WorldWideScience

Sample records for acid proteinases

  1. Genetics of proteinases of lactic acid bacteria

    Kok, Jan; Venema, Gerhardus

    1988-01-01

    Because it is essential for good growth with concomitant rapid acid production, and for the production of flavorous peptides and amino acids, the proteolytic ability of lactic acid bacteria is of crucial importance for reliable dairy product quality. In view of this importance, considerable research

  2. Expression of extracellular acid proteinase by proteolytic Candida spp. during experimental infection of oral mucosa.

    Borg, M; Rüchel, R.

    1988-01-01

    We traced an acid proteinase from Candida spp. in the initial stages of the pathogenesis of the mycosis. On infection of human buccal mucosa, proteinase antigens were detected by immuno-scanning electron microscopy on the surface of adhering blastoconidia and invading filamentous cells of C. albicans serotype A. Proteinase antigens were also present on blastoconidia of C. albicans serotype B, but were missing on filamentous cells of this serotype. Proteolytic isolates of C. tropicalis behaved...

  3. Sulfonate salts of amino acids: novel inhibitors of the serine proteinases.

    Groutas, W C; Brubaker, M J; Zandler, M E; Stanga, M A; Huang, T L; Castrisos, J C; Crowley, J P

    1985-04-16

    A series of amino acid-derived sulfonate salts have been synthesized. They were found to inactivate efficiently and selectively human leukocyte elastase. The sulfonate salts of the methyl esters of L-norleucine, L-norvaline and L-valine were the most potent. The enzyme is inactivated irreversibly with concomitant release of bisulfite ion. The results demonstrate for the first time that ionic compounds can indeed function as novel inhibitors for the serine proteinases. PMID:3885950

  4. In vitro differential activity of phospholipases and acid proteinases of clinical isolates of Candida

    Aurean D'Eça Júnior

    2011-06-01

    Full Text Available INTRODUCTION: Candida yeasts are commensals; however, if the balance of normal flora is disrupted or the immune defenses are compromised, Candida species can cause disease manifestations. Several attributes contribute to the virulence and pathogenicity of Candida, including the production of extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate the in vitro activity of phospholipases and acid proteinases in clinical isolates of Candida spp. METHODS: Eighty-two isolates from hospitalized patients collected from various sites of origin were analyzed. Phospholipase production was performed in egg yolk medium and the production of proteinase was verified in a medium containing bovine serum albumin. The study was performed in triplicate. RESULTS: Fifty-six (68.3% of isolates tested were phospholipase positive and 16 (44.4% were positive for proteinase activity. C. tropicalis was the species with the highest number of positive isolates for phospholipase (91.7%. Statistically significant differences were observed in relation to production of phospholipases among species (p<0,0001 and among the strains from different sites of origin (p=0.014. Regarding the production of acid protease, the isolates of C. parapsilosis tested presented a larger number of producers (69.2%. Among the species analyzed, the percentage of protease producing isolates did not differ statistically (χ2=1.9 p=0.5901 (χ2=1.9 p=0.5901. CONCLUSIONS: The majority of C. non-albicans and all C. albicans isolates were great producers of hydrolytic enzymes and, consequently, might be able to cause infection under favorable conditions.

  5. Cysteine proteinases and cystatins

    Adeliana S. Oliveira

    2003-01-01

    Full Text Available This review describeds the definition, localization, functions and examples of cysteine proteinases and their protein inhibitors in vertebrate, non-vertebrate animals and plants. These inhibitors are related with defense mechanisms of plant against pests. It also describes the factors involved in the specific cysteine proteinase-cystatin interaction and high degree of affinity and large specificity in this interaction which are not only represented by the compatibility between amino acid residues of the active site involved in catalysis, but also of all amino acid residues that participante in the enzyme-inhibitor interaction.Nesta revisão foram descritas definições, localizações, funções e exemplos de proteinases cisteínicas e suas proteinas inibidoras em animais vertebrados e invertebrados e plantas. Tratamos principalmente com aqueles inibidores que são relatados com o mecanismo de defesa da planta contra pestes. Em adição, comentamos sobre recentes trabalhos que contribuíram para uma melhor compreenção dos fatores envolvidos na interação específica proteinase cisteínica-cistatina. Por outro lado, chamamos atenção para o alto grau de afinidade e grande especificidade na interação que não são apenas representadas pela compatibilidade entre os residuos de aminoácidos do sítio ativo envolvidos na catalise, mas também de todos os resíduos de aminoácidos que participam da interação enzima-inibidor.

  6. Reactive oxygen species and anti-proteinases.

    Siddiqui, Tooba; Zia, Mohammad Khalid; Ali, Syed Saqib; Rehman, Ahmed Abdur; Ahsan, Haseeb; Khan, Fahim Halim

    2016-01-01

    Reactive oxygen species (ROS) cause damage to macromolecules such as proteins, lipids and DNA and alters their structure and function. When generated outside the cell, ROS can induce damage to anti-proteinases. Anti-proteinases are proteins that are involved in the control and regulation of proteolytic enzymes. The damage caused to anti-proteinase barrier disturbs the proteinase-anti-proteinases balance and uncontrolled proteolysis at the site of injury promotes tissue damage. Studies have shown that ROS damages anti-proteinase shield of the body by inactivating key members such as alpha-2-macroglobulin, alpha-1-antitrypsin. Hypochlorous acid inactivates α-1-antitrypsin by oxidizing a critical reactive methionine residue. Superoxide and hypochlorous acid are physiological inactivators of alpha-2-macroglobulin. The damage to anti-proteinase barrier induced by ROS is a hallmark of diseases such as atherosclerosis, emphysema and rheumatoid arthritis. Thus, understanding the behaviour of ROS-induced damage to anti-proteinases may helps us in development of strategies that could control these inflammatory reactions and diseases. PMID:26699123

  7. Proteinases of betaretroviruses bind single-stranded nucleic acids through a novel interaction module, the G-patch

    Švec, Martin; Bauerová, Helena; Pichová, Iva; Konvalinka, Jan; Stříšovský, Kvido

    Praha : JPM, 2004 - (Hunter, E.; Ruml, T.; Pichová, I.; Rumlová, M.; Sakalian, M.). s. 75 ISBN 80-86313-13-1. [The Retrovirus Assembly Meeting. 02.10.2004-06.10.2004, Praha] Keywords : proteinases * betaretroviruses Subject RIV: CE - Biochemistry

  8. Proteinases of betaretroviruses bind single-stranded nucleic acids through a novel interaction module, the G-patch

    Švec, Martin; Bauerová, Helena; Pichová, Iva; Konvalinka, Jan; Stříšovský, Kvido

    2004-01-01

    Roč. 576, 1/2 (2004), s. 271-276. ISSN 0014-5793 R&D Projects: GA AV ČR IAA4055304; GA MŠk LN00A032 Grant ostatní: 5th Framework(XE) QLK2-CT-2001-02360 Institutional research plan: CEZ:AV0Z4055905 Keywords : retrovirus * aspartic proteinase * maturation Subject RIV: CE - Biochemistry Impact factor: 3.843, year: 2004

  9. Characterization of proteinases in trypanosomatids.

    Branquinha, M H; Vermelho, A B; Goldenberg, S; Bonaldo, M C

    1994-02-01

    Proteinases are important factors in the pathogenicity of many parasitic diseases. In this study, the proteolytic activities of 10 trypanosomatids from five different genera (Crithidia, Phytomonas, Endotrypanum, Trypanosoma and Leishmania) were determined by SDS-PAGE containing copolymerized gelatin as substrate. In almost all species we could detect two proteolytic classes, cysteine- and metalloproteinases, based on the inhibition of their activities by E-64 and 1,10-phenanthroline, respectively. In all cases, the metalloproteinase activities did not change over a broad pH range (from 5.5 to 10). E. schaudinni, T. mega, T. dionisii, C. luciliae, C. fasciculata, C. oncopelti and C. guilhermei expressed one or two metalloproteinases of 45-66 kDa, whereas in P. serpens and P. hyssopifolia a double band of this endopeptidase was detected at 94 kDa. In contrast, no metalloproteinase activity was observed in L. tarentolae. The optimal pH for the cysteine-proteinase activities was acidic (about 5.5). In E. schaudinni, T. mega and in Crithidia sp., these proteinases had an apparent molecular weight of 66-94 kDa, while L. tarentolae expressed a broad band from 29 to 45 kDa. In Phytomonas sp., this class of endopeptidase showed a unique feature, in that major cysteine-proteinases were found at 29-66 kDa, but multiple, low-activity bands were detected from 116 to 200 kDa. The most striking characteristic, however, was the very intense cysteine-proteinase activity expressed by T. dionisii (29-66 kDa). We conclude that these differences in the proteolytic profiles could be useful markers to characterize and compare trypanosomatids. PMID:8081271

  10. Proteinase genes of cheese starter cultures

    Kok, Jan

    1991-01-01

    The proteolytic enzymes of lactococci are of eminent importance for milk fermentations. By the combined action of proteinases and peptidases milk protein is degraded to peptides and amino acids which are required for cell growth and contribute to the organoleptic properties of the foods. The importa

  11. Proteinase-producing halophilic lactic acid bacteria isolated from fish sauce fermentation and their ability to produce volatile compounds.

    Udomsil, Natteewan; Rodtong, Sureelak; Tanasupawat, Somboon; Yongsawatdigul, Jirawat

    2010-07-15

    Halophilic lactic acid bacteria were isolated from fish sauce mashes fermented at 1 to 12 months. Seven out of sixty-four isolates were selected according to their proteolytic activity and growth at 25% NaCl for characterization and investigation of volatile compound production. All selected isolates were Gram-positive cocci with pairs/tetrads and grew at 0-25% NaCl, pH 4.5-9.0. Results of 16S rRNA gene sequence analysis showed 99% homology to Tetragenococcus halophilus ATCC 33315. The restriction fragment length polymorphism (RFLP) patterns of all isolates were also similar to those of T. halophilus ATCC 33315. These isolates were, thus, identified as T. halophilus. All isolates hydrolyzed fish protein in the medium containing 25% NaCl. Intracellular aminopeptidase of 7 isolates exhibited the highest activity of 2.85-3.67 U/ml toward Ala-p-nitroanilide (Ala-pNA). T.halophilus strains MS33 and M11 showed the highest alanyl aminopeptidase activity (Phalophilus MS33 and MRC5-5-2 were 1-propanol, 2-methylpropanal, and benzaldehyde, corresponding to major volatile compounds in fish sauce. T.halophilus appeared to play an important role in volatile compound formation during fish sauce fermentation. PMID:20541276

  12. Evolutionary patterns of proteinase activity in attine ant fungus gardens

    Semenova, Tatyana; Hughes, David Peter; Boomsma, Jacobus Jan;

    2011-01-01

    of evolutionary more derived fungal symbionts. This notion is also supported by buffering capacities of fungus gardens at pH 5.2 being remarkably high, and suggests that the fungal symbiont actively helps to maintain garden acidity at this specific level. Metalloproteinases dominated the activity profiles....... Conclusions: Proteinase pH optima and buffering capacities of fungal symbionts appear to have evolved remarkable adaptations to living in obligate symbiosis with farming ants. Although the functional roles of serine and metalloproteinases in fungus gardens are unknown, the differential production...... hypothesized that fungal proteinase activity may have been under selection for efficiency and that different classes of proteinases might be involved. Results: We determined proteinase activity profiles across a wide pH range for fungus gardens of 14 Panamanian species of fungus-growing ants, representing...

  13. Silencing Brassinosteroid Receptor BRI1 Impairs Herbivory-elicited Accumulation of Jasmonic Acid-isoleucine and Diterpene Glycosides, but not Jasmonic Acid and Trypsin Proteinase Inhibitors in Nicotiana attenuata

    Da-Hai Yang; lan T.Baldwin; Jianqiang Wu

    2013-01-01

    The brassinosteroid (BR) receptor,BR insensitive 1 (BRI1),plays a critical role in plant development,but whether BRI1-mediated BR signaling is involved in plant defense responses to herbivores was largely unknown.Here,we examined the function of BRI1 in the resistance of Nicotiana attenuata (Solanaceae) to its specialist insect herbivore Manduca sexta.Jasmonic acid (JA) and JA-isoleucine conjugate (JA-Ile) are important hormones that mediate resistance to herbivores and we found that after wounding or simulated herbivory NaBRI1 had little effect on JA levels,but was important for the induction of JA-Ile.Further experiments revealed that decreased JAR (the enzyme for JA-Ile production) activity and availability of lie in NaBRI1-silenced plants were likely responsible for the low JA-Ile levels.Consistently,M.sexta larvae gained more weight on NaBRI1-silenced plants than on the control plants.Quantification of insect feeding-induced secondary metabolites revealed that silencing NaBRI1 resulted in decreased levels of carbon-rich defensive secondary metabolites (hydroxygeranyllinalool diterpene glycosides,chlorogenic acid,and rutin),but had little effect on the nitrogen-rich ones (nicotine and trypsin proteinase inhibitors).Thus,NaBRI1-mediated BR signaling is likely involved in plant defense responses to M.sexta,including maintaining JA-Ile levels and the accumulation of several carbon-rich defensive secondary metabolites.

  14. Plasmin: indigenous milk proteinase

    Samir Kalit

    2002-06-01

    Full Text Available The most important characteristic of plasmin, as significant indigenous milk proteinase, its concentration, concentration measuring procedure and activity of plasmin are described. The most important factors, which have an influence on concentration and plasmin activity in milk, are stage of lactation and mastitis (high somatic cell count – SCC. In high SCC milk indigenous proteinase activity increased, especially in plasmin and plasminogen system.Specific hydrolytic activity of plasmin during primary proteolysis of some casein fractions is described. ß-CN is most susceptible fraction, but αs1-CN and αs2-Cn are less susceptible to degradation by plasmin. Almost all fractions of κ-CN are resistant to degradation by plasmin. Activation of plasminogen to plasmin is very complex biochemical process influenced by activators and inhibitors in milk, and can be increased in high SCC milk. There are many various types of inhibitors in milk serum and ßlactoglobulin is the most important after its thermal denaturation. Addition of aprotinin and soybean tripsin inhibitors in milk inhibits plasmin activity. Most important characteristic of plasmin is its thermostability onpasteurisation and even sterilisation. Mechanism of thermal inactivation of plasmin with developing covalent disulphide interaction between molecule of plasmin and serum proteins (mostly ß-laktoglobulin is described. Thermosensitive inhibitors of plasminogen activators and inhibitors of plasmin are inactivated by short pasteurisation and therefore increase plasmin activity,while higher temperature and longer treatment time inactivate plasmin activity.

  15. The induction of proteinases in corn and soybean by anoxia

    This study characterized the anaerobic changes in proteinase activities in corn and soybean roots and to investigate the possibility that these changes might contribute to the differential anaerobiosis tolerance of the two species. After 24 h of anoxia, crude protein extracts from H60 corn and Keller soybean root tips (10cm) were assayed for proteinase activities at pH range from 4.5 to 9.5. Turnover of aberrant proteins was studied in seedlings labelled with 3H-leucine for 12 h under: (a) puromycin (0.64 mM) in air, (b) ethanol (1%) in air, (c) nitrogen and (d) air. After the treatment, the labelled proteins remaining in roots were determined every 2 h for 6 h. In both corn and soybean, activities of alkali proteinases increased, and activities of acid proteinases declined under anoxia. Neutral proteinases increase in anoxic corn roots, but decline in anoxic soybean roots. The protein turnover rate in corn treated with puromycin, ethanol and nitrogen was much higher than in control roots. The protein turnover rate in soybean roots treated with puromycin, ethanol was similar to the rate of the control. The results indicated that: (a) anoxic corn can degrade aberrant proteins, but anoxic soybean cannot, (b) the degradation of aberrant proteins in anoxic corn is accomplished by neutral proteinases, and (c) the accumulation of aberrant proteins in soybean might contribute to the susceptibility of this species to anoxia

  16. Structure and function of invertebrate Kazal-type serine proteinase inhibitors.

    Rimphanitchayakit, Vichien; Tassanakajon, Anchalee

    2010-04-01

    Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. The proteinase inhibitors function as modulators for controlling the extent of deleterious proteinase activity. The Kazal-type proteinase inhibitors (KPIs) in family I1 are among the well-known families of proteinase inhibitors, widely found in mammals, avian and a variety of invertebrates. Like those classical KPIs, the invertebrate KPIs can be single or multiple domain proteins containing one or more Kazal inhibitory domains linked together by peptide spacers of variable length. All invertebrate Kazal domains of about 40-60 amino acids in length share a common structure which is dictated by six conserved cysteine residues forming three intra-domain disulfide cross-links despite the variability of amino acid sequences between the half-cystines. Invertebrate KPIs are strong inhibitors as shown by their extremely high association constant of 10(7)-10(13)M(-1). The inhibitory specificity of a Kazal domain varies widely with a different reactive P(1) amino acid. Different invertebrate KPI domains may arise from gene duplication but several KPI proteins can also be derived from alternative splicing. The invertebrate KPIs function as anticoagulants in blood-sucking animals such as leech, mosquitoes and ticks. Several KPIs are likely involved in protecting host from microbial proteinases while some from the parasitic protozoa help protecting the parasites from the host digestive proteinase enzymes. Silk moths produce KPIs to protect their cocoon from predators and microbial destruction. PMID:19995574

  17. [Proteinase-proteinase inhibitor complex in rats under oxidative stress caused by administration of cobalt chloride].

    Kaliman, P A; Samokhin, A A; Samokhina, L M

    2000-01-01

    Mechanisms of proteinase-inhibitor proteinase system response was estimated following of cobalt chloride injection. The increase proteinase activity, which led to significant decrease of alpha-2-macroglobulin (alpha-2-MG) level was established that indicated to the removal of the proteinase in complex with alpha-2-MG from the organism. Increase of alpha-1-proteinase inhibitor (alpha-1-PI) trypsin-inhibitory activity in the kidneys testify about removal of oxidative alpha-1-PI. PMID:10979565

  18. Thiol proteinase inhibitor - Oryzacystatin. Molecular cloning and expression in E. coli

    Insect depredation is a major reason for the reduction in crop yields world-wide. Promising results have already been achieved with transgenic plants expression cowpea trypsin inhibitor (CpTI) genes and modified delta-endotoxin genes. Insects, in general, hydrolyse ingested proteins with a variety of proteinase. The effect of the serine proteinase inhibitor against Lepidopteran insects is probably caused by the preponderance of serine type gut proteinase and a luminal pH in the neutral to alkaline range. On the other hand, the insect orders Coleoptera and Hemiptera have gut pHs in the mildly acidic range and commonly have thiol type gut proteinases. Plant transformation with a gene coding for a thiol proteinase inhibitor has been suggested as a strategy for interfering with the digestive physiology of Coleopteran and Hemipteran insects. Co-transformation of both the serine proteinase inhibitor and the thiol proteinase inhibitor genes might result in a broader spectrum of activity and increased durability of protection

  19. Proteinase inhibitory activities of two two-domain Kazal proteinase inhibitors from the freshwater crayfish Pacifastacus leniusculus and the importance of the P(2) position in proteinase inhibitory activity.

    Donpudsa, Suchao; Söderhäll, Irene; Rimphanitchayakit, Vichien; Cerenius, Lage; Tassanakajon, Anchalee; Söderhäll, Kenneth

    2010-11-01

    Serine proteinase inhibitors are found ubiquitously in living organisms and involved in homeostasis of processes using proteinases as well as innate immune defense. Two two-domain Kazal-type serine proteinase inhibitors (KPIs), KPI2 and KPI8, have been identified from the hemocyte cDNA library of the crayfish Pacifastacus leniusculus. Unlike other KPIs from P. leniusculus, they are found specific to the hemocytes and contain an uncommon P(2) amino acid residue, Gly. To unveil their inhibitory activities, the two KPIs and their domains were over-expressed. By testing against subtilisin, trypsin, chymotrypsin and elastase, the KPI2 was found to inhibit strongly against subtilisin and weakly against trypsin, while the KPI8 was strongly active against only trypsin. With their P(1) Ser and Lys residues, the KPI2_domain2 and KPI8_domain2 were responsible for strong inhibition against subtilisin and trypsin, respectively. Mutagenesis of KPI8_domain1 at P(2) amino acid residue from Gly to Pro, mimicking the P(2) residue of KPI8_domain2, rendered the KPI8_domain1 strongly active against trypsin, indicating the important role of P(2) residue in inhibitory activities of the Kazal-type serine proteinase inhibitors. Only the KPI2 was found to inhibit against the extracellular serine proteinases from the pathogenic oomycete of the freshwater crayfish, Aphanomyces astaci. PMID:20621193

  20. Genetic analysis of regulatory mutants affecting synthesis of extracellular proteinases in the yeast Yarrowia lipolytica: identification of a RIM101/pacC homolog.

    Lambert, M.; Blanchin-Roland, S; Le Louedec, F; Lepingle, A; Gaillardin, C.

    1997-01-01

    Depending on the pH of the growth medium, the yeast Yarrowia lipolytica secretes both an acidic proteinase and an alkaline proteinase, the synthesis of which is also controlled by carbon, nitrogen, and sulfur availability, as well as by the presence of extracellular proteins. Recessive mutations at four unlinked loci, named PAL1 to PAL4, were isolated which prevent alkaline proteinase derepression under conditions of carbon and nitrogen limitation at pH 6.8. These mutations markedly affect ma...

  1. The cysteine proteinases of the pineapple plant.

    Rowan, A D; Buttle, D J; Barrett, A J

    1990-03-15

    The pineapple plant (Ananas comosus) was shown to contain at least four distinct cysteine proteinases, which were purified by a procedure involving active-site-directed affinity chromatography. The major proteinase present in extracts of plant stem was stem bromelain, whilst fruit bromelain was the major proteinase in the fruit. Two additional cysteine proteinases were detected only in the stem: these were ananain and a previously undescribed enzyme that we have called comosain. Stem bromelain, fruit bromelain and ananain were shown to be immunologically distinct. Enzymic characterization revealed differences in both substrate-specificities and inhibition profiles. A study of the cysteine proteinase derived from the related bromeliad Bromelia pinguin (pinguinain) indicated that in many respects it was similar to fruit bromelain, although it was found to be immunologically distinct. PMID:2327970

  2. Proteinase activity regulation by glycosaminoglycans

    Tersariol I.L.S.

    2002-01-01

    Full Text Available There are few reports concerning the biological role and the mechanisms of interaction between proteinases and carbohydrates other than those involved in clotting. It has been shown that the interplay of enzymes and glycosaminoglycans is able to modulate the activity of different proteases and also to affect their structures. From the large number of proteases belonging to the well-known protease families and also the variety of carbohydrates described as widely distributed, only few events have been analyzed more deeply. The term "family" is used to describe a group of proteases in which every member shows an evolutionary relationship to at least one other protease. This relationship may be evident throughout the entire sequence, or at least in that part of the sequence responsible for catalytic activity. The majority of proteases belong to the serine, cysteine, aspartic or metalloprotease families. By considering the existing limited proteolysis process, in addition to the initial idea that the proteinases participate only in digestive processes, it is possible to conclude that the function of the enzymes is strictly limited to the cleavage of intended substrates since the destruction of functional proteins would result in normal tissue damage. In addition, the location as well as the eventual regulation of protease activity promoted by glycosaminoglycans can play an essential role in the development of several physiopathological conditions.

  3. Highly conserved salt bridge stabilizes a proteinase K subfamily enzyme, Aqualysin I, from Thermus aquaticus YT-1

    Sakaguchi, Masayoshi; Osaku, Kanae; Maejima, Susumu; Ohno, Nao; Sugahara, Yasusato; Oyama, Fumitaka; Kawakita, Masao

    2014-01-01

    The proteinase K subfamily enzymes, thermophilic Aqualysin I (AQN) from Thermus aquaticus YT-1 and psychrophilic serine protease (VPR) from Vibrio sp. PA-44, have six and seven salt bridges, respectively. To understand the possible significance of salt bridges in the thermal stability of AQN, we prepared mutant proteins in which amino acid residues participating in salt bridges common to proteinase K subfamily members and intrinsic to AQN were replaced to disrupt the bridges one at a time. Di...

  4. Enzymatic response of the eucalypt defoliator Thyrinteina arnobia (Stoll) (Lepidoptera: Geometridae) to a bis-benzamidine proteinase Inhibitor. i.

    Marinho-Prado, Jeanne Scardini; Lourenção, A L; Guedes, R N C; Pallini, A; Oliveira, J A; Oliveira, M G A

    2012-10-01

    Ingestion of proteinase inhibitors leads to hyperproduction of digestive proteinases, limiting the bioavailability of essential amino acids for protein synthesis, which affects insect growth and development. However, the effects of proteinase inhibitors on digestive enzymes can lead to an adaptive response by the insect. In here, we assessed the biochemical response of midgut proteinases from the eucalypt defoliator Thyrinteina arnobia (Stoll) to different concentrations of berenil, a bis-benzamidine proteinase inhibitor, on eucalyptus. Eucalyptus leaves were immersed in berenil solutions at different concentrations and fed to larvae of T. arnobia. Mortality was assessed daily. The proteolytic activity in the midgut of T. arnobia was assessed after feeding on plants sprayed with aqueous solutions of berenil, fed to fifth instars of T. arnobia for 48 h before midgut removal for enzymatic assays. Larvae of T. arnobia were able to overcome the effects of the lowest berenil concentrations by increasing their trypsin-like activity, but not as berenil concentration increased, despite the fact that the highest berenil concentration resulted in overproduction of trypsin-like proteinases. Berenil also prevented the increase of the cysteine proteinases activity in response to trypsin inhibition. PMID:23950094

  5. Proteinases and associated genes of parasitic helminths.

    Tort, J; Brindley, P J; Knox, D; Wolfe, K H; Dalton, J P

    1999-01-01

    Many parasites have deployed proteinases to accomplish some of the tasks imposed by a parasitic life style, including tissue penetration, digestion of host tissue for nutrition and evasion of host immune responses. Information on proteinases from trematodes, cestodes and nematode parasites is reviewed, concentrating on those worms of major medical and economical importance. Their biochemical characterization is discussed, along with their putative biological roles and, where available, their associated genes. For example, proteinases expressed by the various stages of the schistosome life-cycle, in particular the well-characterized cercarial elastase which is involved in the penetration of the host skin and the variety of proteinases, such as cathepsin B (Sm31), cathepsin L1, cathepsin L2, cathepsin D, cathepsin C and legumain (Sm32), which are believed to be involved in the catabolism of host haemoglobin. The various endo- and exoproteinases of Fasciola hepatica, the causative agent of liver fluke disease, are reviewed, and recent reports of how these enzymes have been successfully employed in cocktail vaccines are discussed. The various proteinases of cestodes and of the diverse superfamilies of parasitic nematodes are detailed, with special attention being given to those parasites for which most is known, including species of Taenia, Echinococcus, Spirometra, Necator, Acylostoma and Haemonchus. By far the largest number of papers in the literature and entries to the sequence data bases dealing with proteinases of parasitic helminths report on enzymes belonging to the papain superfamily of cysteine proteinases. Accordingly, the final section of the review is devoted to a phylogenetic analysis of this superfamily using over 150 published sequences. This analysis shows that the papain superfamily can be divided into two major branches. Branch A contains the cathepin Bs, the cathepsin Cs and a novel family termed cathepsin Xs, while Branch B contains the cruzipains

  6. Plasmodium falciparum proteinases: cloning of the putative gene coding for the merozoite proteinase for erythrocyte invasion (MPEI and determination of hydrolysis sites of spectrin by Pf37 proteinase

    I. Florent

    1994-01-01

    Full Text Available Numerous proteinase activities have been shown to be essential for the survival of Plasmodium falciparum. One approach to antimalarial chemotherapy, would be to block specifically one or several of these activities, by using compounds structurally analogous to the substrates of these proteinases. Such a strategy requires a detailed knowledge of the active site of the proteinase, in order to identify the best substrate for the proteinase. Aiming at developing such a strategy, two proteinases previously identified in our laboratory, were chosen for further characterization of their molecular structure and properties: the merozoite proteinase for erythrocytic invasion (MPEI, involved in the erythrocyte invasion by the merozoites, and the Pf37 proteinase, which hydrolyses human spectrin in vitro.

  7. [Effect of adrenal stress on activity of proteinase and alpha-1-proteinase inhibitor in rats].

    Samokhina, L M; Kaliman, P A

    1994-01-01

    The effect of adrenal stress on the proteinase and alpha-1-proteinase inhibitor activities in blood serum and cytosols of the rat organs were investigated. The reliable change was marked only in the alpha-1-PI level research of lung tissue cytosol. The proteolysis suppression was revealed in the heart and kidney tissue, while the proteolysis activation was revealed in serum and less in the lung tissue cytosol. Changes in proteinase level in the myocardium and kidney tissue play the primary role in respect to those of the other research liquids under study. PMID:7747353

  8. Diisopropyl fluorophosphate labeling of sperm-associated proteinases

    Proteinase inhibitors have been shown to be capable of preventing various aspects of fertilization. Diisopropyl fluorophosphate (DFP) is an irreversible inhibitor of trypsin-like enzymes that is commercially available in a radiolabeled form. The experiments described herein were designed to determine if DFP would prevent sperm function in live, motile sperm and to identify the sperm proteins bound with DFP. DFP at 5 mM concentrations had no observable effect on sperm motility, but inhibited the penetration of zona-free hamster ova by human sperm (5.5%) compared to controls (33.5%). Acid extracts of motile sperm that had been incubated with radiolabeled DFP and collected by the swim-up procedure demonstrated the presence of radiolabeled DFP, and the autoradiography of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels of these extracts localized the uptake of radiolabeled DFP to proteins in the molecular weight region of the proacrosin-acrosin system. Acid-extracted proteinases from semen samples incubated with DFP demonstrated a concentration-dependent inhibition of both esterolytic hydrolysis of benzoyl-arginine ethyl ester on spectrophotometric analysis and proteolytic activity on gelatin SDS-PAGE zymography. DFP-labeled proteins were precipitated by highly specific antibodies to proacrosin. These results demonstrated that DFP is capable of inhibiting sperm function, and that it associates with the proacrosin-acrosin system in live motile sperm

  9. Kazal-type proteinase inhibitor from disk abalone (Haliotis discus discus): molecular characterization and transcriptional response upon immune stimulation.

    Wickramaarachchi, W D Niroshana; De Zoysa, Mahanama; Whang, Ilson; Wan, Qiang; Lee, Jehee

    2013-09-01

    Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. Proteinase inhibitors play a key role in regulating the activity of the respective proteinases. Among serine proteinase inhibitors, kazal-type proteinase inhibitors (KPIs) are widely found in mammals, avians, and a variety of invertebrates. In this study, we describe the identification of a kazal-type serine proteinase inhibitor (Ab-KPI) from the disk abalone, Haliotis discus discus, which is presumably involved in innate immunity. The full-length cDNA of Ab-KPI includes 600 bp nucleotides with an open reading frame (ORF) encoding a polypeptide of 143 amino acids. The deduced amino acid sequence of Ab-KPI contains a putative 17-amino acid signal peptide and two tandem kazal domains with high similarity to other kazal-type SPIs. Each kazal domain consists of reactive site (P1) residue containing a leucine (L), and a threonine (T) located in the second amino acid position after the second conserved cysteine of each domain. Temporal expression of Ab-KPI was assessed by real time quantitative PCR in hemocytes and mantle tissue following bacterial and viral hemorrhagic septicemia virus (VHSV) challenge, and tissue injury. At 6 h post-bacterial and -VHSV challenge, Ab-KPI expression in hemocytes was increased 14-fold and 4-fold, respectively, compared to control samples. The highest up-regulations upon tissue injury were shown at 9 h and 12 h in hemocytes and mantle, respectively. The transcriptional modulation of Ab-KPI following bacterial and viral challenges and tissue injury indicates that it might be involved in immune defense as well as wound healing process in abalone. PMID:23859879

  10. Activities of amylase, proteinase, and lipase enzymes from Lactococcus chungangensis and its application in dairy products.

    Konkit, Maytiya; Kim, Wonyong

    2016-07-01

    Several enzymes are involved in the process of converting milk to lactic acid and coagulated milk to curd and, therefore, are important in dairy fermented products. Amylase, proteinase, and lipase are enzymes that play an important role in degrading milk into monomeric molecules such as oligosaccharides, amino acids, and fatty acids, which are the main molecules responsible for flavors in cheese. In the current study, we determined the amylase, proteinase, and lipase activities of Lactococcus chungangensis CAU 28(T), a bacterial strain of nondairy origin, and compared them with those of the reference strain, Lactococcus lactis ssp. lactis KCTC 3769(T), which is commonly used in the dairy industry. Lactococcus chungangensis CAU 28(T) and L. lactis ssp. lactis KCTC 3769(T) were both found to have amylase, proteinase, and lipase activities in broth culture, cream cheese, and yogurt. Notably, the proteinase and lipase activities of L. chungangensis CAU 28(T) were higher than those of L. lactis ssp. lactis KCTC 3769(T), with proteinase activity of 10.50 U/mL in tryptic soy broth and 8.64 U/mL in cream cheese, and lipase activity of 100 U/mL of tryptic soy broth, and 100 U/mL of cream cheese. In contrast, the amylase activity was low, with 5.28 U/mL in tryptic soy broth and 8.86 U/mL in cream cheese. These enzyme activities in L. chungangensis CAU 28(T) suggest that this strain has potential to be used for manufacturing dairy fermented products, even though the strain is of nondairy origin. PMID:27108177

  11. Dental Enamel Development: Proteinases and Their Enamel Matrix Substrates

    Bartlett, John D.

