostere for the distal carboxylate group of aspartate have been designed, synthesized, and pharmacologically characterized. Affinity studies on the major glutamate receptor subgroups show that these 4-substituted N-hydroxypyrazol-5-yl...

  13. Metabolism meets immunity: the role of free fatty acid receptors in the immune system

    Alvarez-Curto, Elisa; Milligan, Graeme

    2016-01-01

    There are significant numbers of nutrient sensing G protein-coupled receptors (GPCRs) that can be found in cells of the immune system and in tissues that are involved in metabolic function, such as the pancreas or the intestinal epithelium. The family of free fatty acid receptors (FFAR1-4, GPR84), plus a few other metabolite sensing receptors (GPR109A, GPR91, GPR35) have been for this reason the focus of studies linking the effects of nutrients with immunological responses. A number of the be...

  14. Role of Free Fatty Acid Receptor 2 (FFAR2) in the Regulation of Metabolic Homeostasis.

    Mohammad, Sameer

    2015-01-01

    Besides being an important source of fuel and structural components of biological membranes, free fatty acids (FFAs) are known to display a wide variety of roles that include modulation of receptor signaling and regulation of gene expression among many. FFAs play a significant role in maintaining metabolic homeostasis by activating specific G-Protein Coupled Receptors (GPCRs) in pancreatic β cells, immune cells, white adipose tissue, intestine and several other tissues. Free Fatty acid receptor 2 (FFAR2) also known as GPR43 belongs to this group of GPCRs and has been shown to participate in a number of important biological activities. FFAR2 is activated by short-chain fatty acids (SCFAs) such as acetate, propionate and butyrate. SCFAs are formed in the distal gut by bacterial fermentation of macro-fibrous material that escapes digestion in the upper gastrointestinal tract and enters the colon and have been shown to play vital role in the immune regulation and metabolic homeostasis. FFAR2 and other free fatty acid receptors are considered key components of the body's nutrient sensing mechanism and targeting these receptors is assumed to offer novel therapies for the management of diabetes and other metabolic disorders. This review aims to summarize the current state of our understanding of FFAR2 biology with a particular focus on its role in metabolic homeostasis. PMID:25850624

  15. Function of retinoic acid receptors during embryonic development.

    Mark, Manuel; Ghyselinck, Norbert; Chambon, Pierre

    2009-01-01

    International audience Retinoids, the active metabolites of vitamin A, regulate complex gene networks involved in vertebrate morphogenesis, growth, cellular differentiation and homeostasis. Studies performed in vitro, using either acellular systems or transfected cells, have shown that retinoid actions are mediated through heterodimers between the RAR and RXR nuclear receptors. However, in vitro studies indicate what is possible, but not necessarily what is actually occurring in vivo, beca...

  16. Current progress of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptor trafficking in learning and memory%α-氨基-3羟基-5-甲基-4-异恶唑丙酸受体运输参与学习记忆机制的研究进展

    王苗苗; 王超; 杨美华; 王国林

    2014-01-01

    Background α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors mediate the overwhelming majority of excitatory synaptic transmission in the central nervous system.Postsynaptic AMPA receptor trafficking is closely related to learning and memory.Objective To review the relationship between postsynaptic AMPA receptor trafficking and learning and memory.Content This review introduces the changes of AMPA receptor trafficking and the underlying mechanisms in long-term potentiation (LTP) and long-term depression (LTD)-the two most characterized forms of synaptic plasticity.Both forms of synaptic plasticity are thought to be the cellular basis of learning and memory.The phosphorylation of multiple proteins and the modification of related signaling molecules and pathways are involved in these processes.The role of AMPA receptor trafficking in learning and memory behavior is also discussed.Trend To provide new ideas for dissecting the mechanisms of learning and memory related neurodegenerative diseases.%背景 α-氨基-3羟基-5-甲基-4-异恶唑丙酸(α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptor,AMPA)受体介导中枢神经系统大多数兴奋性突触传递,其在突触后膜的运输与学习记忆密切相关. 目的 对AMPA受体在突触后膜的运输与学习记忆的关系作用进行归纳和小结. 内容 介绍AMPA受体运输在学习记忆的重要细胞学基础-突触可塑性的两种主要形式长时程增强(long-term potentiation,LTP)和长时程抑制(long-term depression,LTD)中的改变及其可能机制,涉及多个蛋白的磷酸化和参与调节其改变的信号分子及通路,并说明AMPA受体运输参与相关的学习记忆行为. 趋向 为学习记忆受损相关神经退行性疾病的发生机制的探索提供思路.