    2013-01-01

    This review focuses on recent discoveries and delves in detail about what is known about each of the proteins (amelogenin, ameloblastin, and enamelin) and proteinases (matrix metalloproteinase-20 and kallikrein-related peptidase-4) that are secreted into the enamel matrix. After an overview of enamel development, this review focuses on these enamel proteins by describing their nomenclature, tissue expression, functions, proteinase activation, and proteinase substrate specificity. These protei...

  12. Autoactivation of proteinase A initiates activation of yeast vacuolar zymogens

    van den Hazel, H B; Kielland-Brandt, Morten; Winther, Jakob R.

    1992-01-01

    -expression with PEP4 leads to normal processing, i.e. the mutant zymogen is functional as a substrate for the maturation reaction in trans. We conclude that wild-type pro-proteinase A has the ability to mediate its own activation. Elimination of the co-expressed PEP4 gene did not effectively stop the processing...... of the mutant zymogen, owing to a strong, proteinase-B-dependent, phenotypic lag. In a proteinase-B-negative strain, processing of pro-proteinase A led to an active form of a higher molecular mass than the normal mature form....

  13. [Effect of pentoxyphylline on certain indicators of the proteinase-proteinase inhibitor system in rats upon administration of cycloheximide].

    Samokhin, A A; Kaliman, P A; Samokhinka, L M

    2001-01-01

    The pentoxifylline influence on neutral proteinase, alpha-2-macroglobulin, trypsin-alpha-1-proteinase inhibitor and elastaseinhibitory activity under cycloheximide injection has been investigated. Two hours after cycloheximide injection the activity of neutral proteinases increases in rats serum, lungs, heart, liver and kidneys. The preliminary injection of pentoxifylline prevents increase of neutral proteinases activity. Cycloheximide also decreases alpha-2-macroglobulin activity in serum and liver and trypsin-, elastaseinhibitory activity of alpha-1-proteinase inhibitor in all investigated organs. At using pentoxifylline the alpha-2-macroglobulin activity doesn't change in liver and increases in serum in comparison with only cycloheximide and there are no observed any alpha-1 inhibitor proteinase activity changes in rats serum and organs. PMID:12035527

  14. [Characteristics of proteinase digestive function in invertebrates--inhabitants of cold seas].

    Mukhin, V A; Smirnova, E B; Novikov, V Iu

    2007-01-01

    Digestive proteinases of various taxa of invertebrates of the Northern seas have been studied: crustaceans Paralithodes camtchaticus, Pandalus borealis; molluscs Chlamys islandicus, Buccinum undatum, Serripes groenlandicus, and echinoderms Strongylocentrotus droebachiensis, Cucumaria frondosa, Asterias rubens, and Grossaster papposus. The presence of two proteolytic activity peaks in the acid (pH 2.5-3.5) and low alkaline zones (pH 7.5-8.5) and a similar proteinase spectrum have been revealed in digestive organs of the studied animals. The proteolytic activity in digestive organs of the Barents Sea invertebrates exceeds significantly that of terrestrial homoiothermal animals, which seems to be an extensive compensation for poor differentiation of the digestive system and for low substrate specificity of the enzymes as well as for cold conditions of the habitat. The principal qualitative difference between vertebrates and invertebrates consists in that the latter have no pepsin activity, but do have the cathepsin activity that is absent in vertebrate digestive organs. Contribution to the acid proteolysis is made by lysosomal cathepsins, rather than by pepsins. Activity in the alkaline and neutral pH zones is provided by serine proteinases. In digestive cavities of invertebrates, hydrolysis of proteins and mechanical processing of food occur only in the low alkaline zone, whereas acid proteolysis has intracellular lysosomal localization. PMID:18038635

  15. Molecular cloning and functional characterisation of a cathepsin L-like proteinases from the fish kinetoplastid parasite Trypanosoma carassii

    Ruszczyk, A.; Forlenza, M.; Savelkoul, H.F.J.; Wiegertjes, G.F.

    2008-01-01

    Trypanosoma carassii is a fish kinetoplastid parasite that belongs to the family Trypanosomatida. In the present study we cloned a cathepsin L-like proteinase from T. carassii. The nucleotide sequence of 1371 bp translated into a preproprotein of 456 amino acids. The preproprotein contained the oxya

  16. Cloning and sequence analysis of serine proteinase of Gloydius ussuriensis venom gland

    Objective: To construct a cDNA library by using mRNA from Gloydius ussuriensis (G. Ussuriensis) venom gland, to clone and analyze serine proteinase gene from the cDNA library. Methods: Total RNA was isolated from venom gland of G. ussuriensis, mRNA was purified by using mRNA isolation Kit. The whole length cDNA was synthesized by means of smart cDNA synthesis strategy, and amplified by long distance PCR procedure, lately cDAN was cloned into vector pBluescrip-sk. The recombinant cDNA was transformed into E. coli DH5α. The cDNA of serine proteinase gene in the venom gland of G. ussuriensis was detected and amplified using the in situ hybridization. The cDNA fragment was inserted into pGEMT vector, cloned and its nucleotide sequence was determined. Results: The capacity of cDNA library of venom gland was above 2.3 x 106. Its open reading frame was composed of 702 nucleotides and coded a protein pre-zymogen of 234 amino acids. It contained 12 cysteine residues. The sequence analysis indicated that the deduced amino acid sequence of the cDNA fragment shared high identity with the thrombin-like enzyme genes of other snakes in the GenBank. the query sequence exhibited strong amino acid sequence homology of 85% to the serine proteas of T. gramineus, thrombin-like serine proteinase I of D. acutus and serine protease catroxase II of C. atrox respectively. Based on the amino acid sequences of other thrombin-like enzymes, the catalytic residues and disulfide bridges of this thrombin-like enzyme were deduced as follows: catalytic residues, His41, Asp86, Ser180; and six disulfide bridges Cys7-Cys139, Cys26-Cys42, Cys74-Cys232, Cys118-Cys186, Cys150-Cys165, Cys176-Cys201. Conclusion: The capacity of cDNA library of venom gland is above 2.3 x 106, overtop the level of 105 capicity. The constructed cDNA library of G. ussuriensis venom gland would be helpful platform to detect new target genes and further gene manipulate. The cloned serine proteinase gene exhibits strong amino

  17. Human seminal proteinase and prostate-specific antigen are the same protein

    Abdul Waheed; Md Imtaiyaz Hassan; Robert L Van Etten; Faizan Ahmad

    2008-06-01

    Human seminal proteinase and prostate-specific antigen (PSA) were each isolated from human seminal fluid and compared. Both are glycoproteins of 32–34 kDa with protease activities. Based on some physicochemical, enzymatic and immunological properties, it is concluded that these proteins are in fact identical. The protein exhibits properties similar to kallikrein-like serine protease, trypsin, chymotrypsin and thiol acid protease. Tests of the activity of the enzyme against some potential natural and synthetic substrates showed that bovine serum albumin was more readily hydrolysed than casein. The results of this study should be useful in purifying and assaying this protein. Based on published studies and the present results, the broad proteolytic specificity of human seminal proteinase suggests a role for this protein in several physiological functions.

  18. Seed-specific aspartic proteinase FeAP12 from buckwheat (Fagopyrum esculentum Moench

    Timotijević Gordana S.

    2010-01-01

    Full Text Available Aspartic proteinase gene (FeAP12 has been isolated from the cDNA library of developing buckwheat seeds. Analysis of its deduced amino acid sequence showed that it resembled the structure and shared high homology with typical plant aspartic proteinases (AP characterized by the presence of a plant-specific insert (PSI, unique among APs. It was shown that FeAP12 mRNA was not present in the leaves, roots, steam and flowers, but was seed-specifically expressed. Moreover, the highest levels of FeAP12 expression were observed in the early stages of seed development, therefore suggesting its potential role in nucellar degradation.

  19. Action of plant proteinase inhibitors on enzymes of physiopathological importance.

    Oliva, Maria Luiza V; Sampaio, Misako U

    2009-09-01

    Obtained from leguminous seeds, various plant proteins inhibit animal proteinases, including human, and can be considered for the development of compounds with biological activity. Inhibitors from the Bowman-Birk and plant Kunitz-type family have been characterized by proteinase specificity, primary structure and reactive site. Our group mostly studies the genus Bauhinia, mainly the species bauhinioides, rufa, ungulata and variegata. In some species, more than one inhibitor was characterized, exhibiting different properties. Although proteins from this group share high structural similarity, they present differences in proteinase inhibition, explored in studies using diverse biological models. PMID:19722028

  20. Effect of bilineobin, a thrombin-like proteinase from the venom of common cantil (Agkistrodon bilineatus).

    Komori, Y; Nikai, T; Ohara, A; Yagihashi, S; Sugihara, H

    1993-03-01

    A thrombin-like proteinase, named bilineobin, was isolated from Agkistrodon bilineatus venom by Sephadex G-75, DEAE-Sephacel and Heparin-Sepharose CL-6B column chromatography. The purified enzyme has a mol. wt of 57,000 and catalysed the hydrolysis of arginine esters and thrombin substrates Boc-Val-Pro-Arg-MCA and Boc-Asp(OBz)-Pro-Arg-MCA. Although bilineobin converted fibrinogen into fibrin resulting in the production of fibrinopeptides, the activity was relatively low (0.65 NIH units/mg). Fibrinopeptides released upon hydrolysis by this proteinase were identified as fibrinopeptide A (FpA) and fibrinopeptide B (FpB) by measuring fast atom bombardment (FAB) mass spectra and amino acid sequence. This indicates that bilineobin hydrolyses the Arg(19)-Gly(20) bond in the A alpha chain and the Arg(21)-Gly(22) bond in the B beta chain of the bovine fibrinogen molecule. Kinetic study of FpA and FpB release reveals that bilineobin has a preference for cleaving the B beta chain. In addition, bilineobin is resistant to thrombin inhibitors such as hirudin. These suggest that the mechanism of action of bilineobin is similar but not identical to that of thrombin. It was demonstrated that the NH2-terminal region of bilineobin has significant similarities in sequence with thrombin-like proteinases from other snake venoms; however, only three residues were common with thrombin up to residue number 24. PMID:8470131

  1. Link between allergic asthma and airway mucosal infection suggested by proteinase-secreting household fungi

    Porter, P; Susarla, SC; Polikepahad, S; Qian, Y; HAMPTON, J.; Kiss, A; Vaidya, S; Sur, S.; Ongeri, V; Yang, T; Delclos, GL; Abramson, S.; Kheradmand, F.; Corry, DB

    2009-01-01

    Active fungal proteinases are powerful allergens that induce experimental allergic lung disease strongly resembling atopic asthma, but the precise relationship between proteinases and asthma remains unknown. Here, we analyzed dust collected from the homes of asthmatic children for the presence and sources of active proteinases to further explore the relationship between active proteinases, atopy, and asthma. Active proteinases were present in all houses and many were derived from fungi, espec...

  2. Effect of acute ozone exposure on the proteinase-antiproteinase balance in the rat lung

    Lung disease may result from a persisting proteinase excess or a depletion of antiproteinase in pulmonary parenchyma. We investigated the in vivo effect of a 48-hr exposure to ozone at 0.5, 1.0, or 1.5 ppm on proteinase and antiproteinase activity of rat lungs. Elastase inhibitory capacities of serum, lung tissue, and airway washings were measured as indicators of antielastase activity. Trypsin inhibitory capacity was measured using an esterolytic procedure. Proteinase was measured as radioactive release from a 14C-globin substrate. The 48-hr exposures to O3 at levels up to 1 ppm produced concentration-dependent decreases of 35-80% of antiproteinase activities in serum and in lung tissue. However, exposure to 1.5 ppm O3 resulted in no decrease in antiproteinase activities. Acid proteinase activities (pH 4.2) were increased 65-120% by exposure to 1 or 1.5 ppm O3, which correlated with inflammatory cells noted histologically. At 1.5 ppm O3, pulmonary edema and hemorrhage were noted in histologic sections. These changes led to a flooding of the alveoli with up to 40 times normal protein levels and a greater than fivefold increase in airway antiproteinase. These data suggest that serum and soluble lung tissue antiproteinase activity decreased upon exposure to low levels of ozone. However, if O3 exposure is high enough to produce pulmonary hemorrhage, antiproteinase may increase following serum exudation. These changes may be important in the development of ozone-induced lung diseases, especially emphysema

  3. Action of plant proteinase inhibitors on enzymes of physiopathological importance

    Oliva, Maria Luiza V.; Sampaio, Misako U.

    2009-01-01

    Obtained from leguminous seeds, various plant proteins inhibit animal proteinases, including human, and can be considered for the development of compounds with biological activity. Inhibitors from the Bowman-Birk and plant Kunitz-type family have been characterized by proteinase specificity, primary structure and reactive site. Our group mostly studies the genus Bauhinia, mainly the species bauhinioides, rufa, ungulata and variegata. In some species, more than one inhibitor was characterized,...

  4. Proteinase 3 and prognosis of patients with acute myocardial infarction

    Ng, Leong L.; Khan, Sohail Q; Narayan, Hafid; Quinn, Paulene; Squire, Iain B; Davies, Joan E.

    2010-01-01

    Abstract Background A multimarker approach may be useful for risk stratification in AMI patients, particularly utilising pathways that are pathophysiologically distinct. Aim Our aim was to assess the prognostic value of Proteinase 3 in patients post acute myocardial infarction (AMI). We compared the prognostic value of Proteinase 3, an inflammatory marker to an established marker N-terminal pro-B-type natriuretic peptide (NT-proBNP) post-AMI. Method We recruited 9...

  5. Candida albicans Secreted Aspartyl Proteinases in Virulence and Pathogenesis

    Naglik, Julian R.; Challacombe, Stephen J; Hube, Bernhard

    2003-01-01

    Candida albicans is the most common fungal pathogen of humans and has developed an extensive repertoire of putative virulence mechanisms that allows successful colonization and infection of the host under suitable predisposing conditions. Extracellular proteolytic activity plays a central role in Candida pathogenicity and is produced by a family of 10 secreted aspartyl proteinases (Sap proteins). Although the consequences of proteinase secretion during human infections is not precisely known,...

  6. Three distinct secreted aspartyl proteinases in Candida albicans.

    White, T C; Miyasaki, S H; Agabian, N

    1993-01-01

    The secreted aspartyl proteinases of Candida albicans (products of the SAP genes) are thought to contribute to virulence through their effects on Candida adherence, invasion, and pathogenicity. From a single strain of C. albicans (WO-1) which expresses a phenotypic switching system, three secreted aspartyl proteinases have been identified as determined by molecular weight and N-terminal sequence. Each of the three identified proteins represents the mature form of one of three distinct protein...

  7. Action of plant proteinase inhibitors on enzymes of physiopathological importance

    Maria Luiza V. Oliva

    2009-09-01

    Full Text Available Obtained from leguminous seeds, various plant proteins inhibit animal proteinases, including human, and can be considered for the development of compounds with biological activity. Inhibitors from the Bowman-Birk and plant Kunitz-type family have been characterized by proteinase specificity, primary structure and reactive site. Our group mostly studies the genus Bauhinia, mainly the species bauhinioides, rufa, ungulata and variegata. In some species, more than one inhibitor was characterized, exhibiting different properties. Although proteins from this group share high structural similarity, they present differences in proteinase inhibition, explored in studies using diverse biological models.Obtidas de sementes leguminosas, várias proteínas inibem proteinases de origem animal, incluindo humanas, e podem ser consideradas para o desenvolvimento de compostos com atividade biológica. Inibidores da família Bowman-Birk e da família Kunitz vegetal tem sido caracterizados em relação a especificidade para proteinase, estrutura primária e sitio reativo. O nosso grupo majoritariamente vem estudando o gênero Bauhinia, principalmente as espécies bauhinioides, rufa, ungulatae variegata. Em algumas espécies, mais de um inibidor com propriedades diferentes foi caracterizado. Embora tais proteínas apresentem alta similaridade estrutural, diferem quanto à inibição de proteinases, e foram exploradas em estudos utilizando diversos modelos biológicos.

  8. [Effect of quercetin on some indicators of the proteinase-proteinase inhibitor system in rats upon administration of cobalt chloride to them].

    Kaliman, P A; Samokhin, A A; Samokhina, L M

    2001-01-01

    The results of quercetin effect on some changes of proteinase--proteinase inhibitor system parameters in rats under cobalt chloride injection are shown. It was established that preliminary quercetin administration prevened neutral proteinase activation and alpha-2-macroglobulin activity decreasing after 2 h of cobalt chloride influence. PMID:12199071

  9. An electroblotting, two-step procedure for the detection of proteinases and the study of proteinase/inhibitor complexes in gelatin-containing polyacrylamide gels.

    Visal-Shah, S; Vrain, T C; Yelle, T C; Nguyen-Quoc, B; Michaud, D

    2001-08-01

    A two-step gelatin/polyacrylamide gel electrophoresis (gelatin/PAGE) procedure was devised for the detection of proteinases and the study of proteinase/inhibitor interactions in complex biological extracts. The proteins are first resolved by sodium dodecyl sulfate (SDS)-PAGE under reducing or nonreducing conditions, and electrotransferred into a 0.75 mm-thick accompanying polyacrylamide slab gel containing 0.1% w/v porcine gelatin. The active proteinase bands are developed by a gelatin proteolysis step in the accompanying gel in the presence or absence of diagnostic proteinase inhibitors, allowing the assessment of proteinase classes and the visual discrimination of inhibitor-'sensitive' and -'insensitive' proteinases in complex extracts. Alternatively, protein extracts are preincubated with specific reversible inhibitors before electrophoresis, allowing a rapid discrimination of strong and weak interactions implicating proteinases and reversible inhibitors. In comparison with the standard gelatin/PAGE procedure, that involves copolymerization of gelatin with acrylamide in the resolving gel, this new procedure simplifies proteinase patterns, avoids overestimation of proteinase numbers in complex extracts, and allows in certain conditions the estimation of proteinase molecular weights. Stem bromelain (EC 3.4.22.32), bovine trypsin (EC 3.4.21.4), papain (EC 3.4.22.2), and the extracellular (digestive) cysteine proteinases of five herbivorous pests are used as model enzymes to illustrate the usefulness of this approach in detecting proteinases and in studying their interactions with specific proteinaceous inhibitors potentially useful in biotechnology. PMID:11545387

  10. Structural Studies of the Serine-Carboxyl Proteinase Kumamolisin and the Metallopeptidase Peptidyl-Dipeptidase Dcp

    Comellas Bigler, Mireia

    2007-01-01

    The crystal structure of the serine-carboxyl proteinase kumamolisin was solved in native form and in complex with two aldehyde inhibitors. The structures show a subtilisin-like fold with a modified catalytic triad (Ser-Glu-Asp), which allows proteolytic activity at acidic pH. The crystal structure analysis of the full-length prokumamolisin S278A exhibits an uncleaved linker segment that extends along the active-site cleft in a substrate-like manner. This evidence points to an autocatalytic cl...

  11. Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein.

    Rattray, F P; Fox, P. F.; Healy, A.

    1997-01-01

    The specificity of the extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine beta-casein was studied. Hydrolysis was monitored over time by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and urea-PAGE. The major pH 4.6-soluble peptides were isolated by high-performance liquid chromatography and identified by N-terminal amino acid sequencing and mass spectrometry. The major sites of hydrolysis were Ser-18-Ser-19, Glu-20-Glu-21, Gln-56-Ser-57, Gln-72-Asn-73, ...

  12. Specificity of an extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein.

    Rattray, F P; Fox, P. F.; Healy, A.

    1996-01-01

    The specificity of the extracellular proteinase from Brevibacterium linens ATCC 9174 on bovine alpha s1-casein was studied. Hydrolysis was monitored over time by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (PAGE) and urea-PAGE. The major pH 4.6-soluble peptides were isolated by high-performance liquid chromatography and identified by N-terminal amino acid sequencing and mass spectrometry. The time course of peptide formation indicated that His-8-Gln-9, Ser-161-Gly-162, and eithe...

  13. prtH2, Not prtH, Is the Ubiquitous Cell Wall Proteinase Gene in Lactobacillus helveticus▿

    Genay, M.; Sadat, L.; Gagnaire, V.; Lortal, S

    2009-01-01

    Lactobacillus helveticus strains possess an efficient proteolytic system that releases peptides which are essential for lactobacillus growth in various fermented dairy products and also affect textural properties or biological activities. Cell envelope proteinases (CEPs) are bacterial enzymes that hydrolyze milk proteins. In the case of L. helveticus, two CEPs with low percentages of amino acid identity have been described, i.e., PrtH and PrtH2. However, the distribution of the genes that enc...

  14. Digestive duet: midgut digestive proteinases of Manduca sexta ingesting Nicotiana attenuata with manipulated trypsin proteinase inhibitor expression.

    Jorge A Zavala

    Full Text Available BACKGROUND: The defensive effect of endogenous trypsin proteinase inhibitors (NaTPIs on the herbivore Manduca sexta was demonstrated by genetically altering NaTPI production in M. sexta's host plant, Nicotiana attenuata. To understand how this defense works, we studied the effects of NaTPI on M. sexta gut proteinase activity levels in different larval instars of caterpillars feeding freely on untransformed and transformed plants. METHODOLOGY/ PRINCIPAL FINDINGS: Second and third instars larvae that fed on NaTPI-producing (WT genotypes were lighter and had less gut proteinase activity compared to those that fed on genotypes with either little or no NaTPI activity. Unexpectedly, NaTPI activity in vitro assays not only inhibited the trypsin sensitive fraction of gut proteinase activity but also halved the NaTPI-insensitive fraction in third-instar larvae. Unable to degrade NaTPI, larvae apparently lacked the means to adapt to NaTPI in their diet. However, caterpillars recovered at least part of their gut proteinase activity when they were transferred from NaTPI-producing host plants to NaTPI-free host plants. In addition extracts of basal leaves inhibited more gut proteinase activity than did extracts of middle stem leaves with the same protein content. CONCLUSIONS/ SIGNIFICANCE: Although larvae can minimize the effects of high NaTPI levels by feeding on leaves with high protein and low NaTPI activity, the host plant's endogenous NaTPIs remain an effective defense against M. sexta, inhibiting gut proteinase and affecting larval performance.

  15. In vitro assay for HCV serine proteinase expressed in insect cells

    Li-Hua Hou; Gui-Xin Du; Rong-Bin Guan; Yi-Gang Tong; Hai-Tao Wang

    2003-01-01

    AIM: To produce the recombinant NS3 protease of hepatitis C virus with enzymatic activity in insect cells.METHODS: The gene of HCV serine proteinase domain which encodes 181 amino acids was inserted into pFastBacHTc and the recombinant plasmid pFBCNS3N was transformed into DH10Bac competent cells for transposition.After the recombinant bacmids had been determined to be correct by both blue-white colonies and PCR analysis, the isolated bacmid DNAs were transfected into Sf9 insect cells.The bacmids DNA was verified to replicate in insect cells and packaged into baculovirus particles via PCR and electronic microscopic analysis. The insect cells infected with recombinant baculovirus were determined by SDS-PAGE and Western-blot assays. The recombinant protein was soluted in N-lauryl sarcosine sodium (NLS) and purifed by metalchelated-affinity chromatography, then the antigenicity of recombinant protease was determined by enzyme-linked immunoabsorbant assay and its enzymatic activity was detected.RESULTS: The HCV NS3 protease domain was expressed in insect cells at high level and it was partially solved in NLS.Totally 0.2 mg recombinant serine proteinase domain with high purity was obtained by metal-chelated-affinity chromatography from 5×107 cells, and both antigenicity and specificity of the protein were evaluated to be high when used as antigen to detect hepatitis C patients′ sera in indirect ELISA format. In vitro cleavage assay corroborated its enzymatic activity.CONCLUSION: The recombinant HCV NS3 proteinase expressed by insect cells is a membrane-binding protein with good antigenicity and enzymatic activity.

  16. Multiple pathways for vacuolar sorting of yeast proteinase A

    Westphal, V; Marcusson, E G; Winther, Jakob R.; Emr, S D; van den Hazel, H B

    1996-01-01

    The sorting of the yeast proteases proteinase A and carboxypeptidase Y to the vacuole is a saturable, receptor-mediated process. Information sufficient for vacuolar sorting of the normally secreted protein invertase has in fusion constructs previously been found to reside in the propeptide of...

  17. Intracellular localization of Treponema denticola chymotrypsin-like proteinase in chronic periodontitis

    Emilia Marttila

    2014-07-01

    Full Text Available Treponema denticola is an important periodontal pathogen capable of tissue invasion. Its chymotrypsin-like proteinase (CTLP can degrade a number of basement membrane components in vitro, thus suggesting a contribution to tissue invasion by the spirochete. The aim of this study was to analyze the localization of CTLP in chronic periodontitis tissues ex vivo. A polyclonal antibody specific to T. denticola cell-bound CTLP was used to detect the spirochetes in the gingival tissues of patients with moderate to severe chronic periodontitis (n=25 by immunohistochemistry and periodic acid-Schiff staining (PAS. The presence of T. denticola in the periodontal tissue samples was analyzed by PCR. Periodontal tissue samples of 12 of the 25 patients were found to be positive for T. denticola by PCR. Moreover, CTLP could be detected in the periodontal tissues of all these patients by immunohistochemistry. In the epithelium, the CTLP was mostly intracellular. Typically, the positive staining could be seen throughout the whole depth of the epithelium. When detected extracellularly, CTLP was localized mainly as granular deposits. The connective tissue stained diffusely positive in four cases. The positive staining co-localized with the PAS stain in nine cases. T. denticola and its CTLP could be detected in diseased human periodontium both intra- and extracellularly. The granular staining pattern was suggestive of the presence of T. denticola bacteria, whereas the more diffused staining pattern was indicative of the recent presence of the bacterium and shedding of the cell-bound proteinase.

  18. Characterization of proteinases from the midgut of Rhipicephalus (Boophilus microplus involved in the generation of antimicrobial peptides

    Craik Charles S

    2010-07-01

    Full Text Available Abstract Background Hemoglobin is a rich source of biologically active peptides, some of which are potent antimicrobials (hemocidins. A few hemocidins have been purified from the midgut contents of ticks. Nonetheless, how antimicrobials are generated in the tick midgut and their role in immunity is still poorly understood. Here we report, for the first time, the contribution of two midgut proteinases to the generation of hemocidins. Results An aspartic proteinase, designated BmAP, was isolated from the midgut of Rhipicephalus (Boophilus microplus using three chromatographic steps. Reverse transcription-quantitative polymerase chain reaction revealed that BmAP is restricted to the midgut. The other enzyme is a previously characterized midgut cathepsin L-like cysteine proteinase designated BmCL1. Substrate specificities of native BmAP and recombinant BmCL1 were mapped using a synthetic combinatorial peptide library and bovine hemoglobin. BmCL1 preferred substrates containing non-polar residues at P2 subsite and polar residues at P1, whereas BmAP hydrolysed substrates containing non-polar amino acids at P1 and P1'. Conclusions BmAP and BmCL1 generate hemocidins from hemoglobin alpha and beta chains in vitro. We postulate that hemocidins may be important for the control of tick pathogens and midgut flora.

  19. The death enzyme CP14 is a unique papain-like cysteine proteinase with a pronounced S2 subsite selectivity.

    Paireder, Melanie; Mehofer, Ulrich; Tholen, Stefan; Porodko, Andreas; Schähs, Philipp; Maresch, Daniel; Biniossek, Martin L; van der Hoorn, Renier A L; Lenarcic, Brigita; Novinec, Marko; Schilling, Oliver; Mach, Lukas

    2016-08-01

    The cysteine protease CP14 has been identified as a central component of a molecular module regulating programmed cell death in plant embryos. CP14 belongs to a distinct subfamily of papain-like cysteine proteinases of which no representative has been characterized thoroughly to date. However, it has been proposed that CP14 is a cathepsin H-like protease. We have now produced recombinant Nicotiana benthamiana CP14 (NbCP14) lacking the C-terminal granulin domain. As typical for papain-like cysteine proteinases, NbCP14 undergoes rapid autocatalytic activation when incubated at low pH. The mature protease is capable of hydrolysing several synthetic endopeptidase substrates, but cathepsin H-like aminopeptidase activity could not be detected. NbCP14 displays a strong preference for aliphatic over aromatic amino acids in the specificity-determining P2 position. This subsite selectivity was also observed upon digestion of proteome-derived peptide libraries. Notably, the specificity profile of NbCP14 differs from that of aleurain-like protease, the N. benthamiana orthologue of cathepsin H. We conclude that CP14 is a papain-like cysteine proteinase with unusual enzymatic properties which may prove of central importance for the execution of programmed cell death during plant development. PMID:27246477

  20. Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa).

    Popovic, Milica; Andjelkovic, Uros; Burazer, Lidija; Lindner, Buko; Petersen, Arnd; Gavrovic-Jankulovic, Marija

    2013-10-01

    Plant proteinase inhibitors are considered important defense molecules against insect and pathogen attack. The cysteine proteinase inhibitor (CPI) from green kiwifruit (Actinidia deliciosa) belongs to the cystatin family and shows potent antifungal activity (in vitro and in vivo). However, the low abundance of this molecule in fruit (6μg/g of fresh fruit) seems to limit further investigations on the interaction between phytocystatin and photopathogenic fungi. In this paper the cDNA of the kiwi CPI was expressed in Escherichia coli. Fifteen N-terminal amino acids were identified by Edman degradation, and 77% of the rCPI primary structure was confirmed by mass fingerprint. The structural homology of recombinant CPI (rCPI) to its natural counterpart has been clearly demonstrated in immunological assays (immunoblot and ELISA inhibition). Biological activity of rCPI was demonstrated in inhibition assay with cysteine proteinase papain (EC50 2.78nM). In addition, rCPI reveals antifungal properties toward pathogenic fungi (Alternaria radicina and Botrytis cinerea), which designates it as an interesting model protein for the exploration of plant phytocystatins - pathogen interactions. Understanding the molecular mechanisms of natural plant resistance could lead to the development of ecologically safe fungicides for controlling post-harvest diseases and maintaining food quality. PMID:23830694

  1. Functional Properties of a Cysteine Proteinase from Pineapple Fruit with Improved Resistance to Fungal Pathogens in Arabidopsis thaliana

    Wei Wang

    2014-02-01

    Full Text Available In plant cells, many cysteine proteinases (CPs are synthesized as precursors in the endoplasmic reticulum, and then are subject to post-translational modifications to form the active mature proteinases. They participate in various cellular and physiological functions. Here, AcCP2, a CP from pineapple fruit (Ananas comosus L. belonging to the C1A subfamily is analyzed based on the molecular modeling and homology alignment. Transcripts of AcCP2 can be detected in the different parts of fruits (particularly outer sarcocarps, and gradually increased during fruit development until maturity. To analyze the substrate specificity of AcCP2, the recombinant protein was overexpressed and purified from Pichia pastoris. The precursor of purified AcCP2 can be processed to a 25 kDa active form after acid treatment (pH 4.3. Its optimum proteolytic activity to Bz-Phe-Val-Arg-NH-Mec is at neutral pH. In addition, the overexpression of AcCP2 gene in Arabidopsis thaliana can improve the resistance to fungal pathogen of Botrytis cinerea. These data indicate that AcCP2 is a multifunctional proteinase, and its expression could cause fruit developmental characteristics of pineapple and resistance responses in transgenic Arabidopsis plants.

  2. Changes of balance between proteinase and their inhibitors in blood of pigs with high-velocity missile wounds

    周元国; 朱佩芳; 周继红; 李晓炎

    2003-01-01

    Objective: To study the effect of imbalance between lysosomal enzymes and their inhibitors in blood on disturbance of the local and whole body after trauma. Methods: The dynamic changes of lysosomal enzymes and proteinase inhibitors were studied in 12 pigs with femoral comminuted fractures in both hind limbs caused by high velocity missiles. Four normal pigs served as controls. Results: After injury, the activity of Cathepsin D in arterial plasma increased gradually and reached the highest level at 8 hours, acid phosphatase in serum began to increase at 12 hours and the value of serum elastase did not change significantly. The level of α1-antitrypsin, a proteinase inhibitor in plasma, decreased significantly in the early stage after injury [73.5%±6.4% and 81.0%±5.1% of the baseline value (1.67 μmol*ml-1*min-1± 0.29 μmol*ml-1*min-1) at l and 2 hours after injury, respectively, P<0.05], then increased gradually and was higher than the baseline value at 12 hours after injury. Conclusions: Imbalance between lysosomal enzymes and proteinase inhibitors occurs soon after injury, which might result in continuous tissue damage and play an important role in the disturbance of general reaction after injury.