  17. Effect of retinoic acid on cell proliferation kinetics and retinoic acid receptor expression of colorectal mucosa

    Hong-Bo Wei; Xiao-Yan Han; Wei Fan; Gui-Hua Chen; Ji-Fu Wang

    2003-01-01

    AIM: To investigate the effect of retinoic acid (RA) on cell proliferation kinetics and retinoic acid receptor (RAR)expression of colorectal mucosa.METHODS:One hundred sixty healthy male Wistar rats were randomly divided into 4 groups. Rats in groups Ⅰ and Ⅱ were subcutaneously injected with dimethylhydrazine (DMH) (20 mg/kg, once a week,) for 7 to 13 weeks, while groups Ⅲ and Ⅳ were injected with normal saline. Rats in groups Ⅱ and Ⅲ were also treated with RA (50 mg/kg,every day, orally) from 7th to 15th week, thus group Ⅳ was used as a control. The rats were killed in different batches.The expressions of proliferating cell nuclear antigen (PCNA),nucleolar organizer region-associated protein (AgNOR) and RAR were detected.RESULTS: The incidence of colorectal carcinoma was different between groupsⅠ(100 %) and Ⅱ (15 %) (P<0.01).The PCNA indices and mean AgNOR count in group Ⅱ were significantly lower than those in group Ⅰ(F=5.418 and 4.243,P<0.01). The PCNA indices and mean AgNOR count in groups Ⅰ and Ⅱ were significantly higher than those in the groups Ⅲ and Ⅳ (in which carcinogen was not used) (F=5.927and 4.348, P<0.01). There was a tendency in group Ⅰ that the longer the induction with DMH the higher PCNA index and AgNOR count expressed (F=7.634 and 6.826, P<0.05).However, there was no such tendency in groups Ⅱ, Ⅲ and Ⅳ(F=1.662 and 1.984, P>0.05). The levels of RAR in normal and cancerous tissues in groups treated with RA were significantly higher than those in groups not treated with RA (F=6.343 and 6.024, P<0.05).CONCLUSION: RA decreases the incidence of colorectal carcinoma induced by DMH. Coiorectal cancer tissue is associated with abnormal expression of PCNA, AgNOR and RAR. RA inhibits the expression of PCNA and AgNOR, and increases RAR concentration in colorectal tissues.

  18. The Economics of Child Trafficking

    Sylvain Dessy; Stéphane Pallage

    2003-01-01

    In this paper, we highlight the economic effects of the existence of child trafficking. We show that the risk of child trafficking on the labor market acts as a deterrent to supply child labor, unless household survival is at stake. An imperfectly enforceable legislation aiming at fighting child trafficking, by raising the expected gains parents derive from sending their children to work, will cause a rise in the number of child laborers. We show that it can even cause the incidence of child ...

  19. Lysophosphatidic Acid Signaling through the Lysophosphatidic Acid-1 Receptor Is Required for Alveolarization.

    Funke, Manuela; Knudsen, Lars; Lagares, David; Ebener, Simone; Probst, Clemens K; Fontaine, Benjamin A; Franklin, Alicia; Kellner, Manuela; Kühnel, Mark; Matthieu, Stephanie; Grothausmann, Roman; Chun, Jerold; Roberts, Jesse D; Ochs, Matthias; Tager, Andrew M