  3. Identification, classification and expression pattern analysis of sugarcane cysteine proteinases

    Gustavo Coelho Correa

    2001-12-01

    Full Text Available Cysteine proteases are peptidyl hydrolyses dependent on a cysteine residue at the active center. The physical and chemical properties of cysteine proteases have been extensively characterized, but their precise biological functions have not yet been completely understood, although it is known that they are involved in a number of events such as protein turnover, cancer, germination, programmed cell death and senescence. Protein sequences from different cysteine proteinases, classified as members of the E.C.3.4.22 sub-sub-class, were used to perform a T-BLAST-n search on the Brazilian Sugarcane Expressed Sequence Tags project (SUCEST data bank. Sequence homology was found with 76 cluster sequences that corresponded to possible cysteine proteinases. The alignments of these SUCEST clusters with the sequence of cysteine proteinases of known origins provided important information about the classification and possible function of these sugarcane enzymes. Inferences about the expression pattern of each gene were made by direct correlation with the SUCEST cDNA libraries from which each cluster was derived. Since no previous reports of sugarcane cysteine proteinases genes exists, this study represents a first step in the study of new biochemical, physiological and biotechnological aspects of sugarcane cysteine proteases.Proteinases cisteínicas são peptidil-hidrolases dependentes de um resíduo de cisteína em seu sítio ativo. As propriedades físico-químicas destas proteinases têm sido amplamente caracterizadas, entretanto suas funções biológicas ainda não foram completamente elucidadas. Elas estão envolvidas em um grande número de eventos, tais como: processamento e degradação protéica, câncer, germinação, morte celular programada e processos de senescência. Diferentes proteinases cisteínicas, classificadas pelo Comitê de Nomenclatura da União Internacional de Bioquímica e Biologia Molecular (IUBMB como pertencentes à sub

  4. Characterization of peptide proteinase inhibitors isolated from boar seminal plasma

    Jelínková, Petra; Tichá, M.; Jonáková, Věra

    Praha : UOCHB AV ČR, 2003 - (Slaninová, J.; Collinsová, M.; Klasová, L.), s. 1-57 [Biologicky aktivní peptidy /8./. Praha (CZ), 23.04.2003-25.04.2003] R&D Projects: GA ČR GA303/99/0357; GA ČR GP303/02/P069; GA MZd NJ7463 Institutional research plan: CEZ:MSM 113100001 Keywords : boar seminal plasma proteins * proteinase inhibitors Subject RIV: CE - Biochemistry

  5. Purification and characterization of elastase-specific inhibitor. Sequence homology with mucus proteinase inhibitor.

    Sallenave, J M; Ryle, A P

    1991-01-01

    Elastase-specific inhibitor (ESI) was purified from sputum of patients with chronic bronchitis and compared with mucus proteinase inhibitor (MPI, BrI) isolated, without the use of affinity chromatography on an enzyme, from non-purulent sputum of a patient with bronchial carcinoma. The N-terminal sequence of 27 residues of the latter was determined and showed serine as the only N-terminus. The partial N-terminal amino-acid sequence of ESI shows some homology with MPI, especially around the reactive site of MPI for human neutrophil elastase. This region could therefore be the reactive site of ESI. The thermodynamic and kinetic constants of the reactions of ESI with human neutrophil elastase and with porcine pancreatic elastase show that ESI is a fast-acting inhibitor. PMID:2039600

  6. High sequence variability among hemocyte-specific Kazal-type proteinase inhibitors in decapod crustaceans.

    Cerenius, Lage; Liu, Haipeng; Zhang, Yanjiao; Rimphanitchayakit, Vichien; Tassanakajon, Anchalee; Gunnar Andersson, M; Söderhäll, Kenneth; Söderhäll, Irene

    2010-01-01

    Crustacean hemocytes were found to produce a large number of transcripts coding for Kazal-type proteinase inhibitors (KPIs). A detailed study performed with the crayfish Pacifastacus leniusculus and the shrimp Penaeus monodon revealed the presence of at least 26 and 20 different Kazal domains from the hemocyte KPIs, respectively. Comparisons with KPIs from other taxa indicate that the sequences of these domains evolve rapidly. A few conserved positions, e.g. six invariant cysteines were present in all domain sequences whereas the position of P1 amino acid, a determinant for substrate specificity, varied highly. A study with a single crayfish animal suggested that even at the individual level considerable sequence variability among hemocyte KPIs produced exist. Expression analysis of four crayfish KPI transcripts in hematopoietic tissue cells and different hemocyte types suggest that some of these KPIs are likely to be involved in hematopoiesis or hemocyte release as they were produced in particular hemocyte types or maturation stages only. PMID:19715720

  7. Protein degradation in Euglena gracilis: Purification and characterization of the major proteinase

    Protolysis in a crude extract of Euglena gracilis was characterized by autolysis and the hydrolysis of 125I-labeled bovine serum albumin (125I-BSA). Both procedures showed similar properties: stimulation by dithiothreitol, inhibition by leupeptin, and the same pH optima. Hydrolysis of 125I-BSA increased with growth stage and with the depletion of nutrient in the medium. The major proteolytic enzyme was purified to near homogeneity from extracts of dark-grown, stationary-phase Euglena gracilis by acid treatment, and by chromatography on CM-cellulose, DEAE-cellulose, Sephadex G-75, and hydroxyapatite using 125I-BSA as substrate. The molecular weight of the proteinase was 30,000 when determined by gel filtration on Sephadex G-75 and 15,000 when estimated by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme therefore appears to be composed of two subunits

  8. The role of proteinase enzymes in the process of conversion of muscle to meat

    Dümen Emek

    2006-01-01

    Post mortem meat tenderization is a complex mechanism and unfortunately it has not been fully identified scientifically. It is known that endogenous proteinases have an important role in this mechanism. Detailed studies are being performed about the destructive effects of lysosomal proteinases and calcium dependent proteinases on the myofibrils and these are most common topics that are being investigated about meat tenderization processes by the scientists. The aim of this paper is to review ...

  9. Trichoderma harzianum transformant has high extracellular alkaline proteinase expression during specific mycoparasitic interactions

    Goldman Maria Helena S.

    1998-01-01

    Full Text Available The mycoparasite Trichoderma harzianum produces an alkaline proteinase that may be specifically involved in mycoparasitism. We have constructed transformant strains of this fungus that overexpress this alkaline proteinase. Some of the transformants were assessed for alkaline proteinase activity, and those with higher activity than the wild type were selected for further studies. One of these transformant strains produced an elevated and constitutive pbr1 mRNA level during mycoparasitic interactions with Rhizoctonia solani.

  10. The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes beta-casein into more than one hundred different oligopeptides.

    Juillard, V; van der Laan, H.; Kunji, E R; Jeronimus-Stratingh, C M; Bruins, A P; Konings, W. N.

    1995-01-01

    The peptides released from beta-casein by the action of PI-type proteinase (PrtP) from Lactococcus lactis subsp. cremoris Wg2 have been identified by on-line coupling of liquid chromatography to mass spectrometry. After 24 h of incubation of beta-casein with purified PrtP, a stable mixture of peptides was obtained. The trifluoroacetic acid-soluble peptides of this beta-casein hydrolysate were fractionated by high-performance liquid chromatography and introduced into the liquid chromatography-...

  11. The role of proteinase enzymes in the process of conversion of muscle to meat

    Dümen Emek

    2006-01-01

    Full Text Available Post mortem meat tenderization is a complex mechanism and unfortunately it has not been fully identified scientifically. It is known that endogenous proteinases have an important role in this mechanism. Detailed studies are being performed about the destructive effects of lysosomal proteinases and calcium dependent proteinases on the myofibrils and these are most common topics that are being investigated about meat tenderization processes by the scientists. The aim of this paper is to review the role of proteinase enzymes in the process of conversion of muscle to meat. .

  12. Characterization of a novel Kazal-type serine proteinase inhibitor of Arabidopsis thaliana.

    Pariani, Sebastián; Contreras, Marisol; Rossi, Franco R; Sander, Valeria; Corigliano, Mariana G; Simón, Francisco; Busi, María V; Gomez-Casati, Diego F; Pieckenstain, Fernando L; Duschak, Vilma G; Clemente, Marina

    2016-04-01

    Many different types of serine proteinase inhibitors have been involved in several kinds of plant physiological processes, including defense mechanisms against phytopathogens. Kazal-type serine proteinase inhibitors, which are included in the serine proteinase inhibitor family, are present in several organisms. These proteins play a regulatory role in processes that involve serine proteinases like trypsin, chymotrypsin, thrombin, elastase and/or subtilisin. In the present work, we characterized two putative Kazal-type serine proteinase inhibitors from Arabidopsis thaliana, which have a single putative Kazal-type domain. The expression of these inhibitors is transiently induced in response to leaf infection by Botrytis cinerea, suggesting that they play some role in defense against pathogens. We also evaluated the inhibitory specificity of one of the Kazal-type serine proteinase inhibitors, which resulted to be induced during the local response to B. cinerea infection. The recombinant Kazal-type serine proteinase inhibitor displayed high specificity for elastase and subtilisin, but low specificity for trypsin, suggesting differences in its selectivity. In addition, this inhibitor exhibited a strong antifungal activity inhibiting the germination rate of B. cinerea conidia in vitro. Due to the important role of proteinase inhibitors in plant protection against pathogens and pests, the information about Kazal-type proteinase inhibitors described in the present work could contribute to improving current methods for plant protection against pathogens. PMID:26853817

  13. Midgut proteinases of Sitotroga cerealella (Oliver) (Lepidoptera:Gelechiidae): Characterization and relationship to resistance in cereals

    Midgut proteinases are vital to the insects which digest ingested food in the midgut. Insect midgut proteinases, therefore, have been considered as possible targets for the control of insect pests. Proteinaceous proteinase inhibitors are very attractive for their potential use in developing insect resistant plant varieties via genetic engineering. Sitotroga cerealella is one of the major storage pests of cereals, and no antibiotic resistance in wheat against this insect has been identified to date. A series of diagnostic inhibitors, thiol-reducing agents and a metal-ion chelator were used in the identification of proteinases in crude extracts from S. cerealella larval midguts with both protein and ester substrates. The partial inhibition of proteolytic activity in crude midgut extract toward [3H]-methemoglobin by pepstatin A suggested the presence of another proteinase which was sensitive to pepstatin A. The optimum pH range for the proteolytic activity, however, indicated that the major midgut proteinases were not carboxyl proteinases. Two proteinases were successfully purified by a combination of fractionation with ammonium sulfate, gel permeation and anion exchange chromatography. Characterization of the enzymes with the purified enzyme preparations confirmed that the two major proteinases were serine endoproteinases with trypsin-like and chymotrypsin-like specificities respectively. Bioassays were conducted using the artificial seeds to test naturally occurring proteinaceous proteinase inhibitors of potential value. Soybean trypsin inhibitor and the Bowman-Birk proteinase inhibitor had adverse effects on the development of the insect. A predictive model was constructed to evaluate effects of seed resistance in conjunction with other control methods on S. cerealella population dynamics

  14. Midgut proteinases of Sitotroga cerealella (Oliver) (Lepidoptera:Gelechiidae): Characterization and relationship to resistance in cereals

    Wu, Lan.

    1989-01-01

    Midgut proteinases are vital to the insects which digest ingested food in the midgut. Insect midgut proteinases, therefore, have been considered as possible targets for the control of insect pests. Proteinaceous proteinase inhibitors are very attractive for their potential use in developing insect resistant plant varieties via genetic engineering. Sitotroga cerealella is one of the major storage pests of cereals, and no antibiotic resistance in wheat against this insect has been identified to date. A series of diagnostic inhibitors, thiol-reducing agents and a metal-ion chelator were used in the identification of proteinases in crude extracts from S. cerealella larval midguts with both protein and ester substrates. The partial inhibition of proteolytic activity in crude midgut extract toward ({sup 3}H)-methemoglobin by pepstatin A suggested the presence of another proteinase which was sensitive to pepstatin A. The optimum pH range for the proteolytic activity, however, indicated that the major midgut proteinases were not carboxyl proteinases. Two proteinases were successfully purified by a combination of fractionation with ammonium sulfate, gel permeation and anion exchange chromatography. Characterization of the enzymes with the purified enzyme preparations confirmed that the two major proteinases were serine endoproteinases with trypsin-like and chymotrypsin-like specificities respectively. Bioassays were conducted using the artificial seeds to test naturally occurring proteinaceous proteinase inhibitors of potential value. Soybean trypsin inhibitor and the Bowman-Birk proteinase inhibitor had adverse effects on the development of the insect. A predictive model was constructed to evaluate effects of seed resistance in conjunction with other control methods on S. cerealella population dynamics.

  15. Proteinase K processing of rabbit muscle creatine kinase

    Leydier, C; Andersen, Jens S.; Couthon, F;

    1997-01-01

    Proteinase K cleaves selectively both cytosolic and mitochondrial isoforms of creatine kinase leading to the appearance of two fragments, a large N-terminal one (K1) and a small C-terminal peptide (K2) which remain associated together. The loss of enzymatic activity correlates with the extent of...... monomer cleavage. N-terminal sequencing of the K2 fragments from rabbit cytosolic and pig mitochondrial creatine kinase shows that these peptides begin with A328 and A324, respectively. Electrospray ionization mass spectrometry demonstrates that K2 peptide is composed of 53 residues (A328-K380). However...

  16. [Activity of Ca(2+)-dependent neutral proteinases in rat organs under cobalt and mercury chloride injection].

    Kaliman, P A; Samokhin, A A; Samokhina, L M

    2003-01-01

    The activity of Ca(2+)-dependent neutral proteinases in rats under cobalt and mercury chloride injection was investigated. The calpains activity increase in the lungs, heart, liver and kidneys was revealed after 2 h cobalt chloride action. The mercury chloride gives a reliable increase of calcium-dependent neutral proteinases only in the kidneys. PMID:14574747

  17. An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features

    Have, ten A.; Dekkers, E.; Kay, J.; Phylip, L.H.; Kan, van J.A.L.

    2004-01-01

    Botrytis cinerea, an important fungal plant pathogen, secretes aspartic proteinase (AP) activity in axenic cultures. No cysteine, serine or metalloproteinase activity could be detected. Proteinase activity was higher in culture medium containing BSA or wheat germ extract, as compared to minimal medi

  18. Purification and Characterization of an Extracellular Proteinase from Brevibacterium-Linens ATCC-9174

    Rattray, F P; Bockelmann, W; Fox, P F

    1995-01-01

    An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8,5 and 50 degrees C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and...

  19. Link between allergic asthma and airway mucosal infection suggested by proteinase-secreting household fungi.

    Porter, P; Susarla, S C; Polikepahad, S; Qian, Y; Hampton, J; Kiss, A; Vaidya, S; Sur, S; Ongeri, V; Yang, T; Delclos, G L; Abramson, S; Kheradmand, F; Corry, D B

    2009-11-01

    Active fungal proteinases are powerful allergens that induce experimental allergic lung disease strongly resembling atopic asthma, but the precise relationship between proteinases and asthma remains unknown. Here, we analyzed dust collected from the homes of asthmatic children for the presence and sources of active proteinases to further explore the relationship between active proteinases, atopy, and asthma. Active proteinases were present in all houses and many were derived from fungi, especially Aspergillus niger. Proteinase-active dust extracts were alone insufficient to initiate asthma-like disease in mice, but conidia of A. niger readily established a contained airway mucosal infection, allergic lung disease, and atopy to an innocuous bystander antigen. Proteinase produced by A. niger enhanced fungal clearance from lung and was required for robust allergic disease. Interleukin 13 (IL-13) and IL-5 were required for optimal clearance of lung fungal infection and eosinophils showed potent anti-fungal activity in vitro. Thus, asthma and atopy may both represent a protective response against contained airway infection due to ubiquitous proteinase-producing fungi. PMID:19710638

  20. Enzymatic hydrolysis of starry triggerfish (Abalistes stellaris) muscle using liver proteinase from albacore tuna (Thunnus alalunga).

    Sripokar, P; Chaijan, M; Benjakul, S; Kishimura, H; Klomklao, S

    2016-02-01

    Proteinases from liver extract from albacore tuna (Thunnus alalunga) were used to produce protein hydrolysate from starry triggerfish (Abalistes stellaris) muscle. Hydrolysis conditions for preparing protein hydrolysate from starry triggerfish muscle were optimized. Enzyme level, reaction time and fish muscle/buffer ratio significantly affected the hydrolysis (p < 0.05). Optimum conditions for triggerfish muscle hydrolysis were 5.5 % liver extract, 40 min reaction time and fish muscle/buffer ratio of 1:3 (w/v). The freeze-dried protein hydrolysate was characterized with respect to chemical composition, amino acid composition and color. The product contained 91.73 % protein, 2.04 % lipid and 6.48 % ash. The protein hydrolysate exhibited high amount of essential amino acids (45.62 %). It was light yellow in color (L (*) = 82.94, a (*) = 0.84, b (*) = 22.83). The results indicate that the extract from liver of albacore tuna could be used to produce fish protein hydrolysate and protein hydrolysate from starry triggerfish muscle may potentially serve as a good source of desirable peptide and amino acids. PMID:27162384

  1. A murine ortholog of the human serpin SCCA2 maps to chromosome 1 and inhibits chymotrypsin-like serine proteinases.

    Bartuski, A J; Kamachi, Y; Schick, C; Massa, H; Trask, B J; Silverman, G A

    1998-12-01

    Squamous cell carcinoma antigens (SCCA) 1 and 2 are inhibitory members of the high-molecular-weight serine proteinase inhibitor (serpin) family. The biological functions of SCCA1 and 2 are unknown. One approach to determining the function of human proteins is to study orthologs in other species, such as the mouse. The purpose of this study was to determine whether orthologs to human SCCA1 or 2 exist in the mouse. We report the identification and characterization of a novel serpin, sqn5 (now designated Scca2). Comparative amino acid sequence analysis suggests that Scca2 is a member of the ov-serpin subfamily of serpins with highest homology to SCCA1 and SCCA2. Fluorescence in situ hybridization revealed that the Scca2 mapped near Bcl2 on mouse chromosome 1. This region is syntenic with the human locus for SCCA1 and SCCA2 on 18q21.3. The tissue expression patterns as determined by RT-PCR showed a restricted distribution. Scca2 was detected in the lung, thymus, skin, and uterus, as are SCCA1 and SCCA2. Unlike the SCCAs, however, Scca2 was detected also in the gastrointestinal tract. Enzyme-inhibition assays using a GST-SCCA2 fusion protein revealed that SCCA2 inhibited chymotrypsin-like serine proteinases, but not papain-like cysteine proteinases. SCCA2 inhibited CTSG at 1:1 stoichiometry and with a second-order rate constant of kass = 1.7 x 10(5) M-1 s-1. SCCA2 also inhibited human mast cell chymase but the stoichiometry was 2:1, and the second-order rate constant was kass = 0.9 x 10(4) M-1 s-1. This inhibitory profile is identical to that observed for human SCCA2. Based on these findings, Scca2 appears to be the murine ortholog of human SCCA2. PMID:9828132

  2. Isolation and characterization of selective and potent human Fab inhibitors directed to the active-site region of the two-component NS2B-NS3 proteinase of West Nile virus.

    Shiryaev, Sergey A; Radichev, Ilian A; Ratnikov, Boris I; Aleshin, Alexander E; Gawlik, Katarzyna; Stec, Boguslaw; Frisch, Christian; Knappik, Achim; Strongin, Alex Y

    2010-05-01

    There is a need to develop inhibitors of mosquito-borne flaviviruses, including WNV (West Nile virus). In the present paper, we describe a novel and efficient recombinant-antibody technology that led us to the isolation of inhibitory high-affinity human antibodies to the active-site region of a viral proteinase. As a proof-of-principal, we have successfully used this technology and the synthetic naive human combinatorial antibody library HuCAL GOLD(R) to isolate selective and potent function-blocking active-site-targeting antibodies to the two-component WNV NS (non-structural protein) 2B-NS3 serine proteinase, the only proteinase encoded by the flaviviral genome. First, we used the wild-type enzyme in antibody screens. Next, the positive antibody clones were counter-screened using an NS2B-NS3 mutant with a single mutation of the catalytically essential active-site histidine residue. The specificity of the antibodies to the active site was confirmed by substrate-cleavage reactions and also by using proteinase mutants with additional single amino-acid substitutions in the active-site region. The selected WNV antibodies did not recognize the structurally similar viral proteinases from Dengue virus type 2 and hepatitis C virus, and human serine proteinases. Because of their high selectivity and affinity, the identified human antibodies are attractive reagents for both further mutagenesis and structure-based optimization and, in addition, for studies of NS2B-NS3 activity. Conceptually, it is likely that the generic technology reported in the present paper will be useful for the generation of active-site-specific antibody probes for multiple enzymes. PMID:20156198

  3. Original features of cell-envelope proteinases of Lactobacillus helveticus. A review.

    Sadat-Mekmene, Leila; Genay, Magali; Atlan, Danièle; Lortal, Sylvie; Gagnaire, Valérie

    2011-03-15

    Lactobacillus helveticus is a lactic acid bacterium very used in fermented milks and cheese. The rapid growth of L. helveticus in milk is supported by an efficient cell envelope proteinase (CEP) activity, due to subtilisin-like serine proteases. These enzymes play also crucial roles in texture and flavor formation in dairy products as well as in generating in situ bioactive peptides. In L. helveticus, several genes encoding putative CEPs were detected and characterized by a large intraspecific diversity; little is known about regulation of expression of CEP-encoding genes. Anchored at the bacterial surface, CEPs are large-sized enzymes (> 150 kDa) hydrolyzing β- and α(s1)-casein as well. Substrate cleavages occur after almost all types of amino acids residues, but mass spectrometry analysis revealed L. helveticus strains with specific profiles of substrate hydrolysis, which could explain identification of strains associated with interesting technological properties. In this review, the most recent data regarding CEP-encoding genes, CEP activities toward caseins and L. helveticus strain diversity are discussed. PMID:21354644

  4. Human immunodeficiency virus type 1 capsid protein is a substrate of the retroviral proteinase while integrase is resistant toward proteolysis

    The capsid protein of human immunodeficiency virus type 1 was observed to undergo proteolytic cleavage in vitro when viral lysate was incubated in the presence of dithiothreitol at acidic pH. Purified HIV-1 capsid protein was also found to be a substrate of the viral proteinase in a pH-dependent manner; acidic pH (<7) was necessary for cleavage, and decreasing the pH toward 4 increased the degree of processing. Based on N-terminal sequencing of the cleavage products, the capsid protein was found to be cleaved at two sites, between residues 77 and 78 as well as between residues 189 and 190. Oligopeptides representing these cleavage sites were also cleaved at the expected peptide bonds. The presence of cyclophilin A decreased the degree of capsid protein processing. Unlike the capsid protein, integrase was found to be resistant toward proteolysis in good agreement with its presence in the preintegration complex

  5. Antisense-mediated depletion of a potato lipoxygenase reduces wound induction of proteinase inhibitors and increases weight gain of insect pests

    Royo, Joaquín; León, José; Vancanneyt, Guy; Albar, Juan Pablo; Rosahl, Sabine; Ortego, Félix; Castañera, Pedro; Sánchez-Serrano, José J.

    1999-01-01

    De novo jasmonic acid (JA) synthesis is required for wound-induced expression of proteinase inhibitors and other defense genes in potato and tomato. The first step in JA biosynthesis involves lipoxygenase (LOX) introducing molecular oxygen at the C-13 position of linolenic acid. We previously have shown that, in potato, at least two gene families code for 13-LOX proteins. We have now produced transgenic potato plants devoid of one specific 13-LOX isoform (LOX-H3) through antisense-mediated de...

  6. Isolation and characterization of a serine proteinase with thrombin-like activity from the venom of the snake Bothrops asper

    A.V Pérez

    2008-01-01

    Full Text Available A serine proteinase with thrombin-like activity was isolated from the venom of the Central American pit viper Bothrops asper. Isolation was performed by a combination of affinity chromatography on aminobenzamidine-Sepharose and ion-exchange chromatography on DEAE-Sepharose. The enzyme accounts for approximately 0.13% of the venom dry weight and has a molecular mass of 32 kDa as determined by SDS-PAGE, and of 27 kDa as determined by MALDI-TOF mass spectrometry. Its partial amino acid sequence shows high identity with snake venom serine proteinases and a complete identity with a cDNA clone previously sequenced from this species. The N-terminal sequence of the enzyme is VIGGDECNINEHRSLVVLFXSSGFL CAGTLVQDEWVLTAANCDSKNFQ. The enzyme induces clotting of plasma (minimum coagulant dose = 4.1 µg and fibrinogen (minimum coagulant dose = 4.2 µg in vitro, and promotes defibrin(ogenation in vivo (minimum defibrin(ogenating dose = 1.0 µg. In addition, when injected intravenously in mice at doses of 5 and 10 µg, it induces a series of behavioral changes, i.e., loss of the righting reflex, opisthotonus, and intermittent rotations over the long axis of the body, which closely resemble the `gyroxin-like' effect induced by other thrombin-like enzymes from snake venoms.

  7. Partial characterization of hepatopancreatic and extracellular digestive proteinases of wild and cultivated Octopus maya

    Martinez, Romain; R. Santos; A Alvarez; Cuzon, Gerard; L. Arena; M. Mascaro; Pascual, C; Rosas, C

    2011-01-01

    Proteinases from hepatopancreas (HP) and gastric juice (GJ) from wild and cultured red octopus (Octopus maya) were characterized. Hepatopancreas assays revealed optimal activity at pH 4, 9-10 and 10 for wild and pH 3, 8, and 9, for cultured octopuses, for total proteinases, trypsin and chymotrypsin, respectively. In the gastric juice, maximum activity was recorded at pH 6, 8, and 7 for total proteinases, trypsin, and chymotrypsin, respectively for both wild and cultured octopus. A reduction o...

  8. Purification and Characterization of an Extracellular Proteinase from Brevibacterium linens ATCC 9174

    Rattray, F P; Bockelmann, W; Fox, P. F.

    1995-01-01

    An extracellular serine proteinase from Brevibacterium linens ATCC 9174 was purified to homogeneity. pH and temperature optima were 8.5 and 50(deg)C, respectively. The results for the molecular mass of the proteinase were 56 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 126 kDa by gel filtration, indicating that the native enzyme exists as a dimer. Mg(sup2+) and Ca(sup2+) activated the proteinase, as did NaCl; however, Hg(sup2+), Fe(sup2+), and Zn(sup2+) caused strong i...

  9. High-resolution X-ray study of the effects of deuteration on crystal growth and the crystal structure of proteinase K

    A high-resolution X-ray crystallographic study of the effects of solvent deuteration on the crystallization of proteinase K shows negligibly small degradations of the crystals owing to solvent deuteration and small structural differences between nondeuterated and deuterated crystals of proteinase K. Deuteration of macromolecules is an important technique in neutron protein crystallography. Solvent deuteration of protein crystals is carried out by replacing water (H2O) with heavy water (D2O) prior to neutron diffraction experiments in order to diminish background noise. The effects of solvent deuteration on the crystallization of proteinase K (PK) with polyethylene glycol as a precipitant were investigated using high-resolution X-ray crystallography. In previous studies, eight NO3− anions were included in the PK crystal unit cell grown in NaNO3 solution. In this study, however, the PK crystal structure did not contain NO3− anions; consequently, distortions of amino acids arising from the presence of NO3− anions were avoided in the present crystal structures. High-resolution (1.1 Å) X-ray diffraction studies showed that the degradation of PK crystals induced by solvent deuteration was so small that this degradation would be negligible for the purpose of neutron protein crystallography experiments at medium resolution. Comparison of the nonhydrogen structures of nondeuterated and deuterated crystal structures demonstrated very small structural differences. Moreover, a positive correlation between the root-mean-squared differences and B factors indicated that no systematic difference existed

  10. Sap6, a secreted aspartyl proteinase, participates in maintenance the cell surface integrity of Candida albicans

    Buu, Leh-Miauh; Chen, Yee-Chun

    2013-01-01

    Background The polymorphic species Candida albicans is the major cause of candidiasis in humans. The secreted aspartyl proteinases (Saps) of C. albicans, encoded by a family of 10 SAP genes, have been investigated as the virulent factors during candidiasis. However, the biological functions of most Sap proteins are still uncertain. In this study, we applied co-culture system of C. albicans and THP-1 human monocytes to explore the pathogenic roles and biological functions of Sap proteinases. R...

  11. A cysteine proteinase in the penetration glands of the cercariae of Cotylurus cornutus (Trematoda, Strigeidae)

    Moczoń, Tadeusz

    2010-01-01

    A cysteine proteinase from the penetration glands of Cotylurus cornutus cercariae was examined with histochemical and biochemical methods. The enzyme hydrolyzed gelatin, azocoll, azocasein, azoalbumin, N-blocked-l-arginine-4-methoxy-2-naphthylamide, and N-blocked-p-nitroanilide, but did not degrade elastin. The metal ion complexane ethylenediamine tetraacetate and the thiol-reducing compound dithioerythritol enhanced the proteinase activity, whereas the thiol-blocking compounds p-hydroxymercu...

  12. Proteinases of Proteus spp.: purification, properties, and detection in urine of infected patients.

    Loomes, L M; Senior, B. W.; Kerr, M A

    1992-01-01

    The proteinases secreted by pathogenic strains of Proteus mirabilis, P. vulgaris biotype 2, P. vulgaris biotype 3, and P. penneri were purified with almost 100% recovery by affinity chromatography on phenyl-Sepharose followed by anion-exchange chromatography. The proteinase purified from the urinary tract pathogen P. mirabilis, which we had previously shown to degrade immunoglobulins A and G, appeared as a composite of a single band and a double band (53 and 50 kDa, respectively) on sodium do...

  13. Porphyromonas gingivalis Cysteine Proteinase Inhibition by κ-Casein Peptides ▿

    Toh, Elena C. Y.; Dashper, Stuart G.; Huq, N. Laila; Attard, Troy J.; O'Brien-Simpson, Neil M.; Chen, Yu-Yen; Cross, Keith J.; Stanton, David P.; Paolini, Rita A.; Eric C. Reynolds

    2010-01-01

    Porphyromonas gingivalis is a major pathogen associated with chronic periodontitis, an inflammatory disease of the supporting tissues of the teeth. The Arg-specific (RgpA/B) and Lys-specific (Kgp) cysteine proteinases of P. gingivalis are major virulence factors for the bacterium. In this study κ-casein(109-137) was identified in a chymosin digest of casein as an inhibiting peptide of the P. gingivalis proteinases. The peptide was synthesized and shown to inhibit proteolytic activity associat...

  14. Serine proteinase inhibitors from nematodes and the arms race between host and pathogen

    Zang, Xingxing; Maizels, Rick

    2001-01-01

    Parasite nematode genomics is a relatively new field9, but already two of the most interesting gene families to be found encode serine proteinase inhibitors. This article describes a family of nematode proteinase inhibitors with homology to mammalian serpins, as well as a distinct set of lower-molecularweight inhibitors first discovered by biochemical analysis of the human roundworm Ascaris10.Taking these two examples into account, it thus appears that parasitic nem...

  15. Neutrophil-derived Oxidants and Proteinases as Immunomodulatory Mediators in Inflammation

    V. Witko-Sarsat; B. Descamps-Latscha

    1994-01-01

    Neutrophils generate potent microbicidal molecules via the oxygen-dependent pathway, leading to the generation of reactive oxygen intermediates (ROI), and via the non-oxygen dependent pathway, consisting in the release of serine proteinases and metalloproteinases stored in granules. Over the past years, the concept has emerged that both ROI and proteinases can be viewed as mediators able to modulate neutrophil responses as well as the whole inflammatory process. This is w...

  16. In Vivo Analysis of Secreted Aspartyl Proteinase Expression in Human Oral Candidiasis

    Naglik, Julian R.; Newport, George; White, Theodore C.; Fernandes-Naglik, Lynette L.; Greenspan, John S.; Greenspan, Deborah; Sweet, Simon P.; Challacombe, Stephen J; Agabian, Nina

    1999-01-01

    Secreted aspartyl proteinases are putative virulence factors in Candida infections. Candida albicans possesses at least nine members of a SAP gene family, all of which have been sequenced. Although the expression of the SAP genes has been extensively characterized under laboratory growth conditions, no studies have analyzed in detail the in vivo expression of these proteinases in human oral colonization and infection. We have developed a reliable and sensitive procedure to detect C. albicans ...

  17. A structural model of picornavirus leader proteinases based on papain and bleomycin hydrolase

    Skern, Tim; Fita, Ignacio; Guarné, Alba

    1998-01-01

    The leader (L) proteinases of aphthoviruses (foot-and-mouth disease viruses) and equine rhinovirus serotypes 1 and 2 cleave themselves from the growing polyprotein. This cleavage occurs intramolecularly between the C terminus of the L proteinases and the N terminus of the subsequent protein VP4. The foot-and-mouth disease virus enzyme has been shown, in addition, to cleave at least one cellular protein, the eukaryotic initiation factor 4G. Mechanistically, inhibitor studies and sequence analy...

  18. Effect of the Solvent Temperatures on Dynamics of Serine Protease Proteinase K

    Peng Sang; Qiong Yang; Xing Du; Nan Yang; Li-Quan Yang; Xing-Lai Ji; Yun-Xin Fu; Zhao-Hui Meng; Shu-Qun Liu

    2016-01-01

    To obtain detailed information about the effect of the solvent temperatures on protein dynamics, multiple long molecular dynamics (MD) simulations of serine protease proteinase K with the solute and solvent coupled to different temperatures (either 300 or 180 K) have been performed. Comparative analyses demonstrate that the internal flexibility and mobility of proteinase K are strongly dependent on the solvent temperatures but weakly on the protein temperatures. The constructed free energy la...