    2016-07-01

    Lysophosphatidic acid (LPA) signaling through one of its receptors, LPA1, contributes to both the development and the pathological remodeling after injury of many organs. Because we found previously that LPA-LPA1 signaling contributes to pulmonary fibrosis, here we investigated whether this pathway is also involved in lung development. Quantitative assessment of lung architecture of LPA1-deficient knock-out (KO) and wild-type (WT) mice at 3, 12, and 24 weeks of age using design-based stereology suggested the presence of an alveolarization defect in LPA1 KO mice at 3 weeks, which persisted as alveolar numbers increased in WT mice into adulthood. Across the ages examined, the lungs of LPA1 KO mice exhibited decreased alveolar numbers, septal tissue volumes, and surface areas, and increased volumes of the distal airspaces. Elastic fibers, critical to the development of alveolar septa, appeared less organized and condensed and more discontinuous in KO alveoli starting at P4. Tropoelastin messenger RNA expression was decreased in KO lungs, whereas expression of matrix metalloproteinases degrading elastic fibers was either decreased or unchanged. These results are consistent with the abnormal lung phenotype of LPA1 KO mice, being attributable to reduced alveolar septal formation during development, rather than to increased septal destruction as occurs in the emphysema of chronic obstructive pulmonary disease. Peripheral septal fibroblasts and myofibroblasts, which direct septation in late alveolarization, demonstrated reduced production of tropoelastin and matrix metalloproteinases, and diminished LPA-induced migration, when isolated from LPA1 KO mice. Taken together, our data suggest that LPA-LPA1 signaling is critically required for septation during alveolarization. PMID:27082727

  20. Human Trafficking and National Morality

    William R. DI PIETRO

    2015-12-01

    Full Text Available The paper proposes that national morality is an important variable for explaining national anti-trafficking policy. It uses cross country regression analysis to see whether or not empirically national morality is a determinant of anti-trafficking policy. The findings of the paper are consistent with the notion that improved levels of national morality lead to better national anti-trafficking policy. National morality is found to be statistically relevant for national anti-trafficking policy when controlling for the extent of democracy, the share of the private sector in the economy, and the degree of globalization.

  1. Nigeria: human trafficking and migration

    Victoria Ijeoma Nwogu

    2006-05-01

    Full Text Available Readmission agreements between Nigeria and migrant destination countries fail to comply with international standards for the protection of migrants’ and trafficked persons’ rights.

  2. Characterization and Functional Analysis of Pyrabactin Resistance-Like Abscisic Acid Receptor Family in Rice

    Tian, Xiaojie; Wang, Zhenyu; Li, Xiufeng; Lv, Tianxiao; Liu, Huazhao; Wang, Lizhi; Niu, Hongbin; Bu, Qingyun

    2015-01-01

    Background Abscisic acid (ABA) plays crucial roles in regulating plant growth and development, especially in responding to abiotic stress. The pyrabactin resistance-like (PYL) abscisic acid receptor family has been identified and widely characterized in Arabidopsis. However, PYL families in rice were largely unknown. In the present study, 10 out of 13 PYL orthologs in rice (OsPYL) were isolated and investigated. Results Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) an...

  3. Association analysis of retinoic acid receptor beta (RARβ) gene with high myopia in Chinese subjects

    Ding, Yang; Chen, Xiaoyan; Yan, Dongsheng; Xue, Anquan; Lu, Fan; Qu, Jia; Zhou, Xiangtian

    2010-01-01

    Purpose High myopia or pathological myopia is a common refractive error. Individuals with high myopia are subject to increased risk of serious eye complications. Accumulating evidence has demonstrated the role for heritability in ocular growth and in the development of high myopia. Retinoic acid and retinoic acid receptors play important roles in ocular development and in experimentally induced myopia. The purpose of this study was to determine if high myopia is associated with single nucleot...

  4. Glucose regulates fatty acid binding protein interaction with lipids and peroxisome proliferator-activated receptor α

    Hostetler, Heather A.; Balanarasimha, Madhumitha; Huang, Huan; Kelzer, Matthew S.; Kaliappan, Alagammai; Kier, Ann B.; Schroeder, Friedhelm

    2010-01-01

    Although the pathophysiology of diabetes is characterized by elevated levels of glucose and long-chain fatty acids (LCFA), nuclear mechanisms linking glucose and LCFA metabolism are poorly understood. As the liver fatty acid binding protein (L-FABP) shuttles LCFA to the nucleus, where L-FABP directly interacts with peroxisome proliferator-activated receptor-α (PPARα), the effect of glucose on these processes was examined. In vitro studies showed that L-FABP strongly bound glucose and glucose-...

  5. Molecular pharmacology of 4-substituted glutamic acid analogues at ionotropic and metabotropic excitatory amino acid receptors

    Bräuner-Osborne, Hans; Nielsen, B; Stensbøl, T B; Johansen, T N; Skjaerbaek, N; Krogsgaard-Larsen, P

    The pharmacology of (2S,4R)-4-methylglutamic acid, (2S,4S)-4-methylglutamic acid and (S)- and (R)-4-methyleneglutamic acids (obtained in high chemical and enantiomeric purity from racemic 4-methyleneglutamic acid by chiral HPLC using a Crownpak CR(+) column), was examined in binding experiments u...