  19. Antibody in sera of patients infected with Trichomonas vaginalis is to trichomonad proteinases.

    Alderete, J F; Newton, E.; C. Dennis; Neale, K A

    1991-01-01

    BACKGROUND--A recent report demonstrated the immunogenic character of the cysteine proteinases of Trichomonas vaginalis. It was of interest, therefore, to examine for the presence of serum anti-proteinase antibody among patients with trichomoniasis. METHODS--An immunoprecipitation assay was used involving protein A-bearing Staphylococcus aureus first coated with the IgG fraction of goat anti-human Ig and then mixed with individual sera of patients to bind human antibody. These antibody-coated...

  20. Stable and Simple Immobilization of Proteinase K Inside Glass Tubes and Microfluidic Channels.

    Küchler, Andreas; Bleich, Julian N; Sebastian, Bernhard; Dittrich, Petra S; Walde, Peter

    2015-11-25

    Engyodontium album proteinase K (proK) is widely used for degrading proteinaceous impurities during the isolation of nucleic acids from biological samples, or in proteomics and prion research. Toward applications of proK in flow reactors, a simple method for the stable immobilization of proK inside glass micropipette tubes was developed. The immobilization of the enzyme was achieved by adsorption of a dendronized polymer-enzyme conjugate from aqueous solution. This conjugate was first synthesized from a polycationic dendronized polymer (denpol) and proK and consisted, on average, of 2000 denpol repeating units and 140 proK molecules, which were attached along the denpol chain via stable bis-aryl hydrazone bonds. Although the immobilization of proK inside the tube was based on nonspecific, noncovalent interactions only, the immobilized proK did not leak from the tube and remained active during prolonged storage at 4 °C and during continuous operation at 25 °C and pH = 7.0. The procedure developed was successfully applied for the immobilization of proK on a glass/PDMS (polydimethylsiloxane) microchip, which is a requirement for applications in the field of proK-based protein analysis with such type of microfluidic devices. PMID:26536248

  1. SufA--a novel subtilisin-like serine proteinase of Finegoldia magna.

    Karlsson, Christofer; Andersson, Marie-Louise; Collin, Mattias; Schmidtchen, Artur; Björck, Lars; Frick, Inga-Maria

    2007-12-01

    Finegoldia magna is an anaerobic Gram-positive bacterium and commensal, which is also associated with clinically important conditions such as skin and soft tissue infections. This study describes a novel subtilisin-like extracellular serine proteinase of F. magna, denoted SufA (subtilase of Finegoldia magna), which is believed to be the first subtilase described among Gram-positive anaerobic cocci. SufA is associated with the bacterial cell surface, but is also released in substantial amounts during bacterial growth. Papain was used to release SufA from the surface of F. magna and the enzyme was purified by ion-exchange chromatography and gel filtration. A protein band on SDS-PAGE corresponding to the dominating proteolytic activity on gelatin zymography was analysed by MS/MS. Based on the peptide sequences obtained, the sufA gene was sequenced. The gene comprises 3466 bp corresponding to a preprotein of 127 kDa. Like other members of the subtilase family, SufA contains the catalytic triad of aspartic acid, histidine and serine with surrounding conserved residues. A SufA homologue was identified in 33 of 34 investigated isolates of F. magna, as revealed by PCR and immunoprinting. The enzyme forms dimers, which are more proteolytically active than the monomeric protein. SufA was found to efficiently cleave and inactivate the antibacterial peptide LL-37 and the CXC chemokine MIG/CXCL9, indicating that the enzyme promotes F. magna survival and colonization. PMID:18048934

  2. Human cysteine-proteinase inhibitors: nucleotide sequence analysis of three members of the cystatin gene family.

    Saitoh, E; Kim, H S; Smithies, O; Maeda, N

    1987-01-01

    Three genes from the human cystatin gene family of cysteine-proteinase inhibitors have been isolated from a bacteriophage lambda library containing HindIII digests of human genomic DNA. Two of the genes code for salivary cystatin SN and SA, the third is a pseudogene. The cloned genes were identified with a probe made from a salivary cystatin cDNA. The complete nucleotide sequence of the gene that codes for the precursor form of the neutral salivary protein, cystatin SN, was determined. The gene, which we name CST1, contains three exons and two intervening sequences. The expected CAT and ATA boxes are present in the 5'-flanking region of the gene. Partial nucleotide sequence determination of a second gene revealed that it codes for the precursor form of the acidic salivary protein, cystatin SA. This gene, which we name CST2, has the same gene organization as CST1. The complete nucleotide sequence of a third gene was determined. It does not contain a typical ATA box, and in addition, a premature stop codon and a frameshift deletion mutation occur within the gene. These inactivation mutations show that this gene, which we name CSTP1, is a cystatin pseudogene. These data combined with our genomic Southern-blot analyses show that the cystatin genes form a multigene family with at least seven members. PMID:3446578

  3. Differential gene expression for suicide-substrate serine proteinase inhibitors (serpins) in vegetative and grain tissues of barley

    Roberts, T.H.; Marttila, S.; Rasmussen, S.K.; Hejgaard, Jørn

    2003-01-01

    and vascular tissues of roots, and to the phloem of coleoptiles and leaves. The identification of BSZ4 in vegetative tissues by western blotting was confirmed for the roots by purification and amino acid sequencing, and for the leaves by in vitro reactive-centre loop cleavage studies. Plant serpins...... plant serpins are unknown. Expression studies of genes encoding members of three subfamilies of serpins (BSZx, BSZ4 and BSZ7) in developing grain and vegetative tissues of barley (Hordeum vulgare L.) showed that transcripts encoding BSZx, which inhibits distinct proteinases at overlapping reactive...... centres in vitro, were ubiquitous at low levels, but the protein could not be detected. EST analysis showed that expression of genes for serpins with BSZx-type reactive centres in vegetative tissues is widespread in the plant kingdom, suggesting a common regulatory function. For BSZ4 and BSZ7, expression...

  4. Gamma irradiation or hydrocortisone treatment of rats increases the proteinase activity associated with histones of thymus nuclei

    An increase in the activity of histone-associated rat thymus nucleus proteinases specific for histones H2A, H2B and H1 was shown after γ irradiation or hydrocortisone treatment of animals. Histone H1-specific proteinase activity is dependent on DNA and increases in the presence of denatured DNA, whereas proteinases specific for core histones are inhibited in the presence of denatured DNA. The increase in the activity of histone-associated proteinases depends on the radiation dose and the time after irradiation or hydrocortisone injection. In the presence of dithiothreitol and sodium dodecyl sulfate, these proteinases dissociate from histones. It was found by gel electrophoresis that several proteinases of various molecular masses are closely associated with histones obtained from thymus nuclei of irradiated or hydrocortisone-treated rats. 43 refs., 7 figs

  5. Lipases and proteinases in milk : occurrence, heat inactivation, and their importance for the keeping quality of milk products

    Driessen, F.M.

    1983-01-01

    The occurrence and heat inactivation of native and bacterial lipases and proteinases in milk were studied.Production of these enzymes by Gram-negative psychrotrophic bacteria in milk was found to take place towards the end of exponential growth and in the stationary growth phase.Kinetics of heat inactivation in milk of milk lipoprotein lipase, alkaline milk proteinase and lipases and proteinases of some Gram-negative bacteria are given.The effects of residual lipolytic and proteolytic activit...

  6. Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    Leah Theresa Sigle

    2013-09-01

    Full Text Available Sandflies (Diptera: Psychodidae are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2. Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited α-chymotrypsin to 9.4% residual activity and also inhibited α-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania.

  7. Determination of germ tube, phospholipase, and proteinase production by bloodstream isolates of Candida albicans

    Antonella Souza Mattei

    2013-06-01

    Full Text Available Introduction Candida albicans is a commensal and opportunistic agent that causes infection in immunocompromised individuals. Several attributes contribute to the virulence and pathogenicity of this yeast, including the production of germ tubes (GTs and extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate GT production and phospholipase and proteinase activities in bloodstream isolates of C. albicans. Methods One hundred fifty-three C. albicans isolates were obtained from blood samples and analyzed for GT, phospholipase, and proteinase production. The assays were performed in duplicate in egg yolk medium containing bovine serum albumin and human serum. Results Detectable amounts of proteinase were produced by 97% of the isolates, and 78% of the isolates produced phospholipase. GTs were produced by 95% of the isolates. A majority of the isolates exhibited low levels of phospholipase production and high levels of proteinase production. Conclusions Bloodstream isolates of C. albicans produce virulence factors such as GT and hydrolytic enzymes that enable them to cause infection under favorable conditions.

  8. Proteinase-antiproteinase balance in tracheal aspirates from neonates.

    Sluis, K B; Darlow, B A; Vissers, M C; Winterbourn, C C

    1994-02-01

    We wanted to identify the inhibitors of neutrophil elastase, quantify their activities in the upper airways of neonates, and relate these to the presence of active elastase and the likelihood of elastolytic injury occurring due to inhibitory capacity being overwhelmed. Activities of neutrophil elastase and its inhibitors were measured in tracheal aspirates from 17 infants, 10 of whom subsequently developed bronchopulmonary dysplasia. All aspirates contained immunologically detectable alpha 1-proteinase inhibitor (alpha 1-PI), but their inhibitory capacity against neutrophil elastase ranged from being undetectable to being in excess of the amount of alpha 1-PI detected immunologically. When the alpha 1-PI was removed from each of the aspirates, using a specific antibody, from 0-50% of the original activity remained, indicating the presence of another elastase inhibitor. Its properties were consistent with it being the low molecular mass, secretory leucoproteinase inhibitor (SLPI), also known as bronchial antileucoproteinase. The alpha 1-PI was from 0-100% active. Most of the inactive inhibitor was shown by western blotting to be complexed with elastase, with a small amount of cleaved material. There was no evidence of major oxidative inactivation. Free elastase was detected in only three of the aspirates; these had little or no detectable elastase inhibitory capacity, and most of their alpha 1-PI was complexed. Elastase load, comprising the sum of free and complexed elastase, correlated closely with myeloperoxidase activity, a recognized marker of inflammatory activity. Active SLPI levels showed a positive correlation with gestational age (r = 0.66). We conclude that most neutrophil elastase in the upper airways of ventilated infants is complexed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7909297

  9. Neutrophil elastase and proteinase 3 trafficking routes in myelomonocytic cells

    Neutrophil elastase (NE) and proteinase 3 (PR3) differ in intracellular localization, which may reflect different trafficking mechanisms of the precursor forms when synthesized at immature stages of neutrophils. To shed further light on these mechanisms, we compared the trafficking of precursor NE (proNE) and precursor PR3 (proPR3). Like proNE [1], proPR3 interacted with CD63 upon heterologous co-expression in COS cells but endogenous interaction was not detected although cell surface proNE/proPR3/CD63 were co-endocytosed in myelomonocytic cells. Cell surface proNE/proPR3 turned over more rapidly than cell surface CD63 consistent with processing/degradation of the pro-proteases but recycling of CD63. Colocalization of proNE/proPR3/CD63 with clathrin and Rab 7 suggested trafficking through coated vesicles and late endosomes. Partial caveolar trafficking of proNE/CD63 but not proPR3 was suggested by colocalization with caveolin-1. Blocking the C-terminus of proNE/proPR3 by creating a fusion with FK506 binding protein inhibited endosomal re-uptake of proNE but not proPR3 indicating 'proC'-peptide-dependent structural/conformational requirements for proNE but not for proPR3 endocytosis. The NE aminoacid residue Y199 of a proposed NE sorting motif that interacts with AP-3 [2] was not required for proNE processing, sorting or endocytosis in rat basophilic leukemia (RBL) cells expressing heterologous Y199-deleted proNE; this suggests operation of another AP-3-link for proNE targeting. Our results show intracellular multi-step trafficking to be different between proNE and proPR3 consistent with their differential subcellular NE/PR3 localization in neutrophils.

  10. N-Terminal Domain of Feline Calicivirus (FCV) Proteinase-Polymerase Contributes to the Inhibition of Host Cell Transcription.

    Wu, Hongxia; Zu, Shaopo; Sun, Xue; Liu, Yongxiang; Tian, Jin; Qu, Liandong

    2016-01-01

    Feline Calicivirus (FCV) infection results in the inhibition of host protein synthesis, known as "shut-off". However, the precise mechanism of shut-off remains unknown. Here, we found that the FCV strain 2280 proteinase-polymerase (PP) protein can suppress luciferase reporter gene expression driven by endogenous and exogenous promoters. Furthermore, we found that the N-terminal 263 aa of PP (PPN-263) determined its shut-off activity using the expression of truncated proteins. However, the same domain of the FCV strain F9 PP protein failed to inhibit gene expression. A comparison between strains 2280 and F9 indicated that Val27, Ala96 and Ala98 were key sites for the inhibition of host gene expression by strain 2280 PPN-263, and PPN-263 exhibited the ability to shut off host gene expression as long as it contained any two of the three amino acids. Because the N-terminus of the PP protein is required for its proteinase and shut-off activities, we investigated the ability of norovirus 3C-like proteins (3CLP) from the GII.4-1987 and -2012 isolates to interfere with host gene expression. The results showed that 3CLP from both isolates was able to shut off host gene expression, but 3CLP from GII.4-2012 had a stronger inhibitory activity than that from GII.4-1987. Finally, we found that 2280 PP and 3CLP significantly repressed reporter gene transcription but did not affect mRNA translation. Our results provide new insight into the mechanism of the FCV-mediated inhibition of host gene expression. PMID:27447663

  11. The anthelmintic efficacy of natural plant cysteine proteinases against Hymenolepis microstoma in vivo.

    Mansur, F; Luoga, W; Buttle, D J; Duce, I R; Lowe, A; Behnke, J M

    2015-09-01

    Little is known about the efficacy of cysteine proteinases (CP) as anthelmintics for cestode infections in vivo. Hymenolepis microstoma is a natural parasite of house mice, and provides a convenient model system for the assessment of novel drugs for anthelmintic activity against cestodes. The experiments described in this paper indicate that treatment of H. microstoma infections in mice with the supernatant of papaya latex (PLS), containing active cysteine proteinases, is only minimally efficacious. The statistically significant effects seen on worm burden and biomass showed little evidence of dose dependency, were temporary and the role of cysteine proteinases as the active principles in PLS was not confirmed by specific inhibition with E-64. Worm fecundity was not affected by treatment at the doses used. We conclude also that this in vivo host-parasite system is not sensitive enough to be used reliably for the detection of cestocidal activity of compounds being screened as potential, novel anthelmintics. PMID:25226116

  12. Thiol-activated serine proteinases from nymphal hemolymph of the African migratory locust, Locusta migratoria migratorioides.

    Hanzon, Jacob; Smirnoff, Patricia; Applebaum, Shalom W; Mattoo, Autar K; Birk, Yehudith

    2003-02-01

    Two unique serine proteinase isoenzymes (LmHP-1 and LmHP-2) were isolated from the hemolymph of African migratory locust (Locusta migratoria migratorioides) nymphs. Both have a molecular mass of about 23 kDa and are activated by thiol-reducing agents. PMSF abolishes enzymes activity only after thiol activation, while the cysteine proteinase inhibitors E-64, iodoacetamide, and heavy metals fail to inhibit the thiol-activated enzymes. The N-terminal sequence was determined for the more-abundant LmHP-2 isoenzyme. It exhibits partial homology to that of other insect serine proteinases and similar substrate specificity and inhibition by the synthetic and protein trypsin inhibitors pABA, TLCK, BBI, and STI. The locust trypsins LmHP-1 and LmHP-2 constitute a new category of serine proteases wherein the active site of the enzyme is exposed by thiol activation without cleavage of peptide bonds. PMID:12559979

  13. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4.

    Millien, Valentine Ongeri; Lu, Wen; Shaw, Joanne; Yuan, Xiaoyi; Mak, Garbo; Roberts, Luz; Song, Li-Zhen; Knight, J Morgan; Creighton, Chad J; Luong, Amber; Kheradmand, Farrah; Corry, David B

    2013-08-16

    Proteinases and the innate immune receptor Toll-like receptor 4 (TLR4) are essential for expression of allergic inflammation and diseases such as asthma. A mechanism that links these inflammatory mediators is essential for explaining the fundamental basis of allergic disease but has been elusive. Here, we demonstrate that TLR4 is activated by airway proteinase activity to initiate both allergic airway disease and antifungal immunity. These outcomes were induced by proteinase cleavage of the clotting protein fibrinogen, yielding fibrinogen cleavage products that acted as TLR4 ligands on airway epithelial cells and macrophages. Thus, allergic airway inflammation represents an antifungal defensive strategy that is driven by fibrinogen cleavage and TLR4 activation. These findings clarify the molecular basis of allergic disease and suggest new therapeutic strategies. PMID:23950537

  14. A new method of research on molecular evolution of pro-teinase superfamily

    2001-01-01

    The molecular evolutionary tree, also known as a phylogenetic tree, of the serine proteinase superfamily was constructed by means of structural alignment. Three-dimensional structures of proteins were aligned by the SSAP program of Orengo and Taylor to obtain evolutionary dis-tances. The resulting evolutionary tree provides a topology graph that can reflect the evolution of structure and function of homology proteinase. Moreover, study on evolution of the serine proteinase superfamily can lead to better under-standing of the relationship and evolutionary difference among proteins of the superfamily, and is of significance to protein engineering, molecular design and protein structure prediction. Structure alignment is one of the useful methods of research on molecular evolution of protein.

  15. The Characterization of SaPIN2b, a Plant Trichome-Localized Proteinase Inhibitor from Solanum americanum

    Zeng-Fu Xu

    2012-11-01

    Full Text Available Proteinase inhibitors play an important role in plant resistance of insects and pathogens. In this study, we characterized the serine proteinase inhibitor SaPIN2b, which is constitutively expressed in Solanum americanum trichomes and contains two conserved motifs of the proteinase inhibitor II (PIN2 family. The recombinant SaPIN2b (rSaPIN2b, which was expressed in Escherichia coli, was demonstrated to be a potent proteinase inhibitor against a panel of serine proteinases, including subtilisin A, chymotrypsin and trypsin. Moreover, rSaPIN2b also effectively inhibited the proteinase activities of midgut trypsin-like proteinases that were extracted from the devastating pest Helicoverpa armigera. Furthermore, the overexpression of SaPIN2b in transgenic tobacco plants resulted in enhanced resistance against H. armigera. Taken together, our results demonstrated that SaPIN2b is a potent serine proteinase inhibitor that may act as a protective protein in plant defense against insect attacks.

  16. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Blom Nikolaj

    2004-06-01

    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.

  17. Carboxy-terminal truncation of oryzacystatin II by oryzacystatin-insensitive insect digestive proteinases.

    Michaud, D; Cantin, L; Vrain, T C

    1995-10-01

    The biochemical interactions between digestive proteinases of the Coleoptera pest black vine weevil (Otiorynchus sulcatus) and two plant cysteine proteinase inhibitors, oryzacystatin I (OCI) and oryzacystatin II (OCII), were assessed using gelatin-polyacrylamide gel electrophoresis, OCI-affinity chromatography, and recombinant forms of the two plant inhibitors. The insect proteinases were resolved in gelatin-containing polyacrylamide gels as five major bands, only three of them being totally or partially inactivated by OCI and OCII. The maximal inhibitory effect of both OCs at pH 5.0 was estimated at 40% and the inhibition was stable with time despite the presence of OC-insensitive proteases, indicating the stability of the OCI and OCII effects. After removing OC-sensitive proteinases from the insect crude extract by OCI-affinity chromatography, the effects of the insect cystatin-insensitive proteases on the structural integrity of the free OCs were analyzed. While OCI remained stable, OCII was subjected to limited proteolysis leading to its gradual transformation into a approximately 10.5-kDa unstable intermediate, OCIIi. As shown by the degradation pattern of a glutathione S-transferase (GST)/OCII fusion protein, the appearance of OCIIi resulted from the C-terminal truncation of OCII. Either free or linked to GST, OCIIi was as active against papain and human cathepsin H as OCII, and the initial specificities of the inhibitor for these two cysteine proteinases were conserved after cleavage. Although these observations indicate the high conformational stability of OCII near its active (inhibitory) site, they also suggest a general conformational destabilization of this inhibitor following its initial cleavage, subsequently leading to its complete hydrolysis. This apparent susceptibility of OCII to proteolytic cleavage by the insect proteinases could have major implications when planning the use of this plant cystatin for insect pest control. PMID:7574723

  18. Site-specific cleavage of the host poly(A) binding protein by the encephalomyocarditis virus 3C proteinase stimulates viral replication.

    Kobayashi, Mariko; Arias, Carolina; Garabedian, Alexandra; Palmenberg, Ann C; Mohr, Ian

    2012-10-01

    Although picornavirus RNA genomes contain a 3'-terminal poly(A) tract that is critical for their replication, the impact of encephalomyocarditis virus (EMCV) infection on the host poly(A)-binding protein (PABP) remains unknown. Here, we establish that EMCV infection stimulates site-specific PABP proteolysis, resulting in accumulation of a 45-kDa N-terminal PABP fragment in virus-infected cells. Expression of a functional EMCV 3C proteinase was necessary and sufficient to stimulate PABP cleavage in uninfected cells, and bacterially expressed 3C cleaved recombinant PABP in vitro in the absence of any virus-encoded or eukaryotic cellular cofactors. N-terminal sequencing of the resulting C-terminal PABP fragment identified a 3C(pro) cleavage site on PABP between amino acids Q437 and G438, severing the C-terminal protein-interacting domain from the N-terminal RNA binding fragment. Single amino acid substitution mutants with changes at Q437 were resistant to 3C(pro) cleavage in vitro and in vivo, validating that this is the sole detectable PABP cleavage site. Finally, while ongoing protein synthesis was not detectably altered in EMCV-infected cells expressing a cleavage-resistant PABP variant, viral RNA synthesis and infectious virus production were both reduced. Together, these results establish that the EMCV 3C proteinase mediates site-specific PABP cleavage and demonstrate that PABP cleavage by 3C regulates EMCV replication. PMID:22837200

  19. The aspartic proteinase family of three Phytophthora species

    ten Have Arjen

    2011-05-01

    Full Text Available Abstract Background Phytophthora species are oomycete plant pathogens with such major social and economic impact that genome sequences have been determined for Phytophthora infestans, P. sojae and P. ramorum. Pepsin-like aspartic proteinases (APs are produced in a wide variety of species (from bacteria to humans and contain conserved motifs and landmark residues. APs fulfil critical roles in infectious organisms and their host cells. Annotation of Phytophthora APs would provide invaluable information for studies into their roles in the physiology of Phytophthora species and interactions with their hosts. Results Genomes of Phytophthora infestans, P. sojae and P. ramorum contain 11-12 genes encoding APs. Nine of the original gene models in the P. infestans database and several in P. sojae and P. ramorum (three and four, respectively were erroneous. Gene models were corrected on the basis of EST data, consistent positioning of introns between orthologues and conservation of hallmark motifs. Phylogenetic analysis resolved the Phytophthora APs into 5 clades. Of the 12 sub-families, several contained an unconventional architecture, as they either lacked a signal peptide or a propart region. Remarkably, almost all APs are predicted to be membrane-bound. Conclusions One of the twelve Phytophthora APs is an unprecedented fusion protein with a putative G-protein coupled receptor as the C-terminal partner. The others appear to be related to well-documented enzymes from other species, including a vacuolar enzyme that is encoded in every fungal genome sequenced to date. Unexpectedly, however, the oomycetes were found to have both active and probably-inactive forms of an AP similar to vertebrate BACE, the enzyme responsible for initiating the processing cascade that generates the Aβ peptide central to Alzheimer's Disease. The oomycetes also encode enzymes similar to plasmepsin V, a membrane-bound AP that cleaves effector proteins of the malaria parasite

  20. Serine proteinase of Renibacterium salmoninarum digests a major autologous extracellular and cell-surface protein.

    Rockey, D D; Turaga, P S; Wiens, G D; Cook, B A; Kaattari, S L

    1991-10-01

    Renibacterium salmoninarum is a pathogen of salmonid fish that produces large amounts of extracellular protein (ECP) during growth. A proteolytic activity present in ECP at elevated temperatures digested the majority of the proteins in ECP. This digestion was also associated with the loss of ECP immunosuppressive function. In vitro activity of the proteinase in ECP was temperature dependent: it was not detected in an 18-h digest at 4 and 17 degrees C but became readily apparent at 37 degrees C. Proteinase activity was detected at bacterial physiological temperatures (17 degrees C) in reactions incubated for several days. Under these conditions, digestion of partially purified p57, a major constituent of ECP and a major cell-surface protein, yielded a spectrum of breakdown products similar in molecular weight and antigenicity to those in ECP. This pattern of digestion suggests that most of the immunologically related constituents of ECP are p57 and its breakdown products. The proteolytic activity was sensitive to phenylmethylsulfonyl fluoride, methanol, and ethanol and to 10-min incubation at temperatures above 65 degrees C. Electrophoretic analysis of the proteinase on polyacrylamide gels containing proteinase substrates indicated the native form to be 100 kDa or greater. The enzyme was active against selected unrelated substrates only when coincubated with a denaturant (0.1% lauryl sulfate) and (or) a reducing agent (20 mM dithiothreitol). PMID:1777853

  1. Concurrent occurrence of insect proteinases and their inhibitors in insect midgut

    Taranushenko, J.; Sehnal, František

    Izmir : Entomological Society of Turkey , 2006. s. 134-134. [European Congress of Entomology /8./. 17.09.2006-22.09.2006, Izmir] R&D Projects: GA ČR(CZ) GA522/06/1591 Institutional research plan: CEZ:AV0Z50070508 Keywords : serin proteinases Subject RIV: ED - Physiology

  2. The aspartic proteinase from Saccharomyces cerevisiae folds its own inhibitor into a helix

    Li, M; Phylip, L H; Lees, W E; Winther, Jakob R.; Dunn, B M; Wlodawer, A; Kay, J; Gustchina, A

    2000-01-01

    Aspartic proteinase A from yeast is specifically and potently inhibited by a small protein called IA3 from Saccharomyces cerevisiae. Although this inhibitor consists of 68 residues, we show that the inhibitory activity resides within the N-terminal half of the molecule. Structures solved at 2.2 a...

  3. Successful treatment of murine muscular dystrophy with the proteinase inhibitor leupeptin.

    Sher, J H; Stracher, A.; Shafiq, S A; Hardy-Stashin, J

    1981-01-01

    Mice with genetic muscular dystrophy were treated with intraperitoneal injections of the proteinase inhibitor leupeptin, beginning before the onset of weakness. A significant number of the treated animals failed to develop histological evidence of dystrophy, compared with controls. Leupeptin treatment prevented (or delayed) the onset of muscular dystrophy in this experiment.

  4. Recombinant Cysteine Proteinase from Leishmania (Leishmania) chagasi Implicated in Human and Dog T-Cell Responses

    da Costa Pinheiro, Paulo Henrique; de Souza Dias, Suzana; EULÁLIO, Kelsen Dantas; Mendonça, Ivete L.; Katz, Simone; Barbiéri, Clara Lúcia

    2005-01-01

    High in vitro lymphoproliferative responses were induced in humans and dogs by a recombinant Leishmania (Leishmania) chagasi cysteine proteinase, with secretion of IFN-γ in asymptomatic subjects or of IFN-γ, interleukin 4 (IL-4), and IL-10 in oligosymptomatic subjects. In contrast, responses of symptomatic patients and dogs were lower, with production of IL-4 and IL-10.

  5. Proteinase from germinating bean cotyledons. Evidence for involvement of a thiol group in catalysis.

    Csoma, C; Polgár, L

    1984-09-15

    To degrade storage proteins germinating seeds synthesize proteinases de novo that can be inhibited by thiol-blocking reagents [Baumgartner & Chrispeels (1977) Eur. J. Biochem. 77, 223-233]. We have elaborated a procedure for isolation of such a proteinase from the cotyledons of Phaseolus vulgaris. The purification procedure involved fractionation of the cotyledon homogenate with acetone and with (NH4)2SO4 and successive chromatographies on DEAE-cellulose, activated thiol-Sepharose Sepharose and Sephacryl S-200. The purified enzyme has an Mr of 23,400, proved to be highly specific for the asparagine side chain and blocking of its thiol group resulted in loss of the catalytic activity. The chemical properties of the thiol group of the bean enzyme were investigated by acylation with t-butyloxycarbonyl-L-asparagine p-nitro-phenyl ester and by alkylations with iodoacetamide and iodoacetate. Deviations from normal pH-rate profile were observed, which indicated that the thiol group is not a simple functional group, but constitutes a part of an interactive system at the active site. The pKa value for acylation and the magnitude of the rate constant for alkylation with iodoacetate revealed that the bean proteinase possesses some properties not shared by papain and the other cysteine proteinases studied to date. PMID:6385962

  6. Allicin from garlic strongly inhibits cysteine proteinases and cytopathic effects of Entamoeba histolytica.

    Ankri, S; Miron, T; Rabinkov, A; Wilchek, M; Mirelman, D

    1997-01-01

    The ability of Entamoeba histolytica trophozoites to destroy monolayers of baby hamster kidney cells is inhibited by allicin, one of the active principles of garlic. Cysteine proteinases, an important contributor to amebic virulence, as well as alcohol dehydrogenase, are strongly inhibited by allicin.

  7. Secreted aspartate proteinases, a virulence factor of Candida spp.: Occurrence among clinical isolates

    Hamal, P.; Dostál, Jiří; Raclavský, V.; Krylová, M.; Pichová, Iva; Hrušková-Heidingsfeldová, Olga

    2004-01-01

    Roč. 49, č. 4 (2004), s. 491-496. ISSN 0015-5632 R&D Projects: GA MZd NI6485 Institutional research plan: CEZ:AV0Z4055905 Keywords : Candida spp. * aspartate proteinases * RAPD typing Subject RIV: CE - Biochemistry Impact factor: 1.034, year: 2004

  8. Fasciola gigantica cathepsin L proteinase-based synthetic peptide for immunodiagnosis and prevention of sheep fasciolosis

    Ježek, Jan; El Ridi, R.; Salah, M.; Wagih, A.; Aziz, H. W.; Tallima, H.; El Shafie, M. H.; Khalek, T. A.; Ammou, F. F. A.; Strongylis, C.; Moussis, V.; Tsikaris, V.

    2008-01-01

    Roč. 90, č. 3 (2008), s. 349-357. ISSN 0006-3525 Institutional research plan: CEZ:AV0Z40550506 Keywords : cathepsin L proteinase * peptides * sequential oligopeptide carriers * synthetic peptide vaccine * Fasciiola gigantica Subject RIV: CC - Organic Chemistry Impact factor: 2.823, year: 2008

  9. Short-term variability of biomarkers of proteinase activity in patients with emphysema associated with type Z alpha-1-antitrypsin deficiency

    Nieuwenhuizen Willem

    2005-05-01

    Full Text Available Abstract Background The burden of proteinases from inflammatory cells in the lung of subjects with type Pi ZZ of alpha-1-antitrypsin deficiency is higher than in those without the deficiency. Cross-sectional studies have shown increased levels of biomarkers of extracellular matrix degradation in vivo. Longitudinal variability of these biomarkers is unknown but desirable for clinical studies with proteinase inhibitors. Methods We measured three different types of biomarkers, including desmosines, elastase-formed fibrinogen fragments and heparan sulfate epitope JM403, in plasma and urine for a period of 7 weeks in a group of 12 patients who participated in a placebo-controlled study to assess the safety of a single inhalation of hyaluronic acid. Results Effect of study medication on any of the biomarkers was not seen. Baseline desmosines in plasma and urine correlated with baseline CO diffusion capacity (R = 0.81, p = 0.01 and R = 0.65, p = 0.05. Mean coefficient of variation within patients (CVi for plasma and urine desmosines was 18.7 to 13.5%, respectively. Change in urinary desmosine levels correlated significantly with change in plasma desmosine levels (R = 0.84, p Conclusion We found acceptable variability in our study parameters, indicating the feasibility of their use in an evaluation of biochemical efficacy of alpha-1-antitrypsin augmentation therapy in Pi Z subjects.

  10. Relationship between Candida albicans producing proteinase (CAPP) and its environmental pH--comparison with a case of trichophyton mentagrophytes.

    Ko, I. J.; Kim, C. W.; Houh, W.; Tsuboi, R; Matsuda, K; Ogawa, H.

    1987-01-01

    Candida albicans produced a karatinolytic proteinase (KPase) or C. albicans producing proteinase (CAPP), a proposed new term for this enzyme, and Trichophyton mentagrophytes also produced KPase when cultivated in liquid medium containing human stratum corneum (HSC) as the nitrogen source, but were unable to do so when cultivated in sabouraud dextrose broth. Purified KPase from the culture supernatants of C. albicans had a molecular weight of 42,000 and an optimum pH at 4.0. The KPase was foun...

  11. Effect of insulin on the mRNA expression of procollagen N-proteinases in chondrosarcoma OUMS-27 cells

    Akyol, Sumeyya; Cömertoğlu, İsmail; FIRAT, RIDVAN; Çakmak, Özlem; YUKSELTEN, YUNUS; ERDEN, GÖNÜL; Ugurcu, Veli; Demircan,Kadir

    2015-01-01

    Chondrosarcoma is one of the most common bone tumors, and at present, there is no non-invasive treatment option for this cancer. The chondrosarcoma OUMS-27 cell line produces proteoglycan and type II, IX, and XI collagens, which constitutes cartilage tissue. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) proteases are a group of secreted proteases, which include the procollagen N-proteinases ADAMTS-2, -3 and -14. These procollagen N-proteinases perform a role in the p...

  12. Identification of stable plant cystatin/nematode proteinase complexes using mildly denaturing gelatin/polyacrylamide gel electrophoresis.

    Michaud, D; Cantin, L; Bonadé-Bottino, M; Jouanin, L; Vrain, T C

    1996-08-01

    The biochemical interactions between two cystatins from rice seeds, oryzacystatin I (OCI) and oryzacystatin II (OCII), and the cysteine proteinases from three plant parasitic nematodes, Meloidogyne hapla, M. incognita and M. javanica, were assessed using standard protease assays and mildly denaturing gelatin/polyacrylamide gel electrophoresis (gelatin/PAGE). Activity detected in extracts of preparasitic second-stage larvae (J2) from M. hapla was optimal at pH 5.5 and was inhibited in vitro by the cysteine proteinase inhibitors trans-epoxysuccinyl-L-leucylamido-(4-guanidino) butane, hen egg cystatin, OCI, and OCII. As demonstrated by class-specific activity staining, all the activity measured between pH 3.5 and pH 7.5 was accounted for by a major proteinase form, Mhp1, and two minor forms, Mhp2 and Mhp3. Mhps were also detected in extracts and excretions of parasitic J2 and adult females, indicating their continuous expression throughout development of M. hapla, and their possible involvement in the extracellular degradation of proteins. Interestingly, the two plant cysteine proteinase inhibitors OCI and OCII showed different degrees of affinity for the major proteinase form, Mhp1. Both inhibitors almost completely inactivated this proteinase in native conditions but, unlike OCII, OCI conserved a high affinity for Mhp1 during mildly denaturing gelatin/PAGE, showing the differential stabilities of the OCI/Mhp1 and OCII/Mhp1 complexes. In contrast to Mhp1, the major cysteine proteinases detected in the two closely related species M. incognita and M. javanica were strongly inhibited by OCII, while the inhibition of OCI was partly prevented during electrophoresis. This species-related efficiency of plant cystatins against nematode cysteine proteinases could have practical implications when planning their use to control nematodes of the genus Meloidogyne. PMID:8874065

  13. Conservation of a proteinase cleavage site between an insect retrovirus (gypsy) Env protein and a baculovirus envelope fusion protein

    The predicted Env protein of insect retroviruses (errantiviruses) is related to the envelope fusion protein of a major division of the Baculoviridae. The highest degree of homology is found in a region that contains a furin cleavage site in the baculovirus proteins and an adjacent sequence that has the properties of a fusion peptide. In this investigation, the homologous region in the Env protein of the gypsy retrovirus of Drosophila melanogaster (DmegypV) was investigated. Alteration of the predicted DmegypV Env proteinase cleavage site from RIAR to AIAR significantly reduced cleavage of Env in both Spodoptera frugiperda (Sf-9) and D. melanogaster (S2) cell lines. When the predicted DmegypV Env cleavage site RIAR was substituted for the cleavage sequence RRKR in the Lymantria dispar nucleopolyhedrovirus fusion protein (LD130) sequence, cleavage of the hybrid LD130 molecules still occurred, although at a reduced level. The conserved 21-amino acid sequence just downstream of the cleavage site, which is thought to be the fusion peptide in LD130, was also characterized. When this sequence from DmegypV Env was substituted for the homologous sequence in LD130, cleavage still occurred, but no fusion was observed in either cell type. In addition, although a DmegypV-Env-green fluorescent protein construct localized to cell membranes, no cell fusion was observed

  14. Chemistry in a microenvironment of low pH, generated with the aid of an immobilized proteinase.

    Silver, M S; Haskell, J H

    1990-05-31

    alpha-Chymotrypsin, when immobilized in a collodion membrane, exhibits high activity and remarkable stability. When the immobilized proteinase is exposed to 15 mM ethyl N-acetyl-L-tyrosinate in dilute pH 8.5 buffer it generates a microenvironment which, indicator studies suggest, has an effective pH of approximately 4. The presence of this locally highly acidic region produces a marked increase in the rate of hydrolysis of BzPheal = Ala dissolved in the buffer solution (BzPheal = Ala is the acylhydrazide obtained from the reaction between N-benzoyl-L-phenylalaninal and N-acetyl-L-alanine hydrazide). The observed rate is 10-times greater than in comparable control experiments incorporating a concentrated buffer solution, in which a pH-gradient does not form. The enhanced hydrolysis rate is quantitatively explained if it is attributed to the approximately 20 microliters of pH 4 solution within the membrane. Other experimental data are also consistent with this hypothesis. PMID:2354198

  15. Assessing the stability of cystatin/cysteine proteinase complexes using mildly-denaturing gelatin-polyacrylamide gel electrophoresis.

    Michaud, D; Cantin, L; Raworth, D A; Vrain, T C

    1996-01-01

    A method for assessing the stability of cystatin/cysteine proteinase complexes using mildly-denaturing gelatin-polyacrylamide gel electrophoresis (gelatin-PAGE) is described. As suggested by the use of well-known cystatins (human stefins A and B, and oryzacystatins I and II) and the plant cysteine proteinase papain, the ability of cystatin/cysteine proteinase complexes to remain stable during electrophoresis is associated with the degree of affinity between the enzyme and the inhibitor (and inversely associated with the Ki values), at least with the disulfide bond-lacking cystatins. Complexes with Ki values > or = 10(-8) M (weak interactions) are partly or completely dissociated under the conditions used, while those with lower Ki values (strong interactions) remain stable. As shown by the differential effects of two plant cystatins, oryzacystatins I and II, against a cysteine proteinase present in crude (complex) extracts from a plant pest -- the two-spotted spider mite (Tetranychus urticae Koch), the gelatin-PAGE procedure is suitable for studying the ability of cystatins to form highly stable complexes with cysteine proteinases, without the need for prior purification steps. Considering the well-recognized potential of proteinase inhibitors for pest and pathogen control, this analytical approach will be useful for rapidly assessing the respective potential of various cystatins for protection of plants, animals, and humans. PMID:8907521

  16. The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology.

    Bekhouche, Mourad; Colige, Alain

    2015-01-01

    Collagen fibers are the main components of most of the extracellular matrices where they provide a structural support to cells, tissues and organs. Fibril-forming procollagens are synthetized as individual chains that associate to form homo- or hetero-trimers. They are characterized by the presence of a central triple helical domain flanked by amino and carboxy propeptides. Although there are some exceptions, these two propeptides have to be proteolytically removed to allow the almost spontaneous assembly of the trimers into collagen fibrils and fibers. While the carboxy-propeptide is mainly cleaved by proteinases from the tolloid family, the amino-propeptide is usually processed by procollagen N-proteinases: ADAMTS2, 3 and 14. This review summarizes the current knowledge concerning this subfamily of ADAMTS enzymes and discusses their potential involvement in physiopathological processes that are not directly linked to fibrillar procollagen processing. PMID:25863161

  17. Enhanced Response of a Proteinase K-Based Conductometric Biosensor Using Nanoparticles

    Wided Nouira

    2014-07-01

    Full Text Available Proteinases are involved in a multitude of important physiological processes, such as protein metabolism. For this reason, a conductometric enzyme biosensor based on proteinase K was developed using two types of nanoparticles (gold and magnetic. The enzyme was directly adsorbed on negatively charged nanoparticles and then deposited and cross-linked on a planar interdigitated electrode (IDE. The biosensor was characterized with bovine serum albumin (BSA as a standard protein. Higher sensitivity was obtained using gold nanoparticles. The linear range for BSA determination was then from 0.5 to 10 mg/L with a maximum response of 154 µs. These results are greater than that found without any nanoparticles (maximum response of 10 µs. The limit of detection (LOD was 0.3 mg/L. An inter-sensor reproducibility of 3.5% was obtained.

  18. In situ localization of proteinase inhibitor mRNA in rice plant challenged by brown planthopper

    2003-01-01

    Proteinase inhibitor (PI) mRNA was localized by in situ hybridization in tissue sections of root, stem and leaf of the resistant rice (B5) plant fed by brown planthopper nymphs. In the rice material without BPH feeding, PI gene was expressed in the root, stem and leaf, while the abundance of PI mRNA was low. In the rice material fed by BPH, PI gene was expressed substantially in the parenchyma of rice stem and leaf, but weakly in the root. The results indicated that the PI gene was up-regulated in the rice plant challenged by brown planthopper. For the first time, we reported the expression changes of proteinase inhibitor gene in plant which was infested by a piercing/sucking insect.

  19. In vitro evaluation of proteinase, phospholipase and haemolysin activities of Candida species isolated from clinical specimens

    Sachin C.D; Ruchi K; Santosh S.

    2012-01-01

    Background: Virulence attributes of Candida species include adherence to host tissues, morphological changes and secretion of extracellular hydrolytic enzymes. These enzymes play pivotal roles in pathogenicity of candida infection. Aim: The present study aimed to determine phospholipase, proteinase and haemolysin activities in Candida species isolated from various clinical samples. Material and Method: A total of 110 Candida species isolated from various clinical specimens were identified up ...

  20. The nematicidal effect of cysteine proteinases on the root knot nematode Meloidogne incognita

    Gorny, Samuel Victor

    2013-01-01

    Despite current control measures, plant parasitic nematodes are estimated to be responsible for > $100 billion of damage to worldwide crop production per annum. Current nematicides are highly toxic, and due to health and environmental safety concerns, many are being withdrawn from the market under directive 914/414/EEC. Alternative control strategies are urgently required. The cysteine proteinases papain, actinidain and recombinant endoproteinase B isoform 2 (R.EP-B2) have been demonstrate...

  1. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene

    Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi

    2012-01-01

    Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes...

  2. Proteinase 3 contributes to transendothelial migration of NB1-positive neutrophils

    Kuckleburg, Christopher J.; Tilkens, Sarah M.; Santoso, Sentot; Newman, Peter J.

    2012-01-01

    Neutrophil transmigration requires the localization of neutrophils to endothelial cell junctions, where receptor-ligand interactions and the action of serine proteases promote leukocyte diapedesis. NB1 (CD177) is a neutrophil-expressed surface molecule that has been reported to bind proteinase 3 (PR3), a serine protease released from activated neutrophils. PR3 has demonstrated proteolytic activity on a number of substrates, including extracellular matrix proteins, although its role in neutrop...

  3. Cloning and expression of an active aspartic proteinase from Mucor circinelloides in Pichia pastoris

    Gama Salgado, Jose Antonio; Kangwa, Martin; Fernandez-Lahore, Marcelo

    2013-01-01

    Background Extracellular aspartic proteinase (MCAP) produced by Mucor circinelloides in solid state fermentations has been shown to possess milk clotting activity and represents a potential replacement for bovine chymosin in cheese manufacturing. Despite its prospects in the dairy industry, the molecular characteristics of this enzyme remain unknown. This work focuses on MCAP cloning and optimization of heterologous expression in Pichia pastoris, and characterization of the enzyme. Results Th...

  4. Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture

    Talhouk, Rabih S.; CHIN, JENNIE R.; UNEMORI, ELAINE N.; Werb, Zena; Bissell, Mina J.

    1991-01-01

    The extracellular matrix (ECM) is an important regulator of mammary epithelial cell function both in vivo and in culture. Substantial remodeling of ECM accompanies the structural changes in the mammary gland during gestation, lactation and involution. However, little is known about the nature of the enzymes and the processes involved. We have characterized and studied the regulation of cell-associated and secreted mammary gland proteinases active at neutral pH that may be involved in degradat...

  5. High-affinity binding of two molecules of cysteine proteinases to low-molecular-weight kininogen.

    Turk, B.; Stoka, V.; Björk, I.; Boudier, C.; Johansson, G.; Dolenc, I.; Colic, A.; Bieth, J. G.; Turk, V.

    1995-01-01

    Human low-molecular-weight kininogen (LK) was shown by fluorescence titration to bind two molecules of cathepsins L and S and papain with high affinity. By contrast, binding of a second molecule of cathepsin H was much weaker. The 2:1 binding stoichiometry was confirmed by titration monitored by loss of enzyme activity and by sedimentation velocity experiments. The kinetics of binding of cathepsins L and S and papain showed the two proteinase binding sites to have association rate constants k...

  6. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways

    Lund, Leif R.; Rømer, John; Thomasset, Nicole; Solberg, Helene; Pyke, Charles; Bissell, Mina J.; Danø, Keld; Werb, Zena

    1996-01-01

    Postlactational involution of the mammary gland is characterized by two distinct physiological events: apoptosis of the secretory, epithelial cells undergoing programmed cell death, and proteolytic degradation of the mammary gland basement membrane. We examined the spatial and temporal patterns of apoptotic cells in relation to those of proteinases during involution of the BALB/c mouse mammary gland. Apoptosis was almost absent during lactation but became evident at day 2 of involution, when ...

  7. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2

    Kong, Wuyi; McConalogue, Karen; Khitin, Lev M.; Hollenberg, Morley D; Payan, Donald G.; Böhm, Stephan K.; Nigel W. Bunnett

    1997-01-01

    Proteinase-activated receptor 2 (PAR-2) is a recently characterized G-protein coupled receptor that is cleaved and activated by pancreatic trypsin. Trypsin is usually considered a digestive enzyme in the intestinal lumen. We examined the hypothesis that trypsin, at concentrations normally present in the lumen of the small intestine, is also a signaling molecule that specifically regulates enterocytes by activating PAR-2. PAR-2 mRNA was highly expressed in the mucosa of the small intestine and...

  8. Comparison of self-processing of foot-and-mouth disease virus leader proteinase and porcine reproductive and respiratory syndrome virus leader proteinase nsp1α

    The foot-and-mouth disease virus leader proteinase (Lbpro) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lbpro L200F provide structural evidence for intramolecular self-processing. 15N-HSQC measurements of Lbpro L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLbpro, lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lbpro, stably binds its own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lbpro and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lbpro. - Highlights: • We examine self-processing of the leader protease of foot-and-mouth disease virus. • NMR analysis strongly supports intramolecular self-processing. • Self-processing is a dynamic process with no stable complex. • Structural comparison with nsp1α of PRRSV which forms stable intramolecular complex. • Subdomain orientation explains differences in stability of intramolecular complexes

  9. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells

    Di Sun

    2016-03-01

    Full Text Available The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3Cpros of picornaviruses share similar spatial structures and it is becoming apparent that 3Cpro plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3Cpro are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3Cpro can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3Cpro and these essential factors, 3Cpro is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3Cpro are ongoing and a better understanding of the roles played by 3Cpro may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3Cpro is summarized.

  10. The anthelmintic efficacy of natural plant cysteine proteinases against the rat tapeworm Hymenolepis diminuta in vivo.

    Mansur, F; Luoga, W; Buttle, D J; Duce, I R; Lowe, A; Behnke, J M

    2016-05-01

    Hymenolepis diminuta is a natural parasite of the common brown rat Rattus norvegicus, and provides a convenient model system for the assessment of the anthelmintic activity of novel drugs against cestodes. The experiments described in this paper indicate that treatment of rats infected with H. diminuta with a supernatant extract of papaya latex, containing a mixture of four cysteine proteinases, was moderately efficacious, resulting in a significant, but relatively small, reduction in worm burden and biomass. However, faecal egg output was not affected by treatment. In our experiments these effects were only partially dose-dependent, although specific inhibition by E-64 confirmed the role of cysteine proteinases as the active principles in papaya latex affecting worm growth but not statistically reducing worm burden. Data collected for a further 7 days after treatment indicated that the effects of papaya latex supernatant on worm loss and on worm growth were not enhanced. Our findings provide a starting point for further refinement in formulation and delivery, or assessment of alternative natural plant-derived cysteine proteinases in efforts to develop these naturally occurring enzymes into broad-spectrum anthelmintics, with efficacy against cestodes as well as nematodes. PMID:25761568

  11. Roles of the Picornaviral 3C Proteinase in the Viral Life Cycle and Host Cells.

    Sun, Di; Chen, Shun; Cheng, Anchun; Wang, Mingshu

    2016-01-01

    The Picornaviridae family comprises a large group of non-enveloped viruses that have a major impact on human and veterinary health. The viral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteinases. The crucial 3C proteinases (3C(pro)s) of picornaviruses share similar spatial structures and it is becoming apparent that 3C(pro) plays a significant role in the viral life cycle and virus host interaction. Importantly, the proteinase and RNA-binding activity of 3C(pro) are involved in viral polyprotein processing and the initiation of viral RNA synthesis. In addition, 3C(pro) can induce the cleavage of certain cellular factors required for transcription, translation and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Due to interactions between 3C(pro) and these essential factors, 3C(pro) is also involved in viral pathogenesis to support efficient infection. Furthermore, based on the structural conservation, the development of irreversible inhibitors and discovery of non-covalent inhibitors for 3C(pro) are ongoing and a better understanding of the roles played by 3C(pro) may provide insights into the development of potential antiviral treatments. In this review, the current knowledge regarding the structural features, multiple functions in the viral life cycle, pathogen host interaction, and development of antiviral compounds for 3C(pro) is summarized. PMID:26999188

  12. Implantation Serine Proteinases heterodimerize and are critical in hatching and implantation

    Meng Guoliang

    2006-12-01

    Full Text Available Abstract Background We have recently reported the expression of murine Implantation Serine Proteinase genes in pre-implantation embryos (ISP1 and uterus (ISP1 and ISP2. These proteinases belong to the S1 proteinase family and are similar to mast cell tryptases, which function as multimers. Results Here, we report the purification and initial characterization of ISP1 and 2 with respect to their physico-chemical properties and physiological function. In addition to being co-expressed in uterus, we show that ISP1 and ISP2 are also co-expressed in the pre-implantation embryo. Together, they form a heterodimer with an approximate molecular weight of 63 kD. This complex is the active form of the enzyme, which we have further characterized as being trypsin-like, based on substrate and inhibitor specificities. In addition to having a role in embryo hatching and outgrowth, we demonstrate that ISP enzyme is localized to the site of embryo invasion during implantation and that its activity is important for successful implantation in vivo. Conclusion On the basis of similarities in structural, chemical, and functional properties, we suggest that this ISP enzyme complex represents the classical hatching enzyme, strypsin. Our results demonstrate a critical role for ISP in embryo hatching and implantation.

  13. Aggregation properties of whey protein hydrolysates generated with Bacillus licheniformis proteinase activities.

    Spellman, David; Kenny, Patricia; O'Cuinn, Gerard; FitzGerald, Richard J

    2005-02-23

    Hydrolysis of whey protein concentrate (WPC) with Alcalase 2.4 L, a Bacillus licheniformis proteinase preparation, induces gelation. The aggregation behavior of WPC hydrolysates generated with Alcalase and Prolyve 1000, a Bacillus licheniformis proteinase that did not induce gelation, were studied by turbidity and particle size analysis. With the use of synthetic peptide substrates, it was shown that Alcalase contains a glutamyl endopeptidase (GE) activity not present in Prolyve. Comparison of the aggregation behavior of WPC hydrolysates generated with Alcalase, Prolyve, and combinations of Prolyve with a GE activity isolated from Alcalase showed that GE was responsible for the observed enzyme-induced peptide aggregation in Alcalase hydrolysates. Hydrolysates generated with Prolyve, having a degree of hydrolysis (DH) of 11.8% and 10.4% of peptide material greater than 10 kDa, could be induced to aggregate by the addition of GE. These results emphasize the contribution of enzyme specificity to the physicochemical and functional characteristics of proteinase hydrolysates of WPC. PMID:15713050

  14. Three low molecular weight cysteine proteinase inhibitors of human seminal fluid: purification and enzyme kinetic properties.

    Yadav, Vikash Kumar; Chhikara, Nirmal; Gill, Kamaldeep; Dey, Sharmistha; Singh, Sarman; Yadav, Savita

    2013-08-01

    The cystatins form a superfamily of structurally related proteins with highly conserved structural folds. They are all potent, reversible, competitive inhibitors of cysteine proteinases (CPs). Proteins from this group present differences in proteinase inhibition despite their high level of structural similarities. In this study, three cysteine proteinase inhibitors (CPIs) of low molecular weight were isolated from human seminal fluid (HSF) by affinity chromatography on carboxymethyl (CM)-papain-Sepharose column, purified using various chromatographic procedures and checked for purity on sodium-dodecyl PAGE (SDS-PAGE). Matrix-assisted laser desorption-ionization-time-of flight-mass spectrometry (MALDI-TOF-MS) identified these proteins as cystatin 9, cystatin SN, and SAP-1 (an N-terminal truncated form of cystatin S). All three CPIs suppressed the activity of papain potentially and showed remarkable heat stability. Interestingly SAP-1 also inhibits the activity of trypsin, chymotrypsin, pepsin, and PSA (prostate specific antigen) and acts as a cross-class protease inhibitor in in vitro studies. Using Surface Plasmon Resonance, we have also observed that SAP-1 shows a significant binding with all these proteases. These studies suggest that SAP-1 is a cross-class inhibitor that may regulate activity of various classes of proteases within the reproductive systems. To our knowledge, this is the first report about purification of CPIs from HSF; the identification of such proteins could provide better insights into the physiological processes and offer intimation for further research. PMID:23619703

  15. In vitro anthelmintic effects of cysteine proteinases from plants against intestinal helminths of rodents.

    Stepek, Gillian; Lowe, Ann E; Buttle, David J; Duce, Ian R; Behnke, Jerzy M

    2007-12-01

    Infections with gastrointestinal (GI) nematodes are amongst the most prevalent worldwide, especially in tropical climates. Control of these infections is primarily through treatment with anthelmintic drugs, but the rapid development of resistance to all the currently available classes of anthelmintic means that alternative treatments are urgently required. Cysteine proteinases from plants such as papaya, pineapple and fig are known to be substantially effective against three rodent GI nematodes, Heligmosomoides polygyrus, Trichuris muris and Protospirura muricola, both in vitro and in vivo. Here, based on in vitro motility assays and scanning electron microscopy, we extend these earlier reports, demonstrating the potency of this anthelmintic effect of plant cysteine proteinases against two GI helminths from different taxonomic groups - the canine hookworm, Ancylostoma ceylanicum, and the rodent cestode, Rodentolepis microstoma. In the case of hookworms, a mechanism of action targeting the surface layers of the cuticle indistinguishable from that reported earlier appears to be involved, and in the case of cestodes, the surface of the tegumental layers was also the principal location of damage. Hence, plant cysteine proteinases have a broad spectrum of activity against intestinal helminths (both nematodes and cestodes), a quality that reinforces their suitability for development as a much-needed novel treatment against GI helminths of humans and livestock. PMID:18005461

  16. Assessment of cathepsin D and L-like proteinases of poultry red mite, Dermanyssus gallinae (De Geer), as potential vaccine antigens.

    Bartley, Kathryn; Huntley, John F; Wright, Harry W; Nath, Mintu; Nisbet, Alasdair J

    2012-05-01

    Vaccination is a feasible strategy for controlling the haematophagous poultry red mite Dermanyssus gallinae. A cDNA library enriched for genes upregulated after feeding was created to identify potential vaccine antigens. From this library, a gene (Dg-CatD-1) encoding a 383 amino acid protein (Dg-CatD-1) with homology to cathepsin D lysosomal aspartyl proteinases was identified as a potential vaccine candidate. A second gene (Dg-CatL-1) encoding a 341 amino acid protein (Dg-CatL-1) with homology to cathepsin L cysteine proteinases was also selected for further study. IgY obtained from naturally infested hens failed to detect Dg-CatD-1 suggesting that it is a concealed antigen. Conversely, Dg-CatL-1 was detected by IgY derived from natural-infestation, indicating that infested hens are exposed to Dg-CatL-1. Mortality rates 120 h after mites had been fed anti-Dg-CatD-1 were significantly higher than those fed control IgY (PF<0·01). In a survival analysis, fitting a proportional hazards model to the time of death of mites, anti-Dg-CatD-1 and anti-Dg-CatL-1 IgY had 4·42 and 2·13 times higher risks of dying compared with controls (PF<0·05). Dg-CatD-1 and L-1 both have potential as vaccine antigens as part of a multi-component vaccine and have the potential to be improved as vaccine antigens using alternative expression systems. PMID:22310226

  17. Comparison of self-processing of foot-and-mouth disease virus leader proteinase and porcine reproductive and respiratory syndrome virus leader proteinase nsp1α

    Steinberger, Jutta [Max F. Perutz Laboratories, Medical University of Vienna, Department of Medical Biochemistry, Dr. Bohr-Gasse 9/3, A-1030 Vienna (Austria); Kontaxis, Georg [Max F. Perutz Laboratories, University of Vienna, Department of Structural and Computational Biology, Campus Vienna Biocenter 5, A-1030 Vienna (Austria); Rancan, Chiara [Helmholtz Zentrum München, Department of Gene Vectors, Haematologikum, Marchioninistrasse 25, D-81377 Munich (Germany); Skern, Tim, E-mail: timothy.skern@meduniwien.ac.at [Max F. Perutz Laboratories, Medical University of Vienna, Department of Medical Biochemistry, Dr. Bohr-Gasse 9/3, A-1030 Vienna (Austria)

    2013-09-01

    The foot-and-mouth disease virus leader proteinase (Lb{sup pro}) cleaves itself off the nascent viral polyprotein. NMR studies on the monomeric variant Lb{sup pro} L200F provide structural evidence for intramolecular self-processing. {sup 15}N-HSQC measurements of Lb{sup pro} L200F showed specifically shifted backbone signals in the active and substrate binding sites compared to the monomeric variant sLb{sup pro}, lacking six C-terminal residues. This indicates transient intramolecular interactions between the C-terminal extension (CTE) of one molecule and its own active site. Contrastingly, the porcine reproductive and respiratory syndrome virus (PRRSV) leader proteinase nsp1α, with a papain-like fold like Lb{sup pro}, stably binds its own CTE. Parts of the β-sheet domains but none of the α-helical domains of Lb{sup pro} and nsp1α superimpose; consequently, the α-helical domain of nsp1α is oriented differently relative to its β-sheet domain. This provides a large interaction surface for the CTE with the globular domain, stabilising the intramolecular complex. Consequently, self-processing inactivates nsp1α but not Lb{sup pro}. - Highlights: • We examine self-processing of the leader protease of foot-and-mouth disease virus. • NMR analysis strongly supports intramolecular self-processing. • Self-processing is a dynamic process with no stable complex. • Structural comparison with nsp1α of PRRSV which forms stable intramolecular complex. • Subdomain orientation explains differences in stability of intramolecular complexes.

  18. Inhibition of tryptase and chymase induced nucleated cell infiltration by proteinase inhibitors

    Shao-heng HE; Han-qiu CHEN; Jian ZHENG

    2004-01-01

    AIM: To investigate the ability of proteinase inhibitors to modulate nucleated cell infiltration into the peritoneum of mice induced by tryptase and chymase. METHODS: Human lung tryptase and skin chymase were purified by a similar procedure involving high salt extraction, heparin agarose affinity chromatography followed by S-200 Sephacryl gel filtration chromatography. The actions of proteinase inhibitors on tryptase and chymase induced nucleated cell accumulation were examined with a mouse peritoneum model. RESULTS: A selective chymase inhibitor Z-Ile-GluPro-Phe-CO2Me (ZIGPPF) was able to inhibit approximately 90% neutrophil, 73% eosinophil, 87% lymphocyte and 60% macrophage accumulation induced by chymase at 16 h following injection. Soy bean trypsin inhibitor (SBTI), chymostatin, and α1-antitrypsin showed slightly less potency than ZIGPPF in inhibition of the actions of chymase. While all tryptase inhibitors tested were able to inhibit neutrophil, eosinophil, and macrophage accumulation provoked by tryptase at 16 h following injection, only leupeptin, APC366, and aprotinin were capable of inhibiting tryptase induced lymphocyte accumulation. The inhibitiors of tryptase tested were also able to inhibit tryptase induced neutrophil and eosinophil accumulation at 6 h following injection. When being injected alone, all inhibitors of chymase and tryptase at the concentrations tested by themselves had no significant effect on the accumulation of nucleated cells in the peritoneum of mice at both 6 h and 16 h. CONCLUSION: Proteinase inhibitors significantly inhibited tryptase and chymase-induced nucleated cell accumulation in vivo, and therefore they are likely to be developed as a novel class of anti-inflammatory drugs.

  19. Protective role of purified cysteine proteinases against Fasciola gigantica infection in experimental animals.

    El-Ahwany, Eman; Rabia, Ibrahim; Nagy, Faten; Zoheiry, Mona; Diab, Tarek; Zada, Suher

    2012-03-01

    Fascioliasis is one of the public health problems in the world. Cysteine proteinases (CP) released by Fasciola gigantica play a key role in parasite feeding, migration through host tissues, and in immune evasion. There has been some evidence from several parasite systems that proteinases might have potential as protective antigens against parasitic infections. Cysteine proteinases were purified and tested in vaccine trials of sheep infected with the liver fluke. Multiple doses (2 mg of CP in Freund's adjuvant followed by 3 booster doses 1 mg each at 4 week intervals) were injected intramuscularly into sheep 1 week prior to infect orally with 300 F. gigantica metacercariae. All the sheep were humanely slaughtered 12 weeks after the first immunization. Changes in the worm burden, ova count, and humoral and cellular responses were evaluated. Significant reduction was observed in the worm burden (56.9%), bile egg count (70.7%), and fecel egg count (75.2%). Immunization with CP was also found to be associated with increases of total IgG, IgG(1), and IgG(2) (P<0.05). Data showed that the serum cytokine levels of pro-inflammatory cytokines, IL-12, IFN-γ, and TNF-α, revealed significant decreases (P<0.05). However, the anti-inflammatory cytokine levels, IL-10, TGF-β, and IL-6, showed significant increases (P<0.05). In conclusion, it has been found that CP released by F. gigantica are highly important candidates for a vaccine antigen because of their role in the fluke biology and host-parasite relationships. PMID:22451733

  20. Studies on the action of proteinase inhibitors in rats. 3

    Male Wistar rats (initial body weight 90 g) were fed ad libitum a whole-egg diet containing 10.5% crude protein. The animals of the experimental group received in each case 1 mg leupeptin per 100 g of body weight in 12 hrs intervals by i.p. injection (3 days of treatment). Control animals got a leupeptin-free solution. In addition, lysine dihydrochloride-α-15N was applied during the first three days of experiment to all animals and the nitrogen balance was determined. Urine from the N balance collection was analysed for 3-methyl-histidine excretion in order to calculate the degradation rate of myofibrillar proteins. On the fourth day the fractional rate of protein synthesis in several organs was estimated using the continuous infusion technique with 14C-leucine and 14C-lysine. The apparent biological half-lives of tissue protein were determined by a triple labelling technique, with (14C)-guanidino-L-arginine, L-5-3H-arginine and 15N-lysine. The short-term treatment (3 days) with leupeptin did not affect the weight gain, the apparent digestibility of nitrogen and the N balance. The fractional rate of protein synthesis was highest in the small intestine followed by the large intestine, liver and skeletal muscle and no influence of leupeptin treatment was observed. Furthermore no differences in the degradation rates of myofibrillar proteins between treated and untreated animals were found. The 3-methyl-histidine excretion via urine was 1.44 mgkg-1day-1 in both groups corresponding to a fractional rate of degradation of myofibrillar proteins of 2.5% per day. Half-lives of tissue proteins in intestine and liver were shortest when estimated from the decay curves for the 14C label and longest from the curves for the 15N label. Leupeptin treatment resulted in prolonged half-lives of the proteins in the large intestine and of the liver proteins with slow turnover. However, this effect seems to be caused rather by an increased reutilization of labelled amino acids than by a

  1. Exposure of hydrophobic moieties promotes the selective degradation of hydrogen peroxide-modified hemoglobin by the multicatalytic proteinase complex, proteasome.