  6. Role of platelet-derived growth factor/platelet-derived growth factor receptor axis in the trafficking of circulating fibrocytes in pulmonary fibrosis.

    Aono, Yoshinori; Kishi, Masami; Yokota, Yuki; Azuma, Momoyo; Kinoshita, Katsuhiro; Takezaki, Akio; Sato, Seidai; Kawano, Hiroshi; Kishi, Jun; Goto, Hisatsugu; Uehara, Hisanori; Izumi, Keisuke; Nishioka, Yasuhiko

    2014-12-01

    Circulating fibrocytes have been reported to migrate into the injured lungs, and contribute to fibrogenesis via CXCL12-CXCR4 axis. In contrast, we report that imatinib mesylate prevented bleomycin (BLM)-induced pulmonary fibrosis in mice by inhibiting platelet-derived growth factor receptor (PDGFR), even when it was administered only in the early phase. The goal of this study was to test the hypothesis that platelet-derived growth factor (PDGF) might directly contribute to the migration of fibrocytes to the injured lungs. PDGFR expression in fibrocytes was examined by flow cytometry and RT-PCR. The migration of fibrocytes was evaluated by using a chemotaxis assay for human fibrocytes isolated from peripheral blood. The numbers of fibrocytes triple-stained for CD45, collagen-1, and CXCR4 were also examined in lung digests of BLM-treated mice. PDGFR mRNA levels in fibrocytes isolated from patients with idiopathic pulmonary fibrosis were investigated by real-time PCR. Fibrocytes expressed both PDGFR-α and -β, and migrated in response to PDGFs. PDGFR inhibitors (imatinib, PDGFR-blocking antibodies) suppressed fibrocyte migration in vitro, and reduced the number of fibrocytes in the lungs of BLM-treated mice. PDGF-BB was a stronger chemoattractant than the other PDGFs in vitro, and anti-PDGFR-β-blocking antibody decreased the numbers of fibrocytes in the lungs compared with anti-PDGFR-α antibody in vivo. Marked expression of PDGFR-β was observed in fibrocytes from patients with idiopathic pulmonary fibrosis compared with healthy subjects. These results suggest that PDGF directly functions as a strong chemoattractant for fibrocytes. In particular, the PDGF-BB-PDGFR-β biological axis might play a critical role in fibrocyte migration into the fibrotic lungs. PMID:24885373

  7. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein-Coupled Bile Acid Receptors.

    Brighton, Cheryl A; Rievaj, Juraj; Kuhre, Rune E; Glass, Leslie L; Schoonjans, Kristina; Holst, Jens J; Gribble, Fiona M; Reimann, Frank

    2015-11-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein-coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1-secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca(2+). In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca(2+) response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber-mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms. PMID:26280129

  8. Bile Acids Trigger GLP-1 Release Predominantly by Accessing Basolaterally Located G Protein–Coupled Bile Acid Receptors

    Brighton, Cheryl A.; Rievaj, Juraj; Kuhre, Rune E.; Glass, Leslie L.; Schoonjans, Kristina; Holst, Jens J.

    2015-01-01

    Bile acids are well-recognized stimuli of glucagon-like peptide-1 (GLP-1) secretion. This action has been attributed to activation of the G protein–coupled bile acid receptor GPBAR1 (TGR5), although other potential bile acid sensors include the nuclear farnesoid receptor and the apical sodium-coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release and to determine whether bile acids target their receptors on GLP-1–secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L-cells, we observed that taurodeoxycholate (TDCA) and taurolithocholate (TLCA) increased intracellular cAMP and Ca2+. In primary intestinal cultures, TDCA was a more potent GLP-1 secretagogue than taurocholate (TCA) and TLCA, correlating with a stronger Ca2+ response to TDCA. Using small-volume Ussing chambers optimized for measuring GLP-1 secretion, we found that both a GPBAR1 agonist and TDCA stimulated GLP-1 release better when applied from the basolateral than from the luminal direction and that luminal TDCA was ineffective when intestinal tissue was pretreated with an ASBT inhibitor. ASBT inhibition had no significant effect in nonpolarized primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminal TDCA. Intestinal primary cultures and Ussing chamber–mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA. We conclude that the action of bile acids on GLP-1 secretion is predominantly mediated by GPBAR1 located on the basolateral L-cell membrane, suggesting that stimulation of gut hormone secretion may include postabsorptive mechanisms. PMID:26280129