    Giulivi, C; Pacifici, R E; Davies, K J

    1994-06-01

    The physiologically relevant stress of a flux of H2O2 increased hemoglobin (Hb) degradation in red blood cells (RBC) and increased the proteolytic susceptibility of Hb in vitro. After exposure to low H2O2 flux rates (6-32 microM/min) Hb exhibited increased exposure of hydrophobic (Trp, Met) and basic (Lys) amino acid R groups, increased hydrophobicity, and increased proteolytic susceptibility during subsequent incubation with RBC extracts, a partially purified preparation called Fraction II (which retains all of the proteolytic activities of RBC extracts), or the purified 670-kDa RBC multicatalytic proteinase complex proteasome. Hydrophobicity was measured by butyl-Sepharose hydrophobic interaction chromatography, by the free energy of transfer from water to ethanol, and by heat denaturation assays. Proteolytic susceptibility was measured by release of free alanine, by fluorescamine-reactive free amino groups, and by release of acid-soluble radioactivity from radiolabeled Hb. Low H2O2 flux rates also caused significant charge changes in Hb (isoelectric focusing gels) and extensive noncovalent aggregation (presumably due to increased hydrophobic interactions) but only limited covalent cross-linking (comparison of sodium dodecyl sulfate-polyacylamide gel electrophoresis (SDS-PAGE) and nondenaturing PAGE). Exposure to higher H2O2 flux rates (56-120 microM/min) caused progressive oxidative destruction of exposed hydrophobic amino acids, decreased hydrophobicity as judged by butyl-Sepharose chromatography and heat denaturation assays, increased hydrophilicity as judged by measurements of the free energy of transfer (delta G') from water to ethanol, and decreased proteolytic susceptibility during incubation with RBC extracts, Fraction II, or purified proteasome. High H2O2 flux rates also caused further charge changes and the extensive formation of covalently cross-linked Hb molecules. Linear regression analyses revealed correlations of 0.8-0.99 for the relationship

  2. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways

    Lund, Leif R; Romer, John; Thomasset, Nicole; Solberg, Helene; Pyke, Charles; Bissell, Mina J; Dano, Keld; Werb, Zena

    1996-01-01

    Postlactational involution of the mammary gland is characterized by two distinct physiological events: apoptosis of the secretory, epithelial cells undergoing programmed cell death, and proteolytic degradation of the mammary gland basement membrane. We examined the spatial and temporal patterns of apoptotic cells in relation to those of proteinases during involution of the BALB/c mouse mammary gland. Apoptosis was almost absent during lactation but became evident at day 2 of involution, when {beta}-casein gene expression was still high. Apoptotic cells were then seen at least up to day 8 of involution, when {beta}-casein gene expression was being extinguished. Expression of sulfated glycoprotein-2 (SGP-2), interleukin-1{beta} converting enzyme (ICE) and tissue inhibitor of metalloproteinases-1 was upregulated at day 2, when apoptotic cells were seen initially. Expression of the matrix metalloproteinases gelatinase A and stromelysin-1 and the serine proteinase urokinase-type plasminogen activator, which was low during lactation, was strongly upregulated in parallel starting at day 4 after weaning, coinciding with start of the collapse of the lobulo-alveolar structures and the intensive tissue remodeling in involution. The major sites of mRNA synthesis for these proteinases were fibroblast-like cells in the periductal stroma and stromal cells surrounding the collapsed alveoli, suggesting that the degradative phase of involution is due to a specialized mesenchymal-epithelial interaction. To elucidate the functional role of these proteinases during involution, at the onset of weaning we treated mice systemically with the glucocorticoid hydrocortisone, which is known to inhibit mammary gland involution. Although the initial wave of apoptotic cells appeared in the lumina of the gland, the dramatic regression and tissue remodeling usually evident by day 5 was substantially inhibited by systemic treatment with hydrocortisone. mRNA and protein for gelatinase A, stromelysin

  3. Purification and characterization of a collagenolytic serine proteinase from the skeletal muscle of red sea bream (Pagrus major).

    Wu, Guo-Ping; Chen, Su-Hua; Liu, Guang-Ming; Yoshida, Asami; Zhang, Ling-Jing; Su, Wen-Jin; Cao, Min-Jie

    2010-03-01

    A collagenolytic serine proteinase (CSP) was purified from red sea bream (Pagrus major) skeletal muscle to homogeneity by ammonium sulfate fractionation and chromatographies including DEAE-Sephacel, Phenyl Sepharose and Hydroxyapatite. The molecular mass of CSP was approximately 85 kDa as estimated by SDS-PAGE and gel filtration. Optimum temperature and pH of CSP were 40 degrees C and 8.0, respectively. CSP was specifically inhibited by serine proteinase inhibitors, while inhibitors to other type proteinases did not show much inhibitory effects. The K(m) and k(cat) values of CSP for Boc-Leu-Lys-Arg-MCA were 3.58 microM and 0.13 s(-1) at 37 degrees C, respectively. Furthermore, CSP hydrolyzed gelatin and native type I collagen effectively though its degradation on myosin heavy chain (MHC) was not significant, suggesting its involvement in the texture tenderization of fish muscle during the post-mortem stage. PMID:19945542

  4. Comparison of ACE inhibitory activity in skimmed goat and cow milk hydrolyzed by alcalase, flavourzyme, neutral protease and proteinase K

    Bao Chunju

    2016-06-01

    Full Text Available Angiotensin I converting enzyme (ACE inhibitory peptides derived from milk proteins have obvious effect of lowering blood pressure, safe and non-toxic side effects. This study compared four commercial proteases, namely alcalase, flavourzyme, neutral protease and proteinase K for their ACE inhibitory activity in skimmed goat and cow milk and identified the best one with higher ACE inhibitory activity. The degree of hydrolysis (DH of alcalase and proteinase K were much higher than flavourzyme, neutral protease for both skimmed goat and cow milk. Alcalase was the best enzyme to produce ACE inhibitory peptides from goat milk, with the ACE inhibitory activity 95.31%, while proteinase K was the optimal protease for hydrolyzing cow milk, with 81.28% ACE inhibitory activity. Furthermore, no correlation was obtained between the ACE inhibitory activity and DH for both goat and cow milk.

  5. Fibrinogen degradation by two neutral granulocyte proteinases. Influence of calcium on the generation of fibrinogen degradation products with anticlotting properties.

    Bingenhkeimer, C; Gramse, M; Egbring, R; Havemann, K

    1981-07-01

    Degradation of human fibrinogen by elastase-like proteinase, chymotrypsin-like proteinase and plasmin, was done in the presence and absence of calcium ions, respectively. The resulting fibrinogen degradation products were tested for their coagulant and anti-coagulant properties. The results show that 1. fibrinogenolysis is delayed in the presence of calcium ions. Higher enzyme concentrations are required to get unclottable split products when calcium ions are present. 2. The fibrinogen fragments obtained in the presence of calcium are different in their molecular weights and anticoagulant activities compared to those obtained in the absence of calcium ions. This effect of calcium is most striking during fibrinogen cleavage by chymotrypsin-like proteinase. Elastase and plasmin-induced fibrinogenolysis was substantially influenced by calcium only at a late degradation stage. PMID:6456216

  6. Cloning eleven midgut trypsin cDNAs and evaluating the interaction of proteinase inhibitors with Cry1Ac against the tobacco budworm Heliothis virescens (F.) (Lepidoptera: Noctuidae)

    Midgut trypsins are associated with Bt protoxin activation and toxin degradation. Proteinase inhibitors have potential insecticidal toxicity against a wide range of insect species. Proactive action to examine trypsin gene profiles and proteinase inhibitors for interaction with Bt toxin is necessary ...

  7. prtH2, not prtH, is the ubiquitous cell wall proteinase gene in Lactobacillus helveticus.

    Genay, M; Sadat, L; Gagnaire, V; Lortal, S

    2009-05-01

    Lactobacillus helveticus strains possess an efficient proteolytic system that releases peptides which are essential for lactobacillus growth in various fermented dairy products and also affect textural properties or biological activities. Cell envelope proteinases (CEPs) are bacterial enzymes that hydrolyze milk proteins. In the case of L. helveticus, two CEPs with low percentages of amino acid identity have been described, i.e., PrtH and PrtH2. However, the distribution of the genes that encode CEPs still remains unclear, rendering it difficult to further control the formation of particular peptides. This study evaluated the diversity of genes that encode CEPs in a collection of strains of L. helveticus isolated from various biotopes, both in terms of the presence or absence of these genes and in terms of nucleotide sequence, and studied their transcription in dairy matrices. After defining three sets of primers for both the prtH and prtH2 genes, we studied the distribution of the genes by using PCR and Southern blotting experiments. The prtH2 gene was ubiquitous in the 29 strains of L. helveticus studied, whereas only 18 of them also exhibited the prtH gene. Sequencing of a 350-bp internal fragment of these genes revealed the existence of intraspecific diversity. Finally, expression of these two CEP-encoding genes was followed during the growth in dairy matrices of two strains, ITG LH77 and CNRZ32, which possess one and two CEP-encoding genes, respectively. Both genes were shown to be expressed by L. helveticus at each stage of growth in milk and at different stages of mini-Swiss-type cheese making and ripening. PMID:19286786

  8. High-level expression of Proteinase K from Tritirachium album Limber in Pichia pastoris using multi-copy expression strains.

    Yang, Hu; Zhai, Chao; Yu, Xianhong; Li, Zhezhe; Tang, Wei; Liu, Yunyun; Ma, Xiaojian; Zhong, Xing; Li, Guolong; Wu, Di; Ma, Lixin

    2016-06-01

    Proteinase K is widely used in scientific research and industries. This report was aimed to achieve high-level expression of proteinase K using Pichia pastoris GS115 as the host strain. The coding sequence of a variant of proteinase K that has higher activity than the wild type protein was chosen and optimized based on the codon usage preference of P. pastoris. The novel open reading frame was synthesized and a series of multi-copy expression vectors were constructed based on the pHBM905BDM plasmid, allowing for the tandem integration of multiple copies of the target gene into the genome of P. pastoris with a single recombination. These strains were used to study the correlation between the gene copy number and the expression level of proteinase K. The results of quantitative polymerase chain reaction (qPCR) indicated that the tandem expression cassettes were integrated into the host genome stably. Meanwhile, the results of qPCR and enzyme activity assays indicated that the mRNA and protein expression levels of the target gene increased as the gene copy number increased. Moreover, the effect of gene dosage on the expression level of the recombinant protein was more obvious using high-density fermentation. The maximum expression level and enzyme activity of proteinase K, which were obtained from the recombinant yeast strain bearing 5 copies of the target gene after an 84-h induction, were approximately 8.069 mg/mL and 108,295 U/mL, respectively. The recombinant proteinase was purified and characterized. The optimum pH and temperature for the activity of this protease were approximately pH 11 and 55 °C, respectively. PMID:26892536

  9. Brewer's spent grain and corn steep liquor as alternative culture medium substrates for proteinase production by Streptomyces malaysiensis AMT-3

    Rodrigo Pires do Nascimento

    2011-12-01

    Full Text Available Brewer's spent grain and corn steep liquor or yeast extract were used as the sole organic forms for proteinase production by Streptomyces malaysiensis in submerged fermentation. The influence of the C and N concentrations, as well as the incubation periods, were assessed. Eight proteolytic bands were detected through gelatin-gel-electrophoresis in the various extracts obtained from the different media and after different incubation periods, with apparent molecular masses of 20, 35, 43, 50, 70, 100, 116 and 212 kDa. The results obtained suggest an opportunity for exploring this alternative strategy for proteinases production by actinomycetes, using BSG and CSL as economically feasible substrates.

  10. Isolation and characterization of βA3-crystallin associated proteinase from α-crystallin fraction of human lenses

    Srivastava, O.P.; Srivastava, K.; Chaves, J. M.

    2008-01-01

    Purpose The purpose was to characterize the properties of a proteinase activity associated with βA3-crystallin, which was isolated from the α-crystallin fraction of human lenses. Methods An inactive, Arg-bond hydrolyzing proteinase in the α-crystallin fraction, which was isolated from the water soluble (WS) protein fraction of 60- to 70-year-old human lenses, was activated by sodium deoxycholate treatment. The activated enzyme was purified by a three-step procedure that included a size-exclus...

  11. Age-dependent changes in extracellular proteins, aminopeptidase and proteinase activities in Frankia isolate BR.

    Müller, A; Benoist, P; Diem, H G; Schwencke, J

    1991-12-01

    To investigate protein secretion by the nitrogen-fixing actinomycete Frankia isolate BR, we designed a rapid DEAE adsorption, salt elution and Biogel P6DG desalination method to concentrate protein from the growth medium. Secreted proteins reached a maximum concentration (5.6 gm l-1) in the medium at growth arrest. Analysis by SDS-PAGE detected up to 63 extracellular polypeptides when Frankia cells were grown under stirred conditions in BAP medium supplemented with phosphatidylcholine and MES buffer and 65 proteins in stirred BAP media alone. The pattern of extracellular polypeptides changed during growth. Several extracellular proteolytic activities were detected and compared with intracellular ones. The substrate specificity of the extracellular and intracellular aminopeptidase activities were the same. Also, the electrophoretic migration patterns of secreted and intracellular aminopeptidases could not be distinguished. Secretion of the proline-specific aminopeptidase FAP proteinase (PF) were secreted: 10 had the same electrophoretic mobility as their intracellular counterparts after SDS-gelatine-PAGE while five (PF - 39.5, PF - 38.5, PF - 36.5, PF - 25.5 and PF - 20.5 kDa) had a different electrophoretic mobility and, therefore, appeared to be exclusively extracellular. At least seven extracellular proteinases appeared to increase coordinately in activity shortly before growth arrest. PMID:15101385

  12. Candida tropicalis Biofilms: Biomass, Metabolic Activity and Secreted Aspartyl Proteinase Production.

    Negri, Melyssa; Silva, Sónia; Capoci, Isis Regina Grenier; Azeredo, Joana; Henriques, Mariana

    2016-04-01

    According to epidemiological data, Candida tropicalis has been related to urinary tract infections and haematological malignancy. Several virulence factors seem to be responsible for C. tropicalis infections, for example: their ability to adhere and to form biofilms onto different indwelling medical devices; their capacity to adhere, invade and damage host human tissues due to enzymes production such as proteinases. The main aim of this work was to study the behaviour of C. tropicalis biofilms of different ages (24-120 h) formed in artificial urine (AU) and their ability to express aspartyl proteinase (SAPT) genes. The reference strain C. tropicalis ATCC 750 and two C. tropicalis isolates from urine were used. Biofilms were evaluated in terms of culturable cells by colony-forming units enumeration; total biofilm biomass was evaluated using the crystal violet staining method; metabolic activity was evaluated by XTT assay; and SAPT gene expression was determined by real-time PCR. All strains of C. tropicalis were able to form biofilms in AU, although with differences between strains. Candida tropicalis biofilms showed a decrease in terms of the number of culturable cells from 48 to 72 h. Generally, SAPT3 was highly expressed. C. tropicalis strains assayed were able to form biofilms in the presence of AU although in a strain- and time-dependent way, and SAPT genes are expressed during C. tropicalis biofilm formation. PMID:26572148

  13. Secretory leukocyte proteinase inhibitor is preferentially increased in patients with acute respiratory distress syndrome.

    Sallenave, J M; Donnelly, S C; Grant, I S; Robertson, C; Gauldie, J; Haslett, C

    1999-05-01

    Inappropriate release of proteases from inflammatory and stromal cells can lead to destruction of the lung parenchyma. Antiproteinases such as alpha-1-proteinase inhibitor (alpha1-Pi), secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (elafin) control excess production of human neutrophil elastase. In the present study, the concentrations of alpha1-Pi, SLPI and elafin found in bronchoalveolar lavage (BAL) fluid from control subjects, patients at risk of developing acute respiratory distress syndrome (ARDS) and patients with established ARDS were determined. Levels of all three inhibitors were raised in patients compared with normal subjects. SLPI was increased in the group of patients who were at risk of ARDS and went on to develop the condition, compared with the "at-risk" group who did not progress to ARDS (p=0.0083). Alpha1-Pi and elafin levels were similar in these two populations. In patients with established ARDS, both alpha1-Pi and SLPI levels were significantly increased, compared to patients at risk of ARDS who did (p=0.0089) or did not (p=0.0003) progress to ARDS. The finding of increased antiproteinases shortly before the development of acute respiratory distress syndrome provide further evidence for enhanced inflammation prior to clinical disease. PMID:10414400

  14. Secretory leukocyte proteinase inhibitor is a major leukocyte elastase inhibitor in human neutrophils.

    Sallenave, J M; Si Tahar, M; Cox, G; Chignard, M; Gauldie, J

    1997-06-01

    Secretory leukocyte proteinase inhibitor (SLPI) is the main neutrophil elastase (HLE) inhibitor found in the upper airways during pulmonary inflammation. It has been shown to be synthesized and secreted in vitro by epithelial cells and has been localized in tracheal glands and bronchiolar epithelial cells by immunocytochemistry. In this study, using immunodetection and immunopurification techniques with specific anti-SLPI immunoglobulin G (IgG), we show that SLPI is present as a native 14-kDa molecule in neutrophil cytosol. In addition, we demonstrate that SLPI is the major inhibitor of HLE present in neutrophil cytosol because pre-incubation with specific anti-SLPI IgG was able to inhibit completely the anti-HLE activity of the cytosol. SLPI can be secreted (probably in an inactive form) by neutrophils and its secretion is enhanced when the cells are stimulated with phorbol myristate acetate (PMA). Elafin, an elastase-specific inhibitor, is also present in minute amounts in neutrophil cytosol and its secretion can be up-regulated. The presence of SLPI in the cytosol of neutrophils may serve as a protective screen against proteinases spilling from azurophilic granules. An alternative or supplementary role may be the maintenance of a differentiated phenotype. PMID:9201260

  15. Identification and characterization of alpha-I-proteinase inhibitor from common carp sarcoplasmic proteins.

    Siriangkanakun, Siriphon; Li-Chan, Eunice C Y; Yongsawadigul, Jirawat

    2016-02-01

    Purification of proteinase inhibitor from common carp (Cyprinus carpio) sarcoplasmic proteins resulted in 2.8% yield with purification fold of 111. Two inhibitors, namely inhibitor I and II, exhibited molecular mass of 47 and 52 kDa, respectively, based on non-reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both inhibitors I and II were identified to be alpha-1-proteinase inhibitor (α1-PI) based on LC-MS/MS. They were glycoproteins and molecular mass after peptide-N-glycosidase F treatment was 38 and 45 kDa, respectively. The N-glycosylation sites of both inhibitors were determined to be at N214 and N226. The inhibitors specifically inhibited trypsin. The common carp α1-PI showed high thermal stability with denaturation temperatures of 65.43 and 73.31 °C, which were slightly less than those of ovomucoid. High stability toward NaCl was also evident up to 3M. The common carp α1-PI effectively reduced autolytic degradation of bigeye snapper surimi at the concentration as low as 0.025%. PMID:26304452

  16. Functional proteomic of Matrix Metallo-proteinases (MMP) dedicated to the detection of active forms of MMP in complex proteome

    The Matrix Metallo-proteinases (M.M.P.) represent a family of Zinc dependent extracellular proteinases able to cleave collectively all the proteins constituting the extracellular matrix. Currently, 23 human M.M.P. have been identified and are characterized by their sequence in amino-acids and their highly conserved 3 D structure. These enzymes are expressed constitutively during the tissue remodeling process. Their over-expression in various diseases tightly related to inflammatory processes (arthritis, emphysema, cancer) described M.M.P. as choice therapeutic targets. However, as the tissue remodeling implicates modification of cellular contacts, M.M.P. appear currently as proteins involved in signalling pathways. Recent works demonstrating that M.M.P. are able to cleave substrates, which are different than proteins constituting the extracellular matrix, reinforce this vision. In order to identify the individual role and the protein expression level of M.M.P. in pathological context, we developed a new technique of functional proteomics dedicated to the detection of active forms of M.M.P. in tumour samples. This technique relied on the development of a new photoaffinity probe, based on the structure of a potent phosphinic inhibitor of M.M.P., allowing targeting and isolating active forms of M.M.P. by photoaffinity labelling. Furthermore, as the new developed probe incorporated a radioactive element, photoaffinity labelling permitted to radiolabel the targeted proteins. This probe demonstrated in vitro its remarkable ability to covalently modify the h M.M.P.-12, with a singular cross-linking yield, determined at 42 %, displaying an extremely sensitive detection (2.5 fmoles of h M.M.P.-12). When added to complex proteome, the photoaffinity probe presents the same sensibility of detection for the h M.M.P.-12 (5 fmoles); importantly, in this case, h M.M.P.-12 represents only 0.001 % of the totality of the proteins present in the sample. Moreover, this technique allows

  17. The Contribution of Proteinase-Activated Receptors to Intracellular Signaling, Transcellular Transport and Autophagy in Alzheimer´s Disease

    Matěj, R.; Rohan, Z.; Holada, K.; Olejár, Tomáš

    2015-01-01

    Roč. 12, č. 1 (2015), s. 2-12. ISSN 1567-2050 Institutional support: RVO:67985823 Keywords : Alzheimer ´s Disease * autophagy * proteinase-activated receptors Subject RIV: EA - Cell Biology Impact factor: 3.889, year: 2014

  18. Divalent metals stabilize cellular prion proteins and alter the rate of proteinase-K dependent limited proteolysis

    Background: The key biochemical event in the pathogenesis of prion diseases is the conversion of normal cellular prion proteins (PrP**c) to the proteinase K (PK) resistant, abnormal form (PrP**sc); however, the cellular mechanisms underlying the conversion remain enigmatic. Binding of divalent ca...

  19. Molecular basis of Colorado potato beetle adaptation to potato plant defence at the level of digestive cysteine proteinases

    Gruden, K.; Kuipers, A.G.J.; Guncar, G.; Slapar, N.; Strukelj, B.; Jongsma, M.A.

    2004-01-01

    Potato synthesises high levels of proteinase inhibitors in response to insect attack. This can adversely affect protein digestion in the insects, leading to reduced growth, delayed development and lowered fecundity. Colorado potato beetle overcomes this defence mechanism by changing the composition

  20. Lipases and proteinases in milk : occurrence, heat inactivation, and their importance for the keeping quality of milk products

    Driessen, F.M.

    1983-01-01

    The occurrence and heat inactivation of native and bacterial lipases and proteinases in milk were studied.Production of these enzymes by Gram-negative psychrotrophic bacteria in milk was found to take place towards the end of exponential growth and in the stationary growth phase.Kinetics of heat ina

  1. Opposite Effects on Spodoptera littoralis Larvae of High Expression Level of a Trypsin Proteinase Inhibitor in Transgenic Plants1

    De Leo, Francesca; Bonadé-Bottino, Michel A.; Ceci, Luigi R.; Gallerani, Raffaele; Jouanin, Lise

    1998-01-01

    This work illustrates potential adverse effects linked with the expression of proteinase inhibitor (PI) in plants used as a strategy to enhance pest resistance. Tobacco (Nicotiana tabacum L. cv Xanthi) and Arabidopsis [Heynh.] ecotype Wassilewskija) transgenic plants expressing the mustard trypsin PI 2 (MTI-2) at different levels were obtained. First-instar larvae of the Egyptian cotton worm (Spodoptera littoralis Boisd.) were fed on detached leaves of these plants. The high level of MTI-2 expression in leaves had deleterious effects on larvae, causing mortality and decreasing mean larval weight, and was correlated with a decrease in the leaf surface eaten. However, larvae fed leaves from plants expressing MTI-2 at the low expression level did not show increased mortality, but a net gain in weight and a faster development compared with control larvae. The low MTI-2 expression level also resulted in increased leaf damage. These observations are correlated with the differential expression of digestive proteinases in the larval gut; overexpression of existing proteinases on low-MTI-2-expression level plants and induction of new proteinases on high-MTI-2-expression level plants. These results emphasize the critical need for the development of a PI-based defense strategy for plants obtaining the appropriate PI-expression level relative to the pest's sensitivity threshold to that PI. PMID:9808744

  2. Production of proteinase A by Saccharomyces cerevisiae in a cell-recycling fermentation system: Experiments and computer simulations

    Grøn, S.; Biedermann, K.; Emborg, Claus

    1996-01-01

    Overproduction of proteinase A by recombinant Saccharomyces cerevisiae was investigated by cultivations in a cell-recycling bioreactor. Membrane filtration was used to separate cells from the broth. Recycling ratios and dilution rates were varied and the effect on enzyme production was studied both...

  3. The epidermal growth factor precursor in the rat kidney seems to be processed by an aprotinin sensitive proteinase

    Nexø, Ebba; Poulsen, Steen Seier; Raaberg, Lasse

    1992-01-01

    Epidermal growth factor (EGF) is synthesized as a membrane bound precursor in the rat kidney. The precursor seems to be processed by an aprotinin sensitive proteinase. Intravenous infusion of aprotinin reduces the urinary excretion of EGF by 85% and increases the amount of renal EGF. Kidney...

  4. Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans, C. glabrata, Saccharomyces cerevisiae and Pichia pastoris

    Bader Oliver

    2008-07-01

    Full Text Available Abstract Background Kexin-like proteinases are a subfamily of the subtilisin-like serine proteinases with multiple regulatory functions in eukaryotes. In the yeast Saccharomyces cerevisiae the Kex2 protein is biochemically well investigated, however, with the exception of a few well known proteins such as the α-pheromone precursors, killer toxin precursors and aspartic proteinase propeptides, very few substrates are known. Fungal kex2 deletion mutants display pleiotropic phenotypes that are thought to result from the failure to proteolytically activate such substrates. Results In this study we have aimed at providing an improved assembly of Kex2 target proteins to explain the phenotypes observed in fungal kex2 deletion mutants by in vitro digestion of recombinant substrates from Candida albicans and C. glabrata. We identified CaEce1, CA0365, one member of the Pry protein family and CaOps4-homolog proteins as novel Kex2 substrates. Conclusion Statistical analysis of the cleavage sites revealed extended subsite recognition of negatively charged residues in the P1', P2' and P4' positions, which is also reflected in construction of the respective binding pockets in the ScKex2 enzyme. Additionally, we provide evidence for the existence of structural constrains in potential substrates prohibiting proteolysis. Furthermore, by using purified Kex2 proteinases from S. cerevisiae, P. pastoris, C. albicans and C. glabrata, we show that while the substrate specificity is generally conserved between organisms, the proteinases are still distinct from each other and are likely to have additional unique substrate recognition.

  5. Biospecific haemosorbents based on proteinase inhibitor. II. Efficiency of biospecific antiproteinase haemosorbent 'Ovosorb' in complex treatment of experimental generalized purulent peritonitis and acute destructive pancreatitis in dogs.

    Platé, N A; Kirkovsky, V V; Antiperovich, O F; Nicolaichik, V V; Valueva, T A; Sinilo, S B; Moin, V M; Lobacheva, G A

    1994-03-01

    The biospecific antiproteinase haemosorbent (BAH) 'Ovosorb' containing, in the bulk of polyacryamide gel, the ovomucoid from whites of duck eggs, was used for a complex treatment of the experimental generalized purulent peritonitis and acute destructive pancreatitis in dogs. The efficiency of BAH was manifested in the significant reduction of lethality of the experimental animals, a more rapid liquidation of proteinasaemia, normalization in plasma of alpha 1-proteinase inhibitor and protein metabolism. Thus, by eliminating proteinases from circulation, Ovosorb contributes to the cessation of imbalance in the proteinase-inhibitor system and is efficient in the therapy of pathological states related to this imbalance. PMID:8031989

  6. Transgenic tobacco plants harboring tomato proteinase inhibitor II gene and their insect resistance

    2002-01-01

    The plant expression vectors pBCT2 and pBT2 were constructed with the cDNA sequence (tin2) and genomic DNA sequence (tin2i) of tomato proteinase inhibitor II gene respectively. Then the two expression vectors were transferred into tobacco via the Agrobacterium tumefaciens strain LBA4404, and transgenic tobacco plants were generated. Molecular analysis and trypsin activity assay showed that both cDNA and genomic DNA were expressed properly in the transgenic plants. Insecticidal activities in these transgenic plants indicated that transgenic tobacco plants carrying tin2i sequence were more resistant to 2-instar larvae of Heliothis armigera Hubner than those carrying tin2 sequence. Therefore the intron of tin2i sequence might be a contributor to insecticidal activity of the transgenic tobacco.

  7. Carcass characteristics, the calpain proteinase system, and aged tenderness of Angus and Brahman crossbred steers.

    Pringle, T D; Williams, S E; Lamb, B S; Johnson, D D; West, R L

    1997-11-01

    We used 69 steers of varying percentage Brahman (B) breeding (0% B, n = 11; 25% B, n = 13; 37% B, n = 10; 50% B, n = 12; 75% B, n = 12; 100% B, n = 11) to study the relationship between carcass traits, the calpain proteinase system, and aged meat tenderness in intermediate B crosses. Calpains and calpastatin activities were determined on fresh longissimus muscle samples using anion-exchange chromatography. The USDA yield and quality grade data (24 h) were collected for each carcass. Longissimus steaks were removed and aged for 5 or 14 d for determination of shear force and 5 d for sensory panel evaluation. Even though some yield grade factors were affected by the percentage of B breeding, USDA yield grades did not differ (P > .15) between breed types. Marbling score and USDA quality grade decreased linearly (P Brahman crosses. PMID:9374310

  8. The effect of proteinases (keratinases) in the pathogenesis of Dermatophyte infection using scanning electron microscope

    Objective: To study the inter-relationship between the stratum corneum of host and the fungal micro-organisms using scanning electron microscopy for a complete understanding of the host parasite relationship. Material and Methods: Skin surface biopsies were obtained two patients suffering from tinea cruris infection. One patient was infected with trichophyton rubrum and the other with epidermophytom floccosum strains. Results: The scanning electron microphotographs obtained from two patients showed a large number of villi in the infected area. The fungal hyphae were seen to placed intercellularly as well seem to be traversing through the corneocytes in many places. Conclusion: From the results observed in this study it could be suggested that the secretion of proteinases from the fungal hyphae together with the mechanical force of the invading organisms in vivo might be playing part in the invasion of the organisms. (author)

  9. Expression of Candida Albicans Secreted Aspartyl Proteinase in Acute Vaginal Candidiasis

    LIN Nengxing; FENG Jing; TU Yating; FENG Aiping

    2007-01-01

    In order to analyze the in vivo expression of Candida albicans secreted aspartyl proteinases (SAP) in human vaginal infection, the vaginal secretion from 29 human subjects was collected by vaginal swab, and the expression of SAP1-SAP6 was detected by reverse-transcriptase polymerase chain reaction using specific primer sets. It was found that Sap2 and Sap5 were the most common genes expressed during infection; Sap3 and Sap4 were detected in all subjects and all 6 SAP genes were simultaneously expressed in some patients with vaginal candidiasis. It was suggested that the SAP family is expressed by Candida albicans during infection in human and that Candida albicans infection is associated with the differential expression of individual SAP genes which may be involved in the pathogenesis of vaginal candidiasis.

  10. Proteinase 3 carries small unusual carbohydrates and associates with αlpha-defensins

    Zoega, Morten; Ravnsborg, Tina; Højrup, Peter; Houen, Gunnar; Schou, Christian

    2012-01-01

    The neutrophil granulocyte is an important first line of defense against intruding pathogens and it contains a range of granules armed with antibacterial peptides and proteins. Proteinase 3 (PR3) is one among several serine proteases of the azurophilic granules in neutrophil granulocytes. Here, we...... characterize the glycosylation of PR3 and its association with antimicrobial human neutrophil peptides (HNPs, α-defensins) and the effect of these on the mechanism of inhibition of the major plasma inhibitor of PR3, α1-antitrypsin. The glycosylation of purified, mature PR3 showed some heterogeneity with...... carbohydrates at Asn 102 and 147 carrying unusual small moieties indicating heavy processing. Mass spectrometric analysis and immuno blotting revealed strong association of highly purified PR3 with α-defensins and oligomers hereof. Irreversible inhibition of PR3 by α1-antitrypsin did not affect its association...

  11. Specificity of the collagenolytic serine proteinase from the pancreas of the catfish (Parasilurus asotus).

    Yoshinaka, R; Sato, M; Yamashita, M; Itoko, M; Ikeda, S

    1987-01-01

    The collagenolytic serine proteinase from the pancreas of the catfish (Parasilus asotus) had a pH optimum of 7.5 for native, reconstituted calf skin collagen fibrils. The enzyme was most stable at pH 6-9. The enzyme hydrolyzed heat-denatured collagen (gelatin), casein, hemoglobin and elastin in addition to native collagen but not virtually Tos-Arg-OEe, Bz-Tyr-OEe and Suc-(Ala)3-NA. The enzyme cleaved Leu-Gly (or Gln-Gly), Gly-Ile and Ile-Ala bonds on DNP-Pro-Leu-Gly-Ile-Ala-Gly-Arg-NH2 and DNP-Pro-Gln-Gly-Ile-Ala-Gly-Gln-D-Arg. PMID:3480788

  12. Bacterial proteinases as targets for the development of second-generation antibiotics.

    Travis, J; Potempa, J

    2000-03-01

    The emergence of bacterial pathogen resistance to common antibiotics strongly supports the necessity to develop alternative mechanisms for combating drug-resistant forms of these infective organisms. Currently, few pharmaceutical companies have attempted to investigate the possibility of interrupting metabolic pathways other than those that are known to be involved in cell wall biosynthesis. In this review, we describe multiple, novel roles for bacterial proteinases during infection using, as a specific example, the enzymes from the organism Porphyromonas gingivalis, a periodontopathogen, which is known to be involved in the development and progression of periodontal disease. In this manner, we are able to justify the concept of developing synthetic inhibitors against members of this class of enzymes as potential second-generation antibiotics. Such compounds could not only prove valuable in retarding the growth and proliferation of bacterial pathogens but also lead to the use of this class of inhibitors against invasion by other infective organisms. PMID:10708847

  13. Serine leucocyte proteinase inhibitor-treated monocyte inhibits human CD4(+) lymphocyte proliferation.

    Guerrieri, Diego; Tateosian, Nancy L; Maffía, Paulo C; Reiteri, Romina M; Amiano, Nicolás O; Costa, María J; Villalonga, Ximena; Sanchez, Mercedes L; Estein, Silvia M; Garcia, Verónica E; Sallenave, Jean-Michel; Chuluyan, Héctor E

    2011-08-01

    Serine leucocyte proteinase inhibitor (SLPI) is the main serine proteinase inhibitor produced by epithelial cells and has been shown to be a pleiotropic molecule with anti-inflammatory and microbicidal activities. However, the role of SLPI on the adaptive immune response is not well established. Therefore, we evaluated the effect of SLPI on lymphocyte proliferation and cytokine production. Human peripheral blood mononuclear cells (PBMC) were treated with mitogens plus SLPI and proliferation was assessed by [(3) H]thymidine uptake. The SLPI decreased the lymphocyte proliferation induced by interleukin-2 (IL-2) or OKT3 monoclonal antibodies in a dose-dependent manner. Inhibition was not observed when depleting monocytes from the PBMC and it was restored by adding monocytes and SLPI. SLPI-treated monocyte slightly decreased MHC II and increased CD18 expression, and secreted greater amounts of IL-4, IL-6 and IL-10 in the cell culture supernatants. SLPI-treated monocyte culture supernatant inhibited the CD4(+) lymphocyte proliferation but did not affect the proliferation of CD8(+) cells. Moreover, IL-2 increased T-bet expression and the presence of SLPI significantly decreased it. Finally, SLPI-treated monocyte culture supernatant dramatically decreased interferon-γ but increased IL-4, IL-6 and IL-10 in the presence of IL-2-treated T cells. Our results demonstrate that SLPI target monocytes, which in turn inhibit CD4 lymphocyte proliferation and T helper type 1 cytokine secretion. Overall, these results suggest that SLPI is an alarm protein that modulates not only the innate immune response but also the adaptive immune response. PMID:21574992

  14. Serine leucocyte proteinase inhibitor-treated monocyte inhibits human CD4+ lymphocyte proliferation

    Guerrieri, Diego; Tateosian, Nancy L; Maffía, Paulo C; Reiteri, Romina M; Amiano, Nicolás O; Costa, María J; Villalonga, Ximena; Sanchez, Mercedes L; Estein, Silvia M; Garcia, Verónica E; Sallenave, Jean-Michel; Chuluyan, Héctor E

    2011-01-01

    Serine leucocyte proteinase inhibitor (SLPI) is the main serine proteinase inhibitor produced by epithelial cells and has been shown to be a pleiotropic molecule with anti-inflammatory and microbicidal activities. However, the role of SLPI on the adaptive immune response is not well established. Therefore, we evaluated the effect of SLPI on lymphocyte proliferation and cytokine production. Human peripheral blood mononuclear cells (PBMC) were treated with mitogens plus SLPI and proliferation was assessed by [3H]thymidine uptake. The SLPI decreased the lymphocyte proliferation induced by interleukin-2 (IL-2) or OKT3 monoclonal antibodies in a dose-dependent manner. Inhibition was not observed when depleting monocytes from the PBMC and it was restored by adding monocytes and SLPI. SLPI-treated monocyte slightly decreased MHC II and increased CD18 expression, and secreted greater amounts of IL-4, IL-6 and IL-10 in the cell culture supernatants. SLPI-treated monocyte culture supernatant inhibited the CD4+ lymphocyte proliferation but did not affect the proliferation of CD8+ cells. Moreover, IL-2 increased T-bet expression and the presence of SLPI significantly decreased it. Finally, SLPI-treated monocyte culture supernatant dramatically decreased interferon-γ but increased IL-4, IL-6 and IL-10 in the presence of IL-2-treated T cells. Our results demonstrate that SLPI target monocytes, which in turn inhibit CD4 lymphocyte proliferation and T helper type 1 cytokine secretion. Overall, these results suggest that SLPI is an alarm protein that modulates not only the innate immune response but also the adaptive immune response. PMID:21574992

  15. Secretion of mucus proteinase inhibitor and elafin by Clara cell and type II pneumocyte cell lines.

    Sallenave, J M; Silva, A; Marsden, M E; Ryle, A P

    1993-02-01

    The regulation of proteinases secreted by neutrophils is very important for the prevention of tissue injury. We recently described the isolation of elafin from bronchial secretions, a new elastase-specific inhibitor that is also found in the skin of patients with psoriasis. In this study, we investigated the secretion of elafin and mucus proteinase inhibitor (MPI), another inhibitor showing sequence similarity with elafin, in two lung carcinoma cell lines, NCI-H322 and A549, which have features of Clara cells and type II alveolar cells, respectively. The results presented show that the two inhibitors are produced when the cells are cultured either in serum-free or in serum-containing media. MPI was detected immunologically as a unique molecule of M(r) 14 kD, in accordance with previous studies. Conversely, one or two elafin-immunoreactive species were detected depending on the cell line: a 12- to 14-kD species was observed in the A549 cell line, regardless of the culture conditions, whereas in the NCI-H322 cell line we detected a 6-kD species in serum-containing (10% fetal calf serum) conditions and a 12- to 14-kD species in serum-free conditions. The 12- to 14-kD molecule probably represents an active precursor of elafin. Whether the cleavage of the 12- to 14-kD precursor giving rise to the elafin molecule is of any physiologic significance is not known. In showing for the first time that MPI and elafin (and its precursor) are secreted by the A549 cell line, this report implicates the type II alveolar cell in the defense of the peripheral lung against the neutrophil elastase secreted during inflammation. PMID:8427705

  16. Cysteine proteinase inhibitor in eccrine sweat is derived from sweat gland.

    Yokozeki, H; Hibino, T; Takemura, T; Sato, K

    1991-02-01

    Although cysteine proteinases have been reported to be present in human eccrine sweat, their endogenous inhibitors, cysteine proteinase inhibitors (CPIs), have remained unstudied. We now present evidence that CPIs are indeed a true ingredient of human eccrine sweat. Sweat induced in sauna was collected over a Vaseline barrier placed on the skin to minimize epidermal contamination. The absence of major epidermal contamination of the sweat was further ensured by monitoring an epidermal marker, high-molecular-mass aminopeptidase. Sweat CPI was purified sequentially by chromatography with Sephacryl S-200, carboxymethylated papain-Sepharose, and anion-exchange Mono Q fast-protein liquid chromatography columns. Sweat CPI has a molecular mass of approximately 15 kDa, is stable for temperature (up to 80 degrees C) and pH (from 3 to 10), and inhibits papain, ficin, and sweat cathepsin B- and H-like enzymes. Sweat CPI may be of sweat gland origin because 1) the rate of CPI output in sweat (CPI concentration x sweat rate) is constant over 45 min; 2) antibody against epidermal CPI, which cross-reacts with sweat CPI, localized immunoreactivity in the sweat duct; 3) CPI activity was present in the glandular extracts of control and methacholine-stimulated (for 1 h in vitro) human sweat glands; and 4) the peaks of CPI activity in the glandular extract and sweat CPI were both eluted (by high-pressure liquid chromatography) at around 15 kDa. Sweat CPI may be very similar to epidermal CPI (which belongs to the stefin family of CPIs) because of many shared characteristics. The identity and function of sweat CPI remain to be studied. PMID:1899981

  17. Activity of recombinant trypsin isoforms on human proteinase-activated receptors (PAR): mesotrypsin cannot activate epithelial PAR-1, -2, but weakly activates brain PAR-1

    Grishina, Zoryana; Ostrowska, Ewa; Halangk, Walter; Sahin-Tóth, Miklós; Reiser, Georg

    2005-01-01

    Trypsin-like serine proteinases trigger signal transduction pathways through proteolytic cleavage of proteinase-activated receptors (PARs) in many tissues. Three members, PAR-1, PAR-2 and PAR-4, are trypsin substrates, as trypsinolytic cleavage of the extracellular N terminus produces receptor activation. Here, the ability of the three human pancreatic trypsin isoforms (cationic trypsin, anionic trypsin and mesotrypsin (trypsin IV)) as recombinant proteins was tested on PARs.Using fura 2 [Ca2...

  18. Use of pentapeptide-insertion scanning mutagenesis for functional mapping of the plum pox virus helper component proteinase suppressor of gene silencing.

    Varrelmann, Mark; Maiss, Edgar; Pilot, Ruth; Palkovics, Laszlo

    2007-03-01

    Helper component proteinase (HC-Pro) of Plum pox virus is a multifunctional potyvirus protein that has been examined intensively. In addition to its involvement in aphid transmission, genome amplification and long-distance movement, it is also one of the better-studied plant virus suppressors of RNA silencing. The first systematic analysis using pentapeptide-insertion scanning mutagenesis of the silencing suppression function of a potyvirus HC-Pro is presented here. Sixty-three in-frame insertion mutants, each containing five extra amino acids inserted randomly within the HC-Pro protein, were analysed for their ability to suppress transgene-induced RNA silencing using Agrobacterium infiltration in transgenic Nicotiana benthamiana plants expressing green fluorescent protein. A functional map was obtained, consisting of clearly defined regions with different classes of silencing-suppression activity (wild-type, restricted and disabled). This map confirmed that the N-terminal part of the protein, which is indispensable for aphid transmission, is dispensable for silencing suppression and supports the involvement of the central region in silencing suppression, in addition to its role in maintenance of genome amplification and synergism with other viruses. Moreover, evidence is provided that the C-terminal part of the protein, previously known to be necessary mainly for proteolytic activity, also participates in silencing suppression. Pentapeptide-insertion scanning mutagenesis has been shown to be a fast and powerful tool to functionally characterize plant virus proteins. PMID:17325375

  19. Some physico-chemical parameters that influence proteinase K resistance and the infectivity of PrP Sc after high pressure treatment

    P. Heindl

    2005-08-01

    Full Text Available Crude brain homogenates of terminally diseased hamsters infected with the 263 K strain of scrapie (PrP Sc were heated and/or pressurized at 800 MPa at 60ºC for different times (a few seconds or 5, 30, 120 min in phosphate-buffered saline (PBS of different pH and concentration. Prion proteins were analyzed on immunoblots for their proteinase K (PK resistance, and in hamster bioassays for their infectivity. Samples pressurized under initially neutral conditions and containing native PrP Sc were negative on immunoblots after PK treatment, and a 6-7 log reduction of infectious units per gram was found when the samples were pressurized in PBS of pH 7.4 for 2 h. A pressure-induced change in the protein conformation of native PrP Sc may lead to less PK resistant and less infectious prions. However, opposite results were obtained after pressurizing native infectious prions at slightly acidic pH and in PBS of higher concentration. In this case an extensive fraction of native PrP Sc remained PK resistant after pressure treatment, indicating a protective effect possibly due to induced aggregation of prion proteins in such buffers.

  20. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. PMID:25043896

  1. Proteinases from buckwheat (Fagopyrum esculentum moench seeds: Purification and properties of the 47 kDa enzyme

    Timotijević Gordana S.

    2006-01-01

    Full Text Available Aspartic proteinases from buckwheat seeds are analyzed. Three forms of 47 kDa, 40 kDa and 28 kDa, were purified from mature buckwheat seeds, while two forms of 47 kDa and 28 kDa were detected in developing buckwheat seeds using pepstatin A affinity chromatography. A form of 47 kDa was selectively precipitated from other forms by ammonium sulfate precipitation. This enzyme resembles the chymosin-like pattern of proteolytic activity, as it was shown using BSA and k-casein as substrates, clarifying its ability for milk-clotting. The 47 kDa aspartic proteinase form is localized in the membrane fraction. .

  2. Differential induction of two procesing proteases controls the processing pattern of the trypsin proteinase inhibitor precursor in Nicotiana attenuata

    Horn, Martin; Patankar, A. G.; Zavala, J. A.; Wu, J.; Marešová, Lucie; Vůjtěchová, Milana; Mareš, Michael; Baldwin, I. T.

    Ljubljana : -, 2005. s. 94. [International Symposium on Proteinase Inhibitors and Biological Control /9./. 25.06.2005-29.06.2005, Brdo Estate] R&D Projects: GA AV ČR(CZ) IAA4055303; GA ČR(CZ) GA522/04/1286 Institutional research plan: CEZ:AV0Z40550506 Keywords : posttranslational modifications * differential fragmentation * vacuolar processing enzyme Subject RIV: CE - Biochemistry

  3. Protective role of antimannan and anti-aspartyl proteinase antibodies in an experimental model of Candida albicans vaginitis in rats.

    De Bernardis, F.; Boccanera, M; Adriani, D; Spreghini, E; G. Santoni; Cassone, A.

    1997-01-01

    The role of antibodies (Abs) in the resistance to vaginal infection by Candida albicans was investigated by using a rat vaginitis model. Animals receiving antimannoprotein (anti-MP) and anti-aspartyl proteinase (Sap) Ab-containing vaginal fluids from rats clearing a primary C. albicans infection showed a highly significant level of protection against vaginitis compared to animals given Ab-free vaginal fluid from noninfected rats. Preabsorption of the Ab-containing fluids with either one or bo...

  4. Effects of systemic flunixin meglumine, topical oxytetracycline, and topical prednisolone acetate on tear film proteinases innormal horses

    Rainbow, Marc E

    2004-01-01

    The purpose of this study was to determine the effects of three medical treatments, topical oxytetracycline, topical prednisolone acetate, and systemic flunixin meglumine, on the activity of two proteinases, matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9), in equine tear film. The study design consisted of twelve ophthalmically normal horses separated into three groups of four in a cross-over study design. Each group was treated for 5 days with flunixin meglumine (...

  5. The anthelmintic efficacy of plant-derived cysteine proteinases against the rodent gastrointestinal nematode, Heligmosomoides polygyrus, in vivo

    Stepek, Gillian; Lowe, Ann; Buttle, David J.; Duce, I.R.; Behnke, Jerzy M.

    2007-01-01

    Gastrointestinal (GI) nematodes are important disease-causing organisms, controlled primarily through treatment with synthetic drugs, but the efficacy of these drugs has declined due to widespread resistance, and hence new drugs, with different modes of action, are required. Some medicinal plants, used traditionally for the treatment of worm infections, contain cysteine proteinases known to damage worms irreversibly in vitro. Here we (i) confirm that papaya latex has marked efficacy in vivo a...

  6. Coexpression of potato type I and II proteinase inhibitors gives cotton plants protection against insect damage in the field

    Dunse, K. M.; Stevens, J. A.; Lay, F. T.; Gaspar, Y. M.; Heath, R. L.; Anderson, M. A.

    2010-01-01

    Potato type I and II serine protease inhibitors are produced by solanaceous plants as a defense mechanism against insects and microbes. Nicotiana alata proteinase inhibitor (NaPI) is a multidomain potato type II inhibitor (pin II) that is produced at high levels in the female reproductive tissues of the ornamental tobacco, Nicotiana alata. The individual inhibitory domains of NaPI target the major classes of digestive enzymes, trypsin and chymotrypsin, in the gut of lepidopteran larval pests....

  7. Saccharomyces cerevisiae can secrete Sapp1p proteinase of Candida parapsilosis but cannot use it for efficient nitrogen acquisition

    Vinterová, Zuzana; Bauerová, Václava; Dostál, Jiří; Sychrová, Hana; Hrušková-Heidingsfeldová, Olga; Pichová, Iva

    2013-01-01

    Roč. 51, č. 3 (2013), s. 336-344. ISSN 1225-8873 R&D Projects: GA ČR GA310/09/1945; GA ČR GAP302/12/1151 Institutional support: RVO:61388963 ; RVO:67985823 Keywords : Candida parapsilosis * Saccharomyces cerevisiae * secreted aspartic proteinase * SAPP1 * nitrogen metabolism Subject RIV: EE - Microbiology, Virology; EE - Microbiology, Virology (FGU-C) Impact factor: 1.529, year: 2013

  8. Factors affecting the anthelmintic efficacy of cysteine proteinases against GI nematodes and their formulation for use in ruminants

    Luoga, Wenceslaus

    2013-01-01

    Gastrointestinal (GI) nematodes are important helminth pathogens responsible for severe losses to livestock industries and human health throughout the world. Control of these infections relies primarily on chemotherapy; however there is rapid development of resistance to all available classes of anthelmintic drugs, and therefore new alternative treatments are urgently required. Plant cysteine proteinases (CPs) from papaya latex, pineapple fruit and stem extracts have been demonstrated to b...

  9. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets

    Ma, Li; Perini, Rafael; McKnight, Webb; Dicay, Michael; Klein, Andre; Hollenberg, Morley D.; Wallace, John L

    2004-01-01

    The roles of proteinase-activated receptors (PARs) in platelet functions other than aggregation are not well understood. Among these is the release of factors that regulate the process of angiogenesis, such as endostatin and VEGF, which, respectively, inhibit and promote angiogenesis. PAR1 and PAR4 are expressed on the surface of human platelets and can be activated by thrombin. In the present study, we have attempted to determine the roles of PAR1 and PAR4 in regulating release of endostatin...

  10. Extensive expansion of A1 family aspartic proteinases in fungi revealed by evolutionary analyses of 107 complete eukaryotic proteomes

    Revuelta, M.V.; Kan, van, J.; Kay, J; Have, ten, P.

    2014-01-01

    The A1 family of eukaryotic aspartic proteinases (APs) forms one of the 16 AP families. Although one of the best characterized families, the recent increase in genome sequence data has revealed many fungal AP homologs with novel sequence characteristics. This study was performed to explore the fungal AP sequence space and to obtain an in-depth understanding of fungal AP evolution. Using a comprehensive phylogeny of approximately 700 AP sequences from the complete proteomes of 87 fungi and 20 ...

  11. Modulation of enteroviral proteinase cleavage of poly(A)-binding protein (PABP) by conformation and PABP-associated factors

    Rivera, Carlos I.; Lloyd, Richard E.

    2008-01-01

    Poliovirus (PV) causes a drastic inhibition of cellular cap-dependant protein synthesis due to the cleavage of translation factors eukaryotic initiation factor 4G (eIF4G) and poly (A) binding protein (PABP). Only about half of cellular PABP is cleaved by viral 2A and 3C proteinases during infection. We have investigated PABP cleavage determinants that regulate this partial cleavage. PABP cleavage kinetics analyses indicate that PABP exists in multiple conformations, some of which are resistan...

  12. Evidence for the presence of proteolytically active secreted aspartic proteinase 1 of Candida parapsilosis in the cell wall

    Vinterová, Zuzana; Šanda, Miloslav; Dostál, Jiří; Hrušková-Heidingsfeldová, Olga; Pichová, Iva

    2011-01-01

    Roč. 20, č. 12 (2011), s. 2004-2012. ISSN 0961-8368 R&D Projects: GA MŠk(CZ) LC531; GA ČR GA310/09/1945 Institutional research plan: CEZ:AV0Z40550506 Keywords : Candida parapsilosis * secreted aspartic proteinases * Sapp1p * cell wall * biotin * proteolytic activity Subject RIV: CE - Biochemistry Impact factor: 2.798, year: 2011

  13. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  14. Purification, crystallization and preliminary X-ray analysis of CMS1MS2: a cysteine proteinase from Carica candamarcensis latex

    CMS1MS2, a cysteine proteinase from C. candamarcensis, displays high amidase activity against the substrate BAPNA. The enzyme was purified and crystallized by the hanging-drop method and preliminary diffraction data were collected to 1.8 Å resolution. Cysteine proteinases from the latex of plants of the family Caricaceae are widely used industrially as well as in pharmaceutical preparations. In the present work, a 23 kDa cysteine proteinase from Carica candamarcensis latex (designated CMS1MS2) was purified for crystallization using three chromatography steps. The enzyme shows about fourfold higher activity than papain with BAPNA as substrate. Crystals suitable for X-ray diffraction experiments were obtained by the hanging-drop method in the presence of PEG and ammonium sulfate as precipitants. The crystals are monoclinic (space group P21), with unit-cell parameters a = 53.26, b = 75.71, c = 53.23 Å, β = 96.81°, and diffract X-rays to 1.8 Å resolution

  15. NMR analysis of the interaction of picornaviral proteinases Lb and 2A with their substrate eukaryotic initiation factor 4GII.

    Aumayr, Martina; Fedosyuk, Sofiya; Ruzicska, Katharina; Sousa-Blin, Carla; Kontaxis, Georg; Skern, Tim

    2015-12-01

    Messenger RNA is recruited to the eukaryotic ribosome by a complex including the eukaryotic initiation factor (eIF) 4E (the cap-binding protein), the scaffold protein eIF4G and the RNA helicase eIF4A. To shut-off host-cell protein synthesis, eIF4G is cleaved during picornaviral infection by a virally encoded proteinase; the structural basis of this reaction and its stimulation by eIF4E is unclear. We have structurally and biochemically investigated the interaction of purified foot-and-mouth disease virus (FMDV) leader proteinase (Lb(pro)), human rhinovirus 2 (HRV2) 2A proteinase (2A(pro)) and coxsackievirus B4 (CVB4) 2A(pro) with purified eIF4GII, eIF4E and the eIF4GII/eIF4E complex. Using nuclear magnetic resonance (NMR), we completed (13)C/(15) N sequential backbone assignment of human eIF4GII residues 551-745 and examined their binding to murine eIF4E. eIF4GII551-745 is intrinsically unstructured and remains so when bound to eIF4E. NMR and biophysical techniques for determining stoichiometry and binding constants revealed that the papain-like Lb(pro) only forms a stable complex with eIF4GII(551-745) in the presence of eIF4E, with KD values in the low nanomolar range; Lb(pro) contacts both eIF4GII and eIF4E. Furthermore, the unrelated chymotrypsin-like 2A(pro) from HRV2 and CVB4 also build a stable complex with eIF4GII/eIF4E, but with K(D) values in the low micromolar range. The HRV2 enzyme also forms a stable complex with eIF4E; however, none of the proteinases tested complex stably with eIF4GII alone. Thus, these three picornaviral proteinases have independently evolved to establish distinct triangular heterotrimeric protein complexes that may actively target ribosomes involved in mRNA recruitment to ensure efficient host cell shut-off. PMID:26384734

  16. Mucolysis of the colonic mucus barrier by faecal proteinases: inhibition by interacting polyacrylate.

    Hutton, D A; Pearson, J P; Allen, A; Foster, S N

    1990-03-01

    1. Mucolytic (mucus solubilizing) activity in human faeces has been characterized with both purified human and pig colonic mucin and shown to be mediated by proteolysis. 2. Mucolytic activity was demonstrated by: (i) a drop in mucin viscosity; (ii) a substantial reduction in mucin size, from polymer to degraded subunit, as assessed by Sepharose CL-2B gel filtration; (iii) formation of new N-terminal peptides. 3. Mucolytic activity was also followed in faecal extracts by its proteolytic activity using standard succinyl albumin substrate. Proteolysis extended over the pH range 4.5-11.0. Proteolysis was inhibited at pH 7.5 by soybean trypsin inhibitor and phenylmethanesulphonyl fluoride, suggesting the presence of serine proteinases. 4. The polyacrylate carbomer (934P) inhibited both mucolysis of pig colonic mucin and proteolysis of succinyl albumin. 5. Interaction between the polyacrylate (carbomer 934P) and purified human and pig colonic mucin was demonstrated by a marked synergistic increase in solution viscosity (360% above control). 6. The results demonstrate the presence of a mucolytic activity in the human colonic lumen that has the potential to degrade the mucus barrier, and that polyacrylates inhibit this mucolysis and interact to strengthen the colonic mucus barrier. Polyacrylates may therefore have therapeutic potential in inflammatory bowel disease where luminal proteolytic activity can be raised. PMID:2156646

  17. The relative anthelmintic efficacy of plant-derived cysteine proteinases on intestinal nematodes.

    Luoga, W; Mansur, F; Buttle, D J; Duce, I R; Garnett, M C; Lowe, A; Behnke, J M

    2015-03-01

    We examined the in vitro and in vivo efficacy of plant cysteine proteinases (CPs) derived from pineapple (Ananas comosus) and kiwi fruit (Actinidia deliciosa), and compared their efficacy as anthelmintics to the known effects of CPs from the latex of papaya (Carica papaya) against the rodent intestinal nematode, Heligmosomoides bakeri. Both fruit bromelain and stem bromelain had significant in vitro detrimental effects on H. bakeri but in comparison, actinidain from kiwi fruit had very little effect. However, in vivo trials indicated far less efficacy of stem bromelain and fruit bromelain than that expected from the in vitro experiments (24.5% and 22.4% reduction in worm burdens, respectively) against H. bakeri. Scanning electron microscopy revealed signs of cuticular damage on worms incubated in fruit bromelain, stem bromelain and actinidain, but this was far less extensive than on those incubated in papaya latex supernatant. We conclude that, on the basis of presently available data, CPs derived from pineapples and kiwi fruits are not suitable for development as novel anthelmintics for intestinal nematode infections. PMID:24176056

  18. Proton NMR spectroscopy of the active site histidine of α-lytic proteinase

    A histidine auxotroph of Lysobacter enzymogenes (ATC 29847) was grown on media containing either isotopically labeled [90% 13Cesup(epsilon)]L- or [90%15Nsup(delta), 90% 15Nsup(epsilon)]D,L-histidine. The enzyme, α-lytic proteinase (EC 3.4.21.12), was isolated from these cultures as well as from cultures of wild-type bacteria grown on unlabeled medium. 1H NMR spectra at 360 MHz were obtained with all 3 purified enzymes. Presence of the adjacent 15N labels broadened the histidine Csup(epsilon)-H peak by about a factor of 2 by unresolved scalar coupling. Presence of a direcly bonded 13C led to disappearance of the histidine Csup(epsilon)-H peak by a combination of scalar coupling and dipolar broadening. These effects should be useful for the cross-assignment of 1H NMR peaks of 13C and 15N enriched proteins. The 13C and 15N labeled proteins were found to undergo the reversible a-b conformational transition which changes the pKsub(a)' of His57 from 6.5-5.9. (Auth.)

  19. A subset of ulcerative colitis with positive proteinase-3antineutrophil cytoplasmic antibody

    Jin Xu; Chuan-Hua Yang; Xiao-Yu Chen; Xu-Hang Li; Min Dai; Shu-Dong Xiao

    2008-01-01

    A small subset of patients with active ulcerative colitis is non-responsive to major known non-biological therapies.We reported 5 patients with positive serum proteinase-3 antineutrophil cytoplasmic antibody (PR3-ANCA) and tried to (1) identify the common clinical features of these patients; (2) investigate the efficacy of a novel therapy using a Chinese medicine compound; and (3) attract more gastroenterologists to be engaged in further study of this subset of patients. The common manifestations of disease in these 5 patients included recurrent bloody diarrhea and inflammatory lesions involving the entire colorectal mucosa. Initial treatment with intravenous methylprednisolone successfully induced remission.Four of these 5 patients were steroid-dependence,and immunosuppressants, such as azathioprine and cyclophosphamide, were ineffective. In 3 patients,only the particular Chinese medicine compound could induce and maintain remission. One patient underwent colectomy. No vascular inflammatory lesions were found by histopathological examination. Although more cases are needed for confirmation, our study indicates that ulcerative colitis with positive PR3-ANCA may belong to a subtype of refractory ulcerative colitis. The particular Chinese medicine compound used in our study is by far the most effective in the management of these patients,with additional advantages of having no noticeable sideeffects and less financial burden.

  20. Potato type I and II proteinase inhibitors: modulating plant physiology and host resistance.

    Turra, David; Lorito, Matteo

    2011-08-01

    Serine protease inhibitors (PIs) are a large and complex group of plant proteins. Members of the potato type I (Pin1) and II (Pin2) proteinase inhibitor families are among the first and most extensively characterized plant PIs. Many insects and phytopathogenic microorganisms use intracellular and extracellular serine proteases playing important roles in pathogenesis. Plants, however, are able to fight these pathogens through the activation of an intricate defence system that leads to the accumulation of various PIs, including Pin1 and Pin2. Several transgenic plants over-expressing members of the Pin1 and Pin2 families have been obtained in the last twenty years and their enhanced defensive capabilities demonstrated against insects, fungi and bacteria. Furthermore, Pin1 and Pin2 genetically engineered plants showed altered regulation of different plant physiological processes (e.g., dehydratation response, programmed cell death, plant growth, trichome density and branching), supporting an endogenous role in various plant species in addition to the well established defensive one. This review summarizes the current knowledge about Pin1 and Pin2 structure, the role of these proteins in plant defence and physiology, and their potential exploitation in biotechnology. PMID:21418020

  1. Development and bioassay of transgenic Chinese cabbage expressing potato proteinase inhibitor II gene.

    Zhang, Junjie; Liu, Fan; Yao, Lei; Luo, Chen; Yin, Yue; Wang, Guixiang; Huang, Yubi

    2012-06-01

    Lepidopteran larvae are the most injurious pests of Chinese cabbage production. We attempted the development of transgenic Chinese cabbage expressing the potato proteinase inhibitor II gene (pinII) and bioassayed the pest-repelling ability of these transgenic plants. Cotyledons with petioles from aseptic seedlings were used as explants for Agrobacterium-mediated in vitro transformation. Agrobacterium tumefaciens C58 contained the binary vector pBBBasta-pinII-bar comprising pinII and bar genes. Plants showing vigorous PPT resistance were obtained by a series concentration selection for PPT resistance and subsequent regeneration of leaf explants dissected from the putative chimera. Transgenic plants were confirmed by PCR and genomic Southern blotting, which showed that the bar and pinII genes were integrated into the plant genome. Double haploid homozygous transgenic plants were obtained by microspore culture. The pinII expression was detected using quantitative real time polymerase chain reaction (qRT-PCR) and detection of PINII protein content in the transgenic homozygous lines. Insect-feeding trials using the larvae of cabbage worm (Pieris rapae) and the larvae of the diamondback moth (Plutella xylostella) showed higher larval mortality, stunted larval development, and lower pupal weights, pupation rates, and eclosion rates in most of the transgenic lines in comparison with the corresponding values in the non-transformed wild-type line. PMID:23136521

  2. Proteinase 3 contributes to transendothelial migration of NB1-positive neutrophils.

    Kuckleburg, Christopher J; Tilkens, Sarah B; Santoso, Sentot; Newman, Peter J

    2012-03-01

    Neutrophil transmigration requires the localization of neutrophils to endothelial cell junctions, in which receptor-ligand interactions and the action of serine proteases promote leukocyte diapedesis. NB1 (CD177) is a neutrophil-expressed surface molecule that has been reported to bind proteinase 3 (PR3), a serine protease released from activated neutrophils. PR3 has demonstrated proteolytic activity on a number of substrates, including extracellular matrix proteins, although its role in neutrophil transmigration is unknown. Recently, NB1 has been shown to be a heterophilic binding partner for the endothelial cell junctional protein, PECAM-1. Disrupting the interaction between NB1 and PECAM-1 significantly inhibits neutrophil transendothelial cell migration on endothelial cell monolayers. Because NB1 interacts with endothelial cell PECAM-1 at cell junctions where transmigration occurs, we considered that NB1-PR3 interactions may play a role in aiding neutrophil diapedesis. Blocking Abs targeting the heterophilic binding domain of PECAM-1 significantly inhibited transmigration of NB1-positive neutrophils through IL-1β-stimulated endothelial cell monolayers. PR3 expression and activity were significantly increased on NB1-positive neutrophils following transmigration, whereas neutrophils lacking NB1 demonstrated no increase in PR3. Finally, using selective serine protease inhibitors, we determined that PR3 activity facilitated transmigration of NB1-positive neutrophils under both static and flow conditions. These data demonstrate that PR3 contributes in the selective recruitment of the NB1-positive neutrophil population. PMID:22266279

  3. Circulating ADAM17 Level Reflects Disease Activity in Proteinase-3 ANCA-Associated Vasculitis.

    Bertram, Anna; Lovric, Svjetlana; Engel, Alissa; Beese, Michaela; Wyss, Kristin; Hertel, Barbara; Park, Joon-Keun; Becker, Jan U; Kegel, Johanna; Haller, Hermann; Haubitz, Marion; Kirsch, Torsten

    2015-11-01

    ANCA-associated vasculitides are characterized by inflammatory destruction of small vessels accompanied by enhanced cleavage of membrane-bound proteins. One of the main proteases responsible for ectodomain shedding is disintegrin and metalloproteinase domain-containing protein 17 (ADAM17). Given its potential role in aggravating vascular dysfunction, we examined the role of ADAM17 in active proteinase-3 (PR3)-positive ANCA-associated vasculitis (AAV). ADAM17 concentration was significantly increased in plasma samples from patients with active PR3-AAV compared with samples from patients in remission or from other controls with renal nonvascular diseases. Comparably, plasma levels of the ADAM17 substrate syndecan-1 were significantly enhanced in active AAV. We also observed that plasma-derived ADAM17 retained its specific proteolytic activity and was partly located on extracellular microparticles. Transcript levels of ADAM17 were increased in blood samples of patients with active AAV, but those of ADAM10 or tissue inhibitor of metalloproteinases 3, which inhibits ADAMs, were not. We also performed a microRNA (miR) screen and identified miR-634 as significantly upregulated in blood samples from patients with active AAV. In vitro, miR-634 mimics induced a proinflammatory phenotype in monocyte-derived macrophages, with enhanced expression and release of ADAM17 and IL-6. These data suggest that ADAM17 has a prominent role in AAV and might account for the vascular complications associated with this disease. PMID:25788529

  4. Activation of human tonsil and skin mast cells by agonists of proteinase activated receptor-2

    Shao-heng HE; Hua XIE; Yi-ling FU

    2005-01-01

    Aim: To investigate the effects of the agonists of proteinase activated receptor (PAR)-2,and histamine on degranulation of human mast cells. Methods: Human mast cells were enzymatically dispersed from tonsil and skin tissues. The dis persed cells were then cultured with various stimuli, and tryptase and histamine levels in cell supernatants collected from challenge tubes were measured. Results:PAR-2 agonist peptide SLIGKV provoked a dose-dependent release of histamine from skin mast cells. It also induced tryptase release from tonsil mast cells, tcLIGRLO appeared less potent than SLIGKV in induction of release of histamine and tryptase. Trypsin was able to induce a "bell" shape increase in tryptase release from tonsil mast cells. It was also able to induce a dose-dependent release of histamine from both tonsil and skin mast cells. The actions of trypsin on mast cells were inhibited by soy bean trypsin inhibitor (SBTI) or α1-antitrypsin (α1-AT).Time course study revealed that both stimulated tryptase or histamine release initiated within 10 s and reached their peak release between 4 and 6 min. Pretreatment of cells with metabolic inhibitors or pertussis toxin reduced the ability of mast cells to release tryptase or histamine. Conclusion: It was demonstrated that the in vitro tryptase release properties of human tonsil and skin mast cells suggested a novel type of mast cell heterogeneity. The activation of mast cells by PAR-2 agonists indicated a self-amplification mechanism of mast cell degranulation.