  9. Extracellular loop 2 of the free Fatty Acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator

    Smith, Nicola J; Ward, Richard J; Stoddart, Leigh A; Hudson, Brian D; Kostenis, Evi; Ulven, Trond; Morris, Joanne C; Tränkle, Christian; Tikhonova, Irina G; Adams, David R; Milligan, Graeme

    2011-01-01

    Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molec...

  10. Bile acids trigger GLP-1 release predominantly by accessing basolaterally-located G-protein coupled bile acid receptors

    Brighton, Cheryl A; Rievaj, Juraj; Kuhre, Rune Ehrenreich; Glass, Leslie L; Schoonjans,, Kristina; Holst, Jens Juul; Gribbe, Fiona M; Reimann, Frank

    2015-01-01

    coupled bile acid transporter ASBT. The aim of this study was to identify pathways important for GLP-1 release, and whether bile acids target their receptors on GLP-1 secreting L-cells from the apical or basolateral compartment. Using transgenic mice expressing fluorescent sensors specifically in L...... significant effect in non-polarised primary cultures. Studies in the perfused rat gut confirmed that vascularly administered TDCA was more effective than luminalTDCA.Intestinal primary culturesandUssingchamber-mounted tissues from GPBAR1-knockout mice did not secrete GLP-1 in response to either TLCA or TDCA...

  11. Illicit Nuclear Trafficking Scams

    Nuclear Trafficking Scams are situations where the scam artist(s) offer something (material or information) that is not what he/she/they represent it to be. Example of a scam is when attempt is made to sell fake nuclear material. The offered material may not be nuclear material or may be of a lower grade. The offered material may not actually exist . Radioactive material may be offered as nuclear material. A small sample of actual nuclear material may be offered, but the bulk material may be something else.

  12. Trafficking in persons: a health concern?

    Cathy Zimmerman; Ligia Kiss; Mazeda Hossain; Charlotte Watts

    2009-01-01

    Human trafficking is a phenomenon that has now been documented in most regions in the world. Although trafficking of women and girls for sexual exploitation is the most commonly recognised form of trafficking, it is widely acknowledged that human trafficking also involves men, women and children who are trafficked for various forms of labour exploitation and into other abusive circumstances. Despite the violence and harm inherent in most trafficking situations, there remains extremely little ...

  13. Unnatural amino acids as probes of ligand-receptor interactions and their conformational consequences

    Pless, Stephan Alexander; Ahern, Christopher A

    2013-01-01

    -edge synthetic and chemical biological approaches. Here we summarize recent advances in the use of site-directed incorporation of unnatural amino acids and chemical probes to study ligand-receptor interactions, determine the location of binding sites, and examine the downstream conformational consequences of...

  14. Mutational Characterization of the Bile Acid Receptor TGR5 in Primary Sclerosing Cholangitis

    Hov, Johannes R.; Keitel, Verena; Laerdahl, Jon K.; Spomer, Lina; Ellinghaus, Eva; ElSharawy, Abdou; Melum, Espen; Boberg, Kirsten M.; Manke, Thomas; Balschun, Tobias; Schramm, Christoph; Bergquist, Annika; Weismueller, Tobias; Gotthardt, Daniel; Rust, Christian; Henckaerts, Liesbet; Onnie, Clive M.; Weersma, Rinse K.; Sterneck, Martina; Teufel, Andreas; Runz, Heiko; Stiehl, Adolf; Ponsioen, Cyriel Y.; Wijmenga, Cisca; Vatn, Morten H.; Stokkers, Pieter C. F.; Vermeire, Severine; Mathew, Christopher G.; Lie, Benedicte A.; Beuers, Ulrich; Manns, Michael P.; Schreiber, Stefan; Schrumpf, Erik; Haeussinger, Dieter; Franke, Andre; Karlsen, Tom H.

    2010-01-01

    Background: TGR5, the G protein-coupled bile acid receptor 1 (GPBAR1), has been linked to inflammatory pathways as well as bile homeostasis, and could therefore be involved in primary sclerosing cholangitis (PSC) a chronic inflammatory bile duct disease. We aimed to extensively investigate TGR5 sequ

  15. Searsia species with affinity to the N-methyl-d-aspartic acid (NMDA) receptor

    Jäger, Anna; Knap, D.M.; Nielsen, Birgitte;

    2012-01-01

    Species of Searsia are used in traditional medicine to treat epilepsy. Previous studies on S. dentata and S. pyroides have shown that this is likely mediated via the N-methyl-d-aspartic acid (NMDA) receptor. Ethanolic extracts of leaves of six Searsia species were tested in a binding assay for...... accessible Searsia species can be used in traditional medicine....

  16. Hyaluronic Acid Induces Activation of the κ-Opioid Receptor

    Zavan, Barbara; Ferroni, Letizia; Giorgi, Carlotta; Calò, Girolamo; Brun, Paola; Cortivo, Roberta; Abatangelo, Giovanni; Pinton, Paolo

    2013-01-01

    Introduction Nociceptive pain is one of the most common types of pain that originates from an injury involving nociceptors. Approximately 60% of the knee joint innervations are classified as nociceptive. The specific biological mechanism underlying the regulation of nociceptors is relevant for the treatment of symptoms affecting the knee joint. Intra-articular administration of exogenous hyaluronic acid (HA) in patients with osteoarthritis (OA) appears to be particularly effective in reducing...

  17. ASXL1 Represses Retinoic Acid Receptor-mediated Transcription through Associating with HP1 and LSD1*

    Lee, Sang-Wang; Cho, Yang-Sook; Na, Jung-Min; Park, Ui-Hyun; Kang, Myengmo; Kim, Eun-Joo; Um, Soo-Jong

    2009-01-01

    We previously suggested that ASXL1 (additional sex comb-like 1) functions as either a coactivator or corepressor for the retinoid receptors retinoic acid receptor (RAR) and retinoid X receptor in a cell type-specific manner. Here, we provide clues toward the mechanism underlying ASXL1-mediated repression. Transfection assays in HEK293 or H1299 cells indicated that ASXL1 alone possessing autonomous transcriptional repression activity significantly represses RAR- or retinoid X receptor-dependen...

  18. Human Trafficking : A Brief Overview

    Makisaka, Megumi

    2009-01-01

    Millions of men, women and children are victims of human trafficking for sexual, forced labor and other forms of exploitation worldwide. The human and economic costs of this take an immense toll on individuals and communities. By conservative estimates, the cost of trafficking in terms of underpayment of wages and recruiting fees is over $20 billion. The costs to human capital are probably...

  19. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    Junker, L.H.; Davis, R.A. (Univ. of Colorado Health Sciences Center, Denver (USA))

    1989-12-01

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of (14C)cholesterol from (2-14C)acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of (14C)cholesterol from (2-14C)acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.

  20. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis

  1. The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants

    Behrendt, N; Rønne, E; Ploug, M; Petri, T; Løber, D; Nielsen, L S; Schleuning, W D; Blasi, F; Appella, E; Danø, K

    1990-01-01

    -PA. The purified protein shows a single 55-60 kDa band after sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining. It is a heavily glycosylated protein, the deglycosylated polypeptide chain comprising only 35 kDa. The glycosylated protein contains N-acetyl-D-glucosamine and sialic...... acid, but no N-acetyl-D-galactosamine. Glycosylation is responsible for substantial heterogeneity in the receptor on phorbol ester-stimulated U937 cells, and also for molecular weight variations among various cell lines. The amino acid composition and the NH2-terminal amino acid sequence are reported...

  2. Reduction of sodium deoxycholic acid-induced scratching behaviour by bradykinin B2 receptor antagonists

    Hayashi, Izumi; Majima, Masataka

    1999-01-01

    Subcutaneous injection of sodium deoxycholic acid into the anterior of the back of male ddY mice elicited dose-dependent scratching of the injected site with the forepaws and hindpaws.Up to 100 μg of sodium deoxycholic acid induced no significant increase in vascular permeability at the injection site as assessed by a dye leakage method.Bradykinin (BK) B2 receptor antagonists, FR173657 and Hoe140, significantly decreased the frequency of scratching induced by sodium deoxycholic acid.Treatment...