  5. Preparation and Identification of Hyaluronic Acid From Fresh Pigskin

    ZHAO Yuhong; HAN Linlin

    2008-01-01

    Hyaluronic acid (HA) had been prepared from pigskin residues with neutral proteinase.The preparing results and conditions were studied.After extracting and purification,HA was detected through ultraviolet spectra and infraction spectrum,and its content and purity were tested by carbazole and Elason-Morgan,respectively.This results indicated that significant quantifies of HA could be prepared in fresh pigskin with biologic enzyme,and the pure HA was cosmetic grade and food grade.

  6. Oil-free hyaluronic acid matrix for serial femtosecond crystallography

    Sugahara, Michihiro; Song, Changyong; Suzuki, Mamoru; Masuda, Tetsuya; Inoue, Shigeyuki; Nakane, Takanori; Yumoto, Fumiaki; Nango, Eriko; Tanaka, Rie; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Numata, Keiji; Iwata, So

    2016-04-01

    The grease matrix was originally introduced as a microcrystal-carrier for serial femtosecond crystallography and has been expanded to applications for various types of proteins, including membrane proteins. However, the grease-based matrix has limited application for oil-sensitive proteins. Here we introduce a grease-free, water-based hyaluronic acid matrix. Applications for proteinase K and lysozyme proteins were able to produce electron density maps at 2.3-Å resolution.

  7. Oil-free hyaluronic acid matrix for serial femtosecond crystallography

    Michihiro Sugahara; Changyong Song; Mamoru Suzuki; Tetsuya Masuda; Shigeyuki Inoue; Takanori Nakane; Fumiaki Yumoto; Eriko Nango; Rie Tanaka; Kensuke Tono; Yasumasa Joti; Takashi Kameshima; Takaki Hatsui; Makina Yabashi; Osamu Nureki

    2016-01-01

    The grease matrix was originally introduced as a microcrystal-carrier for serial femtosecond crystallography and has been expanded to applications for various types of proteins, including membrane proteins. However, the grease-based matrix has limited application for oil-sensitive proteins. Here we introduce a grease-free, water-based hyaluronic acid matrix. Applications for proteinase K and lysozyme proteins were able to produce electron density maps at 2.3-Å resolution.

  8. Mandatory role of proteinase-activated receptor 1 in experimental bladder inflammation

    Davis Carole A

    2007-03-01

    Full Text Available Abstract Background In general, inflammation plays a role in most bladder pathologies and represents a defense reaction to injury that often times is two edged. In particular, bladder neurogenic inflammation involves the participation of mast cells and sensory nerves. Increased mast cell numbers and tryptase release represent one of the prevalent etiologic theories for interstitial cystitis and other urinary bladder inflammatory conditions. The activity of mast cell-derived tryptase as well as thrombin is significantly increased during inflammation. Those enzymes activate specific G-protein coupled proteinase-activated receptors (PARs. Four PARs have been cloned so far, and not only are all four receptors highly expressed in different cell types of the mouse urinary bladder, but their expression is altered during experimental bladder inflammation. We hypothesize that PARs may link mast cell-derived proteases to bladder inflammation and, therefore, play a fundamental role in the pathogenesis of cystitis. Results Here, we demonstrate that in addition to the mouse urinary bladder, all four PA receptors are also expressed in the J82 human urothelial cell line. Intravesical administration of PAR-activating peptides in mice leads to an inflammatory reaction characterized by edema and granulocyte infiltration. Moreover, the inflammatory response to intravesical instillation of known pro-inflammatory stimuli such as E. coli lipopolysaccharide (LPS, substance P, and antigen was strongly attenuated by PAR1-, and to a lesser extent, by PAR2-deficiency. Conclusion Our results reveal an overriding participation of PAR1 in bladder inflammation, provide a working model for the involvement of downstream signaling, and evoke testable hypotheses regarding the role of PARs in bladder inflammation. It remains to be determined whether or not mechanisms targeting PAR1 gene silencing or PAR1 blockade will ameliorate the clinical manifestations of cystitis.

  9. Membrane lipid peroxidation in neurodegeneration: Role of thrombin and proteinase-activated receptor-1.

    Citron, Bruce A; Ameenuddin, Syed; Uchida, K; Suo, William Z; SantaCruz, Karen; Festoff, Barry W

    2016-07-15

    Thrombin and membrane lipid peroxidation (MLP) have been implicated in various central nervous system (CNS) disorders from CNS trauma to stroke, Alzheimer's (AD) and Parkinson's (PD) diseases. Because thrombin also induces MLP in platelets and its involvement in neurodegenerative diseases we hypothesized that its deleterious effects might, in part, involve formation of MLP in neuronal cells. We previously showed that thrombin induced caspase-3 mediated apoptosis in motor neurons, via a proteinase-activated receptor (PAR1). We have now investigated thrombin's influence on the oxidative state of neurons leading to induction of MLP-protein adducts. Translational relevance of thrombin-induced MLP is supported by increased levels of 4-hydroxynonenal-protein adducts (HNEPA) in AD and PD brains. We now report for the first time that thrombin dose-dependently induces formation of HNEPA in NSC34 mouse motor neuron cells using anti-HNE and anti-acrolein monoclonal antibodies. The most prominent immunoreactive band, in SDS-PAGE, was at ∼54kDa. Membrane fractions displayed higher amounts of the protein-adduct than cytosolic fractions. Thrombin induced MLP was mediated, at least in part, through PAR1 since a PAR1 active peptide, PAR1AP, also elevated HNEPA levels. Of interest, glutamate and Fe2SO4 also increased the ∼54kDa HNEPA band in these cells but to a lesser extent. Taken together our results implicate the involvement of thrombin and MLP in neuronal cell loss observed in various CNS degenerative and traumatic pathologies. PMID:27138068

  10. Selective loss of cysteine residues and disulphide bonds in a potato proteinase inhibitor II family.

    Xiu-Qing Li

    Full Text Available Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C, and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution.

  11. Interpain A, a cysteine proteinase from Prevotella intermedia, inhibits complement by degrading complement factor C3.

    Michal Potempa

    2009-02-01

    Full Text Available Periodontitis is an inflammatory disease of the supporting structures of the teeth caused by, among other pathogens, Prevotella intermedia. Many strains of P. intermedia are resistant to killing by the human complement system, which is present at up to 70% of serum concentration in gingival crevicular fluid. Incubation of human serum with recombinant cysteine protease of P. intermedia (interpain A resulted in a drastic decrease in bactericidal activity of the serum. Furthermore, a clinical strain 59 expressing interpain A was more serum-resistant than another clinical strain 57, which did not express interpain A, as determined by Western blotting. Moreover, in the presence of the cysteine protease inhibitor E64, the killing of strain 59 by human serum was enhanced. Importantly, we found that the majority of P. intermedia strains isolated from chronic and aggressive periodontitis carry and express the interpain A gene. The protective effect of interpain A against serum bactericidal activity was found to be attributable to its ability to inhibit all three complement pathways through the efficient degradation of the alpha-chain of C3 -- the major complement factor common to all three pathways. P. intermedia has been known to co-aggregate with P. gingivalis, which produce gingipains to efficiently degrade complement factors. Here, interpain A was found to have a synergistic effect with gingipains on complement degradation. In addition, interpain A was able to activate the C1 complex in serum, causing deposition of C1q on inert and bacterial surfaces, which may be important at initial stages of infection when local inflammatory reaction may be beneficial for a pathogen. Taken together, the newly characterized interpain A proteinase appears to be an important virulence factor of P. intermedia.

  12. Gamma globulin, Evan's blue, aprotinin A PLA2 inhibitor, tetracycline and antioxidants protect epithelial cells against damage induced by synergism among streptococcal hemolysins, oxidants and proteinases: relation to the prevention of post-streptococcal sequelae and septic shock.

    Ginsburg, I; Sadovnic, M

    1998-11-01

    An in vitro model was employed to study the potential role of streptococcal extra-cellular products, rich in streptolysin O, in cellular injury as related to streptococcal infections and post-streptococcal sequelae. Extra-cellular products (EXPA) rich in streptolysin O were isolated from type 4, group A hemolytic streptococci grown in a chemostat, in a synthetic medium. EXPA induced moderate cytopathogenic changes in monkey kidney epithelial cells and in rat heart cells pre-labeled with 3H-arachidonate. However very strong toxic effects were induced when EXP was combined with oxidants (glucose oxides generated H2O2, AAPH-induced peroxyl radical (ROO.), NO generated by sodium nitroprusside) and proteinases (plasmin, trypsin). Cell killing was distinctly synergistic in nature. Cell damage induced by the multi-component cocktails was strongly inhibited either by micromolar amounts of gamma globulin, and Evan's blue which neutralized SLO activity, by tetracycline, trasylol (aprotinin), epsilon amino caproic acid and by soybean trypsin inhibitor, all proteinase inhibitors as well as by a non-penetrating PLA2 inhibitor A. The results suggest that fasciitis, myositis and sepsis resulting from infections with hemolytic streptococci might be caused by a coordinated 'cross-talk' among microbial, leukocyte and additional host-derived pro-inflammatory agents. Since attempts to prolong lives of septic patients by the exclusive administration of single antagonists invariably failed, it is proposed that the administration of 'cocktails' of putative inhibitors against major pro-inflammatory agonizes generated in inflammation and infection might protect against the deleterious effects caused by the biochemical and pharmacological cascades which are known to be activated in sepsis. PMID:9848686

  13. Proteinase treatment of intact hepatic mitochondria has differential effects on inhibition of carnitine palmitoyltransferase by different inhibitors.

    Kashfi, K; Cook, G A

    1992-01-01

    Proteolysis of intact mitochondria by Nagarse (subtilisin BPN') and papain resulted in limited loss of activity of the outer-membrane carnitine palmitoyltransferase, but much greater loss of sensitivity to inhibition by malonyl-CoA. In contrast with a previous report [Murthy & Pande (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 378-382], we found that trypsin had no effect on malonyl-CoA sensitivity. Even when 80% of activity was destroyed by trypsin, there was no difference in the malonyl-CoA sensitivity of the enzyme remaining. Trypsin caused release of the intermembrane-space enzyme adenylate kinase, indicating loss of integrity of the mitochondrial outer membrane, whereas Nagarse and papain caused no release of that enzyme. Citrate synthase was not released by any of the three proteinases, indicating no damage to the mitochondrial inner membrane. When we examined the effects of proteolysis on the inhibition of carnitine palmitoyltransferase by a wide variety of inhibitors having different mechanisms of inhibition, we found differential proteolytic effects that were specific for those inhibitors (malonyl-CoA and hydroxyphenylglyoxylate) that have their inhibitory potencies diminished by changes in physiological state. Both of those inhibitors protected carnitine palmitoyltransferase from the effects of proteolysis, but did not inhibit the proteinases directly. Inhibition by two other inhibitors (DL-2-bromopalmitoyl-CoA and N-benzyladriamycin 14-valerate) was not altered by proteinase treatment, even when most of the enzyme activity had been destroyed. Inhibition by glyburide, which is minimally affected by physiological state, was affected only to a slight extent at the highest concentration of trypsin tested. Proteolysis by Nagarse appeared to produce loss of co-operativity in malonyl-CoA inhibition. The effects of proteolysis are discussed and compared with changes in Ki occurring with changing physiological states. PMID:1554374

  14. A Monoclonal Antibody (MCPR3-7) Interfering with the Activity of Proteinase 3 by an Allosteric Mechanism*

    Hinkofer, Lisa C.; Seidel, Susanne A. I.; Korkmaz, Brice; Silva, Francisco; Hummel, Amber M.; Braun, Dieter; Jenne, Dieter E.; Specks, Ulrich

    2013-01-01

    Proteinase 3 (PR3) is an abundant serine protease of neutrophil granules and a major target of autoantibodies (PR3 anti-neutrophil cytoplasmic antibodies) in granulomatosis with polyangiitis. Some of the PR3 synthesized by promyelocytes in the bone marrow escapes the targeting to granules and occurs on the plasma membrane of naive and primed neutrophils. This membrane-associated PR3 antigen may represent pro-PR3, mature PR3, or both forms. To discriminate between mature PR3 and its inactive zymogen, which have different conformations, we generated and identified a monoclonal antibody called MCPR3-7. It bound much better to pro-PR3 than to mature PR3. This monoclonal antibody greatly reduced the catalytic activity of mature PR3 toward extended peptide substrates. Using diverse techniques and multiple recombinant PR3 variants, we characterized its binding properties and found that MCPR3-7 preferentially bound to the so-called activation domain of the zymogen and changed the conformation of mature PR3, resulting in impaired catalysis and inactivation by α1-proteinase inhibitor (α1-antitrypsin). Noncovalent as well as covalent complexation between PR3 and α1-proteinase inhibitor was delayed in the presence of MCPR3-7, but cleavage of certain thioester and paranitroanilide substrates with small residues in the P1 position was not inhibited. We conclude that MCPR3-7 reduces PR3 activity by an allosteric mechanism affecting the S1′ pocket and further prime side interactions with substrates. In addition, MCPR3-7 prevents binding of PR3 to cellular membranes. Inhibitory antibodies targeting the activation domain of PR3 could be exploited as highly selective inhibitors of PR3, scavengers, and clearers of the PR3 autoantigen in granulomatosis with polyangiitis. PMID:23902773

  15. Expression of serine proteinase P186 of Arthrobotrys oligospora and analysis of its nematode-degrading activity.

    Zhao, Hailong; Qiao, Jun; Meng, Qingling; Gong, Shasha; Chen, Cheng; Liu, Tianli; Tian, Lulu; Cai, Xuepeng; Luo, Jianxun; Chen, Chuangfu

    2015-12-01

    The nematode-trapping fungi possess a unique capability of predating and invading nematodes. As a representative nematode-trapping fungus, Arthrobotrys oligospora has been widely used to study the interactions between nematode-trapping fungi and their hosts. Serine proteinase is one of the important virulence factors during process of invasion of the nematode-trapping fungi into nematodes. In this study, using reverse transcription polymerase chain reaction, we amplified the gene sequence of serine proteinase 186 from A. oligospora, cloned it into pPIC9K vector and expressed it in the yeast Pichia pastoris. The expressed recombinant serine proteinase186 (reP186) was purified via Ni-affinity chromatography. The in vitro nematode-degrading activity of reP186 was analyzed. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot analysis revealed that reP186 with molecular weight of 33 kDa was successfully obtained. ReP186 was capable of degrading a series of protein substrates including casein, gelatin, bovine serum albumin, denatured collagen and nematode cortical layer. The reP186 exhibited the maximal activity at pH 8.0 and 55 °C and was highly sensitive to the inhibitor, phenylmethanesulfonylfluoride. Treatment of Caenorhabditis elegans and Haemonchus contortus with reP186 for 12, 24 and 36 h, respectively, resulted in 62, 88 and 100 % of killing rates for C. elegans, and 52, 65 and 84 % of killing rates for H. contortus, respectively, indicating a relatively strong nematode-degrading bioactivity of reP186. PMID:26419902

  16. The leader proteinase of foot-and-mouth disease virus: structure-function relationships in a proteolytic virulence factor

    Steinberger, Jutta; Skern, Tim

    2016-01-01

    The leader proteinase (Lpro) of foot-and-mouth disease virus, inhibits the host innate immune response by at least three different mechanisms. The most well characterised is the prevention of the synthesis of cytokines such as interferons immediately after infection, brought about by specific proteolytic cleavage of the eukaryotic initiation factor 4G. This prevents the recruitment of capped cellular mRNA; the viral RNA can however be translated under these conditions. The two other mechanisms are the induction of NF-κB cleavage and the deubiquitination of immune signalling molecules. This review focuses on the structure-function relationships in Lpro responsible for these widely divergent activities. PMID:24670358

  17. Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair.

    Georgy, S R; Pagel, C N; Ghasem-Zadeh, A; Zebaze, R M D; Pike, R N; Sims, N A; Mackie, E J

    2012-03-01

    Proteinase-activated receptor-2 (PAR(2)) is a G-protein coupled receptor expressed by osteoblasts and monocytes. PAR(2) is activated by a number of proteinases including coagulation factors and proteinases released by inflammatory cells. The aim of the current study was to investigate the role of PAR(2) in skeletal growth and repair using wild type (WT) and PAR(2) knockout (KO) mice. Micro computed tomography and histomorphometry were used to examine the structure of tibias isolated from uninjured mice at 50 and 90 days of age, and from 98-day-old mice in a bone repair model in which a hole had been drilled through the tibias. Bone marrow was cultured and investigated for the presence of osteoblast precursors (alkaline phosphatase-positive fibroblastic colonies), and osteoclasts were counted in cultures treated with M-CSF and RANKL. Polymerase chain reaction (PCR) was used to determine which proteinases that activate PAR(2) are expressed in bone marrow. Regulation of PAR(2) expression in primary calvarial osteoblasts from WT mice was investigated by quantitative PCR. Cortical and trabecular bone volumes were significantly greater in the tibias of PAR(2) KO mice than in those of WT mice at 50 days of age. In trabecular bone, osteoclast surface, osteoblast surface and osteoid volume were significantly lower in KO than in WT mice. Bone marrow cultures from KO mice showed significantly fewer alkaline phosphatase-positive colony-forming units and osteoclasts compared to cultures from WT mice. Significantly less new bone and significantly fewer osteoclasts were observed in the drill sites of PAR(2) KO mice compared to WT mice 7 days post-surgery. A number of activators of PAR(2), including matriptase and kallikrein 4, were found to be expressed by normal bone marrow. Parathyroid hormone, 1,25 dihydroxyvitamin D(3), or interleukin-6 in combination with its soluble receptor down-regulated PAR(2) mRNA expression, and fibroblast growth factor-2 or thrombin stimulated PAR(2

  18. Flexibility of cold- and heat-adapted subtilisin-like serine proteinases evaluated with fluorescence quenching and molecular dynamics

    Sigtryggsdóttir, Asta Rós; Papaleo, Elena; Thorbjarnardóttir, Sigríður H.;

    2014-01-01

    activity of cold adapted enzymes when compared to homologues from thermophiles, reflects their higher molecular flexibility. To assess a potential difference in molecular flexibility between the two homologous proteinases, we have measured their Trp fluorescence quenching by acrylamide at different...... have similar flexibility profiles, the cold adapted VPR displays higher flexibility in most regions of the protein structure. Some of these regions contain or are in proximity to some of the Trp residues (Trp6, Trp114 and Trp208) in the proteins. Thus, we observe an overall agreement between...

  19. Effects of proteinase inhibitor from Adenanthera pavonina seeds on short- and long term larval development of Aedes aegypti.

    Sasaki, Daniele Yumi; Jacobowski, Ana Cristina; de Souza, Antônio Pancrácio; Cardoso, Marlon Henrique; Franco, Octávio Luiz; Macedo, Maria Lígia Rodrigues

    2015-05-01

    Currently, one of the major global public health concerns is related to the transmission of dengue/yellow fever virus by the vector Aedes aegypti. The most abundant digestive enzymes in Ae. aegypti midgut larvae are trypsin and chymotrypsin. Since protease inhibitors have the capacity to bind to and inhibit the action of insect digestive proteinases, we investigated the short- and long-term effects of Adenanthera pavonina seed proteinase inhibitor (ApTI) on Ae. aegypti larvae, as well as a possible mechanism of adaptation. ApTI had a significant effect on Ae. aegypti larvae exposed to a non-lethal concentration of ApTI during short- and long-duration assays, decreasing survival, weight and proteinase activities of midgut extracts of larvae. The zymographic profile of ApTI demonstrated seven bands; three bands apparently have trypsin-like activity. Moreover, the peritrophic membrane was not disrupted. The enzymes of ApTI-fed larvae were found to be sensitive to ApTI and to have a normal feedback mechanism; also, the larval digestive enzymes were not able to degrade the inhibitor. In addition, ApTI delayed larval development time. Histological studies demonstrated a degeneration of the microvilli of the posterior midgut region epithelium cells, hypertrophy of the gastric caeca cells and an augmented ectoperitrophic space in larvae. Moreover, Ae. aegypti larvae were incapable of overcoming the negative effects of ApTI, indicating that this inhibitor might be used as a promising agent against Ae. aegypti. In addition, molecular modeling and molecular docking studies were also performed in order to construct three-dimensional theoretical models for ApTI, trypsin and chymotrypsin from Ae. aegypti, as well as to predict the possible interactions and affinity values for the complexes ApTI/trypsin and ApTI/chymotrypsin. In this context, this study broadens the base of our understanding about the modes of action of proteinase inhibitors in insects, as well as the way insects

  20. Proteins of the kidney microvillar membrane. Aspartate aminopeptidase: purification by immunoadsorbent chromatography and properties of the detergent- and proteinase-solubilized forms

    Danielsen, Erik Michael; Norén, O; Sjöström, H;

    1980-01-01

    revealed 1 g-atom of Ca/143000 g of protein. Two forms of the enzyme were purified: an amphipathic form solubilized from the membrane by Triton X-100 (detergent form) and a hydrophilic form released by incubation with trypsin (proteinase form). The detergent form exhibited charge-shift in crossed...... substrates were hydrolysed by traces of aminopeptidase M (EC 3.4.11.2) contaminating the preparation could be excluded on several grounds. Aminopeptidase A was sensitive to inhibition by chelating agents and the inactive enzyme could be reactivated by Ca2+ or Mn2+. Atomic absorption spectrophotometry...... immunoelectrophoresis when anionic or cationic detergents were present. On gel filtration, mol.wts. of 350000--400000 and 270000 were calculated for the detergent and proteinase forms. Electron microscopy after negative staining of the proteinase form revealed a dimeric structure. Electrophoresis of either form in the...

  1. Negative Effects of a Nonhost Proteinase Inhibitor of ~19.8 kDa from Madhuca indica Seeds on Developmental Physiology of Helicoverpa armigera (Hübner)

    Farrukh Jamal; Dushyant Singh; Pandey, Prabhash K.

    2014-01-01

    An affinity purified trypsin inhibitor from the seed flour extracts of Madhuca indica (MiTI) on denaturing polyacrylamide gel electrophoresis showed that MiTI consisted of a single polypeptide chain with molecular mass of ~19.8 kDa. MiTI inhibited the total proteolytic and trypsin-like activities of the midgut proteinases of Helicoverpa armigera larvae by 87.51% and 76.12%, respectively, at concentration of 5 µg/mL with an IC50 of 1.75 µg/mL against trypsin like midgut proteinases. The enzyme...

  2. Analysis of the VPg-proteinase (NIa) encoded by tobacco etch potyvirus: effects of mutations on subcellular transport, proteolytic processing, and genome amplification.

    Schaad, M C; Haldeman-Cahill, R; Cronin, S; Carrington, J C

    1996-01-01

    A mutational analysis was conducted to investigate the functions of the tobacco etch potyvirus VPg-proteinase (NIa) protein in vivo. The NIa N-terminal domain contains the VPg attachment site, whereas the C-terminal domain contains a picornavirus 3C-like proteinase. Cleavage at an internal site separating the two domains occurs in a subset of NIa molecules. The majority of NIa molecules in TEV-infected cells accumulate within the nucleus. By using a reporter fusion strategy, the NIa nuclear l...

  3. Cysteine proteinase inhibitor level in tumor and normal tissues in control and cured mice.

    Poteryaeva, O N; Falameyeva, O V; Korolenko, T A; Kaledin, V I; Djanayeva, S J; Nowicky, J W; Sandula, J

    2000-01-01

    Cystatin C is the best known extracellular endogenous cysteine proteinase inhibitor and has been studied as a possible index of tumor growth and as a marker of the effectiveness of antitumor therapy. The aim of this study was to evaluate cystatin C concentrations in murine tumor tissues (compared with other organs not directly involved with tumor development, such as the liver and spleen) during treatment with several antitumor drugs (Ukrain and/or cyclophosphane). Cystatin C concentrations in murine tissues and biological fluids was determined by enzyme-linked immunosorbent (ELISA) assay. The cystatin C ELISA test is a sandwich immunoassay, which uses immobilized rabbit antihuman cystatin C Pab and mouse antihuman cystatin C Mab-HRP (monoclonal antibodies, conjugated with horseradish peroxidase). We observed decreased serum cystatin C concentrations compared with controls in all nontreated tumor models: HA-1 hepatoma (solid and ascitic forms), lung adenocarcinoma (solid and ascitic forms) and LS lymphosarcoma. In the ascitic fluid of mice with HA-1 hepatoma the cystatin C concentration was much lower than in the serum of the same mice (about 20-fold lower). In the HA-1 model of hepatoma cells cystatin C concentration decreased about 2-3-fold compared with the control (intact liver) and Ukrain significantly increased the cystatin C concentration. Cyclophosphane treatment of LS lymphosarcoma significantly increased the cystatin C concentration in serum. Cyclophosphane treatment (50 mg/kg, single injection) increased cystatin C by up to 8-fold more in tumor issue. Ukrain treatment of LS lymphosarcoma was also followed by increased levels of cystatin C in tumor tissue (4-fold); cyclophosphane plus Ukrain had a similar positive effect. In the group with LS lymphosarcoma Ukrain or cyclophosphane plus Ukrain treatment induced a significant increase in cystatin C concentration in liver. Liver cystatin C concentration decreased in the HA-1 hepatoma group and treatment with

  4. In vivo and in vitro effect of Acacia nilotica seed proteinase inhibitors on Helicoverpa armigera (Hübner) larvae

    S Ramesh Babu; B Subrahmanyam; Srinivasan; I M Santha

    2012-06-01

    Acacia nilotica proteinase inhibitor (AnPI) was isolated by ammonium sulphate precipitation followed by chromatography on DEAE-Sephadex A-25 and resulted in a purification of 10.68-fold with a 19.5% yield. Electrophoretic analysis of purified AnPI protein resolved into a single band with molecular weight of approximately 18.6+1.00 kDa. AnPI had high stability at different pH values (2.0 to 10.0) except at pH 5.0 and are thermolabile beyond 80°C for 10 min. AnPI exhibited effective against total proteolytic activity and trypsin-like activity, but did not show any inhibitory effect on chymotrypsin activity of midgut of Helicoverpa armigera. The inhibition kinetics studies against H. armigera gut trypsin are of non-competitive type. AnPI had low affinity for H. armigera gut trypsin when compared to SBTI. The partially purified and purified PI proteins-incorporated test diets showed significant reduction in mean larval and pupal weight of H. armigera. The results provide important clues in designing strategies by using the proteinase inhibitors (PIs) from the A. nilotica that can be expressed in genetically engineered plants to confer resistance to H. armigera.

  5. Molecular karyotype and chromosomal localization of genes encoding ß-tubulin, cysteine proteinase, hsp 70 and actin in Trypanosoma rangeli

    CB Toaldo

    2001-01-01

    Full Text Available The molecular karyotype of nine Trypanosoma rangeli strains was analyzed by contour-clamped homogeneous electric field electrophoresis, followed by the chromosomal localization of ß-tubulin, cysteine proteinase, 70 kDa heat shock protein (hsp 70 and actin genes. The T. rangeli strains were isolated from either insects or mammals from El Salvador, Honduras, Venezuela, Colombia, Panama and southern Brazil. Also, T. cruzi CL-Brener clone was included for comparison. Despite the great similarity observed among strains from Brazil, the molecular karyotype of all T. rangeli strains analyzed revealed extensive chromosome polymorphism. In addition, it was possible to distinguish T. rangeli from T. cruzi by the chromosomal DNA electrophoresis pattern. The localization of ß-tubulin genes revealed differences among T. rangeli strains and confirmed the similarity between the isolates from Brazil. Hybridization assays using probes directed to the cysteine proteinase, hsp 70 and actin genes discriminated T. rangeli from T. cruzi, proving that these genes are useful molecular markers for the differential diagnosis between these two species. Numerical analysis based on the molecular karyotype data revealed a high degree of polymorphism among T. rangeli strains isolated from southern Brazil and strains isolated from Central and the northern South America. The T. cruzi reference strain was not clustered with any T. rangeli strain.

  6. Growth and development of Colorado potato beetle larvae, Leptinotarsa decemlineata, on potato plants expressing the oryzacystatin II proteinase inhibitor.

    Cingel, Aleksandar; Savić, Jelena; Vinterhalter, Branka; Vinterhalter, Dragan; Kostić, Miroslav; Jovanović, Darka Šešlija; Smigocki, Ann; Ninković, Slavica

    2015-08-01

    Plant proteinase inhibitors (PIs) are attractive tools for crop improvement and their heterologous expression can enhance insect resistance in transgenic plants. PI oryzacystatin II (OCII), isolated from rice, showed potential in controlling pests that utilize cysteine proteinases for protein digestion. To evaluate the applicability of the OCII gene in enhancing plant defence, OCII-transformed potatoes were bioassayed for resistance to Colorado potato beetle (Leptinotarsa decemlineata Say). Feeding on transformed leaves of potato cultivars Desiree and Jelica significantly affected larval growth and development, but did not change mortality rates. During the L2 and L3 developmental stages larvae consumed the OCII-transformed foliage faster as compared to the nontransformed control. Also these larvae reached the prepupal stage (end of L4 stage) 2 days earlier than those fed on control leaves. However, the total amounts of consumed OCII-transformed leaves were up to 23% lower than of control, and the maximal weights of prepupal larvae were reduced by up to 18% as compared to larvae fed on nontransformed leaves. The reduction in insect fitness reported in this study in combination with other control measures, could lead to improved CPB resistance management in potato. PMID:25820664

  7. Correction: Short-term variability of biomarkers of proteinase activity in patients with emphysema associated with type Z alpha-1-antitrypsin deficiency.

    Stolk, J.; Veldhuisen, B.; Annovazzi, L.; Zanone, C.; Versteeg, E.M.M.; Kuppevelt, A.H.M.S.M. van; Nieuwenhuizen, W.; Iadarola, P.; Berden, J.H.M.; Luisetti, M.

    2006-01-01

    BACKGROUND: The burden of proteinases from inflammatory cells in the lung of subjects with type Pi ZZ of alpha-1-antitrypsin deficiency is higher than in those without the deficiency. Cross-sectional studies have shown increased levels of biomarkers of extracellular matrix degradation in vivo. Longi

  8. Short-term variability of biomarkers of proteinase activity in patients with emphysema associated with type Z alpha-1-antitrypsin deficiency

    Stolk, J; Veldhuisen, B; Annovazzi, L; Zanone, C; Versteeg, EM; van Kuppevelt, TH; Nieuwenhuizen, W; Iadarola, P; Luisetti, M

    2005-01-01

    Background: The burden of proteinases from inflammatory cells in the lung of subjects with type Pi ZZ of alpha-1-antitrypsin deficiency is higher than in those without the deficiency. Cross-sectional studies have shown increased levels of biomarkers of extracellular matrix degradation in vivo. Longi

  9. Short-term variability of biomarkers of proteinase activity in patients with emphysema associated with type Z alpha-1-antitrypsin deficiency.

    Stolk, J.; Veldhuisen, B.; Annovazzi, L.; Zanone, C.; Versteeg, E.M.M.; Kuppevelt, A.H.M.S.M. van; Nieuwenhuizen, W.; Iadarola, P.; Luisetti, M.

    2005-01-01

    BACKGROUND: The burden of proteinases from inflammatory cells in the lung of subjects with type Pi ZZ of alpha-1-antitrypsin deficiency is higher than in those without the deficiency. Cross-sectional studies have shown increased levels of biomarkers of extracellular matrix degradation in vivo. Longi

  10. Characterisation of cysteine proteinases responsible for digestive proteolysis in guts of larval Western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris

    Bown, D.P.; Wilkinson, H.S.; Jongsma, M.A.; Gatehouse, J.A.

    2004-01-01

    Cysteine proteinases are the major class of enzymes responsible for digestive proteolysis in western corn rootworm (Diabrotica virgifera), a serious pest of maize. A larval gut extract hydrolysed typical cathepsin substrates, such as Z-phe-arg-AMC and Z-arg-arg-AMC, and hydrolysis was inhibited by Z