  3. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells

    Maëlle Lempereur

    2016-01-01

    Full Text Available Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L. which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box. In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells. Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif.

  4. Tetrahydro-iso-alpha Acids Antagonize Estrogen Receptor Alpha Activity in MCF-7 Breast Cancer Cells.

    Lempereur, Maëlle; Majewska, Claire; Brunquers, Amandine; Wongpramud, Sumalee; Valet, Bénédicte; Janssens, Philippe; Dillemans, Monique; Van Nedervelde, Laurence; Gallo, Dominique

    2016-01-01

    Tetrahydro-iso-alpha acids commonly called THIAA or Tetra are modified hop acids extracted from hop (Humulus lupulus L.) which are frequently used in brewing industry mainly in order to provide beer bitterness and foam stability. Interestingly, molecular structure of tetrahydro-iso-alpha acids is close to a new type of estrogen receptor alpha (ERα) antagonists aimed at disrupting the binding of coactivators containing an LxxLL motif (NR-box). In this work we show that THIAA decreases estradiol-stimulated proliferation of MCF-7 (ERα-positive breast cancer cells). Besides, we show that it inhibits ERα transcriptional activity. Interestingly, this extract fails to compete with estradiol for ERα binding and does not significantly impact the receptor turnover rate in MCF-7 cells, suggesting that it does not act like classical antiestrogens. Hence, we demonstrate that THIAA is able to antagonize ERα estradiol-induced recruitment of the LxxLL binding motif. PMID:27190515

  5. Signaling through retinoic acid receptors in cardiac development: Doing the right things at the right times.

    Xavier-Neto, José; Sousa Costa, Ângela M; Figueira, Ana Carolina M; Caiaffa, Carlo Donato; Amaral, Fabio Neves do; Peres, Lara Maldanis Cerqueira; da Silva, Bárbara Santos Pires; Santos, Luana Nunes; Moise, Alexander R; Castillo, Hozana Andrade

    2015-02-01

    Retinoic acid (RA) is a terpenoid that is synthesized from vitamin A/retinol (ROL) and binds to the nuclear receptors retinoic acid receptor (RAR)/retinoid X receptor (RXR) to control multiple developmental processes in vertebrates. The available clinical and experimental data provide uncontested evidence for the pleiotropic roles of RA signaling in development of multiple embryonic structures and organs such eyes, central nervous system, gonads, lungs and heart. The development of any of these above-mentioned embryonic organ systems can be effectively utilized to showcase the many strategies utilized by RA signaling. However, it is very likely that the strategies employed to transfer RA signals during cardiac development comprise the majority of the relevant and sophisticated ways through which retinoid signals can be conveyed in a complex biological system. Here, we provide the reader with arguments indicating that RA signaling is exquisitely regulated according to specific phases of cardiac development and that RA signaling itself is one of the major regulators of the timing of cardiac morphogenesis and differentiation. We will focus on the role of signaling by RA receptors (RARs) in early phases of heart development. This article is part of a Special Issue entitled: Nuclear receptors in animal development. PMID:25134739

  6. A new orphan member of the nuclear hormone receptor superfamily that interacts with a subset of retinoic acid response elements.

    Baes, M.; Gulick, T; Choi, H. S.; Martinoli, M G; Simha, D; Moore, D D

    1994-01-01

    We have identified and characterized a new orphan member of the nuclear hormone receptor superfamily, called MB67, which is predominantly expressed in liver. MB67 binds and transactivates the retinoic acid response elements that control expression of the retinoic acid receptor beta 2 and alcohol dehydrogenase 3 genes, both of which consist of a direct repeat hexamers related to the consensus AGGTCA, separated by 5 bp. MB67 binds these elements as a heterodimer with the 9-cis-retinoic acid rec...

  7. Evolution of neurotransmitter gamma-aminobutyric acid,glutamate and their receptors

    Zhiheng GOU; Xiao WANG; Wen WANG

    2012-01-01

    Gamma-aminobutyric acid (GABA) and glutamate are two important amino acid neurotransmitters widely present in the nervous systems of ammals,insects,round worm,and platyhelminths,while their receptors are quite diversified across different animal phyla.However,the evolutionary mechanisms between the two conserved neurotransmitters and their diversified receptors remain elusive,and antagonistic interactions between GABA and glutamate signal transduction systems,in particular,have begun to attract significant attention.In this review,we summarize the extant results on the origin and evolution of GABA and glutamate,as well as their receptors,and analyze possible evolutionary processes and phylogenetic relationships of various GABAs and glutamate receptors.We further discuss the evolutionary history of Excitatory/Neutral Amino Acid Transporter (EAAT),a transport protein,which plays an important role in the GABA-glutamate "yin and yang" balanced regulation.Finally,based on current advances,we propose several potential directions of future research.

  8. Computer-aided design of a novel ligand for retinoic acid receptor in cancer chemotherapy

    Silva, Carlos H. T. P.; Leopoldino, Andreia M.; Silva, Eloiza H. T.; Espinoza, V. A. A.; Taft, C. A.

    The isotypes of RAR and RXR are retinoic acid and retinoid X acid receptors, respectively, whose ligand-binding domain contains the ligand-dependent activation function, with distinct pharmacological targets for retinoids, involved in the treatment of various cancers and skin diseases. Due to the major challenge which cancer treatment and cure still imposes after many decades to the international scientific community, there is actually considerable interest in new ligands with increased bioactivity. We have focused on the retinoid acid receptor, which is considered an interesting target for drug design. In this work, we carried out density functional geometry optimizations and different docking procedures. We performed screening in a large database (hundreds of thousands of molecules which we optimized at the AM1 level) yielding a set of potential bioactive ligands. A new ligand was selected and optimized at the B3LYP/6-31G* level. A flexible docking program was used to investigate the interactions between the receptor and the new ligand. The result of this work is compared with several crystallographic ligands of RAR. Our theoretically more bioactive new ligand indicates stronger and more hydrogen bonds as well as hydrophobic interactions with the receptor.

  9. Metabolism meets immunity: The role of free fatty acid receptors in the immune system.

    Alvarez-Curto, Elisa; Milligan, Graeme

    2016-08-15

    There are significant numbers of nutrient sensing G protein-coupled receptors (GPCRs) that can be found in cells of the immune system and in tissues that are involved in metabolic function, such as the pancreas or the intestinal epithelium. The family of free fatty acid receptors (FFAR1-4, GPR84), plus a few other metabolite sensing receptors (GPR109A, GPR91, GPR35) have been for this reason the focus of studies linking the effects of nutrients with immunological responses. A number of the beneficial anti-inflammatory effects credited to dietary fats such as omega-3 fatty acids are attributed to their actions on FFAR4.This might play an important protective role in the development of obesity, insulin resistance or asthma. The role of the short-chain fatty acids resulting from fermentation of fibre by the intestinal microbiota in regulating acute inflammatory responses is also discussed. Finally we assess the therapeutic potential of this family of receptors to treat pathologies where inflammation is a major factor such as type 2 diabetes, whether by the use of novel synthetic molecules or by the modulation of the individual's diet. PMID:27002183

  10. Dynamic changes of excitatory amino acid receptors in the rat hippocampus following transient cerebral ischemia

    The changes in excitatory amino acid receptor ligand binding induced by transient cerebral ischemia were studied in the rat hippocampal subfields. Ten minutes of ischemia was induced by common carotid artery occlusion combined with hypotension, and the animals were allowed variable periods of recovery ranging from 1 day to 4 weeks. The binding of 3H-AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) to quisqualate receptors, 3H-kainic acid (KA) to kainate receptors, and 3H-glutamate to N-methyl-D-aspartate (NMDA) receptors as determined by quantitative autoradiography. One week following ischemia the CA1 region of the hippocampus displayed a severe (90%) dendrosomatic lesion with preservation of presynaptic terminals. This was associated with a 60% decrease in AMPA binding and a 25% decrease in glutamate binding to NMDA receptors. At 4 weeks postischemia, both AMPA and NMDA sites were greatly reduced. Although the dentate gyrus granule cells are resistant to an ischemic insult of this magnitude, this region showed marked changes in receptor binding. One week following ischemia, the AMPA and NMDA binding decreased by approximately 40 and 20%, respectively. Following 2 weeks of recovery, the NMDA binding was not significantly different from control level, while the AMPA binding remained depressed up to 4 weeks postischemia. The high density of KA binding sites in the inner molecular layer of the dentate gyrus was unaffected by the ischemic insult, despite an extensive degeneration of cells in the hilus of dentate gyrus which projects glutamatergic afferents to this area